]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: Fix potential truncate BUG due to i_prealloc_list being non-empty
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
678aaf48
JK
44static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
46{
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
49}
50
64769240
AT
51static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
ac27a0ec
DK
53/*
54 * Test whether an inode is a fast symlink.
55 */
617ba13b 56static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 57{
617ba13b 58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
59 (inode->i_sb->s_blocksize >> 9) : 0;
60
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62}
63
64/*
617ba13b 65 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
68 *
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
72 */
617ba13b
MC
73int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
75{
76 int err;
77
78 might_sleep();
79
80 BUFFER_TRACE(bh, "enter");
81
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
86
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
91
617ba13b
MC
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 94 if (bh) {
dab291af 95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 96 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
97 }
98 return 0;
99 }
100
101 /*
102 * data!=journal && (is_metadata || should_journal_data(inode))
103 */
617ba13b
MC
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 106 if (err)
46e665e9 107 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
111}
112
113/*
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
116 */
117static unsigned long blocks_for_truncate(struct inode *inode)
118{
725d26d3 119 ext4_lblk_t needed;
ac27a0ec
DK
120
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
617ba13b 126 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
131
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
617ba13b
MC
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 136
617ba13b 137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
138}
139
140/*
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
144 *
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
149 */
150static handle_t *start_transaction(struct inode *inode)
151{
152 handle_t *result;
153
617ba13b 154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
155 if (!IS_ERR(result))
156 return result;
157
617ba13b 158 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
159 return result;
160}
161
162/*
163 * Try to extend this transaction for the purposes of truncation.
164 *
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
167 */
168static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169{
617ba13b 170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 171 return 0;
617ba13b 172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
173 return 0;
174 return 1;
175}
176
177/*
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
181 */
617ba13b 182static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
183{
184 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
186}
187
188/*
189 * Called at the last iput() if i_nlink is zero.
190 */
617ba13b 191void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
192{
193 handle_t *handle;
bc965ab3 194 int err;
ac27a0ec 195
678aaf48
JK
196 if (ext4_should_order_data(inode))
197 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
198 truncate_inode_pages(&inode->i_data, 0);
199
200 if (is_bad_inode(inode))
201 goto no_delete;
202
bc965ab3 203 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 204 if (IS_ERR(handle)) {
bc965ab3 205 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
206 /*
207 * If we're going to skip the normal cleanup, we still need to
208 * make sure that the in-core orphan linked list is properly
209 * cleaned up.
210 */
617ba13b 211 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
212 goto no_delete;
213 }
214
215 if (IS_SYNC(inode))
216 handle->h_sync = 1;
217 inode->i_size = 0;
bc965ab3
TT
218 err = ext4_mark_inode_dirty(handle, inode);
219 if (err) {
220 ext4_warning(inode->i_sb, __func__,
221 "couldn't mark inode dirty (err %d)", err);
222 goto stop_handle;
223 }
ac27a0ec 224 if (inode->i_blocks)
617ba13b 225 ext4_truncate(inode);
bc965ab3
TT
226
227 /*
228 * ext4_ext_truncate() doesn't reserve any slop when it
229 * restarts journal transactions; therefore there may not be
230 * enough credits left in the handle to remove the inode from
231 * the orphan list and set the dtime field.
232 */
233 if (handle->h_buffer_credits < 3) {
234 err = ext4_journal_extend(handle, 3);
235 if (err > 0)
236 err = ext4_journal_restart(handle, 3);
237 if (err != 0) {
238 ext4_warning(inode->i_sb, __func__,
239 "couldn't extend journal (err %d)", err);
240 stop_handle:
241 ext4_journal_stop(handle);
242 goto no_delete;
243 }
244 }
245
ac27a0ec 246 /*
617ba13b 247 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 248 * AKPM: I think this can be inside the above `if'.
617ba13b 249 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 250 * deletion of a non-existent orphan - this is because we don't
617ba13b 251 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
252 * (Well, we could do this if we need to, but heck - it works)
253 */
617ba13b
MC
254 ext4_orphan_del(handle, inode);
255 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
256
257 /*
258 * One subtle ordering requirement: if anything has gone wrong
259 * (transaction abort, IO errors, whatever), then we can still
260 * do these next steps (the fs will already have been marked as
261 * having errors), but we can't free the inode if the mark_dirty
262 * fails.
263 */
617ba13b 264 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
265 /* If that failed, just do the required in-core inode clear. */
266 clear_inode(inode);
267 else
617ba13b
MC
268 ext4_free_inode(handle, inode);
269 ext4_journal_stop(handle);
ac27a0ec
DK
270 return;
271no_delete:
272 clear_inode(inode); /* We must guarantee clearing of inode... */
273}
274
275typedef struct {
276 __le32 *p;
277 __le32 key;
278 struct buffer_head *bh;
279} Indirect;
280
281static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282{
283 p->key = *(p->p = v);
284 p->bh = bh;
285}
286
ac27a0ec 287/**
617ba13b 288 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
289 * @inode: inode in question (we are only interested in its superblock)
290 * @i_block: block number to be parsed
291 * @offsets: array to store the offsets in
8c55e204
DK
292 * @boundary: set this non-zero if the referred-to block is likely to be
293 * followed (on disk) by an indirect block.
ac27a0ec 294 *
617ba13b 295 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
296 * for UNIX filesystems - tree of pointers anchored in the inode, with
297 * data blocks at leaves and indirect blocks in intermediate nodes.
298 * This function translates the block number into path in that tree -
299 * return value is the path length and @offsets[n] is the offset of
300 * pointer to (n+1)th node in the nth one. If @block is out of range
301 * (negative or too large) warning is printed and zero returned.
302 *
303 * Note: function doesn't find node addresses, so no IO is needed. All
304 * we need to know is the capacity of indirect blocks (taken from the
305 * inode->i_sb).
306 */
307
308/*
309 * Portability note: the last comparison (check that we fit into triple
310 * indirect block) is spelled differently, because otherwise on an
311 * architecture with 32-bit longs and 8Kb pages we might get into trouble
312 * if our filesystem had 8Kb blocks. We might use long long, but that would
313 * kill us on x86. Oh, well, at least the sign propagation does not matter -
314 * i_block would have to be negative in the very beginning, so we would not
315 * get there at all.
316 */
317
617ba13b 318static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
319 ext4_lblk_t i_block,
320 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 321{
617ba13b
MC
322 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
329
330 if (i_block < 0) {
617ba13b 331 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 336 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 340 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 345 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
e2b46574 351 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 352 "block %lu > max",
e2b46574
ES
353 i_block + direct_blocks +
354 indirect_blocks + double_blocks);
ac27a0ec
DK
355 }
356 if (boundary)
357 *boundary = final - 1 - (i_block & (ptrs - 1));
358 return n;
359}
360
361/**
617ba13b 362 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
363 * @inode: inode in question
364 * @depth: depth of the chain (1 - direct pointer, etc.)
365 * @offsets: offsets of pointers in inode/indirect blocks
366 * @chain: place to store the result
367 * @err: here we store the error value
368 *
369 * Function fills the array of triples <key, p, bh> and returns %NULL
370 * if everything went OK or the pointer to the last filled triple
371 * (incomplete one) otherwise. Upon the return chain[i].key contains
372 * the number of (i+1)-th block in the chain (as it is stored in memory,
373 * i.e. little-endian 32-bit), chain[i].p contains the address of that
374 * number (it points into struct inode for i==0 and into the bh->b_data
375 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376 * block for i>0 and NULL for i==0. In other words, it holds the block
377 * numbers of the chain, addresses they were taken from (and where we can
378 * verify that chain did not change) and buffer_heads hosting these
379 * numbers.
380 *
381 * Function stops when it stumbles upon zero pointer (absent block)
382 * (pointer to last triple returned, *@err == 0)
383 * or when it gets an IO error reading an indirect block
384 * (ditto, *@err == -EIO)
ac27a0ec
DK
385 * or when it reads all @depth-1 indirect blocks successfully and finds
386 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
387 *
388 * Need to be called with
0e855ac8 389 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 390 */
725d26d3
AK
391static Indirect *ext4_get_branch(struct inode *inode, int depth,
392 ext4_lblk_t *offsets,
ac27a0ec
DK
393 Indirect chain[4], int *err)
394{
395 struct super_block *sb = inode->i_sb;
396 Indirect *p = chain;
397 struct buffer_head *bh;
398
399 *err = 0;
400 /* i_data is not going away, no lock needed */
617ba13b 401 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
402 if (!p->key)
403 goto no_block;
404 while (--depth) {
405 bh = sb_bread(sb, le32_to_cpu(p->key));
406 if (!bh)
407 goto failure;
ac27a0ec
DK
408 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409 /* Reader: end */
410 if (!p->key)
411 goto no_block;
412 }
413 return NULL;
414
ac27a0ec
DK
415failure:
416 *err = -EIO;
417no_block:
418 return p;
419}
420
421/**
617ba13b 422 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
423 * @inode: owner
424 * @ind: descriptor of indirect block.
425 *
1cc8dcf5 426 * This function returns the preferred place for block allocation.
ac27a0ec
DK
427 * It is used when heuristic for sequential allocation fails.
428 * Rules are:
429 * + if there is a block to the left of our position - allocate near it.
430 * + if pointer will live in indirect block - allocate near that block.
431 * + if pointer will live in inode - allocate in the same
432 * cylinder group.
433 *
434 * In the latter case we colour the starting block by the callers PID to
435 * prevent it from clashing with concurrent allocations for a different inode
436 * in the same block group. The PID is used here so that functionally related
437 * files will be close-by on-disk.
438 *
439 * Caller must make sure that @ind is valid and will stay that way.
440 */
617ba13b 441static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 442{
617ba13b 443 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
444 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445 __le32 *p;
617ba13b 446 ext4_fsblk_t bg_start;
74d3487f 447 ext4_fsblk_t last_block;
617ba13b 448 ext4_grpblk_t colour;
ac27a0ec
DK
449
450 /* Try to find previous block */
451 for (p = ind->p - 1; p >= start; p--) {
452 if (*p)
453 return le32_to_cpu(*p);
454 }
455
456 /* No such thing, so let's try location of indirect block */
457 if (ind->bh)
458 return ind->bh->b_blocknr;
459
460 /*
461 * It is going to be referred to from the inode itself? OK, just put it
462 * into the same cylinder group then.
463 */
617ba13b 464 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
465 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468 colour = (current->pid % 16) *
617ba13b 469 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
470 else
471 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
472 return bg_start + colour;
473}
474
475/**
1cc8dcf5 476 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
477 * @inode: owner
478 * @block: block we want
ac27a0ec 479 * @partial: pointer to the last triple within a chain
ac27a0ec 480 *
1cc8dcf5 481 * Normally this function find the preferred place for block allocation,
fb01bfda 482 * returns it.
ac27a0ec 483 */
725d26d3 484static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 485 Indirect *partial)
ac27a0ec 486{
617ba13b 487 struct ext4_block_alloc_info *block_i;
ac27a0ec 488
617ba13b 489 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
490
491 /*
492 * try the heuristic for sequential allocation,
493 * failing that at least try to get decent locality.
494 */
495 if (block_i && (block == block_i->last_alloc_logical_block + 1)
496 && (block_i->last_alloc_physical_block != 0)) {
497 return block_i->last_alloc_physical_block + 1;
498 }
499
617ba13b 500 return ext4_find_near(inode, partial);
ac27a0ec
DK
501}
502
503/**
617ba13b 504 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
505 * of direct blocks need to be allocated for the given branch.
506 *
507 * @branch: chain of indirect blocks
508 * @k: number of blocks need for indirect blocks
509 * @blks: number of data blocks to be mapped.
510 * @blocks_to_boundary: the offset in the indirect block
511 *
512 * return the total number of blocks to be allocate, including the
513 * direct and indirect blocks.
514 */
617ba13b 515static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
516 int blocks_to_boundary)
517{
518 unsigned long count = 0;
519
520 /*
521 * Simple case, [t,d]Indirect block(s) has not allocated yet
522 * then it's clear blocks on that path have not allocated
523 */
524 if (k > 0) {
525 /* right now we don't handle cross boundary allocation */
526 if (blks < blocks_to_boundary + 1)
527 count += blks;
528 else
529 count += blocks_to_boundary + 1;
530 return count;
531 }
532
533 count++;
534 while (count < blks && count <= blocks_to_boundary &&
535 le32_to_cpu(*(branch[0].p + count)) == 0) {
536 count++;
537 }
538 return count;
539}
540
541/**
617ba13b 542 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
543 * @indirect_blks: the number of blocks need to allocate for indirect
544 * blocks
545 *
546 * @new_blocks: on return it will store the new block numbers for
547 * the indirect blocks(if needed) and the first direct block,
548 * @blks: on return it will store the total number of allocated
549 * direct blocks
550 */
617ba13b 551static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
552 ext4_lblk_t iblock, ext4_fsblk_t goal,
553 int indirect_blks, int blks,
554 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
555{
556 int target, i;
7061eba7 557 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 558 int index = 0;
617ba13b 559 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
560 int ret = 0;
561
562 /*
563 * Here we try to allocate the requested multiple blocks at once,
564 * on a best-effort basis.
565 * To build a branch, we should allocate blocks for
566 * the indirect blocks(if not allocated yet), and at least
567 * the first direct block of this branch. That's the
568 * minimum number of blocks need to allocate(required)
569 */
7061eba7
AK
570 /* first we try to allocate the indirect blocks */
571 target = indirect_blks;
572 while (target > 0) {
ac27a0ec
DK
573 count = target;
574 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
575 current_block = ext4_new_meta_blocks(handle, inode,
576 goal, &count, err);
ac27a0ec
DK
577 if (*err)
578 goto failed_out;
579
580 target -= count;
581 /* allocate blocks for indirect blocks */
582 while (index < indirect_blks && count) {
583 new_blocks[index++] = current_block++;
584 count--;
585 }
7061eba7
AK
586 if (count > 0) {
587 /*
588 * save the new block number
589 * for the first direct block
590 */
591 new_blocks[index] = current_block;
592 printk(KERN_INFO "%s returned more blocks than "
593 "requested\n", __func__);
594 WARN_ON(1);
ac27a0ec 595 break;
7061eba7 596 }
ac27a0ec
DK
597 }
598
7061eba7
AK
599 target = blks - count ;
600 blk_allocated = count;
601 if (!target)
602 goto allocated;
603 /* Now allocate data blocks */
604 count = target;
654b4908 605 /* allocating blocks for data blocks */
7061eba7
AK
606 current_block = ext4_new_blocks(handle, inode, iblock,
607 goal, &count, err);
608 if (*err && (target == blks)) {
609 /*
610 * if the allocation failed and we didn't allocate
611 * any blocks before
612 */
613 goto failed_out;
614 }
615 if (!*err) {
616 if (target == blks) {
617 /*
618 * save the new block number
619 * for the first direct block
620 */
621 new_blocks[index] = current_block;
622 }
623 blk_allocated += count;
624 }
625allocated:
ac27a0ec 626 /* total number of blocks allocated for direct blocks */
7061eba7 627 ret = blk_allocated;
ac27a0ec
DK
628 *err = 0;
629 return ret;
630failed_out:
631 for (i = 0; i <index; i++)
c9de560d 632 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
633 return ret;
634}
635
636/**
617ba13b 637 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
638 * @inode: owner
639 * @indirect_blks: number of allocated indirect blocks
640 * @blks: number of allocated direct blocks
641 * @offsets: offsets (in the blocks) to store the pointers to next.
642 * @branch: place to store the chain in.
643 *
644 * This function allocates blocks, zeroes out all but the last one,
645 * links them into chain and (if we are synchronous) writes them to disk.
646 * In other words, it prepares a branch that can be spliced onto the
647 * inode. It stores the information about that chain in the branch[], in
617ba13b 648 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
649 * we had read the existing part of chain and partial points to the last
650 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 651 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
652 * place chain is disconnected - *branch->p is still zero (we did not
653 * set the last link), but branch->key contains the number that should
654 * be placed into *branch->p to fill that gap.
655 *
656 * If allocation fails we free all blocks we've allocated (and forget
657 * their buffer_heads) and return the error value the from failed
617ba13b 658 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
659 * as described above and return 0.
660 */
617ba13b 661static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
662 ext4_lblk_t iblock, int indirect_blks,
663 int *blks, ext4_fsblk_t goal,
664 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
665{
666 int blocksize = inode->i_sb->s_blocksize;
667 int i, n = 0;
668 int err = 0;
669 struct buffer_head *bh;
670 int num;
617ba13b
MC
671 ext4_fsblk_t new_blocks[4];
672 ext4_fsblk_t current_block;
ac27a0ec 673
7061eba7 674 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
675 *blks, new_blocks, &err);
676 if (err)
677 return err;
678
679 branch[0].key = cpu_to_le32(new_blocks[0]);
680 /*
681 * metadata blocks and data blocks are allocated.
682 */
683 for (n = 1; n <= indirect_blks; n++) {
684 /*
685 * Get buffer_head for parent block, zero it out
686 * and set the pointer to new one, then send
687 * parent to disk.
688 */
689 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690 branch[n].bh = bh;
691 lock_buffer(bh);
692 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 693 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
694 if (err) {
695 unlock_buffer(bh);
696 brelse(bh);
697 goto failed;
698 }
699
700 memset(bh->b_data, 0, blocksize);
701 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702 branch[n].key = cpu_to_le32(new_blocks[n]);
703 *branch[n].p = branch[n].key;
704 if ( n == indirect_blks) {
705 current_block = new_blocks[n];
706 /*
707 * End of chain, update the last new metablock of
708 * the chain to point to the new allocated
709 * data blocks numbers
710 */
711 for (i=1; i < num; i++)
712 *(branch[n].p + i) = cpu_to_le32(++current_block);
713 }
714 BUFFER_TRACE(bh, "marking uptodate");
715 set_buffer_uptodate(bh);
716 unlock_buffer(bh);
717
617ba13b
MC
718 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
720 if (err)
721 goto failed;
722 }
723 *blks = num;
724 return err;
725failed:
726 /* Allocation failed, free what we already allocated */
727 for (i = 1; i <= n ; i++) {
dab291af 728 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 729 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
730 }
731 for (i = 0; i <indirect_blks; i++)
c9de560d 732 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 733
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
735
736 return err;
737}
738
739/**
617ba13b 740 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
741 * @inode: owner
742 * @block: (logical) number of block we are adding
743 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 744 * ext4_alloc_branch)
ac27a0ec
DK
745 * @where: location of missing link
746 * @num: number of indirect blocks we are adding
747 * @blks: number of direct blocks we are adding
748 *
749 * This function fills the missing link and does all housekeeping needed in
750 * inode (->i_blocks, etc.). In case of success we end up with the full
751 * chain to new block and return 0.
