]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: fix transaction issues for ext4_fallocate and ext_zero_range
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
00a1a053 41#include <linux/bitops.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
56 __u16 csum_lo;
57 __u16 csum_hi = 0;
58 __u32 csum;
59
171a7f21 60 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
61 raw->i_checksum_lo = 0;
62 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
63 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 64 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
65 raw->i_checksum_hi = 0;
66 }
67
68 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
69 EXT4_INODE_SIZE(inode->i_sb));
70
171a7f21 71 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
72 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
73 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 74 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
75
76 return csum;
77}
78
79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
80 struct ext4_inode_info *ei)
81{
82 __u32 provided, calculated;
83
84 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
85 cpu_to_le32(EXT4_OS_LINUX) ||
86 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
87 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
88 return 1;
89
90 provided = le16_to_cpu(raw->i_checksum_lo);
91 calculated = ext4_inode_csum(inode, raw, ei);
92 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
93 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
94 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
95 else
96 calculated &= 0xFFFF;
97
98 return provided == calculated;
99}
100
101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
102 struct ext4_inode_info *ei)
103{
104 __u32 csum;
105
106 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
107 cpu_to_le32(EXT4_OS_LINUX) ||
108 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
109 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
110 return;
111
112 csum = ext4_inode_csum(inode, raw, ei);
113 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
114 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
115 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
116 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
117}
118
678aaf48
JK
119static inline int ext4_begin_ordered_truncate(struct inode *inode,
120 loff_t new_size)
121{
7ff9c073 122 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
123 /*
124 * If jinode is zero, then we never opened the file for
125 * writing, so there's no need to call
126 * jbd2_journal_begin_ordered_truncate() since there's no
127 * outstanding writes we need to flush.
128 */
129 if (!EXT4_I(inode)->jinode)
130 return 0;
131 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
132 EXT4_I(inode)->jinode,
133 new_size);
678aaf48
JK
134}
135
d47992f8
LC
136static void ext4_invalidatepage(struct page *page, unsigned int offset,
137 unsigned int length);
cb20d518
TT
138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
141 int pextents);
64769240 142
ac27a0ec
DK
143/*
144 * Test whether an inode is a fast symlink.
145 */
617ba13b 146static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 147{
65eddb56
YY
148 int ea_blocks = EXT4_I(inode)->i_file_acl ?
149 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 150
bd9db175
ZL
151 if (ext4_has_inline_data(inode))
152 return 0;
153
ac27a0ec
DK
154 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
155}
156
ac27a0ec
DK
157/*
158 * Restart the transaction associated with *handle. This does a commit,
159 * so before we call here everything must be consistently dirtied against
160 * this transaction.
161 */
fa5d1113 162int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 163 int nblocks)
ac27a0ec 164{
487caeef
JK
165 int ret;
166
167 /*
e35fd660 168 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
169 * moment, get_block can be called only for blocks inside i_size since
170 * page cache has been already dropped and writes are blocked by
171 * i_mutex. So we can safely drop the i_data_sem here.
172 */
0390131b 173 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 174 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 175 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 176 ret = ext4_journal_restart(handle, nblocks);
487caeef 177 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 178 ext4_discard_preallocations(inode);
487caeef
JK
179
180 return ret;
ac27a0ec
DK
181}
182
183/*
184 * Called at the last iput() if i_nlink is zero.
185 */
0930fcc1 186void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
187{
188 handle_t *handle;
bc965ab3 189 int err;
ac27a0ec 190
7ff9c073 191 trace_ext4_evict_inode(inode);
2581fdc8 192
0930fcc1 193 if (inode->i_nlink) {
2d859db3
JK
194 /*
195 * When journalling data dirty buffers are tracked only in the
196 * journal. So although mm thinks everything is clean and
197 * ready for reaping the inode might still have some pages to
198 * write in the running transaction or waiting to be
199 * checkpointed. Thus calling jbd2_journal_invalidatepage()
200 * (via truncate_inode_pages()) to discard these buffers can
201 * cause data loss. Also even if we did not discard these
202 * buffers, we would have no way to find them after the inode
203 * is reaped and thus user could see stale data if he tries to
204 * read them before the transaction is checkpointed. So be
205 * careful and force everything to disk here... We use
206 * ei->i_datasync_tid to store the newest transaction
207 * containing inode's data.
208 *
209 * Note that directories do not have this problem because they
210 * don't use page cache.
211 */
212 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
213 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
214 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
d76a3a77 218 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
219 filemap_write_and_wait(&inode->i_data);
220 }
91b0abe3 221 truncate_inode_pages_final(&inode->i_data);
5dc23bdd
JK
222
223 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
224 goto no_delete;
225 }
226
907f4554 227 if (!is_bad_inode(inode))
871a2931 228 dquot_initialize(inode);
907f4554 229
678aaf48
JK
230 if (ext4_should_order_data(inode))
231 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 232 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 233
5dc23bdd 234 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
235 if (is_bad_inode(inode))
236 goto no_delete;
237
8e8ad8a5
JK
238 /*
239 * Protect us against freezing - iput() caller didn't have to have any
240 * protection against it
241 */
242 sb_start_intwrite(inode->i_sb);
9924a92a
TT
243 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
244 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 245 if (IS_ERR(handle)) {
bc965ab3 246 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
247 /*
248 * If we're going to skip the normal cleanup, we still need to
249 * make sure that the in-core orphan linked list is properly
250 * cleaned up.
251 */
617ba13b 252 ext4_orphan_del(NULL, inode);
8e8ad8a5 253 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
254 goto no_delete;
255 }
256
257 if (IS_SYNC(inode))
0390131b 258 ext4_handle_sync(handle);
ac27a0ec 259 inode->i_size = 0;
bc965ab3
TT
260 err = ext4_mark_inode_dirty(handle, inode);
261 if (err) {
12062ddd 262 ext4_warning(inode->i_sb,
bc965ab3
TT
263 "couldn't mark inode dirty (err %d)", err);
264 goto stop_handle;
265 }
ac27a0ec 266 if (inode->i_blocks)
617ba13b 267 ext4_truncate(inode);
bc965ab3
TT
268
269 /*
270 * ext4_ext_truncate() doesn't reserve any slop when it
271 * restarts journal transactions; therefore there may not be
272 * enough credits left in the handle to remove the inode from
273 * the orphan list and set the dtime field.
274 */
0390131b 275 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
276 err = ext4_journal_extend(handle, 3);
277 if (err > 0)
278 err = ext4_journal_restart(handle, 3);
279 if (err != 0) {
12062ddd 280 ext4_warning(inode->i_sb,
bc965ab3
TT
281 "couldn't extend journal (err %d)", err);
282 stop_handle:
283 ext4_journal_stop(handle);
45388219 284 ext4_orphan_del(NULL, inode);
8e8ad8a5 285 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
286 goto no_delete;
287 }
288 }
289
ac27a0ec 290 /*
617ba13b 291 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 292 * AKPM: I think this can be inside the above `if'.
617ba13b 293 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 294 * deletion of a non-existent orphan - this is because we don't
617ba13b 295 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
296 * (Well, we could do this if we need to, but heck - it works)
297 */
617ba13b
MC
298 ext4_orphan_del(handle, inode);
299 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
300
301 /*
302 * One subtle ordering requirement: if anything has gone wrong
303 * (transaction abort, IO errors, whatever), then we can still
304 * do these next steps (the fs will already have been marked as
305 * having errors), but we can't free the inode if the mark_dirty
306 * fails.
307 */
617ba13b 308 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 309 /* If that failed, just do the required in-core inode clear. */
0930fcc1 310 ext4_clear_inode(inode);
ac27a0ec 311 else
617ba13b
MC
312 ext4_free_inode(handle, inode);
313 ext4_journal_stop(handle);
8e8ad8a5 314 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
315 return;
316no_delete:
0930fcc1 317 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
318}
319
a9e7f447
DM
320#ifdef CONFIG_QUOTA
321qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 322{
a9e7f447 323 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 324}
a9e7f447 325#endif
9d0be502 326
0637c6f4
TT
327/*
328 * Called with i_data_sem down, which is important since we can call
329 * ext4_discard_preallocations() from here.
330 */
5f634d06
AK
331void ext4_da_update_reserve_space(struct inode *inode,
332 int used, int quota_claim)
12219aea
AK
333{
334 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 335 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
336
337 spin_lock(&ei->i_block_reservation_lock);
d8990240 338 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 339 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 340 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 341 "with only %d reserved data blocks",
0637c6f4
TT
342 __func__, inode->i_ino, used,
343 ei->i_reserved_data_blocks);
344 WARN_ON(1);
345 used = ei->i_reserved_data_blocks;
346 }
12219aea 347
0637c6f4
TT
348 /* Update per-inode reservations */
349 ei->i_reserved_data_blocks -= used;
71d4f7d0 350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 351
12219aea 352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 353
72b8ab9d
ES
354 /* Update quota subsystem for data blocks */
355 if (quota_claim)
7b415bf6 356 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 357 else {
5f634d06
AK
358 /*
359 * We did fallocate with an offset that is already delayed
360 * allocated. So on delayed allocated writeback we should
72b8ab9d 361 * not re-claim the quota for fallocated blocks.
5f634d06 362 */
7b415bf6 363 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 364 }
d6014301
AK
365
366 /*
367 * If we have done all the pending block allocations and if
368 * there aren't any writers on the inode, we can discard the
369 * inode's preallocations.
370 */
0637c6f4
TT
371 if ((ei->i_reserved_data_blocks == 0) &&
372 (atomic_read(&inode->i_writecount) == 0))
d6014301 373 ext4_discard_preallocations(inode);
12219aea
AK
374}
375
e29136f8 376static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
377 unsigned int line,
378 struct ext4_map_blocks *map)
6fd058f7 379{
24676da4
TT
380 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
381 map->m_len)) {
c398eda0
TT
382 ext4_error_inode(inode, func, line, map->m_pblk,
383 "lblock %lu mapped to illegal pblock "
384 "(length %d)", (unsigned long) map->m_lblk,
385 map->m_len);
6fd058f7
TT
386 return -EIO;
387 }
388 return 0;
389}
390
e29136f8 391#define check_block_validity(inode, map) \
c398eda0 392 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 393
921f266b
DM
394#ifdef ES_AGGRESSIVE_TEST
395static void ext4_map_blocks_es_recheck(handle_t *handle,
396 struct inode *inode,
397 struct ext4_map_blocks *es_map,
398 struct ext4_map_blocks *map,
399 int flags)
400{
401 int retval;
402
403 map->m_flags = 0;
404 /*
405 * There is a race window that the result is not the same.
406 * e.g. xfstests #223 when dioread_nolock enables. The reason
407 * is that we lookup a block mapping in extent status tree with
408 * out taking i_data_sem. So at the time the unwritten extent
409 * could be converted.
410 */
411 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 412 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
413 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
414 retval = ext4_ext_map_blocks(handle, inode, map, flags &
415 EXT4_GET_BLOCKS_KEEP_SIZE);
416 } else {
417 retval = ext4_ind_map_blocks(handle, inode, map, flags &
418 EXT4_GET_BLOCKS_KEEP_SIZE);
419 }
420 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
421 up_read((&EXT4_I(inode)->i_data_sem));
422 /*
423 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
424 * because it shouldn't be marked in es_map->m_flags.
425 */
426 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
556615dc
LC
458 * On success, it returns the number of blocks being mapped or allocated.
459 * if create==0 and the blocks are pre-allocated and unwritten block,
f5ab0d1f
MC
460 * the result buffer head is unmapped. If the create ==1, it will make sure
461 * the buffer head is mapped.
462 *
463 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 464 * that case, buffer head is unmapped
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
493 return -EIO;
494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 497 ext4_es_lru_add(inode);
d100eef2
ZL
498 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
499 map->m_pblk = ext4_es_pblock(&es) +
500 map->m_lblk - es.es_lblk;
501 map->m_flags |= ext4_es_is_written(&es) ?
502 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
503 retval = es.es_len - (map->m_lblk - es.es_lblk);
504 if (retval > map->m_len)
505 retval = map->m_len;
506 map->m_len = retval;
507 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
508 retval = 0;
509 } else {
510 BUG_ON(1);
511 }
921f266b
DM
512#ifdef ES_AGGRESSIVE_TEST
513 ext4_map_blocks_es_recheck(handle, inode, map,
514 &orig_map, flags);
515#endif
d100eef2
ZL
516 goto found;
517 }
518
4df3d265 519 /*
b920c755
TT
520 * Try to see if we can get the block without requesting a new
521 * file system block.
4df3d265 522 */
729f52c6 523 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
c8b459f4 524 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 525 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
526 retval = ext4_ext_map_blocks(handle, inode, map, flags &
527 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 528 } else {
a4e5d88b
DM
529 retval = ext4_ind_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 }
f7fec032 532 if (retval > 0) {
3be78c73 533 unsigned int status;
f7fec032 534
44fb851d
ZL
535 if (unlikely(retval != map->m_len)) {
536 ext4_warning(inode->i_sb,
537 "ES len assertion failed for inode "
538 "%lu: retval %d != map->m_len %d",
539 inode->i_ino, retval, map->m_len);
540 WARN_ON(1);
921f266b 541 }
921f266b 542
f7fec032
ZL
543 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
544 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
545 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
546 ext4_find_delalloc_range(inode, map->m_lblk,
547 map->m_lblk + map->m_len - 1))
548 status |= EXTENT_STATUS_DELAYED;
549 ret = ext4_es_insert_extent(inode, map->m_lblk,
550 map->m_len, map->m_pblk, status);
551 if (ret < 0)
552 retval = ret;
553 }
729f52c6
ZL
554 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
555 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 556
d100eef2 557found:
e35fd660 558 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 559 ret = check_block_validity(inode, map);
6fd058f7
TT
560 if (ret != 0)
561 return ret;
562 }
563
f5ab0d1f 564 /* If it is only a block(s) look up */
c2177057 565 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
566 return retval;
567
568 /*
569 * Returns if the blocks have already allocated
570 *
571 * Note that if blocks have been preallocated
df3ab170 572 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
573 * with buffer head unmapped.
574 */
e35fd660 575 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
576 /*
577 * If we need to convert extent to unwritten
578 * we continue and do the actual work in
579 * ext4_ext_map_blocks()
580 */
581 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
582 return retval;
4df3d265 583
2a8964d6 584 /*
a25a4e1a
ZL
585 * Here we clear m_flags because after allocating an new extent,
586 * it will be set again.
2a8964d6 587 */
a25a4e1a 588 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 589
4df3d265 590 /*
556615dc 591 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f
MC
592 * will possibly result in updating i_data, so we take
593 * the write lock of i_data_sem, and call get_blocks()
594 * with create == 1 flag.
4df3d265 595 */
c8b459f4 596 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637
MC
597
598 /*
599 * if the caller is from delayed allocation writeout path
600 * we have already reserved fs blocks for allocation
601 * let the underlying get_block() function know to
602 * avoid double accounting
603 */
c2177057 604 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 605 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
606 /*
607 * We need to check for EXT4 here because migrate
608 * could have changed the inode type in between
609 */
12e9b892 610 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 611 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 612 } else {
e35fd660 613 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 614
e35fd660 615 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
616 /*
617 * We allocated new blocks which will result in
618 * i_data's format changing. Force the migrate
619 * to fail by clearing migrate flags
620 */
19f5fb7a 621 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 622 }
d2a17637 623
5f634d06
AK
624 /*
625 * Update reserved blocks/metadata blocks after successful
626 * block allocation which had been deferred till now. We don't
627 * support fallocate for non extent files. So we can update
628 * reserve space here.
629 */
630 if ((retval > 0) &&
1296cc85 631 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
632 ext4_da_update_reserve_space(inode, retval, 1);
633 }
f7fec032 634 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 635 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 636
f7fec032 637 if (retval > 0) {
3be78c73 638 unsigned int status;
f7fec032 639
44fb851d
ZL
640 if (unlikely(retval != map->m_len)) {
641 ext4_warning(inode->i_sb,
642 "ES len assertion failed for inode "
643 "%lu: retval %d != map->m_len %d",
644 inode->i_ino, retval, map->m_len);
645 WARN_ON(1);
921f266b 646 }
921f266b 647
adb23551
ZL
648 /*
649 * If the extent has been zeroed out, we don't need to update
650 * extent status tree.
651 */
652 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
653 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
654 if (ext4_es_is_written(&es))
655 goto has_zeroout;
656 }
f7fec032
ZL
657 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
658 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
659 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
660 ext4_find_delalloc_range(inode, map->m_lblk,
661 map->m_lblk + map->m_len - 1))
662 status |= EXTENT_STATUS_DELAYED;
663 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
664 map->m_pblk, status);
665 if (ret < 0)
666 retval = ret;
5356f261
AK
667 }
668
adb23551 669has_zeroout:
4df3d265 670 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 671 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 672 ret = check_block_validity(inode, map);
6fd058f7
TT
673 if (ret != 0)
674 return ret;
675 }
0e855ac8
AK
676 return retval;
677}
678
f3bd1f3f
MC
679/* Maximum number of blocks we map for direct IO at once. */
680#define DIO_MAX_BLOCKS 4096
681
2ed88685
TT
682static int _ext4_get_block(struct inode *inode, sector_t iblock,
683 struct buffer_head *bh, int flags)
ac27a0ec 684{
3e4fdaf8 685 handle_t *handle = ext4_journal_current_handle();
2ed88685 686 struct ext4_map_blocks map;
7fb5409d 687 int ret = 0, started = 0;
f3bd1f3f 688 int dio_credits;
ac27a0ec 689
46c7f254
TM
690 if (ext4_has_inline_data(inode))
691 return -ERANGE;
692
2ed88685
TT
693 map.m_lblk = iblock;
694 map.m_len = bh->b_size >> inode->i_blkbits;
695
8b0f165f 696 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 697 /* Direct IO write... */
2ed88685
TT
698 if (map.m_len > DIO_MAX_BLOCKS)
699 map.m_len = DIO_MAX_BLOCKS;
700 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
701 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
702 dio_credits);
7fb5409d 703 if (IS_ERR(handle)) {
ac27a0ec 704 ret = PTR_ERR(handle);
2ed88685 705 return ret;
ac27a0ec 706 }
7fb5409d 707 started = 1;
ac27a0ec
DK
708 }
709
2ed88685 710 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 711 if (ret > 0) {
7b7a8665
CH
712 ext4_io_end_t *io_end = ext4_inode_aio(inode);
713
2ed88685
TT
714 map_bh(bh, inode->i_sb, map.m_pblk);
715 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
716 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
717 set_buffer_defer_completion(bh);
2ed88685 718 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 719 ret = 0;
ac27a0ec 720 }
7fb5409d
JK
721 if (started)
722 ext4_journal_stop(handle);
ac27a0ec
DK
723 return ret;
724}
725
2ed88685
TT
726int ext4_get_block(struct inode *inode, sector_t iblock,
727 struct buffer_head *bh, int create)
728{
729 return _ext4_get_block(inode, iblock, bh,
730 create ? EXT4_GET_BLOCKS_CREATE : 0);
731}
732
ac27a0ec
DK
733/*
734 * `handle' can be NULL if create is zero
735 */
617ba13b 736struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 737 ext4_lblk_t block, int create, int *errp)
ac27a0ec 738{
2ed88685
TT
739 struct ext4_map_blocks map;
740 struct buffer_head *bh;
ac27a0ec
DK
741 int fatal = 0, err;
742
743 J_ASSERT(handle != NULL || create == 0);
744
2ed88685
TT
745 map.m_lblk = block;
746 map.m_len = 1;
747 err = ext4_map_blocks(handle, inode, &map,
748 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 749
90b0a973
CM
750 /* ensure we send some value back into *errp */
751 *errp = 0;
752
0f70b406
TT
753 if (create && err == 0)
754 err = -ENOSPC; /* should never happen */
2ed88685
TT
755 if (err < 0)
756 *errp = err;
757 if (err <= 0)
758 return NULL;
2ed88685
TT
759
760 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 761 if (unlikely(!bh)) {
860d21e2 762 *errp = -ENOMEM;
2ed88685 763 return NULL;
ac27a0ec 764 }
2ed88685
TT
765 if (map.m_flags & EXT4_MAP_NEW) {
766 J_ASSERT(create != 0);
767 J_ASSERT(handle != NULL);
ac27a0ec 768
2ed88685
TT
769 /*
770 * Now that we do not always journal data, we should
771 * keep in mind whether this should always journal the
772 * new buffer as metadata. For now, regular file
773 * writes use ext4_get_block instead, so it's not a
774 * problem.
