]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: remove redundant check for encrypted file on dio write path
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
364443cb 40#include <linux/iomap.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 55 __u32 csum;
b47820ed
DJ
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
814525f4 59
b47820ed
DJ
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 65
b47820ed
DJ
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
b47820ed 75 }
05ac5aa1
DJ
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
78 }
79
814525f4
DW
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 90 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 111 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
678aaf48
JK
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
7ff9c073 124 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
678aaf48
JK
136}
137
d47992f8
LC
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
cb20d518
TT
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
f348c252 148int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
65eddb56
YY
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 152
bd9db175
ZL
153 if (ext4_has_inline_data(inode))
154 return 0;
155
ac27a0ec
DK
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
ac27a0ec
DK
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
fa5d1113 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 165 int nblocks)
ac27a0ec 166{
487caeef
JK
167 int ret;
168
169 /*
e35fd660 170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
0390131b 175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 176 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 177 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 178 ret = ext4_journal_restart(handle, nblocks);
487caeef 179 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 180 ext4_discard_preallocations(inode);
487caeef
JK
181
182 return ret;
ac27a0ec
DK
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
0930fcc1 188void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
189{
190 handle_t *handle;
bc965ab3 191 int err;
ac27a0ec 192
7ff9c073 193 trace_ext4_evict_inode(inode);
2581fdc8 194
0930fcc1 195 if (inode->i_nlink) {
2d859db3
JK
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
6a7fd522
VN
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9924a92a
TT
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 243 if (IS_ERR(handle)) {
bc965ab3 244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
617ba13b 250 ext4_orphan_del(NULL, inode);
8e8ad8a5 251 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
0390131b 256 ext4_handle_sync(handle);
ac27a0ec 257 inode->i_size = 0;
bc965ab3
TT
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
12062ddd 260 ext4_warning(inode->i_sb,
bc965ab3
TT
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
2c98eb5e
TT
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
bc965ab3
TT
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
0390131b 280 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
12062ddd 285 ext4_warning(inode->i_sb,
bc965ab3
TT
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
45388219 289 ext4_orphan_del(NULL, inode);
8e8ad8a5 290 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
291 goto no_delete;
292 }
293 }
294
ac27a0ec 295 /*
617ba13b 296 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 297 * AKPM: I think this can be inside the above `if'.
617ba13b 298 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 299 * deletion of a non-existent orphan - this is because we don't
617ba13b 300 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
301 * (Well, we could do this if we need to, but heck - it works)
302 */
617ba13b
MC
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
617ba13b 313 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 314 /* If that failed, just do the required in-core inode clear. */
0930fcc1 315 ext4_clear_inode(inode);
ac27a0ec 316 else
617ba13b
MC
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
8e8ad8a5 319 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
320 return;
321no_delete:
0930fcc1 322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
323}
324
a9e7f447
DM
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 327{
a9e7f447 328 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 329}
a9e7f447 330#endif
9d0be502 331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
0637c6f4
TT
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
71d4f7d0 355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 356
12219aea 357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 358
72b8ab9d
ES
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
7b415bf6 361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 362 else {
5f634d06
AK
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
72b8ab9d 366 * not re-claim the quota for fallocated blocks.
5f634d06 367 */
7b415bf6 368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 369 }
d6014301
AK
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
0637c6f4
TT
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
d6014301 378 ext4_discard_preallocations(inode);
12219aea
AK
379}
380
e29136f8 381static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
382 unsigned int line,
383 struct ext4_map_blocks *map)
6fd058f7 384{
24676da4
TT
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
c398eda0
TT
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
6a797d27 391 return -EFSCORRUPTED;
6fd058f7
TT
392 }
393 return 0;
394}
395
53085fac
JK
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
a7550b30 402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
e29136f8 411#define check_block_validity(inode, map) \
c398eda0 412 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 413
921f266b
DM
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
2dcba478 431 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
2dcba478 439 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
bdafe42a 448 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
f5ab0d1f 459/*
e35fd660 460 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 461 * and returns if the blocks are already mapped.
f5ab0d1f 462 *
f5ab0d1f
MC
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
e35fd660
TT
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
469 * based files
470 *
facab4d9
JK
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
478 *
479 * It returns the error in case of allocation failure.
480 */
e35fd660
TT
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
0e855ac8 483{
d100eef2 484 struct extent_status es;
0e855ac8 485 int retval;
b8a86845 486 int ret = 0;
921f266b
DM
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
f5ab0d1f 492
e35fd660
TT
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
d100eef2 497
e861b5e9
TT
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
4adb6ab3
KM
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 506 return -EFSCORRUPTED;
4adb6ab3 507
d100eef2
ZL
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
d100eef2
ZL
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
921f266b
DM
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
d100eef2
ZL
533 goto found;
534 }
535
4df3d265 536 /*
b920c755
TT
537 * Try to see if we can get the block without requesting a new
538 * file system block.
