]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: release reserved quota when block reservation for delalloc retry
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
d2a17637 44#include "ext4_extents.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
678aaf48
JK
50static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52{
7f5aa215
JK
53 return jbd2_journal_begin_ordered_truncate(
54 EXT4_SB(inode->i_sb)->s_journal,
55 &EXT4_I(inode)->jinode,
56 new_size);
678aaf48
JK
57}
58
64769240
AT
59static void ext4_invalidatepage(struct page *page, unsigned long offset);
60
ac27a0ec
DK
61/*
62 * Test whether an inode is a fast symlink.
63 */
617ba13b 64static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 65{
617ba13b 66 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
67 (inode->i_sb->s_blocksize >> 9) : 0;
68
69 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
70}
71
72/*
617ba13b 73 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
74 * which has been journaled. Metadata (eg. indirect blocks) must be
75 * revoked in all cases.
76 *
77 * "bh" may be NULL: a metadata block may have been freed from memory
78 * but there may still be a record of it in the journal, and that record
79 * still needs to be revoked.
0390131b 80 *
e6b5d301
CW
81 * If the handle isn't valid we're not journaling, but we still need to
82 * call into ext4_journal_revoke() to put the buffer head.
ac27a0ec 83 */
617ba13b 84int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 85 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
86{
87 int err;
88
89 might_sleep();
90
91 BUFFER_TRACE(bh, "enter");
92
93 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 94 "data mode %x\n",
ac27a0ec
DK
95 bh, is_metadata, inode->i_mode,
96 test_opt(inode->i_sb, DATA_FLAGS));
97
98 /* Never use the revoke function if we are doing full data
99 * journaling: there is no need to, and a V1 superblock won't
100 * support it. Otherwise, only skip the revoke on un-journaled
101 * data blocks. */
102
617ba13b
MC
103 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
104 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 105 if (bh) {
dab291af 106 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 107 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
108 }
109 return 0;
110 }
111
112 /*
113 * data!=journal && (is_metadata || should_journal_data(inode))
114 */
617ba13b
MC
115 BUFFER_TRACE(bh, "call ext4_journal_revoke");
116 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 117 if (err)
46e665e9 118 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
119 "error %d when attempting revoke", err);
120 BUFFER_TRACE(bh, "exit");
121 return err;
122}
123
124/*
125 * Work out how many blocks we need to proceed with the next chunk of a
126 * truncate transaction.
127 */
128static unsigned long blocks_for_truncate(struct inode *inode)
129{
725d26d3 130 ext4_lblk_t needed;
ac27a0ec
DK
131
132 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
133
134 /* Give ourselves just enough room to cope with inodes in which
135 * i_blocks is corrupt: we've seen disk corruptions in the past
136 * which resulted in random data in an inode which looked enough
617ba13b 137 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
138 * will go a bit crazy if that happens, but at least we should
139 * try not to panic the whole kernel. */
140 if (needed < 2)
141 needed = 2;
142
143 /* But we need to bound the transaction so we don't overflow the
144 * journal. */
617ba13b
MC
145 if (needed > EXT4_MAX_TRANS_DATA)
146 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 147
617ba13b 148 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
149}
150
151/*
152 * Truncate transactions can be complex and absolutely huge. So we need to
153 * be able to restart the transaction at a conventient checkpoint to make
154 * sure we don't overflow the journal.
155 *
156 * start_transaction gets us a new handle for a truncate transaction,
157 * and extend_transaction tries to extend the existing one a bit. If
158 * extend fails, we need to propagate the failure up and restart the
159 * transaction in the top-level truncate loop. --sct
160 */
161static handle_t *start_transaction(struct inode *inode)
162{
163 handle_t *result;
164
617ba13b 165 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
166 if (!IS_ERR(result))
167 return result;
168
617ba13b 169 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
170 return result;
171}
172
173/*
174 * Try to extend this transaction for the purposes of truncation.
175 *
176 * Returns 0 if we managed to create more room. If we can't create more
177 * room, and the transaction must be restarted we return 1.
178 */
179static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
180{
0390131b
FM
181 if (!ext4_handle_valid(handle))
182 return 0;
183 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 184 return 0;
617ba13b 185 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
186 return 0;
187 return 1;
188}
189
190/*
191 * Restart the transaction associated with *handle. This does a commit,
192 * so before we call here everything must be consistently dirtied against
193 * this transaction.
194 */
487caeef
JK
195 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
196 int nblocks)
ac27a0ec 197{
487caeef
JK
198 int ret;
199
200 /*
201 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
202 * moment, get_block can be called only for blocks inside i_size since
203 * page cache has been already dropped and writes are blocked by
204 * i_mutex. So we can safely drop the i_data_sem here.
205 */
0390131b 206 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 207 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
208 up_write(&EXT4_I(inode)->i_data_sem);
209 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
210 down_write(&EXT4_I(inode)->i_data_sem);
211
212 return ret;
ac27a0ec
DK
213}
214
215/*
216 * Called at the last iput() if i_nlink is zero.
217 */
af5bc92d 218void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
219{
220 handle_t *handle;
bc965ab3 221 int err;
ac27a0ec 222
678aaf48
JK
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
225 truncate_inode_pages(&inode->i_data, 0);
226
227 if (is_bad_inode(inode))
228 goto no_delete;
229
bc965ab3 230 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 231 if (IS_ERR(handle)) {
bc965ab3 232 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
233 /*
234 * If we're going to skip the normal cleanup, we still need to
235 * make sure that the in-core orphan linked list is properly
236 * cleaned up.
237 */
617ba13b 238 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
239 goto no_delete;
240 }
241
242 if (IS_SYNC(inode))
0390131b 243 ext4_handle_sync(handle);
ac27a0ec 244 inode->i_size = 0;
bc965ab3
TT
245 err = ext4_mark_inode_dirty(handle, inode);
246 if (err) {
247 ext4_warning(inode->i_sb, __func__,
248 "couldn't mark inode dirty (err %d)", err);
249 goto stop_handle;
250 }
ac27a0ec 251 if (inode->i_blocks)
617ba13b 252 ext4_truncate(inode);
bc965ab3
TT
253
254 /*
255 * ext4_ext_truncate() doesn't reserve any slop when it
256 * restarts journal transactions; therefore there may not be
257 * enough credits left in the handle to remove the inode from
258 * the orphan list and set the dtime field.
259 */
0390131b 260 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
261 err = ext4_journal_extend(handle, 3);
262 if (err > 0)
263 err = ext4_journal_restart(handle, 3);
264 if (err != 0) {
265 ext4_warning(inode->i_sb, __func__,
266 "couldn't extend journal (err %d)", err);
267 stop_handle:
268 ext4_journal_stop(handle);
269 goto no_delete;
270 }
271 }
272
ac27a0ec 273 /*
617ba13b 274 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 275 * AKPM: I think this can be inside the above `if'.
617ba13b 276 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 277 * deletion of a non-existent orphan - this is because we don't
617ba13b 278 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
279 * (Well, we could do this if we need to, but heck - it works)
280 */
617ba13b
MC
281 ext4_orphan_del(handle, inode);
282 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
283
284 /*
285 * One subtle ordering requirement: if anything has gone wrong
286 * (transaction abort, IO errors, whatever), then we can still
287 * do these next steps (the fs will already have been marked as
288 * having errors), but we can't free the inode if the mark_dirty
289 * fails.
290 */
617ba13b 291 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
292 /* If that failed, just do the required in-core inode clear. */
293 clear_inode(inode);
294 else
617ba13b
MC
295 ext4_free_inode(handle, inode);
296 ext4_journal_stop(handle);
ac27a0ec
DK
297 return;
298no_delete:
299 clear_inode(inode); /* We must guarantee clearing of inode... */
300}
301
302typedef struct {
303 __le32 *p;
304 __le32 key;
305 struct buffer_head *bh;
306} Indirect;
307
308static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
309{
310 p->key = *(p->p = v);
311 p->bh = bh;
312}
313
ac27a0ec 314/**
617ba13b 315 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
316 * @inode: inode in question (we are only interested in its superblock)
317 * @i_block: block number to be parsed
318 * @offsets: array to store the offsets in
8c55e204
DK
319 * @boundary: set this non-zero if the referred-to block is likely to be
320 * followed (on disk) by an indirect block.
ac27a0ec 321 *
617ba13b 322 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
323 * for UNIX filesystems - tree of pointers anchored in the inode, with
324 * data blocks at leaves and indirect blocks in intermediate nodes.
325 * This function translates the block number into path in that tree -
326 * return value is the path length and @offsets[n] is the offset of
327 * pointer to (n+1)th node in the nth one. If @block is out of range
328 * (negative or too large) warning is printed and zero returned.
329 *
330 * Note: function doesn't find node addresses, so no IO is needed. All
331 * we need to know is the capacity of indirect blocks (taken from the
332 * inode->i_sb).
333 */
334
335/*
336 * Portability note: the last comparison (check that we fit into triple
337 * indirect block) is spelled differently, because otherwise on an
338 * architecture with 32-bit longs and 8Kb pages we might get into trouble
339 * if our filesystem had 8Kb blocks. We might use long long, but that would
340 * kill us on x86. Oh, well, at least the sign propagation does not matter -
341 * i_block would have to be negative in the very beginning, so we would not
342 * get there at all.
343 */
344
617ba13b 345static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
346 ext4_lblk_t i_block,
347 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 348{
617ba13b
MC
349 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
350 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
351 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
352 indirect_blocks = ptrs,
353 double_blocks = (1 << (ptrs_bits * 2));
354 int n = 0;
355 int final = 0;
356
c333e073 357 if (i_block < direct_blocks) {
ac27a0ec
DK
358 offsets[n++] = i_block;
359 final = direct_blocks;
af5bc92d 360 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 361 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
362 offsets[n++] = i_block;
363 final = ptrs;
364 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 365 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
366 offsets[n++] = i_block >> ptrs_bits;
367 offsets[n++] = i_block & (ptrs - 1);
368 final = ptrs;
369 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 370 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
371 offsets[n++] = i_block >> (ptrs_bits * 2);
372 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
373 offsets[n++] = i_block & (ptrs - 1);
374 final = ptrs;
375 } else {
e2b46574 376 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
377 "block %lu > max in inode %lu",
378 i_block + direct_blocks +
379 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
380 }
381 if (boundary)
382 *boundary = final - 1 - (i_block & (ptrs - 1));
383 return n;
384}
385
fe2c8191 386static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
387 __le32 *p, unsigned int max)
388{
f73953c0 389 __le32 *bref = p;
6fd058f7
TT
390 unsigned int blk;
391
fe2c8191 392 while (bref < p+max) {
6fd058f7 393 blk = le32_to_cpu(*bref++);
de9a55b8
TT
394 if (blk &&
395 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 396 blk, 1))) {
fe2c8191 397 ext4_error(inode->i_sb, function,
6fd058f7
TT
398 "invalid block reference %u "
399 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
400 return -EIO;
401 }
402 }
403 return 0;
fe2c8191
TN
404}
405
406
407#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 408 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
409 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
410
411#define ext4_check_inode_blockref(inode) \
de9a55b8 412 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
413 EXT4_NDIR_BLOCKS)
414
ac27a0ec 415/**
617ba13b 416 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
417 * @inode: inode in question
418 * @depth: depth of the chain (1 - direct pointer, etc.)
419 * @offsets: offsets of pointers in inode/indirect blocks
420 * @chain: place to store the result
421 * @err: here we store the error value
422 *
423 * Function fills the array of triples <key, p, bh> and returns %NULL
424 * if everything went OK or the pointer to the last filled triple
425 * (incomplete one) otherwise. Upon the return chain[i].key contains
426 * the number of (i+1)-th block in the chain (as it is stored in memory,
427 * i.e. little-endian 32-bit), chain[i].p contains the address of that
428 * number (it points into struct inode for i==0 and into the bh->b_data
429 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
430 * block for i>0 and NULL for i==0. In other words, it holds the block
431 * numbers of the chain, addresses they were taken from (and where we can
432 * verify that chain did not change) and buffer_heads hosting these
433 * numbers.
434 *
435 * Function stops when it stumbles upon zero pointer (absent block)
436 * (pointer to last triple returned, *@err == 0)
437 * or when it gets an IO error reading an indirect block
438 * (ditto, *@err == -EIO)
ac27a0ec
DK
439 * or when it reads all @depth-1 indirect blocks successfully and finds
440 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
441 *
442 * Need to be called with
0e855ac8 443 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 444 */
725d26d3
AK
445static Indirect *ext4_get_branch(struct inode *inode, int depth,
446 ext4_lblk_t *offsets,
ac27a0ec
DK
447 Indirect chain[4], int *err)
448{
449 struct super_block *sb = inode->i_sb;
450 Indirect *p = chain;
451 struct buffer_head *bh;
452
453 *err = 0;
454 /* i_data is not going away, no lock needed */
af5bc92d 455 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
456 if (!p->key)
457 goto no_block;
458 while (--depth) {
fe2c8191
TN
459 bh = sb_getblk(sb, le32_to_cpu(p->key));
460 if (unlikely(!bh))
ac27a0ec 461 goto failure;
de9a55b8 462
fe2c8191
TN
463 if (!bh_uptodate_or_lock(bh)) {
464 if (bh_submit_read(bh) < 0) {
465 put_bh(bh);
466 goto failure;
467 }
468 /* validate block references */
469 if (ext4_check_indirect_blockref(inode, bh)) {
470 put_bh(bh);
471 goto failure;
472 }
473 }
de9a55b8 474
af5bc92d 475 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
476 /* Reader: end */
477 if (!p->key)
478 goto no_block;
479 }
480 return NULL;
481
ac27a0ec
DK
482failure:
483 *err = -EIO;
484no_block:
485 return p;
486}
487
488/**
617ba13b 489 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
490 * @inode: owner
491 * @ind: descriptor of indirect block.
492 *
1cc8dcf5 493 * This function returns the preferred place for block allocation.
ac27a0ec
DK
494 * It is used when heuristic for sequential allocation fails.
495 * Rules are:
496 * + if there is a block to the left of our position - allocate near it.
497 * + if pointer will live in indirect block - allocate near that block.
498 * + if pointer will live in inode - allocate in the same
499 * cylinder group.
500 *
501 * In the latter case we colour the starting block by the callers PID to
502 * prevent it from clashing with concurrent allocations for a different inode
503 * in the same block group. The PID is used here so that functionally related
504 * files will be close-by on-disk.
505 *
506 * Caller must make sure that @ind is valid and will stay that way.
507 */
617ba13b 508static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 509{
617ba13b 510 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 511 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 512 __le32 *p;
617ba13b 513 ext4_fsblk_t bg_start;
74d3487f 514 ext4_fsblk_t last_block;
617ba13b 515 ext4_grpblk_t colour;
a4912123
TT
516 ext4_group_t block_group;
517 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
518
519 /* Try to find previous block */
520 for (p = ind->p - 1; p >= start; p--) {
521 if (*p)
522 return le32_to_cpu(*p);
523 }
524
525 /* No such thing, so let's try location of indirect block */
526 if (ind->bh)
527 return ind->bh->b_blocknr;
528
529 /*
530 * It is going to be referred to from the inode itself? OK, just put it
531 * into the same cylinder group then.
532 */
a4912123
TT
533 block_group = ei->i_block_group;
534 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
535 block_group &= ~(flex_size-1);
536 if (S_ISREG(inode->i_mode))
537 block_group++;
538 }
539 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
540 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
541
a4912123
TT
542 /*
543 * If we are doing delayed allocation, we don't need take
544 * colour into account.
545 */
546 if (test_opt(inode->i_sb, DELALLOC))
547 return bg_start;
548
74d3487f
VC
549 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
550 colour = (current->pid % 16) *
617ba13b 551 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
552 else
553 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
554 return bg_start + colour;
555}
556
557/**
1cc8dcf5 558 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
559 * @inode: owner
560 * @block: block we want
ac27a0ec 561 * @partial: pointer to the last triple within a chain
ac27a0ec 562 *
1cc8dcf5 563 * Normally this function find the preferred place for block allocation,
fb01bfda 564 * returns it.
fb0a387d
ES
565 * Because this is only used for non-extent files, we limit the block nr
566 * to 32 bits.
ac27a0ec 567 */
725d26d3 568static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 569 Indirect *partial)
ac27a0ec 570{
fb0a387d
ES
571 ext4_fsblk_t goal;
572
ac27a0ec 573 /*
c2ea3fde 574 * XXX need to get goal block from mballoc's data structures
ac27a0ec 575 */
ac27a0ec 576
fb0a387d
ES
577 goal = ext4_find_near(inode, partial);
578 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
579 return goal;
ac27a0ec
DK
580}
581
582/**
617ba13b 583 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
584 * of direct blocks need to be allocated for the given branch.
585 *
586 * @branch: chain of indirect blocks
587 * @k: number of blocks need for indirect blocks
588 * @blks: number of data blocks to be mapped.
589 * @blocks_to_boundary: the offset in the indirect block
590 *
591 * return the total number of blocks to be allocate, including the
592 * direct and indirect blocks.
593 */
498e5f24 594static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 595 int blocks_to_boundary)
ac27a0ec 596{
498e5f24 597 unsigned int count = 0;
ac27a0ec
DK
598
599 /*
600 * Simple case, [t,d]Indirect block(s) has not allocated yet
601 * then it's clear blocks on that path have not allocated
602 */
603 if (k > 0) {
604 /* right now we don't handle cross boundary allocation */
605 if (blks < blocks_to_boundary + 1)
606 count += blks;
607 else
608 count += blocks_to_boundary + 1;
609 return count;
610 }
611
612 count++;
613 while (count < blks && count <= blocks_to_boundary &&
614 le32_to_cpu(*(branch[0].p + count)) == 0) {
615 count++;
616 }
617 return count;
618}
619
620/**
617ba13b 621 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
622 * @indirect_blks: the number of blocks need to allocate for indirect
623 * blocks
624 *
625 * @new_blocks: on return it will store the new block numbers for
626 * the indirect blocks(if needed) and the first direct block,
627 * @blks: on return it will store the total number of allocated
628 * direct blocks
629 */
617ba13b 630static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
631 ext4_lblk_t iblock, ext4_fsblk_t goal,
632 int indirect_blks, int blks,
633 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 634{
815a1130 635 struct ext4_allocation_request ar;
ac27a0ec 636 int target, i;
7061eba7 637 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 638 int index = 0;
617ba13b 639 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
640 int ret = 0;
641
642 /*
643 * Here we try to allocate the requested multiple blocks at once,
644 * on a best-effort basis.
645 * To build a branch, we should allocate blocks for
646 * the indirect blocks(if not allocated yet), and at least
647 * the first direct block of this branch. That's the
648 * minimum number of blocks need to allocate(required)
649 */
7061eba7
AK
650 /* first we try to allocate the indirect blocks */
651 target = indirect_blks;
652 while (target > 0) {
ac27a0ec
DK
653 count = target;
654 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
655 current_block = ext4_new_meta_blocks(handle, inode,
656 goal, &count, err);
ac27a0ec
DK
657 if (*err)
658 goto failed_out;
659
fb0a387d
ES
660 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
661
ac27a0ec
DK
662 target -= count;
663 /* allocate blocks for indirect blocks */
664 while (index < indirect_blks && count) {
665 new_blocks[index++] = current_block++;
666 count--;
667 }
7061eba7
AK
668 if (count > 0) {
669 /*
670 * save the new block number
671 * for the first direct block
672 */
673 new_blocks[index] = current_block;
674 printk(KERN_INFO "%s returned more blocks than "
675 "requested\n", __func__);
676 WARN_ON(1);
ac27a0ec 677 break;
7061eba7 678 }
ac27a0ec
DK
679 }
680
7061eba7
AK
681 target = blks - count ;
682 blk_allocated = count;
683 if (!target)
684 goto allocated;
685 /* Now allocate data blocks */
815a1130
TT
686 memset(&ar, 0, sizeof(ar));
687 ar.inode = inode;
688 ar.goal = goal;
689 ar.len = target;
690 ar.logical = iblock;
691 if (S_ISREG(inode->i_mode))
692 /* enable in-core preallocation only for regular files */
693 ar.flags = EXT4_MB_HINT_DATA;
694
695 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 696 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 697
7061eba7
AK
698 if (*err && (target == blks)) {
699 /*
700 * if the allocation failed and we didn't allocate
701 * any blocks before
702 */
703 goto failed_out;
704 }
705 if (!*err) {
706 if (target == blks) {
de9a55b8
TT
707 /*
708 * save the new block number
709 * for the first direct block
710 */
7061eba7
AK
711 new_blocks[index] = current_block;
712 }
815a1130 713 blk_allocated += ar.len;
7061eba7
AK
714 }
715allocated:
ac27a0ec 716 /* total number of blocks allocated for direct blocks */
7061eba7 717 ret = blk_allocated;
ac27a0ec
DK
718 *err = 0;
719 return ret;
720failed_out:
af5bc92d 721 for (i = 0; i < index; i++)
c9de560d 722 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
723 return ret;
724}
725
726/**
617ba13b 727 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
728 * @inode: owner
729 * @indirect_blks: number of allocated indirect blocks
730 * @blks: number of allocated direct blocks
731 * @offsets: offsets (in the blocks) to store the pointers to next.
732 * @branch: place to store the chain in.
733 *
734 * This function allocates blocks, zeroes out all but the last one,
735 * links them into chain and (if we are synchronous) writes them to disk.
736 * In other words, it prepares a branch that can be spliced onto the
737 * inode. It stores the information about that chain in the branch[], in
617ba13b 738 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
739 * we had read the existing part of chain and partial points to the last
740 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 741 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
742 * place chain is disconnected - *branch->p is still zero (we did not
743 * set the last link), but branch->key contains the number that should
744 * be placed into *branch->p to fill that gap.