752 */
617ba13b 753static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 754 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
755{
756 int i;
757 int err = 0;
617ba13b
MC
758 struct ext4_block_alloc_info *block_i;
759 ext4_fsblk_t current_block;
ac27a0ec 760
617ba13b 761 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
762 /*
763 * If we're splicing into a [td]indirect block (as opposed to the
764 * inode) then we need to get write access to the [td]indirect block
765 * before the splice.
766 */
767 if (where->bh) {
768 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 769 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
770 if (err)
771 goto err_out;
772 }
773 /* That's it */
774
775 *where->p = where->key;
776
777 /*
778 * Update the host buffer_head or inode to point to more just allocated
779 * direct blocks blocks
780 */
781 if (num == 0 && blks > 1) {
782 current_block = le32_to_cpu(where->key) + 1;
783 for (i = 1; i < blks; i++)
784 *(where->p + i ) = cpu_to_le32(current_block++);
785 }
786
787 /*
788 * update the most recently allocated logical & physical block
789 * in i_block_alloc_info, to assist find the proper goal block for next
790 * allocation
791 */
792 if (block_i) {
793 block_i->last_alloc_logical_block = block + blks - 1;
794 block_i->last_alloc_physical_block =
795 le32_to_cpu(where[num].key) + blks - 1;
796 }
797
798 /* We are done with atomic stuff, now do the rest of housekeeping */
799
ef7f3835 800 inode->i_ctime = ext4_current_time(inode);
617ba13b 801 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
802
803 /* had we spliced it onto indirect block? */
804 if (where->bh) {
805 /*
806 * If we spliced it onto an indirect block, we haven't
807 * altered the inode. Note however that if it is being spliced
808 * onto an indirect block at the very end of the file (the
809 * file is growing) then we *will* alter the inode to reflect
810 * the new i_size. But that is not done here - it is done in
617ba13b 811 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
812 */
813 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
814 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
816 if (err)
817 goto err_out;
818 } else {
819 /*
820 * OK, we spliced it into the inode itself on a direct block.
821 * Inode was dirtied above.
822 */
823 jbd_debug(5, "splicing direct\n");
824 }
825 return err;
826
827err_out:
828 for (i = 1; i <= num; i++) {
dab291af 829 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 830 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
831 ext4_free_blocks(handle, inode,
832 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 833 }
c9de560d 834 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
835
836 return err;
837}
838
839/*
840 * Allocation strategy is simple: if we have to allocate something, we will
841 * have to go the whole way to leaf. So let's do it before attaching anything
842 * to tree, set linkage between the newborn blocks, write them if sync is
843 * required, recheck the path, free and repeat if check fails, otherwise
844 * set the last missing link (that will protect us from any truncate-generated
845 * removals - all blocks on the path are immune now) and possibly force the
846 * write on the parent block.
847 * That has a nice additional property: no special recovery from the failed
848 * allocations is needed - we simply release blocks and do not touch anything
849 * reachable from inode.
850 *
851 * `handle' can be NULL if create == 0.
852 *
ac27a0ec
DK
853 * return > 0, # of blocks mapped or allocated.
854 * return = 0, if plain lookup failed.
855 * return < 0, error case.
c278bfec
AK
856 *
857 *
858 * Need to be called with
0e855ac8
AK
859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 861 */
617ba13b 862int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 863 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
864 struct buffer_head *bh_result,
865 int create, int extend_disksize)
866{
867 int err = -EIO;
725d26d3 868 ext4_lblk_t offsets[4];
ac27a0ec
DK
869 Indirect chain[4];
870 Indirect *partial;
617ba13b 871 ext4_fsblk_t goal;
ac27a0ec
DK
872 int indirect_blks;
873 int blocks_to_boundary = 0;
874 int depth;
617ba13b 875 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 876 int count = 0;
617ba13b 877 ext4_fsblk_t first_block = 0;
61628a3f 878 loff_t disksize;
ac27a0ec
DK
879
880
a86c6181 881 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 882 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
883 depth = ext4_block_to_path(inode, iblock, offsets,
884 &blocks_to_boundary);
ac27a0ec
DK
885
886 if (depth == 0)
887 goto out;
888
617ba13b 889 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
890
891 /* Simplest case - block found, no allocation needed */
892 if (!partial) {
893 first_block = le32_to_cpu(chain[depth - 1].key);
894 clear_buffer_new(bh_result);
895 count++;
896 /*map more blocks*/
897 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 898 ext4_fsblk_t blk;
ac27a0ec 899
ac27a0ec
DK
900 blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902 if (blk == first_block + count)
903 count++;
904 else
905 break;
906 }
c278bfec 907 goto got_it;
ac27a0ec
DK
908 }
909
910 /* Next simple case - plain lookup or failed read of indirect block */
911 if (!create || err == -EIO)
912 goto cleanup;
913
ac27a0ec
DK
914 /*
915 * Okay, we need to do block allocation. Lazily initialize the block
916 * allocation info here if necessary
917 */
918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 919 ext4_init_block_alloc_info(inode);
ac27a0ec 920
fb01bfda 921 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
922
923 /* the number of blocks need to allocate for [d,t]indirect blocks */
924 indirect_blks = (chain + depth) - partial - 1;
925
926 /*
927 * Next look up the indirect map to count the totoal number of
928 * direct blocks to allocate for this branch.
929 */
617ba13b 930 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
931 maxblocks, blocks_to_boundary);
932 /*
617ba13b 933 * Block out ext4_truncate while we alter the tree
ac27a0ec 934 */
7061eba7
AK
935 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936 &count, goal,
937 offsets + (partial - chain), partial);
ac27a0ec
DK
938
939 /*
617ba13b 940 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
941 * on the new chain if there is a failure, but that risks using
942 * up transaction credits, especially for bitmaps where the
943 * credits cannot be returned. Can we handle this somehow? We
944 * may need to return -EAGAIN upwards in the worst case. --sct
945 */
946 if (!err)
617ba13b 947 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
948 partial, indirect_blks, count);
949 /*
0e855ac8 950 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 951 * protect it if you're about to implement concurrent
617ba13b 952 * ext4_get_block() -bzzz
ac27a0ec 953 */
61628a3f
MC
954 if (!err && extend_disksize) {
955 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956 if (disksize > i_size_read(inode))
957 disksize = i_size_read(inode);
958 if (disksize > ei->i_disksize)
959 ei->i_disksize = disksize;
960 }
ac27a0ec
DK
961 if (err)
962 goto cleanup;
963
964 set_buffer_new(bh_result);
965got_it:
966 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967 if (count > blocks_to_boundary)
968 set_buffer_boundary(bh_result);
969 err = count;
970 /* Clean up and exit */
971 partial = chain + depth - 1; /* the whole chain */
972cleanup:
973 while (partial > chain) {
974 BUFFER_TRACE(partial->bh, "call brelse");
975 brelse(partial->bh);
976 partial--;
977 }
978 BUFFER_TRACE(bh_result, "returned");
979out:
980 return err;
981}
982
12219aea
AK
983/*
984 * Calculate the number of metadata blocks need to reserve
985 * to allocate @blocks for non extent file based file
986 */
987static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988{
989 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990 int ind_blks, dind_blks, tind_blks;
991
992 /* number of new indirect blocks needed */
993 ind_blks = (blocks + icap - 1) / icap;
994
995 dind_blks = (ind_blks + icap - 1) / icap;
996
997 tind_blks = 1;
998
999 return ind_blks + dind_blks + tind_blks;
1000}
1001
1002/*
1003 * Calculate the number of metadata blocks need to reserve
1004 * to allocate given number of blocks
1005 */
1006static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007{
1008 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1009 return ext4_ext_calc_metadata_amount(inode, blocks);
1010
1011 return ext4_indirect_calc_metadata_amount(inode, blocks);
1012}
1013
1014static void ext4_da_update_reserve_space(struct inode *inode, int used)
1015{
1016 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1017 int total, mdb, mdb_free;
1018
1019 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1020 /* recalculate the number of metablocks still need to be reserved */
1021 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1022 mdb = ext4_calc_metadata_amount(inode, total);
1023
1024 /* figure out how many metablocks to release */
1025 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1026 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1027
1028 /* Account for allocated meta_blocks */
1029 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1030
1031 /* update fs free blocks counter for truncate case */
1032 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1033
1034 /* update per-inode reservations */
1035 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1036 EXT4_I(inode)->i_reserved_data_blocks -= used;
1037
1038 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1039 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1040 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042}
1043
7fb5409d
JK
1044/* Maximum number of blocks we map for direct IO at once. */
1045#define DIO_MAX_BLOCKS 4096
1046/*
1047 * Number of credits we need for writing DIO_MAX_BLOCKS:
1048 * We need sb + group descriptor + bitmap + inode -> 4
1049 * For B blocks with A block pointers per block we need:
1050 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1051 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1052 */
1053#define DIO_CREDITS 25
ac27a0ec 1054
f5ab0d1f
MC
1055
1056/*
2b2d6d01
TT
1057 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1058 * and returns if the blocks are already mapped.
f5ab0d1f 1059 *
f5ab0d1f
MC
1060 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1061 * and store the allocated blocks in the result buffer head and mark it
1062 * mapped.
1063 *
1064 * If file type is extents based, it will call ext4_ext_get_blocks(),
1065 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1066 * based files
1067 *
1068 * On success, it returns the number of blocks being mapped or allocate.
1069 * if create==0 and the blocks are pre-allocated and uninitialized block,
1070 * the result buffer head is unmapped. If the create ==1, it will make sure
1071 * the buffer head is mapped.
1072 *
1073 * It returns 0 if plain look up failed (blocks have not been allocated), in
1074 * that casem, buffer head is unmapped
1075 *
1076 * It returns the error in case of allocation failure.
1077 */
0e855ac8
AK
1078int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1079 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1080 int create, int extend_disksize, int flag)
0e855ac8
AK
1081{
1082 int retval;
f5ab0d1f
MC
1083
1084 clear_buffer_mapped(bh);
1085
4df3d265
AK
1086 /*
1087 * Try to see if we can get the block without requesting
1088 * for new file system block.
1089 */
1090 down_read((&EXT4_I(inode)->i_data_sem));
1091 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1092 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1093 bh, 0, 0);
0e855ac8 1094 } else {
4df3d265
AK
1095 retval = ext4_get_blocks_handle(handle,
1096 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1097 }
4df3d265 1098 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1099
1100 /* If it is only a block(s) look up */
1101 if (!create)
1102 return retval;
1103
1104 /*
1105 * Returns if the blocks have already allocated
1106 *
1107 * Note that if blocks have been preallocated
1108 * ext4_ext_get_block() returns th create = 0
1109 * with buffer head unmapped.
1110 */
1111 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1112 return retval;
1113
1114 /*
f5ab0d1f
MC
1115 * New blocks allocate and/or writing to uninitialized extent
1116 * will possibly result in updating i_data, so we take
1117 * the write lock of i_data_sem, and call get_blocks()
1118 * with create == 1 flag.
4df3d265
AK
1119 */
1120 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1121
1122 /*
1123 * if the caller is from delayed allocation writeout path
1124 * we have already reserved fs blocks for allocation
1125 * let the underlying get_block() function know to
1126 * avoid double accounting
1127 */
1128 if (flag)
1129 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1130 /*
1131 * We need to check for EXT4 here because migrate
1132 * could have changed the inode type in between
1133 */
0e855ac8
AK
1134 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1135 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1136 bh, create, extend_disksize);
1137 } else {
1138 retval = ext4_get_blocks_handle(handle, inode, block,
1139 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1140
1141 if (retval > 0 && buffer_new(bh)) {
1142 /*
1143 * We allocated new blocks which will result in
1144 * i_data's format changing. Force the migrate
1145 * to fail by clearing migrate flags
1146 */
1147 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1148 ~EXT4_EXT_MIGRATE;
1149 }
0e855ac8 1150 }
d2a17637
MC
1151
1152 if (flag) {
1153 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1154 /*
1155 * Update reserved blocks/metadata blocks
1156 * after successful block allocation
1157 * which were deferred till now
1158 */
1159 if ((retval > 0) && buffer_delay(bh))
12219aea 1160 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1161 }
1162
4df3d265 1163 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1164 return retval;
1165}
1166
617ba13b 1167static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1168 struct buffer_head *bh_result, int create)
1169{
3e4fdaf8 1170 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1171 int ret = 0, started = 0;
ac27a0ec
DK
1172 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1173
7fb5409d
JK
1174 if (create && !handle) {
1175 /* Direct IO write... */
1176 if (max_blocks > DIO_MAX_BLOCKS)
1177 max_blocks = DIO_MAX_BLOCKS;
1178 handle = ext4_journal_start(inode, DIO_CREDITS +
1179 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
1180 if (IS_ERR(handle)) {
ac27a0ec 1181 ret = PTR_ERR(handle);
7fb5409d 1182 goto out;
ac27a0ec 1183 }
7fb5409d 1184 started = 1;
ac27a0ec
DK
1185 }
1186
7fb5409d 1187 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1188 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1189 if (ret > 0) {
1190 bh_result->b_size = (ret << inode->i_blkbits);
1191 ret = 0;
ac27a0ec 1192 }
7fb5409d
JK
1193 if (started)
1194 ext4_journal_stop(handle);
1195out:
ac27a0ec
DK
1196 return ret;
1197}
1198
1199/*
1200 * `handle' can be NULL if create is zero
1201 */
617ba13b 1202struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1203 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1204{
1205 struct buffer_head dummy;
1206 int fatal = 0, err;
1207
1208 J_ASSERT(handle != NULL || create == 0);
1209
1210 dummy.b_state = 0;
1211 dummy.b_blocknr = -1000;
1212 buffer_trace_init(&dummy.b_history);
a86c6181 1213 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1214 &dummy, create, 1, 0);
ac27a0ec 1215 /*
617ba13b 1216 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1217 * mapped. 0 in case of a HOLE.
1218 */
1219 if (err > 0) {
1220 if (err > 1)
1221 WARN_ON(1);
1222 err = 0;
1223 }
1224 *errp = err;
1225 if (!err && buffer_mapped(&dummy)) {
1226 struct buffer_head *bh;
1227 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1228 if (!bh) {
1229 *errp = -EIO;
1230 goto err;
1231 }
1232 if (buffer_new(&dummy)) {
1233 J_ASSERT(create != 0);
ac39849d 1234 J_ASSERT(handle != NULL);
ac27a0ec
DK
1235
1236 /*
1237 * Now that we do not always journal data, we should
1238 * keep in mind whether this should always journal the
1239 * new buffer as metadata. For now, regular file
617ba13b 1240 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1241 * problem.
1242 */
1243 lock_buffer(bh);
1244 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1245 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1246 if (!fatal && !buffer_uptodate(bh)) {
1247 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1248 set_buffer_uptodate(bh);
1249 }
1250 unlock_buffer(bh);
617ba13b
MC
1251 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1252 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1253 if (!fatal)
1254 fatal = err;
1255 } else {
1256 BUFFER_TRACE(bh, "not a new buffer");
1257 }
1258 if (fatal) {
1259 *errp = fatal;
1260 brelse(bh);
1261 bh = NULL;
1262 }
1263 return bh;
1264 }
1265err:
1266 return NULL;
1267}
1268
617ba13b 1269struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1270 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1271{
1272 struct buffer_head * bh;
1273
617ba13b 1274 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1275 if (!bh)
1276 return bh;
1277 if (buffer_uptodate(bh))
1278 return bh;
1279 ll_rw_block(READ_META, 1, &bh);
1280 wait_on_buffer(bh);
1281 if (buffer_uptodate(bh))
1282 return bh;
1283 put_bh(bh);
1284 *err = -EIO;
1285 return NULL;
1286}
1287
1288static int walk_page_buffers( handle_t *handle,
1289 struct buffer_head *head,
1290 unsigned from,
1291 unsigned to,
1292 int *partial,
1293 int (*fn)( handle_t *handle,
1294 struct buffer_head *bh))
1295{
1296 struct buffer_head *bh;
1297 unsigned block_start, block_end;
1298 unsigned blocksize = head->b_size;
1299 int err, ret = 0;
1300 struct buffer_head *next;
1301
1302 for ( bh = head, block_start = 0;
1303 ret == 0 && (bh != head || !block_start);
1304 block_start = block_end, bh = next)
1305 {
1306 next = bh->b_this_page;
1307 block_end = block_start + blocksize;
1308 if (block_end <= from || block_start >= to) {
1309 if (partial && !buffer_uptodate(bh))
1310 *partial = 1;
1311 continue;
1312 }
1313 err = (*fn)(handle, bh);
1314 if (!ret)
1315 ret = err;
1316 }
1317 return ret;
1318}
1319
1320/*
1321 * To preserve ordering, it is essential that the hole instantiation and
1322 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1323 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1324 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1325 * prepare_write() is the right place.
1326 *
617ba13b
MC
1327 * Also, this function can nest inside ext4_writepage() ->
1328 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1329 * has generated enough buffer credits to do the whole page. So we won't
1330 * block on the journal in that case, which is good, because the caller may
1331 * be PF_MEMALLOC.