4df3d265 539 */
2dcba478 540 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 544 } else {
a4e5d88b
DM
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 547 }
f7fec032 548 if (retval > 0) {
3be78c73 549 unsigned int status;
f7fec032 550
44fb851d
ZL
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
921f266b 557 }
921f266b 558
f7fec032
ZL
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 562 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
2dcba478 571 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 572
d100eef2 573found:
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 575 ret = check_block_validity(inode, map);
6fd058f7
TT
576 if (ret != 0)
577 return ret;
578 }
579
f5ab0d1f 580 /* If it is only a block(s) look up */
c2177057 581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
df3ab170 588 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
589 * with buffer head unmapped.
590 */
e35fd660 591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
4df3d265 599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
556615dc 607 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 608 * will possibly result in updating i_data, so we take
d91bd2c1 609 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 610 * with create == 1 flag.
4df3d265 611 */
c8b459f4 612 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 613
4df3d265
AK
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
12e9b892 618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 620 } else {
e35fd660 621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 622
e35fd660 623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
19f5fb7a 629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 630 }
d2a17637 631
5f634d06
AK
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
1296cc85 639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
2ac3b6e0 642
f7fec032 643 if (retval > 0) {
3be78c73 644 unsigned int status;
f7fec032 645
44fb851d
ZL
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
921f266b 652 }
921f266b 653
c86d8db3
JK
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
9b623df6
JK
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
c86d8db3
JK
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
c86d8db3
JK
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
adb23551
ZL
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
c86d8db3 681 goto out_sem;
adb23551 682 }
f7fec032
ZL
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 686 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
c86d8db3 692 if (ret < 0) {
f7fec032 693 retval = ret;
c86d8db3
JK
694 goto out_sem;
695 }
5356f261
AK
696 }
697
c86d8db3 698out_sem:
4df3d265 699 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 701 ret = check_block_validity(inode, map);
6fd058f7
TT
702 if (ret != 0)
703 return ret;
06bd3c36
JK
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
ee0876bc
JK
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
719 if (ret)
720 return ret;
721 }
6fd058f7 722 }
0e855ac8
AK
723 return retval;
724}
725
ed8ad838
JK
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752}
753
2ed88685
TT
754static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
ac27a0ec 756{
2ed88685 757 struct ext4_map_blocks map;
efe70c29 758 int ret = 0;
ac27a0ec 759
46c7f254
TM
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
2ed88685
TT
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
efe70c29
JK
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
7fb5409d 768 if (ret > 0) {
2ed88685 769 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 770 ext4_update_bh_state(bh, map.m_flags);
2ed88685 771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 772 ret = 0;
547edce3
RZ
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
776 }
777 return ret;
778}
779
2ed88685
TT
780int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785}
786
705965bd
JK
787/*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794{
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799}
800
efe70c29
JK
801/* Maximum number of blocks we map for direct IO at once. */
802#define DIO_MAX_BLOCKS 4096
803
e84dfbe2
JK
804/*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
efe70c29
JK
811{
812 int dio_credits;
e84dfbe2
JK
813 handle_t *handle;
814 int retries = 0;
815 int ret;
efe70c29
JK
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
822retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
efe70c29
JK
833}
834
705965bd
JK
835/* Get block function for DIO reads and writes to inodes without extents */
836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838{
efe70c29
JK
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
e84dfbe2
JK
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
845}
846
847/*
109811c2 848 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
109811c2
JK
852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 854{
efe70c29
JK
855 int ret;
856
efe70c29
JK
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
e84dfbe2
JK
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 862
109811c2
JK
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
efe70c29 880 set_buffer_defer_completion(bh_result);
efe70c29
JK
881 }
882
883 return ret;
705965bd
JK
884}
885
109811c2
JK
886/*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893{
109811c2
JK
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
e84dfbe2
JK
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911}
912
705965bd
JK
913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915{
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
efe70c29
JK
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
705965bd
JK
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
efe70c29 928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
929
930 return ret;
931}
932
933
ac27a0ec
DK
934/*
935 * `handle' can be NULL if create is zero
936 */
617ba13b 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 938 ext4_lblk_t block, int map_flags)
ac27a0ec 939{
2ed88685
TT
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
c5e298ae 942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 943 int err;
ac27a0ec
DK
944
945 J_ASSERT(handle != NULL || create == 0);
946
2ed88685
TT
947 map.m_lblk = block;
948 map.m_len = 1;
c5e298ae 949 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 950
10560082
TT
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 953 if (err < 0)
10560082 954 return ERR_PTR(err);
2ed88685
TT
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
2ed88685
TT
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
ac27a0ec 962
2ed88685
TT
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
2ed88685
TT
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
ac27a0ec 980 }
2ed88685
TT
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
984 if (unlikely(err))
985 goto errout;
986 } else
2ed88685 987 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 988 return bh;
10560082
TT
989errout:
990 brelse(bh);
991 return ERR_PTR(err);
ac27a0ec
DK
992}
993
617ba13b 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 995 ext4_lblk_t block, int map_flags)
ac27a0ec 996{
af5bc92d 997 struct buffer_head *bh;
ac27a0ec 998
c5e298ae 999 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1000 if (IS_ERR(bh))
ac27a0ec 1001 return bh;
1c215028 1002 if (!bh || buffer_uptodate(bh))
ac27a0ec 1003 return bh;
dfec8a14 1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1c215028 1009 return ERR_PTR(-EIO);
ac27a0ec
DK
1010}
1011
f19d5870
TM
1012int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
ac27a0ec
DK
1019{
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
af5bc92d
TT
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
de9a55b8 1028 block_start = block_end, bh = next) {
ac27a0ec
DK
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1046 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1048 * prepare_write() is the right place.