745 *
746 * If allocation fails we free all blocks we've allocated (and forget
747 * their buffer_heads) and return the error value the from failed
617ba13b 748 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
749 * as described above and return 0.
750 */
617ba13b 751static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
752 ext4_lblk_t iblock, int indirect_blks,
753 int *blks, ext4_fsblk_t goal,
754 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
755{
756 int blocksize = inode->i_sb->s_blocksize;
757 int i, n = 0;
758 int err = 0;
759 struct buffer_head *bh;
760 int num;
617ba13b
MC
761 ext4_fsblk_t new_blocks[4];
762 ext4_fsblk_t current_block;
ac27a0ec 763
7061eba7 764 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
765 *blks, new_blocks, &err);
766 if (err)
767 return err;
768
769 branch[0].key = cpu_to_le32(new_blocks[0]);
770 /*
771 * metadata blocks and data blocks are allocated.
772 */
773 for (n = 1; n <= indirect_blks; n++) {
774 /*
775 * Get buffer_head for parent block, zero it out
776 * and set the pointer to new one, then send
777 * parent to disk.
778 */
779 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
780 branch[n].bh = bh;
781 lock_buffer(bh);
782 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 783 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 784 if (err) {
6487a9d3
CW
785 /* Don't brelse(bh) here; it's done in
786 * ext4_journal_forget() below */
ac27a0ec 787 unlock_buffer(bh);
ac27a0ec
DK
788 goto failed;
789 }
790
791 memset(bh->b_data, 0, blocksize);
792 branch[n].p = (__le32 *) bh->b_data + offsets[n];
793 branch[n].key = cpu_to_le32(new_blocks[n]);
794 *branch[n].p = branch[n].key;
af5bc92d 795 if (n == indirect_blks) {
ac27a0ec
DK
796 current_block = new_blocks[n];
797 /*
798 * End of chain, update the last new metablock of
799 * the chain to point to the new allocated
800 * data blocks numbers
801 */
de9a55b8 802 for (i = 1; i < num; i++)
ac27a0ec
DK
803 *(branch[n].p + i) = cpu_to_le32(++current_block);
804 }
805 BUFFER_TRACE(bh, "marking uptodate");
806 set_buffer_uptodate(bh);
807 unlock_buffer(bh);
808
0390131b
FM
809 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
810 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
811 if (err)
812 goto failed;
813 }
814 *blks = num;
815 return err;
816failed:
817 /* Allocation failed, free what we already allocated */
818 for (i = 1; i <= n ; i++) {
dab291af 819 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 820 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 821 }
af5bc92d 822 for (i = 0; i < indirect_blks; i++)
c9de560d 823 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 824
c9de560d 825 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
826
827 return err;
828}
829
830/**
617ba13b 831 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
832 * @inode: owner
833 * @block: (logical) number of block we are adding
834 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 835 * ext4_alloc_branch)
ac27a0ec
DK
836 * @where: location of missing link
837 * @num: number of indirect blocks we are adding
838 * @blks: number of direct blocks we are adding
839 *
840 * This function fills the missing link and does all housekeeping needed in
841 * inode (->i_blocks, etc.). In case of success we end up with the full
842 * chain to new block and return 0.
843 */
617ba13b 844static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
845 ext4_lblk_t block, Indirect *where, int num,
846 int blks)
ac27a0ec
DK
847{
848 int i;
849 int err = 0;
617ba13b 850 ext4_fsblk_t current_block;
ac27a0ec 851
ac27a0ec
DK
852 /*
853 * If we're splicing into a [td]indirect block (as opposed to the
854 * inode) then we need to get write access to the [td]indirect block
855 * before the splice.
856 */
857 if (where->bh) {
858 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 859 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
860 if (err)
861 goto err_out;
862 }
863 /* That's it */
864
865 *where->p = where->key;
866
867 /*
868 * Update the host buffer_head or inode to point to more just allocated
869 * direct blocks blocks
870 */
871 if (num == 0 && blks > 1) {
872 current_block = le32_to_cpu(where->key) + 1;
873 for (i = 1; i < blks; i++)
af5bc92d 874 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
875 }
876
ac27a0ec 877 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
878 /* had we spliced it onto indirect block? */
879 if (where->bh) {
880 /*
881 * If we spliced it onto an indirect block, we haven't
882 * altered the inode. Note however that if it is being spliced
883 * onto an indirect block at the very end of the file (the
884 * file is growing) then we *will* alter the inode to reflect
885 * the new i_size. But that is not done here - it is done in
617ba13b 886 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
887 */
888 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
889 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
890 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
891 if (err)
892 goto err_out;
893 } else {
894 /*
895 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 896 */
41591750 897 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
898 jbd_debug(5, "splicing direct\n");
899 }
900 return err;
901
902err_out:
903 for (i = 1; i <= num; i++) {
dab291af 904 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 905 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
906 ext4_free_blocks(handle, inode,
907 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 908 }
c9de560d 909 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
910
911 return err;
912}
913
914/*
b920c755
TT
915 * The ext4_ind_get_blocks() function handles non-extents inodes
916 * (i.e., using the traditional indirect/double-indirect i_blocks
917 * scheme) for ext4_get_blocks().
918 *
ac27a0ec
DK
919 * Allocation strategy is simple: if we have to allocate something, we will
920 * have to go the whole way to leaf. So let's do it before attaching anything
921 * to tree, set linkage between the newborn blocks, write them if sync is
922 * required, recheck the path, free and repeat if check fails, otherwise
923 * set the last missing link (that will protect us from any truncate-generated
924 * removals - all blocks on the path are immune now) and possibly force the
925 * write on the parent block.
926 * That has a nice additional property: no special recovery from the failed
927 * allocations is needed - we simply release blocks and do not touch anything
928 * reachable from inode.
929 *
930 * `handle' can be NULL if create == 0.
931 *
ac27a0ec
DK
932 * return > 0, # of blocks mapped or allocated.
933 * return = 0, if plain lookup failed.
934 * return < 0, error case.
c278bfec 935 *
b920c755
TT
936 * The ext4_ind_get_blocks() function should be called with
937 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
938 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
939 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
940 * blocks.
ac27a0ec 941 */
e4d996ca 942static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
943 ext4_lblk_t iblock, unsigned int maxblocks,
944 struct buffer_head *bh_result,
945 int flags)
ac27a0ec
DK
946{
947 int err = -EIO;
725d26d3 948 ext4_lblk_t offsets[4];
ac27a0ec
DK
949 Indirect chain[4];
950 Indirect *partial;
617ba13b 951 ext4_fsblk_t goal;
ac27a0ec
DK
952 int indirect_blks;
953 int blocks_to_boundary = 0;
954 int depth;
ac27a0ec 955 int count = 0;
617ba13b 956 ext4_fsblk_t first_block = 0;
ac27a0ec 957
a86c6181 958 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 959 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 960 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 961 &blocks_to_boundary);
ac27a0ec
DK
962
963 if (depth == 0)
964 goto out;
965
617ba13b 966 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
967
968 /* Simplest case - block found, no allocation needed */
969 if (!partial) {
970 first_block = le32_to_cpu(chain[depth - 1].key);
971 clear_buffer_new(bh_result);
972 count++;
973 /*map more blocks*/
974 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 975 ext4_fsblk_t blk;
ac27a0ec 976
ac27a0ec
DK
977 blk = le32_to_cpu(*(chain[depth-1].p + count));
978
979 if (blk == first_block + count)
980 count++;
981 else
982 break;
983 }
c278bfec 984 goto got_it;
ac27a0ec
DK
985 }
986
987 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 988 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
989 goto cleanup;
990
ac27a0ec 991 /*
c2ea3fde 992 * Okay, we need to do block allocation.
ac27a0ec 993 */
fb01bfda 994 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
995
996 /* the number of blocks need to allocate for [d,t]indirect blocks */
997 indirect_blks = (chain + depth) - partial - 1;
998
999 /*
1000 * Next look up the indirect map to count the totoal number of
1001 * direct blocks to allocate for this branch.
1002 */
617ba13b 1003 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
1004 maxblocks, blocks_to_boundary);
1005 /*
617ba13b 1006 * Block out ext4_truncate while we alter the tree
ac27a0ec 1007 */
7061eba7 1008 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
1009 &count, goal,
1010 offsets + (partial - chain), partial);
ac27a0ec
DK
1011
1012 /*
617ba13b 1013 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1014 * on the new chain if there is a failure, but that risks using
1015 * up transaction credits, especially for bitmaps where the
1016 * credits cannot be returned. Can we handle this somehow? We
1017 * may need to return -EAGAIN upwards in the worst case. --sct
1018 */
1019 if (!err)
617ba13b 1020 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1021 partial, indirect_blks, count);
1022 else
ac27a0ec
DK
1023 goto cleanup;
1024
1025 set_buffer_new(bh_result);
1026got_it:
1027 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1028 if (count > blocks_to_boundary)
1029 set_buffer_boundary(bh_result);
1030 err = count;
1031 /* Clean up and exit */
1032 partial = chain + depth - 1; /* the whole chain */
1033cleanup:
1034 while (partial > chain) {
1035 BUFFER_TRACE(partial->bh, "call brelse");
1036 brelse(partial->bh);
1037 partial--;
1038 }
1039 BUFFER_TRACE(bh_result, "returned");
1040out:
1041 return err;
1042}
1043
60e58e0f
MC
1044qsize_t ext4_get_reserved_space(struct inode *inode)
1045{
1046 unsigned long long total;
1047
1048 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1049 total = EXT4_I(inode)->i_reserved_data_blocks +
1050 EXT4_I(inode)->i_reserved_meta_blocks;
1051 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1052
1053 return total;
1054}
12219aea
AK
1055/*
1056 * Calculate the number of metadata blocks need to reserve
1057 * to allocate @blocks for non extent file based file
1058 */
1059static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1060{
1061 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1062 int ind_blks, dind_blks, tind_blks;
1063
1064 /* number of new indirect blocks needed */
1065 ind_blks = (blocks + icap - 1) / icap;
1066
1067 dind_blks = (ind_blks + icap - 1) / icap;
1068
1069 tind_blks = 1;
1070
1071 return ind_blks + dind_blks + tind_blks;
1072}
1073
1074/*
1075 * Calculate the number of metadata blocks need to reserve
1076 * to allocate given number of blocks
1077 */
1078static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1079{
cd213226
MC
1080 if (!blocks)
1081 return 0;
1082
12219aea
AK
1083 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1084 return ext4_ext_calc_metadata_amount(inode, blocks);
1085
1086 return ext4_indirect_calc_metadata_amount(inode, blocks);
1087}
1088
1089static void ext4_da_update_reserve_space(struct inode *inode, int used)
1090{
1091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1092 int total, mdb, mdb_free;
1093
1094 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1095 /* recalculate the number of metablocks still need to be reserved */
1096 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1097 mdb = ext4_calc_metadata_amount(inode, total);
1098
1099 /* figure out how many metablocks to release */
1100 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1101 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1102
6bc6e63f
AK
1103 if (mdb_free) {
1104 /* Account for allocated meta_blocks */
1105 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1106
1107 /* update fs dirty blocks counter */
1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1109 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1110 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1111 }
12219aea
AK
1112
1113 /* update per-inode reservations */
1114 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1115 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1116 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1117
1118 /*
1119 * free those over-booking quota for metadata blocks
1120 */
60e58e0f
MC
1121 if (mdb_free)
1122 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1123
1124 /*
1125 * If we have done all the pending block allocations and if
1126 * there aren't any writers on the inode, we can discard the
1127 * inode's preallocations.
1128 */
1129 if (!total && (atomic_read(&inode->i_writecount) == 0))
1130 ext4_discard_preallocations(inode);
12219aea
AK
1131}
1132
80e42468
TT
1133static int check_block_validity(struct inode *inode, const char *msg,
1134 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1135{
1136 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1137 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode->i_ino,
1140 (unsigned long long) logical,
1141 (unsigned long long) phys, len);
6fd058f7
TT
1142 return -EIO;
1143 }
1144 return 0;
1145}
1146
55138e0b
TT
1147/*
1148 * Return the number of dirty pages in the given inode starting at
1149 * page frame idx.
1150 */
1151static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1152 unsigned int max_pages)
1153{
1154 struct address_space *mapping = inode->i_mapping;
1155 pgoff_t index;
1156 struct pagevec pvec;
1157 pgoff_t num = 0;
1158 int i, nr_pages, done = 0;
1159
1160 if (max_pages == 0)
1161 return 0;
1162 pagevec_init(&pvec, 0);
1163 while (!done) {
1164 index = idx;
1165 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1166 PAGECACHE_TAG_DIRTY,
1167 (pgoff_t)PAGEVEC_SIZE);
1168 if (nr_pages == 0)
1169 break;
1170 for (i = 0; i < nr_pages; i++) {
1171 struct page *page = pvec.pages[i];
1172 struct buffer_head *bh, *head;
1173
1174 lock_page(page);
1175 if (unlikely(page->mapping != mapping) ||
1176 !PageDirty(page) ||
1177 PageWriteback(page) ||
1178 page->index != idx) {
1179 done = 1;
1180 unlock_page(page);
1181 break;
1182 }
1183 head = page_buffers(page);
1184 bh = head;
1185 do {
1186 if (!buffer_delay(bh) &&
1187 !buffer_unwritten(bh)) {
1188 done = 1;
1189 break;
1190 }
1191 } while ((bh = bh->b_this_page) != head);
1192 unlock_page(page);
1193 if (done)
1194 break;
1195 idx++;
1196 num++;
1197 if (num >= max_pages)
1198 break;
1199 }
1200 pagevec_release(&pvec);
1201 }
1202 return num;
1203}
1204
f5ab0d1f 1205/*
12b7ac17 1206 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1207 * and returns if the blocks are already mapped.
f5ab0d1f 1208 *
f5ab0d1f
MC
1209 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1210 * and store the allocated blocks in the result buffer head and mark it
1211 * mapped.
1212 *
1213 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1214 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1215 * based files
1216 *
1217 * On success, it returns the number of blocks being mapped or allocate.
1218 * if create==0 and the blocks are pre-allocated and uninitialized block,
1219 * the result buffer head is unmapped. If the create ==1, it will make sure
1220 * the buffer head is mapped.
1221 *
1222 * It returns 0 if plain look up failed (blocks have not been allocated), in
1223 * that casem, buffer head is unmapped
1224 *
1225 * It returns the error in case of allocation failure.
1226 */
12b7ac17
TT
1227int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1228 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1229 int flags)
0e855ac8
AK
1230{
1231 int retval;
f5ab0d1f
MC
1232
1233 clear_buffer_mapped(bh);
2a8964d6 1234 clear_buffer_unwritten(bh);
f5ab0d1f 1235
4df3d265 1236 /*
b920c755
TT
1237 * Try to see if we can get the block without requesting a new
1238 * file system block.
4df3d265
AK
1239 */
1240 down_read((&EXT4_I(inode)->i_data_sem));
1241 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1242 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1243 bh, 0);
0e855ac8 1244 } else {
e4d996ca 1245 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1246 bh, 0);
0e855ac8 1247 }
4df3d265 1248 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1249
6fd058f7 1250 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1251 int ret = check_block_validity(inode, "file system corruption",
1252 block, bh->b_blocknr, retval);
6fd058f7
TT
1253 if (ret != 0)
1254 return ret;
1255 }
1256
f5ab0d1f 1257 /* If it is only a block(s) look up */
c2177057 1258 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1259 return retval;
1260
1261 /*
1262 * Returns if the blocks have already allocated
1263 *
1264 * Note that if blocks have been preallocated
1265 * ext4_ext_get_block() returns th create = 0
1266 * with buffer head unmapped.
1267 */
1268 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1269 return retval;
1270
2a8964d6
AK
1271 /*
1272 * When we call get_blocks without the create flag, the
1273 * BH_Unwritten flag could have gotten set if the blocks
1274 * requested were part of a uninitialized extent. We need to
1275 * clear this flag now that we are committed to convert all or
1276 * part of the uninitialized extent to be an initialized
1277 * extent. This is because we need to avoid the combination
1278 * of BH_Unwritten and BH_Mapped flags being simultaneously
1279 * set on the buffer_head.
1280 */
1281 clear_buffer_unwritten(bh);
1282
4df3d265 1283 /*
f5ab0d1f
MC
1284 * New blocks allocate and/or writing to uninitialized extent
1285 * will possibly result in updating i_data, so we take
1286 * the write lock of i_data_sem, and call get_blocks()
1287 * with create == 1 flag.
4df3d265
AK
1288 */
1289 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1290
1291 /*
1292 * if the caller is from delayed allocation writeout path
1293 * we have already reserved fs blocks for allocation
1294 * let the underlying get_block() function know to
1295 * avoid double accounting
1296 */
c2177057 1297 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1298 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1299 /*
1300 * We need to check for EXT4 here because migrate
1301 * could have changed the inode type in between
1302 */
0e855ac8
AK
1303 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1304 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1305 bh, flags);
0e855ac8 1306 } else {
e4d996ca 1307 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1308 max_blocks, bh, flags);
267e4db9
AK
1309
1310 if (retval > 0 && buffer_new(bh)) {
1311 /*
1312 * We allocated new blocks which will result in
1313 * i_data's format changing. Force the migrate
1314 * to fail by clearing migrate flags
1315 */
1b9c12f4 1316 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1317 }
0e855ac8 1318 }
d2a17637 1319
2ac3b6e0 1320 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1321 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1322
1323 /*
1324 * Update reserved blocks/metadata blocks after successful
1325 * block allocation which had been deferred till now.
1326 */
1327 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1328 ext4_da_update_reserve_space(inode, retval);
d2a17637 1329
4df3d265 1330 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1331 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1332 int ret = check_block_validity(inode, "file system "
1333 "corruption after allocation",
1334 block, bh->b_blocknr, retval);
6fd058f7
TT
1335 if (ret != 0)
1336 return ret;
1337 }
0e855ac8
AK
1338 return retval;
1339}
1340
f3bd1f3f
MC
1341/* Maximum number of blocks we map for direct IO at once. */
1342#define DIO_MAX_BLOCKS 4096
1343
6873fa0d
ES
1344int ext4_get_block(struct inode *inode, sector_t iblock,
1345 struct buffer_head *bh_result, int create)
ac27a0ec 1346{
3e4fdaf8 1347 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1348 int ret = 0, started = 0;
ac27a0ec 1349 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1350 int dio_credits;
ac27a0ec 1351
7fb5409d
JK
1352 if (create && !handle) {
1353 /* Direct IO write... */
1354 if (max_blocks > DIO_MAX_BLOCKS)
1355 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1356 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1357 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1358 if (IS_ERR(handle)) {
ac27a0ec 1359 ret = PTR_ERR(handle);
7fb5409d 1360 goto out;
ac27a0ec 1361 }
7fb5409d 1362 started = 1;
ac27a0ec
DK
1363 }
1364
12b7ac17 1365 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1366 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1367 if (ret > 0) {
1368 bh_result->b_size = (ret << inode->i_blkbits);
1369 ret = 0;
ac27a0ec 1370 }
7fb5409d
JK
1371 if (started)
1372 ext4_journal_stop(handle);
1373out:
ac27a0ec
DK
1374 return ret;
1375}
1376
1377/*
1378 * `handle' can be NULL if create is zero
1379 */
617ba13b 1380struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1381 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1382{
1383 struct buffer_head dummy;
1384 int fatal = 0, err;
03f5d8bc 1385 int flags = 0;
ac27a0ec
DK
1386
1387 J_ASSERT(handle != NULL || create == 0);
1388
1389 dummy.b_state = 0;
1390 dummy.b_blocknr = -1000;
1391 buffer_trace_init(&dummy.b_history);
c2177057
TT
1392 if (create)
1393 flags |= EXT4_GET_BLOCKS_CREATE;
1394 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1395 /*
c2177057
TT
1396 * ext4_get_blocks() returns number of blocks mapped. 0 in
1397 * case of a HOLE.
ac27a0ec
DK
1398 */
1399 if (err > 0) {
1400 if (err > 1)
1401 WARN_ON(1);
1402 err = 0;
1403 }
1404 *errp = err;
1405 if (!err && buffer_mapped(&dummy)) {
1406 struct buffer_head *bh;
1407 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1408 if (!bh) {
1409 *errp = -EIO;
1410 goto err;
1411 }
1412 if (buffer_new(&dummy)) {
1413 J_ASSERT(create != 0);
ac39849d 1414 J_ASSERT(handle != NULL);
ac27a0ec
DK
1415
1416 /*
1417 * Now that we do not always journal data, we should
1418 * keep in mind whether this should always journal the
1419 * new buffer as metadata. For now, regular file
617ba13b 1420 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1421 * problem.