1332 *
617ba13b 1333 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1334 * quota file writes. If we were to commit the transaction while thus
1335 * reentered, there can be a deadlock - we would be holding a quota
1336 * lock, and the commit would never complete if another thread had a
1337 * transaction open and was blocking on the quota lock - a ranking
1338 * violation.
1339 *
dab291af 1340 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1341 * will _not_ run commit under these circumstances because handle->h_ref
1342 * is elevated. We'll still have enough credits for the tiny quotafile
1343 * write.
1344 */
1345static int do_journal_get_write_access(handle_t *handle,
1346 struct buffer_head *bh)
1347{
1348 if (!buffer_mapped(bh) || buffer_freed(bh))
1349 return 0;
617ba13b 1350 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1351}
1352
bfc1af65
NP
1353static int ext4_write_begin(struct file *file, struct address_space *mapping,
1354 loff_t pos, unsigned len, unsigned flags,
1355 struct page **pagep, void **fsdata)
ac27a0ec 1356{
bfc1af65 1357 struct inode *inode = mapping->host;
7479d2b9 1358 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1359 handle_t *handle;
1360 int retries = 0;
bfc1af65
NP
1361 struct page *page;
1362 pgoff_t index;
1363 unsigned from, to;
1364
1365 index = pos >> PAGE_CACHE_SHIFT;
1366 from = pos & (PAGE_CACHE_SIZE - 1);
1367 to = from + len;
ac27a0ec
DK
1368
1369retry:
bfc1af65
NP
1370 handle = ext4_journal_start(inode, needed_blocks);
1371 if (IS_ERR(handle)) {
bfc1af65
NP
1372 ret = PTR_ERR(handle);
1373 goto out;
7479d2b9 1374 }
ac27a0ec 1375
cf108bca
JK
1376 page = __grab_cache_page(mapping, index);
1377 if (!page) {
1378 ext4_journal_stop(handle);
1379 ret = -ENOMEM;
1380 goto out;
1381 }
1382 *pagep = page;
1383
bfc1af65
NP
1384 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1385 ext4_get_block);
1386
1387 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1388 ret = walk_page_buffers(handle, page_buffers(page),
1389 from, to, NULL, do_journal_get_write_access);
1390 }
bfc1af65
NP
1391
1392 if (ret) {
bfc1af65 1393 unlock_page(page);
cf108bca 1394 ext4_journal_stop(handle);
bfc1af65
NP
1395 page_cache_release(page);
1396 }
1397
617ba13b 1398 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1399 goto retry;
7479d2b9 1400out:
ac27a0ec
DK
1401 return ret;
1402}
1403
bfc1af65
NP
1404/* For write_end() in data=journal mode */
1405static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1406{
1407 if (!buffer_mapped(bh) || buffer_freed(bh))
1408 return 0;
1409 set_buffer_uptodate(bh);
617ba13b 1410 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1411}
1412
1413/*
1414 * We need to pick up the new inode size which generic_commit_write gave us
1415 * `file' can be NULL - eg, when called from page_symlink().
1416 *
617ba13b 1417 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1418 * buffers are managed internally.
1419 */
bfc1af65
NP
1420static int ext4_ordered_write_end(struct file *file,
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
ac27a0ec 1424{
617ba13b 1425 handle_t *handle = ext4_journal_current_handle();
cf108bca 1426 struct inode *inode = mapping->host;
ac27a0ec
DK
1427 int ret = 0, ret2;
1428
678aaf48 1429 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1430
1431 if (ret == 0) {
1432 /*
bfc1af65 1433 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1434 * changes. So let's piggyback the i_disksize mark_inode_dirty
1435 * into that.
1436 */
1437 loff_t new_i_size;
1438
bfc1af65 1439 new_i_size = pos + copied;
617ba13b
MC
1440 if (new_i_size > EXT4_I(inode)->i_disksize)
1441 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1442 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1443 page, fsdata);
f8a87d89
RK
1444 copied = ret2;
1445 if (ret2 < 0)
1446 ret = ret2;
ac27a0ec 1447 }
617ba13b 1448 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1449 if (!ret)
1450 ret = ret2;
bfc1af65
NP
1451
1452 return ret ? ret : copied;
ac27a0ec
DK
1453}
1454
bfc1af65
NP
1455static int ext4_writeback_write_end(struct file *file,
1456 struct address_space *mapping,
1457 loff_t pos, unsigned len, unsigned copied,
1458 struct page *page, void *fsdata)
ac27a0ec 1459{
617ba13b 1460 handle_t *handle = ext4_journal_current_handle();
cf108bca 1461 struct inode *inode = mapping->host;
ac27a0ec
DK
1462 int ret = 0, ret2;
1463 loff_t new_i_size;
1464
bfc1af65 1465 new_i_size = pos + copied;
617ba13b
MC
1466 if (new_i_size > EXT4_I(inode)->i_disksize)
1467 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1468
cf108bca 1469 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1470 page, fsdata);
f8a87d89
RK
1471 copied = ret2;
1472 if (ret2 < 0)
1473 ret = ret2;
ac27a0ec 1474
617ba13b 1475 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1476 if (!ret)
1477 ret = ret2;
bfc1af65
NP
1478
1479 return ret ? ret : copied;
ac27a0ec
DK
1480}
1481
bfc1af65
NP
1482static int ext4_journalled_write_end(struct file *file,
1483 struct address_space *mapping,
1484 loff_t pos, unsigned len, unsigned copied,
1485 struct page *page, void *fsdata)
ac27a0ec 1486{
617ba13b 1487 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1488 struct inode *inode = mapping->host;
ac27a0ec
DK
1489 int ret = 0, ret2;
1490 int partial = 0;
bfc1af65 1491 unsigned from, to;
ac27a0ec 1492
bfc1af65
NP
1493 from = pos & (PAGE_CACHE_SIZE - 1);
1494 to = from + len;
1495
1496 if (copied < len) {
1497 if (!PageUptodate(page))
1498 copied = 0;
1499 page_zero_new_buffers(page, from+copied, to);
1500 }
ac27a0ec
DK
1501
1502 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1503 to, &partial, write_end_fn);
ac27a0ec
DK
1504 if (!partial)
1505 SetPageUptodate(page);
bfc1af65
NP
1506 if (pos+copied > inode->i_size)
1507 i_size_write(inode, pos+copied);
617ba13b
MC
1508 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1509 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1510 EXT4_I(inode)->i_disksize = inode->i_size;
1511 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1512 if (!ret)
1513 ret = ret2;
1514 }
bfc1af65 1515
cf108bca 1516 unlock_page(page);
617ba13b 1517 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1518 if (!ret)
1519 ret = ret2;
bfc1af65
NP
1520 page_cache_release(page);
1521
1522 return ret ? ret : copied;
ac27a0ec 1523}
d2a17637
MC
1524
1525static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1526{
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1528 unsigned long md_needed, mdblocks, total = 0;
1529
1530 /*
1531 * recalculate the amount of metadata blocks to reserve
1532 * in order to allocate nrblocks
1533 * worse case is one extent per block
1534 */
1535 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1536 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1537 mdblocks = ext4_calc_metadata_amount(inode, total);
1538 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1539
1540 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1541 total = md_needed + nrblocks;
1542
1543 if (ext4_has_free_blocks(sbi, total) < total) {
1544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1545 return -ENOSPC;
1546 }
d2a17637
MC
1547 /* reduce fs free blocks counter */
1548 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1549
1550 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1551 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1552
1553 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1554 return 0; /* success */
1555}
1556
12219aea 1557static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1558{
1559 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1560 int total, mdb, mdb_free, release;
1561
1562 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1563 /* recalculate the number of metablocks still need to be reserved */
12219aea 1564 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1565 mdb = ext4_calc_metadata_amount(inode, total);
1566
1567 /* figure out how many metablocks to release */
1568 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1569 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1570
d2a17637
MC
1571 release = to_free + mdb_free;
1572
1573 /* update fs free blocks counter for truncate case */
1574 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1575
1576 /* update per-inode reservations */
12219aea
AK
1577 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1578 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1579
1580 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1581 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1582 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1583}
1584
1585static void ext4_da_page_release_reservation(struct page *page,
1586 unsigned long offset)
1587{
1588 int to_release = 0;
1589 struct buffer_head *head, *bh;
1590 unsigned int curr_off = 0;
1591
1592 head = page_buffers(page);
1593 bh = head;
1594 do {
1595 unsigned int next_off = curr_off + bh->b_size;
1596
1597 if ((offset <= curr_off) && (buffer_delay(bh))) {
1598 to_release++;
1599 clear_buffer_delay(bh);
1600 }
1601 curr_off = next_off;
1602 } while ((bh = bh->b_this_page) != head);
12219aea 1603 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1604}
ac27a0ec 1605
64769240
AT
1606/*
1607 * Delayed allocation stuff
1608 */
1609
1610struct mpage_da_data {
1611 struct inode *inode;
1612 struct buffer_head lbh; /* extent of blocks */
1613 unsigned long first_page, next_page; /* extent of pages */
1614 get_block_t *get_block;
1615 struct writeback_control *wbc;
1616};
1617
1618/*
1619 * mpage_da_submit_io - walks through extent of pages and try to write
1620 * them with __mpage_writepage()
1621 *
1622 * @mpd->inode: inode
1623 * @mpd->first_page: first page of the extent
1624 * @mpd->next_page: page after the last page of the extent
1625 * @mpd->get_block: the filesystem's block mapper function
1626 *
1627 * By the time mpage_da_submit_io() is called we expect all blocks
1628 * to be allocated. this may be wrong if allocation failed.
1629 *
1630 * As pages are already locked by write_cache_pages(), we can't use it
1631 */
1632static int mpage_da_submit_io(struct mpage_da_data *mpd)
1633{
1634 struct address_space *mapping = mpd->inode->i_mapping;
1635 struct mpage_data mpd_pp = {
1636 .bio = NULL,
1637 .last_block_in_bio = 0,
1638 .get_block = mpd->get_block,
1639 .use_writepage = 1,
1640 };
1641 int ret = 0, err, nr_pages, i;
1642 unsigned long index, end;
1643 struct pagevec pvec;
1644
1645 BUG_ON(mpd->next_page <= mpd->first_page);
1646
1647 pagevec_init(&pvec, 0);
1648 index = mpd->first_page;
1649 end = mpd->next_page - 1;
1650
1651 while (index <= end) {
1652 /* XXX: optimize tail */
1653 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1654 if (nr_pages == 0)
1655 break;
1656 for (i = 0; i < nr_pages; i++) {
1657 struct page *page = pvec.pages[i];
1658
1659 index = page->index;
1660 if (index > end)
1661 break;
1662 index++;
1663
1664 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1665
1666 /*
1667 * In error case, we have to continue because
1668 * remaining pages are still locked
1669 * XXX: unlock and re-dirty them?
1670 */
1671 if (ret == 0)
1672 ret = err;
1673 }
1674 pagevec_release(&pvec);
1675 }
1676 if (mpd_pp.bio)
1677 mpage_bio_submit(WRITE, mpd_pp.bio);
1678
1679 return ret;
1680}
1681
1682/*
1683 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1684 *
1685 * @mpd->inode - inode to walk through
1686 * @exbh->b_blocknr - first block on a disk
1687 * @exbh->b_size - amount of space in bytes
1688 * @logical - first logical block to start assignment with
1689 *
1690 * the function goes through all passed space and put actual disk
1691 * block numbers into buffer heads, dropping BH_Delay
1692 */
1693static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1694 struct buffer_head *exbh)
1695{
1696 struct inode *inode = mpd->inode;
1697 struct address_space *mapping = inode->i_mapping;
1698 int blocks = exbh->b_size >> inode->i_blkbits;
1699 sector_t pblock = exbh->b_blocknr, cur_logical;
1700 struct buffer_head *head, *bh;
1701 unsigned long index, end;
1702 struct pagevec pvec;
1703 int nr_pages, i;
1704
1705 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1706 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1707 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1708
1709 pagevec_init(&pvec, 0);
1710
1711 while (index <= end) {
1712 /* XXX: optimize tail */
1713 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1714 if (nr_pages == 0)
1715 break;
1716 for (i = 0; i < nr_pages; i++) {
1717 struct page *page = pvec.pages[i];
1718
1719 index = page->index;
1720 if (index > end)
1721 break;
1722 index++;
1723
1724 BUG_ON(!PageLocked(page));
1725 BUG_ON(PageWriteback(page));
1726 BUG_ON(!page_has_buffers(page));
1727
1728 bh = page_buffers(page);
1729 head = bh;
1730
1731 /* skip blocks out of the range */
1732 do {
1733 if (cur_logical >= logical)
1734 break;
1735 cur_logical++;
1736 } while ((bh = bh->b_this_page) != head);
1737
1738 do {
1739 if (cur_logical >= logical + blocks)
1740 break;
64769240
AT
1741 if (buffer_delay(bh)) {
1742 bh->b_blocknr = pblock;
1743 clear_buffer_delay(bh);
bf068ee2
AK
1744 bh->b_bdev = inode->i_sb->s_bdev;
1745 } else if (buffer_unwritten(bh)) {
1746 bh->b_blocknr = pblock;
1747 clear_buffer_unwritten(bh);
1748 set_buffer_mapped(bh);
1749 set_buffer_new(bh);
1750 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1751 } else if (buffer_mapped(bh))
64769240 1752 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1753
1754 cur_logical++;
1755 pblock++;
1756 } while ((bh = bh->b_this_page) != head);
1757 }
1758 pagevec_release(&pvec);
1759 }
1760}
1761
1762
1763/*
1764 * __unmap_underlying_blocks - just a helper function to unmap
1765 * set of blocks described by @bh
1766 */
1767static inline void __unmap_underlying_blocks(struct inode *inode,
1768 struct buffer_head *bh)
1769{
1770 struct block_device *bdev = inode->i_sb->s_bdev;
1771 int blocks, i;
1772
1773 blocks = bh->b_size >> inode->i_blkbits;
1774 for (i = 0; i < blocks; i++)
1775 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1776}
1777
1778/*
1779 * mpage_da_map_blocks - go through given space
1780 *
1781 * @mpd->lbh - bh describing space
1782 * @mpd->get_block - the filesystem's block mapper function
1783 *
1784 * The function skips space we know is already mapped to disk blocks.
1785 *
1786 * The function ignores errors ->get_block() returns, thus real
1787 * error handling is postponed to __mpage_writepage()
1788 */
1789static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1790{
1791 struct buffer_head *lbh = &mpd->lbh;
1792 int err = 0, remain = lbh->b_size;
1793 sector_t next = lbh->b_blocknr;
1794 struct buffer_head new;
1795
1796 /*
1797 * We consider only non-mapped and non-allocated blocks
1798 */
1799 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1800 return;
1801
1802 while (remain) {
1803 new.b_state = lbh->b_state;
1804 new.b_blocknr = 0;
1805 new.b_size = remain;
1806 err = mpd->get_block(mpd->inode, next, &new, 1);
1807 if (err) {
1808 /*
1809 * Rather than implement own error handling
1810 * here, we just leave remaining blocks
1811 * unallocated and try again with ->writepage()
1812 */
1813 break;
1814 }
1815 BUG_ON(new.b_size == 0);
1816
1817 if (buffer_new(&new))
1818 __unmap_underlying_blocks(mpd->inode, &new);
1819
1820 /*
1821 * If blocks are delayed marked, we need to
1822 * put actual blocknr and drop delayed bit
1823 */
bf068ee2 1824 if (buffer_delay(lbh) || buffer_unwritten(lbh))
64769240
AT
1825 mpage_put_bnr_to_bhs(mpd, next, &new);
1826
61628a3f
MC
1827 /* go for the remaining blocks */
1828 next += new.b_size >> mpd->inode->i_blkbits;
1829 remain -= new.b_size;
1830 }
64769240
AT
1831}
1832
bf068ee2
AK
1833#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1834 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1835
1836/*
1837 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1838 *
1839 * @mpd->lbh - extent of blocks
1840 * @logical - logical number of the block in the file
1841 * @bh - bh of the block (used to access block's state)
1842 *
1843 * the function is used to collect contig. blocks in same state
1844 */
1845static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1846 sector_t logical, struct buffer_head *bh)
1847{
1848 struct buffer_head *lbh = &mpd->lbh;
1849 sector_t next;
1850
1851 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1852
1853 /*
1854 * First block in the extent
1855 */
1856 if (lbh->b_size == 0) {
1857 lbh->b_blocknr = logical;
1858 lbh->b_size = bh->b_size;
1859 lbh->b_state = bh->b_state & BH_FLAGS;
1860 return;
1861 }
1862
1863 /*
1864 * Can we merge the block to our big extent?
1865 */
1866 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1867 lbh->b_size += bh->b_size;
1868 return;
1869 }
1870
1871 /*
1872 * We couldn't merge the block to our extent, so we
1873 * need to flush current extent and start new one
1874 */
1875 mpage_da_map_blocks(mpd);
1876
1877 /*
1878 * Now start a new extent
1879 */
1880 lbh->b_size = bh->b_size;
1881 lbh->b_state = bh->b_state & BH_FLAGS;
1882 lbh->b_blocknr = logical;
1883}
1884
1885/*
1886 * __mpage_da_writepage - finds extent of pages and blocks
1887 *
1888 * @page: page to consider
1889 * @wbc: not used, we just follow rules
1890 * @data: context
1891 *
1892 * The function finds extents of pages and scan them for all blocks.
1893 */
1894static int __mpage_da_writepage(struct page *page,
1895 struct writeback_control *wbc, void *data)
1896{
1897 struct mpage_da_data *mpd = data;
1898 struct inode *inode = mpd->inode;
1899 struct buffer_head *bh, *head, fake;
1900 sector_t logical;
1901
1902 /*
1903 * Can we merge this page to current extent?
1904 */
1905 if (mpd->next_page != page->index) {
1906 /*
1907 * Nope, we can't. So, we map non-allocated blocks
1908 * and start IO on them using __mpage_writepage()
1909 */
1910 if (mpd->next_page != mpd->first_page) {
1911 mpage_da_map_blocks(mpd);
1912 mpage_da_submit_io(mpd);
1913 }
1914
1915 /*
1916 * Start next extent of pages ...