1049 *
36ade451
JK
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
ac27a0ec 1054 *
617ba13b 1055 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
dab291af 1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
f19d5870
TM
1067int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
ac27a0ec 1069{
56d35a4c
JK
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
ac27a0ec
DK
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
56d35a4c 1075 /*
ebdec241 1076 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1079 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
5d601255 1085 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
ac27a0ec
DK
1090}
1091
2058f83a
MH
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095{
09cbfeaf 1096 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
09cbfeaf 1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
e64855c6 1136 clean_bdev_bh_alias(bh);
2058f83a
MH
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
dfec8a14 1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
7821d4dd 1174 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1175 PAGE_SIZE, 0, page->index);
2058f83a
MH
1176 return err;
1177}
1178#endif
1179
bfc1af65 1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
ac27a0ec 1183{
af5bc92d 1184 struct inode *inode = mapping->host;
1938a150 1185 int ret, needed_blocks;
ac27a0ec
DK
1186 handle_t *handle;
1187 int retries = 0;
af5bc92d 1188 struct page *page;
de9a55b8 1189 pgoff_t index;
af5bc92d 1190 unsigned from, to;
bfc1af65 1191
0db1ff22
TT
1192 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1193 return -EIO;
1194
9bffad1e 1195 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1196 /*
1197 * Reserve one block more for addition to orphan list in case
1198 * we allocate blocks but write fails for some reason
1199 */
1200 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1201 index = pos >> PAGE_SHIFT;
1202 from = pos & (PAGE_SIZE - 1);
af5bc92d 1203 to = from + len;
ac27a0ec 1204
f19d5870
TM
1205 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1206 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1207 flags, pagep);
1208 if (ret < 0)
47564bfb
TT
1209 return ret;
1210 if (ret == 1)
1211 return 0;
f19d5870
TM
1212 }
1213
47564bfb
TT
1214 /*
1215 * grab_cache_page_write_begin() can take a long time if the
1216 * system is thrashing due to memory pressure, or if the page
1217 * is being written back. So grab it first before we start
1218 * the transaction handle. This also allows us to allocate
1219 * the page (if needed) without using GFP_NOFS.
1220 */
1221retry_grab:
1222 page = grab_cache_page_write_begin(mapping, index, flags);
1223 if (!page)
1224 return -ENOMEM;
1225 unlock_page(page);
1226
1227retry_journal:
9924a92a 1228 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1229 if (IS_ERR(handle)) {
09cbfeaf 1230 put_page(page);
47564bfb 1231 return PTR_ERR(handle);
7479d2b9 1232 }
ac27a0ec 1233
47564bfb
TT
1234 lock_page(page);
1235 if (page->mapping != mapping) {
1236 /* The page got truncated from under us */
1237 unlock_page(page);
09cbfeaf 1238 put_page(page);
cf108bca 1239 ext4_journal_stop(handle);
47564bfb 1240 goto retry_grab;
cf108bca 1241 }
7afe5aa5
DM
1242 /* In case writeback began while the page was unlocked */
1243 wait_for_stable_page(page);
cf108bca 1244
2058f83a
MH
1245#ifdef CONFIG_EXT4_FS_ENCRYPTION
1246 if (ext4_should_dioread_nolock(inode))
1247 ret = ext4_block_write_begin(page, pos, len,
705965bd 1248 ext4_get_block_unwritten);
2058f83a
MH
1249 else
1250 ret = ext4_block_write_begin(page, pos, len,
1251 ext4_get_block);
1252#else
744692dc 1253 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1254 ret = __block_write_begin(page, pos, len,
1255 ext4_get_block_unwritten);
744692dc 1256 else
6e1db88d 1257 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1258#endif
bfc1af65 1259 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1260 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1261 from, to, NULL,
1262 do_journal_get_write_access);
ac27a0ec 1263 }
bfc1af65
NP
1264
1265 if (ret) {
af5bc92d 1266 unlock_page(page);
ae4d5372 1267 /*
6e1db88d 1268 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1269 * outside i_size. Trim these off again. Don't need
1270 * i_size_read because we hold i_mutex.