1422 */
1423 lock_buffer(bh);
1424 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1425 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1426 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1427 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1428 set_buffer_uptodate(bh);
1429 }
1430 unlock_buffer(bh);
0390131b
FM
1431 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1432 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1433 if (!fatal)
1434 fatal = err;
1435 } else {
1436 BUFFER_TRACE(bh, "not a new buffer");
1437 }
1438 if (fatal) {
1439 *errp = fatal;
1440 brelse(bh);
1441 bh = NULL;
1442 }
1443 return bh;
1444 }
1445err:
1446 return NULL;
1447}
1448
617ba13b 1449struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1450 ext4_lblk_t block, int create, int *err)
ac27a0ec 1451{
af5bc92d 1452 struct buffer_head *bh;
ac27a0ec 1453
617ba13b 1454 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1455 if (!bh)
1456 return bh;
1457 if (buffer_uptodate(bh))
1458 return bh;
1459 ll_rw_block(READ_META, 1, &bh);
1460 wait_on_buffer(bh);
1461 if (buffer_uptodate(bh))
1462 return bh;
1463 put_bh(bh);
1464 *err = -EIO;
1465 return NULL;
1466}
1467
af5bc92d
TT
1468static int walk_page_buffers(handle_t *handle,
1469 struct buffer_head *head,
1470 unsigned from,
1471 unsigned to,
1472 int *partial,
1473 int (*fn)(handle_t *handle,
1474 struct buffer_head *bh))
ac27a0ec
DK
1475{
1476 struct buffer_head *bh;
1477 unsigned block_start, block_end;
1478 unsigned blocksize = head->b_size;
1479 int err, ret = 0;
1480 struct buffer_head *next;
1481
af5bc92d
TT
1482 for (bh = head, block_start = 0;
1483 ret == 0 && (bh != head || !block_start);
de9a55b8 1484 block_start = block_end, bh = next) {
ac27a0ec
DK
1485 next = bh->b_this_page;
1486 block_end = block_start + blocksize;
1487 if (block_end <= from || block_start >= to) {
1488 if (partial && !buffer_uptodate(bh))
1489 *partial = 1;
1490 continue;
1491 }
1492 err = (*fn)(handle, bh);
1493 if (!ret)
1494 ret = err;
1495 }
1496 return ret;
1497}
1498
1499/*
1500 * To preserve ordering, it is essential that the hole instantiation and
1501 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1502 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1503 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1504 * prepare_write() is the right place.
1505 *
617ba13b
MC
1506 * Also, this function can nest inside ext4_writepage() ->
1507 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1508 * has generated enough buffer credits to do the whole page. So we won't
1509 * block on the journal in that case, which is good, because the caller may
1510 * be PF_MEMALLOC.
1511 *
617ba13b 1512 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1513 * quota file writes. If we were to commit the transaction while thus
1514 * reentered, there can be a deadlock - we would be holding a quota
1515 * lock, and the commit would never complete if another thread had a
1516 * transaction open and was blocking on the quota lock - a ranking
1517 * violation.
1518 *
dab291af 1519 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1520 * will _not_ run commit under these circumstances because handle->h_ref
1521 * is elevated. We'll still have enough credits for the tiny quotafile
1522 * write.
1523 */
1524static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1525 struct buffer_head *bh)
ac27a0ec
DK
1526{
1527 if (!buffer_mapped(bh) || buffer_freed(bh))
1528 return 0;
617ba13b 1529 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1530}
1531
bfc1af65 1532static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1533 loff_t pos, unsigned len, unsigned flags,
1534 struct page **pagep, void **fsdata)
ac27a0ec 1535{
af5bc92d 1536 struct inode *inode = mapping->host;
1938a150 1537 int ret, needed_blocks;
ac27a0ec
DK
1538 handle_t *handle;
1539 int retries = 0;
af5bc92d 1540 struct page *page;
de9a55b8 1541 pgoff_t index;
af5bc92d 1542 unsigned from, to;
bfc1af65 1543
9bffad1e 1544 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1545 /*
1546 * Reserve one block more for addition to orphan list in case
1547 * we allocate blocks but write fails for some reason
1548 */
1549 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1550 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1551 from = pos & (PAGE_CACHE_SIZE - 1);
1552 to = from + len;
ac27a0ec
DK
1553
1554retry:
af5bc92d
TT
1555 handle = ext4_journal_start(inode, needed_blocks);
1556 if (IS_ERR(handle)) {
1557 ret = PTR_ERR(handle);
1558 goto out;
7479d2b9 1559 }
ac27a0ec 1560
ebd3610b
JK
1561 /* We cannot recurse into the filesystem as the transaction is already
1562 * started */
1563 flags |= AOP_FLAG_NOFS;
1564
54566b2c 1565 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1566 if (!page) {
1567 ext4_journal_stop(handle);
1568 ret = -ENOMEM;
1569 goto out;
1570 }
1571 *pagep = page;
1572
bfc1af65 1573 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1574 ext4_get_block);
bfc1af65
NP
1575
1576 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1577 ret = walk_page_buffers(handle, page_buffers(page),
1578 from, to, NULL, do_journal_get_write_access);
1579 }
bfc1af65
NP
1580
1581 if (ret) {
af5bc92d 1582 unlock_page(page);
af5bc92d 1583 page_cache_release(page);
ae4d5372
AK
1584 /*
1585 * block_write_begin may have instantiated a few blocks
1586 * outside i_size. Trim these off again. Don't need
1587 * i_size_read because we hold i_mutex.
1938a150
AK
1588 *
1589 * Add inode to orphan list in case we crash before
1590 * truncate finishes
ae4d5372 1591 */
ffacfa7a 1592 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1593 ext4_orphan_add(handle, inode);
1594
1595 ext4_journal_stop(handle);
1596 if (pos + len > inode->i_size) {
ffacfa7a 1597 ext4_truncate(inode);
de9a55b8 1598 /*
ffacfa7a 1599 * If truncate failed early the inode might
1938a150
AK
1600 * still be on the orphan list; we need to
1601 * make sure the inode is removed from the
1602 * orphan list in that case.
1603 */
1604 if (inode->i_nlink)
1605 ext4_orphan_del(NULL, inode);
1606 }
bfc1af65
NP
1607 }
1608
617ba13b 1609 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1610 goto retry;
7479d2b9 1611out:
ac27a0ec
DK
1612 return ret;
1613}
1614
bfc1af65
NP
1615/* For write_end() in data=journal mode */
1616static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1617{
1618 if (!buffer_mapped(bh) || buffer_freed(bh))
1619 return 0;
1620 set_buffer_uptodate(bh);
0390131b 1621 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1622}
1623
f8514083 1624static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1625 struct address_space *mapping,
1626 loff_t pos, unsigned len, unsigned copied,
1627 struct page *page, void *fsdata)
f8514083
AK
1628{
1629 int i_size_changed = 0;
1630 struct inode *inode = mapping->host;
1631 handle_t *handle = ext4_journal_current_handle();
1632
1633 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1634
1635 /*
1636 * No need to use i_size_read() here, the i_size
1637 * cannot change under us because we hold i_mutex.
1638 *
1639 * But it's important to update i_size while still holding page lock:
1640 * page writeout could otherwise come in and zero beyond i_size.
1641 */
1642 if (pos + copied > inode->i_size) {
1643 i_size_write(inode, pos + copied);
1644 i_size_changed = 1;
1645 }
1646
1647 if (pos + copied > EXT4_I(inode)->i_disksize) {
1648 /* We need to mark inode dirty even if
1649 * new_i_size is less that inode->i_size
1650 * bu greater than i_disksize.(hint delalloc)
1651 */
1652 ext4_update_i_disksize(inode, (pos + copied));
1653 i_size_changed = 1;
1654 }
1655 unlock_page(page);
1656 page_cache_release(page);
1657
1658 /*
1659 * Don't mark the inode dirty under page lock. First, it unnecessarily
1660 * makes the holding time of page lock longer. Second, it forces lock
1661 * ordering of page lock and transaction start for journaling
1662 * filesystems.
1663 */
1664 if (i_size_changed)
1665 ext4_mark_inode_dirty(handle, inode);
1666
1667 return copied;
1668}
1669
ac27a0ec
DK
1670/*
1671 * We need to pick up the new inode size which generic_commit_write gave us
1672 * `file' can be NULL - eg, when called from page_symlink().
1673 *
617ba13b 1674 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1675 * buffers are managed internally.
1676 */
bfc1af65 1677static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1678 struct address_space *mapping,
1679 loff_t pos, unsigned len, unsigned copied,
1680 struct page *page, void *fsdata)
ac27a0ec 1681{
617ba13b 1682 handle_t *handle = ext4_journal_current_handle();
cf108bca 1683 struct inode *inode = mapping->host;
ac27a0ec
DK
1684 int ret = 0, ret2;
1685
9bffad1e 1686 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1687 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1688
1689 if (ret == 0) {
f8514083 1690 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1691 page, fsdata);
f8a87d89 1692 copied = ret2;
ffacfa7a 1693 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1694 /* if we have allocated more blocks and copied
1695 * less. We will have blocks allocated outside
1696 * inode->i_size. So truncate them
1697 */
1698 ext4_orphan_add(handle, inode);
f8a87d89
RK
1699 if (ret2 < 0)
1700 ret = ret2;
ac27a0ec 1701 }
617ba13b 1702 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1703 if (!ret)
1704 ret = ret2;
bfc1af65 1705
f8514083 1706 if (pos + len > inode->i_size) {
ffacfa7a 1707 ext4_truncate(inode);
de9a55b8 1708 /*
ffacfa7a 1709 * If truncate failed early the inode might still be
f8514083
AK
1710 * on the orphan list; we need to make sure the inode
1711 * is removed from the orphan list in that case.
1712 */
1713 if (inode->i_nlink)
1714 ext4_orphan_del(NULL, inode);
1715 }
1716
1717
bfc1af65 1718 return ret ? ret : copied;
ac27a0ec
DK
1719}
1720
bfc1af65 1721static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1722 struct address_space *mapping,
1723 loff_t pos, unsigned len, unsigned copied,
1724 struct page *page, void *fsdata)
ac27a0ec 1725{
617ba13b 1726 handle_t *handle = ext4_journal_current_handle();
cf108bca 1727 struct inode *inode = mapping->host;
ac27a0ec 1728 int ret = 0, ret2;
ac27a0ec 1729
9bffad1e 1730 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1731 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1732 page, fsdata);
f8a87d89 1733 copied = ret2;
ffacfa7a 1734 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1735 /* if we have allocated more blocks and copied
1736 * less. We will have blocks allocated outside
1737 * inode->i_size. So truncate them
1738 */
1739 ext4_orphan_add(handle, inode);
1740
f8a87d89
RK
1741 if (ret2 < 0)
1742 ret = ret2;
ac27a0ec 1743
617ba13b 1744 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1745 if (!ret)
1746 ret = ret2;
bfc1af65 1747
f8514083 1748 if (pos + len > inode->i_size) {
ffacfa7a 1749 ext4_truncate(inode);
de9a55b8 1750 /*
ffacfa7a 1751 * If truncate failed early the inode might still be
f8514083
AK
1752 * on the orphan list; we need to make sure the inode
1753 * is removed from the orphan list in that case.
1754 */
1755 if (inode->i_nlink)
1756 ext4_orphan_del(NULL, inode);
1757 }
1758
bfc1af65 1759 return ret ? ret : copied;
ac27a0ec
DK
1760}
1761
bfc1af65 1762static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1763 struct address_space *mapping,
1764 loff_t pos, unsigned len, unsigned copied,
1765 struct page *page, void *fsdata)
ac27a0ec 1766{
617ba13b 1767 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1768 struct inode *inode = mapping->host;
ac27a0ec
DK
1769 int ret = 0, ret2;
1770 int partial = 0;
bfc1af65 1771 unsigned from, to;
cf17fea6 1772 loff_t new_i_size;
ac27a0ec 1773
9bffad1e 1774 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1775 from = pos & (PAGE_CACHE_SIZE - 1);
1776 to = from + len;
1777
1778 if (copied < len) {
1779 if (!PageUptodate(page))
1780 copied = 0;
1781 page_zero_new_buffers(page, from+copied, to);
1782 }
ac27a0ec
DK
1783
1784 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1785 to, &partial, write_end_fn);
ac27a0ec
DK
1786 if (!partial)
1787 SetPageUptodate(page);
cf17fea6
AK
1788 new_i_size = pos + copied;
1789 if (new_i_size > inode->i_size)
bfc1af65 1790 i_size_write(inode, pos+copied);
617ba13b 1791 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1792 if (new_i_size > EXT4_I(inode)->i_disksize) {
1793 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1794 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1795 if (!ret)
1796 ret = ret2;
1797 }
bfc1af65 1798
cf108bca 1799 unlock_page(page);
f8514083 1800 page_cache_release(page);
ffacfa7a 1801 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1802 /* if we have allocated more blocks and copied
1803 * less. We will have blocks allocated outside
1804 * inode->i_size. So truncate them
1805 */
1806 ext4_orphan_add(handle, inode);
1807
617ba13b 1808 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1809 if (!ret)
1810 ret = ret2;
f8514083 1811 if (pos + len > inode->i_size) {
ffacfa7a 1812 ext4_truncate(inode);
de9a55b8 1813 /*
ffacfa7a 1814 * If truncate failed early the inode might still be
f8514083
AK
1815 * on the orphan list; we need to make sure the inode
1816 * is removed from the orphan list in that case.
1817 */
1818 if (inode->i_nlink)
1819 ext4_orphan_del(NULL, inode);
1820 }
bfc1af65
NP
1821
1822 return ret ? ret : copied;
ac27a0ec 1823}
d2a17637
MC
1824
1825static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1826{
030ba6bc 1827 int retries = 0;
60e58e0f
MC
1828 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1829 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1830
1831 /*
1832 * recalculate the amount of metadata blocks to reserve
1833 * in order to allocate nrblocks
1834 * worse case is one extent per block
1835 */
030ba6bc 1836repeat:
d2a17637
MC
1837 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1838 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1839 mdblocks = ext4_calc_metadata_amount(inode, total);
1840 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1841
1842 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1843 total = md_needed + nrblocks;
1844
60e58e0f
MC
1845 /*
1846 * Make quota reservation here to prevent quota overflow
1847 * later. Real quota accounting is done at pages writeout
1848 * time.
1849 */
1850 if (vfs_dq_reserve_block(inode, total)) {
1851 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1852 return -EDQUOT;
1853 }
1854
a30d542a 1855 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1856 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
9f0ccfd8 1857 vfs_dq_release_reservation_block(inode, total);
030ba6bc
AK
1858 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1859 yield();
1860 goto repeat;
1861 }
d2a17637
MC
1862 return -ENOSPC;
1863 }
d2a17637
MC
1864 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1865 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1866
1867 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1868 return 0; /* success */
1869}
1870
12219aea 1871static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1872{
1873 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1874 int total, mdb, mdb_free, release;
1875
cd213226
MC
1876 if (!to_free)
1877 return; /* Nothing to release, exit */
1878
d2a17637 1879 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1880
1881 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1882 /*
1883 * if there is no reserved blocks, but we try to free some
1884 * then the counter is messed up somewhere.
1885 * but since this function is called from invalidate
1886 * page, it's harmless to return without any action
1887 */
1888 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1889 "blocks for inode %lu, but there is no reserved "
1890 "data blocks\n", to_free, inode->i_ino);
1891 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1892 return;
1893 }
1894
d2a17637 1895 /* recalculate the number of metablocks still need to be reserved */
12219aea 1896 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1897 mdb = ext4_calc_metadata_amount(inode, total);
1898
1899 /* figure out how many metablocks to release */
1900 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1901 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1902
d2a17637
MC
1903 release = to_free + mdb_free;
1904
6bc6e63f
AK
1905 /* update fs dirty blocks counter for truncate case */
1906 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1907
1908 /* update per-inode reservations */
12219aea
AK
1909 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1910 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1911
1912 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1913 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1914 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1915
1916 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1917}
1918
1919static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1920 unsigned long offset)
d2a17637
MC
1921{
1922 int to_release = 0;
1923 struct buffer_head *head, *bh;
1924 unsigned int curr_off = 0;
1925
1926 head = page_buffers(page);
1927 bh = head;
1928 do {
1929 unsigned int next_off = curr_off + bh->b_size;
1930
1931 if ((offset <= curr_off) && (buffer_delay(bh))) {
1932 to_release++;
1933 clear_buffer_delay(bh);
1934 }
1935 curr_off = next_off;
1936 } while ((bh = bh->b_this_page) != head);
12219aea 1937 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1938}
ac27a0ec 1939
64769240
AT
1940/*
1941 * Delayed allocation stuff
1942 */
1943
64769240
AT
1944/*
1945 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1946 * them with writepage() call back
64769240
AT
1947 *
1948 * @mpd->inode: inode
1949 * @mpd->first_page: first page of the extent
1950 * @mpd->next_page: page after the last page of the extent
64769240
AT
1951 *
1952 * By the time mpage_da_submit_io() is called we expect all blocks
1953 * to be allocated. this may be wrong if allocation failed.
1954 *
1955 * As pages are already locked by write_cache_pages(), we can't use it
1956 */
1957static int mpage_da_submit_io(struct mpage_da_data *mpd)
1958{
22208ded 1959 long pages_skipped;
791b7f08
AK
1960 struct pagevec pvec;
1961 unsigned long index, end;
1962 int ret = 0, err, nr_pages, i;
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
64769240
AT
1965
1966 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1967 /*
1968 * We need to start from the first_page to the next_page - 1
1969 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1970 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1971 * at the currently mapped buffer_heads.
1972 */
64769240
AT
1973 index = mpd->first_page;
1974 end = mpd->next_page - 1;
1975
791b7f08 1976 pagevec_init(&pvec, 0);
64769240 1977 while (index <= end) {
791b7f08 1978 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1979 if (nr_pages == 0)
1980 break;
1981 for (i = 0; i < nr_pages; i++) {
1982 struct page *page = pvec.pages[i];
1983
791b7f08
AK
1984 index = page->index;
1985 if (index > end)
1986 break;
1987 index++;
1988
1989 BUG_ON(!PageLocked(page));
1990 BUG_ON(PageWriteback(page));
1991
22208ded 1992 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1993 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1994 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1995 /*
1996 * have successfully written the page
1997 * without skipping the same
1998 */
a1d6cc56 1999 mpd->pages_written++;
64769240
AT
2000 /*
2001 * In error case, we have to continue because
2002 * remaining pages are still locked
2003 * XXX: unlock and re-dirty them?
2004 */
2005 if (ret == 0)
2006 ret = err;
2007 }
2008 pagevec_release(&pvec);
2009 }
64769240
AT
2010 return ret;
2011}
2012
2013/*
2014 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2015 *
2016 * @mpd->inode - inode to walk through
2017 * @exbh->b_blocknr - first block on a disk
2018 * @exbh->b_size - amount of space in bytes
2019 * @logical - first logical block to start assignment with
2020 *
2021 * the function goes through all passed space and put actual disk
29fa89d0 2022 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2023 */
2024static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2025 struct buffer_head *exbh)
2026{
2027 struct inode *inode = mpd->inode;
2028 struct address_space *mapping = inode->i_mapping;
2029 int blocks = exbh->b_size >> inode->i_blkbits;
2030 sector_t pblock = exbh->b_blocknr, cur_logical;
2031 struct buffer_head *head, *bh;
a1d6cc56 2032 pgoff_t index, end;
64769240
AT
2033 struct pagevec pvec;
2034 int nr_pages, i;
2035
2036 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2037 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2038 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2039
2040 pagevec_init(&pvec, 0);
2041
2042 while (index <= end) {
2043 /* XXX: optimize tail */
2044 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2045 if (nr_pages == 0)
2046 break;
2047 for (i = 0; i < nr_pages; i++) {
2048 struct page *page = pvec.pages[i];
2049
2050 index = page->index;
2051 if (index > end)
2052 break;
2053 index++;
2054
2055 BUG_ON(!PageLocked(page));
2056 BUG_ON(PageWriteback(page));
2057 BUG_ON(!page_has_buffers(page));
2058
2059 bh = page_buffers(page);
2060 head = bh;
2061
2062 /* skip blocks out of the range */
2063 do {
2064 if (cur_logical >= logical)
2065 break;
2066 cur_logical++;
2067 } while ((bh = bh->b_this_page) != head);
2068
2069 do {
2070 if (cur_logical >= logical + blocks)
2071 break;
29fa89d0
AK
2072
2073 if (buffer_delay(bh) ||
2074 buffer_unwritten(bh)) {
2075
2076 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2077
2078 if (buffer_delay(bh)) {
2079 clear_buffer_delay(bh);
2080 bh->b_blocknr = pblock;
2081 } else {
2082 /*
2083 * unwritten already should have
2084 * blocknr assigned. Verify that
2085 */
2086 clear_buffer_unwritten(bh);
2087 BUG_ON(bh->b_blocknr != pblock);
2088 }
2089
61628a3f 2090 } else if (buffer_mapped(bh))
64769240 2091 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2092
2093 cur_logical++;
2094 pblock++;
2095 } while ((bh = bh->b_this_page) != head);
2096 }
2097 pagevec_release(&pvec);
2098 }
2099}
2100
2101
2102/*
2103 * __unmap_underlying_blocks - just a helper function to unmap
2104 * set of blocks described by @bh
2105 */
2106static inline void __unmap_underlying_blocks(struct inode *inode,
2107 struct buffer_head *bh)
2108{
2109 struct block_device *bdev = inode->i_sb->s_bdev;
2110 int blocks, i;
2111
2112 blocks = bh->b_size >> inode->i_blkbits;
2113 for (i = 0; i < blocks; i++)
2114 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2115}
2116
c4a0c46e
AK
2117static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2118 sector_t logical, long blk_cnt)
2119{
2120 int nr_pages, i;
2121 pgoff_t index, end;
2122 struct pagevec pvec;
2123 struct inode *inode = mpd->inode;
2124 struct address_space *mapping = inode->i_mapping;
2125
2126 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2127 end = (logical + blk_cnt - 1) >>
2128 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2129 while (index <= end) {
2130 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2131 if (nr_pages == 0)
2132 break;
2133 for (i = 0; i < nr_pages; i++) {
2134 struct page *page = pvec.pages[i];
2135 index = page->index;
2136 if (index > end)
2137 break;
2138 index++;
2139
2140 BUG_ON(!PageLocked(page));
2141 BUG_ON(PageWriteback(page));
2142 block_invalidatepage(page, 0);
2143 ClearPageUptodate(page);
2144 unlock_page(page);
2145 }
2146 }
2147 return;
2148}
2149
df22291f
AK
2150static void ext4_print_free_blocks(struct inode *inode)
2151{
2152 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2153 printk(KERN_CRIT "Total free blocks count %lld\n",
2154 ext4_count_free_blocks(inode->i_sb));
2155 printk(KERN_CRIT "Free/Dirty block details\n");
2156 printk(KERN_CRIT "free_blocks=%lld\n",
2157 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2158 printk(KERN_CRIT "dirty_blocks=%lld\n",
2159 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2160 printk(KERN_CRIT "Block reservation details\n");
2161 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2162 EXT4_I(inode)->i_reserved_data_blocks);
2163 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2164 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2165 return;
2166}
2167
64769240
AT
2168/*
2169 * mpage_da_map_blocks - go through given space
2170 *
8dc207c0 2171 * @mpd - bh describing space
64769240
AT
2172 *
2173 * The function skips space we know is already mapped to disk blocks.