1917 */
1918 mpd->first_page = page->index;
1919
1920 /*
1921 * ... and blocks
1922 */
1923 mpd->lbh.b_size = 0;
1924 mpd->lbh.b_state = 0;
1925 mpd->lbh.b_blocknr = 0;
1926 }
1927
1928 mpd->next_page = page->index + 1;
1929 logical = (sector_t) page->index <<
1930 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1931
1932 if (!page_has_buffers(page)) {
1933 /*
1934 * There is no attached buffer heads yet (mmap?)
1935 * we treat the page asfull of dirty blocks
1936 */
1937 bh = &fake;
1938 bh->b_size = PAGE_CACHE_SIZE;
1939 bh->b_state = 0;
1940 set_buffer_dirty(bh);
1941 set_buffer_uptodate(bh);
1942 mpage_add_bh_to_extent(mpd, logical, bh);
1943 } else {
1944 /*
1945 * Page with regular buffer heads, just add all dirty ones
1946 */
1947 head = page_buffers(page);
1948 bh = head;
1949 do {
1950 BUG_ON(buffer_locked(bh));
1951 if (buffer_dirty(bh))
1952 mpage_add_bh_to_extent(mpd, logical, bh);
1953 logical++;
1954 } while ((bh = bh->b_this_page) != head);
1955 }
1956
1957 return 0;
1958}
1959
1960/*
1961 * mpage_da_writepages - walk the list of dirty pages of the given
1962 * address space, allocates non-allocated blocks, maps newly-allocated
1963 * blocks to existing bhs and issue IO them
1964 *
1965 * @mapping: address space structure to write
1966 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1967 * @get_block: the filesystem's block mapper function.
1968 *
1969 * This is a library function, which implements the writepages()
1970 * address_space_operation.
1971 *
1972 * In order to avoid duplication of logic that deals with partial pages,
1973 * multiple bio per page, etc, we find non-allocated blocks, allocate
1974 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1975 *
1976 * It's important that we call __mpage_writepage() only once for each
1977 * involved page, otherwise we'd have to implement more complicated logic
1978 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1979 *
1980 * See comments to mpage_writepages()
1981 */
1982static int mpage_da_writepages(struct address_space *mapping,
1983 struct writeback_control *wbc,
1984 get_block_t get_block)
1985{
1986 struct mpage_da_data mpd;
1987 int ret;
1988
1989 if (!get_block)
1990 return generic_writepages(mapping, wbc);
1991
1992 mpd.wbc = wbc;
1993 mpd.inode = mapping->host;
1994 mpd.lbh.b_size = 0;
1995 mpd.lbh.b_state = 0;
1996 mpd.lbh.b_blocknr = 0;
1997 mpd.first_page = 0;
1998 mpd.next_page = 0;
1999 mpd.get_block = get_block;
2000
2001 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2002
2003 /*
2004 * Handle last extent of pages
2005 */
2006 if (mpd.next_page != mpd.first_page) {
2007 mpage_da_map_blocks(&mpd);
2008 mpage_da_submit_io(&mpd);
2009 }
2010
2011 return ret;
2012}
2013
2014/*
2015 * this is a special callback for ->write_begin() only
2016 * it's intention is to return mapped block or reserve space
2017 */
2018static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2019 struct buffer_head *bh_result, int create)
2020{
2021 int ret = 0;
2022
2023 BUG_ON(create == 0);
2024 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2025
2026 /*
2027 * first, we need to know whether the block is allocated already
2028 * preallocated blocks are unmapped but should treated
2029 * the same as allocated blocks.
2030 */
d2a17637
MC
2031 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2032 if ((ret == 0) && !buffer_delay(bh_result)) {
2033 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2034 /*
2035 * XXX: __block_prepare_write() unmaps passed block,
2036 * is it OK?
2037 */
d2a17637
MC
2038 ret = ext4_da_reserve_space(inode, 1);
2039 if (ret)
2040 /* not enough space to reserve */
2041 return ret;
2042
64769240
AT
2043 map_bh(bh_result, inode->i_sb, 0);
2044 set_buffer_new(bh_result);
2045 set_buffer_delay(bh_result);
2046 } else if (ret > 0) {
2047 bh_result->b_size = (ret << inode->i_blkbits);
2048 ret = 0;
2049 }
2050
2051 return ret;
2052}
d2a17637 2053#define EXT4_DELALLOC_RSVED 1
64769240
AT
2054static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2055 struct buffer_head *bh_result, int create)
2056{
61628a3f 2057 int ret;
64769240
AT
2058 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2059 loff_t disksize = EXT4_I(inode)->i_disksize;
2060 handle_t *handle = NULL;
2061
61628a3f 2062 handle = ext4_journal_current_handle();
f0e6c985
AK
2063 if (!handle) {
2064 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2065 bh_result, 0, 0, 0);
2066 BUG_ON(!ret);
2067 } else {
2068 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
d2a17637 2069 bh_result, create, 0, EXT4_DELALLOC_RSVED);
f0e6c985
AK
2070 }
2071
64769240
AT
2072 if (ret > 0) {
2073 bh_result->b_size = (ret << inode->i_blkbits);
2074
2075 /*
2076 * Update on-disk size along with block allocation
2077 * we don't use 'extend_disksize' as size may change
2078 * within already allocated block -bzzz
2079 */
2080 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2081 if (disksize > i_size_read(inode))
2082 disksize = i_size_read(inode);
2083 if (disksize > EXT4_I(inode)->i_disksize) {
2084 /*
2085 * XXX: replace with spinlock if seen contended -bzzz
2086 */
2087 down_write(&EXT4_I(inode)->i_data_sem);
2088 if (disksize > EXT4_I(inode)->i_disksize)
2089 EXT4_I(inode)->i_disksize = disksize;
2090 up_write(&EXT4_I(inode)->i_data_sem);
2091
2092 if (EXT4_I(inode)->i_disksize == disksize) {
61628a3f
MC
2093 ret = ext4_mark_inode_dirty(handle, inode);
2094 return ret;
64769240
AT
2095 }
2096 }
64769240
AT
2097 ret = 0;
2098 }
64769240
AT
2099 return ret;
2100}
61628a3f
MC
2101
2102static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2103{
f0e6c985
AK
2104 /*
2105 * unmapped buffer is possible for holes.
2106 * delay buffer is possible with delayed allocation
2107 */
2108 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2109}
2110
2111static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2112 struct buffer_head *bh_result, int create)
2113{
2114 int ret = 0;
2115 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2116
2117 /*
2118 * we don't want to do block allocation in writepage
2119 * so call get_block_wrap with create = 0
2120 */
2121 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2122 bh_result, 0, 0, 0);
2123 if (ret > 0) {
2124 bh_result->b_size = (ret << inode->i_blkbits);
2125 ret = 0;
2126 }
2127 return ret;
61628a3f
MC
2128}
2129
61628a3f 2130/*
f0e6c985
AK
2131 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2132 * get called via journal_submit_inode_data_buffers (no journal handle)
2133 * get called via shrink_page_list via pdflush (no journal handle)
2134 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2135 */
64769240
AT
2136static int ext4_da_writepage(struct page *page,
2137 struct writeback_control *wbc)
2138{
64769240 2139 int ret = 0;
61628a3f
MC
2140 loff_t size;
2141 unsigned long len;
61628a3f
MC
2142 struct buffer_head *page_bufs;
2143 struct inode *inode = page->mapping->host;
2144
f0e6c985
AK
2145 size = i_size_read(inode);
2146 if (page->index == size >> PAGE_CACHE_SHIFT)
2147 len = size & ~PAGE_CACHE_MASK;
2148 else
2149 len = PAGE_CACHE_SIZE;
64769240 2150
f0e6c985 2151 if (page_has_buffers(page)) {
61628a3f 2152 page_bufs = page_buffers(page);
f0e6c985
AK
2153 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2154 ext4_bh_unmapped_or_delay)) {
61628a3f 2155 /*
f0e6c985
AK
2156 * We don't want to do block allocation
2157 * So redirty the page and return
cd1aac32
AK
2158 * We may reach here when we do a journal commit
2159 * via journal_submit_inode_data_buffers.
2160 * If we don't have mapping block we just ignore
f0e6c985
AK
2161 * them. We can also reach here via shrink_page_list
2162 */
2163 redirty_page_for_writepage(wbc, page);
2164 unlock_page(page);
2165 return 0;
2166 }
2167 } else {
2168 /*
2169 * The test for page_has_buffers() is subtle:
2170 * We know the page is dirty but it lost buffers. That means
2171 * that at some moment in time after write_begin()/write_end()
2172 * has been called all buffers have been clean and thus they
2173 * must have been written at least once. So they are all
2174 * mapped and we can happily proceed with mapping them
2175 * and writing the page.
2176 *
2177 * Try to initialize the buffer_heads and check whether
2178 * all are mapped and non delay. We don't want to
2179 * do block allocation here.
2180 */
2181 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2182 ext4_normal_get_block_write);
2183 if (!ret) {
2184 page_bufs = page_buffers(page);
2185 /* check whether all are mapped and non delay */
2186 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2187 ext4_bh_unmapped_or_delay)) {
2188 redirty_page_for_writepage(wbc, page);
2189 unlock_page(page);
2190 return 0;
2191 }
2192 } else {
2193 /*
2194 * We can't do block allocation here
2195 * so just redity the page and unlock
2196 * and return
61628a3f 2197 */
61628a3f
MC
2198 redirty_page_for_writepage(wbc, page);
2199 unlock_page(page);
2200 return 0;
2201 }
64769240
AT
2202 }
2203
2204 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2205 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2206 else
f0e6c985
AK
2207 ret = block_write_full_page(page,
2208 ext4_normal_get_block_write,
2209 wbc);
64769240 2210
64769240
AT
2211 return ret;
2212}
2213
61628a3f
MC
2214/*
2215 * For now just follow the DIO way to estimate the max credits
2216 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2217 * todo: need to calculate the max credits need for
2218 * extent based files, currently the DIO credits is based on
2219 * indirect-blocks mapping way.
2220 *
2221 * Probably should have a generic way to calculate credits
2222 * for DIO, writepages, and truncate
2223 */
2224#define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS
2225#define EXT4_MAX_WRITEBACK_CREDITS DIO_CREDITS
2226
64769240
AT
2227static int ext4_da_writepages(struct address_space *mapping,
2228 struct writeback_control *wbc)
2229{
61628a3f
MC
2230 struct inode *inode = mapping->host;
2231 handle_t *handle = NULL;
2232 int needed_blocks;
2233 int ret = 0;
2234 long to_write;
2235 loff_t range_start = 0;
2236
2237 /*
2238 * No pages to write? This is mainly a kludge to avoid starting
2239 * a transaction for special inodes like journal inode on last iput()
2240 * because that could violate lock ordering on umount
2241 */
2242 if (!mapping->nrpages)
2243 return 0;
2244
2245 /*
cd1aac32 2246 * Estimate the worse case needed credits to write out
61628a3f
MC
2247 * EXT4_MAX_BUF_BLOCKS pages
2248 */
2249 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2250
2251 to_write = wbc->nr_to_write;
2252 if (!wbc->range_cyclic) {
2253 /*
2254 * If range_cyclic is not set force range_cont
2255 * and save the old writeback_index
2256 */
2257 wbc->range_cont = 1;
2258 range_start = wbc->range_start;
2259 }
2260
2261 while (!ret && to_write) {
2262 /* start a new transaction*/
2263 handle = ext4_journal_start(inode, needed_blocks);
2264 if (IS_ERR(handle)) {
2265 ret = PTR_ERR(handle);
2266 goto out_writepages;
2267 }
cd1aac32
AK
2268 if (ext4_should_order_data(inode)) {
2269 /*
2270 * With ordered mode we need to add
2271 * the inode to the journal handle
2272 * when we do block allocation.
2273 */
2274 ret = ext4_jbd2_file_inode(handle, inode);
2275 if (ret) {
2276 ext4_journal_stop(handle);
2277 goto out_writepages;
2278 }
2279
2280 }
61628a3f
MC
2281 /*
2282 * set the max dirty pages could be write at a time
2283 * to fit into the reserved transaction credits
2284 */
2285 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2286 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2287
2288 to_write -= wbc->nr_to_write;
2289 ret = mpage_da_writepages(mapping, wbc,
2290 ext4_da_get_block_write);
2291 ext4_journal_stop(handle);
2292 if (wbc->nr_to_write) {
2293 /*
2294 * There is no more writeout needed
2295 * or we requested for a noblocking writeout
2296 * and we found the device congested
2297 */
2298 to_write += wbc->nr_to_write;
2299 break;
2300 }
2301 wbc->nr_to_write = to_write;
2302 }
2303
2304out_writepages:
2305 wbc->nr_to_write = to_write;
2306 if (range_start)
2307 wbc->range_start = range_start;
2308 return ret;
64769240
AT
2309}
2310
2311static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2312 loff_t pos, unsigned len, unsigned flags,
2313 struct page **pagep, void **fsdata)
2314{
d2a17637 2315 int ret, retries = 0;
64769240
AT
2316 struct page *page;
2317 pgoff_t index;
2318 unsigned from, to;
2319 struct inode *inode = mapping->host;
2320 handle_t *handle;
2321
2322 index = pos >> PAGE_CACHE_SHIFT;
2323 from = pos & (PAGE_CACHE_SIZE - 1);
2324 to = from + len;
2325
d2a17637 2326retry:
64769240
AT
2327 /*
2328 * With delayed allocation, we don't log the i_disksize update
2329 * if there is delayed block allocation. But we still need
2330 * to journalling the i_disksize update if writes to the end
2331 * of file which has an already mapped buffer.
2332 */
2333 handle = ext4_journal_start(inode, 1);
2334 if (IS_ERR(handle)) {
2335 ret = PTR_ERR(handle);
2336 goto out;
2337 }
2338
2339 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2340 if (!page) {
2341 ext4_journal_stop(handle);
2342 ret = -ENOMEM;
2343 goto out;
2344 }
64769240
AT
2345 *pagep = page;
2346
2347 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2348 ext4_da_get_block_prep);
2349 if (ret < 0) {
2350 unlock_page(page);
2351 ext4_journal_stop(handle);
2352 page_cache_release(page);
2353 }
2354
d2a17637
MC
2355 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2356 goto retry;
64769240
AT
2357out:
2358 return ret;
2359}
2360
632eaeab
MC
2361/*
2362 * Check if we should update i_disksize
2363 * when write to the end of file but not require block allocation
2364 */
2365static int ext4_da_should_update_i_disksize(struct page *page,
2366 unsigned long offset)
2367{
2368 struct buffer_head *bh;
2369 struct inode *inode = page->mapping->host;
2370 unsigned int idx;
2371 int i;
2372
2373 bh = page_buffers(page);
2374 idx = offset >> inode->i_blkbits;
2375
2376 for (i=0; i < idx; i++)
2377 bh = bh->b_this_page;
2378
2379 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2380 return 0;
2381 return 1;
2382}
2383
64769240
AT
2384static int ext4_da_write_end(struct file *file,
2385 struct address_space *mapping,
2386 loff_t pos, unsigned len, unsigned copied,
2387 struct page *page, void *fsdata)
2388{
2389 struct inode *inode = mapping->host;
2390 int ret = 0, ret2;
2391 handle_t *handle = ext4_journal_current_handle();
2392 loff_t new_i_size;
632eaeab
MC
2393 unsigned long start, end;
2394
2395 start = pos & (PAGE_CACHE_SIZE - 1);
2396 end = start + copied -1;
64769240
AT
2397
2398 /*
2399 * generic_write_end() will run mark_inode_dirty() if i_size
2400 * changes. So let's piggyback the i_disksize mark_inode_dirty
2401 * into that.
2402 */
2403
2404 new_i_size = pos + copied;
632eaeab
MC
2405 if (new_i_size > EXT4_I(inode)->i_disksize) {
2406 if (ext4_da_should_update_i_disksize(page, end)) {
2407 down_write(&EXT4_I(inode)->i_data_sem);
2408 if (new_i_size > EXT4_I(inode)->i_disksize) {
2409 /*
2410 * Updating i_disksize when extending file
2411 * without needing block allocation
2412 */
2413 if (ext4_should_order_data(inode))
2414 ret = ext4_jbd2_file_inode(handle,
2415 inode);
64769240 2416
632eaeab
MC
2417 EXT4_I(inode)->i_disksize = new_i_size;
2418 }
2419 up_write(&EXT4_I(inode)->i_data_sem);
64769240 2420 }
632eaeab 2421 }
64769240
AT
2422 ret2 = generic_write_end(file, mapping, pos, len, copied,
2423 page, fsdata);
2424 copied = ret2;
2425 if (ret2 < 0)
2426 ret = ret2;
2427 ret2 = ext4_journal_stop(handle);
2428 if (!ret)
2429 ret = ret2;
2430
2431 return ret ? ret : copied;
2432}
2433
2434static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2435{
64769240
AT
2436 /*
2437 * Drop reserved blocks
2438 */
2439 BUG_ON(!PageLocked(page));
2440 if (!page_has_buffers(page))
2441 goto out;
2442
d2a17637 2443 ext4_da_page_release_reservation(page, offset);
64769240
AT
2444
2445out:
2446 ext4_invalidatepage(page, offset);
2447
2448 return;
2449}
2450
2451
ac27a0ec
DK
2452/*
2453 * bmap() is special. It gets used by applications such as lilo and by
2454 * the swapper to find the on-disk block of a specific piece of data.
2455 *
2456 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2457 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2458 * filesystem and enables swap, then they may get a nasty shock when the
2459 * data getting swapped to that swapfile suddenly gets overwritten by
2460 * the original zero's written out previously to the journal and
2461 * awaiting writeback in the kernel's buffer cache.