1938a150
AK
1271 *
1272 * Add inode to orphan list in case we crash before
1273 * truncate finishes
ae4d5372 1274 */
ffacfa7a 1275 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1276 ext4_orphan_add(handle, inode);
1277
1278 ext4_journal_stop(handle);
1279 if (pos + len > inode->i_size) {
b9a4207d 1280 ext4_truncate_failed_write(inode);
de9a55b8 1281 /*
ffacfa7a 1282 * If truncate failed early the inode might
1938a150
AK
1283 * still be on the orphan list; we need to
1284 * make sure the inode is removed from the
1285 * orphan list in that case.
1286 */
1287 if (inode->i_nlink)
1288 ext4_orphan_del(NULL, inode);
1289 }
bfc1af65 1290
47564bfb
TT
1291 if (ret == -ENOSPC &&
1292 ext4_should_retry_alloc(inode->i_sb, &retries))
1293 goto retry_journal;
09cbfeaf 1294 put_page(page);
47564bfb
TT
1295 return ret;
1296 }
1297 *pagep = page;
ac27a0ec
DK
1298 return ret;
1299}
1300
bfc1af65
NP
1301/* For write_end() in data=journal mode */
1302static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1303{
13fca323 1304 int ret;
ac27a0ec
DK
1305 if (!buffer_mapped(bh) || buffer_freed(bh))
1306 return 0;
1307 set_buffer_uptodate(bh);
13fca323
TT
1308 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1309 clear_buffer_meta(bh);
1310 clear_buffer_prio(bh);
1311 return ret;
ac27a0ec
DK
1312}
1313
eed4333f
ZL
1314/*
1315 * We need to pick up the new inode size which generic_commit_write gave us
1316 * `file' can be NULL - eg, when called from page_symlink().
1317 *
1318 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1319 * buffers are managed internally.
1320 */
1321static int ext4_write_end(struct file *file,
1322 struct address_space *mapping,
1323 loff_t pos, unsigned len, unsigned copied,
1324 struct page *page, void *fsdata)
f8514083 1325{
f8514083 1326 handle_t *handle = ext4_journal_current_handle();
eed4333f 1327 struct inode *inode = mapping->host;
0572639f 1328 loff_t old_size = inode->i_size;
eed4333f
ZL
1329 int ret = 0, ret2;
1330 int i_size_changed = 0;
1331
1332 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1333 if (ext4_has_inline_data(inode)) {
1334 ret = ext4_write_inline_data_end(inode, pos, len,
1335 copied, page);
eb5efbcb
TT
1336 if (ret < 0) {
1337 unlock_page(page);
1338 put_page(page);
42c832de 1339 goto errout;
eb5efbcb 1340 }
42c832de
TT
1341 copied = ret;
1342 } else
f19d5870
TM
1343 copied = block_write_end(file, mapping, pos,
1344 len, copied, page, fsdata);
f8514083 1345 /*
4631dbf6 1346 * it's important to update i_size while still holding page lock:
f8514083
AK
1347 * page writeout could otherwise come in and zero beyond i_size.
1348 */
4631dbf6 1349 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1350 unlock_page(page);
09cbfeaf 1351 put_page(page);
f8514083 1352
0572639f
XW
1353 if (old_size < pos)
1354 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1355 /*
1356 * Don't mark the inode dirty under page lock. First, it unnecessarily
1357 * makes the holding time of page lock longer. Second, it forces lock
1358 * ordering of page lock and transaction start for journaling
1359 * filesystems.
1360 */
1361 if (i_size_changed)
1362 ext4_mark_inode_dirty(handle, inode);
1363
ffacfa7a 1364 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1365 /* if we have allocated more blocks and copied
1366 * less. We will have blocks allocated outside
1367 * inode->i_size. So truncate them
1368 */
1369 ext4_orphan_add(handle, inode);
74d553aa 1370errout:
617ba13b 1371 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1372 if (!ret)
1373 ret = ret2;
bfc1af65 1374
f8514083 1375 if (pos + len > inode->i_size) {
b9a4207d 1376 ext4_truncate_failed_write(inode);
de9a55b8 1377 /*
ffacfa7a 1378 * If truncate failed early the inode might still be
f8514083
AK
1379 * on the orphan list; we need to make sure the inode
1380 * is removed from the orphan list in that case.