2174 *
64769240 2175 */
ed5bde0b 2176static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2177{
2ac3b6e0 2178 int err, blks, get_blocks_flags;
030ba6bc 2179 struct buffer_head new;
2fa3cdfb
TT
2180 sector_t next = mpd->b_blocknr;
2181 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2182 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2183 handle_t *handle = NULL;
64769240
AT
2184
2185 /*
2186 * We consider only non-mapped and non-allocated blocks
2187 */
8dc207c0 2188 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2189 !(mpd->b_state & (1 << BH_Delay)) &&
2190 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2191 return 0;
2fa3cdfb
TT
2192
2193 /*
2194 * If we didn't accumulate anything to write simply return
2195 */
2196 if (!mpd->b_size)
2197 return 0;
2198
2199 handle = ext4_journal_current_handle();
2200 BUG_ON(!handle);
2201
79ffab34 2202 /*
2ac3b6e0
TT
2203 * Call ext4_get_blocks() to allocate any delayed allocation
2204 * blocks, or to convert an uninitialized extent to be
2205 * initialized (in the case where we have written into
2206 * one or more preallocated blocks).
2207 *
2208 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2209 * indicate that we are on the delayed allocation path. This
2210 * affects functions in many different parts of the allocation
2211 * call path. This flag exists primarily because we don't
2212 * want to change *many* call functions, so ext4_get_blocks()
2213 * will set the magic i_delalloc_reserved_flag once the
2214 * inode's allocation semaphore is taken.
2215 *
2216 * If the blocks in questions were delalloc blocks, set
2217 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2218 * variables are updated after the blocks have been allocated.
79ffab34 2219 */
2ac3b6e0
TT
2220 new.b_state = 0;
2221 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2222 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2223 if (mpd->b_state & (1 << BH_Delay))
2224 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2225 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2226 &new, get_blocks_flags);
2fa3cdfb
TT
2227 if (blks < 0) {
2228 err = blks;
ed5bde0b
TT
2229 /*
2230 * If get block returns with error we simply
2231 * return. Later writepage will redirty the page and
2232 * writepages will find the dirty page again
c4a0c46e
AK
2233 */
2234 if (err == -EAGAIN)
2235 return 0;
df22291f
AK
2236
2237 if (err == -ENOSPC &&
ed5bde0b 2238 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2239 mpd->retval = err;
2240 return 0;
2241 }
2242
c4a0c46e 2243 /*
ed5bde0b
TT
2244 * get block failure will cause us to loop in
2245 * writepages, because a_ops->writepage won't be able
2246 * to make progress. The page will be redirtied by
2247 * writepage and writepages will again try to write
2248 * the same.
c4a0c46e 2249 */
1693918e
TT
2250 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2251 "delayed block allocation failed for inode %lu at "
2252 "logical offset %llu with max blocks %zd with "
2253 "error %d\n", mpd->inode->i_ino,
2254 (unsigned long long) next,
2255 mpd->b_size >> mpd->inode->i_blkbits, err);
2256 printk(KERN_CRIT "This should not happen!! "
2257 "Data will be lost\n");
030ba6bc 2258 if (err == -ENOSPC) {
df22291f 2259 ext4_print_free_blocks(mpd->inode);
030ba6bc 2260 }
2fa3cdfb 2261 /* invalidate all the pages */
c4a0c46e 2262 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2263 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2264 return err;
2265 }
2fa3cdfb
TT
2266 BUG_ON(blks == 0);
2267
2268 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2269
a1d6cc56
AK
2270 if (buffer_new(&new))
2271 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2272
a1d6cc56
AK
2273 /*
2274 * If blocks are delayed marked, we need to
2275 * put actual blocknr and drop delayed bit
2276 */
8dc207c0
TT
2277 if ((mpd->b_state & (1 << BH_Delay)) ||
2278 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2279 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2280
2fa3cdfb
TT
2281 if (ext4_should_order_data(mpd->inode)) {
2282 err = ext4_jbd2_file_inode(handle, mpd->inode);
2283 if (err)
2284 return err;
2285 }
2286
2287 /*
03f5d8bc 2288 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2289 */
2290 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2291 if (disksize > i_size_read(mpd->inode))
2292 disksize = i_size_read(mpd->inode);
2293 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2294 ext4_update_i_disksize(mpd->inode, disksize);
2295 return ext4_mark_inode_dirty(handle, mpd->inode);
2296 }
2297
c4a0c46e 2298 return 0;
64769240
AT
2299}
2300
bf068ee2
AK
2301#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2302 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2303
2304/*
2305 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2306 *
2307 * @mpd->lbh - extent of blocks
2308 * @logical - logical number of the block in the file
2309 * @bh - bh of the block (used to access block's state)
2310 *
2311 * the function is used to collect contig. blocks in same state
2312 */
2313static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2314 sector_t logical, size_t b_size,
2315 unsigned long b_state)
64769240 2316{
64769240 2317 sector_t next;
8dc207c0 2318 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2319
525f4ed8
MC
2320 /* check if thereserved journal credits might overflow */
2321 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2322 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2323 /*
2324 * With non-extent format we are limited by the journal
2325 * credit available. Total credit needed to insert
2326 * nrblocks contiguous blocks is dependent on the
2327 * nrblocks. So limit nrblocks.
2328 */
2329 goto flush_it;
2330 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2331 EXT4_MAX_TRANS_DATA) {
2332 /*
2333 * Adding the new buffer_head would make it cross the
2334 * allowed limit for which we have journal credit
2335 * reserved. So limit the new bh->b_size
2336 */
2337 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2338 mpd->inode->i_blkbits;
2339 /* we will do mpage_da_submit_io in the next loop */
2340 }
2341 }
64769240
AT
2342 /*
2343 * First block in the extent
2344 */
8dc207c0
TT
2345 if (mpd->b_size == 0) {
2346 mpd->b_blocknr = logical;
2347 mpd->b_size = b_size;
2348 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2349 return;
2350 }
2351
8dc207c0 2352 next = mpd->b_blocknr + nrblocks;
64769240
AT
2353 /*
2354 * Can we merge the block to our big extent?
2355 */
8dc207c0
TT
2356 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2357 mpd->b_size += b_size;
64769240
AT
2358 return;
2359 }
2360
525f4ed8 2361flush_it:
64769240
AT
2362 /*
2363 * We couldn't merge the block to our extent, so we
2364 * need to flush current extent and start new one
2365 */
c4a0c46e
AK
2366 if (mpage_da_map_blocks(mpd) == 0)
2367 mpage_da_submit_io(mpd);
a1d6cc56
AK
2368 mpd->io_done = 1;
2369 return;
64769240
AT
2370}
2371
c364b22c 2372static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2373{
c364b22c 2374 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2375}
2376
64769240
AT
2377/*
2378 * __mpage_da_writepage - finds extent of pages and blocks
2379 *
2380 * @page: page to consider
2381 * @wbc: not used, we just follow rules
2382 * @data: context
2383 *
2384 * The function finds extents of pages and scan them for all blocks.
2385 */
2386static int __mpage_da_writepage(struct page *page,
2387 struct writeback_control *wbc, void *data)
2388{
2389 struct mpage_da_data *mpd = data;
2390 struct inode *inode = mpd->inode;
8dc207c0 2391 struct buffer_head *bh, *head;
64769240
AT
2392 sector_t logical;
2393
a1d6cc56
AK
2394 if (mpd->io_done) {
2395 /*
2396 * Rest of the page in the page_vec
2397 * redirty then and skip then. We will
fd589a8f 2398 * try to write them again after
a1d6cc56
AK
2399 * starting a new transaction
2400 */
2401 redirty_page_for_writepage(wbc, page);
2402 unlock_page(page);
2403 return MPAGE_DA_EXTENT_TAIL;
2404 }
64769240
AT
2405 /*
2406 * Can we merge this page to current extent?
2407 */
2408 if (mpd->next_page != page->index) {
2409 /*
2410 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2411 * and start IO on them using writepage()
64769240
AT
2412 */
2413 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2414 if (mpage_da_map_blocks(mpd) == 0)
2415 mpage_da_submit_io(mpd);
a1d6cc56
AK
2416 /*
2417 * skip rest of the page in the page_vec
2418 */
2419 mpd->io_done = 1;
2420 redirty_page_for_writepage(wbc, page);
2421 unlock_page(page);
2422 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2423 }
2424
2425 /*
2426 * Start next extent of pages ...
2427 */
2428 mpd->first_page = page->index;
2429
2430 /*
2431 * ... and blocks
2432 */
8dc207c0
TT
2433 mpd->b_size = 0;
2434 mpd->b_state = 0;
2435 mpd->b_blocknr = 0;
64769240
AT
2436 }
2437
2438 mpd->next_page = page->index + 1;
2439 logical = (sector_t) page->index <<
2440 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2441
2442 if (!page_has_buffers(page)) {
8dc207c0
TT
2443 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2444 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2445 if (mpd->io_done)
2446 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2447 } else {
2448 /*
2449 * Page with regular buffer heads, just add all dirty ones
2450 */
2451 head = page_buffers(page);
2452 bh = head;
2453 do {
2454 BUG_ON(buffer_locked(bh));
791b7f08
AK
2455 /*
2456 * We need to try to allocate
2457 * unmapped blocks in the same page.
2458 * Otherwise we won't make progress
43ce1d23 2459 * with the page in ext4_writepage
791b7f08 2460 */
c364b22c 2461 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2462 mpage_add_bh_to_extent(mpd, logical,
2463 bh->b_size,
2464 bh->b_state);
a1d6cc56
AK
2465 if (mpd->io_done)
2466 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2467 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2468 /*
2469 * mapped dirty buffer. We need to update
2470 * the b_state because we look at
2471 * b_state in mpage_da_map_blocks. We don't
2472 * update b_size because if we find an
2473 * unmapped buffer_head later we need to
2474 * use the b_state flag of that buffer_head.
2475 */
8dc207c0
TT
2476 if (mpd->b_size == 0)
2477 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2478 }
64769240
AT
2479 logical++;
2480 } while ((bh = bh->b_this_page) != head);
2481 }
2482
2483 return 0;
2484}
2485
64769240 2486/*
b920c755
TT
2487 * This is a special get_blocks_t callback which is used by
2488 * ext4_da_write_begin(). It will either return mapped block or
2489 * reserve space for a single block.
29fa89d0
AK
2490 *
2491 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2492 * We also have b_blocknr = -1 and b_bdev initialized properly
2493 *
2494 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2495 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2496 * initialized properly.
64769240
AT
2497 */
2498static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2499 struct buffer_head *bh_result, int create)
2500{
2501 int ret = 0;
33b9817e
AK
2502 sector_t invalid_block = ~((sector_t) 0xffff);
2503
2504 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2505 invalid_block = ~0;
64769240
AT
2506
2507 BUG_ON(create == 0);
2508 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2509
2510 /*
2511 * first, we need to know whether the block is allocated already
2512 * preallocated blocks are unmapped but should treated
2513 * the same as allocated blocks.
2514 */
c2177057 2515 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2516 if ((ret == 0) && !buffer_delay(bh_result)) {
2517 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2518 /*
2519 * XXX: __block_prepare_write() unmaps passed block,
2520 * is it OK?
2521 */
d2a17637
MC
2522 ret = ext4_da_reserve_space(inode, 1);
2523 if (ret)
2524 /* not enough space to reserve */
2525 return ret;
2526
33b9817e 2527 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2528 set_buffer_new(bh_result);
2529 set_buffer_delay(bh_result);
2530 } else if (ret > 0) {
2531 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2532 if (buffer_unwritten(bh_result)) {
2533 /* A delayed write to unwritten bh should
2534 * be marked new and mapped. Mapped ensures
2535 * that we don't do get_block multiple times
2536 * when we write to the same offset and new
2537 * ensures that we do proper zero out for
2538 * partial write.
2539 */
9c1ee184 2540 set_buffer_new(bh_result);
29fa89d0
AK
2541 set_buffer_mapped(bh_result);
2542 }
64769240
AT
2543 ret = 0;
2544 }
2545
2546 return ret;
2547}
61628a3f 2548
b920c755
TT
2549/*
2550 * This function is used as a standard get_block_t calback function
2551 * when there is no desire to allocate any blocks. It is used as a
2552 * callback function for block_prepare_write(), nobh_writepage(), and
2553 * block_write_full_page(). These functions should only try to map a
2554 * single block at a time.
2555 *
2556 * Since this function doesn't do block allocations even if the caller
2557 * requests it by passing in create=1, it is critically important that
2558 * any caller checks to make sure that any buffer heads are returned
2559 * by this function are either all already mapped or marked for
2560 * delayed allocation before calling nobh_writepage() or
2561 * block_write_full_page(). Otherwise, b_blocknr could be left
2562 * unitialized, and the page write functions will be taken by
2563 * surprise.
2564 */
2565static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2566 struct buffer_head *bh_result, int create)
2567{
2568 int ret = 0;
2569 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2570
a2dc52b5
TT
2571 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2572
f0e6c985
AK
2573 /*
2574 * we don't want to do block allocation in writepage
2575 * so call get_block_wrap with create = 0
2576 */
c2177057 2577 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2578 if (ret > 0) {
2579 bh_result->b_size = (ret << inode->i_blkbits);
2580 ret = 0;
2581 }
2582 return ret;
61628a3f
MC
2583}
2584
62e086be
AK
2585static int bget_one(handle_t *handle, struct buffer_head *bh)
2586{
2587 get_bh(bh);
2588 return 0;
2589}
2590
2591static int bput_one(handle_t *handle, struct buffer_head *bh)
2592{
2593 put_bh(bh);
2594 return 0;
2595}
2596
2597static int __ext4_journalled_writepage(struct page *page,
2598 struct writeback_control *wbc,
2599 unsigned int len)
2600{
2601 struct address_space *mapping = page->mapping;
2602 struct inode *inode = mapping->host;
2603 struct buffer_head *page_bufs;
2604 handle_t *handle = NULL;
2605 int ret = 0;
2606 int err;
2607
2608 page_bufs = page_buffers(page);
2609 BUG_ON(!page_bufs);
2610 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2611 /* As soon as we unlock the page, it can go away, but we have
2612 * references to buffers so we are safe */
2613 unlock_page(page);
2614
2615 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2616 if (IS_ERR(handle)) {
2617 ret = PTR_ERR(handle);
2618 goto out;
2619 }
2620
2621 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2622 do_journal_get_write_access);
2623
2624 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2625 write_end_fn);
2626 if (ret == 0)
2627 ret = err;
2628 err = ext4_journal_stop(handle);
2629 if (!ret)
2630 ret = err;
2631
2632 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2633 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2634out:
2635 return ret;
2636}
2637
61628a3f 2638/*
43ce1d23
AK
2639 * Note that we don't need to start a transaction unless we're journaling data
2640 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2641 * need to file the inode to the transaction's list in ordered mode because if
2642 * we are writing back data added by write(), the inode is already there and if
2643 * we are writing back data modified via mmap(), noone guarantees in which
2644 * transaction the data will hit the disk. In case we are journaling data, we
2645 * cannot start transaction directly because transaction start ranks above page
2646 * lock so we have to do some magic.
2647 *
b920c755
TT
2648 * This function can get called via...
2649 * - ext4_da_writepages after taking page lock (have journal handle)
2650 * - journal_submit_inode_data_buffers (no journal handle)
2651 * - shrink_page_list via pdflush (no journal handle)
2652 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2653 *
2654 * We don't do any block allocation in this function. If we have page with
2655 * multiple blocks we need to write those buffer_heads that are mapped. This
2656 * is important for mmaped based write. So if we do with blocksize 1K
2657 * truncate(f, 1024);
2658 * a = mmap(f, 0, 4096);
2659 * a[0] = 'a';
2660 * truncate(f, 4096);
2661 * we have in the page first buffer_head mapped via page_mkwrite call back
2662 * but other bufer_heads would be unmapped but dirty(dirty done via the
2663 * do_wp_page). So writepage should write the first block. If we modify
2664 * the mmap area beyond 1024 we will again get a page_fault and the
2665 * page_mkwrite callback will do the block allocation and mark the
2666 * buffer_heads mapped.
2667 *
2668 * We redirty the page if we have any buffer_heads that is either delay or
2669 * unwritten in the page.
2670 *
2671 * We can get recursively called as show below.
2672 *
2673 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2674 * ext4_writepage()
2675 *
2676 * But since we don't do any block allocation we should not deadlock.
2677 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2678 */
43ce1d23 2679static int ext4_writepage(struct page *page,
62e086be 2680 struct writeback_control *wbc)
64769240 2681{
64769240 2682 int ret = 0;
61628a3f 2683 loff_t size;
498e5f24 2684 unsigned int len;
61628a3f
MC
2685 struct buffer_head *page_bufs;
2686 struct inode *inode = page->mapping->host;
2687
43ce1d23 2688 trace_ext4_writepage(inode, page);
f0e6c985
AK
2689 size = i_size_read(inode);
2690 if (page->index == size >> PAGE_CACHE_SHIFT)
2691 len = size & ~PAGE_CACHE_MASK;
2692 else
2693 len = PAGE_CACHE_SIZE;
64769240 2694
f0e6c985 2695 if (page_has_buffers(page)) {
61628a3f 2696 page_bufs = page_buffers(page);
f0e6c985 2697 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2698 ext4_bh_delay_or_unwritten)) {
61628a3f 2699 /*
f0e6c985
AK
2700 * We don't want to do block allocation
2701 * So redirty the page and return
cd1aac32
AK
2702 * We may reach here when we do a journal commit
2703 * via journal_submit_inode_data_buffers.
2704 * If we don't have mapping block we just ignore
f0e6c985
AK
2705 * them. We can also reach here via shrink_page_list
2706 */
2707 redirty_page_for_writepage(wbc, page);
2708 unlock_page(page);
2709 return 0;
2710 }
2711 } else {
2712 /*
2713 * The test for page_has_buffers() is subtle:
2714 * We know the page is dirty but it lost buffers. That means
2715 * that at some moment in time after write_begin()/write_end()
2716 * has been called all buffers have been clean and thus they
2717 * must have been written at least once. So they are all
2718 * mapped and we can happily proceed with mapping them
2719 * and writing the page.
2720 *
2721 * Try to initialize the buffer_heads and check whether
2722 * all are mapped and non delay. We don't want to
2723 * do block allocation here.
2724 */
b767e78a 2725 ret = block_prepare_write(page, 0, len,
b920c755 2726 noalloc_get_block_write);
f0e6c985
AK
2727 if (!ret) {
2728 page_bufs = page_buffers(page);
2729 /* check whether all are mapped and non delay */
2730 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2731 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2732 redirty_page_for_writepage(wbc, page);
2733 unlock_page(page);
2734 return 0;
2735 }
2736 } else {
2737 /*
2738 * We can't do block allocation here
2739 * so just redity the page and unlock
2740 * and return
61628a3f 2741 */
61628a3f
MC
2742 redirty_page_for_writepage(wbc, page);
2743 unlock_page(page);
2744 return 0;
2745 }
ed9b3e33 2746 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2747 block_commit_write(page, 0, len);
64769240
AT
2748 }
2749
43ce1d23
AK
2750 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2751 /*
2752 * It's mmapped pagecache. Add buffers and journal it. There
2753 * doesn't seem much point in redirtying the page here.
2754 */
2755 ClearPageChecked(page);
2756 return __ext4_journalled_writepage(page, wbc, len);
2757 }
2758
64769240 2759 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2760 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2761 else
b920c755
TT
2762 ret = block_write_full_page(page, noalloc_get_block_write,
2763 wbc);
64769240 2764
64769240
AT
2765 return ret;
2766}
2767
61628a3f 2768/*
525f4ed8
MC
2769 * This is called via ext4_da_writepages() to
2770 * calulate the total number of credits to reserve to fit
2771 * a single extent allocation into a single transaction,
2772 * ext4_da_writpeages() will loop calling this before
2773 * the block allocation.