2462 *
2463 * So, if we see any bmap calls here on a modified, data-journaled file,
2464 * take extra steps to flush any blocks which might be in the cache.
2465 */
617ba13b 2466static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2467{
2468 struct inode *inode = mapping->host;
2469 journal_t *journal;
2470 int err;
2471
64769240
AT
2472 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2473 test_opt(inode->i_sb, DELALLOC)) {
2474 /*
2475 * With delalloc we want to sync the file
2476 * so that we can make sure we allocate
2477 * blocks for file
2478 */
2479 filemap_write_and_wait(mapping);
2480 }
2481
617ba13b 2482 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2483 /*
2484 * This is a REALLY heavyweight approach, but the use of
2485 * bmap on dirty files is expected to be extremely rare:
2486 * only if we run lilo or swapon on a freshly made file
2487 * do we expect this to happen.
2488 *
2489 * (bmap requires CAP_SYS_RAWIO so this does not
2490 * represent an unprivileged user DOS attack --- we'd be
2491 * in trouble if mortal users could trigger this path at
2492 * will.)
2493 *
617ba13b 2494 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2495 * regular files. If somebody wants to bmap a directory
2496 * or symlink and gets confused because the buffer
2497 * hasn't yet been flushed to disk, they deserve
2498 * everything they get.
2499 */
2500
617ba13b
MC
2501 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2502 journal = EXT4_JOURNAL(inode);
dab291af
MC
2503 jbd2_journal_lock_updates(journal);
2504 err = jbd2_journal_flush(journal);
2505 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2506
2507 if (err)
2508 return 0;
2509 }
2510
617ba13b 2511 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
2512}
2513
2514static int bget_one(handle_t *handle, struct buffer_head *bh)
2515{
2516 get_bh(bh);
2517 return 0;
2518}
2519
2520static int bput_one(handle_t *handle, struct buffer_head *bh)
2521{
2522 put_bh(bh);
2523 return 0;
2524}
2525
ac27a0ec 2526/*
678aaf48
JK
2527 * Note that we don't need to start a transaction unless we're journaling data
2528 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2529 * need to file the inode to the transaction's list in ordered mode because if
2530 * we are writing back data added by write(), the inode is already there and if
2531 * we are writing back data modified via mmap(), noone guarantees in which
2532 * transaction the data will hit the disk. In case we are journaling data, we
2533 * cannot start transaction directly because transaction start ranks above page
2534 * lock so we have to do some magic.
ac27a0ec 2535 *
678aaf48 2536 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2537 *
2538 * Problem:
2539 *
617ba13b
MC
2540 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2541 * ext4_writepage()
ac27a0ec
DK
2542 *
2543 * Similar for:
2544 *
617ba13b 2545 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2546 *
617ba13b 2547 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2548 * lock_journal and i_data_sem
ac27a0ec
DK
2549 *
2550 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2551 * allocations fail.
2552 *
2553 * 16May01: If we're reentered then journal_current_handle() will be
2554 * non-zero. We simply *return*.
2555 *
2556 * 1 July 2001: @@@ FIXME:
2557 * In journalled data mode, a data buffer may be metadata against the
2558 * current transaction. But the same file is part of a shared mapping
2559 * and someone does a writepage() on it.
2560 *
2561 * We will move the buffer onto the async_data list, but *after* it has
2562 * been dirtied. So there's a small window where we have dirty data on
2563 * BJ_Metadata.
2564 *
2565 * Note that this only applies to the last partial page in the file. The
2566 * bit which block_write_full_page() uses prepare/commit for. (That's
2567 * broken code anyway: it's wrong for msync()).
2568 *
2569 * It's a rare case: affects the final partial page, for journalled data
2570 * where the file is subject to bith write() and writepage() in the same
2571 * transction. To fix it we'll need a custom block_write_full_page().
2572 * We'll probably need that anyway for journalling writepage() output.
2573 *
2574 * We don't honour synchronous mounts for writepage(). That would be
2575 * disastrous. Any write() or metadata operation will sync the fs for
2576 * us.
2577 *
ac27a0ec 2578 */
678aaf48 2579static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2580 struct writeback_control *wbc)
2581{
2582 struct inode *inode = page->mapping->host;
2583
2584 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2585 return nobh_writepage(page,
2586 ext4_normal_get_block_write, wbc);
cf108bca 2587 else
f0e6c985
AK
2588 return block_write_full_page(page,
2589 ext4_normal_get_block_write,
2590 wbc);
cf108bca
JK
2591}
2592
678aaf48 2593static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2594 struct writeback_control *wbc)
2595{
2596 struct inode *inode = page->mapping->host;
cf108bca
JK
2597 loff_t size = i_size_read(inode);
2598 loff_t len;
2599
2600 J_ASSERT(PageLocked(page));
cf108bca
JK
2601 if (page->index == size >> PAGE_CACHE_SHIFT)
2602 len = size & ~PAGE_CACHE_MASK;
2603 else
2604 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2605
2606 if (page_has_buffers(page)) {
2607 /* if page has buffers it should all be mapped
2608 * and allocated. If there are not buffers attached
2609 * to the page we know the page is dirty but it lost
2610 * buffers. That means that at some moment in time
2611 * after write_begin() / write_end() has been called
2612 * all buffers have been clean and thus they must have been
2613 * written at least once. So they are all mapped and we can
2614 * happily proceed with mapping them and writing the page.
2615 */
2616 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2617 ext4_bh_unmapped_or_delay));
2618 }
cf108bca
JK
2619
2620 if (!ext4_journal_current_handle())
678aaf48 2621 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2622
2623 redirty_page_for_writepage(wbc, page);
2624 unlock_page(page);
2625 return 0;
2626}
2627
2628static int __ext4_journalled_writepage(struct page *page,
2629 struct writeback_control *wbc)
2630{
2631 struct address_space *mapping = page->mapping;
2632 struct inode *inode = mapping->host;
2633 struct buffer_head *page_bufs;
ac27a0ec
DK
2634 handle_t *handle = NULL;
2635 int ret = 0;
2636 int err;
2637
f0e6c985
AK
2638 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2639 ext4_normal_get_block_write);
cf108bca
JK
2640 if (ret != 0)
2641 goto out_unlock;
2642
2643 page_bufs = page_buffers(page);
2644 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2645 bget_one);
2646 /* As soon as we unlock the page, it can go away, but we have
2647 * references to buffers so we are safe */
2648 unlock_page(page);
ac27a0ec 2649
617ba13b 2650 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2651 if (IS_ERR(handle)) {
2652 ret = PTR_ERR(handle);
cf108bca 2653 goto out;
ac27a0ec
DK
2654 }
2655
cf108bca
JK
2656 ret = walk_page_buffers(handle, page_bufs, 0,
2657 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2658
cf108bca
JK
2659 err = walk_page_buffers(handle, page_bufs, 0,
2660 PAGE_CACHE_SIZE, NULL, write_end_fn);
2661 if (ret == 0)
2662 ret = err;
617ba13b 2663 err = ext4_journal_stop(handle);
ac27a0ec
DK
2664 if (!ret)
2665 ret = err;
ac27a0ec 2666
cf108bca
JK
2667 walk_page_buffers(handle, page_bufs, 0,
2668 PAGE_CACHE_SIZE, NULL, bput_one);
2669 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2670 goto out;
2671
2672out_unlock:
ac27a0ec 2673 unlock_page(page);
cf108bca 2674out:
ac27a0ec
DK
2675 return ret;
2676}
2677
617ba13b 2678static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2679 struct writeback_control *wbc)
2680{
2681 struct inode *inode = page->mapping->host;
cf108bca
JK
2682 loff_t size = i_size_read(inode);
2683 loff_t len;
ac27a0ec 2684
cf108bca 2685 J_ASSERT(PageLocked(page));
cf108bca
JK
2686 if (page->index == size >> PAGE_CACHE_SHIFT)
2687 len = size & ~PAGE_CACHE_MASK;
2688 else
2689 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2690
2691 if (page_has_buffers(page)) {
2692 /* if page has buffers it should all be mapped
2693 * and allocated. If there are not buffers attached
2694 * to the page we know the page is dirty but it lost
2695 * buffers. That means that at some moment in time
2696 * after write_begin() / write_end() has been called
2697 * all buffers have been clean and thus they must have been
2698 * written at least once. So they are all mapped and we can
2699 * happily proceed with mapping them and writing the page.
2700 */
2701 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2702 ext4_bh_unmapped_or_delay));
2703 }
ac27a0ec 2704
cf108bca 2705 if (ext4_journal_current_handle())
ac27a0ec 2706 goto no_write;
ac27a0ec 2707
cf108bca 2708 if (PageChecked(page)) {
ac27a0ec
DK
2709 /*
2710 * It's mmapped pagecache. Add buffers and journal it. There
2711 * doesn't seem much point in redirtying the page here.
2712 */
2713 ClearPageChecked(page);
cf108bca 2714 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2715 } else {
2716 /*
2717 * It may be a page full of checkpoint-mode buffers. We don't
2718 * really know unless we go poke around in the buffer_heads.
2719 * But block_write_full_page will do the right thing.
2720 */
f0e6c985
AK
2721 return block_write_full_page(page,
2722 ext4_normal_get_block_write,
2723 wbc);
ac27a0ec 2724 }
ac27a0ec
DK
2725no_write:
2726 redirty_page_for_writepage(wbc, page);
ac27a0ec 2727 unlock_page(page);
cf108bca 2728 return 0;
ac27a0ec
DK
2729}
2730
617ba13b 2731static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2732{
617ba13b 2733 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2734}
2735
2736static int
617ba13b 2737ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2738 struct list_head *pages, unsigned nr_pages)
2739{
617ba13b 2740 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2741}
2742
617ba13b 2743static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2744{
617ba13b 2745 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2746
2747 /*
2748 * If it's a full truncate we just forget about the pending dirtying
2749 */
2750 if (offset == 0)
2751 ClearPageChecked(page);
2752
dab291af 2753 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2754}
2755
617ba13b 2756static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2757{
617ba13b 2758 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2759
2760 WARN_ON(PageChecked(page));
2761 if (!page_has_buffers(page))
2762 return 0;
dab291af 2763 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2764}
2765
2766/*
2767 * If the O_DIRECT write will extend the file then add this inode to the
2768 * orphan list. So recovery will truncate it back to the original size
2769 * if the machine crashes during the write.
2770 *
2771 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2772 * crashes then stale disk data _may_ be exposed inside the file. But current
2773 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2774 */
617ba13b 2775static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2776 const struct iovec *iov, loff_t offset,
2777 unsigned long nr_segs)
2778{
2779 struct file *file = iocb->ki_filp;
2780 struct inode *inode = file->f_mapping->host;
617ba13b 2781 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2782 handle_t *handle;
ac27a0ec
DK
2783 ssize_t ret;
2784 int orphan = 0;
2785 size_t count = iov_length(iov, nr_segs);
2786
2787 if (rw == WRITE) {
2788 loff_t final_size = offset + count;
2789
ac27a0ec 2790 if (final_size > inode->i_size) {
7fb5409d
JK
2791 /* Credits for sb + inode write */
2792 handle = ext4_journal_start(inode, 2);
2793 if (IS_ERR(handle)) {
2794 ret = PTR_ERR(handle);
2795 goto out;
2796 }
617ba13b 2797 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2798 if (ret) {
2799 ext4_journal_stop(handle);
2800 goto out;
2801 }
ac27a0ec
DK
2802 orphan = 1;
2803 ei->i_disksize = inode->i_size;
7fb5409d 2804 ext4_journal_stop(handle);
ac27a0ec
DK
2805 }
2806 }
2807
2808 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2809 offset, nr_segs,
617ba13b 2810 ext4_get_block, NULL);
ac27a0ec 2811
7fb5409d 2812 if (orphan) {
ac27a0ec
DK
2813 int err;
2814
7fb5409d
JK
2815 /* Credits for sb + inode write */
2816 handle = ext4_journal_start(inode, 2);
2817 if (IS_ERR(handle)) {
2818 /* This is really bad luck. We've written the data
2819 * but cannot extend i_size. Bail out and pretend
2820 * the write failed... */
2821 ret = PTR_ERR(handle);
2822 goto out;
2823 }
2824 if (inode->i_nlink)
617ba13b 2825 ext4_orphan_del(handle, inode);
7fb5409d 2826 if (ret > 0) {
ac27a0ec
DK
2827 loff_t end = offset + ret;
2828 if (end > inode->i_size) {
2829 ei->i_disksize = end;
2830 i_size_write(inode, end);
2831 /*
2832 * We're going to return a positive `ret'
2833 * here due to non-zero-length I/O, so there's
2834 * no way of reporting error returns from
617ba13b 2835 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2836 * ignore it.
2837 */
617ba13b 2838 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2839 }
2840 }
617ba13b 2841 err = ext4_journal_stop(handle);
ac27a0ec
DK
2842 if (ret == 0)
2843 ret = err;
2844 }
2845out:
2846 return ret;
2847}
2848
2849/*
617ba13b 2850 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2851 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2852 * much here because ->set_page_dirty is called under VFS locks. The page is
2853 * not necessarily locked.
2854 *
2855 * We cannot just dirty the page and leave attached buffers clean, because the
2856 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2857 * or jbddirty because all the journalling code will explode.
2858 *
2859 * So what we do is to mark the page "pending dirty" and next time writepage
2860 * is called, propagate that into the buffers appropriately.
2861 */
617ba13b 2862static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2863{
2864 SetPageChecked(page);
2865 return __set_page_dirty_nobuffers(page);
2866}
2867
617ba13b 2868static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2869 .readpage = ext4_readpage,
2870 .readpages = ext4_readpages,
2871 .writepage = ext4_normal_writepage,
2872 .sync_page = block_sync_page,
2873 .write_begin = ext4_write_begin,
2874 .write_end = ext4_ordered_write_end,
2875 .bmap = ext4_bmap,
2876 .invalidatepage = ext4_invalidatepage,
2877 .releasepage = ext4_releasepage,
2878 .direct_IO = ext4_direct_IO,
2879 .migratepage = buffer_migrate_page,
2880 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2881};
2882
617ba13b 2883static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2884 .readpage = ext4_readpage,
2885 .readpages = ext4_readpages,
2886 .writepage = ext4_normal_writepage,
2887 .sync_page = block_sync_page,
2888 .write_begin = ext4_write_begin,
2889 .write_end = ext4_writeback_write_end,
2890 .bmap = ext4_bmap,
2891 .invalidatepage = ext4_invalidatepage,
2892 .releasepage = ext4_releasepage,
2893 .direct_IO = ext4_direct_IO,
2894 .migratepage = buffer_migrate_page,
2895 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2896};
2897
617ba13b 2898static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2899 .readpage = ext4_readpage,
2900 .readpages = ext4_readpages,
2901 .writepage = ext4_journalled_writepage,
2902 .sync_page = block_sync_page,
2903 .write_begin = ext4_write_begin,
2904 .write_end = ext4_journalled_write_end,
2905 .set_page_dirty = ext4_journalled_set_page_dirty,
2906 .bmap = ext4_bmap,
2907 .invalidatepage = ext4_invalidatepage,
2908 .releasepage = ext4_releasepage,
2909 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2910};
2911
64769240 2912static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2913 .readpage = ext4_readpage,
2914 .readpages = ext4_readpages,
2915 .writepage = ext4_da_writepage,
2916 .writepages = ext4_da_writepages,
2917 .sync_page = block_sync_page,
2918 .write_begin = ext4_da_write_begin,
2919 .write_end = ext4_da_write_end,
2920 .bmap = ext4_bmap,
2921 .invalidatepage = ext4_da_invalidatepage,
2922 .releasepage = ext4_releasepage,
2923 .direct_IO = ext4_direct_IO,
2924 .migratepage = buffer_migrate_page,
2925 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
2926};
2927
617ba13b 2928void ext4_set_aops(struct inode *inode)
ac27a0ec 2929{
cd1aac32
AK
2930 if (ext4_should_order_data(inode) &&
2931 test_opt(inode->i_sb, DELALLOC))
2932 inode->i_mapping->a_ops = &ext4_da_aops;
2933 else if (ext4_should_order_data(inode))
617ba13b 2934 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2935 else if (ext4_should_writeback_data(inode) &&
2936 test_opt(inode->i_sb, DELALLOC))
2937 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2938 else if (ext4_should_writeback_data(inode))
2939 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2940 else
617ba13b 2941 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2942}
2943
2944/*
617ba13b 2945 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
2946 * up to the end of the block which corresponds to `from'.
2947 * This required during truncate. We need to physically zero the tail end
2948 * of that block so it doesn't yield old data if the file is later grown.
2949 */
cf108bca 2950int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
2951 struct address_space *mapping, loff_t from)
2952{
617ba13b 2953 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 2954 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
2955 unsigned blocksize, length, pos;
2956 ext4_lblk_t iblock;
ac27a0ec
DK
2957 struct inode *inode = mapping->host;
2958 struct buffer_head *bh;
cf108bca 2959 struct page *page;
ac27a0ec 2960 int err = 0;
ac27a0ec 2961
cf108bca
JK
2962 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2963 if (!page)
2964 return -EINVAL;
2965
ac27a0ec
DK
2966 blocksize = inode->i_sb->s_blocksize;
2967 length = blocksize - (offset & (blocksize - 1));
2968 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2969
2970 /*
2971 * For "nobh" option, we can only work if we don't need to
2972 * read-in the page - otherwise we create buffers to do the IO.