1381 */
1382 if (inode->i_nlink)
1383 ext4_orphan_del(NULL, inode);
1384 }
1385
bfc1af65 1386 return ret ? ret : copied;
ac27a0ec
DK
1387}
1388
b90197b6
TT
1389/*
1390 * This is a private version of page_zero_new_buffers() which doesn't
1391 * set the buffer to be dirty, since in data=journalled mode we need
1392 * to call ext4_handle_dirty_metadata() instead.
1393 */
3b136499
JK
1394static void ext4_journalled_zero_new_buffers(handle_t *handle,
1395 struct page *page,
1396 unsigned from, unsigned to)
b90197b6
TT
1397{
1398 unsigned int block_start = 0, block_end;
1399 struct buffer_head *head, *bh;
1400
1401 bh = head = page_buffers(page);
1402 do {
1403 block_end = block_start + bh->b_size;
1404 if (buffer_new(bh)) {
1405 if (block_end > from && block_start < to) {
1406 if (!PageUptodate(page)) {
1407 unsigned start, size;
1408
1409 start = max(from, block_start);
1410 size = min(to, block_end) - start;
1411
1412 zero_user(page, start, size);
3b136499 1413 write_end_fn(handle, bh);
b90197b6
TT
1414 }
1415 clear_buffer_new(bh);
1416 }
1417 }
1418 block_start = block_end;
1419 bh = bh->b_this_page;
1420 } while (bh != head);
1421}
1422
bfc1af65 1423static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1424 struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned copied,
1426 struct page *page, void *fsdata)
ac27a0ec 1427{
617ba13b 1428 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1429 struct inode *inode = mapping->host;
0572639f 1430 loff_t old_size = inode->i_size;
ac27a0ec
DK
1431 int ret = 0, ret2;
1432 int partial = 0;
bfc1af65 1433 unsigned from, to;
4631dbf6 1434 int size_changed = 0;
ac27a0ec 1435
9bffad1e 1436 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1437 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1438 to = from + len;
1439
441c8508
CW
1440 BUG_ON(!ext4_handle_valid(handle));
1441
eb5efbcb
TT
1442 if (ext4_has_inline_data(inode)) {
1443 ret = ext4_write_inline_data_end(inode, pos, len,
1444 copied, page);
1445 if (ret < 0) {
1446 unlock_page(page);
1447 put_page(page);
1448 goto errout;
1449 }
1450 copied = ret;
1451 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1452 copied = 0;
1453 ext4_journalled_zero_new_buffers(handle, page, from, to);
1454 } else {
1455 if (unlikely(copied < len))
1456 ext4_journalled_zero_new_buffers(handle, page,
1457 from + copied, to);
3fdcfb66 1458 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1459 from + copied, &partial,
1460 write_end_fn);
3fdcfb66
TM
1461 if (!partial)
1462 SetPageUptodate(page);
1463 }
4631dbf6 1464 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1465 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1466 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1467 unlock_page(page);
09cbfeaf 1468 put_page(page);
4631dbf6 1469
0572639f
XW
1470 if (old_size < pos)
1471 pagecache_isize_extended(inode, old_size, pos);
1472
4631dbf6 1473 if (size_changed) {
617ba13b 1474 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1475 if (!ret)
1476 ret = ret2;
1477 }
bfc1af65 1478
ffacfa7a 1479 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1480 /* if we have allocated more blocks and copied
1481 * less. We will have blocks allocated outside
1482 * inode->i_size. So truncate them
1483 */
1484 ext4_orphan_add(handle, inode);
1485
eb5efbcb 1486errout:
617ba13b 1487 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1488 if (!ret)
1489 ret = ret2;
f8514083 1490 if (pos + len > inode->i_size) {
b9a4207d 1491 ext4_truncate_failed_write(inode);
de9a55b8 1492 /*
ffacfa7a 1493 * If truncate failed early the inode might still be
f8514083
AK
1494 * on the orphan list; we need to make sure the inode
1495 * is removed from the orphan list in that case.
1496 */
1497 if (inode->i_nlink)
1498 ext4_orphan_del(NULL, inode);
1499 }
bfc1af65
NP
1500
1501 return ret ? ret : copied;
ac27a0ec 1502}
d2a17637 1503
9d0be502 1504/*
c27e43a1 1505 * Reserve space for a single cluster
9d0be502 1506 */
c27e43a1 1507static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1508{
60e58e0f 1509 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1510 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1511 int ret;
03179fe9
TT
1512
1513 /*
1514 * We will charge metadata quota at writeout time; this saves
1515 * us from metadata over-estimation, though we may go over by
1516 * a small amount in the end. Here we just reserve for data.