61628a3f 2774 */
525f4ed8
MC
2775
2776static int ext4_da_writepages_trans_blocks(struct inode *inode)
2777{
2778 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2779
2780 /*
2781 * With non-extent format the journal credit needed to
2782 * insert nrblocks contiguous block is dependent on
2783 * number of contiguous block. So we will limit
2784 * number of contiguous block to a sane value
2785 */
2786 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2787 (max_blocks > EXT4_MAX_TRANS_DATA))
2788 max_blocks = EXT4_MAX_TRANS_DATA;
2789
2790 return ext4_chunk_trans_blocks(inode, max_blocks);
2791}
61628a3f 2792
64769240 2793static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2794 struct writeback_control *wbc)
64769240 2795{
22208ded
AK
2796 pgoff_t index;
2797 int range_whole = 0;
61628a3f 2798 handle_t *handle = NULL;
df22291f 2799 struct mpage_da_data mpd;
5e745b04 2800 struct inode *inode = mapping->host;
22208ded 2801 int no_nrwrite_index_update;
498e5f24
TT
2802 int pages_written = 0;
2803 long pages_skipped;
55138e0b 2804 unsigned int max_pages;
2acf2c26 2805 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2806 int needed_blocks, ret = 0;
2807 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2808 loff_t range_start = wbc->range_start;
5e745b04 2809 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2810
9bffad1e 2811 trace_ext4_da_writepages(inode, wbc);
ba80b101 2812
61628a3f
MC
2813 /*
2814 * No pages to write? This is mainly a kludge to avoid starting
2815 * a transaction for special inodes like journal inode on last iput()
2816 * because that could violate lock ordering on umount
2817 */
a1d6cc56 2818 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2819 return 0;
2a21e37e
TT
2820
2821 /*
2822 * If the filesystem has aborted, it is read-only, so return
2823 * right away instead of dumping stack traces later on that
2824 * will obscure the real source of the problem. We test
4ab2f15b 2825 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2826 * the latter could be true if the filesystem is mounted
2827 * read-only, and in that case, ext4_da_writepages should
2828 * *never* be called, so if that ever happens, we would want
2829 * the stack trace.
2830 */
4ab2f15b 2831 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2832 return -EROFS;
2833
22208ded
AK
2834 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2835 range_whole = 1;
61628a3f 2836
2acf2c26
AK
2837 range_cyclic = wbc->range_cyclic;
2838 if (wbc->range_cyclic) {
22208ded 2839 index = mapping->writeback_index;
2acf2c26
AK
2840 if (index)
2841 cycled = 0;
2842 wbc->range_start = index << PAGE_CACHE_SHIFT;
2843 wbc->range_end = LLONG_MAX;
2844 wbc->range_cyclic = 0;
2845 } else
22208ded 2846 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2847
55138e0b
TT
2848 /*
2849 * This works around two forms of stupidity. The first is in
2850 * the writeback code, which caps the maximum number of pages
2851 * written to be 1024 pages. This is wrong on multiple
2852 * levels; different architectues have a different page size,
2853 * which changes the maximum amount of data which gets
2854 * written. Secondly, 4 megabytes is way too small. XFS
2855 * forces this value to be 16 megabytes by multiplying
2856 * nr_to_write parameter by four, and then relies on its
2857 * allocator to allocate larger extents to make them
2858 * contiguous. Unfortunately this brings us to the second
2859 * stupidity, which is that ext4's mballoc code only allocates
2860 * at most 2048 blocks. So we force contiguous writes up to
2861 * the number of dirty blocks in the inode, or
2862 * sbi->max_writeback_mb_bump whichever is smaller.
2863 */
2864 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2865 if (!range_cyclic && range_whole)
2866 desired_nr_to_write = wbc->nr_to_write * 8;
2867 else
2868 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2869 max_pages);
2870 if (desired_nr_to_write > max_pages)
2871 desired_nr_to_write = max_pages;
2872
2873 if (wbc->nr_to_write < desired_nr_to_write) {
2874 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2875 wbc->nr_to_write = desired_nr_to_write;
2876 }
2877
df22291f
AK
2878 mpd.wbc = wbc;
2879 mpd.inode = mapping->host;
2880
22208ded
AK
2881 /*
2882 * we don't want write_cache_pages to update
2883 * nr_to_write and writeback_index
2884 */
2885 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2886 wbc->no_nrwrite_index_update = 1;
2887 pages_skipped = wbc->pages_skipped;
2888
2acf2c26 2889retry:
22208ded 2890 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2891
2892 /*
2893 * we insert one extent at a time. So we need
2894 * credit needed for single extent allocation.
2895 * journalled mode is currently not supported
2896 * by delalloc
2897 */
2898 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2899 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2900
61628a3f
MC
2901 /* start a new transaction*/
2902 handle = ext4_journal_start(inode, needed_blocks);
2903 if (IS_ERR(handle)) {
2904 ret = PTR_ERR(handle);
1693918e 2905 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2906 "%ld pages, ino %lu; err %d\n", __func__,
2907 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2908 goto out_writepages;
2909 }
f63e6005
TT
2910
2911 /*
2912 * Now call __mpage_da_writepage to find the next
2913 * contiguous region of logical blocks that need
2914 * blocks to be allocated by ext4. We don't actually
2915 * submit the blocks for I/O here, even though
2916 * write_cache_pages thinks it will, and will set the
2917 * pages as clean for write before calling
2918 * __mpage_da_writepage().
2919 */
2920 mpd.b_size = 0;
2921 mpd.b_state = 0;
2922 mpd.b_blocknr = 0;
2923 mpd.first_page = 0;
2924 mpd.next_page = 0;
2925 mpd.io_done = 0;
2926 mpd.pages_written = 0;
2927 mpd.retval = 0;
2928 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2929 &mpd);
2930 /*
2931 * If we have a contigous extent of pages and we
2932 * haven't done the I/O yet, map the blocks and submit
2933 * them for I/O.
2934 */
2935 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2936 if (mpage_da_map_blocks(&mpd) == 0)
2937 mpage_da_submit_io(&mpd);
2938 mpd.io_done = 1;
2939 ret = MPAGE_DA_EXTENT_TAIL;
2940 }
b3a3ca8c 2941 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2942 wbc->nr_to_write -= mpd.pages_written;
df22291f 2943
61628a3f 2944 ext4_journal_stop(handle);
df22291f 2945
8f64b32e 2946 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2947 /* commit the transaction which would
2948 * free blocks released in the transaction
2949 * and try again
2950 */
df22291f 2951 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2952 wbc->pages_skipped = pages_skipped;
2953 ret = 0;
2954 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2955 /*
2956 * got one extent now try with
2957 * rest of the pages
2958 */
22208ded
AK
2959 pages_written += mpd.pages_written;
2960 wbc->pages_skipped = pages_skipped;
a1d6cc56 2961 ret = 0;
2acf2c26 2962 io_done = 1;
22208ded 2963 } else if (wbc->nr_to_write)
61628a3f
MC
2964 /*
2965 * There is no more writeout needed
2966 * or we requested for a noblocking writeout
2967 * and we found the device congested
2968 */
61628a3f 2969 break;
a1d6cc56 2970 }
2acf2c26
AK
2971 if (!io_done && !cycled) {
2972 cycled = 1;
2973 index = 0;
2974 wbc->range_start = index << PAGE_CACHE_SHIFT;
2975 wbc->range_end = mapping->writeback_index - 1;
2976 goto retry;
2977 }
22208ded 2978 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2979 ext4_msg(inode->i_sb, KERN_CRIT,
2980 "This should not happen leaving %s "
2981 "with nr_to_write = %ld ret = %d\n",
2982 __func__, wbc->nr_to_write, ret);
22208ded
AK
2983
2984 /* Update index */
2985 index += pages_written;
2acf2c26 2986 wbc->range_cyclic = range_cyclic;
22208ded
AK
2987 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2988 /*
2989 * set the writeback_index so that range_cyclic
2990 * mode will write it back later
2991 */
2992 mapping->writeback_index = index;
a1d6cc56 2993
61628a3f 2994out_writepages:
22208ded
AK
2995 if (!no_nrwrite_index_update)
2996 wbc->no_nrwrite_index_update = 0;
55138e0b
TT
2997 if (wbc->nr_to_write > nr_to_writebump)
2998 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2999 wbc->range_start = range_start;
9bffad1e 3000 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3001 return ret;
64769240
AT
3002}
3003
79f0be8d
AK
3004#define FALL_BACK_TO_NONDELALLOC 1
3005static int ext4_nonda_switch(struct super_block *sb)
3006{
3007 s64 free_blocks, dirty_blocks;
3008 struct ext4_sb_info *sbi = EXT4_SB(sb);
3009
3010 /*
3011 * switch to non delalloc mode if we are running low
3012 * on free block. The free block accounting via percpu
179f7ebf 3013 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3014 * accumulated on each CPU without updating global counters
3015 * Delalloc need an accurate free block accounting. So switch
3016 * to non delalloc when we are near to error range.
3017 */
3018 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3019 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3020 if (2 * free_blocks < 3 * dirty_blocks ||
3021 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3022 /*
3023 * free block count is less that 150% of dirty blocks
3024 * or free blocks is less that watermark
3025 */
3026 return 1;
3027 }
3028 return 0;
3029}
3030
64769240 3031static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3032 loff_t pos, unsigned len, unsigned flags,
3033 struct page **pagep, void **fsdata)
64769240 3034{
d2a17637 3035 int ret, retries = 0;
64769240
AT
3036 struct page *page;
3037 pgoff_t index;
3038 unsigned from, to;
3039 struct inode *inode = mapping->host;
3040 handle_t *handle;
3041
3042 index = pos >> PAGE_CACHE_SHIFT;
3043 from = pos & (PAGE_CACHE_SIZE - 1);
3044 to = from + len;
79f0be8d
AK
3045
3046 if (ext4_nonda_switch(inode->i_sb)) {
3047 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3048 return ext4_write_begin(file, mapping, pos,
3049 len, flags, pagep, fsdata);
3050 }
3051 *fsdata = (void *)0;
9bffad1e 3052 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3053retry:
64769240
AT
3054 /*
3055 * With delayed allocation, we don't log the i_disksize update
3056 * if there is delayed block allocation. But we still need
3057 * to journalling the i_disksize update if writes to the end
3058 * of file which has an already mapped buffer.
3059 */
3060 handle = ext4_journal_start(inode, 1);
3061 if (IS_ERR(handle)) {
3062 ret = PTR_ERR(handle);
3063 goto out;
3064 }
ebd3610b
JK
3065 /* We cannot recurse into the filesystem as the transaction is already
3066 * started */
3067 flags |= AOP_FLAG_NOFS;
64769240 3068
54566b2c 3069 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3070 if (!page) {
3071 ext4_journal_stop(handle);
3072 ret = -ENOMEM;
3073 goto out;
3074 }
64769240
AT
3075 *pagep = page;
3076
3077 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3078 ext4_da_get_block_prep);
64769240
AT
3079 if (ret < 0) {
3080 unlock_page(page);
3081 ext4_journal_stop(handle);
3082 page_cache_release(page);
ae4d5372
AK
3083 /*
3084 * block_write_begin may have instantiated a few blocks
3085 * outside i_size. Trim these off again. Don't need
3086 * i_size_read because we hold i_mutex.
3087 */
3088 if (pos + len > inode->i_size)
ffacfa7a 3089 ext4_truncate(inode);
64769240
AT
3090 }
3091
d2a17637
MC
3092 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3093 goto retry;
64769240
AT
3094out:
3095 return ret;
3096}
3097
632eaeab
MC
3098/*
3099 * Check if we should update i_disksize
3100 * when write to the end of file but not require block allocation
3101 */
3102static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3103 unsigned long offset)
632eaeab
MC
3104{
3105 struct buffer_head *bh;
3106 struct inode *inode = page->mapping->host;
3107 unsigned int idx;
3108 int i;
3109
3110 bh = page_buffers(page);
3111 idx = offset >> inode->i_blkbits;
3112
af5bc92d 3113 for (i = 0; i < idx; i++)
632eaeab
MC
3114 bh = bh->b_this_page;
3115
29fa89d0 3116 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3117 return 0;
3118 return 1;
3119}
3120
64769240 3121static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3122 struct address_space *mapping,
3123 loff_t pos, unsigned len, unsigned copied,
3124 struct page *page, void *fsdata)
64769240
AT
3125{
3126 struct inode *inode = mapping->host;
3127 int ret = 0, ret2;
3128 handle_t *handle = ext4_journal_current_handle();
3129 loff_t new_i_size;
632eaeab 3130 unsigned long start, end;
79f0be8d
AK
3131 int write_mode = (int)(unsigned long)fsdata;
3132
3133 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3134 if (ext4_should_order_data(inode)) {
3135 return ext4_ordered_write_end(file, mapping, pos,
3136 len, copied, page, fsdata);
3137 } else if (ext4_should_writeback_data(inode)) {
3138 return ext4_writeback_write_end(file, mapping, pos,
3139 len, copied, page, fsdata);
3140 } else {
3141 BUG();
3142 }
3143 }
632eaeab 3144
9bffad1e 3145 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3146 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3147 end = start + copied - 1;
64769240
AT
3148
3149 /*
3150 * generic_write_end() will run mark_inode_dirty() if i_size
3151 * changes. So let's piggyback the i_disksize mark_inode_dirty
3152 * into that.
3153 */
3154
3155 new_i_size = pos + copied;
632eaeab
MC
3156 if (new_i_size > EXT4_I(inode)->i_disksize) {
3157 if (ext4_da_should_update_i_disksize(page, end)) {
3158 down_write(&EXT4_I(inode)->i_data_sem);
3159 if (new_i_size > EXT4_I(inode)->i_disksize) {
3160 /*
3161 * Updating i_disksize when extending file
3162 * without needing block allocation
3163 */
3164 if (ext4_should_order_data(inode))
3165 ret = ext4_jbd2_file_inode(handle,
3166 inode);
64769240 3167
632eaeab
MC
3168 EXT4_I(inode)->i_disksize = new_i_size;
3169 }
3170 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3171 /* We need to mark inode dirty even if
3172 * new_i_size is less that inode->i_size
3173 * bu greater than i_disksize.(hint delalloc)
3174 */
3175 ext4_mark_inode_dirty(handle, inode);
64769240 3176 }
632eaeab 3177 }
64769240
AT
3178 ret2 = generic_write_end(file, mapping, pos, len, copied,
3179 page, fsdata);
3180 copied = ret2;
3181 if (ret2 < 0)
3182 ret = ret2;
3183 ret2 = ext4_journal_stop(handle);
3184 if (!ret)
3185 ret = ret2;
3186
3187 return ret ? ret : copied;
3188}
3189
3190static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3191{
64769240
AT
3192 /*
3193 * Drop reserved blocks
3194 */
3195 BUG_ON(!PageLocked(page));
3196 if (!page_has_buffers(page))
3197 goto out;
3198
d2a17637 3199 ext4_da_page_release_reservation(page, offset);
64769240
AT
3200
3201out:
3202 ext4_invalidatepage(page, offset);
3203
3204 return;
3205}
3206
ccd2506b
TT
3207/*
3208 * Force all delayed allocation blocks to be allocated for a given inode.
3209 */
3210int ext4_alloc_da_blocks(struct inode *inode)
3211{
fb40ba0d
TT
3212 trace_ext4_alloc_da_blocks(inode);
3213
ccd2506b
TT
3214 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3215 !EXT4_I(inode)->i_reserved_meta_blocks)
3216 return 0;
3217
3218 /*
3219 * We do something simple for now. The filemap_flush() will
3220 * also start triggering a write of the data blocks, which is
3221 * not strictly speaking necessary (and for users of
3222 * laptop_mode, not even desirable). However, to do otherwise
3223 * would require replicating code paths in:
de9a55b8 3224 *
ccd2506b
TT
3225 * ext4_da_writepages() ->
3226 * write_cache_pages() ---> (via passed in callback function)
3227 * __mpage_da_writepage() -->
3228 * mpage_add_bh_to_extent()
3229 * mpage_da_map_blocks()
3230 *
3231 * The problem is that write_cache_pages(), located in
3232 * mm/page-writeback.c, marks pages clean in preparation for
3233 * doing I/O, which is not desirable if we're not planning on
3234 * doing I/O at all.
3235 *
3236 * We could call write_cache_pages(), and then redirty all of
3237 * the pages by calling redirty_page_for_writeback() but that
3238 * would be ugly in the extreme. So instead we would need to
3239 * replicate parts of the code in the above functions,
3240 * simplifying them becuase we wouldn't actually intend to
3241 * write out the pages, but rather only collect contiguous
3242 * logical block extents, call the multi-block allocator, and
3243 * then update the buffer heads with the block allocations.
de9a55b8 3244 *
ccd2506b
TT
3245 * For now, though, we'll cheat by calling filemap_flush(),
3246 * which will map the blocks, and start the I/O, but not
3247 * actually wait for the I/O to complete.
3248 */
3249 return filemap_flush(inode->i_mapping);
3250}
64769240 3251
ac27a0ec
DK
3252/*
3253 * bmap() is special. It gets used by applications such as lilo and by
3254 * the swapper to find the on-disk block of a specific piece of data.
3255 *
3256 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3257 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3258 * filesystem and enables swap, then they may get a nasty shock when the
3259 * data getting swapped to that swapfile suddenly gets overwritten by
3260 * the original zero's written out previously to the journal and
3261 * awaiting writeback in the kernel's buffer cache.
3262 *
3263 * So, if we see any bmap calls here on a modified, data-journaled file,
3264 * take extra steps to flush any blocks which might be in the cache.
3265 */
617ba13b 3266static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3267{
3268 struct inode *inode = mapping->host;
3269 journal_t *journal;
3270 int err;
3271
64769240
AT
3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 test_opt(inode->i_sb, DELALLOC)) {
3274 /*
3275 * With delalloc we want to sync the file
3276 * so that we can make sure we allocate
3277 * blocks for file
3278 */
3279 filemap_write_and_wait(mapping);
3280 }
3281
0390131b 3282 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3283 /*
3284 * This is a REALLY heavyweight approach, but the use of
3285 * bmap on dirty files is expected to be extremely rare:
3286 * only if we run lilo or swapon on a freshly made file
3287 * do we expect this to happen.
3288 *
3289 * (bmap requires CAP_SYS_RAWIO so this does not
3290 * represent an unprivileged user DOS attack --- we'd be
3291 * in trouble if mortal users could trigger this path at
3292 * will.)
3293 *
617ba13b 3294 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3295 * regular files. If somebody wants to bmap a directory
3296 * or symlink and gets confused because the buffer
3297 * hasn't yet been flushed to disk, they deserve
3298 * everything they get.
3299 */
3300
617ba13b
MC
3301 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3302 journal = EXT4_JOURNAL(inode);
dab291af
MC
3303 jbd2_journal_lock_updates(journal);
3304 err = jbd2_journal_flush(journal);
3305 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3306
3307 if (err)
3308 return 0;
3309 }
3310
af5bc92d 3311 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3312}
3313
617ba13b 3314static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3315{
617ba13b 3316 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3317}
3318
3319static int
617ba13b 3320ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3321 struct list_head *pages, unsigned nr_pages)
3322{
617ba13b 3323 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3324}
3325
617ba13b 3326static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3327{
617ba13b 3328 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3329
3330 /*
3331 * If it's a full truncate we just forget about the pending dirtying
3332 */
3333 if (offset == 0)
3334 ClearPageChecked(page);
3335
0390131b
FM
3336 if (journal)
3337 jbd2_journal_invalidatepage(journal, page, offset);
3338 else
3339 block_invalidatepage(page, offset);
ac27a0ec
DK
3340}
3341
617ba13b 3342static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3343{
617ba13b 3344 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3345
3346 WARN_ON(PageChecked(page));
3347 if (!page_has_buffers(page))
3348 return 0;
0390131b
FM
3349 if (journal)
3350 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3351 else
3352 return try_to_free_buffers(page);
ac27a0ec
DK
3353}
3354
3355/*
3356 * If the O_DIRECT write will extend the file then add this inode to the
3357 * orphan list. So recovery will truncate it back to the original size
3358 * if the machine crashes during the write.
3359 *
3360 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3361 * crashes then stale disk data _may_ be exposed inside the file. But current
3362 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3363 */
617ba13b 3364static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3365 const struct iovec *iov, loff_t offset,
3366 unsigned long nr_segs)
ac27a0ec
DK
3367{
3368 struct file *file = iocb->ki_filp;
3369 struct inode *inode = file->f_mapping->host;
617ba13b 3370 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3371 handle_t *handle;
ac27a0ec
DK
3372 ssize_t ret;
3373 int orphan = 0;
3374 size_t count = iov_length(iov, nr_segs);
3375
3376 if (rw == WRITE) {
3377 loff_t final_size = offset + count;
3378
ac27a0ec 3379 if (final_size > inode->i_size) {
7fb5409d
JK
3380 /* Credits for sb + inode write */
3381 handle = ext4_journal_start(inode, 2);
3382 if (IS_ERR(handle)) {
3383 ret = PTR_ERR(handle);
3384 goto out;
3385 }
617ba13b 3386 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3387 if (ret) {
3388 ext4_journal_stop(handle);
3389 goto out;
3390 }
ac27a0ec
DK
3391 orphan = 1;
3392 ei->i_disksize = inode->i_size;
7fb5409d 3393 ext4_journal_stop(handle);
ac27a0ec
DK
3394 }
3395 }
3396
3397 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3398 offset, nr_segs,
617ba13b 3399 ext4_get_block, NULL);
ac27a0ec 3400
7fb5409d 3401 if (orphan) {
ac27a0ec
DK
3402 int err;
3403
7fb5409d
JK
3404 /* Credits for sb + inode write */
3405 handle = ext4_journal_start(inode, 2);
3406 if (IS_ERR(handle)) {
3407 /* This is really bad luck. We've written the data
3408 * but cannot extend i_size. Bail out and pretend
3409 * the write failed... */
3410 ret = PTR_ERR(handle);
3411 goto out;
3412 }
3413 if (inode->i_nlink)
617ba13b 3414 ext4_orphan_del(handle, inode);
7fb5409d 3415 if (ret > 0) {
ac27a0ec
DK
3416 loff_t end = offset + ret;
3417 if (end > inode->i_size) {
3418 ei->i_disksize = end;
3419 i_size_write(inode, end);
3420 /*
3421 * We're going to return a positive `ret'
3422 * here due to non-zero-length I/O, so there's
3423 * no way of reporting error returns from
617ba13b 3424 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3425 * ignore it.