2973 */
2974 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 2975 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 2976 zero_user(page, offset, length);
ac27a0ec
DK
2977 set_page_dirty(page);
2978 goto unlock;
2979 }
2980
2981 if (!page_has_buffers(page))
2982 create_empty_buffers(page, blocksize, 0);
2983
2984 /* Find the buffer that contains "offset" */
2985 bh = page_buffers(page);
2986 pos = blocksize;
2987 while (offset >= pos) {
2988 bh = bh->b_this_page;
2989 iblock++;
2990 pos += blocksize;
2991 }
2992
2993 err = 0;
2994 if (buffer_freed(bh)) {
2995 BUFFER_TRACE(bh, "freed: skip");
2996 goto unlock;
2997 }
2998
2999 if (!buffer_mapped(bh)) {
3000 BUFFER_TRACE(bh, "unmapped");
617ba13b 3001 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3002 /* unmapped? It's a hole - nothing to do */
3003 if (!buffer_mapped(bh)) {
3004 BUFFER_TRACE(bh, "still unmapped");
3005 goto unlock;
3006 }
3007 }
3008
3009 /* Ok, it's mapped. Make sure it's up-to-date */
3010 if (PageUptodate(page))
3011 set_buffer_uptodate(bh);
3012
3013 if (!buffer_uptodate(bh)) {
3014 err = -EIO;
3015 ll_rw_block(READ, 1, &bh);
3016 wait_on_buffer(bh);
3017 /* Uhhuh. Read error. Complain and punt. */
3018 if (!buffer_uptodate(bh))
3019 goto unlock;
3020 }
3021
617ba13b 3022 if (ext4_should_journal_data(inode)) {
ac27a0ec 3023 BUFFER_TRACE(bh, "get write access");
617ba13b 3024 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3025 if (err)
3026 goto unlock;
3027 }
3028
eebd2aa3 3029 zero_user(page, offset, length);
ac27a0ec
DK
3030
3031 BUFFER_TRACE(bh, "zeroed end of block");
3032
3033 err = 0;
617ba13b
MC
3034 if (ext4_should_journal_data(inode)) {
3035 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3036 } else {
617ba13b 3037 if (ext4_should_order_data(inode))
678aaf48 3038 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3039 mark_buffer_dirty(bh);
3040 }
3041
3042unlock:
3043 unlock_page(page);
3044 page_cache_release(page);
3045 return err;
3046}
3047
3048/*
3049 * Probably it should be a library function... search for first non-zero word
3050 * or memcmp with zero_page, whatever is better for particular architecture.
3051 * Linus?
3052 */
3053static inline int all_zeroes(__le32 *p, __le32 *q)
3054{
3055 while (p < q)
3056 if (*p++)
3057 return 0;
3058 return 1;
3059}
3060
3061/**
617ba13b 3062 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3063 * @inode: inode in question
3064 * @depth: depth of the affected branch
617ba13b 3065 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3066 * @chain: place to store the pointers to partial indirect blocks
3067 * @top: place to the (detached) top of branch
3068 *
617ba13b 3069 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3070 *
3071 * When we do truncate() we may have to clean the ends of several
3072 * indirect blocks but leave the blocks themselves alive. Block is
3073 * partially truncated if some data below the new i_size is refered
3074 * from it (and it is on the path to the first completely truncated
3075 * data block, indeed). We have to free the top of that path along
3076 * with everything to the right of the path. Since no allocation
617ba13b 3077 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3078 * finishes, we may safely do the latter, but top of branch may
3079 * require special attention - pageout below the truncation point
3080 * might try to populate it.
3081 *
3082 * We atomically detach the top of branch from the tree, store the
3083 * block number of its root in *@top, pointers to buffer_heads of
3084 * partially truncated blocks - in @chain[].bh and pointers to
3085 * their last elements that should not be removed - in
3086 * @chain[].p. Return value is the pointer to last filled element
3087 * of @chain.
3088 *
3089 * The work left to caller to do the actual freeing of subtrees:
3090 * a) free the subtree starting from *@top
3091 * b) free the subtrees whose roots are stored in
3092 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3093 * c) free the subtrees growing from the inode past the @chain[0].
3094 * (no partially truncated stuff there). */
3095
617ba13b 3096static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3097 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3098{
3099 Indirect *partial, *p;
3100 int k, err;
3101
3102 *top = 0;
3103 /* Make k index the deepest non-null offest + 1 */
3104 for (k = depth; k > 1 && !offsets[k-1]; k--)
3105 ;
617ba13b 3106 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3107 /* Writer: pointers */
3108 if (!partial)
3109 partial = chain + k-1;
3110 /*
3111 * If the branch acquired continuation since we've looked at it -
3112 * fine, it should all survive and (new) top doesn't belong to us.
3113 */
3114 if (!partial->key && *partial->p)
3115 /* Writer: end */
3116 goto no_top;
3117 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3118 ;
3119 /*
3120 * OK, we've found the last block that must survive. The rest of our
3121 * branch should be detached before unlocking. However, if that rest
3122 * of branch is all ours and does not grow immediately from the inode
3123 * it's easier to cheat and just decrement partial->p.
3124 */
3125 if (p == chain + k - 1 && p > chain) {
3126 p->p--;
3127 } else {
3128 *top = *p->p;
617ba13b 3129 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3130#if 0
3131 *p->p = 0;
3132#endif
3133 }
3134 /* Writer: end */
3135
3136 while(partial > p) {
3137 brelse(partial->bh);
3138 partial--;
3139 }
3140no_top:
3141 return partial;
3142}
3143
3144/*
3145 * Zero a number of block pointers in either an inode or an indirect block.
3146 * If we restart the transaction we must again get write access to the
3147 * indirect block for further modification.
3148 *
3149 * We release `count' blocks on disk, but (last - first) may be greater
3150 * than `count' because there can be holes in there.
3151 */
617ba13b
MC
3152static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3153 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3154 unsigned long count, __le32 *first, __le32 *last)
3155{
3156 __le32 *p;
3157 if (try_to_extend_transaction(handle, inode)) {
3158 if (bh) {
617ba13b
MC
3159 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3160 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3161 }
617ba13b
MC
3162 ext4_mark_inode_dirty(handle, inode);
3163 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3164 if (bh) {
3165 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3166 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3167 }
3168 }
3169
3170 /*
3171 * Any buffers which are on the journal will be in memory. We find
dab291af 3172 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3173 * on them. We've already detached each block from the file, so
dab291af 3174 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3175 *
dab291af 3176 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3177 */
3178 for (p = first; p < last; p++) {
3179 u32 nr = le32_to_cpu(*p);
3180 if (nr) {
1d03ec98 3181 struct buffer_head *tbh;
ac27a0ec
DK
3182
3183 *p = 0;
1d03ec98
AK
3184 tbh = sb_find_get_block(inode->i_sb, nr);
3185 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3186 }
3187 }
3188
c9de560d 3189 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3190}
3191
3192/**
617ba13b 3193 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3194 * @handle: handle for this transaction
3195 * @inode: inode we are dealing with
3196 * @this_bh: indirect buffer_head which contains *@first and *@last
3197 * @first: array of block numbers
3198 * @last: points immediately past the end of array
3199 *
3200 * We are freeing all blocks refered from that array (numbers are stored as
3201 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3202 *
3203 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3204 * blocks are contiguous then releasing them at one time will only affect one
3205 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3206 * actually use a lot of journal space.
3207 *
3208 * @this_bh will be %NULL if @first and @last point into the inode's direct
3209 * block pointers.
3210 */
617ba13b 3211static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3212 struct buffer_head *this_bh,
3213 __le32 *first, __le32 *last)
3214{
617ba13b 3215 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3216 unsigned long count = 0; /* Number of blocks in the run */
3217 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3218 corresponding to
3219 block_to_free */
617ba13b 3220 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3221 __le32 *p; /* Pointer into inode/ind
3222 for current block */
3223 int err;
3224
3225 if (this_bh) { /* For indirect block */
3226 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3227 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3228 /* Important: if we can't update the indirect pointers
3229 * to the blocks, we can't free them. */
3230 if (err)
3231 return;
3232 }
3233
3234 for (p = first; p < last; p++) {
3235 nr = le32_to_cpu(*p);
3236 if (nr) {
3237 /* accumulate blocks to free if they're contiguous */
3238 if (count == 0) {
3239 block_to_free = nr;
3240 block_to_free_p = p;
3241 count = 1;
3242 } else if (nr == block_to_free + count) {
3243 count++;
3244 } else {
617ba13b 3245 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3246 block_to_free,
3247 count, block_to_free_p, p);
3248 block_to_free = nr;
3249 block_to_free_p = p;
3250 count = 1;
3251 }
3252 }
3253 }
3254
3255 if (count > 0)
617ba13b 3256 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3257 count, block_to_free_p, p);
3258
3259 if (this_bh) {
617ba13b 3260 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3261
3262 /*
3263 * The buffer head should have an attached journal head at this
3264 * point. However, if the data is corrupted and an indirect
3265 * block pointed to itself, it would have been detached when
3266 * the block was cleared. Check for this instead of OOPSing.
3267 */
3268 if (bh2jh(this_bh))
3269 ext4_journal_dirty_metadata(handle, this_bh);
3270 else
3271 ext4_error(inode->i_sb, __func__,
3272 "circular indirect block detected, "
3273 "inode=%lu, block=%llu",
3274 inode->i_ino,
3275 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3276 }
3277}
3278
3279/**
617ba13b 3280 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3281 * @handle: JBD handle for this transaction
3282 * @inode: inode we are dealing with
3283 * @parent_bh: the buffer_head which contains *@first and *@last
3284 * @first: array of block numbers
3285 * @last: pointer immediately past the end of array
3286 * @depth: depth of the branches to free
3287 *
3288 * We are freeing all blocks refered from these branches (numbers are
3289 * stored as little-endian 32-bit) and updating @inode->i_blocks
3290 * appropriately.
3291 */
617ba13b 3292static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3293 struct buffer_head *parent_bh,
3294 __le32 *first, __le32 *last, int depth)
3295{
617ba13b 3296 ext4_fsblk_t nr;
ac27a0ec
DK
3297 __le32 *p;
3298
3299 if (is_handle_aborted(handle))
3300 return;
3301
3302 if (depth--) {
3303 struct buffer_head *bh;
617ba13b 3304 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3305 p = last;
3306 while (--p >= first) {
3307 nr = le32_to_cpu(*p);
3308 if (!nr)
3309 continue; /* A hole */
3310
3311 /* Go read the buffer for the next level down */
3312 bh = sb_bread(inode->i_sb, nr);
3313
3314 /*
3315 * A read failure? Report error and clear slot
3316 * (should be rare).
3317 */
3318 if (!bh) {
617ba13b 3319 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3320 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3321 inode->i_ino, nr);
3322 continue;
3323 }
3324
3325 /* This zaps the entire block. Bottom up. */
3326 BUFFER_TRACE(bh, "free child branches");
617ba13b 3327 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
3328 (__le32*)bh->b_data,
3329 (__le32*)bh->b_data + addr_per_block,
3330 depth);
3331
3332 /*
3333 * We've probably journalled the indirect block several
3334 * times during the truncate. But it's no longer
3335 * needed and we now drop it from the transaction via
dab291af 3336 * jbd2_journal_revoke().
ac27a0ec
DK
3337 *
3338 * That's easy if it's exclusively part of this
3339 * transaction. But if it's part of the committing
dab291af 3340 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3341 * brelse() it. That means that if the underlying
617ba13b 3342 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3343 * unmap_underlying_metadata() will find this block
3344 * and will try to get rid of it. damn, damn.
3345 *
3346 * If this block has already been committed to the
3347 * journal, a revoke record will be written. And
3348 * revoke records must be emitted *before* clearing
3349 * this block's bit in the bitmaps.
3350 */
617ba13b 3351 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3352
3353 /*
3354 * Everything below this this pointer has been
3355 * released. Now let this top-of-subtree go.
3356 *
3357 * We want the freeing of this indirect block to be
3358 * atomic in the journal with the updating of the
3359 * bitmap block which owns it. So make some room in
3360 * the journal.
3361 *
3362 * We zero the parent pointer *after* freeing its
3363 * pointee in the bitmaps, so if extend_transaction()
3364 * for some reason fails to put the bitmap changes and
3365 * the release into the same transaction, recovery
3366 * will merely complain about releasing a free block,
3367 * rather than leaking blocks.
3368 */
3369 if (is_handle_aborted(handle))
3370 return;
3371 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3372 ext4_mark_inode_dirty(handle, inode);
3373 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3374 }
3375
c9de560d 3376 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3377
3378 if (parent_bh) {
3379 /*
3380 * The block which we have just freed is
3381 * pointed to by an indirect block: journal it
3382 */
3383 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3384 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3385 parent_bh)){
3386 *p = 0;
3387 BUFFER_TRACE(parent_bh,
617ba13b
MC
3388 "call ext4_journal_dirty_metadata");
3389 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3390 parent_bh);
3391 }
3392 }
3393 }
3394 } else {
3395 /* We have reached the bottom of the tree. */
3396 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3397 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3398 }
3399}
3400
91ef4caf
DG
3401int ext4_can_truncate(struct inode *inode)
3402{
3403 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3404 return 0;
3405 if (S_ISREG(inode->i_mode))
3406 return 1;
3407 if (S_ISDIR(inode->i_mode))
3408 return 1;
3409 if (S_ISLNK(inode->i_mode))
3410 return !ext4_inode_is_fast_symlink(inode);
3411 return 0;
3412}
3413
ac27a0ec 3414/*
617ba13b 3415 * ext4_truncate()
ac27a0ec 3416 *
617ba13b
MC
3417 * We block out ext4_get_block() block instantiations across the entire
3418 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3419 * simultaneously on behalf of the same inode.
3420 *
3421 * As we work through the truncate and commmit bits of it to the journal there
3422 * is one core, guiding principle: the file's tree must always be consistent on
3423 * disk. We must be able to restart the truncate after a crash.
3424 *
3425 * The file's tree may be transiently inconsistent in memory (although it
3426 * probably isn't), but whenever we close off and commit a journal transaction,
3427 * the contents of (the filesystem + the journal) must be consistent and
3428 * restartable. It's pretty simple, really: bottom up, right to left (although
3429 * left-to-right works OK too).
3430 *
3431 * Note that at recovery time, journal replay occurs *before* the restart of
3432 * truncate against the orphan inode list.
3433 *
3434 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3435 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3436 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3437 * ext4_truncate() to have another go. So there will be instantiated blocks
3438 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3439 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3440 * ext4_truncate() run will find them and release them.
ac27a0ec 3441 */
617ba13b 3442void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3443{
3444 handle_t *handle;
617ba13b 3445 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3446 __le32 *i_data = ei->i_data;
617ba13b 3447 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3448 struct address_space *mapping = inode->i_mapping;
725d26d3 3449 ext4_lblk_t offsets[4];
ac27a0ec
DK
3450 Indirect chain[4];
3451 Indirect *partial;
3452 __le32 nr = 0;
3453 int n;
725d26d3 3454 ext4_lblk_t last_block;
ac27a0ec 3455 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3456
91ef4caf 3457 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3458 return;
3459
1d03ec98 3460 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3461 ext4_ext_truncate(inode);
1d03ec98
AK
3462 return;
3463 }
a86c6181 3464
ac27a0ec 3465 handle = start_transaction(inode);
cf108bca 3466 if (IS_ERR(handle))
ac27a0ec 3467 return; /* AKPM: return what? */
ac27a0ec
DK
3468
3469 last_block = (inode->i_size + blocksize-1)
617ba13b 3470 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3471
cf108bca
JK
3472 if (inode->i_size & (blocksize - 1))
3473 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3474 goto out_stop;
ac27a0ec 3475
617ba13b 3476 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3477 if (n == 0)
3478 goto out_stop; /* error */
3479
3480 /*
3481 * OK. This truncate is going to happen. We add the inode to the
3482 * orphan list, so that if this truncate spans multiple transactions,
3483 * and we crash, we will resume the truncate when the filesystem
3484 * recovers. It also marks the inode dirty, to catch the new size.
3485 *
3486 * Implication: the file must always be in a sane, consistent
3487 * truncatable state while each transaction commits.
3488 */
617ba13b 3489 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3490 goto out_stop;
3491
632eaeab
MC
3492 /*
3493 * From here we block out all ext4_get_block() callers who want to
3494 * modify the block allocation tree.
3495 */
3496 down_write(&ei->i_data_sem);
b4df2030
TT
3497
3498 ext4_discard_reservation(inode);
3499
ac27a0ec
DK
3500 /*
3501 * The orphan list entry will now protect us from any crash which
3502 * occurs before the truncate completes, so it is now safe to propagate
3503 * the new, shorter inode size (held for now in i_size) into the
3504 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3505 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3506 */
3507 ei->i_disksize = inode->i_size;
3508
ac27a0ec 3509 if (n == 1) { /* direct blocks */
617ba13b
MC
3510 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3511 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3512 goto do_indirects;
3513 }
3514
617ba13b 3515 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3516 /* Kill the top of shared branch (not detached) */
3517 if (nr) {
3518 if (partial == chain) {
3519 /* Shared branch grows from the inode */
617ba13b 3520 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3521 &nr, &nr+1, (chain+n-1) - partial);
3522 *partial->p = 0;
3523 /*
3524 * We mark the inode dirty prior to restart,
3525 * and prior to stop. No need for it here.
3526 */
3527 } else {
3528 /* Shared branch grows from an indirect block */
3529 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3530 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3531 partial->p,
3532 partial->p+1, (chain+n-1) - partial);
3533 }
3534 }
3535 /* Clear the ends of indirect blocks on the shared branch */
3536 while (partial > chain) {
617ba13b 3537 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3538 (__le32*)partial->bh->b_data+addr_per_block,
3539 (chain+n-1) - partial);
3540 BUFFER_TRACE(partial->bh, "call brelse");
3541 brelse (partial->bh);
3542 partial--;
3543 }
3544do_indirects:
3545 /* Kill the remaining (whole) subtrees */
3546 switch (offsets[0]) {
3547 default:
617ba13b 3548 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3549 if (nr) {
617ba13b
MC
3550 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3551 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3552 }
617ba13b
MC
3553 case EXT4_IND_BLOCK:
3554 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3555 if (nr) {
617ba13b
MC
3556 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3557 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3558 }
617ba13b
MC
3559 case EXT4_DIND_BLOCK:
3560 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3561 if (nr) {
617ba13b
MC
3562 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3563 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3564 }
617ba13b 3565 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3566 ;
3567 }
3568
0e855ac8 3569 up_write(&ei->i_data_sem);
ef7f3835 3570 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3571 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3572
3573 /*
3574 * In a multi-transaction truncate, we only make the final transaction
3575 * synchronous
3576 */
3577 if (IS_SYNC(inode))
3578 handle->h_sync = 1;
3579out_stop:
3580 /*
3581 * If this was a simple ftruncate(), and the file will remain alive
3582 * then we need to clear up the orphan record which we created above.