775 */
776 lock_buffer(bh);
777 BUFFER_TRACE(bh, "call get_create_access");
778 fatal = ext4_journal_get_create_access(handle, bh);
779 if (!fatal && !buffer_uptodate(bh)) {
780 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
781 set_buffer_uptodate(bh);
ac27a0ec 782 }
2ed88685
TT
783 unlock_buffer(bh);
784 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
785 err = ext4_handle_dirty_metadata(handle, inode, bh);
786 if (!fatal)
787 fatal = err;
788 } else {
789 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 790 }
2ed88685
TT
791 if (fatal) {
792 *errp = fatal;
793 brelse(bh);
794 bh = NULL;
795 }
796 return bh;
ac27a0ec
DK
797}
798
617ba13b 799struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 800 ext4_lblk_t block, int create, int *err)
ac27a0ec 801{
af5bc92d 802 struct buffer_head *bh;
ac27a0ec 803
617ba13b 804 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
805 if (!bh)
806 return bh;
807 if (buffer_uptodate(bh))
808 return bh;
65299a3b 809 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
810 wait_on_buffer(bh);
811 if (buffer_uptodate(bh))
812 return bh;
813 put_bh(bh);
814 *err = -EIO;
815 return NULL;
816}
817
f19d5870
TM
818int ext4_walk_page_buffers(handle_t *handle,
819 struct buffer_head *head,
820 unsigned from,
821 unsigned to,
822 int *partial,
823 int (*fn)(handle_t *handle,
824 struct buffer_head *bh))
ac27a0ec
DK
825{
826 struct buffer_head *bh;
827 unsigned block_start, block_end;
828 unsigned blocksize = head->b_size;
829 int err, ret = 0;
830 struct buffer_head *next;
831
af5bc92d
TT
832 for (bh = head, block_start = 0;
833 ret == 0 && (bh != head || !block_start);
de9a55b8 834 block_start = block_end, bh = next) {
ac27a0ec
DK
835 next = bh->b_this_page;
836 block_end = block_start + blocksize;
837 if (block_end <= from || block_start >= to) {
838 if (partial && !buffer_uptodate(bh))
839 *partial = 1;
840 continue;
841 }
842 err = (*fn)(handle, bh);
843 if (!ret)
844 ret = err;
845 }
846 return ret;
847}
848
849/*
850 * To preserve ordering, it is essential that the hole instantiation and
851 * the data write be encapsulated in a single transaction. We cannot
617ba13b 852 * close off a transaction and start a new one between the ext4_get_block()
dab291af 853 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
854 * prepare_write() is the right place.
855 *
36ade451
JK
856 * Also, this function can nest inside ext4_writepage(). In that case, we
857 * *know* that ext4_writepage() has generated enough buffer credits to do the
858 * whole page. So we won't block on the journal in that case, which is good,
859 * because the caller may be PF_MEMALLOC.
ac27a0ec 860 *
617ba13b 861 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
862 * quota file writes. If we were to commit the transaction while thus
863 * reentered, there can be a deadlock - we would be holding a quota
864 * lock, and the commit would never complete if another thread had a
865 * transaction open and was blocking on the quota lock - a ranking
866 * violation.
867 *
dab291af 868 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
869 * will _not_ run commit under these circumstances because handle->h_ref
870 * is elevated. We'll still have enough credits for the tiny quotafile
871 * write.
872 */
f19d5870
TM
873int do_journal_get_write_access(handle_t *handle,
874 struct buffer_head *bh)
ac27a0ec 875{
56d35a4c
JK
876 int dirty = buffer_dirty(bh);
877 int ret;
878
ac27a0ec
DK
879 if (!buffer_mapped(bh) || buffer_freed(bh))
880 return 0;
56d35a4c 881 /*
ebdec241 882 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
883 * the dirty bit as jbd2_journal_get_write_access() could complain
884 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 885 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
886 * the bit before releasing a page lock and thus writeback cannot
887 * ever write the buffer.
888 */
889 if (dirty)
890 clear_buffer_dirty(bh);
5d601255 891 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
892 ret = ext4_journal_get_write_access(handle, bh);
893 if (!ret && dirty)
894 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
895 return ret;
ac27a0ec
DK
896}
897
8b0f165f
AP
898static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
899 struct buffer_head *bh_result, int create);
bfc1af65 900static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
901 loff_t pos, unsigned len, unsigned flags,
902 struct page **pagep, void **fsdata)
ac27a0ec 903{
af5bc92d 904 struct inode *inode = mapping->host;
1938a150 905 int ret, needed_blocks;
ac27a0ec
DK
906 handle_t *handle;
907 int retries = 0;
af5bc92d 908 struct page *page;
de9a55b8 909 pgoff_t index;
af5bc92d 910 unsigned from, to;
bfc1af65 911
9bffad1e 912 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
913 /*
914 * Reserve one block more for addition to orphan list in case
915 * we allocate blocks but write fails for some reason
916 */
917 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 918 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
919 from = pos & (PAGE_CACHE_SIZE - 1);
920 to = from + len;
ac27a0ec 921
f19d5870
TM
922 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
923 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
924 flags, pagep);
925 if (ret < 0)
47564bfb
TT
926 return ret;
927 if (ret == 1)
928 return 0;
f19d5870
TM
929 }
930
47564bfb
TT
931 /*
932 * grab_cache_page_write_begin() can take a long time if the
933 * system is thrashing due to memory pressure, or if the page
934 * is being written back. So grab it first before we start
935 * the transaction handle. This also allows us to allocate
936 * the page (if needed) without using GFP_NOFS.
937 */
938retry_grab:
939 page = grab_cache_page_write_begin(mapping, index, flags);
940 if (!page)
941 return -ENOMEM;
942 unlock_page(page);
943
944retry_journal:
9924a92a 945 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 946 if (IS_ERR(handle)) {
47564bfb
TT
947 page_cache_release(page);
948 return PTR_ERR(handle);
7479d2b9 949 }
ac27a0ec 950
47564bfb
TT
951 lock_page(page);
952 if (page->mapping != mapping) {
953 /* The page got truncated from under us */
954 unlock_page(page);
955 page_cache_release(page);
cf108bca 956 ext4_journal_stop(handle);
47564bfb 957 goto retry_grab;
cf108bca 958 }
7afe5aa5
DM
959 /* In case writeback began while the page was unlocked */
960 wait_for_stable_page(page);
cf108bca 961
744692dc 962 if (ext4_should_dioread_nolock(inode))
6e1db88d 963 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 964 else
6e1db88d 965 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
966
967 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
968 ret = ext4_walk_page_buffers(handle, page_buffers(page),
969 from, to, NULL,
970 do_journal_get_write_access);
ac27a0ec 971 }
bfc1af65
NP
972
973 if (ret) {
af5bc92d 974 unlock_page(page);
ae4d5372 975 /*
6e1db88d 976 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
977 * outside i_size. Trim these off again. Don't need
978 * i_size_read because we hold i_mutex.
1938a150
AK
979 *
980 * Add inode to orphan list in case we crash before
981 * truncate finishes
ae4d5372 982 */
ffacfa7a 983 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
984 ext4_orphan_add(handle, inode);
985
986 ext4_journal_stop(handle);
987 if (pos + len > inode->i_size) {
b9a4207d 988 ext4_truncate_failed_write(inode);
de9a55b8 989 /*
ffacfa7a 990 * If truncate failed early the inode might
1938a150
AK
991 * still be on the orphan list; we need to
992 * make sure the inode is removed from the
993 * orphan list in that case.
994 */
995 if (inode->i_nlink)
996 ext4_orphan_del(NULL, inode);
997 }
bfc1af65 998
47564bfb
TT
999 if (ret == -ENOSPC &&
1000 ext4_should_retry_alloc(inode->i_sb, &retries))
1001 goto retry_journal;
1002 page_cache_release(page);
1003 return ret;
1004 }
1005 *pagep = page;
ac27a0ec
DK
1006 return ret;
1007}
1008
bfc1af65
NP
1009/* For write_end() in data=journal mode */
1010static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1011{
13fca323 1012 int ret;
ac27a0ec
DK
1013 if (!buffer_mapped(bh) || buffer_freed(bh))
1014 return 0;
1015 set_buffer_uptodate(bh);
13fca323
TT
1016 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1017 clear_buffer_meta(bh);
1018 clear_buffer_prio(bh);
1019 return ret;
ac27a0ec
DK
1020}
1021
eed4333f
ZL
1022/*
1023 * We need to pick up the new inode size which generic_commit_write gave us
1024 * `file' can be NULL - eg, when called from page_symlink().
1025 *
1026 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1027 * buffers are managed internally.
1028 */
1029static int ext4_write_end(struct file *file,
1030 struct address_space *mapping,
1031 loff_t pos, unsigned len, unsigned copied,
1032 struct page *page, void *fsdata)
f8514083 1033{
f8514083 1034 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1035 struct inode *inode = mapping->host;
1036 int ret = 0, ret2;
1037 int i_size_changed = 0;
1038
1039 trace_ext4_write_end(inode, pos, len, copied);
1040 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1041 ret = ext4_jbd2_file_inode(handle, inode);
1042 if (ret) {
1043 unlock_page(page);
1044 page_cache_release(page);
1045 goto errout;
1046 }
1047 }
f8514083 1048
42c832de
TT
1049 if (ext4_has_inline_data(inode)) {
1050 ret = ext4_write_inline_data_end(inode, pos, len,
1051 copied, page);
1052 if (ret < 0)
1053 goto errout;
1054 copied = ret;
1055 } else
f19d5870
TM
1056 copied = block_write_end(file, mapping, pos,
1057 len, copied, page, fsdata);
f8514083 1058 /*
4631dbf6 1059 * it's important to update i_size while still holding page lock:
f8514083
AK
1060 * page writeout could otherwise come in and zero beyond i_size.
1061 */
4631dbf6 1062 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1063 unlock_page(page);
1064 page_cache_release(page);
1065
1066 /*
1067 * Don't mark the inode dirty under page lock. First, it unnecessarily
1068 * makes the holding time of page lock longer. Second, it forces lock
1069 * ordering of page lock and transaction start for journaling
1070 * filesystems.
1071 */
1072 if (i_size_changed)
1073 ext4_mark_inode_dirty(handle, inode);
1074
ffacfa7a 1075 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1076 /* if we have allocated more blocks and copied
1077 * less. We will have blocks allocated outside
1078 * inode->i_size. So truncate them
1079 */
1080 ext4_orphan_add(handle, inode);
74d553aa 1081errout:
617ba13b 1082 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1083 if (!ret)
1084 ret = ret2;
bfc1af65 1085
f8514083 1086 if (pos + len > inode->i_size) {
b9a4207d 1087 ext4_truncate_failed_write(inode);
de9a55b8 1088 /*
ffacfa7a 1089 * If truncate failed early the inode might still be
f8514083
AK
1090 * on the orphan list; we need to make sure the inode
1091 * is removed from the orphan list in that case.
1092 */
1093 if (inode->i_nlink)
1094 ext4_orphan_del(NULL, inode);
1095 }
1096
bfc1af65 1097 return ret ? ret : copied;
ac27a0ec
DK
1098}
1099
bfc1af65 1100static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
ac27a0ec 1104{
617ba13b 1105 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1106 struct inode *inode = mapping->host;
ac27a0ec
DK
1107 int ret = 0, ret2;
1108 int partial = 0;
bfc1af65 1109 unsigned from, to;
4631dbf6 1110 int size_changed = 0;
ac27a0ec 1111
9bffad1e 1112 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1113 from = pos & (PAGE_CACHE_SIZE - 1);
1114 to = from + len;
1115
441c8508
CW
1116 BUG_ON(!ext4_handle_valid(handle));
1117
3fdcfb66
TM
1118 if (ext4_has_inline_data(inode))
1119 copied = ext4_write_inline_data_end(inode, pos, len,
1120 copied, page);
1121 else {
1122 if (copied < len) {
1123 if (!PageUptodate(page))
1124 copied = 0;
1125 page_zero_new_buffers(page, from+copied, to);
1126 }
ac27a0ec 1127
3fdcfb66
TM
1128 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1129 to, &partial, write_end_fn);
1130 if (!partial)
1131 SetPageUptodate(page);
1132 }
4631dbf6 1133 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1134 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1135 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1136 unlock_page(page);
1137 page_cache_release(page);
1138
1139 if (size_changed) {
617ba13b 1140 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1141 if (!ret)
1142 ret = ret2;
1143 }
bfc1af65 1144
ffacfa7a 1145 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1146 /* if we have allocated more blocks and copied
1147 * less. We will have blocks allocated outside
1148 * inode->i_size. So truncate them
1149 */
1150 ext4_orphan_add(handle, inode);
1151
617ba13b 1152 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1153 if (!ret)
1154 ret = ret2;
f8514083 1155 if (pos + len > inode->i_size) {
b9a4207d 1156 ext4_truncate_failed_write(inode);
de9a55b8 1157 /*
ffacfa7a 1158 * If truncate failed early the inode might still be
f8514083
AK
1159 * on the orphan list; we need to make sure the inode
1160 * is removed from the orphan list in that case.
1161 */
1162 if (inode->i_nlink)
1163 ext4_orphan_del(NULL, inode);
1164 }
bfc1af65
NP
1165
1166 return ret ? ret : copied;
ac27a0ec 1167}
d2a17637 1168
9d0be502 1169/*
7b415bf6 1170 * Reserve a single cluster located at lblock
9d0be502 1171 */
01f49d0b 1172static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1173{
60e58e0f 1174 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1175 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1176 unsigned int md_needed;
5dd4056d 1177 int ret;
03179fe9
TT
1178
1179 /*
1180 * We will charge metadata quota at writeout time; this saves
1181 * us from metadata over-estimation, though we may go over by
1182 * a small amount in the end. Here we just reserve for data.
1183 */
1184 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1185 if (ret)
1186 return ret;
d2a17637
MC
1187
1188 /*
1189 * recalculate the amount of metadata blocks to reserve
1190 * in order to allocate nrblocks
1191 * worse case is one extent per block
1192 */
0637c6f4 1193 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1194 /*
1195 * ext4_calc_metadata_amount() has side effects, which we have
1196 * to be prepared undo if we fail to claim space.
1197 */
71d4f7d0
TT
1198 md_needed = 0;
1199 trace_ext4_da_reserve_space(inode, 0);
d2a17637 1200
71d4f7d0 1201 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1202 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1203 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1204 return -ENOSPC;
1205 }
9d0be502 1206 ei->i_reserved_data_blocks++;
0637c6f4 1207 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1208
d2a17637
MC
1209 return 0; /* success */
1210}
1211
12219aea 1212static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1213{
1214 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1215 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1216
cd213226
MC
1217 if (!to_free)
1218 return; /* Nothing to release, exit */
1219
d2a17637 1220 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1221
5a58ec87 1222 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1223 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1224 /*
0637c6f4
TT
1225 * if there aren't enough reserved blocks, then the
1226 * counter is messed up somewhere. Since this
1227 * function is called from invalidate page, it's
1228 * harmless to return without any action.
cd213226 1229 */
8de5c325 1230 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1231 "ino %lu, to_free %d with only %d reserved "
1084f252 1232 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1233 ei->i_reserved_data_blocks);
1234 WARN_ON(1);
1235 to_free = ei->i_reserved_data_blocks;
cd213226 1236 }
0637c6f4 1237 ei->i_reserved_data_blocks -= to_free;
cd213226 1238
72b8ab9d 1239 /* update fs dirty data blocks counter */
57042651 1240 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1241
d2a17637 1242 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1243
7b415bf6 1244 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1245}
1246
1247static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1248 unsigned int offset,
1249 unsigned int length)
d2a17637
MC
1250{
1251 int to_release = 0;
1252 struct buffer_head *head, *bh;
1253 unsigned int curr_off = 0;
7b415bf6
AK
1254 struct inode *inode = page->mapping->host;
1255 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1256 unsigned int stop = offset + length;
7b415bf6 1257 int num_clusters;
51865fda 1258 ext4_fsblk_t lblk;
d2a17637 1259
ca99fdd2
LC
1260 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1261
d2a17637
MC
1262 head = page_buffers(page);
1263 bh = head;
1264 do {
1265 unsigned int next_off = curr_off + bh->b_size;
1266
ca99fdd2
LC
1267 if (next_off > stop)
1268 break;
1269
d2a17637
MC
1270 if ((offset <= curr_off) && (buffer_delay(bh))) {
1271 to_release++;
1272 clear_buffer_delay(bh);
1273 }
1274 curr_off = next_off;
1275 } while ((bh = bh->b_this_page) != head);
7b415bf6 1276
51865fda
ZL
1277 if (to_release) {
1278 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1279 ext4_es_remove_extent(inode, lblk, to_release);
1280 }
1281
7b415bf6
AK
1282 /* If we have released all the blocks belonging to a cluster, then we
1283 * need to release the reserved space for that cluster. */
1284 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1285 while (num_clusters > 0) {
7b415bf6
AK
1286 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1287 ((num_clusters - 1) << sbi->s_cluster_bits);
1288 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1289 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1290 ext4_da_release_space(inode, 1);
1291
1292 num_clusters--;
1293 }
d2a17637 1294}
ac27a0ec 1295
64769240
AT
1296/*
1297 * Delayed allocation stuff
1298 */
1299
4e7ea81d
JK
1300struct mpage_da_data {
1301 struct inode *inode;
1302 struct writeback_control *wbc;
6b523df4 1303
4e7ea81d
JK
1304 pgoff_t first_page; /* The first page to write */
1305 pgoff_t next_page; /* Current page to examine */
1306 pgoff_t last_page; /* Last page to examine */
791b7f08 1307 /*
4e7ea81d
JK
1308 * Extent to map - this can be after first_page because that can be
1309 * fully mapped. We somewhat abuse m_flags to store whether the extent
1310 * is delalloc or unwritten.
791b7f08 1311 */
4e7ea81d
JK
1312 struct ext4_map_blocks map;
1313 struct ext4_io_submit io_submit; /* IO submission data */
1314};
64769240 1315
4e7ea81d
JK
1316static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1317 bool invalidate)
c4a0c46e
AK
1318{
1319 int nr_pages, i;
1320 pgoff_t index, end;
1321 struct pagevec pvec;
1322 struct inode *inode = mpd->inode;
1323 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1324
1325 /* This is necessary when next_page == 0. */
1326 if (mpd->first_page >= mpd->next_page)
1327 return;
c4a0c46e 1328
c7f5938a
CW
1329 index = mpd->first_page;
1330 end = mpd->next_page - 1;
4e7ea81d
JK
1331 if (invalidate) {
1332 ext4_lblk_t start, last;
1333 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1334 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1335 ext4_es_remove_extent(inode, start, last - start + 1);
1336 }
51865fda 1337
66bea92c 1338 pagevec_init(&pvec, 0);
c4a0c46e
AK
1339 while (index <= end) {
1340 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1341 if (nr_pages == 0)
1342 break;
1343 for (i = 0; i < nr_pages; i++) {
1344 struct page *page = pvec.pages[i];
9b1d0998 1345 if (page->index > end)
c4a0c46e 1346 break;
c4a0c46e
AK
1347 BUG_ON(!PageLocked(page));
1348 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1349 if (invalidate) {
1350 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1351 ClearPageUptodate(page);
1352 }
c4a0c46e
AK
1353 unlock_page(page);
1354 }
9b1d0998
JK
1355 index = pvec.pages[nr_pages - 1]->index + 1;
1356 pagevec_release(&pvec);
c4a0c46e 1357 }
c4a0c46e
AK
1358}
1359
df22291f
AK
1360static void ext4_print_free_blocks(struct inode *inode)
1361{
1362 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1363 struct super_block *sb = inode->i_sb;
f78ee70d 1364 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1365
1366 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1367 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1368 ext4_count_free_clusters(sb)));
92b97816
TT
1369 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1370 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1371 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1372 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1373 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1374 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1375 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1376 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1377 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1378 ei->i_reserved_data_blocks);
df22291f
AK
1379 return;
1380}
1381
c364b22c 1382static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1383{
c364b22c 1384 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1385}
1386
5356f261
AK
1387/*
1388 * This function is grabs code from the very beginning of
1389 * ext4_map_blocks, but assumes that the caller is from delayed write
1390 * time. This function looks up the requested blocks and sets the
1391 * buffer delay bit under the protection of i_data_sem.
1392 */
1393static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1394 struct ext4_map_blocks *map,
1395 struct buffer_head *bh)
1396{
d100eef2 1397 struct extent_status es;
5356f261
AK
1398 int retval;
1399 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1400#ifdef ES_AGGRESSIVE_TEST
1401 struct ext4_map_blocks orig_map;
1402
1403 memcpy(&orig_map, map, sizeof(*map));
1404#endif
5356f261
AK
1405
1406 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1407 invalid_block = ~0;
1408
1409 map->m_flags = 0;
1410 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1411 "logical block %lu\n", inode->i_ino, map->m_len,
1412 (unsigned long) map->m_lblk);
d100eef2
ZL
1413
1414 /* Lookup extent status tree firstly */
1415 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1416 ext4_es_lru_add(inode);
d100eef2
ZL
1417 if (ext4_es_is_hole(&es)) {
1418 retval = 0;
c8b459f4 1419 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1420 goto add_delayed;
1421 }
1422
1423 /*
1424 * Delayed extent could be allocated by fallocate.