3426 */
617ba13b 3427 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3428 }
3429 }
617ba13b 3430 err = ext4_journal_stop(handle);
ac27a0ec
DK
3431 if (ret == 0)
3432 ret = err;
3433 }
3434out:
3435 return ret;
3436}
3437
3438/*
617ba13b 3439 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3440 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3441 * much here because ->set_page_dirty is called under VFS locks. The page is
3442 * not necessarily locked.
3443 *
3444 * We cannot just dirty the page and leave attached buffers clean, because the
3445 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3446 * or jbddirty because all the journalling code will explode.
3447 *
3448 * So what we do is to mark the page "pending dirty" and next time writepage
3449 * is called, propagate that into the buffers appropriately.
3450 */
617ba13b 3451static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3452{
3453 SetPageChecked(page);
3454 return __set_page_dirty_nobuffers(page);
3455}
3456
617ba13b 3457static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3458 .readpage = ext4_readpage,
3459 .readpages = ext4_readpages,
43ce1d23 3460 .writepage = ext4_writepage,
8ab22b9a
HH
3461 .sync_page = block_sync_page,
3462 .write_begin = ext4_write_begin,
3463 .write_end = ext4_ordered_write_end,
3464 .bmap = ext4_bmap,
3465 .invalidatepage = ext4_invalidatepage,
3466 .releasepage = ext4_releasepage,
3467 .direct_IO = ext4_direct_IO,
3468 .migratepage = buffer_migrate_page,
3469 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3470 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3471};
3472
617ba13b 3473static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3474 .readpage = ext4_readpage,
3475 .readpages = ext4_readpages,
43ce1d23 3476 .writepage = ext4_writepage,
8ab22b9a
HH
3477 .sync_page = block_sync_page,
3478 .write_begin = ext4_write_begin,
3479 .write_end = ext4_writeback_write_end,
3480 .bmap = ext4_bmap,
3481 .invalidatepage = ext4_invalidatepage,
3482 .releasepage = ext4_releasepage,
3483 .direct_IO = ext4_direct_IO,
3484 .migratepage = buffer_migrate_page,
3485 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3486 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3487};
3488
617ba13b 3489static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3490 .readpage = ext4_readpage,
3491 .readpages = ext4_readpages,
43ce1d23 3492 .writepage = ext4_writepage,
8ab22b9a
HH
3493 .sync_page = block_sync_page,
3494 .write_begin = ext4_write_begin,
3495 .write_end = ext4_journalled_write_end,
3496 .set_page_dirty = ext4_journalled_set_page_dirty,
3497 .bmap = ext4_bmap,
3498 .invalidatepage = ext4_invalidatepage,
3499 .releasepage = ext4_releasepage,
3500 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3501 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3502};
3503
64769240 3504static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3505 .readpage = ext4_readpage,
3506 .readpages = ext4_readpages,
43ce1d23 3507 .writepage = ext4_writepage,
8ab22b9a
HH
3508 .writepages = ext4_da_writepages,
3509 .sync_page = block_sync_page,
3510 .write_begin = ext4_da_write_begin,
3511 .write_end = ext4_da_write_end,
3512 .bmap = ext4_bmap,
3513 .invalidatepage = ext4_da_invalidatepage,
3514 .releasepage = ext4_releasepage,
3515 .direct_IO = ext4_direct_IO,
3516 .migratepage = buffer_migrate_page,
3517 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3518 .error_remove_page = generic_error_remove_page,
64769240
AT
3519};
3520
617ba13b 3521void ext4_set_aops(struct inode *inode)
ac27a0ec 3522{
cd1aac32
AK
3523 if (ext4_should_order_data(inode) &&
3524 test_opt(inode->i_sb, DELALLOC))
3525 inode->i_mapping->a_ops = &ext4_da_aops;
3526 else if (ext4_should_order_data(inode))
617ba13b 3527 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3528 else if (ext4_should_writeback_data(inode) &&
3529 test_opt(inode->i_sb, DELALLOC))
3530 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3531 else if (ext4_should_writeback_data(inode))
3532 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3533 else
617ba13b 3534 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3535}
3536
3537/*
617ba13b 3538 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3539 * up to the end of the block which corresponds to `from'.
3540 * This required during truncate. We need to physically zero the tail end
3541 * of that block so it doesn't yield old data if the file is later grown.
3542 */
cf108bca 3543int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3544 struct address_space *mapping, loff_t from)
3545{
617ba13b 3546 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3547 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3548 unsigned blocksize, length, pos;
3549 ext4_lblk_t iblock;
ac27a0ec
DK
3550 struct inode *inode = mapping->host;
3551 struct buffer_head *bh;
cf108bca 3552 struct page *page;
ac27a0ec 3553 int err = 0;
ac27a0ec 3554
f4a01017
TT
3555 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3556 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3557 if (!page)
3558 return -EINVAL;
3559
ac27a0ec
DK
3560 blocksize = inode->i_sb->s_blocksize;
3561 length = blocksize - (offset & (blocksize - 1));
3562 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3563
3564 /*
3565 * For "nobh" option, we can only work if we don't need to
3566 * read-in the page - otherwise we create buffers to do the IO.
3567 */
3568 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3569 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3570 zero_user(page, offset, length);
ac27a0ec
DK
3571 set_page_dirty(page);
3572 goto unlock;
3573 }
3574
3575 if (!page_has_buffers(page))
3576 create_empty_buffers(page, blocksize, 0);
3577
3578 /* Find the buffer that contains "offset" */
3579 bh = page_buffers(page);
3580 pos = blocksize;
3581 while (offset >= pos) {
3582 bh = bh->b_this_page;
3583 iblock++;
3584 pos += blocksize;
3585 }
3586
3587 err = 0;
3588 if (buffer_freed(bh)) {
3589 BUFFER_TRACE(bh, "freed: skip");
3590 goto unlock;
3591 }
3592
3593 if (!buffer_mapped(bh)) {
3594 BUFFER_TRACE(bh, "unmapped");
617ba13b 3595 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3596 /* unmapped? It's a hole - nothing to do */
3597 if (!buffer_mapped(bh)) {
3598 BUFFER_TRACE(bh, "still unmapped");
3599 goto unlock;
3600 }
3601 }
3602
3603 /* Ok, it's mapped. Make sure it's up-to-date */
3604 if (PageUptodate(page))
3605 set_buffer_uptodate(bh);
3606
3607 if (!buffer_uptodate(bh)) {
3608 err = -EIO;
3609 ll_rw_block(READ, 1, &bh);
3610 wait_on_buffer(bh);
3611 /* Uhhuh. Read error. Complain and punt. */
3612 if (!buffer_uptodate(bh))
3613 goto unlock;
3614 }
3615
617ba13b 3616 if (ext4_should_journal_data(inode)) {
ac27a0ec 3617 BUFFER_TRACE(bh, "get write access");
617ba13b 3618 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3619 if (err)
3620 goto unlock;
3621 }
3622
eebd2aa3 3623 zero_user(page, offset, length);
ac27a0ec
DK
3624
3625 BUFFER_TRACE(bh, "zeroed end of block");
3626
3627 err = 0;
617ba13b 3628 if (ext4_should_journal_data(inode)) {
0390131b 3629 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3630 } else {
617ba13b 3631 if (ext4_should_order_data(inode))
678aaf48 3632 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3633 mark_buffer_dirty(bh);
3634 }
3635
3636unlock:
3637 unlock_page(page);
3638 page_cache_release(page);
3639 return err;
3640}
3641
3642/*
3643 * Probably it should be a library function... search for first non-zero word
3644 * or memcmp with zero_page, whatever is better for particular architecture.
3645 * Linus?
3646 */
3647static inline int all_zeroes(__le32 *p, __le32 *q)
3648{
3649 while (p < q)
3650 if (*p++)
3651 return 0;
3652 return 1;
3653}
3654
3655/**
617ba13b 3656 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3657 * @inode: inode in question
3658 * @depth: depth of the affected branch
617ba13b 3659 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3660 * @chain: place to store the pointers to partial indirect blocks
3661 * @top: place to the (detached) top of branch
3662 *
617ba13b 3663 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3664 *
3665 * When we do truncate() we may have to clean the ends of several
3666 * indirect blocks but leave the blocks themselves alive. Block is
3667 * partially truncated if some data below the new i_size is refered
3668 * from it (and it is on the path to the first completely truncated
3669 * data block, indeed). We have to free the top of that path along
3670 * with everything to the right of the path. Since no allocation
617ba13b 3671 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3672 * finishes, we may safely do the latter, but top of branch may
3673 * require special attention - pageout below the truncation point
3674 * might try to populate it.
3675 *
3676 * We atomically detach the top of branch from the tree, store the
3677 * block number of its root in *@top, pointers to buffer_heads of
3678 * partially truncated blocks - in @chain[].bh and pointers to
3679 * their last elements that should not be removed - in
3680 * @chain[].p. Return value is the pointer to last filled element
3681 * of @chain.
3682 *
3683 * The work left to caller to do the actual freeing of subtrees:
3684 * a) free the subtree starting from *@top
3685 * b) free the subtrees whose roots are stored in
3686 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3687 * c) free the subtrees growing from the inode past the @chain[0].
3688 * (no partially truncated stuff there). */
3689
617ba13b 3690static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
3691 ext4_lblk_t offsets[4], Indirect chain[4],
3692 __le32 *top)
ac27a0ec
DK
3693{
3694 Indirect *partial, *p;
3695 int k, err;
3696
3697 *top = 0;
3698 /* Make k index the deepest non-null offest + 1 */
3699 for (k = depth; k > 1 && !offsets[k-1]; k--)
3700 ;
617ba13b 3701 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3702 /* Writer: pointers */
3703 if (!partial)
3704 partial = chain + k-1;
3705 /*
3706 * If the branch acquired continuation since we've looked at it -
3707 * fine, it should all survive and (new) top doesn't belong to us.
3708 */
3709 if (!partial->key && *partial->p)
3710 /* Writer: end */
3711 goto no_top;
af5bc92d 3712 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
3713 ;
3714 /*
3715 * OK, we've found the last block that must survive. The rest of our
3716 * branch should be detached before unlocking. However, if that rest
3717 * of branch is all ours and does not grow immediately from the inode
3718 * it's easier to cheat and just decrement partial->p.
3719 */
3720 if (p == chain + k - 1 && p > chain) {
3721 p->p--;
3722 } else {
3723 *top = *p->p;
617ba13b 3724 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3725#if 0
3726 *p->p = 0;
3727#endif
3728 }
3729 /* Writer: end */
3730
af5bc92d 3731 while (partial > p) {
ac27a0ec
DK
3732 brelse(partial->bh);
3733 partial--;
3734 }
3735no_top:
3736 return partial;
3737}
3738
3739/*
3740 * Zero a number of block pointers in either an inode or an indirect block.
3741 * If we restart the transaction we must again get write access to the
3742 * indirect block for further modification.
3743 *
3744 * We release `count' blocks on disk, but (last - first) may be greater
3745 * than `count' because there can be holes in there.
3746 */
617ba13b 3747static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
3748 struct buffer_head *bh,
3749 ext4_fsblk_t block_to_free,
3750 unsigned long count, __le32 *first,
3751 __le32 *last)
ac27a0ec
DK
3752{
3753 __le32 *p;
3754 if (try_to_extend_transaction(handle, inode)) {
3755 if (bh) {
0390131b
FM
3756 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3757 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3758 }
617ba13b 3759 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3760 ext4_truncate_restart_trans(handle, inode,
3761 blocks_for_truncate(inode));
ac27a0ec
DK
3762 if (bh) {
3763 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3764 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3765 }
3766 }
3767
3768 /*
de9a55b8
TT
3769 * Any buffers which are on the journal will be in memory. We
3770 * find them on the hash table so jbd2_journal_revoke() will
3771 * run jbd2_journal_forget() on them. We've already detached
3772 * each block from the file, so bforget() in
3773 * jbd2_journal_forget() should be safe.
ac27a0ec 3774 *
dab291af 3775 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3776 */
3777 for (p = first; p < last; p++) {
3778 u32 nr = le32_to_cpu(*p);
3779 if (nr) {
1d03ec98 3780 struct buffer_head *tbh;
ac27a0ec
DK
3781
3782 *p = 0;
1d03ec98
AK
3783 tbh = sb_find_get_block(inode->i_sb, nr);
3784 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3785 }
3786 }
3787
c9de560d 3788 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3789}
3790
3791/**
617ba13b 3792 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3793 * @handle: handle for this transaction
3794 * @inode: inode we are dealing with
3795 * @this_bh: indirect buffer_head which contains *@first and *@last
3796 * @first: array of block numbers
3797 * @last: points immediately past the end of array
3798 *
3799 * We are freeing all blocks refered from that array (numbers are stored as
3800 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3801 *
3802 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3803 * blocks are contiguous then releasing them at one time will only affect one
3804 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3805 * actually use a lot of journal space.
3806 *
3807 * @this_bh will be %NULL if @first and @last point into the inode's direct
3808 * block pointers.
3809 */
617ba13b 3810static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3811 struct buffer_head *this_bh,
3812 __le32 *first, __le32 *last)
3813{
617ba13b 3814 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3815 unsigned long count = 0; /* Number of blocks in the run */
3816 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3817 corresponding to
3818 block_to_free */
617ba13b 3819 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3820 __le32 *p; /* Pointer into inode/ind
3821 for current block */
3822 int err;
3823
3824 if (this_bh) { /* For indirect block */
3825 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3826 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3827 /* Important: if we can't update the indirect pointers
3828 * to the blocks, we can't free them. */
3829 if (err)
3830 return;
3831 }
3832
3833 for (p = first; p < last; p++) {
3834 nr = le32_to_cpu(*p);
3835 if (nr) {
3836 /* accumulate blocks to free if they're contiguous */
3837 if (count == 0) {
3838 block_to_free = nr;
3839 block_to_free_p = p;
3840 count = 1;
3841 } else if (nr == block_to_free + count) {
3842 count++;
3843 } else {
617ba13b 3844 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3845 block_to_free,
3846 count, block_to_free_p, p);
3847 block_to_free = nr;
3848 block_to_free_p = p;
3849 count = 1;
3850 }
3851 }
3852 }
3853
3854 if (count > 0)
617ba13b 3855 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3856 count, block_to_free_p, p);
3857
3858 if (this_bh) {
0390131b 3859 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
3860
3861 /*
3862 * The buffer head should have an attached journal head at this
3863 * point. However, if the data is corrupted and an indirect
3864 * block pointed to itself, it would have been detached when
3865 * the block was cleared. Check for this instead of OOPSing.
3866 */
e7f07968 3867 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 3868 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
3869 else
3870 ext4_error(inode->i_sb, __func__,
3871 "circular indirect block detected, "
3872 "inode=%lu, block=%llu",
3873 inode->i_ino,
3874 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3875 }
3876}
3877
3878/**
617ba13b 3879 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3880 * @handle: JBD handle for this transaction
3881 * @inode: inode we are dealing with
3882 * @parent_bh: the buffer_head which contains *@first and *@last
3883 * @first: array of block numbers
3884 * @last: pointer immediately past the end of array
3885 * @depth: depth of the branches to free
3886 *
3887 * We are freeing all blocks refered from these branches (numbers are
3888 * stored as little-endian 32-bit) and updating @inode->i_blocks
3889 * appropriately.
3890 */
617ba13b 3891static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3892 struct buffer_head *parent_bh,
3893 __le32 *first, __le32 *last, int depth)
3894{
617ba13b 3895 ext4_fsblk_t nr;
ac27a0ec
DK
3896 __le32 *p;
3897
0390131b 3898 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3899 return;
3900
3901 if (depth--) {
3902 struct buffer_head *bh;
617ba13b 3903 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3904 p = last;
3905 while (--p >= first) {
3906 nr = le32_to_cpu(*p);
3907 if (!nr)
3908 continue; /* A hole */
3909
3910 /* Go read the buffer for the next level down */
3911 bh = sb_bread(inode->i_sb, nr);
3912
3913 /*
3914 * A read failure? Report error and clear slot
3915 * (should be rare).
3916 */
3917 if (!bh) {
617ba13b 3918 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3919 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3920 inode->i_ino, nr);
3921 continue;
3922 }
3923
3924 /* This zaps the entire block. Bottom up. */
3925 BUFFER_TRACE(bh, "free child branches");
617ba13b 3926 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
3927 (__le32 *) bh->b_data,
3928 (__le32 *) bh->b_data + addr_per_block,
3929 depth);
ac27a0ec
DK
3930
3931 /*
3932 * We've probably journalled the indirect block several
3933 * times during the truncate. But it's no longer
3934 * needed and we now drop it from the transaction via
dab291af 3935 * jbd2_journal_revoke().
ac27a0ec
DK
3936 *
3937 * That's easy if it's exclusively part of this
3938 * transaction. But if it's part of the committing
dab291af 3939 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3940 * brelse() it. That means that if the underlying
617ba13b 3941 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3942 * unmap_underlying_metadata() will find this block
3943 * and will try to get rid of it. damn, damn.
3944 *
3945 * If this block has already been committed to the
3946 * journal, a revoke record will be written. And
3947 * revoke records must be emitted *before* clearing
3948 * this block's bit in the bitmaps.
3949 */
617ba13b 3950 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3951
3952 /*
3953 * Everything below this this pointer has been
3954 * released. Now let this top-of-subtree go.
3955 *
3956 * We want the freeing of this indirect block to be
3957 * atomic in the journal with the updating of the
3958 * bitmap block which owns it. So make some room in
3959 * the journal.
3960 *
3961 * We zero the parent pointer *after* freeing its
3962 * pointee in the bitmaps, so if extend_transaction()
3963 * for some reason fails to put the bitmap changes and
3964 * the release into the same transaction, recovery
3965 * will merely complain about releasing a free block,
3966 * rather than leaking blocks.
3967 */
0390131b 3968 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
3969 return;
3970 if (try_to_extend_transaction(handle, inode)) {
617ba13b 3971 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
3972 ext4_truncate_restart_trans(handle, inode,
3973 blocks_for_truncate(inode));
ac27a0ec
DK
3974 }
3975
c9de560d 3976 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3977
3978 if (parent_bh) {
3979 /*
3980 * The block which we have just freed is
3981 * pointed to by an indirect block: journal it
3982 */
3983 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3984 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3985 parent_bh)){
3986 *p = 0;
3987 BUFFER_TRACE(parent_bh,
0390131b
FM
3988 "call ext4_handle_dirty_metadata");
3989 ext4_handle_dirty_metadata(handle,
3990 inode,
3991 parent_bh);
ac27a0ec
DK
3992 }
3993 }
3994 }
3995 } else {
3996 /* We have reached the bottom of the tree. */
3997 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3998 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3999 }
4000}
4001
91ef4caf
DG
4002int ext4_can_truncate(struct inode *inode)
4003{
4004 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4005 return 0;
4006 if (S_ISREG(inode->i_mode))
4007 return 1;
4008 if (S_ISDIR(inode->i_mode))
4009 return 1;
4010 if (S_ISLNK(inode->i_mode))
4011 return !ext4_inode_is_fast_symlink(inode);
4012 return 0;
4013}
4014
ac27a0ec 4015/*
617ba13b 4016 * ext4_truncate()
ac27a0ec 4017 *
617ba13b
MC
4018 * We block out ext4_get_block() block instantiations across the entire
4019 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4020 * simultaneously on behalf of the same inode.
4021 *
4022 * As we work through the truncate and commmit bits of it to the journal there
4023 * is one core, guiding principle: the file's tree must always be consistent on
4024 * disk. We must be able to restart the truncate after a crash.
4025 *
4026 * The file's tree may be transiently inconsistent in memory (although it
4027 * probably isn't), but whenever we close off and commit a journal transaction,
4028 * the contents of (the filesystem + the journal) must be consistent and
4029 * restartable. It's pretty simple, really: bottom up, right to left (although
4030 * left-to-right works OK too).
4031 *
4032 * Note that at recovery time, journal replay occurs *before* the restart of
4033 * truncate against the orphan inode list.
4034 *
4035 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4036 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4037 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4038 * ext4_truncate() to have another go. So there will be instantiated blocks
4039 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4040 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4041 * ext4_truncate() run will find them and release them.
ac27a0ec 4042 */
617ba13b 4043void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4044{
4045 handle_t *handle;
617ba13b 4046 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4047 __le32 *i_data = ei->i_data;
617ba13b 4048 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4049 struct address_space *mapping = inode->i_mapping;
725d26d3 4050 ext4_lblk_t offsets[4];
ac27a0ec
DK
4051 Indirect chain[4];
4052 Indirect *partial;
4053 __le32 nr = 0;
4054 int n;
725d26d3 4055 ext4_lblk_t last_block;
ac27a0ec 4056 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4057
91ef4caf 4058 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4059 return;
4060
5534fb5b 4061 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4062 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4063
1d03ec98 4064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4065 ext4_ext_truncate(inode);
1d03ec98
AK
4066 return;
4067 }
a86c6181 4068
ac27a0ec 4069 handle = start_transaction(inode);
cf108bca 4070 if (IS_ERR(handle))
ac27a0ec 4071 return; /* AKPM: return what? */
ac27a0ec
DK
4072
4073 last_block = (inode->i_size + blocksize-1)
617ba13b 4074 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4075
cf108bca
JK
4076 if (inode->i_size & (blocksize - 1))
4077 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4078 goto out_stop;
ac27a0ec 4079
617ba13b 4080 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4081 if (n == 0)
4082 goto out_stop; /* error */
4083
4084 /*
4085 * OK. This truncate is going to happen. We add the inode to the
4086 * orphan list, so that if this truncate spans multiple transactions,
4087 * and we crash, we will resume the truncate when the filesystem
4088 * recovers. It also marks the inode dirty, to catch the new size.