1517 */
1518 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1519 if (ret)
1520 return ret;
d2a17637 1521
0637c6f4 1522 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1523 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1524 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1525 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1526 return -ENOSPC;
1527 }
9d0be502 1528 ei->i_reserved_data_blocks++;
c27e43a1 1529 trace_ext4_da_reserve_space(inode);
0637c6f4 1530 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1531
d2a17637
MC
1532 return 0; /* success */
1533}
1534
12219aea 1535static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1536{
1537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1538 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1539
cd213226
MC
1540 if (!to_free)
1541 return; /* Nothing to release, exit */
1542
d2a17637 1543 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1544
5a58ec87 1545 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1546 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1547 /*
0637c6f4
TT
1548 * if there aren't enough reserved blocks, then the
1549 * counter is messed up somewhere. Since this
1550 * function is called from invalidate page, it's
1551 * harmless to return without any action.
cd213226 1552 */
8de5c325 1553 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1554 "ino %lu, to_free %d with only %d reserved "
1084f252 1555 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1556 ei->i_reserved_data_blocks);
1557 WARN_ON(1);
1558 to_free = ei->i_reserved_data_blocks;
cd213226 1559 }
0637c6f4 1560 ei->i_reserved_data_blocks -= to_free;
cd213226 1561
72b8ab9d 1562 /* update fs dirty data blocks counter */
57042651 1563 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1564
d2a17637 1565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1566
7b415bf6 1567 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1568}
1569
1570static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1571 unsigned int offset,
1572 unsigned int length)
d2a17637 1573{
9705acd6 1574 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1575 struct buffer_head *head, *bh;
1576 unsigned int curr_off = 0;
7b415bf6
AK
1577 struct inode *inode = page->mapping->host;
1578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1579 unsigned int stop = offset + length;
7b415bf6 1580 int num_clusters;
51865fda 1581 ext4_fsblk_t lblk;
d2a17637 1582
09cbfeaf 1583 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1584
d2a17637
MC
1585 head = page_buffers(page);
1586 bh = head;
1587 do {
1588 unsigned int next_off = curr_off + bh->b_size;
1589
ca99fdd2
LC
1590 if (next_off > stop)
1591 break;
1592
d2a17637
MC
1593 if ((offset <= curr_off) && (buffer_delay(bh))) {
1594 to_release++;
9705acd6 1595 contiguous_blks++;
d2a17637 1596 clear_buffer_delay(bh);
9705acd6
LC
1597 } else if (contiguous_blks) {
1598 lblk = page->index <<
09cbfeaf 1599 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1600 lblk += (curr_off >> inode->i_blkbits) -
1601 contiguous_blks;
1602 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1603 contiguous_blks = 0;
d2a17637
MC
1604 }
1605 curr_off = next_off;
1606 } while ((bh = bh->b_this_page) != head);
7b415bf6 1607
9705acd6 1608 if (contiguous_blks) {
09cbfeaf 1609 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1610 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1611 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1612 }
1613
7b415bf6
AK
1614 /* If we have released all the blocks belonging to a cluster, then we
1615 * need to release the reserved space for that cluster. */
1616 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1617 while (num_clusters > 0) {
09cbfeaf 1618 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1619 ((num_clusters - 1) << sbi->s_cluster_bits);
1620 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1621 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1622 ext4_da_release_space(inode, 1);
1623
1624 num_clusters--;
1625 }
d2a17637 1626}
ac27a0ec 1627
64769240
AT
1628/*
1629 * Delayed allocation stuff
1630 */
1631
4e7ea81d
JK
1632struct mpage_da_data {
1633 struct inode *inode;
1634 struct writeback_control *wbc;
6b523df4 1635
4e7ea81d
JK
1636 pgoff_t first_page; /* The first page to write */
1637 pgoff_t next_page; /* Current page to examine */
1638 pgoff_t last_page; /* Last page to examine */
791b7f08 1639 /*
4e7ea81d
JK
1640 * Extent to map - this can be after first_page because that can be
1641 * fully mapped. We somewhat abuse m_flags to store whether the extent
1642 * is delalloc or unwritten.