1425 * So we need to check it.
1426 */
1427 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1428 map_bh(bh, inode->i_sb, invalid_block);
1429 set_buffer_new(bh);
1430 set_buffer_delay(bh);
1431 return 0;
1432 }
1433
1434 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1435 retval = es.es_len - (iblock - es.es_lblk);
1436 if (retval > map->m_len)
1437 retval = map->m_len;
1438 map->m_len = retval;
1439 if (ext4_es_is_written(&es))
1440 map->m_flags |= EXT4_MAP_MAPPED;
1441 else if (ext4_es_is_unwritten(&es))
1442 map->m_flags |= EXT4_MAP_UNWRITTEN;
1443 else
1444 BUG_ON(1);
1445
921f266b
DM
1446#ifdef ES_AGGRESSIVE_TEST
1447 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1448#endif
d100eef2
ZL
1449 return retval;
1450 }
1451
5356f261
AK
1452 /*
1453 * Try to see if we can get the block without requesting a new
1454 * file system block.
1455 */
c8b459f4 1456 down_read(&EXT4_I(inode)->i_data_sem);
9c3569b5
TM
1457 if (ext4_has_inline_data(inode)) {
1458 /*
1459 * We will soon create blocks for this page, and let
1460 * us pretend as if the blocks aren't allocated yet.
1461 * In case of clusters, we have to handle the work
1462 * of mapping from cluster so that the reserved space
1463 * is calculated properly.
1464 */
1465 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1466 ext4_find_delalloc_cluster(inode, map->m_lblk))
1467 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1468 retval = 0;
1469 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1470 retval = ext4_ext_map_blocks(NULL, inode, map,
1471 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1472 else
d100eef2
ZL
1473 retval = ext4_ind_map_blocks(NULL, inode, map,
1474 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1475
d100eef2 1476add_delayed:
5356f261 1477 if (retval == 0) {
f7fec032 1478 int ret;
5356f261
AK
1479 /*
1480 * XXX: __block_prepare_write() unmaps passed block,
1481 * is it OK?
1482 */
386ad67c
LC
1483 /*
1484 * If the block was allocated from previously allocated cluster,
1485 * then we don't need to reserve it again. However we still need
1486 * to reserve metadata for every block we're going to write.
1487 */
5356f261 1488 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1489 ret = ext4_da_reserve_space(inode, iblock);
1490 if (ret) {
5356f261 1491 /* not enough space to reserve */
f7fec032 1492 retval = ret;
5356f261 1493 goto out_unlock;
f7fec032 1494 }
5356f261
AK
1495 }
1496
f7fec032
ZL
1497 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1498 ~0, EXTENT_STATUS_DELAYED);
1499 if (ret) {
1500 retval = ret;
51865fda 1501 goto out_unlock;
f7fec032 1502 }
51865fda 1503
5356f261
AK
1504 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1505 * and it should not appear on the bh->b_state.
1506 */
1507 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1508
1509 map_bh(bh, inode->i_sb, invalid_block);
1510 set_buffer_new(bh);
1511 set_buffer_delay(bh);
f7fec032
ZL
1512 } else if (retval > 0) {
1513 int ret;
3be78c73 1514 unsigned int status;
f7fec032 1515
44fb851d
ZL
1516 if (unlikely(retval != map->m_len)) {
1517 ext4_warning(inode->i_sb,
1518 "ES len assertion failed for inode "
1519 "%lu: retval %d != map->m_len %d",
1520 inode->i_ino, retval, map->m_len);
1521 WARN_ON(1);
921f266b 1522 }
921f266b 1523
f7fec032
ZL
1524 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1525 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1526 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1527 map->m_pblk, status);
1528 if (ret != 0)
1529 retval = ret;
5356f261
AK
1530 }
1531
1532out_unlock:
1533 up_read((&EXT4_I(inode)->i_data_sem));
1534
1535 return retval;
1536}
1537
64769240 1538/*
b920c755
TT
1539 * This is a special get_blocks_t callback which is used by
1540 * ext4_da_write_begin(). It will either return mapped block or
1541 * reserve space for a single block.
29fa89d0
AK
1542 *
1543 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1544 * We also have b_blocknr = -1 and b_bdev initialized properly
1545 *
1546 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1547 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1548 * initialized properly.
64769240 1549 */
9c3569b5
TM
1550int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1551 struct buffer_head *bh, int create)
64769240 1552{
2ed88685 1553 struct ext4_map_blocks map;
64769240
AT
1554 int ret = 0;
1555
1556 BUG_ON(create == 0);
2ed88685
TT
1557 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1558
1559 map.m_lblk = iblock;
1560 map.m_len = 1;
64769240
AT
1561
1562 /*
1563 * first, we need to know whether the block is allocated already
1564 * preallocated blocks are unmapped but should treated
1565 * the same as allocated blocks.
1566 */
5356f261
AK
1567 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1568 if (ret <= 0)
2ed88685 1569 return ret;
64769240 1570
2ed88685
TT
1571 map_bh(bh, inode->i_sb, map.m_pblk);
1572 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1573
1574 if (buffer_unwritten(bh)) {
1575 /* A delayed write to unwritten bh should be marked
1576 * new and mapped. Mapped ensures that we don't do
1577 * get_block multiple times when we write to the same
1578 * offset and new ensures that we do proper zero out
1579 * for partial write.
1580 */
1581 set_buffer_new(bh);
c8205636 1582 set_buffer_mapped(bh);
2ed88685
TT
1583 }
1584 return 0;
64769240 1585}
61628a3f 1586
62e086be
AK
1587static int bget_one(handle_t *handle, struct buffer_head *bh)
1588{
1589 get_bh(bh);
1590 return 0;
1591}
1592
1593static int bput_one(handle_t *handle, struct buffer_head *bh)
1594{
1595 put_bh(bh);
1596 return 0;
1597}
1598
1599static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1600 unsigned int len)
1601{
1602 struct address_space *mapping = page->mapping;
1603 struct inode *inode = mapping->host;
3fdcfb66 1604 struct buffer_head *page_bufs = NULL;
62e086be 1605 handle_t *handle = NULL;
3fdcfb66
TM
1606 int ret = 0, err = 0;
1607 int inline_data = ext4_has_inline_data(inode);
1608 struct buffer_head *inode_bh = NULL;
62e086be 1609
cb20d518 1610 ClearPageChecked(page);
3fdcfb66
TM
1611
1612 if (inline_data) {
1613 BUG_ON(page->index != 0);
1614 BUG_ON(len > ext4_get_max_inline_size(inode));
1615 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1616 if (inode_bh == NULL)
1617 goto out;
1618 } else {
1619 page_bufs = page_buffers(page);
1620 if (!page_bufs) {
1621 BUG();
1622 goto out;
1623 }
1624 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1625 NULL, bget_one);
1626 }
62e086be
AK
1627 /* As soon as we unlock the page, it can go away, but we have
1628 * references to buffers so we are safe */
1629 unlock_page(page);
1630
9924a92a
TT
1631 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1632 ext4_writepage_trans_blocks(inode));
62e086be
AK
1633 if (IS_ERR(handle)) {
1634 ret = PTR_ERR(handle);
1635 goto out;
1636 }
1637
441c8508
CW
1638 BUG_ON(!ext4_handle_valid(handle));
1639
3fdcfb66 1640 if (inline_data) {
5d601255 1641 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1642 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1643
3fdcfb66
TM
1644 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1645
1646 } else {
1647 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1648 do_journal_get_write_access);
1649
1650 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1651 write_end_fn);
1652 }
62e086be
AK
1653 if (ret == 0)
1654 ret = err;
2d859db3 1655 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1656 err = ext4_journal_stop(handle);
1657 if (!ret)
1658 ret = err;
1659
3fdcfb66 1660 if (!ext4_has_inline_data(inode))
8c9367fd 1661 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1662 NULL, bput_one);
19f5fb7a 1663 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1664out:
3fdcfb66 1665 brelse(inode_bh);
62e086be
AK
1666 return ret;
1667}
1668
61628a3f 1669/*
43ce1d23
AK
1670 * Note that we don't need to start a transaction unless we're journaling data
1671 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1672 * need to file the inode to the transaction's list in ordered mode because if
1673 * we are writing back data added by write(), the inode is already there and if
25985edc 1674 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1675 * transaction the data will hit the disk. In case we are journaling data, we
1676 * cannot start transaction directly because transaction start ranks above page
1677 * lock so we have to do some magic.
1678 *
b920c755 1679 * This function can get called via...
20970ba6 1680 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1681 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1682 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1683 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1684 *
1685 * We don't do any block allocation in this function. If we have page with
1686 * multiple blocks we need to write those buffer_heads that are mapped. This
1687 * is important for mmaped based write. So if we do with blocksize 1K
1688 * truncate(f, 1024);
1689 * a = mmap(f, 0, 4096);
1690 * a[0] = 'a';
1691 * truncate(f, 4096);
1692 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1693 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1694 * do_wp_page). So writepage should write the first block. If we modify
1695 * the mmap area beyond 1024 we will again get a page_fault and the
1696 * page_mkwrite callback will do the block allocation and mark the
1697 * buffer_heads mapped.
1698 *
1699 * We redirty the page if we have any buffer_heads that is either delay or
1700 * unwritten in the page.
1701 *
1702 * We can get recursively called as show below.
1703 *
1704 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1705 * ext4_writepage()
1706 *
1707 * But since we don't do any block allocation we should not deadlock.
1708 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1709 */
43ce1d23 1710static int ext4_writepage(struct page *page,
62e086be 1711 struct writeback_control *wbc)
64769240 1712{
f8bec370 1713 int ret = 0;
61628a3f 1714 loff_t size;
498e5f24 1715 unsigned int len;
744692dc 1716 struct buffer_head *page_bufs = NULL;
61628a3f 1717 struct inode *inode = page->mapping->host;
36ade451 1718 struct ext4_io_submit io_submit;
1c8349a1 1719 bool keep_towrite = false;
61628a3f 1720
a9c667f8 1721 trace_ext4_writepage(page);
f0e6c985
AK
1722 size = i_size_read(inode);
1723 if (page->index == size >> PAGE_CACHE_SHIFT)
1724 len = size & ~PAGE_CACHE_MASK;
1725 else
1726 len = PAGE_CACHE_SIZE;
64769240 1727
a42afc5f 1728 page_bufs = page_buffers(page);
a42afc5f 1729 /*
fe386132
JK
1730 * We cannot do block allocation or other extent handling in this
1731 * function. If there are buffers needing that, we have to redirty
1732 * the page. But we may reach here when we do a journal commit via
1733 * journal_submit_inode_data_buffers() and in that case we must write
1734 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1735 */
f19d5870
TM
1736 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1737 ext4_bh_delay_or_unwritten)) {
f8bec370 1738 redirty_page_for_writepage(wbc, page);
fe386132
JK
1739 if (current->flags & PF_MEMALLOC) {
1740 /*
1741 * For memory cleaning there's no point in writing only
1742 * some buffers. So just bail out. Warn if we came here
1743 * from direct reclaim.
1744 */
1745 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1746 == PF_MEMALLOC);
f0e6c985
AK
1747 unlock_page(page);
1748 return 0;
1749 }
1c8349a1 1750 keep_towrite = true;
a42afc5f 1751 }
64769240 1752
cb20d518 1753 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1754 /*
1755 * It's mmapped pagecache. Add buffers and journal it. There
1756 * doesn't seem much point in redirtying the page here.
1757 */
3f0ca309 1758 return __ext4_journalled_writepage(page, len);
43ce1d23 1759
97a851ed
JK
1760 ext4_io_submit_init(&io_submit, wbc);
1761 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1762 if (!io_submit.io_end) {
1763 redirty_page_for_writepage(wbc, page);
1764 unlock_page(page);
1765 return -ENOMEM;
1766 }
1c8349a1 1767 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 1768 ext4_io_submit(&io_submit);
97a851ed
JK
1769 /* Drop io_end reference we got from init */
1770 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1771 return ret;
1772}
1773
5f1132b2
JK
1774static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1775{
1776 int len;
1777 loff_t size = i_size_read(mpd->inode);
1778 int err;
1779
1780 BUG_ON(page->index != mpd->first_page);
1781 if (page->index == size >> PAGE_CACHE_SHIFT)
1782 len = size & ~PAGE_CACHE_MASK;
1783 else
1784 len = PAGE_CACHE_SIZE;
1785 clear_page_dirty_for_io(page);
1c8349a1 1786 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
1787 if (!err)
1788 mpd->wbc->nr_to_write--;
1789 mpd->first_page++;
1790
1791 return err;
1792}
1793
4e7ea81d
JK
1794#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1795
61628a3f 1796/*
fffb2739
JK
1797 * mballoc gives us at most this number of blocks...
1798 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1799 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1800 */
fffb2739 1801#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1802
4e7ea81d
JK
1803/*
1804 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1805 *
1806 * @mpd - extent of blocks
1807 * @lblk - logical number of the block in the file
09930042 1808 * @bh - buffer head we want to add to the extent
4e7ea81d 1809 *
09930042
JK
1810 * The function is used to collect contig. blocks in the same state. If the
1811 * buffer doesn't require mapping for writeback and we haven't started the
1812 * extent of buffers to map yet, the function returns 'true' immediately - the
1813 * caller can write the buffer right away. Otherwise the function returns true
1814 * if the block has been added to the extent, false if the block couldn't be
1815 * added.
4e7ea81d 1816 */
09930042
JK
1817static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1818 struct buffer_head *bh)
4e7ea81d
JK
1819{
1820 struct ext4_map_blocks *map = &mpd->map;
1821
09930042
JK
1822 /* Buffer that doesn't need mapping for writeback? */
1823 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1824 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1825 /* So far no extent to map => we write the buffer right away */
1826 if (map->m_len == 0)
1827 return true;
1828 return false;
1829 }
4e7ea81d
JK
1830
1831 /* First block in the extent? */
1832 if (map->m_len == 0) {
1833 map->m_lblk = lblk;
1834 map->m_len = 1;
09930042
JK
1835 map->m_flags = bh->b_state & BH_FLAGS;
1836 return true;
4e7ea81d
JK
1837 }
1838
09930042
JK
1839 /* Don't go larger than mballoc is willing to allocate */
1840 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1841 return false;
1842
4e7ea81d
JK
1843 /* Can we merge the block to our big extent? */
1844 if (lblk == map->m_lblk + map->m_len &&
09930042 1845 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1846 map->m_len++;
09930042 1847 return true;
4e7ea81d 1848 }
09930042 1849 return false;
4e7ea81d
JK
1850}
1851
5f1132b2
JK
1852/*
1853 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1854 *
1855 * @mpd - extent of blocks for mapping
1856 * @head - the first buffer in the page
1857 * @bh - buffer we should start processing from
1858 * @lblk - logical number of the block in the file corresponding to @bh
1859 *
1860 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1861 * the page for IO if all buffers in this page were mapped and there's no
1862 * accumulated extent of buffers to map or add buffers in the page to the
1863 * extent of buffers to map. The function returns 1 if the caller can continue
1864 * by processing the next page, 0 if it should stop adding buffers to the
1865 * extent to map because we cannot extend it anymore. It can also return value
1866 * < 0 in case of error during IO submission.
1867 */
1868static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1869 struct buffer_head *head,
1870 struct buffer_head *bh,
1871 ext4_lblk_t lblk)
4e7ea81d
JK
1872{
1873 struct inode *inode = mpd->inode;
5f1132b2 1874 int err;
4e7ea81d
JK
1875 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1876 >> inode->i_blkbits;
1877
1878 do {
1879 BUG_ON(buffer_locked(bh));
1880
09930042 1881 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
1882 /* Found extent to map? */
1883 if (mpd->map.m_len)
5f1132b2 1884 return 0;
09930042 1885 /* Everything mapped so far and we hit EOF */
5f1132b2 1886 break;
4e7ea81d 1887 }
4e7ea81d 1888 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
1889 /* So far everything mapped? Submit the page for IO. */
1890 if (mpd->map.m_len == 0) {
1891 err = mpage_submit_page(mpd, head->b_page);
1892 if (err < 0)
1893 return err;
1894 }
1895 return lblk < blocks;
4e7ea81d
JK
1896}
1897
1898/*
1899 * mpage_map_buffers - update buffers corresponding to changed extent and
1900 * submit fully mapped pages for IO
1901 *
1902 * @mpd - description of extent to map, on return next extent to map
1903 *
1904 * Scan buffers corresponding to changed extent (we expect corresponding pages
1905 * to be already locked) and update buffer state according to new extent state.
1906 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 1907 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
1908 * and do extent conversion after IO is finished. If the last page is not fully
1909 * mapped, we update @map to the next extent in the last page that needs
1910 * mapping. Otherwise we submit the page for IO.
1911 */
1912static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1913{
1914 struct pagevec pvec;
1915 int nr_pages, i;
1916 struct inode *inode = mpd->inode;
1917 struct buffer_head *head, *bh;
1918 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
1919 pgoff_t start, end;
1920 ext4_lblk_t lblk;
1921 sector_t pblock;
1922 int err;
1923
1924 start = mpd->map.m_lblk >> bpp_bits;
1925 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
1926 lblk = start << bpp_bits;
1927 pblock = mpd->map.m_pblk;
1928
1929 pagevec_init(&pvec, 0);
1930 while (start <= end) {
1931 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
1932 PAGEVEC_SIZE);
1933 if (nr_pages == 0)
1934 break;
1935 for (i = 0; i < nr_pages; i++) {
1936 struct page *page = pvec.pages[i];
1937
1938 if (page->index > end)
1939 break;
70261f56 1940 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
1941 BUG_ON(page->index != start);
1942 bh = head = page_buffers(page);
1943 do {
1944 if (lblk < mpd->map.m_lblk)
1945 continue;
1946 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
1947 /*
1948 * Buffer after end of mapped extent.
1949 * Find next buffer in the page to map.
1950 */
1951 mpd->map.m_len = 0;
1952 mpd->map.m_flags = 0;
5f1132b2
JK
1953 /*
1954 * FIXME: If dioread_nolock supports
1955 * blocksize < pagesize, we need to make
1956 * sure we add size mapped so far to
1957 * io_end->size as the following call
1958 * can submit the page for IO.
1959 */
1960 err = mpage_process_page_bufs(mpd, head,
1961 bh, lblk);
4e7ea81d 1962 pagevec_release(&pvec);
5f1132b2
JK
1963 if (err > 0)
1964 err = 0;
1965 return err;
4e7ea81d
JK
1966 }
1967 if (buffer_delay(bh)) {
1968 clear_buffer_delay(bh);
1969 bh->b_blocknr = pblock++;
1970 }
4e7ea81d 1971 clear_buffer_unwritten(bh);
5f1132b2 1972 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
1973
1974 /*
1975 * FIXME: This is going to break if dioread_nolock
1976 * supports blocksize < pagesize as we will try to
1977 * convert potentially unmapped parts of inode.
1978 */
1979 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
1980 /* Page fully mapped - let IO run! */
1981 err = mpage_submit_page(mpd, page);
1982 if (err < 0) {
1983 pagevec_release(&pvec);
1984 return err;
1985 }
1986 start++;
1987 }
1988 pagevec_release(&pvec);
1989 }
1990 /* Extent fully mapped and matches with page boundary. We are done. */
1991 mpd->map.m_len = 0;
1992 mpd->map.m_flags = 0;
1993 return 0;
1994}
1995
1996static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
1997{
1998 struct inode *inode = mpd->inode;
1999 struct ext4_map_blocks *map = &mpd->map;
2000 int get_blocks_flags;
090f32ee 2001 int err, dioread_nolock;
4e7ea81d
JK
2002
2003 trace_ext4_da_write_pages_extent(inode, map);
2004 /*
2005 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2006 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2007 * where we have written into one or more preallocated blocks). It is
2008 * possible that we're going to need more metadata blocks than
2009 * previously reserved. However we must not fail because we're in
2010 * writeback and there is nothing we can do about it so it might result
2011 * in data loss. So use reserved blocks to allocate metadata if
2012 * possible.
2013 *
2014 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2015 * in question are delalloc blocks. This affects functions in many
2016 * different parts of the allocation call path. This flag exists
2017 * primarily because we don't want to change *many* call functions, so
2018 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2019 * once the inode's allocation semaphore is taken.