4089 *
4090 * Implication: the file must always be in a sane, consistent
4091 * truncatable state while each transaction commits.
4092 */
617ba13b 4093 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4094 goto out_stop;
4095
632eaeab
MC
4096 /*
4097 * From here we block out all ext4_get_block() callers who want to
4098 * modify the block allocation tree.
4099 */
4100 down_write(&ei->i_data_sem);
b4df2030 4101
c2ea3fde 4102 ext4_discard_preallocations(inode);
b4df2030 4103
ac27a0ec
DK
4104 /*
4105 * The orphan list entry will now protect us from any crash which
4106 * occurs before the truncate completes, so it is now safe to propagate
4107 * the new, shorter inode size (held for now in i_size) into the
4108 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4109 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4110 */
4111 ei->i_disksize = inode->i_size;
4112
ac27a0ec 4113 if (n == 1) { /* direct blocks */
617ba13b
MC
4114 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4115 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4116 goto do_indirects;
4117 }
4118
617ba13b 4119 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4120 /* Kill the top of shared branch (not detached) */
4121 if (nr) {
4122 if (partial == chain) {
4123 /* Shared branch grows from the inode */
617ba13b 4124 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4125 &nr, &nr+1, (chain+n-1) - partial);
4126 *partial->p = 0;
4127 /*
4128 * We mark the inode dirty prior to restart,
4129 * and prior to stop. No need for it here.
4130 */
4131 } else {
4132 /* Shared branch grows from an indirect block */
4133 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4134 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4135 partial->p,
4136 partial->p+1, (chain+n-1) - partial);
4137 }
4138 }
4139 /* Clear the ends of indirect blocks on the shared branch */
4140 while (partial > chain) {
617ba13b 4141 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4142 (__le32*)partial->bh->b_data+addr_per_block,
4143 (chain+n-1) - partial);
4144 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4145 brelse(partial->bh);
ac27a0ec
DK
4146 partial--;
4147 }
4148do_indirects:
4149 /* Kill the remaining (whole) subtrees */
4150 switch (offsets[0]) {
4151 default:
617ba13b 4152 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4153 if (nr) {
617ba13b
MC
4154 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4155 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4156 }
617ba13b
MC
4157 case EXT4_IND_BLOCK:
4158 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4159 if (nr) {
617ba13b
MC
4160 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4161 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4162 }
617ba13b
MC
4163 case EXT4_DIND_BLOCK:
4164 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4165 if (nr) {
617ba13b
MC
4166 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4167 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4168 }
617ba13b 4169 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4170 ;
4171 }
4172
0e855ac8 4173 up_write(&ei->i_data_sem);
ef7f3835 4174 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4175 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4176
4177 /*
4178 * In a multi-transaction truncate, we only make the final transaction
4179 * synchronous
4180 */
4181 if (IS_SYNC(inode))
0390131b 4182 ext4_handle_sync(handle);
ac27a0ec
DK
4183out_stop:
4184 /*
4185 * If this was a simple ftruncate(), and the file will remain alive
4186 * then we need to clear up the orphan record which we created above.
4187 * However, if this was a real unlink then we were called by
617ba13b 4188 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4189 * orphan info for us.
4190 */
4191 if (inode->i_nlink)
617ba13b 4192 ext4_orphan_del(handle, inode);
ac27a0ec 4193
617ba13b 4194 ext4_journal_stop(handle);
ac27a0ec
DK
4195}
4196
ac27a0ec 4197/*
617ba13b 4198 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4199 * underlying buffer_head on success. If 'in_mem' is true, we have all
4200 * data in memory that is needed to recreate the on-disk version of this
4201 * inode.
4202 */
617ba13b
MC
4203static int __ext4_get_inode_loc(struct inode *inode,
4204 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4205{
240799cd
TT
4206 struct ext4_group_desc *gdp;
4207 struct buffer_head *bh;
4208 struct super_block *sb = inode->i_sb;
4209 ext4_fsblk_t block;
4210 int inodes_per_block, inode_offset;
4211
3a06d778 4212 iloc->bh = NULL;
240799cd
TT
4213 if (!ext4_valid_inum(sb, inode->i_ino))
4214 return -EIO;
ac27a0ec 4215
240799cd
TT
4216 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4217 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4218 if (!gdp)
ac27a0ec
DK
4219 return -EIO;
4220
240799cd
TT
4221 /*
4222 * Figure out the offset within the block group inode table
4223 */
4224 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4225 inode_offset = ((inode->i_ino - 1) %
4226 EXT4_INODES_PER_GROUP(sb));
4227 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4228 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4229
4230 bh = sb_getblk(sb, block);
ac27a0ec 4231 if (!bh) {
240799cd
TT
4232 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4233 "inode block - inode=%lu, block=%llu",
4234 inode->i_ino, block);
ac27a0ec
DK
4235 return -EIO;
4236 }
4237 if (!buffer_uptodate(bh)) {
4238 lock_buffer(bh);
9c83a923
HK
4239
4240 /*
4241 * If the buffer has the write error flag, we have failed
4242 * to write out another inode in the same block. In this
4243 * case, we don't have to read the block because we may
4244 * read the old inode data successfully.
4245 */
4246 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4247 set_buffer_uptodate(bh);
4248
ac27a0ec
DK
4249 if (buffer_uptodate(bh)) {
4250 /* someone brought it uptodate while we waited */
4251 unlock_buffer(bh);
4252 goto has_buffer;
4253 }
4254
4255 /*
4256 * If we have all information of the inode in memory and this
4257 * is the only valid inode in the block, we need not read the
4258 * block.
4259 */
4260 if (in_mem) {
4261 struct buffer_head *bitmap_bh;
240799cd 4262 int i, start;
ac27a0ec 4263
240799cd 4264 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4265
240799cd
TT
4266 /* Is the inode bitmap in cache? */
4267 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4268 if (!bitmap_bh)
4269 goto make_io;
4270
4271 /*
4272 * If the inode bitmap isn't in cache then the
4273 * optimisation may end up performing two reads instead
4274 * of one, so skip it.
4275 */
4276 if (!buffer_uptodate(bitmap_bh)) {
4277 brelse(bitmap_bh);
4278 goto make_io;
4279 }
240799cd 4280 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4281 if (i == inode_offset)
4282 continue;
617ba13b 4283 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4284 break;
4285 }
4286 brelse(bitmap_bh);
240799cd 4287 if (i == start + inodes_per_block) {
ac27a0ec
DK
4288 /* all other inodes are free, so skip I/O */
4289 memset(bh->b_data, 0, bh->b_size);
4290 set_buffer_uptodate(bh);
4291 unlock_buffer(bh);
4292 goto has_buffer;
4293 }
4294 }
4295
4296make_io:
240799cd
TT
4297 /*
4298 * If we need to do any I/O, try to pre-readahead extra
4299 * blocks from the inode table.
4300 */
4301 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4302 ext4_fsblk_t b, end, table;
4303 unsigned num;
4304
4305 table = ext4_inode_table(sb, gdp);
b713a5ec 4306 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4307 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4308 if (table > b)
4309 b = table;
4310 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4311 num = EXT4_INODES_PER_GROUP(sb);
4312 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4313 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4314 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4315 table += num / inodes_per_block;
4316 if (end > table)
4317 end = table;
4318 while (b <= end)
4319 sb_breadahead(sb, b++);
4320 }
4321
ac27a0ec
DK
4322 /*
4323 * There are other valid inodes in the buffer, this inode
4324 * has in-inode xattrs, or we don't have this inode in memory.
4325 * Read the block from disk.
4326 */
4327 get_bh(bh);
4328 bh->b_end_io = end_buffer_read_sync;
4329 submit_bh(READ_META, bh);
4330 wait_on_buffer(bh);
4331 if (!buffer_uptodate(bh)) {
240799cd
TT
4332 ext4_error(sb, __func__,
4333 "unable to read inode block - inode=%lu, "
4334 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4335 brelse(bh);
4336 return -EIO;
4337 }
4338 }
4339has_buffer:
4340 iloc->bh = bh;
4341 return 0;
4342}
4343
617ba13b 4344int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4345{
4346 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4347 return __ext4_get_inode_loc(inode, iloc,
4348 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4349}
4350
617ba13b 4351void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4352{
617ba13b 4353 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4354
4355 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4356 if (flags & EXT4_SYNC_FL)
ac27a0ec 4357 inode->i_flags |= S_SYNC;
617ba13b 4358 if (flags & EXT4_APPEND_FL)
ac27a0ec 4359 inode->i_flags |= S_APPEND;
617ba13b 4360 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4361 inode->i_flags |= S_IMMUTABLE;
617ba13b 4362 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4363 inode->i_flags |= S_NOATIME;
617ba13b 4364 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4365 inode->i_flags |= S_DIRSYNC;
4366}
4367
ff9ddf7e
JK
4368/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4369void ext4_get_inode_flags(struct ext4_inode_info *ei)
4370{
4371 unsigned int flags = ei->vfs_inode.i_flags;
4372
4373 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4374 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4375 if (flags & S_SYNC)
4376 ei->i_flags |= EXT4_SYNC_FL;
4377 if (flags & S_APPEND)
4378 ei->i_flags |= EXT4_APPEND_FL;
4379 if (flags & S_IMMUTABLE)
4380 ei->i_flags |= EXT4_IMMUTABLE_FL;
4381 if (flags & S_NOATIME)
4382 ei->i_flags |= EXT4_NOATIME_FL;
4383 if (flags & S_DIRSYNC)
4384 ei->i_flags |= EXT4_DIRSYNC_FL;
4385}
de9a55b8 4386
0fc1b451 4387static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4388 struct ext4_inode_info *ei)
0fc1b451
AK
4389{
4390 blkcnt_t i_blocks ;
8180a562
AK
4391 struct inode *inode = &(ei->vfs_inode);
4392 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4393
4394 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4395 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4396 /* we are using combined 48 bit field */
4397 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4398 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4399 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4400 /* i_blocks represent file system block size */
4401 return i_blocks << (inode->i_blkbits - 9);
4402 } else {
4403 return i_blocks;
4404 }
0fc1b451
AK
4405 } else {
4406 return le32_to_cpu(raw_inode->i_blocks_lo);
4407 }
4408}
ff9ddf7e 4409
1d1fe1ee 4410struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4411{
617ba13b
MC
4412 struct ext4_iloc iloc;
4413 struct ext4_inode *raw_inode;
1d1fe1ee 4414 struct ext4_inode_info *ei;
ac27a0ec 4415 struct buffer_head *bh;
1d1fe1ee
DH
4416 struct inode *inode;
4417 long ret;
ac27a0ec
DK
4418 int block;
4419
1d1fe1ee
DH
4420 inode = iget_locked(sb, ino);
4421 if (!inode)
4422 return ERR_PTR(-ENOMEM);
4423 if (!(inode->i_state & I_NEW))
4424 return inode;
4425
4426 ei = EXT4_I(inode);
ac27a0ec 4427
1d1fe1ee
DH
4428 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4429 if (ret < 0)
ac27a0ec
DK
4430 goto bad_inode;
4431 bh = iloc.bh;
617ba13b 4432 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4433 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4434 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4435 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4436 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4437 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4438 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4439 }
4440 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4441
4442 ei->i_state = 0;
4443 ei->i_dir_start_lookup = 0;
4444 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4445 /* We now have enough fields to check if the inode was active or not.
4446 * This is needed because nfsd might try to access dead inodes
4447 * the test is that same one that e2fsck uses
4448 * NeilBrown 1999oct15
4449 */
4450 if (inode->i_nlink == 0) {
4451 if (inode->i_mode == 0 ||
617ba13b 4452 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4453 /* this inode is deleted */
af5bc92d 4454 brelse(bh);
1d1fe1ee 4455 ret = -ESTALE;
ac27a0ec
DK
4456 goto bad_inode;
4457 }
4458 /* The only unlinked inodes we let through here have
4459 * valid i_mode and are being read by the orphan
4460 * recovery code: that's fine, we're about to complete
4461 * the process of deleting those. */
4462 }
ac27a0ec 4463 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4464 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4465 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4466 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4467 ei->i_file_acl |=
4468 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4469 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4470 ei->i_disksize = inode->i_size;
4471 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4472 ei->i_block_group = iloc.block_group;
a4912123 4473 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4474 /*
4475 * NOTE! The in-memory inode i_data array is in little-endian order
4476 * even on big-endian machines: we do NOT byteswap the block numbers!
4477 */
617ba13b 4478 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4479 ei->i_data[block] = raw_inode->i_block[block];
4480 INIT_LIST_HEAD(&ei->i_orphan);
4481
0040d987 4482 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4483 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4484 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4485 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4486 brelse(bh);
1d1fe1ee 4487 ret = -EIO;
ac27a0ec 4488 goto bad_inode;
e5d2861f 4489 }
ac27a0ec
DK
4490 if (ei->i_extra_isize == 0) {
4491 /* The extra space is currently unused. Use it. */
617ba13b
MC
4492 ei->i_extra_isize = sizeof(struct ext4_inode) -
4493 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4494 } else {
4495 __le32 *magic = (void *)raw_inode +
617ba13b 4496 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4497 ei->i_extra_isize;
617ba13b 4498 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4499 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4500 }
4501 } else
4502 ei->i_extra_isize = 0;
4503
ef7f3835
KS
4504 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4505 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4506 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4507 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4508
25ec56b5
JNC
4509 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4510 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4511 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4512 inode->i_version |=
4513 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4514 }
4515
c4b5a614 4516 ret = 0;
485c26ec 4517 if (ei->i_file_acl &&
de9a55b8 4518 ((ei->i_file_acl <
485c26ec
TT
4519 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4520 EXT4_SB(sb)->s_gdb_count)) ||
4521 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4522 ext4_error(sb, __func__,
4523 "bad extended attribute block %llu in inode #%lu",
4524 ei->i_file_acl, inode->i_ino);
4525 ret = -EIO;
4526 goto bad_inode;
4527 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4528 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4529 (S_ISLNK(inode->i_mode) &&
4530 !ext4_inode_is_fast_symlink(inode)))
4531 /* Validate extent which is part of inode */
4532 ret = ext4_ext_check_inode(inode);
de9a55b8 4533 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4534 (S_ISLNK(inode->i_mode) &&
4535 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4536 /* Validate block references which are part of inode */
fe2c8191
TN
4537 ret = ext4_check_inode_blockref(inode);
4538 }
4539 if (ret) {
de9a55b8
TT
4540 brelse(bh);
4541 goto bad_inode;
7a262f7c
AK
4542 }
4543
ac27a0ec 4544 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4545 inode->i_op = &ext4_file_inode_operations;
4546 inode->i_fop = &ext4_file_operations;
4547 ext4_set_aops(inode);
ac27a0ec 4548 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4549 inode->i_op = &ext4_dir_inode_operations;
4550 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4551 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4552 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4553 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4554 nd_terminate_link(ei->i_data, inode->i_size,
4555 sizeof(ei->i_data) - 1);
4556 } else {
617ba13b
MC
4557 inode->i_op = &ext4_symlink_inode_operations;
4558 ext4_set_aops(inode);
ac27a0ec 4559 }
563bdd61
TT
4560 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4561 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4562 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4563 if (raw_inode->i_block[0])
4564 init_special_inode(inode, inode->i_mode,
4565 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4566 else
4567 init_special_inode(inode, inode->i_mode,
4568 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4569 } else {
4570 brelse(bh);
4571 ret = -EIO;
de9a55b8 4572 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4573 "bogus i_mode (%o) for inode=%lu",
4574 inode->i_mode, inode->i_ino);
4575 goto bad_inode;
ac27a0ec 4576 }
af5bc92d 4577 brelse(iloc.bh);
617ba13b 4578 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4579 unlock_new_inode(inode);
4580 return inode;
ac27a0ec
DK
4581
4582bad_inode:
1d1fe1ee
DH
4583 iget_failed(inode);
4584 return ERR_PTR(ret);
ac27a0ec
DK
4585}
4586
0fc1b451
AK
4587static int ext4_inode_blocks_set(handle_t *handle,
4588 struct ext4_inode *raw_inode,
4589 struct ext4_inode_info *ei)
4590{
4591 struct inode *inode = &(ei->vfs_inode);
4592 u64 i_blocks = inode->i_blocks;
4593 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4594
4595 if (i_blocks <= ~0U) {
4596 /*
4597 * i_blocks can be represnted in a 32 bit variable
4598 * as multiple of 512 bytes
4599 */
8180a562 4600 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4601 raw_inode->i_blocks_high = 0;
8180a562 4602 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4603 return 0;
4604 }
4605 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4606 return -EFBIG;
4607
4608 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4609 /*
4610 * i_blocks can be represented in a 48 bit variable
4611 * as multiple of 512 bytes
4612 */
8180a562 4613 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4614 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4615 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4616 } else {
8180a562
AK
4617 ei->i_flags |= EXT4_HUGE_FILE_FL;
4618 /* i_block is stored in file system block size */
4619 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4620 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4621 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4622 }
f287a1a5 4623 return 0;
0fc1b451
AK
4624}
4625
ac27a0ec
DK
4626/*
4627 * Post the struct inode info into an on-disk inode location in the
4628 * buffer-cache. This gobbles the caller's reference to the
4629 * buffer_head in the inode location struct.
4630 *
4631 * The caller must have write access to iloc->bh.
4632 */
617ba13b 4633static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4634 struct inode *inode,
91ac6f43
FM
4635 struct ext4_iloc *iloc,
4636 int do_sync)
ac27a0ec 4637{
617ba13b
MC
4638 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4639 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4640 struct buffer_head *bh = iloc->bh;
4641 int err = 0, rc, block;
4642
4643 /* For fields not not tracking in the in-memory inode,
4644 * initialise them to zero for new inodes. */
617ba13b
MC
4645 if (ei->i_state & EXT4_STATE_NEW)
4646 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4647
ff9ddf7e 4648 ext4_get_inode_flags(ei);
ac27a0ec 4649 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 4650 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4651 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4652 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4653/*
4654 * Fix up interoperability with old kernels. Otherwise, old inodes get
4655 * re-used with the upper 16 bits of the uid/gid intact
4656 */
af5bc92d 4657 if (!ei->i_dtime) {
ac27a0ec
DK
4658 raw_inode->i_uid_high =
4659 cpu_to_le16(high_16_bits(inode->i_uid));
4660 raw_inode->i_gid_high =
4661 cpu_to_le16(high_16_bits(inode->i_gid));
4662 } else {
4663 raw_inode->i_uid_high = 0;
4664 raw_inode->i_gid_high = 0;
4665 }
4666 } else {
4667 raw_inode->i_uid_low =
4668 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4669 raw_inode->i_gid_low =
4670 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4671 raw_inode->i_uid_high = 0;
4672 raw_inode->i_gid_high = 0;
4673 }
4674 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4675
4676 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4677 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4678 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4679 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4680
0fc1b451
AK
4681 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4682 goto out_brelse;
ac27a0ec 4683 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 4684 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
4685 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4686 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4687 raw_inode->i_file_acl_high =
4688 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4689 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4690 ext4_isize_set(raw_inode, ei->i_disksize);
4691 if (ei->i_disksize > 0x7fffffffULL) {
4692 struct super_block *sb = inode->i_sb;
4693 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4694 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4695 EXT4_SB(sb)->s_es->s_rev_level ==
4696 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4697 /* If this is the first large file
4698 * created, add a flag to the superblock.
4699 */
4700 err = ext4_journal_get_write_access(handle,
4701 EXT4_SB(sb)->s_sbh);
4702 if (err)
4703 goto out_brelse;
4704 ext4_update_dynamic_rev(sb);
4705 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4706 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 4707 sb->s_dirt = 1;
0390131b
FM
4708 ext4_handle_sync(handle);
4709 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 4710 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4711 }
4712 }
4713 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4714 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4715 if (old_valid_dev(inode->i_rdev)) {
4716 raw_inode->i_block[0] =
4717 cpu_to_le32(old_encode_dev(inode->i_rdev));
4718 raw_inode->i_block[1] = 0;
4719 } else {
4720 raw_inode->i_block[0] = 0;
4721 raw_inode->i_block[1] =
4722 cpu_to_le32(new_encode_dev(inode->i_rdev));
4723 raw_inode->i_block[2] = 0;
4724 }
de9a55b8
TT
4725 } else
4726 for (block = 0; block < EXT4_N_BLOCKS; block++)
4727 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4728
25ec56b5
JNC
4729 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4730 if (ei->i_extra_isize) {
4731 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732 raw_inode->i_version_hi =
4733 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4734 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4735 }
4736
91ac6f43
FM
4737 /*
4738 * If we're not using a journal and we were called from
4739 * ext4_write_inode() to sync the inode (making do_sync true),
4740 * we can just use sync_dirty_buffer() directly to do our dirty
4741 * work. Testing s_journal here is a bit redundant but it's
4742 * worth it to avoid potential future trouble.
4743 */
4744 if (EXT4_SB(inode->i_sb)->s_journal == NULL && do_sync) {
4745 BUFFER_TRACE(bh, "call sync_dirty_buffer");
4746 sync_dirty_buffer(bh);
4747 } else {
4748 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4749 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4750 if (!err)
4751 err = rc;
4752 }
617ba13b 4753 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4754
4755out_brelse:
af5bc92d 4756 brelse(bh);
617ba13b 4757 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4758 return err;
4759}
4760
4761/*
617ba13b 4762 * ext4_write_inode()
ac27a0ec
DK
4763 *
4764 * We are called from a few places:
4765 *
4766 * - Within generic_file_write() for O_SYNC files.