791b7f08 1643 */
4e7ea81d
JK
1644 struct ext4_map_blocks map;
1645 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1646 unsigned int do_map:1;
4e7ea81d 1647};
64769240 1648
4e7ea81d
JK
1649static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1650 bool invalidate)
c4a0c46e
AK
1651{
1652 int nr_pages, i;
1653 pgoff_t index, end;
1654 struct pagevec pvec;
1655 struct inode *inode = mpd->inode;
1656 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1657
1658 /* This is necessary when next_page == 0. */
1659 if (mpd->first_page >= mpd->next_page)
1660 return;
c4a0c46e 1661
c7f5938a
CW
1662 index = mpd->first_page;
1663 end = mpd->next_page - 1;
4e7ea81d
JK
1664 if (invalidate) {
1665 ext4_lblk_t start, last;
09cbfeaf
KS
1666 start = index << (PAGE_SHIFT - inode->i_blkbits);
1667 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1668 ext4_es_remove_extent(inode, start, last - start + 1);
1669 }
51865fda 1670
66bea92c 1671 pagevec_init(&pvec, 0);
c4a0c46e
AK
1672 while (index <= end) {
1673 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1674 if (nr_pages == 0)
1675 break;
1676 for (i = 0; i < nr_pages; i++) {
1677 struct page *page = pvec.pages[i];
9b1d0998 1678 if (page->index > end)
c4a0c46e 1679 break;
c4a0c46e
AK
1680 BUG_ON(!PageLocked(page));
1681 BUG_ON(PageWriteback(page));
4e7ea81d 1682 if (invalidate) {
4e800c03 1683 if (page_mapped(page))
1684 clear_page_dirty_for_io(page);
09cbfeaf 1685 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1686 ClearPageUptodate(page);
1687 }
c4a0c46e
AK
1688 unlock_page(page);
1689 }
9b1d0998
JK
1690 index = pvec.pages[nr_pages - 1]->index + 1;
1691 pagevec_release(&pvec);
c4a0c46e 1692 }
c4a0c46e
AK
1693}
1694
df22291f
AK
1695static void ext4_print_free_blocks(struct inode *inode)
1696{
1697 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1698 struct super_block *sb = inode->i_sb;
f78ee70d 1699 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1700
1701 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1702 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1703 ext4_count_free_clusters(sb)));
92b97816
TT
1704 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1705 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1706 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1707 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1708 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1709 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1710 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1711 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1712 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1713 ei->i_reserved_data_blocks);
df22291f
AK
1714 return;
1715}
1716
c364b22c 1717static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1718{
c364b22c 1719 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1720}
1721
5356f261
AK
1722/*
1723 * This function is grabs code from the very beginning of
1724 * ext4_map_blocks, but assumes that the caller is from delayed write
1725 * time. This function looks up the requested blocks and sets the
1726 * buffer delay bit under the protection of i_data_sem.
1727 */
1728static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1729 struct ext4_map_blocks *map,
1730 struct buffer_head *bh)
1731{
d100eef2 1732 struct extent_status es;
5356f261
AK
1733 int retval;
1734 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1735#ifdef ES_AGGRESSIVE_TEST
1736 struct ext4_map_blocks orig_map;
1737
1738 memcpy(&orig_map, map, sizeof(*map));
1739#endif
5356f261
AK
1740
1741 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1742 invalid_block = ~0;
1743
1744 map->m_flags = 0;
1745 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1746 "logical block %lu\n", inode->i_ino, map->m_len,
1747 (unsigned long) map->m_lblk);
d100eef2
ZL
1748
1749 /* Lookup extent status tree firstly */
1750 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1751 if (ext4_es_is_hole(&es)) {
1752 retval = 0;
c8b459f4 1753 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1754 goto add_delayed;
1755 }
1756
1757 /*
1758 * Delayed extent could be allocated by fallocate.
1759 * So we need to check it.
1760 */
1761 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1762 map_bh(bh, inode->i_sb, invalid_block);
1763 set_buffer_new(bh);
1764 set_buffer_delay(bh);
1765 return 0;
1766 }
1767
1768 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1769 retval = es.es_len - (iblock - es.es_lblk);
1770 if (retval > map->m_len)
1771 retval = map->m_len;
1772 map->m_len = retval;
1773 if (ext4_es_is_written(&es))
1774 map->m_flags |= EXT4_MAP_MAPPED;
1775 else if (ext4_es_is_unwritten(&es))
1776 map->m_flags |= EXT4_MAP_UNWRITTEN;
1777 else
1778 BUG_ON(1);
1779
921f266b
DM
1780#ifdef ES_AGGRESSIVE_TEST
1781 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1782#endif
d100eef2
ZL
1783 return retval;
1784 }
1785
5356f261
AK
1786 /*
1787 * Try to see if we can get the block without requesting a new
1788 * file system block.
1789 */
c8b459f4 1790 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1791 if (ext4_has_inline_data(inode))
9c3569b5 1792 retval = 0;
cbd7584e 1793 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1794 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1795 else
2f8e0a7c 1796 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1797
d100eef2 1798add_delayed:
5356f261 1799 if (retval == 0) {
f7fec032 1800 int ret;
5356f261
AK
1801 /*
1802 * XXX: __block_prepare_write() unmaps passed block,
1803 * is it OK?