2020 */
2021 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2022 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2023 dioread_nolock = ext4_should_dioread_nolock(inode);
2024 if (dioread_nolock)
4e7ea81d
JK
2025 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2026 if (map->m_flags & (1 << BH_Delay))
2027 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2028
2029 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2030 if (err < 0)
2031 return err;
090f32ee 2032 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2033 if (!mpd->io_submit.io_end->handle &&
2034 ext4_handle_valid(handle)) {
2035 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2036 handle->h_rsv_handle = NULL;
2037 }
3613d228 2038 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2039 }
4e7ea81d
JK
2040
2041 BUG_ON(map->m_len == 0);
2042 if (map->m_flags & EXT4_MAP_NEW) {
2043 struct block_device *bdev = inode->i_sb->s_bdev;
2044 int i;
2045
2046 for (i = 0; i < map->m_len; i++)
2047 unmap_underlying_metadata(bdev, map->m_pblk + i);
2048 }
2049 return 0;
2050}
2051
2052/*
2053 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2054 * mpd->len and submit pages underlying it for IO
2055 *
2056 * @handle - handle for journal operations
2057 * @mpd - extent to map
7534e854
JK
2058 * @give_up_on_write - we set this to true iff there is a fatal error and there
2059 * is no hope of writing the data. The caller should discard
2060 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2061 *
2062 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2063 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2064 * them to initialized or split the described range from larger unwritten
2065 * extent. Note that we need not map all the described range since allocation
2066 * can return less blocks or the range is covered by more unwritten extents. We
2067 * cannot map more because we are limited by reserved transaction credits. On
2068 * the other hand we always make sure that the last touched page is fully
2069 * mapped so that it can be written out (and thus forward progress is
2070 * guaranteed). After mapping we submit all mapped pages for IO.
2071 */
2072static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2073 struct mpage_da_data *mpd,
2074 bool *give_up_on_write)
4e7ea81d
JK
2075{
2076 struct inode *inode = mpd->inode;
2077 struct ext4_map_blocks *map = &mpd->map;
2078 int err;
2079 loff_t disksize;
2080
2081 mpd->io_submit.io_end->offset =
2082 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2083 do {
4e7ea81d
JK
2084 err = mpage_map_one_extent(handle, mpd);
2085 if (err < 0) {
2086 struct super_block *sb = inode->i_sb;
2087
cb530541
TT
2088 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2089 goto invalidate_dirty_pages;
4e7ea81d 2090 /*
cb530541
TT
2091 * Let the uper layers retry transient errors.
2092 * In the case of ENOSPC, if ext4_count_free_blocks()
2093 * is non-zero, a commit should free up blocks.
4e7ea81d 2094 */
cb530541
TT
2095 if ((err == -ENOMEM) ||
2096 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2097 return err;
2098 ext4_msg(sb, KERN_CRIT,
2099 "Delayed block allocation failed for "
2100 "inode %lu at logical offset %llu with"
2101 " max blocks %u with error %d",
2102 inode->i_ino,
2103 (unsigned long long)map->m_lblk,
2104 (unsigned)map->m_len, -err);
2105 ext4_msg(sb, KERN_CRIT,
2106 "This should not happen!! Data will "
2107 "be lost\n");
2108 if (err == -ENOSPC)
2109 ext4_print_free_blocks(inode);
2110 invalidate_dirty_pages:
2111 *give_up_on_write = true;
4e7ea81d
JK
2112 return err;
2113 }
2114 /*
2115 * Update buffer state, submit mapped pages, and get us new
2116 * extent to map
2117 */
2118 err = mpage_map_and_submit_buffers(mpd);
2119 if (err < 0)
2120 return err;
27d7c4ed 2121 } while (map->m_len);
4e7ea81d 2122
622cad13
TT
2123 /*
2124 * Update on-disk size after IO is submitted. Races with
2125 * truncate are avoided by checking i_size under i_data_sem.
2126 */
4e7ea81d 2127 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2128 if (disksize > EXT4_I(inode)->i_disksize) {
2129 int err2;
622cad13
TT
2130 loff_t i_size;
2131
2132 down_write(&EXT4_I(inode)->i_data_sem);
2133 i_size = i_size_read(inode);
2134 if (disksize > i_size)
2135 disksize = i_size;
2136 if (disksize > EXT4_I(inode)->i_disksize)
2137 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2138 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2139 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2140 if (err2)
2141 ext4_error(inode->i_sb,
2142 "Failed to mark inode %lu dirty",
2143 inode->i_ino);
2144 if (!err)
2145 err = err2;
2146 }
2147 return err;
2148}
2149
fffb2739
JK
2150/*
2151 * Calculate the total number of credits to reserve for one writepages
20970ba6 2152 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2153 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2154 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2155 * bpp - 1 blocks in bpp different extents.
2156 */
525f4ed8
MC
2157static int ext4_da_writepages_trans_blocks(struct inode *inode)
2158{
fffb2739 2159 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2160
fffb2739
JK
2161 return ext4_meta_trans_blocks(inode,
2162 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2163}
61628a3f 2164
8e48dcfb 2165/*
4e7ea81d
JK
2166 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2167 * and underlying extent to map
2168 *
2169 * @mpd - where to look for pages
2170 *
2171 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2172 * IO immediately. When we find a page which isn't mapped we start accumulating
2173 * extent of buffers underlying these pages that needs mapping (formed by
2174 * either delayed or unwritten buffers). We also lock the pages containing
2175 * these buffers. The extent found is returned in @mpd structure (starting at
2176 * mpd->lblk with length mpd->len blocks).
2177 *
2178 * Note that this function can attach bios to one io_end structure which are
2179 * neither logically nor physically contiguous. Although it may seem as an
2180 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2181 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2182 */
4e7ea81d 2183static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2184{
4e7ea81d
JK
2185 struct address_space *mapping = mpd->inode->i_mapping;
2186 struct pagevec pvec;
2187 unsigned int nr_pages;
aeac589a 2188 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2189 pgoff_t index = mpd->first_page;
2190 pgoff_t end = mpd->last_page;
2191 int tag;
2192 int i, err = 0;
2193 int blkbits = mpd->inode->i_blkbits;
2194 ext4_lblk_t lblk;
2195 struct buffer_head *head;
8e48dcfb 2196
4e7ea81d 2197 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2198 tag = PAGECACHE_TAG_TOWRITE;
2199 else
2200 tag = PAGECACHE_TAG_DIRTY;
2201
4e7ea81d
JK
2202 pagevec_init(&pvec, 0);
2203 mpd->map.m_len = 0;
2204 mpd->next_page = index;
4f01b02c 2205 while (index <= end) {
5b41d924 2206 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2207 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2208 if (nr_pages == 0)
4e7ea81d 2209 goto out;
8e48dcfb
TT
2210
2211 for (i = 0; i < nr_pages; i++) {
2212 struct page *page = pvec.pages[i];
2213
2214 /*
2215 * At this point, the page may be truncated or
2216 * invalidated (changing page->mapping to NULL), or
2217 * even swizzled back from swapper_space to tmpfs file
2218 * mapping. However, page->index will not change
2219 * because we have a reference on the page.
2220 */
4f01b02c
TT
2221 if (page->index > end)
2222 goto out;
8e48dcfb 2223
aeac589a
ML
2224 /*
2225 * Accumulated enough dirty pages? This doesn't apply
2226 * to WB_SYNC_ALL mode. For integrity sync we have to
2227 * keep going because someone may be concurrently
2228 * dirtying pages, and we might have synced a lot of
2229 * newly appeared dirty pages, but have not synced all
2230 * of the old dirty pages.
2231 */
2232 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2233 goto out;
2234
4e7ea81d
JK
2235 /* If we can't merge this page, we are done. */
2236 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2237 goto out;
78aaced3 2238
8e48dcfb 2239 lock_page(page);
8e48dcfb 2240 /*
4e7ea81d
JK
2241 * If the page is no longer dirty, or its mapping no
2242 * longer corresponds to inode we are writing (which
2243 * means it has been truncated or invalidated), or the
2244 * page is already under writeback and we are not doing
2245 * a data integrity writeback, skip the page
8e48dcfb 2246 */
4f01b02c
TT
2247 if (!PageDirty(page) ||
2248 (PageWriteback(page) &&
4e7ea81d 2249 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2250 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2251 unlock_page(page);
2252 continue;
2253 }
2254
7cb1a535 2255 wait_on_page_writeback(page);
8e48dcfb 2256 BUG_ON(PageWriteback(page));
8e48dcfb 2257
4e7ea81d 2258 if (mpd->map.m_len == 0)
8eb9e5ce 2259 mpd->first_page = page->index;
8eb9e5ce 2260 mpd->next_page = page->index + 1;
f8bec370 2261 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2262 lblk = ((ext4_lblk_t)page->index) <<
2263 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2264 head = page_buffers(page);
5f1132b2
JK
2265 err = mpage_process_page_bufs(mpd, head, head, lblk);
2266 if (err <= 0)
4e7ea81d 2267 goto out;
5f1132b2 2268 err = 0;
aeac589a 2269 left--;
8e48dcfb
TT
2270 }
2271 pagevec_release(&pvec);
2272 cond_resched();
2273 }
4f01b02c 2274 return 0;
8eb9e5ce
TT
2275out:
2276 pagevec_release(&pvec);
4e7ea81d 2277 return err;
8e48dcfb
TT
2278}
2279
20970ba6
TT
2280static int __writepage(struct page *page, struct writeback_control *wbc,
2281 void *data)
2282{
2283 struct address_space *mapping = data;
2284 int ret = ext4_writepage(page, wbc);
2285 mapping_set_error(mapping, ret);
2286 return ret;
2287}
2288
2289static int ext4_writepages(struct address_space *mapping,
2290 struct writeback_control *wbc)
64769240 2291{
4e7ea81d
JK
2292 pgoff_t writeback_index = 0;
2293 long nr_to_write = wbc->nr_to_write;
22208ded 2294 int range_whole = 0;
4e7ea81d 2295 int cycled = 1;
61628a3f 2296 handle_t *handle = NULL;
df22291f 2297 struct mpage_da_data mpd;
5e745b04 2298 struct inode *inode = mapping->host;
6b523df4 2299 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2300 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2301 bool done;
1bce63d1 2302 struct blk_plug plug;
cb530541 2303 bool give_up_on_write = false;
61628a3f 2304
20970ba6 2305 trace_ext4_writepages(inode, wbc);
ba80b101 2306
61628a3f
MC
2307 /*
2308 * No pages to write? This is mainly a kludge to avoid starting
2309 * a transaction for special inodes like journal inode on last iput()
2310 * because that could violate lock ordering on umount
2311 */
a1d6cc56 2312 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2313 goto out_writepages;
2a21e37e 2314
20970ba6
TT
2315 if (ext4_should_journal_data(inode)) {
2316 struct blk_plug plug;
20970ba6
TT
2317
2318 blk_start_plug(&plug);
2319 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2320 blk_finish_plug(&plug);
bbf023c7 2321 goto out_writepages;
20970ba6
TT
2322 }
2323
2a21e37e
TT
2324 /*
2325 * If the filesystem has aborted, it is read-only, so return
2326 * right away instead of dumping stack traces later on that
2327 * will obscure the real source of the problem. We test
4ab2f15b 2328 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2329 * the latter could be true if the filesystem is mounted
20970ba6 2330 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2331 * *never* be called, so if that ever happens, we would want
2332 * the stack trace.
2333 */
bbf023c7
ML
2334 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2335 ret = -EROFS;
2336 goto out_writepages;
2337 }
2a21e37e 2338
6b523df4
JK
2339 if (ext4_should_dioread_nolock(inode)) {
2340 /*
70261f56 2341 * We may need to convert up to one extent per block in
6b523df4
JK
2342 * the page and we may dirty the inode.
2343 */
2344 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2345 }
2346
4e7ea81d
JK
2347 /*
2348 * If we have inline data and arrive here, it means that
2349 * we will soon create the block for the 1st page, so
2350 * we'd better clear the inline data here.
2351 */
2352 if (ext4_has_inline_data(inode)) {
2353 /* Just inode will be modified... */
2354 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2355 if (IS_ERR(handle)) {
2356 ret = PTR_ERR(handle);
2357 goto out_writepages;
2358 }
2359 BUG_ON(ext4_test_inode_state(inode,
2360 EXT4_STATE_MAY_INLINE_DATA));
2361 ext4_destroy_inline_data(handle, inode);
2362 ext4_journal_stop(handle);
2363 }
2364
22208ded
AK
2365 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2366 range_whole = 1;
61628a3f 2367
2acf2c26 2368 if (wbc->range_cyclic) {
4e7ea81d
JK
2369 writeback_index = mapping->writeback_index;
2370 if (writeback_index)
2acf2c26 2371 cycled = 0;
4e7ea81d
JK
2372 mpd.first_page = writeback_index;
2373 mpd.last_page = -1;
5b41d924 2374 } else {
4e7ea81d
JK
2375 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2376 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2377 }
a1d6cc56 2378
4e7ea81d
JK
2379 mpd.inode = inode;
2380 mpd.wbc = wbc;
2381 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2382retry:
6e6938b6 2383 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2384 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2385 done = false;
1bce63d1 2386 blk_start_plug(&plug);
4e7ea81d
JK
2387 while (!done && mpd.first_page <= mpd.last_page) {
2388 /* For each extent of pages we use new io_end */
2389 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2390 if (!mpd.io_submit.io_end) {
2391 ret = -ENOMEM;
2392 break;
2393 }
a1d6cc56
AK
2394
2395 /*
4e7ea81d
JK
2396 * We have two constraints: We find one extent to map and we
2397 * must always write out whole page (makes a difference when
2398 * blocksize < pagesize) so that we don't block on IO when we
2399 * try to write out the rest of the page. Journalled mode is
2400 * not supported by delalloc.
a1d6cc56
AK
2401 */
2402 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2403 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2404
4e7ea81d 2405 /* start a new transaction */
6b523df4
JK
2406 handle = ext4_journal_start_with_reserve(inode,
2407 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2408 if (IS_ERR(handle)) {
2409 ret = PTR_ERR(handle);
1693918e 2410 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2411 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2412 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2413 /* Release allocated io_end */
2414 ext4_put_io_end(mpd.io_submit.io_end);
2415 break;
61628a3f 2416 }
f63e6005 2417
4e7ea81d
JK
2418 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2419 ret = mpage_prepare_extent_to_map(&mpd);
2420 if (!ret) {
2421 if (mpd.map.m_len)
cb530541
TT
2422 ret = mpage_map_and_submit_extent(handle, &mpd,
2423 &give_up_on_write);
4e7ea81d
JK
2424 else {
2425 /*
2426 * We scanned the whole range (or exhausted
2427 * nr_to_write), submitted what was mapped and
2428 * didn't find anything needing mapping. We are
2429 * done.
2430 */
2431 done = true;
2432 }
f63e6005 2433 }
61628a3f 2434 ext4_journal_stop(handle);
4e7ea81d
JK
2435 /* Submit prepared bio */
2436 ext4_io_submit(&mpd.io_submit);
2437 /* Unlock pages we didn't use */
cb530541 2438 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2439 /* Drop our io_end reference we got from init */
2440 ext4_put_io_end(mpd.io_submit.io_end);
2441
2442 if (ret == -ENOSPC && sbi->s_journal) {
2443 /*
2444 * Commit the transaction which would
22208ded
AK
2445 * free blocks released in the transaction
2446 * and try again
2447 */
df22291f 2448 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2449 ret = 0;
4e7ea81d
JK
2450 continue;
2451 }
2452 /* Fatal error - ENOMEM, EIO... */
2453 if (ret)
61628a3f 2454 break;
a1d6cc56 2455 }
1bce63d1 2456 blk_finish_plug(&plug);
9c12a831 2457 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2458 cycled = 1;
4e7ea81d
JK
2459 mpd.last_page = writeback_index - 1;
2460 mpd.first_page = 0;
2acf2c26
AK
2461 goto retry;
2462 }
22208ded
AK
2463
2464 /* Update index */
22208ded
AK
2465 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2466 /*
4e7ea81d 2467 * Set the writeback_index so that range_cyclic
22208ded
AK
2468 * mode will write it back later
2469 */
4e7ea81d 2470 mapping->writeback_index = mpd.first_page;
a1d6cc56 2471
61628a3f 2472out_writepages:
20970ba6
TT
2473 trace_ext4_writepages_result(inode, wbc, ret,
2474 nr_to_write - wbc->nr_to_write);
61628a3f 2475 return ret;
64769240
AT
2476}
2477
79f0be8d
AK
2478static int ext4_nonda_switch(struct super_block *sb)
2479{
5c1ff336 2480 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2481 struct ext4_sb_info *sbi = EXT4_SB(sb);
2482
2483 /*
2484 * switch to non delalloc mode if we are running low
2485 * on free block. The free block accounting via percpu
179f7ebf 2486 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2487 * accumulated on each CPU without updating global counters
2488 * Delalloc need an accurate free block accounting. So switch
2489 * to non delalloc when we are near to error range.
2490 */
5c1ff336
EW
2491 free_clusters =
2492 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2493 dirty_clusters =
2494 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2495 /*
2496 * Start pushing delalloc when 1/2 of free blocks are dirty.
2497 */
5c1ff336 2498 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2499 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2500
5c1ff336
EW
2501 if (2 * free_clusters < 3 * dirty_clusters ||
2502 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2503 /*
c8afb446
ES
2504 * free block count is less than 150% of dirty blocks
2505 * or free blocks is less than watermark
79f0be8d
AK
2506 */
2507 return 1;
2508 }
2509 return 0;
2510}
2511
64769240 2512static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2513 loff_t pos, unsigned len, unsigned flags,
2514 struct page **pagep, void **fsdata)
64769240 2515{
72b8ab9d 2516 int ret, retries = 0;
64769240
AT
2517 struct page *page;
2518 pgoff_t index;
64769240
AT
2519 struct inode *inode = mapping->host;
2520 handle_t *handle;
2521
2522 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2523
2524 if (ext4_nonda_switch(inode->i_sb)) {
2525 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2526 return ext4_write_begin(file, mapping, pos,
2527 len, flags, pagep, fsdata);
2528 }
2529 *fsdata = (void *)0;
9bffad1e 2530 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2531
2532 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2533 ret = ext4_da_write_inline_data_begin(mapping, inode,
2534 pos, len, flags,
2535 pagep, fsdata);
2536 if (ret < 0)
47564bfb
TT
2537 return ret;
2538 if (ret == 1)
2539 return 0;
9c3569b5
TM
2540 }
2541
47564bfb
TT
2542 /*
2543 * grab_cache_page_write_begin() can take a long time if the
2544 * system is thrashing due to memory pressure, or if the page
2545 * is being written back. So grab it first before we start
2546 * the transaction handle. This also allows us to allocate
2547 * the page (if needed) without using GFP_NOFS.
2548 */
2549retry_grab:
2550 page = grab_cache_page_write_begin(mapping, index, flags);
2551 if (!page)
2552 return -ENOMEM;
2553 unlock_page(page);
2554
64769240
AT
2555 /*
2556 * With delayed allocation, we don't log the i_disksize update
2557 * if there is delayed block allocation. But we still need
2558 * to journalling the i_disksize update if writes to the end
2559 * of file which has an already mapped buffer.
2560 */
47564bfb 2561retry_journal:
9924a92a 2562 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2563 if (IS_ERR(handle)) {
47564bfb
TT
2564 page_cache_release(page);
2565 return PTR_ERR(handle);
64769240
AT
2566 }
2567
47564bfb
TT
2568 lock_page(page);
2569 if (page->mapping != mapping) {
2570 /* The page got truncated from under us */
2571 unlock_page(page);
2572 page_cache_release(page);
d5a0d4f7 2573 ext4_journal_stop(handle);
47564bfb 2574 goto retry_grab;
d5a0d4f7 2575 }
47564bfb 2576 /* In case writeback began while the page was unlocked */
7afe5aa5 2577 wait_for_stable_page(page);
64769240 2578
6e1db88d 2579 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2580 if (ret < 0) {
2581 unlock_page(page);
2582 ext4_journal_stop(handle);
ae4d5372
AK
2583 /*
2584 * block_write_begin may have instantiated a few blocks
2585 * outside i_size. Trim these off again. Don't need
2586 * i_size_read because we hold i_mutex.