3583 * However, if this was a real unlink then we were called by
617ba13b 3584 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3585 * orphan info for us.
3586 */
3587 if (inode->i_nlink)
617ba13b 3588 ext4_orphan_del(handle, inode);
ac27a0ec 3589
617ba13b 3590 ext4_journal_stop(handle);
ac27a0ec
DK
3591}
3592
617ba13b
MC
3593static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3594 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3595{
fd2d4291 3596 ext4_group_t block_group;
ac27a0ec 3597 unsigned long offset;
617ba13b 3598 ext4_fsblk_t block;
c0a4ef38 3599 struct ext4_group_desc *gdp;
ac27a0ec 3600
617ba13b 3601 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3602 /*
3603 * This error is already checked for in namei.c unless we are
3604 * looking at an NFS filehandle, in which case no error
3605 * report is needed
3606 */
3607 return 0;
3608 }
3609
617ba13b 3610 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3611 gdp = ext4_get_group_desc(sb, block_group, NULL);
3612 if (!gdp)
ac27a0ec 3613 return 0;
ac27a0ec 3614
ac27a0ec
DK
3615 /*
3616 * Figure out the offset within the block group inode table
3617 */
617ba13b
MC
3618 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3619 EXT4_INODE_SIZE(sb);
8fadc143
AR
3620 block = ext4_inode_table(sb, gdp) +
3621 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3622
3623 iloc->block_group = block_group;
617ba13b 3624 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3625 return block;
3626}
3627
3628/*
617ba13b 3629 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3630 * underlying buffer_head on success. If 'in_mem' is true, we have all
3631 * data in memory that is needed to recreate the on-disk version of this
3632 * inode.
3633 */
617ba13b
MC
3634static int __ext4_get_inode_loc(struct inode *inode,
3635 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3636{
617ba13b 3637 ext4_fsblk_t block;
ac27a0ec
DK
3638 struct buffer_head *bh;
3639
617ba13b 3640 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3641 if (!block)
3642 return -EIO;
3643
3644 bh = sb_getblk(inode->i_sb, block);
3645 if (!bh) {
617ba13b 3646 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3647 "unable to read inode block - "
2ae02107 3648 "inode=%lu, block=%llu",
ac27a0ec
DK
3649 inode->i_ino, block);
3650 return -EIO;
3651 }
3652 if (!buffer_uptodate(bh)) {
3653 lock_buffer(bh);
9c83a923
HK
3654
3655 /*
3656 * If the buffer has the write error flag, we have failed
3657 * to write out another inode in the same block. In this
3658 * case, we don't have to read the block because we may
3659 * read the old inode data successfully.
3660 */
3661 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3662 set_buffer_uptodate(bh);
3663
ac27a0ec
DK
3664 if (buffer_uptodate(bh)) {
3665 /* someone brought it uptodate while we waited */
3666 unlock_buffer(bh);
3667 goto has_buffer;
3668 }
3669
3670 /*
3671 * If we have all information of the inode in memory and this
3672 * is the only valid inode in the block, we need not read the
3673 * block.
3674 */
3675 if (in_mem) {
3676 struct buffer_head *bitmap_bh;
617ba13b 3677 struct ext4_group_desc *desc;
ac27a0ec
DK
3678 int inodes_per_buffer;
3679 int inode_offset, i;
fd2d4291 3680 ext4_group_t block_group;
ac27a0ec
DK
3681 int start;
3682
3683 block_group = (inode->i_ino - 1) /
617ba13b 3684 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3685 inodes_per_buffer = bh->b_size /
617ba13b 3686 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3687 inode_offset = ((inode->i_ino - 1) %
617ba13b 3688 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3689 start = inode_offset & ~(inodes_per_buffer - 1);
3690
3691 /* Is the inode bitmap in cache? */
617ba13b 3692 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3693 block_group, NULL);
3694 if (!desc)
3695 goto make_io;
3696
3697 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3698 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3699 if (!bitmap_bh)
3700 goto make_io;
3701
3702 /*
3703 * If the inode bitmap isn't in cache then the
3704 * optimisation may end up performing two reads instead
3705 * of one, so skip it.
3706 */
3707 if (!buffer_uptodate(bitmap_bh)) {
3708 brelse(bitmap_bh);
3709 goto make_io;
3710 }
3711 for (i = start; i < start + inodes_per_buffer; i++) {
3712 if (i == inode_offset)
3713 continue;
617ba13b 3714 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3715 break;
3716 }
3717 brelse(bitmap_bh);
3718 if (i == start + inodes_per_buffer) {
3719 /* all other inodes are free, so skip I/O */
3720 memset(bh->b_data, 0, bh->b_size);
3721 set_buffer_uptodate(bh);
3722 unlock_buffer(bh);
3723 goto has_buffer;
3724 }
3725 }
3726
3727make_io:
3728 /*
3729 * There are other valid inodes in the buffer, this inode
3730 * has in-inode xattrs, or we don't have this inode in memory.
3731 * Read the block from disk.
3732 */
3733 get_bh(bh);
3734 bh->b_end_io = end_buffer_read_sync;
3735 submit_bh(READ_META, bh);
3736 wait_on_buffer(bh);
3737 if (!buffer_uptodate(bh)) {
617ba13b 3738 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3739 "unable to read inode block - "
2ae02107 3740 "inode=%lu, block=%llu",
ac27a0ec
DK
3741 inode->i_ino, block);
3742 brelse(bh);
3743 return -EIO;
3744 }
3745 }
3746has_buffer:
3747 iloc->bh = bh;
3748 return 0;
3749}
3750
617ba13b 3751int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3752{
3753 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3754 return __ext4_get_inode_loc(inode, iloc,
3755 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3756}
3757
617ba13b 3758void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3759{
617ba13b 3760 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3761
3762 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3763 if (flags & EXT4_SYNC_FL)
ac27a0ec 3764 inode->i_flags |= S_SYNC;
617ba13b 3765 if (flags & EXT4_APPEND_FL)
ac27a0ec 3766 inode->i_flags |= S_APPEND;
617ba13b 3767 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3768 inode->i_flags |= S_IMMUTABLE;
617ba13b 3769 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3770 inode->i_flags |= S_NOATIME;
617ba13b 3771 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3772 inode->i_flags |= S_DIRSYNC;
3773}
3774
ff9ddf7e
JK
3775/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3776void ext4_get_inode_flags(struct ext4_inode_info *ei)
3777{
3778 unsigned int flags = ei->vfs_inode.i_flags;
3779
3780 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3781 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3782 if (flags & S_SYNC)
3783 ei->i_flags |= EXT4_SYNC_FL;
3784 if (flags & S_APPEND)
3785 ei->i_flags |= EXT4_APPEND_FL;
3786 if (flags & S_IMMUTABLE)
3787 ei->i_flags |= EXT4_IMMUTABLE_FL;
3788 if (flags & S_NOATIME)
3789 ei->i_flags |= EXT4_NOATIME_FL;
3790 if (flags & S_DIRSYNC)
3791 ei->i_flags |= EXT4_DIRSYNC_FL;
3792}
0fc1b451
AK
3793static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3794 struct ext4_inode_info *ei)
3795{
3796 blkcnt_t i_blocks ;
8180a562
AK
3797 struct inode *inode = &(ei->vfs_inode);
3798 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3799
3800 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3801 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3802 /* we are using combined 48 bit field */
3803 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3804 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3805 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3806 /* i_blocks represent file system block size */
3807 return i_blocks << (inode->i_blkbits - 9);
3808 } else {
3809 return i_blocks;
3810 }
0fc1b451
AK
3811 } else {
3812 return le32_to_cpu(raw_inode->i_blocks_lo);
3813 }
3814}
ff9ddf7e 3815
1d1fe1ee 3816struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3817{
617ba13b
MC
3818 struct ext4_iloc iloc;
3819 struct ext4_inode *raw_inode;
1d1fe1ee 3820 struct ext4_inode_info *ei;
ac27a0ec 3821 struct buffer_head *bh;
1d1fe1ee
DH
3822 struct inode *inode;
3823 long ret;
ac27a0ec
DK
3824 int block;
3825
1d1fe1ee
DH
3826 inode = iget_locked(sb, ino);
3827 if (!inode)
3828 return ERR_PTR(-ENOMEM);
3829 if (!(inode->i_state & I_NEW))
3830 return inode;
3831
3832 ei = EXT4_I(inode);
617ba13b
MC
3833#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3834 ei->i_acl = EXT4_ACL_NOT_CACHED;
3835 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3836#endif
3837 ei->i_block_alloc_info = NULL;
3838
1d1fe1ee
DH
3839 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3840 if (ret < 0)
ac27a0ec
DK
3841 goto bad_inode;
3842 bh = iloc.bh;
617ba13b 3843 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3844 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3845 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3846 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3847 if(!(test_opt (inode->i_sb, NO_UID32))) {
3848 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3849 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3850 }
3851 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
3852
3853 ei->i_state = 0;
3854 ei->i_dir_start_lookup = 0;
3855 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3856 /* We now have enough fields to check if the inode was active or not.
3857 * This is needed because nfsd might try to access dead inodes
3858 * the test is that same one that e2fsck uses
3859 * NeilBrown 1999oct15
3860 */
3861 if (inode->i_nlink == 0) {
3862 if (inode->i_mode == 0 ||
617ba13b 3863 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
3864 /* this inode is deleted */
3865 brelse (bh);
1d1fe1ee 3866 ret = -ESTALE;
ac27a0ec
DK
3867 goto bad_inode;
3868 }
3869 /* The only unlinked inodes we let through here have
3870 * valid i_mode and are being read by the orphan
3871 * recovery code: that's fine, we're about to complete
3872 * the process of deleting those. */
3873 }
ac27a0ec 3874 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3875 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3876 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 3877 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 3878 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
3879 ei->i_file_acl |=
3880 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 3881 }
a48380f7 3882 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
3883 ei->i_disksize = inode->i_size;
3884 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3885 ei->i_block_group = iloc.block_group;
3886 /*
3887 * NOTE! The in-memory inode i_data array is in little-endian order
3888 * even on big-endian machines: we do NOT byteswap the block numbers!
3889 */
617ba13b 3890 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3891 ei->i_data[block] = raw_inode->i_block[block];
3892 INIT_LIST_HEAD(&ei->i_orphan);
3893
0040d987 3894 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3895 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3896 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
3897 EXT4_INODE_SIZE(inode->i_sb)) {
3898 brelse (bh);
1d1fe1ee 3899 ret = -EIO;
ac27a0ec 3900 goto bad_inode;
e5d2861f 3901 }
ac27a0ec
DK
3902 if (ei->i_extra_isize == 0) {
3903 /* The extra space is currently unused. Use it. */
617ba13b
MC
3904 ei->i_extra_isize = sizeof(struct ext4_inode) -
3905 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3906 } else {
3907 __le32 *magic = (void *)raw_inode +
617ba13b 3908 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3909 ei->i_extra_isize;
617ba13b
MC
3910 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3911 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
3912 }
3913 } else
3914 ei->i_extra_isize = 0;
3915
ef7f3835
KS
3916 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3917 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3918 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3919 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3920
25ec56b5
JNC
3921 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3922 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3923 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3924 inode->i_version |=
3925 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3926 }
3927
ac27a0ec 3928 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3929 inode->i_op = &ext4_file_inode_operations;
3930 inode->i_fop = &ext4_file_operations;
3931 ext4_set_aops(inode);
ac27a0ec 3932 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3933 inode->i_op = &ext4_dir_inode_operations;
3934 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3935 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
3936 if (ext4_inode_is_fast_symlink(inode))
3937 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 3938 else {
617ba13b
MC
3939 inode->i_op = &ext4_symlink_inode_operations;
3940 ext4_set_aops(inode);
ac27a0ec
DK
3941 }
3942 } else {
617ba13b 3943 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3944 if (raw_inode->i_block[0])
3945 init_special_inode(inode, inode->i_mode,
3946 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3947 else
3948 init_special_inode(inode, inode->i_mode,
3949 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3950 }
3951 brelse (iloc.bh);
617ba13b 3952 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3953 unlock_new_inode(inode);
3954 return inode;
ac27a0ec
DK
3955
3956bad_inode:
1d1fe1ee
DH
3957 iget_failed(inode);
3958 return ERR_PTR(ret);
ac27a0ec
DK
3959}
3960
0fc1b451
AK
3961static int ext4_inode_blocks_set(handle_t *handle,
3962 struct ext4_inode *raw_inode,
3963 struct ext4_inode_info *ei)
3964{
3965 struct inode *inode = &(ei->vfs_inode);
3966 u64 i_blocks = inode->i_blocks;
3967 struct super_block *sb = inode->i_sb;
3968 int err = 0;
3969
3970 if (i_blocks <= ~0U) {
3971 /*
3972 * i_blocks can be represnted in a 32 bit variable
3973 * as multiple of 512 bytes
3974 */
8180a562 3975 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3976 raw_inode->i_blocks_high = 0;
8180a562 3977 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
3978 } else if (i_blocks <= 0xffffffffffffULL) {
3979 /*
3980 * i_blocks can be represented in a 48 bit variable
3981 * as multiple of 512 bytes
3982 */
3983 err = ext4_update_rocompat_feature(handle, sb,
3984 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3985 if (err)
3986 goto err_out;
3987 /* i_block is stored in the split 48 bit fields */
8180a562 3988 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3989 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 3990 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 3991 } else {
8180a562
AK
3992 /*
3993 * i_blocks should be represented in a 48 bit variable
3994 * as multiple of file system block size
3995 */
3996 err = ext4_update_rocompat_feature(handle, sb,
3997 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3998 if (err)
3999 goto err_out;
4000 ei->i_flags |= EXT4_HUGE_FILE_FL;
4001 /* i_block is stored in file system block size */
4002 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4003 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4004 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4005 }
4006err_out:
4007 return err;
4008}
4009
ac27a0ec
DK
4010/*
4011 * Post the struct inode info into an on-disk inode location in the
4012 * buffer-cache. This gobbles the caller's reference to the
4013 * buffer_head in the inode location struct.
4014 *
4015 * The caller must have write access to iloc->bh.
4016 */
617ba13b 4017static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4018 struct inode *inode,
617ba13b 4019 struct ext4_iloc *iloc)
ac27a0ec 4020{
617ba13b
MC
4021 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4022 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4023 struct buffer_head *bh = iloc->bh;
4024 int err = 0, rc, block;
4025
4026 /* For fields not not tracking in the in-memory inode,
4027 * initialise them to zero for new inodes. */
617ba13b
MC
4028 if (ei->i_state & EXT4_STATE_NEW)
4029 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4030
ff9ddf7e 4031 ext4_get_inode_flags(ei);
ac27a0ec
DK
4032 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4033 if(!(test_opt(inode->i_sb, NO_UID32))) {
4034 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4035 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4036/*
4037 * Fix up interoperability with old kernels. Otherwise, old inodes get
4038 * re-used with the upper 16 bits of the uid/gid intact
4039 */
4040 if(!ei->i_dtime) {
4041 raw_inode->i_uid_high =
4042 cpu_to_le16(high_16_bits(inode->i_uid));
4043 raw_inode->i_gid_high =
4044 cpu_to_le16(high_16_bits(inode->i_gid));
4045 } else {
4046 raw_inode->i_uid_high = 0;
4047 raw_inode->i_gid_high = 0;
4048 }
4049 } else {
4050 raw_inode->i_uid_low =
4051 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4052 raw_inode->i_gid_low =
4053 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4054 raw_inode->i_uid_high = 0;
4055 raw_inode->i_gid_high = 0;
4056 }
4057 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4058
4059 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4060 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4061 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4062 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4063
0fc1b451
AK
4064 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4065 goto out_brelse;
ac27a0ec 4066 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4067 /* clear the migrate flag in the raw_inode */
4068 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4069 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4070 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4071 raw_inode->i_file_acl_high =
4072 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4073 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4074 ext4_isize_set(raw_inode, ei->i_disksize);
4075 if (ei->i_disksize > 0x7fffffffULL) {
4076 struct super_block *sb = inode->i_sb;
4077 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4078 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4079 EXT4_SB(sb)->s_es->s_rev_level ==
4080 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4081 /* If this is the first large file
4082 * created, add a flag to the superblock.
4083 */
4084 err = ext4_journal_get_write_access(handle,
4085 EXT4_SB(sb)->s_sbh);
4086 if (err)
4087 goto out_brelse;
4088 ext4_update_dynamic_rev(sb);
4089 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4090 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4091 sb->s_dirt = 1;
4092 handle->h_sync = 1;
4093 err = ext4_journal_dirty_metadata(handle,
4094 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4095 }
4096 }
4097 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4098 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4099 if (old_valid_dev(inode->i_rdev)) {
4100 raw_inode->i_block[0] =
4101 cpu_to_le32(old_encode_dev(inode->i_rdev));
4102 raw_inode->i_block[1] = 0;
4103 } else {
4104 raw_inode->i_block[0] = 0;
4105 raw_inode->i_block[1] =
4106 cpu_to_le32(new_encode_dev(inode->i_rdev));
4107 raw_inode->i_block[2] = 0;
4108 }
617ba13b 4109 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4110 raw_inode->i_block[block] = ei->i_data[block];
4111
25ec56b5
JNC
4112 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4113 if (ei->i_extra_isize) {
4114 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4115 raw_inode->i_version_hi =
4116 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4117 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4118 }
4119
ac27a0ec 4120
617ba13b
MC
4121 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4122 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4123 if (!err)
4124 err = rc;
617ba13b 4125 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4126
4127out_brelse:
4128 brelse (bh);
617ba13b 4129 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4130 return err;
4131}
4132
4133/*
617ba13b 4134 * ext4_write_inode()
ac27a0ec
DK
4135 *
4136 * We are called from a few places:
4137 *
4138 * - Within generic_file_write() for O_SYNC files.