4767 * Here, there will be no transaction running. We wait for any running
4768 * trasnaction to commit.
4769 *
4770 * - Within sys_sync(), kupdate and such.
4771 * We wait on commit, if tol to.
4772 *
4773 * - Within prune_icache() (PF_MEMALLOC == true)
4774 * Here we simply return. We can't afford to block kswapd on the
4775 * journal commit.
4776 *
4777 * In all cases it is actually safe for us to return without doing anything,
4778 * because the inode has been copied into a raw inode buffer in
617ba13b 4779 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4780 * knfsd.
4781 *
4782 * Note that we are absolutely dependent upon all inode dirtiers doing the
4783 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4784 * which we are interested.
4785 *
4786 * It would be a bug for them to not do this. The code:
4787 *
4788 * mark_inode_dirty(inode)
4789 * stuff();
4790 * inode->i_size = expr;
4791 *
4792 * is in error because a kswapd-driven write_inode() could occur while
4793 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4794 * will no longer be on the superblock's dirty inode list.
4795 */
617ba13b 4796int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 4797{
91ac6f43
FM
4798 int err;
4799
ac27a0ec
DK
4800 if (current->flags & PF_MEMALLOC)
4801 return 0;
4802
91ac6f43
FM
4803 if (EXT4_SB(inode->i_sb)->s_journal) {
4804 if (ext4_journal_current_handle()) {
4805 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4806 dump_stack();
4807 return -EIO;
4808 }
ac27a0ec 4809
91ac6f43
FM
4810 if (!wait)
4811 return 0;
4812
4813 err = ext4_force_commit(inode->i_sb);
4814 } else {
4815 struct ext4_iloc iloc;
ac27a0ec 4816
91ac6f43
FM
4817 err = ext4_get_inode_loc(inode, &iloc);
4818 if (err)
4819 return err;
4820 err = ext4_do_update_inode(EXT4_NOJOURNAL_HANDLE,
4821 inode, &iloc, wait);
4822 }
4823 return err;
ac27a0ec
DK
4824}
4825
4826/*
617ba13b 4827 * ext4_setattr()
ac27a0ec
DK
4828 *
4829 * Called from notify_change.
4830 *
4831 * We want to trap VFS attempts to truncate the file as soon as
4832 * possible. In particular, we want to make sure that when the VFS
4833 * shrinks i_size, we put the inode on the orphan list and modify
4834 * i_disksize immediately, so that during the subsequent flushing of
4835 * dirty pages and freeing of disk blocks, we can guarantee that any
4836 * commit will leave the blocks being flushed in an unused state on
4837 * disk. (On recovery, the inode will get truncated and the blocks will
4838 * be freed, so we have a strong guarantee that no future commit will
4839 * leave these blocks visible to the user.)
4840 *
678aaf48
JK
4841 * Another thing we have to assure is that if we are in ordered mode
4842 * and inode is still attached to the committing transaction, we must
4843 * we start writeout of all the dirty pages which are being truncated.
4844 * This way we are sure that all the data written in the previous
4845 * transaction are already on disk (truncate waits for pages under
4846 * writeback).
4847 *
4848 * Called with inode->i_mutex down.
ac27a0ec 4849 */
617ba13b 4850int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4851{
4852 struct inode *inode = dentry->d_inode;
4853 int error, rc = 0;
4854 const unsigned int ia_valid = attr->ia_valid;
4855
4856 error = inode_change_ok(inode, attr);
4857 if (error)
4858 return error;
4859
4860 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4861 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4862 handle_t *handle;
4863
4864 /* (user+group)*(old+new) structure, inode write (sb,
4865 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4866 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4867 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4868 if (IS_ERR(handle)) {
4869 error = PTR_ERR(handle);
4870 goto err_out;
4871 }
a269eb18 4872 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 4873 if (error) {
617ba13b 4874 ext4_journal_stop(handle);
ac27a0ec
DK
4875 return error;
4876 }
4877 /* Update corresponding info in inode so that everything is in
4878 * one transaction */
4879 if (attr->ia_valid & ATTR_UID)
4880 inode->i_uid = attr->ia_uid;
4881 if (attr->ia_valid & ATTR_GID)
4882 inode->i_gid = attr->ia_gid;
617ba13b
MC
4883 error = ext4_mark_inode_dirty(handle, inode);
4884 ext4_journal_stop(handle);
ac27a0ec
DK
4885 }
4886
e2b46574
ES
4887 if (attr->ia_valid & ATTR_SIZE) {
4888 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4889 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4890
4891 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4892 error = -EFBIG;
4893 goto err_out;
4894 }
4895 }
4896 }
4897
ac27a0ec
DK
4898 if (S_ISREG(inode->i_mode) &&
4899 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4900 handle_t *handle;
4901
617ba13b 4902 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4903 if (IS_ERR(handle)) {
4904 error = PTR_ERR(handle);
4905 goto err_out;
4906 }
4907
617ba13b
MC
4908 error = ext4_orphan_add(handle, inode);
4909 EXT4_I(inode)->i_disksize = attr->ia_size;
4910 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4911 if (!error)
4912 error = rc;
617ba13b 4913 ext4_journal_stop(handle);
678aaf48
JK
4914
4915 if (ext4_should_order_data(inode)) {
4916 error = ext4_begin_ordered_truncate(inode,
4917 attr->ia_size);
4918 if (error) {
4919 /* Do as much error cleanup as possible */
4920 handle = ext4_journal_start(inode, 3);
4921 if (IS_ERR(handle)) {
4922 ext4_orphan_del(NULL, inode);
4923 goto err_out;
4924 }
4925 ext4_orphan_del(handle, inode);
4926 ext4_journal_stop(handle);
4927 goto err_out;
4928 }
4929 }
ac27a0ec
DK
4930 }
4931
4932 rc = inode_setattr(inode, attr);
4933
617ba13b 4934 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4935 * transaction handle at all, we need to clean up the in-core
4936 * orphan list manually. */
4937 if (inode->i_nlink)
617ba13b 4938 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4939
4940 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4941 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4942
4943err_out:
617ba13b 4944 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4945 if (!error)
4946 error = rc;
4947 return error;
4948}
4949
3e3398a0
MC
4950int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4951 struct kstat *stat)
4952{
4953 struct inode *inode;
4954 unsigned long delalloc_blocks;
4955
4956 inode = dentry->d_inode;
4957 generic_fillattr(inode, stat);
4958
4959 /*
4960 * We can't update i_blocks if the block allocation is delayed
4961 * otherwise in the case of system crash before the real block
4962 * allocation is done, we will have i_blocks inconsistent with
4963 * on-disk file blocks.
4964 * We always keep i_blocks updated together with real
4965 * allocation. But to not confuse with user, stat
4966 * will return the blocks that include the delayed allocation
4967 * blocks for this file.
4968 */
4969 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4970 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4971 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4972
4973 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4974 return 0;
4975}
ac27a0ec 4976
a02908f1
MC
4977static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4978 int chunk)
4979{
4980 int indirects;
4981
4982 /* if nrblocks are contiguous */
4983 if (chunk) {
4984 /*
4985 * With N contiguous data blocks, it need at most
4986 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4987 * 2 dindirect blocks
4988 * 1 tindirect block
4989 */
4990 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4991 return indirects + 3;
4992 }
4993 /*
4994 * if nrblocks are not contiguous, worse case, each block touch
4995 * a indirect block, and each indirect block touch a double indirect
4996 * block, plus a triple indirect block
4997 */
4998 indirects = nrblocks * 2 + 1;
4999 return indirects;
5000}
5001
5002static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5003{
5004 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5005 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5006 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5007}
ac51d837 5008
ac27a0ec 5009/*
a02908f1
MC
5010 * Account for index blocks, block groups bitmaps and block group
5011 * descriptor blocks if modify datablocks and index blocks
5012 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5013 *
a02908f1
MC
5014 * If datablocks are discontiguous, they are possible to spread over
5015 * different block groups too. If they are contiugous, with flexbg,
5016 * they could still across block group boundary.
ac27a0ec 5017 *
a02908f1
MC
5018 * Also account for superblock, inode, quota and xattr blocks
5019 */
5020int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5021{
8df9675f
TT
5022 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5023 int gdpblocks;
a02908f1
MC
5024 int idxblocks;
5025 int ret = 0;
5026
5027 /*
5028 * How many index blocks need to touch to modify nrblocks?
5029 * The "Chunk" flag indicating whether the nrblocks is
5030 * physically contiguous on disk
5031 *
5032 * For Direct IO and fallocate, they calls get_block to allocate
5033 * one single extent at a time, so they could set the "Chunk" flag
5034 */
5035 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5036
5037 ret = idxblocks;
5038
5039 /*
5040 * Now let's see how many group bitmaps and group descriptors need
5041 * to account
5042 */
5043 groups = idxblocks;
5044 if (chunk)
5045 groups += 1;
5046 else
5047 groups += nrblocks;
5048
5049 gdpblocks = groups;
8df9675f
TT
5050 if (groups > ngroups)
5051 groups = ngroups;
a02908f1
MC
5052 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5053 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5054
5055 /* bitmaps and block group descriptor blocks */
5056 ret += groups + gdpblocks;
5057
5058 /* Blocks for super block, inode, quota and xattr blocks */
5059 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5060
5061 return ret;
5062}
5063
5064/*
5065 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5066 * the modification of a single pages into a single transaction,
5067 * which may include multiple chunks of block allocations.
ac27a0ec 5068 *
525f4ed8 5069 * This could be called via ext4_write_begin()
ac27a0ec 5070 *
525f4ed8 5071 * We need to consider the worse case, when
a02908f1 5072 * one new block per extent.
ac27a0ec 5073 */
a86c6181 5074int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5075{
617ba13b 5076 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5077 int ret;
5078
a02908f1 5079 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5080
a02908f1 5081 /* Account for data blocks for journalled mode */
617ba13b 5082 if (ext4_should_journal_data(inode))
a02908f1 5083 ret += bpp;
ac27a0ec
DK
5084 return ret;
5085}
f3bd1f3f
MC
5086
5087/*
5088 * Calculate the journal credits for a chunk of data modification.
5089 *
5090 * This is called from DIO, fallocate or whoever calling
12b7ac17 5091 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5092 *
5093 * journal buffers for data blocks are not included here, as DIO
5094 * and fallocate do no need to journal data buffers.
5095 */
5096int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5097{
5098 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5099}
5100
ac27a0ec 5101/*
617ba13b 5102 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5103 * Give this, we know that the caller already has write access to iloc->bh.
5104 */
617ba13b 5105int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5106 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5107{
5108 int err = 0;
5109
25ec56b5
JNC
5110 if (test_opt(inode->i_sb, I_VERSION))
5111 inode_inc_iversion(inode);
5112
ac27a0ec
DK
5113 /* the do_update_inode consumes one bh->b_count */
5114 get_bh(iloc->bh);
5115
dab291af 5116 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
91ac6f43 5117 err = ext4_do_update_inode(handle, inode, iloc, 0);
ac27a0ec
DK
5118 put_bh(iloc->bh);
5119 return err;
5120}
5121
5122/*
5123 * On success, We end up with an outstanding reference count against
5124 * iloc->bh. This _must_ be cleaned up later.
5125 */
5126
5127int
617ba13b
MC
5128ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5129 struct ext4_iloc *iloc)
ac27a0ec 5130{
0390131b
FM
5131 int err;
5132
5133 err = ext4_get_inode_loc(inode, iloc);
5134 if (!err) {
5135 BUFFER_TRACE(iloc->bh, "get_write_access");
5136 err = ext4_journal_get_write_access(handle, iloc->bh);
5137 if (err) {
5138 brelse(iloc->bh);
5139 iloc->bh = NULL;
ac27a0ec
DK
5140 }
5141 }
617ba13b 5142 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5143 return err;
5144}
5145
6dd4ee7c
KS
5146/*
5147 * Expand an inode by new_extra_isize bytes.
5148 * Returns 0 on success or negative error number on failure.
5149 */
1d03ec98
AK
5150static int ext4_expand_extra_isize(struct inode *inode,
5151 unsigned int new_extra_isize,
5152 struct ext4_iloc iloc,
5153 handle_t *handle)
6dd4ee7c
KS
5154{
5155 struct ext4_inode *raw_inode;
5156 struct ext4_xattr_ibody_header *header;
5157 struct ext4_xattr_entry *entry;
5158
5159 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5160 return 0;
5161
5162 raw_inode = ext4_raw_inode(&iloc);
5163
5164 header = IHDR(inode, raw_inode);
5165 entry = IFIRST(header);
5166
5167 /* No extended attributes present */
5168 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5169 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5170 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5171 new_extra_isize);
5172 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5173 return 0;
5174 }
5175
5176 /* try to expand with EAs present */
5177 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5178 raw_inode, handle);
5179}
5180
ac27a0ec
DK
5181/*
5182 * What we do here is to mark the in-core inode as clean with respect to inode
5183 * dirtiness (it may still be data-dirty).
5184 * This means that the in-core inode may be reaped by prune_icache
5185 * without having to perform any I/O. This is a very good thing,
5186 * because *any* task may call prune_icache - even ones which
5187 * have a transaction open against a different journal.
5188 *
5189 * Is this cheating? Not really. Sure, we haven't written the
5190 * inode out, but prune_icache isn't a user-visible syncing function.
5191 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5192 * we start and wait on commits.
5193 *
5194 * Is this efficient/effective? Well, we're being nice to the system
5195 * by cleaning up our inodes proactively so they can be reaped
5196 * without I/O. But we are potentially leaving up to five seconds'
5197 * worth of inodes floating about which prune_icache wants us to
5198 * write out. One way to fix that would be to get prune_icache()
5199 * to do a write_super() to free up some memory. It has the desired
5200 * effect.
5201 */
617ba13b 5202int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5203{
617ba13b 5204 struct ext4_iloc iloc;
6dd4ee7c
KS
5205 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5206 static unsigned int mnt_count;
5207 int err, ret;
ac27a0ec
DK
5208
5209 might_sleep();
617ba13b 5210 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5211 if (ext4_handle_valid(handle) &&
5212 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5213 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5214 /*
5215 * We need extra buffer credits since we may write into EA block
5216 * with this same handle. If journal_extend fails, then it will
5217 * only result in a minor loss of functionality for that inode.
5218 * If this is felt to be critical, then e2fsck should be run to
5219 * force a large enough s_min_extra_isize.
5220 */
5221 if ((jbd2_journal_extend(handle,
5222 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5223 ret = ext4_expand_extra_isize(inode,
5224 sbi->s_want_extra_isize,
5225 iloc, handle);
5226 if (ret) {
5227 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5228 if (mnt_count !=
5229 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5230 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5231 "Unable to expand inode %lu. Delete"
5232 " some EAs or run e2fsck.",
5233 inode->i_ino);
c1bddad9
AK
5234 mnt_count =
5235 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5236 }
5237 }
5238 }
5239 }
ac27a0ec 5240 if (!err)
617ba13b 5241 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5242 return err;
5243}
5244
5245/*
617ba13b 5246 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5247 *
5248 * We're really interested in the case where a file is being extended.
5249 * i_size has been changed by generic_commit_write() and we thus need
5250 * to include the updated inode in the current transaction.
5251 *
a269eb18 5252 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5253 * are allocated to the file.
5254 *
5255 * If the inode is marked synchronous, we don't honour that here - doing
5256 * so would cause a commit on atime updates, which we don't bother doing.
5257 * We handle synchronous inodes at the highest possible level.
5258 */
617ba13b 5259void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5260{
617ba13b 5261 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
5262 handle_t *handle;
5263
0390131b
FM
5264 if (!ext4_handle_valid(current_handle)) {
5265 ext4_mark_inode_dirty(current_handle, inode);
5266 return;
5267 }
5268
617ba13b 5269 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5270 if (IS_ERR(handle))
5271 goto out;
5272 if (current_handle &&
5273 current_handle->h_transaction != handle->h_transaction) {
5274 /* This task has a transaction open against a different fs */
5275 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 5276 __func__);
ac27a0ec
DK
5277 } else {
5278 jbd_debug(5, "marking dirty. outer handle=%p\n",
5279 current_handle);
617ba13b 5280 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 5281 }
617ba13b 5282 ext4_journal_stop(handle);
ac27a0ec
DK
5283out:
5284 return;
5285}
5286
5287#if 0
5288/*
5289 * Bind an inode's backing buffer_head into this transaction, to prevent
5290 * it from being flushed to disk early. Unlike
617ba13b 5291 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5292 * returns no iloc structure, so the caller needs to repeat the iloc
5293 * lookup to mark the inode dirty later.
5294 */
617ba13b 5295static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5296{
617ba13b 5297 struct ext4_iloc iloc;
ac27a0ec
DK
5298
5299 int err = 0;
5300 if (handle) {
617ba13b 5301 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5302 if (!err) {
5303 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5304 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5305 if (!err)
0390131b
FM
5306 err = ext4_handle_dirty_metadata(handle,
5307 inode,
5308 iloc.bh);
ac27a0ec
DK
5309 brelse(iloc.bh);
5310 }
5311 }
617ba13b 5312 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5313 return err;
5314}
5315#endif
5316
617ba13b 5317int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5318{
5319 journal_t *journal;
5320 handle_t *handle;
5321 int err;
5322
5323 /*
5324 * We have to be very careful here: changing a data block's
5325 * journaling status dynamically is dangerous. If we write a
5326 * data block to the journal, change the status and then delete
5327 * that block, we risk forgetting to revoke the old log record
5328 * from the journal and so a subsequent replay can corrupt data.
5329 * So, first we make sure that the journal is empty and that
5330 * nobody is changing anything.
5331 */
5332
617ba13b 5333 journal = EXT4_JOURNAL(inode);
0390131b
FM
5334 if (!journal)
5335 return 0;
d699594d 5336 if (is_journal_aborted(journal))
ac27a0ec
DK
5337 return -EROFS;
5338
dab291af
MC
5339 jbd2_journal_lock_updates(journal);
5340 jbd2_journal_flush(journal);
ac27a0ec
DK
5341
5342 /*
5343 * OK, there are no updates running now, and all cached data is
5344 * synced to disk. We are now in a completely consistent state
5345 * which doesn't have anything in the journal, and we know that
5346 * no filesystem updates are running, so it is safe to modify
5347 * the inode's in-core data-journaling state flag now.
5348 */
5349
5350 if (val)
617ba13b 5351 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5352 else
617ba13b
MC
5353 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5354 ext4_set_aops(inode);
ac27a0ec 5355
dab291af 5356 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5357
5358 /* Finally we can mark the inode as dirty. */
5359
617ba13b 5360 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5361 if (IS_ERR(handle))
5362 return PTR_ERR(handle);
5363
617ba13b 5364 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5365 ext4_handle_sync(handle);
617ba13b
MC
5366 ext4_journal_stop(handle);
5367 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5368
5369 return err;
5370}
2e9ee850
AK
5371
5372static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5373{
5374 return !buffer_mapped(bh);
5375}
5376
c2ec175c 5377int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5378{
c2ec175c 5379 struct page *page = vmf->page;
2e9ee850
AK
5380 loff_t size;
5381 unsigned long len;
5382 int ret = -EINVAL;
79f0be8d 5383 void *fsdata;
2e9ee850
AK
5384 struct file *file = vma->vm_file;
5385 struct inode *inode = file->f_path.dentry->d_inode;
5386 struct address_space *mapping = inode->i_mapping;
5387
5388 /*
5389 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5390 * get i_mutex because we are already holding mmap_sem.
5391 */
5392 down_read(&inode->i_alloc_sem);
5393 size = i_size_read(inode);
5394 if (page->mapping != mapping || size <= page_offset(page)
5395 || !PageUptodate(page)) {
5396 /* page got truncated from under us? */
5397 goto out_unlock;
5398 }
5399 ret = 0;
5400 if (PageMappedToDisk(page))
5401 goto out_unlock;
5402
5403 if (page->index == size >> PAGE_CACHE_SHIFT)
5404 len = size & ~PAGE_CACHE_MASK;
5405 else
5406 len = PAGE_CACHE_SIZE;
5407
a827eaff
AK
5408 lock_page(page);
5409 /*
5410 * return if we have all the buffers mapped. This avoid
5411 * the need to call write_begin/write_end which does a
5412 * journal_start/journal_stop which can block and take
5413 * long time
5414 */
2e9ee850 5415 if (page_has_buffers(page)) {
2e9ee850 5416 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5417 ext4_bh_unmapped)) {
5418 unlock_page(page);
2e9ee850 5419 goto out_unlock;
a827eaff 5420 }
2e9ee850 5421 }
a827eaff 5422 unlock_page(page);
2e9ee850
AK
5423 /*
5424 * OK, we need to fill the hole... Do write_begin write_end
5425 * to do block allocation/reservation.We are not holding
5426 * inode.i__mutex here. That allow * parallel write_begin,
5427 * write_end call. lock_page prevent this from happening
5428 * on the same page though
5429 */
5430 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5431 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5432 if (ret < 0)
5433 goto out_unlock;
5434 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5435 len, len, page, fsdata);
2e9ee850
AK
5436 if (ret < 0)
5437 goto out_unlock;
5438 ret = 0;
5439out_unlock:
c2ec175c
NP
5440 if (ret)
5441 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5442 up_read(&inode->i_alloc_sem);
5443 return ret;
5444}