2587 */
2588 if (pos + len > inode->i_size)
b9a4207d 2589 ext4_truncate_failed_write(inode);
47564bfb
TT
2590
2591 if (ret == -ENOSPC &&
2592 ext4_should_retry_alloc(inode->i_sb, &retries))
2593 goto retry_journal;
2594
2595 page_cache_release(page);
2596 return ret;
64769240
AT
2597 }
2598
47564bfb 2599 *pagep = page;
64769240
AT
2600 return ret;
2601}
2602
632eaeab
MC
2603/*
2604 * Check if we should update i_disksize
2605 * when write to the end of file but not require block allocation
2606 */
2607static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2608 unsigned long offset)
632eaeab
MC
2609{
2610 struct buffer_head *bh;
2611 struct inode *inode = page->mapping->host;
2612 unsigned int idx;
2613 int i;
2614
2615 bh = page_buffers(page);
2616 idx = offset >> inode->i_blkbits;
2617
af5bc92d 2618 for (i = 0; i < idx; i++)
632eaeab
MC
2619 bh = bh->b_this_page;
2620
29fa89d0 2621 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2622 return 0;
2623 return 1;
2624}
2625
64769240 2626static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2627 struct address_space *mapping,
2628 loff_t pos, unsigned len, unsigned copied,
2629 struct page *page, void *fsdata)
64769240
AT
2630{
2631 struct inode *inode = mapping->host;
2632 int ret = 0, ret2;
2633 handle_t *handle = ext4_journal_current_handle();
2634 loff_t new_i_size;
632eaeab 2635 unsigned long start, end;
79f0be8d
AK
2636 int write_mode = (int)(unsigned long)fsdata;
2637
74d553aa
TT
2638 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2639 return ext4_write_end(file, mapping, pos,
2640 len, copied, page, fsdata);
632eaeab 2641
9bffad1e 2642 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2643 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2644 end = start + copied - 1;
64769240
AT
2645
2646 /*
2647 * generic_write_end() will run mark_inode_dirty() if i_size
2648 * changes. So let's piggyback the i_disksize mark_inode_dirty
2649 * into that.
2650 */
64769240 2651 new_i_size = pos + copied;
ea51d132 2652 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2653 if (ext4_has_inline_data(inode) ||
2654 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2655 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2656 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2657 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2658 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2659 /* We need to mark inode dirty even if
2660 * new_i_size is less that inode->i_size
2661 * bu greater than i_disksize.(hint delalloc)
2662 */
2663 ext4_mark_inode_dirty(handle, inode);
64769240 2664 }
632eaeab 2665 }
9c3569b5
TM
2666
2667 if (write_mode != CONVERT_INLINE_DATA &&
2668 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2669 ext4_has_inline_data(inode))
2670 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2671 page);
2672 else
2673 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2674 page, fsdata);
9c3569b5 2675
64769240
AT
2676 copied = ret2;
2677 if (ret2 < 0)
2678 ret = ret2;
2679 ret2 = ext4_journal_stop(handle);
2680 if (!ret)
2681 ret = ret2;
2682
2683 return ret ? ret : copied;
2684}
2685
d47992f8
LC
2686static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2687 unsigned int length)
64769240 2688{
64769240
AT
2689 /*
2690 * Drop reserved blocks
2691 */
2692 BUG_ON(!PageLocked(page));
2693 if (!page_has_buffers(page))
2694 goto out;
2695
ca99fdd2 2696 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2697
2698out:
d47992f8 2699 ext4_invalidatepage(page, offset, length);
64769240
AT
2700
2701 return;
2702}
2703
ccd2506b
TT
2704/*
2705 * Force all delayed allocation blocks to be allocated for a given inode.
2706 */
2707int ext4_alloc_da_blocks(struct inode *inode)
2708{
fb40ba0d
TT
2709 trace_ext4_alloc_da_blocks(inode);
2710
71d4f7d0 2711 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
2712 return 0;
2713
2714 /*
2715 * We do something simple for now. The filemap_flush() will
2716 * also start triggering a write of the data blocks, which is
2717 * not strictly speaking necessary (and for users of
2718 * laptop_mode, not even desirable). However, to do otherwise
2719 * would require replicating code paths in:
de9a55b8 2720 *
20970ba6 2721 * ext4_writepages() ->
ccd2506b
TT
2722 * write_cache_pages() ---> (via passed in callback function)
2723 * __mpage_da_writepage() -->
2724 * mpage_add_bh_to_extent()
2725 * mpage_da_map_blocks()
2726 *
2727 * The problem is that write_cache_pages(), located in
2728 * mm/page-writeback.c, marks pages clean in preparation for
2729 * doing I/O, which is not desirable if we're not planning on
2730 * doing I/O at all.
2731 *
2732 * We could call write_cache_pages(), and then redirty all of
380cf090 2733 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2734 * would be ugly in the extreme. So instead we would need to
2735 * replicate parts of the code in the above functions,
25985edc 2736 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2737 * write out the pages, but rather only collect contiguous
2738 * logical block extents, call the multi-block allocator, and
2739 * then update the buffer heads with the block allocations.
de9a55b8 2740 *
ccd2506b
TT
2741 * For now, though, we'll cheat by calling filemap_flush(),
2742 * which will map the blocks, and start the I/O, but not
2743 * actually wait for the I/O to complete.
2744 */
2745 return filemap_flush(inode->i_mapping);
2746}
64769240 2747
ac27a0ec
DK
2748/*
2749 * bmap() is special. It gets used by applications such as lilo and by
2750 * the swapper to find the on-disk block of a specific piece of data.
2751 *
2752 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2753 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2754 * filesystem and enables swap, then they may get a nasty shock when the
2755 * data getting swapped to that swapfile suddenly gets overwritten by
2756 * the original zero's written out previously to the journal and
2757 * awaiting writeback in the kernel's buffer cache.
2758 *
2759 * So, if we see any bmap calls here on a modified, data-journaled file,
2760 * take extra steps to flush any blocks which might be in the cache.
2761 */
617ba13b 2762static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2763{
2764 struct inode *inode = mapping->host;
2765 journal_t *journal;
2766 int err;
2767
46c7f254
TM
2768 /*
2769 * We can get here for an inline file via the FIBMAP ioctl
2770 */
2771 if (ext4_has_inline_data(inode))
2772 return 0;
2773
64769240
AT
2774 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2775 test_opt(inode->i_sb, DELALLOC)) {
2776 /*
2777 * With delalloc we want to sync the file
2778 * so that we can make sure we allocate
2779 * blocks for file
2780 */
2781 filemap_write_and_wait(mapping);
2782 }
2783
19f5fb7a
TT
2784 if (EXT4_JOURNAL(inode) &&
2785 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2786 /*
2787 * This is a REALLY heavyweight approach, but the use of
2788 * bmap on dirty files is expected to be extremely rare:
2789 * only if we run lilo or swapon on a freshly made file
2790 * do we expect this to happen.
2791 *
2792 * (bmap requires CAP_SYS_RAWIO so this does not
2793 * represent an unprivileged user DOS attack --- we'd be
2794 * in trouble if mortal users could trigger this path at
2795 * will.)
2796 *
617ba13b 2797 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2798 * regular files. If somebody wants to bmap a directory
2799 * or symlink and gets confused because the buffer
2800 * hasn't yet been flushed to disk, they deserve
2801 * everything they get.
2802 */
2803
19f5fb7a 2804 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2805 journal = EXT4_JOURNAL(inode);
dab291af
MC
2806 jbd2_journal_lock_updates(journal);
2807 err = jbd2_journal_flush(journal);
2808 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2809
2810 if (err)
2811 return 0;
2812 }
2813
af5bc92d 2814 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2815}
2816
617ba13b 2817static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2818{
46c7f254
TM
2819 int ret = -EAGAIN;
2820 struct inode *inode = page->mapping->host;
2821
0562e0ba 2822 trace_ext4_readpage(page);
46c7f254
TM
2823
2824 if (ext4_has_inline_data(inode))
2825 ret = ext4_readpage_inline(inode, page);
2826
2827 if (ret == -EAGAIN)
2828 return mpage_readpage(page, ext4_get_block);
2829
2830 return ret;
ac27a0ec
DK
2831}
2832
2833static int
617ba13b 2834ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2835 struct list_head *pages, unsigned nr_pages)
2836{
46c7f254
TM
2837 struct inode *inode = mapping->host;
2838
2839 /* If the file has inline data, no need to do readpages. */
2840 if (ext4_has_inline_data(inode))
2841 return 0;
2842
617ba13b 2843 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2844}
2845
d47992f8
LC
2846static void ext4_invalidatepage(struct page *page, unsigned int offset,
2847 unsigned int length)
ac27a0ec 2848{
ca99fdd2 2849 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2850
4520fb3c
JK
2851 /* No journalling happens on data buffers when this function is used */
2852 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2853
ca99fdd2 2854 block_invalidatepage(page, offset, length);
4520fb3c
JK
2855}
2856
53e87268 2857static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2858 unsigned int offset,
2859 unsigned int length)
4520fb3c
JK
2860{
2861 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2862
ca99fdd2 2863 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2864
ac27a0ec
DK
2865 /*
2866 * If it's a full truncate we just forget about the pending dirtying
2867 */
ca99fdd2 2868 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2869 ClearPageChecked(page);
2870
ca99fdd2 2871 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2872}
2873
2874/* Wrapper for aops... */
2875static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2876 unsigned int offset,
2877 unsigned int length)
53e87268 2878{
ca99fdd2 2879 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2880}
2881
617ba13b 2882static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2883{
617ba13b 2884 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2885
0562e0ba
JZ
2886 trace_ext4_releasepage(page);
2887
e1c36595
JK
2888 /* Page has dirty journalled data -> cannot release */
2889 if (PageChecked(page))
ac27a0ec 2890 return 0;
0390131b
FM
2891 if (journal)
2892 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2893 else
2894 return try_to_free_buffers(page);
ac27a0ec
DK
2895}
2896
2ed88685
TT
2897/*
2898 * ext4_get_block used when preparing for a DIO write or buffer write.
2899 * We allocate an uinitialized extent if blocks haven't been allocated.
2900 * The extent will be converted to initialized after the IO is complete.
2901 */
f19d5870 2902int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2903 struct buffer_head *bh_result, int create)
2904{
c7064ef1 2905 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2906 inode->i_ino, create);
2ed88685
TT
2907 return _ext4_get_block(inode, iblock, bh_result,
2908 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2909}
2910
729f52c6 2911static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2912 struct buffer_head *bh_result, int create)
729f52c6 2913{
8b0f165f
AP
2914 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2915 inode->i_ino, create);
2916 return _ext4_get_block(inode, iblock, bh_result,
2917 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2918}
2919
4c0425ff 2920static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 2921 ssize_t size, void *private)
4c0425ff
MC
2922{
2923 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2924
97a851ed 2925 /* if not async direct IO just return */
7b7a8665 2926 if (!io_end)
97a851ed 2927 return;
4b70df18 2928
88635ca2 2929 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2930 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2931 iocb->private, io_end->inode->i_ino, iocb, offset,
2932 size);
8d5d02e6 2933
b5a7e970 2934 iocb->private = NULL;
4c0425ff
MC
2935 io_end->offset = offset;
2936 io_end->size = size;
7b7a8665 2937 ext4_put_io_end(io_end);
4c0425ff 2938}
c7064ef1 2939
4c0425ff
MC
2940/*
2941 * For ext4 extent files, ext4 will do direct-io write to holes,
2942 * preallocated extents, and those write extend the file, no need to
2943 * fall back to buffered IO.
2944 *
556615dc 2945 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 2946 * If those blocks were preallocated, we mark sure they are split, but
556615dc 2947 * still keep the range to write as unwritten.
4c0425ff 2948 *
69c499d1 2949 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2950 * For async direct IO, since the IO may still pending when return, we
25985edc 2951 * set up an end_io call back function, which will do the conversion
8d5d02e6 2952 * when async direct IO completed.
4c0425ff
MC
2953 *
2954 * If the O_DIRECT write will extend the file then add this inode to the
2955 * orphan list. So recovery will truncate it back to the original size
2956 * if the machine crashes during the write.
2957 *
2958 */
2959static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
16b1f05d 2960 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
2961{
2962 struct file *file = iocb->ki_filp;
2963 struct inode *inode = file->f_mapping->host;
2964 ssize_t ret;
a6cbcd4a 2965 size_t count = iov_iter_count(iter);
69c499d1
TT
2966 int overwrite = 0;
2967 get_block_t *get_block_func = NULL;
2968 int dio_flags = 0;
4c0425ff 2969 loff_t final_size = offset + count;
97a851ed 2970 ext4_io_end_t *io_end = NULL;
729f52c6 2971
69c499d1
TT
2972 /* Use the old path for reads and writes beyond i_size. */
2973 if (rw != WRITE || final_size > inode->i_size)
16b1f05d 2974 return ext4_ind_direct_IO(rw, iocb, iter, offset);
4bd809db 2975
69c499d1 2976 BUG_ON(iocb->private == NULL);
4bd809db 2977
e8340395
JK
2978 /*
2979 * Make all waiters for direct IO properly wait also for extent
2980 * conversion. This also disallows race between truncate() and
2981 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
2982 */
2983 if (rw == WRITE)
2984 atomic_inc(&inode->i_dio_count);
2985
69c499d1
TT
2986 /* If we do a overwrite dio, i_mutex locking can be released */
2987 overwrite = *((int *)iocb->private);
4bd809db 2988
69c499d1 2989 if (overwrite) {
69c499d1
TT
2990 down_read(&EXT4_I(inode)->i_data_sem);
2991 mutex_unlock(&inode->i_mutex);
2992 }
8d5d02e6 2993
69c499d1
TT
2994 /*
2995 * We could direct write to holes and fallocate.
2996 *
2997 * Allocated blocks to fill the hole are marked as
556615dc 2998 * unwritten to prevent parallel buffered read to expose
69c499d1
TT
2999 * the stale data before DIO complete the data IO.
3000 *
3001 * As to previously fallocated extents, ext4 get_block will
3002 * just simply mark the buffer mapped but still keep the
556615dc 3003 * extents unwritten.
69c499d1
TT
3004 *
3005 * For non AIO case, we will convert those unwritten extents
3006 * to written after return back from blockdev_direct_IO.
3007 *
3008 * For async DIO, the conversion needs to be deferred when the
3009 * IO is completed. The ext4 end_io callback function will be
3010 * called to take care of the conversion work. Here for async
3011 * case, we allocate an io_end structure to hook to the iocb.
3012 */
3013 iocb->private = NULL;
3014 ext4_inode_aio_set(inode, NULL);
3015 if (!is_sync_kiocb(iocb)) {
97a851ed 3016 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3017 if (!io_end) {
3018 ret = -ENOMEM;
3019 goto retake_lock;
8b0f165f 3020 }
97a851ed
JK
3021 /*
3022 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3023 */
3024 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3025 /*
69c499d1
TT
3026 * we save the io structure for current async direct
3027 * IO, so that later ext4_map_blocks() could flag the
3028 * io structure whether there is a unwritten extents
3029 * needs to be converted when IO is completed.
8d5d02e6 3030 */
69c499d1
TT
3031 ext4_inode_aio_set(inode, io_end);
3032 }
4bd809db 3033
69c499d1
TT
3034 if (overwrite) {
3035 get_block_func = ext4_get_block_write_nolock;
3036 } else {
3037 get_block_func = ext4_get_block_write;
3038 dio_flags = DIO_LOCKING;
3039 }
3040 ret = __blockdev_direct_IO(rw, iocb, inode,
31b14039
AV
3041 inode->i_sb->s_bdev, iter,
3042 offset,
69c499d1
TT
3043 get_block_func,
3044 ext4_end_io_dio,
3045 NULL,
3046 dio_flags);
3047
69c499d1 3048 /*
97a851ed
JK
3049 * Put our reference to io_end. This can free the io_end structure e.g.
3050 * in sync IO case or in case of error. It can even perform extent
3051 * conversion if all bios we submitted finished before we got here.
3052 * Note that in that case iocb->private can be already set to NULL
3053 * here.
69c499d1 3054 */
97a851ed
JK
3055 if (io_end) {
3056 ext4_inode_aio_set(inode, NULL);
3057 ext4_put_io_end(io_end);
3058 /*
3059 * When no IO was submitted ext4_end_io_dio() was not
3060 * called so we have to put iocb's reference.
3061 */
3062 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3063 WARN_ON(iocb->private != io_end);
3064 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3065 ext4_put_io_end(io_end);
3066 iocb->private = NULL;
3067 }
3068 }
3069 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3070 EXT4_STATE_DIO_UNWRITTEN)) {
3071 int err;
3072 /*
3073 * for non AIO case, since the IO is already
3074 * completed, we could do the conversion right here
3075 */
6b523df4 3076 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3077 offset, ret);
3078 if (err < 0)
3079 ret = err;
3080 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3081 }
4bd809db 3082
69c499d1 3083retake_lock:
e8340395
JK
3084 if (rw == WRITE)
3085 inode_dio_done(inode);
69c499d1
TT
3086 /* take i_mutex locking again if we do a ovewrite dio */
3087 if (overwrite) {
69c499d1
TT
3088 up_read(&EXT4_I(inode)->i_data_sem);
3089 mutex_lock(&inode->i_mutex);
4c0425ff 3090 }
8d5d02e6 3091
69c499d1 3092 return ret;
4c0425ff
MC
3093}
3094
3095static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 3096 struct iov_iter *iter, loff_t offset)
4c0425ff
MC
3097{
3098 struct file *file = iocb->ki_filp;
3099 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3100 size_t count = iov_iter_count(iter);
0562e0ba 3101 ssize_t ret;
4c0425ff 3102
84ebd795
TT
3103 /*
3104 * If we are doing data journalling we don't support O_DIRECT
3105 */
3106 if (ext4_should_journal_data(inode))
3107 return 0;
3108
46c7f254
TM
3109 /* Let buffer I/O handle the inline data case. */
3110 if (ext4_has_inline_data(inode))
3111 return 0;
3112
a6cbcd4a 3113 trace_ext4_direct_IO_enter(inode, offset, count, rw);
12e9b892 3114 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
16b1f05d 3115 ret = ext4_ext_direct_IO(rw, iocb, iter, offset);
0562e0ba 3116 else
16b1f05d 3117 ret = ext4_ind_direct_IO(rw, iocb, iter, offset);
a6cbcd4a 3118 trace_ext4_direct_IO_exit(inode, offset, count, rw, ret);
0562e0ba 3119 return ret;
4c0425ff
MC
3120}
3121
ac27a0ec 3122/*
617ba13b 3123 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3124 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3125 * much here because ->set_page_dirty is called under VFS locks. The page is
3126 * not necessarily locked.
3127 *
3128 * We cannot just dirty the page and leave attached buffers clean, because the
3129 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3130 * or jbddirty because all the journalling code will explode.
3131 *
3132 * So what we do is to mark the page "pending dirty" and next time writepage
3133 * is called, propagate that into the buffers appropriately.