4139 * Here, there will be no transaction running. We wait for any running
4140 * trasnaction to commit.
4141 *
4142 * - Within sys_sync(), kupdate and such.
4143 * We wait on commit, if tol to.
4144 *
4145 * - Within prune_icache() (PF_MEMALLOC == true)
4146 * Here we simply return. We can't afford to block kswapd on the
4147 * journal commit.
4148 *
4149 * In all cases it is actually safe for us to return without doing anything,
4150 * because the inode has been copied into a raw inode buffer in
617ba13b 4151 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4152 * knfsd.
4153 *
4154 * Note that we are absolutely dependent upon all inode dirtiers doing the
4155 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4156 * which we are interested.
4157 *
4158 * It would be a bug for them to not do this. The code:
4159 *
4160 * mark_inode_dirty(inode)
4161 * stuff();
4162 * inode->i_size = expr;
4163 *
4164 * is in error because a kswapd-driven write_inode() could occur while
4165 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4166 * will no longer be on the superblock's dirty inode list.
4167 */
617ba13b 4168int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4169{
4170 if (current->flags & PF_MEMALLOC)
4171 return 0;
4172
617ba13b 4173 if (ext4_journal_current_handle()) {
b38bd33a 4174 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4175 dump_stack();
4176 return -EIO;
4177 }
4178
4179 if (!wait)
4180 return 0;
4181
617ba13b 4182 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4183}
4184
4185/*
617ba13b 4186 * ext4_setattr()
ac27a0ec
DK
4187 *
4188 * Called from notify_change.
4189 *
4190 * We want to trap VFS attempts to truncate the file as soon as
4191 * possible. In particular, we want to make sure that when the VFS
4192 * shrinks i_size, we put the inode on the orphan list and modify
4193 * i_disksize immediately, so that during the subsequent flushing of
4194 * dirty pages and freeing of disk blocks, we can guarantee that any
4195 * commit will leave the blocks being flushed in an unused state on
4196 * disk. (On recovery, the inode will get truncated and the blocks will
4197 * be freed, so we have a strong guarantee that no future commit will
4198 * leave these blocks visible to the user.)
4199 *
678aaf48
JK
4200 * Another thing we have to assure is that if we are in ordered mode
4201 * and inode is still attached to the committing transaction, we must
4202 * we start writeout of all the dirty pages which are being truncated.
4203 * This way we are sure that all the data written in the previous
4204 * transaction are already on disk (truncate waits for pages under
4205 * writeback).
4206 *
4207 * Called with inode->i_mutex down.
ac27a0ec 4208 */
617ba13b 4209int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4210{
4211 struct inode *inode = dentry->d_inode;
4212 int error, rc = 0;
4213 const unsigned int ia_valid = attr->ia_valid;
4214
4215 error = inode_change_ok(inode, attr);
4216 if (error)
4217 return error;
4218
4219 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4220 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4221 handle_t *handle;
4222
4223 /* (user+group)*(old+new) structure, inode write (sb,
4224 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4225 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4226 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4227 if (IS_ERR(handle)) {
4228 error = PTR_ERR(handle);
4229 goto err_out;
4230 }
4231 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4232 if (error) {
617ba13b 4233 ext4_journal_stop(handle);
ac27a0ec
DK
4234 return error;
4235 }
4236 /* Update corresponding info in inode so that everything is in
4237 * one transaction */
4238 if (attr->ia_valid & ATTR_UID)
4239 inode->i_uid = attr->ia_uid;
4240 if (attr->ia_valid & ATTR_GID)
4241 inode->i_gid = attr->ia_gid;
617ba13b
MC
4242 error = ext4_mark_inode_dirty(handle, inode);
4243 ext4_journal_stop(handle);
ac27a0ec
DK
4244 }
4245
e2b46574
ES
4246 if (attr->ia_valid & ATTR_SIZE) {
4247 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4249
4250 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4251 error = -EFBIG;
4252 goto err_out;
4253 }
4254 }
4255 }
4256
ac27a0ec
DK
4257 if (S_ISREG(inode->i_mode) &&
4258 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4259 handle_t *handle;
4260
617ba13b 4261 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4262 if (IS_ERR(handle)) {
4263 error = PTR_ERR(handle);
4264 goto err_out;
4265 }
4266
617ba13b
MC
4267 error = ext4_orphan_add(handle, inode);
4268 EXT4_I(inode)->i_disksize = attr->ia_size;
4269 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4270 if (!error)
4271 error = rc;
617ba13b 4272 ext4_journal_stop(handle);
678aaf48
JK
4273
4274 if (ext4_should_order_data(inode)) {
4275 error = ext4_begin_ordered_truncate(inode,
4276 attr->ia_size);
4277 if (error) {
4278 /* Do as much error cleanup as possible */
4279 handle = ext4_journal_start(inode, 3);
4280 if (IS_ERR(handle)) {
4281 ext4_orphan_del(NULL, inode);
4282 goto err_out;
4283 }
4284 ext4_orphan_del(handle, inode);
4285 ext4_journal_stop(handle);
4286 goto err_out;
4287 }
4288 }
ac27a0ec
DK
4289 }
4290
4291 rc = inode_setattr(inode, attr);
4292
617ba13b 4293 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4294 * transaction handle at all, we need to clean up the in-core
4295 * orphan list manually. */
4296 if (inode->i_nlink)
617ba13b 4297 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4298
4299 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4300 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4301
4302err_out:
617ba13b 4303 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4304 if (!error)
4305 error = rc;
4306 return error;
4307}
4308
3e3398a0
MC
4309int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4310 struct kstat *stat)
4311{
4312 struct inode *inode;
4313 unsigned long delalloc_blocks;
4314
4315 inode = dentry->d_inode;
4316 generic_fillattr(inode, stat);
4317
4318 /*
4319 * We can't update i_blocks if the block allocation is delayed
4320 * otherwise in the case of system crash before the real block
4321 * allocation is done, we will have i_blocks inconsistent with
4322 * on-disk file blocks.
4323 * We always keep i_blocks updated together with real
4324 * allocation. But to not confuse with user, stat
4325 * will return the blocks that include the delayed allocation
4326 * blocks for this file.
4327 */
4328 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4329 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4330 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4331
4332 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4333 return 0;
4334}
ac27a0ec
DK
4335
4336/*
4337 * How many blocks doth make a writepage()?
4338 *
4339 * With N blocks per page, it may be:
4340 * N data blocks
4341 * 2 indirect block
4342 * 2 dindirect
4343 * 1 tindirect
4344 * N+5 bitmap blocks (from the above)
4345 * N+5 group descriptor summary blocks
4346 * 1 inode block
4347 * 1 superblock.
617ba13b 4348 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 4349 *
617ba13b 4350 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
4351 *
4352 * With ordered or writeback data it's the same, less the N data blocks.
4353 *
4354 * If the inode's direct blocks can hold an integral number of pages then a
4355 * page cannot straddle two indirect blocks, and we can only touch one indirect
4356 * and dindirect block, and the "5" above becomes "3".
4357 *
4358 * This still overestimates under most circumstances. If we were to pass the
4359 * start and end offsets in here as well we could do block_to_path() on each
4360 * block and work out the exact number of indirects which are touched. Pah.
4361 */
4362
a86c6181 4363int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4364{
617ba13b
MC
4365 int bpp = ext4_journal_blocks_per_page(inode);
4366 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
4367 int ret;
4368
a86c6181
AT
4369 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
4370 return ext4_ext_writepage_trans_blocks(inode, bpp);
4371
617ba13b 4372 if (ext4_should_journal_data(inode))
ac27a0ec
DK
4373 ret = 3 * (bpp + indirects) + 2;
4374 else
4375 ret = 2 * (bpp + indirects) + 2;
4376
4377#ifdef CONFIG_QUOTA
4378 /* We know that structure was already allocated during DQUOT_INIT so
4379 * we will be updating only the data blocks + inodes */
617ba13b 4380 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
4381#endif
4382
4383 return ret;
4384}
4385
4386/*
617ba13b 4387 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4388 * Give this, we know that the caller already has write access to iloc->bh.
4389 */
617ba13b
MC
4390int ext4_mark_iloc_dirty(handle_t *handle,
4391 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4392{
4393 int err = 0;
4394
25ec56b5
JNC
4395 if (test_opt(inode->i_sb, I_VERSION))
4396 inode_inc_iversion(inode);
4397
ac27a0ec
DK
4398 /* the do_update_inode consumes one bh->b_count */
4399 get_bh(iloc->bh);
4400
dab291af 4401 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4402 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4403 put_bh(iloc->bh);
4404 return err;
4405}
4406
4407/*
4408 * On success, We end up with an outstanding reference count against
4409 * iloc->bh. This _must_ be cleaned up later.
4410 */
4411
4412int
617ba13b
MC
4413ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4414 struct ext4_iloc *iloc)
ac27a0ec
DK
4415{
4416 int err = 0;
4417 if (handle) {
617ba13b 4418 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4419 if (!err) {
4420 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4421 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4422 if (err) {
4423 brelse(iloc->bh);
4424 iloc->bh = NULL;
4425 }
4426 }
4427 }
617ba13b 4428 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4429 return err;
4430}
4431
6dd4ee7c
KS
4432/*
4433 * Expand an inode by new_extra_isize bytes.
4434 * Returns 0 on success or negative error number on failure.
4435 */
1d03ec98
AK
4436static int ext4_expand_extra_isize(struct inode *inode,
4437 unsigned int new_extra_isize,
4438 struct ext4_iloc iloc,
4439 handle_t *handle)
6dd4ee7c
KS
4440{
4441 struct ext4_inode *raw_inode;
4442 struct ext4_xattr_ibody_header *header;
4443 struct ext4_xattr_entry *entry;
4444
4445 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4446 return 0;
4447
4448 raw_inode = ext4_raw_inode(&iloc);
4449
4450 header = IHDR(inode, raw_inode);
4451 entry = IFIRST(header);
4452
4453 /* No extended attributes present */
4454 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4455 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4456 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4457 new_extra_isize);
4458 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4459 return 0;
4460 }
4461
4462 /* try to expand with EAs present */
4463 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4464 raw_inode, handle);
4465}
4466
ac27a0ec
DK
4467/*
4468 * What we do here is to mark the in-core inode as clean with respect to inode
4469 * dirtiness (it may still be data-dirty).
4470 * This means that the in-core inode may be reaped by prune_icache
4471 * without having to perform any I/O. This is a very good thing,
4472 * because *any* task may call prune_icache - even ones which
4473 * have a transaction open against a different journal.
4474 *
4475 * Is this cheating? Not really. Sure, we haven't written the
4476 * inode out, but prune_icache isn't a user-visible syncing function.
4477 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4478 * we start and wait on commits.
4479 *
4480 * Is this efficient/effective? Well, we're being nice to the system
4481 * by cleaning up our inodes proactively so they can be reaped
4482 * without I/O. But we are potentially leaving up to five seconds'
4483 * worth of inodes floating about which prune_icache wants us to
4484 * write out. One way to fix that would be to get prune_icache()
4485 * to do a write_super() to free up some memory. It has the desired
4486 * effect.
4487 */
617ba13b 4488int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4489{
617ba13b 4490 struct ext4_iloc iloc;
6dd4ee7c
KS
4491 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4492 static unsigned int mnt_count;
4493 int err, ret;
ac27a0ec
DK
4494
4495 might_sleep();
617ba13b 4496 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4497 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4498 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4499 /*
4500 * We need extra buffer credits since we may write into EA block
4501 * with this same handle. If journal_extend fails, then it will
4502 * only result in a minor loss of functionality for that inode.
4503 * If this is felt to be critical, then e2fsck should be run to
4504 * force a large enough s_min_extra_isize.
4505 */
4506 if ((jbd2_journal_extend(handle,
4507 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4508 ret = ext4_expand_extra_isize(inode,
4509 sbi->s_want_extra_isize,
4510 iloc, handle);
4511 if (ret) {
4512 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4513 if (mnt_count !=
4514 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4515 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4516 "Unable to expand inode %lu. Delete"
4517 " some EAs or run e2fsck.",
4518 inode->i_ino);
c1bddad9
AK
4519 mnt_count =
4520 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4521 }
4522 }
4523 }
4524 }
ac27a0ec 4525 if (!err)
617ba13b 4526 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4527 return err;
4528}
4529
4530/*
617ba13b 4531 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4532 *
4533 * We're really interested in the case where a file is being extended.
4534 * i_size has been changed by generic_commit_write() and we thus need
4535 * to include the updated inode in the current transaction.
4536 *
4537 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4538 * are allocated to the file.
4539 *
4540 * If the inode is marked synchronous, we don't honour that here - doing
4541 * so would cause a commit on atime updates, which we don't bother doing.
4542 * We handle synchronous inodes at the highest possible level.
4543 */
617ba13b 4544void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4545{
617ba13b 4546 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4547 handle_t *handle;
4548
617ba13b 4549 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4550 if (IS_ERR(handle))
4551 goto out;
4552 if (current_handle &&
4553 current_handle->h_transaction != handle->h_transaction) {
4554 /* This task has a transaction open against a different fs */
4555 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4556 __func__);
ac27a0ec
DK
4557 } else {
4558 jbd_debug(5, "marking dirty. outer handle=%p\n",
4559 current_handle);
617ba13b 4560 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4561 }
617ba13b 4562 ext4_journal_stop(handle);
ac27a0ec
DK
4563out:
4564 return;
4565}
4566
4567#if 0
4568/*
4569 * Bind an inode's backing buffer_head into this transaction, to prevent
4570 * it from being flushed to disk early. Unlike
617ba13b 4571 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4572 * returns no iloc structure, so the caller needs to repeat the iloc
4573 * lookup to mark the inode dirty later.
4574 */
617ba13b 4575static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4576{
617ba13b 4577 struct ext4_iloc iloc;
ac27a0ec
DK
4578
4579 int err = 0;
4580 if (handle) {
617ba13b 4581 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4582 if (!err) {
4583 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4584 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4585 if (!err)
617ba13b 4586 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4587 iloc.bh);
4588 brelse(iloc.bh);
4589 }
4590 }
617ba13b 4591 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4592 return err;
4593}
4594#endif
4595
617ba13b 4596int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4597{
4598 journal_t *journal;
4599 handle_t *handle;
4600 int err;
4601
4602 /*
4603 * We have to be very careful here: changing a data block's
4604 * journaling status dynamically is dangerous. If we write a
4605 * data block to the journal, change the status and then delete
4606 * that block, we risk forgetting to revoke the old log record
4607 * from the journal and so a subsequent replay can corrupt data.
4608 * So, first we make sure that the journal is empty and that
4609 * nobody is changing anything.
4610 */
4611
617ba13b 4612 journal = EXT4_JOURNAL(inode);
d699594d 4613 if (is_journal_aborted(journal))
ac27a0ec
DK
4614 return -EROFS;
4615
dab291af
MC
4616 jbd2_journal_lock_updates(journal);
4617 jbd2_journal_flush(journal);
ac27a0ec
DK
4618
4619 /*
4620 * OK, there are no updates running now, and all cached data is
4621 * synced to disk. We are now in a completely consistent state
4622 * which doesn't have anything in the journal, and we know that
4623 * no filesystem updates are running, so it is safe to modify
4624 * the inode's in-core data-journaling state flag now.
4625 */
4626
4627 if (val)
617ba13b 4628 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4629 else
617ba13b
MC
4630 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4631 ext4_set_aops(inode);
ac27a0ec 4632
dab291af 4633 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4634
4635 /* Finally we can mark the inode as dirty. */
4636
617ba13b 4637 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4638 if (IS_ERR(handle))
4639 return PTR_ERR(handle);
4640
617ba13b 4641 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4642 handle->h_sync = 1;
617ba13b
MC
4643 ext4_journal_stop(handle);
4644 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4645
4646 return err;
4647}
2e9ee850
AK
4648
4649static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4650{
4651 return !buffer_mapped(bh);
4652}
4653
4654int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4655{
4656 loff_t size;
4657 unsigned long len;
4658 int ret = -EINVAL;
4659 struct file *file = vma->vm_file;
4660 struct inode *inode = file->f_path.dentry->d_inode;
4661 struct address_space *mapping = inode->i_mapping;
4662
4663 /*
4664 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4665 * get i_mutex because we are already holding mmap_sem.
4666 */
4667 down_read(&inode->i_alloc_sem);
4668 size = i_size_read(inode);
4669 if (page->mapping != mapping || size <= page_offset(page)
4670 || !PageUptodate(page)) {
4671 /* page got truncated from under us? */
4672 goto out_unlock;
4673 }
4674 ret = 0;
4675 if (PageMappedToDisk(page))
4676 goto out_unlock;
4677
4678 if (page->index == size >> PAGE_CACHE_SHIFT)
4679 len = size & ~PAGE_CACHE_MASK;
4680 else
4681 len = PAGE_CACHE_SIZE;
4682
4683 if (page_has_buffers(page)) {
4684 /* return if we have all the buffers mapped */
4685 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4686 ext4_bh_unmapped))
4687 goto out_unlock;
4688 }
4689 /*
4690 * OK, we need to fill the hole... Do write_begin write_end
4691 * to do block allocation/reservation.We are not holding
4692 * inode.i__mutex here. That allow * parallel write_begin,
4693 * write_end call. lock_page prevent this from happening
4694 * on the same page though
4695 */
4696 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4697 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4698 if (ret < 0)
4699 goto out_unlock;
4700 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4701 len, len, page, NULL);
4702 if (ret < 0)
4703 goto out_unlock;
4704 ret = 0;
4705out_unlock:
4706 up_read(&inode->i_alloc_sem);
4707 return ret;
4708}