3134 */
617ba13b 3135static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3136{
3137 SetPageChecked(page);
3138 return __set_page_dirty_nobuffers(page);
3139}
3140
74d553aa 3141static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3142 .readpage = ext4_readpage,
3143 .readpages = ext4_readpages,
43ce1d23 3144 .writepage = ext4_writepage,
20970ba6 3145 .writepages = ext4_writepages,
8ab22b9a 3146 .write_begin = ext4_write_begin,
74d553aa 3147 .write_end = ext4_write_end,
8ab22b9a
HH
3148 .bmap = ext4_bmap,
3149 .invalidatepage = ext4_invalidatepage,
3150 .releasepage = ext4_releasepage,
3151 .direct_IO = ext4_direct_IO,
3152 .migratepage = buffer_migrate_page,
3153 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3154 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3155};
3156
617ba13b 3157static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3158 .readpage = ext4_readpage,
3159 .readpages = ext4_readpages,
43ce1d23 3160 .writepage = ext4_writepage,
20970ba6 3161 .writepages = ext4_writepages,
8ab22b9a
HH
3162 .write_begin = ext4_write_begin,
3163 .write_end = ext4_journalled_write_end,
3164 .set_page_dirty = ext4_journalled_set_page_dirty,
3165 .bmap = ext4_bmap,
4520fb3c 3166 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3167 .releasepage = ext4_releasepage,
84ebd795 3168 .direct_IO = ext4_direct_IO,
8ab22b9a 3169 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3170 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3171};
3172
64769240 3173static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3174 .readpage = ext4_readpage,
3175 .readpages = ext4_readpages,
43ce1d23 3176 .writepage = ext4_writepage,
20970ba6 3177 .writepages = ext4_writepages,
8ab22b9a
HH
3178 .write_begin = ext4_da_write_begin,
3179 .write_end = ext4_da_write_end,
3180 .bmap = ext4_bmap,
3181 .invalidatepage = ext4_da_invalidatepage,
3182 .releasepage = ext4_releasepage,
3183 .direct_IO = ext4_direct_IO,
3184 .migratepage = buffer_migrate_page,
3185 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3186 .error_remove_page = generic_error_remove_page,
64769240
AT
3187};
3188
617ba13b 3189void ext4_set_aops(struct inode *inode)
ac27a0ec 3190{
3d2b1582
LC
3191 switch (ext4_inode_journal_mode(inode)) {
3192 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3193 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3194 break;
3195 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3196 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3197 break;
3198 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3199 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3200 return;
3d2b1582
LC
3201 default:
3202 BUG();
3203 }
74d553aa
TT
3204 if (test_opt(inode->i_sb, DELALLOC))
3205 inode->i_mapping->a_ops = &ext4_da_aops;
3206 else
3207 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3208}
3209
d863dc36
LC
3210/*
3211 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3212 * starting from file offset 'from'. The range to be zero'd must
3213 * be contained with in one block. If the specified range exceeds
3214 * the end of the block it will be shortened to end of the block
3215 * that cooresponds to 'from'
3216 */
94350ab5 3217static int ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3218 struct address_space *mapping, loff_t from, loff_t length)
3219{
3220 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3221 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3222 unsigned blocksize, max, pos;
3223 ext4_lblk_t iblock;
3224 struct inode *inode = mapping->host;
3225 struct buffer_head *bh;
3226 struct page *page;
3227 int err = 0;
3228
3229 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3230 mapping_gfp_mask(mapping) & ~__GFP_FS);
3231 if (!page)
3232 return -ENOMEM;
3233
3234 blocksize = inode->i_sb->s_blocksize;
3235 max = blocksize - (offset & (blocksize - 1));
3236
3237 /*
3238 * correct length if it does not fall between
3239 * 'from' and the end of the block
3240 */
3241 if (length > max || length < 0)
3242 length = max;
3243
3244 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3245
3246 if (!page_has_buffers(page))
3247 create_empty_buffers(page, blocksize, 0);
3248
3249 /* Find the buffer that contains "offset" */
3250 bh = page_buffers(page);
3251 pos = blocksize;
3252 while (offset >= pos) {
3253 bh = bh->b_this_page;
3254 iblock++;
3255 pos += blocksize;
3256 }
d863dc36
LC
3257 if (buffer_freed(bh)) {
3258 BUFFER_TRACE(bh, "freed: skip");
3259 goto unlock;
3260 }
d863dc36
LC
3261 if (!buffer_mapped(bh)) {
3262 BUFFER_TRACE(bh, "unmapped");
3263 ext4_get_block(inode, iblock, bh, 0);
3264 /* unmapped? It's a hole - nothing to do */
3265 if (!buffer_mapped(bh)) {
3266 BUFFER_TRACE(bh, "still unmapped");
3267 goto unlock;
3268 }
3269 }
3270
3271 /* Ok, it's mapped. Make sure it's up-to-date */
3272 if (PageUptodate(page))
3273 set_buffer_uptodate(bh);
3274
3275 if (!buffer_uptodate(bh)) {
3276 err = -EIO;
3277 ll_rw_block(READ, 1, &bh);
3278 wait_on_buffer(bh);
3279 /* Uhhuh. Read error. Complain and punt. */
3280 if (!buffer_uptodate(bh))
3281 goto unlock;
3282 }
d863dc36
LC
3283 if (ext4_should_journal_data(inode)) {
3284 BUFFER_TRACE(bh, "get write access");
3285 err = ext4_journal_get_write_access(handle, bh);
3286 if (err)
3287 goto unlock;
3288 }
d863dc36 3289 zero_user(page, offset, length);
d863dc36
LC
3290 BUFFER_TRACE(bh, "zeroed end of block");
3291
d863dc36
LC
3292 if (ext4_should_journal_data(inode)) {
3293 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3294 } else {
353eefd3 3295 err = 0;
d863dc36 3296 mark_buffer_dirty(bh);
0713ed0c
LC
3297 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3298 err = ext4_jbd2_file_inode(handle, inode);
3299 }
d863dc36
LC
3300
3301unlock:
3302 unlock_page(page);
3303 page_cache_release(page);
3304 return err;
3305}
3306
94350ab5
MW
3307/*
3308 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3309 * up to the end of the block which corresponds to `from'.
3310 * This required during truncate. We need to physically zero the tail end
3311 * of that block so it doesn't yield old data if the file is later grown.
3312 */
c197855e 3313static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3314 struct address_space *mapping, loff_t from)
3315{
3316 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3317 unsigned length;
3318 unsigned blocksize;
3319 struct inode *inode = mapping->host;
3320
3321 blocksize = inode->i_sb->s_blocksize;
3322 length = blocksize - (offset & (blocksize - 1));
3323
3324 return ext4_block_zero_page_range(handle, mapping, from, length);
3325}
3326
a87dd18c
LC
3327int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3328 loff_t lstart, loff_t length)
3329{
3330 struct super_block *sb = inode->i_sb;
3331 struct address_space *mapping = inode->i_mapping;
e1be3a92 3332 unsigned partial_start, partial_end;
a87dd18c
LC
3333 ext4_fsblk_t start, end;
3334 loff_t byte_end = (lstart + length - 1);
3335 int err = 0;
3336
e1be3a92
LC
3337 partial_start = lstart & (sb->s_blocksize - 1);
3338 partial_end = byte_end & (sb->s_blocksize - 1);
3339
a87dd18c
LC
3340 start = lstart >> sb->s_blocksize_bits;
3341 end = byte_end >> sb->s_blocksize_bits;
3342
3343 /* Handle partial zero within the single block */
e1be3a92
LC
3344 if (start == end &&
3345 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3346 err = ext4_block_zero_page_range(handle, mapping,
3347 lstart, length);
3348 return err;
3349 }
3350 /* Handle partial zero out on the start of the range */
e1be3a92 3351 if (partial_start) {
a87dd18c
LC
3352 err = ext4_block_zero_page_range(handle, mapping,
3353 lstart, sb->s_blocksize);
3354 if (err)
3355 return err;
3356 }
3357 /* Handle partial zero out on the end of the range */
e1be3a92 3358 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3359 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3360 byte_end - partial_end,
3361 partial_end + 1);
a87dd18c
LC
3362 return err;
3363}
3364
91ef4caf
DG
3365int ext4_can_truncate(struct inode *inode)
3366{
91ef4caf
DG
3367 if (S_ISREG(inode->i_mode))
3368 return 1;
3369 if (S_ISDIR(inode->i_mode))
3370 return 1;
3371 if (S_ISLNK(inode->i_mode))
3372 return !ext4_inode_is_fast_symlink(inode);
3373 return 0;
3374}
3375
a4bb6b64
AH
3376/*
3377 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3378 * associated with the given offset and length
3379 *
3380 * @inode: File inode
3381 * @offset: The offset where the hole will begin
3382 * @len: The length of the hole
3383 *
4907cb7b 3384 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3385 */
3386
aeb2817a 3387int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3388{
26a4c0c6
TT
3389 struct super_block *sb = inode->i_sb;
3390 ext4_lblk_t first_block, stop_block;
3391 struct address_space *mapping = inode->i_mapping;
a87dd18c 3392 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3393 handle_t *handle;
3394 unsigned int credits;
3395 int ret = 0;
3396
a4bb6b64 3397 if (!S_ISREG(inode->i_mode))
73355192 3398 return -EOPNOTSUPP;
a4bb6b64 3399
b8a86845 3400 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3401
26a4c0c6
TT
3402 /*
3403 * Write out all dirty pages to avoid race conditions
3404 * Then release them.
3405 */
3406 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3407 ret = filemap_write_and_wait_range(mapping, offset,
3408 offset + length - 1);
3409 if (ret)
3410 return ret;
3411 }
3412
3413 mutex_lock(&inode->i_mutex);
9ef06cec 3414
26a4c0c6
TT
3415 /* No need to punch hole beyond i_size */
3416 if (offset >= inode->i_size)
3417 goto out_mutex;
3418
3419 /*
3420 * If the hole extends beyond i_size, set the hole
3421 * to end after the page that contains i_size
3422 */
3423 if (offset + length > inode->i_size) {
3424 length = inode->i_size +
3425 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3426 offset;
3427 }
3428
a361293f
JK
3429 if (offset & (sb->s_blocksize - 1) ||
3430 (offset + length) & (sb->s_blocksize - 1)) {
3431 /*
3432 * Attach jinode to inode for jbd2 if we do any zeroing of
3433 * partial block
3434 */
3435 ret = ext4_inode_attach_jinode(inode);
3436 if (ret < 0)
3437 goto out_mutex;
3438
3439 }
3440
a87dd18c
LC
3441 first_block_offset = round_up(offset, sb->s_blocksize);
3442 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3443
a87dd18c
LC
3444 /* Now release the pages and zero block aligned part of pages*/
3445 if (last_block_offset > first_block_offset)
3446 truncate_pagecache_range(inode, first_block_offset,
3447 last_block_offset);
26a4c0c6
TT
3448
3449 /* Wait all existing dio workers, newcomers will block on i_mutex */
3450 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3451 inode_dio_wait(inode);
3452
3453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3454 credits = ext4_writepage_trans_blocks(inode);
3455 else
3456 credits = ext4_blocks_for_truncate(inode);
3457 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3458 if (IS_ERR(handle)) {
3459 ret = PTR_ERR(handle);
3460 ext4_std_error(sb, ret);
3461 goto out_dio;
3462 }
3463
a87dd18c
LC
3464 ret = ext4_zero_partial_blocks(handle, inode, offset,
3465 length);
3466 if (ret)
3467 goto out_stop;
26a4c0c6
TT
3468
3469 first_block = (offset + sb->s_blocksize - 1) >>
3470 EXT4_BLOCK_SIZE_BITS(sb);
3471 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3472
3473 /* If there are no blocks to remove, return now */
3474 if (first_block >= stop_block)
3475 goto out_stop;
3476
3477 down_write(&EXT4_I(inode)->i_data_sem);
3478 ext4_discard_preallocations(inode);
3479
3480 ret = ext4_es_remove_extent(inode, first_block,
3481 stop_block - first_block);
3482 if (ret) {
3483 up_write(&EXT4_I(inode)->i_data_sem);
3484 goto out_stop;
3485 }
3486
3487 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3488 ret = ext4_ext_remove_space(inode, first_block,
3489 stop_block - 1);
3490 else
4f579ae7 3491 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3492 stop_block);
3493
819c4920 3494 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3495 if (IS_SYNC(inode))
3496 ext4_handle_sync(handle);
e251f9bc
MP
3497
3498 /* Now release the pages again to reduce race window */
3499 if (last_block_offset > first_block_offset)
3500 truncate_pagecache_range(inode, first_block_offset,
3501 last_block_offset);
3502
26a4c0c6
TT
3503 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3504 ext4_mark_inode_dirty(handle, inode);
3505out_stop:
3506 ext4_journal_stop(handle);
3507out_dio:
3508 ext4_inode_resume_unlocked_dio(inode);
3509out_mutex:
3510 mutex_unlock(&inode->i_mutex);
3511 return ret;
a4bb6b64
AH
3512}
3513
a361293f
JK
3514int ext4_inode_attach_jinode(struct inode *inode)
3515{
3516 struct ext4_inode_info *ei = EXT4_I(inode);
3517 struct jbd2_inode *jinode;
3518
3519 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3520 return 0;
3521
3522 jinode = jbd2_alloc_inode(GFP_KERNEL);
3523 spin_lock(&inode->i_lock);
3524 if (!ei->jinode) {
3525 if (!jinode) {
3526 spin_unlock(&inode->i_lock);
3527 return -ENOMEM;
3528 }
3529 ei->jinode = jinode;
3530 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3531 jinode = NULL;
3532 }
3533 spin_unlock(&inode->i_lock);
3534 if (unlikely(jinode != NULL))
3535 jbd2_free_inode(jinode);
3536 return 0;
3537}
3538
ac27a0ec 3539/*
617ba13b 3540 * ext4_truncate()
ac27a0ec 3541 *
617ba13b
MC
3542 * We block out ext4_get_block() block instantiations across the entire
3543 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3544 * simultaneously on behalf of the same inode.
3545 *
42b2aa86 3546 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3547 * is one core, guiding principle: the file's tree must always be consistent on
3548 * disk. We must be able to restart the truncate after a crash.
3549 *
3550 * The file's tree may be transiently inconsistent in memory (although it
3551 * probably isn't), but whenever we close off and commit a journal transaction,
3552 * the contents of (the filesystem + the journal) must be consistent and
3553 * restartable. It's pretty simple, really: bottom up, right to left (although
3554 * left-to-right works OK too).
3555 *
3556 * Note that at recovery time, journal replay occurs *before* the restart of
3557 * truncate against the orphan inode list.
3558 *
3559 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3560 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3561 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3562 * ext4_truncate() to have another go. So there will be instantiated blocks
3563 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3564 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3565 * ext4_truncate() run will find them and release them.
ac27a0ec 3566 */
617ba13b 3567void ext4_truncate(struct inode *inode)
ac27a0ec 3568{
819c4920
TT
3569 struct ext4_inode_info *ei = EXT4_I(inode);
3570 unsigned int credits;
3571 handle_t *handle;
3572 struct address_space *mapping = inode->i_mapping;
819c4920 3573
19b5ef61
TT
3574 /*
3575 * There is a possibility that we're either freeing the inode
e04027e8 3576 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3577 * have i_mutex locked because it's not necessary.
3578 */
3579 if (!(inode->i_state & (I_NEW|I_FREEING)))
3580 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3581 trace_ext4_truncate_enter(inode);
3582
91ef4caf 3583 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3584 return;
3585
12e9b892 3586 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3587
5534fb5b 3588 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3589 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3590
aef1c851
TM
3591 if (ext4_has_inline_data(inode)) {
3592 int has_inline = 1;
3593
3594 ext4_inline_data_truncate(inode, &has_inline);
3595 if (has_inline)
3596 return;
3597 }
3598
a361293f
JK
3599 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3600 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3601 if (ext4_inode_attach_jinode(inode) < 0)
3602 return;
3603 }
3604
819c4920
TT
3605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3606 credits = ext4_writepage_trans_blocks(inode);
3607 else
3608 credits = ext4_blocks_for_truncate(inode);
3609
3610 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3611 if (IS_ERR(handle)) {
3612 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3613 return;
3614 }
3615
eb3544c6
LC
3616 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3617 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3618
3619 /*
3620 * We add the inode to the orphan list, so that if this
3621 * truncate spans multiple transactions, and we crash, we will
3622 * resume the truncate when the filesystem recovers. It also
3623 * marks the inode dirty, to catch the new size.
3624 *
3625 * Implication: the file must always be in a sane, consistent
3626 * truncatable state while each transaction commits.
3627 */
3628 if (ext4_orphan_add(handle, inode))
3629 goto out_stop;
3630
3631 down_write(&EXT4_I(inode)->i_data_sem);
3632
3633 ext4_discard_preallocations(inode);
3634
ff9893dc 3635 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3636 ext4_ext_truncate(handle, inode);
ff9893dc 3637 else
819c4920
TT
3638 ext4_ind_truncate(handle, inode);
3639
3640 up_write(&ei->i_data_sem);
3641
3642 if (IS_SYNC(inode))
3643 ext4_handle_sync(handle);
3644
3645out_stop:
3646 /*
3647 * If this was a simple ftruncate() and the file will remain alive,
3648 * then we need to clear up the orphan record which we created above.
3649 * However, if this was a real unlink then we were called by
3650 * ext4_delete_inode(), and we allow that function to clean up the
3651 * orphan info for us.
3652 */
3653 if (inode->i_nlink)
3654 ext4_orphan_del(handle, inode);
3655
3656 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3657 ext4_mark_inode_dirty(handle, inode);
3658 ext4_journal_stop(handle);
ac27a0ec 3659
0562e0ba 3660 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3661}
3662
ac27a0ec 3663/*
617ba13b 3664 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3665 * underlying buffer_head on success. If 'in_mem' is true, we have all
3666 * data in memory that is needed to recreate the on-disk version of this
3667 * inode.
3668 */
617ba13b
MC
3669static int __ext4_get_inode_loc(struct inode *inode,
3670 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3671{
240799cd
TT
3672 struct ext4_group_desc *gdp;
3673 struct buffer_head *bh;
3674 struct super_block *sb = inode->i_sb;
3675 ext4_fsblk_t block;
3676 int inodes_per_block, inode_offset;
3677
3a06d778 3678 iloc->bh = NULL;
240799cd
TT
3679 if (!ext4_valid_inum(sb, inode->i_ino))
3680 return -EIO;
ac27a0ec 3681
240799cd
TT
3682 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3683 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3684 if (!gdp)
ac27a0ec
DK
3685 return -EIO;
3686
240799cd
TT
3687 /*
3688 * Figure out the offset within the block group inode table
3689 */
00d09882 3690 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3691 inode_offset = ((inode->i_ino - 1) %
3692 EXT4_INODES_PER_GROUP(sb));
3693 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3694 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3695
3696 bh = sb_getblk(sb, block);
aebf0243 3697 if (unlikely(!bh))
860d21e2 3698 return -ENOMEM;
ac27a0ec
DK
3699 if (!buffer_uptodate(bh)) {
3700 lock_buffer(bh);
9c83a923
HK
3701
3702 /*
3703 * If the buffer has the write error flag, we have failed
3704 * to write out another inode in the same block. In this
3705 * case, we don't have to read the block because we may
3706 * read the old inode data successfully.
3707 */
3708 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3709 set_buffer_uptodate(bh);
3710
ac27a0ec
DK
3711 if (buffer_uptodate(bh)) {
3712 /* someone brought it uptodate while we waited */
3713 unlock_buffer(bh);
3714 goto has_buffer;
3715 }
3716
3717 /*
3718 * If we have all information of the inode in memory and this
3719 * is the only valid inode in the block, we need not read the
3720 * block.
3721 */
3722 if (in_mem) {
3723 struct buffer_head *bitmap_bh;
240799cd 3724 int i, start;
ac27a0ec 3725
240799cd 3726 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3727
240799cd
TT
3728 /* Is the inode bitmap in cache? */
3729 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3730 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3731 goto make_io;
3732
3733 /*
3734 * If the inode bitmap isn't in cache then the
3735 * optimisation may end up performing two reads instead
3736 * of one, so skip it.
3737 */
3738 if (!buffer_uptodate(bitmap_bh)) {
3739 brelse(bitmap_bh);
3740 goto make_io;
3741 }
240799cd 3742 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3743 if (i == inode_offset)
3744 continue;
617ba13b 3745 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3746 break;
3747 }
3748 brelse(bitmap_bh);
240799cd 3749 if (i == start + inodes_per_block) {
ac27a0ec
DK
3750 /* all other inodes are free, so skip I/O */
3751 memset(bh->b_data, 0, bh->b_size);
3752 set_buffer_uptodate(bh);
3753 unlock_buffer(bh);
3754 goto has_buffer;
3755 }
3756 }
3757
3758make_io:
240799cd
TT
3759 /*
3760 * If we need to do any I/O, try to pre-readahead extra
3761 * blocks from the inode table.
3762 */
3763 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3764 ext4_fsblk_t b, end, table;
3765 unsigned num;
0d606e2c 3766 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3767
3768 table = ext4_inode_table(sb, gdp);
b713a5ec 3769 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3770 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3771 if (table > b)
3772 b = table;
0d606e2c 3773 end = b + ra_blks;
240799cd 3774 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3775 if (ext4_has_group_desc_csum(sb))
560671a0 3776 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3777 table += num / inodes_per_block;
3778 if (end > table)
3779 end = table;
3780 while (b <= end)
3781 sb_breadahead(sb, b++);
3782 }
3783
ac27a0ec
DK
3784 /*
3785 * There are other valid inodes in the buffer, this inode
3786 * has in-inode xattrs, or we don't have this inode in memory.
3787 * Read the block from disk.
3788 */
0562e0ba 3789 trace_ext4_load_inode(inode);
ac27a0ec
DK
3790 get_bh(bh);
3791 bh->b_end_io = end_buffer_read_sync;
65299a3b 3792 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3793 wait_on_buffer(bh);
3794 if (!buffer_uptodate(bh)) {
c398eda0
TT
3795 EXT4_ERROR_INODE_BLOCK(inode, block,
3796 "unable to read itable block");
ac27a0ec
DK
3797 brelse(bh);
3798 return -EIO;
3799 }
3800 }
3801has_buffer:
3802 iloc->bh = bh;
3803 return 0;
3804}
3805
617ba13b 3806int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3807{
3808 /* We have all inode data except xattrs in memory here. */
617ba13b 3809 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3810 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3811}
3812
617ba13b 3813void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3814{
617ba13b 3815 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 3816 unsigned int new_fl = 0;
ac27a0ec 3817
617ba13b 3818 if (flags & EXT4_SYNC_FL)
00a1a053 3819 new_fl |= S_SYNC;
617ba13b 3820 if (flags & EXT4_APPEND_FL)
00a1a053 3821 new_fl |= S_APPEND;
617ba13b 3822 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 3823 new_fl |= S_IMMUTABLE;
617ba13b 3824 if (flags & EXT4_NOATIME_FL)
00a1a053 3825 new_fl |= S_NOATIME;
617ba13b 3826 if (flags & EXT4_DIRSYNC_FL)
00a1a053 3827 new_fl |= S_DIRSYNC;
5f16f322
TT
3828 inode_set_flags(inode, new_fl,
3829 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
ac27a0ec
DK
3830}
3831
ff9ddf7e
JK
3832/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3833void ext4_get_inode_flags(struct ext4_inode_info *ei)
3834{
84a8dce2
DM
3835 unsigned int vfs_fl;
3836 unsigned long old_fl, new_fl;
3837
3838 do {
3839 vfs_fl = ei->vfs_inode.i_flags;
3840 old_fl = ei->i_flags;
3841 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3842 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3843 EXT4_DIRSYNC_FL);
3844 if (vfs_fl & S_SYNC)
3845 new_fl |= EXT4_SYNC_FL;
3846 if (vfs_fl & S_APPEND)
3847 new_fl |= EXT4_APPEND_FL;
3848 if (vfs_fl & S_IMMUTABLE)
3849 new_fl |= EXT4_IMMUTABLE_FL;
3850 if (vfs_fl & S_NOATIME)
3851 new_fl |= EXT4_NOATIME_FL;
3852 if (vfs_fl & S_DIRSYNC)
3853 new_fl |= EXT4_DIRSYNC_FL;
3854 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3855}
de9a55b8 3856
0fc1b451 3857static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3858 struct ext4_inode_info *ei)
0fc1b451
AK
3859{
3860 blkcnt_t i_blocks ;
8180a562
AK
3861 struct inode *inode = &(ei->vfs_inode);
3862 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3863
3864 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3865 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3866 /* we are using combined 48 bit field */
3867 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3868 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3869 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3870 /* i_blocks represent file system block size */
3871 return i_blocks << (inode->i_blkbits - 9);
3872 } else {
3873 return i_blocks;
3874 }
0fc1b451
AK
3875 } else {
3876 return le32_to_cpu(raw_inode->i_blocks_lo);
3877 }
3878}
ff9ddf7e 3879
152a7b0a
TM
3880static inline void ext4_iget_extra_inode(struct inode *inode,
3881 struct ext4_inode *raw_inode,
3882 struct ext4_inode_info *ei)
3883{
3884 __le32 *magic = (void *)raw_inode +
3885 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3886 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3887 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3888 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3889 } else
3890 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3891}
3892
1d1fe1ee 3893struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3894{
617ba13b
MC
3895 struct ext4_iloc iloc;
3896 struct ext4_inode *raw_inode;
1d1fe1ee 3897 struct ext4_inode_info *ei;
1d1fe1ee 3898 struct inode *inode;
b436b9be 3899 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3900 long ret;
ac27a0ec 3901 int block;
08cefc7a
EB
3902 uid_t i_uid;
3903 gid_t i_gid;
ac27a0ec 3904
1d1fe1ee
DH
3905 inode = iget_locked(sb, ino);
3906 if (!inode)
3907 return ERR_PTR(-ENOMEM);
3908 if (!(inode->i_state & I_NEW))
3909 return inode;
3910
3911 ei = EXT4_I(inode);
7dc57615 3912 iloc.bh = NULL;
ac27a0ec 3913
1d1fe1ee
DH
3914 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3915 if (ret < 0)
ac27a0ec 3916 goto bad_inode;
617ba13b 3917 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3918
3919 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3920 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3921 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3922 EXT4_INODE_SIZE(inode->i_sb)) {
3923 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3924 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3925 EXT4_INODE_SIZE(inode->i_sb));
3926 ret = -EIO;
3927 goto bad_inode;
3928 }
3929 } else
3930 ei->i_extra_isize = 0;
3931
3932 /* Precompute checksum seed for inode metadata */
3933 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3934 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3935 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3936 __u32 csum;
3937 __le32 inum = cpu_to_le32(inode->i_ino);
3938 __le32 gen = raw_inode->i_generation;
3939 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3940 sizeof(inum));
3941 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3942 sizeof(gen));
3943 }
3944
3945 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3946 EXT4_ERROR_INODE(inode, "checksum invalid");
3947 ret = -EIO;
3948 goto bad_inode;
3949 }
3950
ac27a0ec 3951 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3952 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3953 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3954 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3955 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3956 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3957 }
08cefc7a
EB
3958 i_uid_write(inode, i_uid);
3959 i_gid_write(inode, i_gid);
bfe86848 3960 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3961
353eb83c 3962 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3963 ei->i_inline_off = 0;
ac27a0ec
DK
3964 ei->i_dir_start_lookup = 0;
3965 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3966 /* We now have enough fields to check if the inode was active or not.
3967 * This is needed because nfsd might try to access dead inodes
3968 * the test is that same one that e2fsck uses
3969 * NeilBrown 1999oct15
3970 */
3971 if (inode->i_nlink == 0) {
393d1d1d
DTB
3972 if ((inode->i_mode == 0 ||
3973 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3974 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3975 /* this inode is deleted */
1d1fe1ee 3976 ret = -ESTALE;
ac27a0ec
DK
3977 goto bad_inode;
3978 }
3979 /* The only unlinked inodes we let through here have
3980 * valid i_mode and are being read by the orphan
3981 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
3982 * the process of deleting those.
3983 * OR it is the EXT4_BOOT_LOADER_INO which is
3984 * not initialized on a new filesystem. */
ac27a0ec 3985 }
ac27a0ec 3986 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3987 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3988 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3989 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3990 ei->i_file_acl |=
3991 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3992 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3993 ei->i_disksize = inode->i_size;
a9e7f447
DM
3994#ifdef CONFIG_QUOTA
3995 ei->i_reserved_quota = 0;
3996#endif
ac27a0ec
DK
3997 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3998 ei->i_block_group = iloc.block_group;
a4912123 3999 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4000 /*
4001 * NOTE! The in-memory inode i_data array is in little-endian order
4002 * even on big-endian machines: we do NOT byteswap the block numbers!
4003 */
617ba13b 4004 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4005 ei->i_data[block] = raw_inode->i_block[block];
4006 INIT_LIST_HEAD(&ei->i_orphan);
4007
b436b9be
JK
4008 /*
4009 * Set transaction id's of transactions that have to be committed
4010 * to finish f[data]sync. We set them to currently running transaction
4011 * as we cannot be sure that the inode or some of its metadata isn't
4012 * part of the transaction - the inode could have been reclaimed and
4013 * now it is reread from disk.
4014 */
4015 if (journal) {
4016 transaction_t *transaction;
4017 tid_t tid;
4018
a931da6a 4019 read_lock(&journal->j_state_lock);
b436b9be
JK
4020 if (journal->j_running_transaction)
4021 transaction = journal->j_running_transaction;
4022 else
4023 transaction = journal->j_committing_transaction;
4024 if (transaction)
4025 tid = transaction->t_tid;
4026 else
4027 tid = journal->j_commit_sequence;
a931da6a 4028 read_unlock(&journal->j_state_lock);
b436b9be
JK
4029 ei->i_sync_tid = tid;
4030 ei->i_datasync_tid = tid;
4031 }
4032
0040d987 4033 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4034 if (ei->i_extra_isize == 0) {
4035 /* The extra space is currently unused. Use it. */
617ba13b
MC
4036 ei->i_extra_isize = sizeof(struct ext4_inode) -
4037 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4038 } else {
152a7b0a 4039 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4040 }
814525f4 4041 }
ac27a0ec 4042
ef7f3835
KS
4043 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4044 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4045 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4046 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4047
ed3654eb 4048 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4049 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4050 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4051 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4052 inode->i_version |=
4053 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4054 }
25ec56b5
JNC
4055 }
4056
c4b5a614 4057 ret = 0;
485c26ec 4058 if (ei->i_file_acl &&
1032988c 4059 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4060 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4061 ei->i_file_acl);
485c26ec
TT
4062 ret = -EIO;
4063 goto bad_inode;
f19d5870
TM
4064 } else if (!ext4_has_inline_data(inode)) {
4065 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4066 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4067 (S_ISLNK(inode->i_mode) &&
4068 !ext4_inode_is_fast_symlink(inode))))
4069 /* Validate extent which is part of inode */
4070 ret = ext4_ext_check_inode(inode);
4071 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4072 (S_ISLNK(inode->i_mode) &&
4073 !ext4_inode_is_fast_symlink(inode))) {
4074 /* Validate block references which are part of inode */
4075 ret = ext4_ind_check_inode(inode);
4076 }
fe2c8191 4077 }
567f3e9a 4078 if (ret)
de9a55b8 4079 goto bad_inode;
7a262f7c 4080
ac27a0ec 4081 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4082 inode->i_op = &ext4_file_inode_operations;
4083 inode->i_fop = &ext4_file_operations;
4084 ext4_set_aops(inode);
ac27a0ec 4085 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4086 inode->i_op = &ext4_dir_inode_operations;
4087 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4088 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4089 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4090 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4091 nd_terminate_link(ei->i_data, inode->i_size,
4092 sizeof(ei->i_data) - 1);
4093 } else {
617ba13b
MC
4094 inode->i_op = &ext4_symlink_inode_operations;
4095 ext4_set_aops(inode);
ac27a0ec 4096 }
563bdd61
TT
4097 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4098 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4099 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4100 if (raw_inode->i_block[0])
4101 init_special_inode(inode, inode->i_mode,
4102 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4103 else
4104 init_special_inode(inode, inode->i_mode,
4105 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4106 } else if (ino == EXT4_BOOT_LOADER_INO) {
4107 make_bad_inode(inode);
563bdd61 4108 } else {
563bdd61 4109 ret = -EIO;
24676da4 4110 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4111 goto bad_inode;
ac27a0ec 4112 }
af5bc92d 4113 brelse(iloc.bh);
617ba13b 4114 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4115 unlock_new_inode(inode);
4116 return inode;
ac27a0ec
DK
4117
4118bad_inode:
567f3e9a 4119 brelse(iloc.bh);
1d1fe1ee
DH
4120 iget_failed(inode);
4121 return ERR_PTR(ret);
ac27a0ec
DK
4122}
4123
0fc1b451
AK
4124static int ext4_inode_blocks_set(handle_t *handle,
4125 struct ext4_inode *raw_inode,
4126 struct ext4_inode_info *ei)
4127{
4128 struct inode *inode = &(ei->vfs_inode);
4129 u64 i_blocks = inode->i_blocks;
4130 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4131
4132 if (i_blocks <= ~0U) {
4133 /*
4907cb7b 4134 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4135 * as multiple of 512 bytes
4136 */
8180a562 4137 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4138 raw_inode->i_blocks_high = 0;
84a8dce2 4139 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4140 return 0;
4141 }
4142 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4143 return -EFBIG;
4144
4145 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4146 /*
4147 * i_blocks can be represented in a 48 bit variable
4148 * as multiple of 512 bytes
4149 */
8180a562 4150 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4151 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4152 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4153 } else {
84a8dce2 4154 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4155 /* i_block is stored in file system block size */
4156 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4157 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4158 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4159 }
f287a1a5 4160 return 0;
0fc1b451
AK
4161}
4162
ac27a0ec
DK
4163/*
4164 * Post the struct inode info into an on-disk inode location in the
4165 * buffer-cache. This gobbles the caller's reference to the
4166 * buffer_head in the inode location struct.
4167 *
4168 * The caller must have write access to iloc->bh.
4169 */
617ba13b 4170static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4171 struct inode *inode,
830156c7 4172 struct ext4_iloc *iloc)
ac27a0ec 4173{
617ba13b
MC
4174 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4175 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4176 struct buffer_head *bh = iloc->bh;
202ee5df 4177 struct super_block *sb = inode->i_sb;
ac27a0ec 4178 int err = 0, rc, block;
202ee5df 4179 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4180 uid_t i_uid;
4181 gid_t i_gid;
ac27a0ec 4182
202ee5df
TT
4183 spin_lock(&ei->i_raw_lock);
4184
4185 /* For fields not tracked in the in-memory inode,
ac27a0ec 4186 * initialise them to zero for new inodes. */
19f5fb7a 4187 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4188 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4189
ff9ddf7e 4190 ext4_get_inode_flags(ei);
ac27a0ec 4191 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4192 i_uid = i_uid_read(inode);
4193 i_gid = i_gid_read(inode);
af5bc92d 4194 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4195 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4196 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4197/*
4198 * Fix up interoperability with old kernels. Otherwise, old inodes get
4199 * re-used with the upper 16 bits of the uid/gid intact
4200 */
af5bc92d 4201 if (!ei->i_dtime) {
ac27a0ec 4202 raw_inode->i_uid_high =
08cefc7a 4203 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4204 raw_inode->i_gid_high =
08cefc7a 4205 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4206 } else {
4207 raw_inode->i_uid_high = 0;
4208 raw_inode->i_gid_high = 0;
4209 }
4210 } else {
08cefc7a
EB
4211 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4212 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4213 raw_inode->i_uid_high = 0;
4214 raw_inode->i_gid_high = 0;
4215 }
4216 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4217
4218 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4219 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4220 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4221 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4222
202ee5df
TT
4223 if (ext4_inode_blocks_set(handle, raw_inode, ei)) {
4224 spin_unlock(&ei->i_raw_lock);
0fc1b451 4225 goto out_brelse;
202ee5df 4226 }
ac27a0ec 4227 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4228 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4229 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4230 raw_inode->i_file_acl_high =
4231 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4232 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4233 if (ei->i_disksize != ext4_isize(raw_inode)) {
4234 ext4_isize_set(raw_inode, ei->i_disksize);
4235 need_datasync = 1;
4236 }
a48380f7 4237 if (ei->i_disksize > 0x7fffffffULL) {
a48380f7
AK
4238 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4239 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4240 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4241 cpu_to_le32(EXT4_GOOD_OLD_REV))
4242 set_large_file = 1;
ac27a0ec
DK
4243 }
4244 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4245 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4246 if (old_valid_dev(inode->i_rdev)) {
4247 raw_inode->i_block[0] =
4248 cpu_to_le32(old_encode_dev(inode->i_rdev));
4249 raw_inode->i_block[1] = 0;
4250 } else {
4251 raw_inode->i_block[0] = 0;
4252 raw_inode->i_block[1] =
4253 cpu_to_le32(new_encode_dev(inode->i_rdev));
4254 raw_inode->i_block[2] = 0;
4255 }
f19d5870 4256 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4257 for (block = 0; block < EXT4_N_BLOCKS; block++)
4258 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4259 }
ac27a0ec 4260
ed3654eb 4261 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4262 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4263 if (ei->i_extra_isize) {
4264 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4265 raw_inode->i_version_hi =
4266 cpu_to_le32(inode->i_version >> 32);
4267 raw_inode->i_extra_isize =
4268 cpu_to_le16(ei->i_extra_isize);
4269 }
25ec56b5
JNC
4270 }
4271
814525f4
DW
4272 ext4_inode_csum_set(inode, raw_inode, ei);
4273
202ee5df
TT
4274 spin_unlock(&ei->i_raw_lock);
4275
830156c7 4276 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4277 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4278 if (!err)
4279 err = rc;
19f5fb7a 4280 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4281 if (set_large_file) {
5d601255 4282 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4283 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4284 if (err)
4285 goto out_brelse;
4286 ext4_update_dynamic_rev(sb);
4287 EXT4_SET_RO_COMPAT_FEATURE(sb,
4288 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4289 ext4_handle_sync(handle);
4290 err = ext4_handle_dirty_super(handle, sb);
4291 }
b71fc079 4292 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4293out_brelse:
af5bc92d 4294 brelse(bh);
617ba13b 4295 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4296 return err;
4297}
4298
4299/*
617ba13b 4300 * ext4_write_inode()
ac27a0ec
DK
4301 *
4302 * We are called from a few places:
4303 *
87f7e416 4304 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4305 * Here, there will be no transaction running. We wait for any running
4907cb7b 4306 * transaction to commit.
ac27a0ec 4307 *
87f7e416
TT
4308 * - Within flush work (sys_sync(), kupdate and such).
4309 * We wait on commit, if told to.
ac27a0ec 4310 *
87f7e416
TT
4311 * - Within iput_final() -> write_inode_now()
4312 * We wait on commit, if told to.
ac27a0ec
DK
4313 *
4314 * In all cases it is actually safe for us to return without doing anything,
4315 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4316 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4317 * writeback.
ac27a0ec
DK
4318 *
4319 * Note that we are absolutely dependent upon all inode dirtiers doing the
4320 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4321 * which we are interested.
4322 *
4323 * It would be a bug for them to not do this. The code:
4324 *
4325 * mark_inode_dirty(inode)
4326 * stuff();
4327 * inode->i_size = expr;
4328 *
87f7e416
TT
4329 * is in error because write_inode() could occur while `stuff()' is running,
4330 * and the new i_size will be lost. Plus the inode will no longer be on the
4331 * superblock's dirty inode list.
ac27a0ec 4332 */
a9185b41 4333int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4334{
91ac6f43
FM
4335 int err;
4336
87f7e416 4337 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4338 return 0;
4339
91ac6f43
FM
4340 if (EXT4_SB(inode->i_sb)->s_journal) {
4341 if (ext4_journal_current_handle()) {
4342 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4343 dump_stack();
4344 return -EIO;
4345 }
ac27a0ec 4346
10542c22
JK
4347 /*
4348 * No need to force transaction in WB_SYNC_NONE mode. Also
4349 * ext4_sync_fs() will force the commit after everything is
4350 * written.
4351 */
4352 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4353 return 0;
4354
4355 err = ext4_force_commit(inode->i_sb);
4356 } else {
4357 struct ext4_iloc iloc;
ac27a0ec 4358
8b472d73 4359 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4360 if (err)
4361 return err;
10542c22
JK
4362 /*
4363 * sync(2) will flush the whole buffer cache. No need to do
4364 * it here separately for each inode.
4365 */
4366 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4367 sync_dirty_buffer(iloc.bh);
4368 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4369 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4370 "IO error syncing inode");
830156c7
FM
4371 err = -EIO;
4372 }
fd2dd9fb 4373 brelse(iloc.bh);
91ac6f43
FM
4374 }
4375 return err;
ac27a0ec
DK
4376}
4377
53e87268
JK
4378/*
4379 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4380 * buffers that are attached to a page stradding i_size and are undergoing
4381 * commit. In that case we have to wait for commit to finish and try again.
4382 */
4383static void ext4_wait_for_tail_page_commit(struct inode *inode)
4384{
4385 struct page *page;
4386 unsigned offset;
4387 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4388 tid_t commit_tid = 0;
4389 int ret;
4390
4391 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4392 /*
4393 * All buffers in the last page remain valid? Then there's nothing to
4394 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4395 * blocksize case
4396 */
4397 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4398 return;
4399 while (1) {
4400 page = find_lock_page(inode->i_mapping,
4401 inode->i_size >> PAGE_CACHE_SHIFT);
4402 if (!page)
4403 return;
ca99fdd2
LC
4404 ret = __ext4_journalled_invalidatepage(page, offset,
4405 PAGE_CACHE_SIZE - offset);
53e87268
JK
4406 unlock_page(page);
4407 page_cache_release(page);
4408 if (ret != -EBUSY)
4409 return;
4410 commit_tid = 0;
4411 read_lock(&journal->j_state_lock);
4412 if (journal->j_committing_transaction)
4413 commit_tid = journal->j_committing_transaction->t_tid;
4414 read_unlock(&journal->j_state_lock);
4415 if (commit_tid)
4416 jbd2_log_wait_commit(journal, commit_tid);
4417 }
4418}
4419
ac27a0ec 4420/*
617ba13b 4421 * ext4_setattr()
ac27a0ec
DK
4422 *
4423 * Called from notify_change.
4424 *
4425 * We want to trap VFS attempts to truncate the file as soon as
4426 * possible. In particular, we want to make sure that when the VFS
4427 * shrinks i_size, we put the inode on the orphan list and modify
4428 * i_disksize immediately, so that during the subsequent flushing of
4429 * dirty pages and freeing of disk blocks, we can guarantee that any
4430 * commit will leave the blocks being flushed in an unused state on
4431 * disk. (On recovery, the inode will get truncated and the blocks will
4432 * be freed, so we have a strong guarantee that no future commit will
4433 * leave these blocks visible to the user.)
4434 *
678aaf48
JK
4435 * Another thing we have to assure is that if we are in ordered mode
4436 * and inode is still attached to the committing transaction, we must
4437 * we start writeout of all the dirty pages which are being truncated.
4438 * This way we are sure that all the data written in the previous
4439 * transaction are already on disk (truncate waits for pages under
4440 * writeback).
4441 *
4442 * Called with inode->i_mutex down.
ac27a0ec 4443 */
617ba13b 4444int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4445{
4446 struct inode *inode = dentry->d_inode;
4447 int error, rc = 0;
3d287de3 4448 int orphan = 0;
ac27a0ec
DK
4449 const unsigned int ia_valid = attr->ia_valid;
4450
4451 error = inode_change_ok(inode, attr);
4452 if (error)
4453 return error;
4454
12755627 4455 if (is_quota_modification(inode, attr))
871a2931 4456 dquot_initialize(inode);
08cefc7a
EB
4457 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4458 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4459 handle_t *handle;
4460
4461 /* (user+group)*(old+new) structure, inode write (sb,
4462 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4463 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4464 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4465 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4466 if (IS_ERR(handle)) {
4467 error = PTR_ERR(handle);
4468 goto err_out;
4469 }
b43fa828 4470 error = dquot_transfer(inode, attr);
ac27a0ec 4471 if (error) {
617ba13b 4472 ext4_journal_stop(handle);
ac27a0ec
DK
4473 return error;
4474 }
4475 /* Update corresponding info in inode so that everything is in
4476 * one transaction */
4477 if (attr->ia_valid & ATTR_UID)
4478 inode->i_uid = attr->ia_uid;
4479 if (attr->ia_valid & ATTR_GID)
4480 inode->i_gid = attr->ia_gid;
617ba13b
MC
4481 error = ext4_mark_inode_dirty(handle, inode);
4482 ext4_journal_stop(handle);
ac27a0ec
DK
4483 }
4484
5208386c
JK
4485 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4486 handle_t *handle;
562c72aa 4487
12e9b892 4488 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4489 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4490
0c095c7f
TT
4491 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4492 return -EFBIG;
e2b46574 4493 }
dff6efc3
CH
4494
4495 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4496 inode_inc_iversion(inode);
4497
5208386c
JK
4498 if (S_ISREG(inode->i_mode) &&
4499 (attr->ia_size < inode->i_size)) {
4500 if (ext4_should_order_data(inode)) {
4501 error = ext4_begin_ordered_truncate(inode,
678aaf48 4502 attr->ia_size);
5208386c 4503 if (error)
678aaf48 4504 goto err_out;
5208386c
JK
4505 }
4506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4507 if (IS_ERR(handle)) {
4508 error = PTR_ERR(handle);
4509 goto err_out;
4510 }
4511 if (ext4_handle_valid(handle)) {
4512 error = ext4_orphan_add(handle, inode);
4513 orphan = 1;
4514 }
90e775b7 4515 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4516 EXT4_I(inode)->i_disksize = attr->ia_size;
4517 rc = ext4_mark_inode_dirty(handle, inode);
4518 if (!error)
4519 error = rc;
90e775b7
JK
4520 /*
4521 * We have to update i_size under i_data_sem together
4522 * with i_disksize to avoid races with writeback code
4523 * running ext4_wb_update_i_disksize().
4524 */
4525 if (!error)
4526 i_size_write(inode, attr->ia_size);
4527 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4528 ext4_journal_stop(handle);
4529 if (error) {
4530 ext4_orphan_del(NULL, inode);
678aaf48
JK
4531 goto err_out;
4532 }
90e775b7
JK
4533 } else
4534 i_size_write(inode, attr->ia_size);
53e87268 4535
5208386c
JK
4536 /*
4537 * Blocks are going to be removed from the inode. Wait
4538 * for dio in flight. Temporarily disable
4539 * dioread_nolock to prevent livelock.
4540 */
4541 if (orphan) {
4542 if (!ext4_should_journal_data(inode)) {
4543 ext4_inode_block_unlocked_dio(inode);
4544 inode_dio_wait(inode);
4545 ext4_inode_resume_unlocked_dio(inode);
4546 } else
4547 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4548 }
5208386c
JK
4549 /*
4550 * Truncate pagecache after we've waited for commit
4551 * in data=journal mode to make pages freeable.
4552 */
7caef267 4553 truncate_pagecache(inode, inode->i_size);
072bd7ea 4554 }
5208386c
JK
4555 /*
4556 * We want to call ext4_truncate() even if attr->ia_size ==
4557 * inode->i_size for cases like truncation of fallocated space
4558 */
4559 if (attr->ia_valid & ATTR_SIZE)
4560 ext4_truncate(inode);
ac27a0ec 4561
1025774c
CH
4562 if (!rc) {
4563 setattr_copy(inode, attr);
4564 mark_inode_dirty(inode);
4565 }
4566
4567 /*
4568 * If the call to ext4_truncate failed to get a transaction handle at
4569 * all, we need to clean up the in-core orphan list manually.
4570 */
3d287de3 4571 if (orphan && inode->i_nlink)
617ba13b 4572 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4573
4574 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4575 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4576
4577err_out:
617ba13b 4578 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4579 if (!error)
4580 error = rc;
4581 return error;
4582}
4583
3e3398a0
MC
4584int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4585 struct kstat *stat)
4586{
4587 struct inode *inode;
8af8eecc 4588 unsigned long long delalloc_blocks;
3e3398a0
MC
4589
4590 inode = dentry->d_inode;
4591 generic_fillattr(inode, stat);
4592
9206c561
AD
4593 /*
4594 * If there is inline data in the inode, the inode will normally not
4595 * have data blocks allocated (it may have an external xattr block).
4596 * Report at least one sector for such files, so tools like tar, rsync,
4597 * others doen't incorrectly think the file is completely sparse.
4598 */
4599 if (unlikely(ext4_has_inline_data(inode)))
4600 stat->blocks += (stat->size + 511) >> 9;
4601
3e3398a0
MC
4602 /*
4603 * We can't update i_blocks if the block allocation is delayed
4604 * otherwise in the case of system crash before the real block
4605 * allocation is done, we will have i_blocks inconsistent with
4606 * on-disk file blocks.
4607 * We always keep i_blocks updated together with real
4608 * allocation. But to not confuse with user, stat
4609 * will return the blocks that include the delayed allocation
4610 * blocks for this file.
4611 */
96607551 4612 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4613 EXT4_I(inode)->i_reserved_data_blocks);
4614 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4615 return 0;
4616}
ac27a0ec 4617
fffb2739
JK
4618static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4619 int pextents)
a02908f1 4620{
12e9b892 4621 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4622 return ext4_ind_trans_blocks(inode, lblocks);
4623 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4624}
ac51d837 4625
ac27a0ec 4626/*
a02908f1
MC
4627 * Account for index blocks, block groups bitmaps and block group
4628 * descriptor blocks if modify datablocks and index blocks
4629 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4630 *
a02908f1 4631 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4632 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4633 * they could still across block group boundary.
ac27a0ec 4634 *
a02908f1
MC
4635 * Also account for superblock, inode, quota and xattr blocks
4636 */
fffb2739
JK
4637static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4638 int pextents)
a02908f1 4639{
8df9675f
TT
4640 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4641 int gdpblocks;
a02908f1
MC
4642 int idxblocks;
4643 int ret = 0;
4644
4645 /*
fffb2739
JK
4646 * How many index blocks need to touch to map @lblocks logical blocks
4647 * to @pextents physical extents?
a02908f1 4648 */
fffb2739 4649 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4650
4651 ret = idxblocks;
4652
4653 /*
4654 * Now let's see how many group bitmaps and group descriptors need
4655 * to account
4656 */
fffb2739 4657 groups = idxblocks + pextents;
a02908f1 4658 gdpblocks = groups;
8df9675f
TT
4659 if (groups > ngroups)
4660 groups = ngroups;
a02908f1
MC
4661 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4662 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4663
4664 /* bitmaps and block group descriptor blocks */
4665 ret += groups + gdpblocks;
4666
4667 /* Blocks for super block, inode, quota and xattr blocks */
4668 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4669
4670 return ret;
4671}
4672
4673/*
25985edc 4674 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4675 * the modification of a single pages into a single transaction,
4676 * which may include multiple chunks of block allocations.
ac27a0ec 4677 *
525f4ed8 4678 * This could be called via ext4_write_begin()
ac27a0ec 4679 *
525f4ed8 4680 * We need to consider the worse case, when
a02908f1 4681 * one new block per extent.
ac27a0ec 4682 */
a86c6181 4683int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4684{
617ba13b 4685 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4686 int ret;
4687
fffb2739 4688 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4689
a02908f1 4690 /* Account for data blocks for journalled mode */
617ba13b 4691 if (ext4_should_journal_data(inode))
a02908f1 4692 ret += bpp;
ac27a0ec
DK
4693 return ret;
4694}
f3bd1f3f
MC
4695
4696/*
4697 * Calculate the journal credits for a chunk of data modification.
4698 *
4699 * This is called from DIO, fallocate or whoever calling
79e83036 4700 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4701 *
4702 * journal buffers for data blocks are not included here, as DIO
4703 * and fallocate do no need to journal data buffers.
4704 */
4705int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4706{
4707 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4708}
4709
ac27a0ec 4710/*
617ba13b 4711 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4712 * Give this, we know that the caller already has write access to iloc->bh.
4713 */
617ba13b 4714int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4715 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4716{
4717 int err = 0;
4718
c64db50e 4719 if (IS_I_VERSION(inode))
25ec56b5
JNC
4720 inode_inc_iversion(inode);
4721
ac27a0ec
DK
4722 /* the do_update_inode consumes one bh->b_count */
4723 get_bh(iloc->bh);
4724
dab291af 4725 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4726 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4727 put_bh(iloc->bh);
4728 return err;
4729}
4730
4731/*
4732 * On success, We end up with an outstanding reference count against
4733 * iloc->bh. This _must_ be cleaned up later.
4734 */
4735
4736int
617ba13b
MC
4737ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4738 struct ext4_iloc *iloc)
ac27a0ec 4739{
0390131b
FM
4740 int err;
4741
4742 err = ext4_get_inode_loc(inode, iloc);
4743 if (!err) {
4744 BUFFER_TRACE(iloc->bh, "get_write_access");
4745 err = ext4_journal_get_write_access(handle, iloc->bh);
4746 if (err) {
4747 brelse(iloc->bh);
4748 iloc->bh = NULL;
ac27a0ec
DK
4749 }
4750 }
617ba13b 4751 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4752 return err;
4753}
4754
6dd4ee7c
KS
4755/*
4756 * Expand an inode by new_extra_isize bytes.
4757 * Returns 0 on success or negative error number on failure.
4758 */
1d03ec98
AK
4759static int ext4_expand_extra_isize(struct inode *inode,
4760 unsigned int new_extra_isize,
4761 struct ext4_iloc iloc,
4762 handle_t *handle)
6dd4ee7c
KS
4763{
4764 struct ext4_inode *raw_inode;
4765 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4766
4767 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4768 return 0;
4769
4770 raw_inode = ext4_raw_inode(&iloc);
4771
4772 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4773
4774 /* No extended attributes present */
19f5fb7a
TT
4775 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4776 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4777 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4778 new_extra_isize);
4779 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4780 return 0;
4781 }
4782
4783 /* try to expand with EAs present */
4784 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4785 raw_inode, handle);
4786}
4787
ac27a0ec
DK
4788/*
4789 * What we do here is to mark the in-core inode as clean with respect to inode
4790 * dirtiness (it may still be data-dirty).
4791 * This means that the in-core inode may be reaped by prune_icache
4792 * without having to perform any I/O. This is a very good thing,
4793 * because *any* task may call prune_icache - even ones which
4794 * have a transaction open against a different journal.
4795 *
4796 * Is this cheating? Not really. Sure, we haven't written the
4797 * inode out, but prune_icache isn't a user-visible syncing function.
4798 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4799 * we start and wait on commits.
ac27a0ec 4800 */
617ba13b 4801int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4802{
617ba13b 4803 struct ext4_iloc iloc;
6dd4ee7c
KS
4804 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805 static unsigned int mnt_count;
4806 int err, ret;
ac27a0ec
DK
4807
4808 might_sleep();
7ff9c073 4809 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4810 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4811 if (ext4_handle_valid(handle) &&
4812 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4813 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4814 /*
4815 * We need extra buffer credits since we may write into EA block
4816 * with this same handle. If journal_extend fails, then it will
4817 * only result in a minor loss of functionality for that inode.
4818 * If this is felt to be critical, then e2fsck should be run to
4819 * force a large enough s_min_extra_isize.
4820 */
4821 if ((jbd2_journal_extend(handle,
4822 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4823 ret = ext4_expand_extra_isize(inode,
4824 sbi->s_want_extra_isize,
4825 iloc, handle);
4826 if (ret) {
19f5fb7a
TT
4827 ext4_set_inode_state(inode,
4828 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4829 if (mnt_count !=
4830 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4831 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4832 "Unable to expand inode %lu. Delete"
4833 " some EAs or run e2fsck.",
4834 inode->i_ino);
c1bddad9
AK
4835 mnt_count =
4836 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4837 }
4838 }
4839 }
4840 }
ac27a0ec 4841 if (!err)
617ba13b 4842 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4843 return err;
4844}
4845
4846/*
617ba13b 4847 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4848 *
4849 * We're really interested in the case where a file is being extended.
4850 * i_size has been changed by generic_commit_write() and we thus need
4851 * to include the updated inode in the current transaction.
4852 *
5dd4056d 4853 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4854 * are allocated to the file.
4855 *
4856 * If the inode is marked synchronous, we don't honour that here - doing
4857 * so would cause a commit on atime updates, which we don't bother doing.
4858 * We handle synchronous inodes at the highest possible level.
4859 */
aa385729 4860void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4861{
ac27a0ec
DK
4862 handle_t *handle;
4863
9924a92a 4864 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4865 if (IS_ERR(handle))
4866 goto out;
f3dc272f 4867
f3dc272f
CW
4868 ext4_mark_inode_dirty(handle, inode);
4869
617ba13b 4870 ext4_journal_stop(handle);
ac27a0ec
DK
4871out:
4872 return;
4873}
4874
4875#if 0
4876/*
4877 * Bind an inode's backing buffer_head into this transaction, to prevent
4878 * it from being flushed to disk early. Unlike
617ba13b 4879 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4880 * returns no iloc structure, so the caller needs to repeat the iloc
4881 * lookup to mark the inode dirty later.
4882 */
617ba13b 4883static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4884{
617ba13b 4885 struct ext4_iloc iloc;
ac27a0ec
DK
4886
4887 int err = 0;
4888 if (handle) {
617ba13b 4889 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4890 if (!err) {
4891 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4892 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4893 if (!err)
0390131b 4894 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4895 NULL,
0390131b 4896 iloc.bh);
ac27a0ec
DK
4897 brelse(iloc.bh);
4898 }
4899 }
617ba13b 4900 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4901 return err;
4902}
4903#endif
4904
617ba13b 4905int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4906{
4907 journal_t *journal;
4908 handle_t *handle;
4909 int err;
4910
4911 /*
4912 * We have to be very careful here: changing a data block's
4913 * journaling status dynamically is dangerous. If we write a
4914 * data block to the journal, change the status and then delete
4915 * that block, we risk forgetting to revoke the old log record
4916 * from the journal and so a subsequent replay can corrupt data.
4917 * So, first we make sure that the journal is empty and that
4918 * nobody is changing anything.
4919 */
4920
617ba13b 4921 journal = EXT4_JOURNAL(inode);
0390131b
FM
4922 if (!journal)
4923 return 0;
d699594d 4924 if (is_journal_aborted(journal))
ac27a0ec 4925 return -EROFS;
2aff57b0
YY
4926 /* We have to allocate physical blocks for delalloc blocks
4927 * before flushing journal. otherwise delalloc blocks can not
4928 * be allocated any more. even more truncate on delalloc blocks
4929 * could trigger BUG by flushing delalloc blocks in journal.
4930 * There is no delalloc block in non-journal data mode.
4931 */
4932 if (val && test_opt(inode->i_sb, DELALLOC)) {
4933 err = ext4_alloc_da_blocks(inode);
4934 if (err < 0)
4935 return err;
4936 }
ac27a0ec 4937
17335dcc
DM
4938 /* Wait for all existing dio workers */
4939 ext4_inode_block_unlocked_dio(inode);
4940 inode_dio_wait(inode);
4941
dab291af 4942 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4943
4944 /*
4945 * OK, there are no updates running now, and all cached data is
4946 * synced to disk. We are now in a completely consistent state
4947 * which doesn't have anything in the journal, and we know that
4948 * no filesystem updates are running, so it is safe to modify
4949 * the inode's in-core data-journaling state flag now.
4950 */
4951
4952 if (val)
12e9b892 4953 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4954 else {
4955 jbd2_journal_flush(journal);
12e9b892 4956 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4957 }
617ba13b 4958 ext4_set_aops(inode);
ac27a0ec 4959
dab291af 4960 jbd2_journal_unlock_updates(journal);
17335dcc 4961 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4962
4963 /* Finally we can mark the inode as dirty. */
4964
9924a92a 4965 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4966 if (IS_ERR(handle))
4967 return PTR_ERR(handle);
4968
617ba13b 4969 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4970 ext4_handle_sync(handle);
617ba13b
MC
4971 ext4_journal_stop(handle);
4972 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4973
4974 return err;
4975}
2e9ee850
AK
4976
4977static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4978{
4979 return !buffer_mapped(bh);
4980}
4981
c2ec175c 4982int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4983{
c2ec175c 4984 struct page *page = vmf->page;
2e9ee850
AK
4985 loff_t size;
4986 unsigned long len;
9ea7df53 4987 int ret;
2e9ee850 4988 struct file *file = vma->vm_file;
496ad9aa 4989 struct inode *inode = file_inode(file);
2e9ee850 4990 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4991 handle_t *handle;
4992 get_block_t *get_block;
4993 int retries = 0;
2e9ee850 4994
8e8ad8a5 4995 sb_start_pagefault(inode->i_sb);
041bbb6d 4996 file_update_time(vma->vm_file);
9ea7df53
JK
4997 /* Delalloc case is easy... */
4998 if (test_opt(inode->i_sb, DELALLOC) &&
4999 !ext4_should_journal_data(inode) &&
5000 !ext4_nonda_switch(inode->i_sb)) {
5001 do {
5002 ret = __block_page_mkwrite(vma, vmf,
5003 ext4_da_get_block_prep);
5004 } while (ret == -ENOSPC &&
5005 ext4_should_retry_alloc(inode->i_sb, &retries));
5006 goto out_ret;
2e9ee850 5007 }
0e499890
DW
5008
5009 lock_page(page);
9ea7df53
JK
5010 size = i_size_read(inode);
5011 /* Page got truncated from under us? */
5012 if (page->mapping != mapping || page_offset(page) > size) {
5013 unlock_page(page);
5014 ret = VM_FAULT_NOPAGE;
5015 goto out;
0e499890 5016 }
2e9ee850
AK
5017
5018 if (page->index == size >> PAGE_CACHE_SHIFT)
5019 len = size & ~PAGE_CACHE_MASK;
5020 else
5021 len = PAGE_CACHE_SIZE;
a827eaff 5022 /*
9ea7df53
JK
5023 * Return if we have all the buffers mapped. This avoids the need to do
5024 * journal_start/journal_stop which can block and take a long time
a827eaff 5025 */
2e9ee850 5026 if (page_has_buffers(page)) {
f19d5870
TM
5027 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5028 0, len, NULL,
5029 ext4_bh_unmapped)) {
9ea7df53 5030 /* Wait so that we don't change page under IO */
1d1d1a76 5031 wait_for_stable_page(page);
9ea7df53
JK
5032 ret = VM_FAULT_LOCKED;
5033 goto out;
a827eaff 5034 }
2e9ee850 5035 }
a827eaff 5036 unlock_page(page);
9ea7df53
JK
5037 /* OK, we need to fill the hole... */
5038 if (ext4_should_dioread_nolock(inode))
5039 get_block = ext4_get_block_write;
5040 else
5041 get_block = ext4_get_block;
5042retry_alloc:
9924a92a
TT
5043 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5044 ext4_writepage_trans_blocks(inode));
9ea7df53 5045 if (IS_ERR(handle)) {
c2ec175c 5046 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5047 goto out;
5048 }
5049 ret = __block_page_mkwrite(vma, vmf, get_block);
5050 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5051 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5052 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5053 unlock_page(page);
5054 ret = VM_FAULT_SIGBUS;
fcbb5515 5055 ext4_journal_stop(handle);
9ea7df53
JK
5056 goto out;
5057 }
5058 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5059 }
5060 ext4_journal_stop(handle);
5061 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5062 goto retry_alloc;
5063out_ret:
5064 ret = block_page_mkwrite_return(ret);
5065out:
8e8ad8a5 5066 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5067 return ret;
5068}