1804 */
386ad67c
LC
1805 /*
1806 * If the block was allocated from previously allocated cluster,
1807 * then we don't need to reserve it again. However we still need
1808 * to reserve metadata for every block we're going to write.
1809 */
c27e43a1 1810 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1811 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1812 ret = ext4_da_reserve_space(inode);
f7fec032 1813 if (ret) {
5356f261 1814 /* not enough space to reserve */
f7fec032 1815 retval = ret;
5356f261 1816 goto out_unlock;
f7fec032 1817 }
5356f261
AK
1818 }
1819
f7fec032
ZL
1820 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1821 ~0, EXTENT_STATUS_DELAYED);
1822 if (ret) {
1823 retval = ret;
51865fda 1824 goto out_unlock;
f7fec032 1825 }
51865fda 1826
5356f261
AK
1827 map_bh(bh, inode->i_sb, invalid_block);
1828 set_buffer_new(bh);
1829 set_buffer_delay(bh);
f7fec032
ZL
1830 } else if (retval > 0) {
1831 int ret;
3be78c73 1832 unsigned int status;
f7fec032 1833
44fb851d
ZL
1834 if (unlikely(retval != map->m_len)) {
1835 ext4_warning(inode->i_sb,
1836 "ES len assertion failed for inode "
1837 "%lu: retval %d != map->m_len %d",
1838 inode->i_ino, retval, map->m_len);
1839 WARN_ON(1);
921f266b 1840 }
921f266b 1841
f7fec032
ZL
1842 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1843 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1844 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1845 map->m_pblk, status);
1846 if (ret != 0)
1847 retval = ret;
5356f261
AK
1848 }
1849
1850out_unlock:
1851 up_read((&EXT4_I(inode)->i_data_sem));
1852
1853 return retval;
1854}
1855
64769240 1856/*
d91bd2c1 1857 * This is a special get_block_t callback which is used by
b920c755
TT
1858 * ext4_da_write_begin(). It will either return mapped block or
1859 * reserve space for a single block.
29fa89d0
AK
1860 *
1861 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1862 * We also have b_blocknr = -1 and b_bdev initialized properly
1863 *
1864 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1865 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1866 * initialized properly.
64769240 1867 */
9c3569b5
TM
1868int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1869 struct buffer_head *bh, int create)
64769240 1870{
2ed88685 1871 struct ext4_map_blocks map;
64769240
AT
1872 int ret = 0;
1873
1874 BUG_ON(create == 0);
2ed88685
TT
1875 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1876
1877 map.m_lblk = iblock;
1878 map.m_len = 1;
64769240
AT
1879
1880 /*
1881 * first, we need to know whether the block is allocated already
1882 * preallocated blocks are unmapped but should treated
1883 * the same as allocated blocks.
1884 */
5356f261
AK
1885 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1886 if (ret <= 0)
2ed88685 1887 return ret;
64769240 1888
2ed88685 1889 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1890 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1891
1892 if (buffer_unwritten(bh)) {
1893 /* A delayed write to unwritten bh should be marked
1894 * new and mapped. Mapped ensures that we don't do
1895 * get_block multiple times when we write to the same
1896 * offset and new ensures that we do proper zero out
1897 * for partial write.
1898 */
1899 set_buffer_new(bh);
c8205636 1900 set_buffer_mapped(bh);
2ed88685
TT
1901 }
1902 return 0;
64769240 1903}
61628a3f 1904
62e086be
AK
1905static int bget_one(handle_t *handle, struct buffer_head *bh)
1906{
1907 get_bh(bh);
1908 return 0;
1909}
1910
1911static int bput_one(handle_t *handle, struct buffer_head *bh)
1912{
1913 put_bh(bh);
1914 return 0;
1915}
1916
1917static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1918 unsigned int len)
1919{
1920 struct address_space *mapping = page->mapping;
1921 struct inode *inode = mapping->host;
3fdcfb66 1922 struct buffer_head *page_bufs = NULL;
62e086be 1923 handle_t *handle = NULL;
3fdcfb66
TM
1924 int ret = 0, err = 0;
1925 int inline_data = ext4_has_inline_data(inode);
1926 struct buffer_head *inode_bh = NULL;
62e086be 1927
cb20d518 1928 ClearPageChecked(page);
3fdcfb66
TM
1929
1930 if (inline_data) {
1931 BUG_ON(page->index != 0);
1932 BUG_ON(len > ext4_get_max_inline_size(inode));
1933 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1934 if (inode_bh == NULL)
1935 goto out;
1936 } else {
1937 page_bufs = page_buffers(page);
1938 if (!page_bufs) {
1939 BUG();
1940 goto out;
1941 }
1942 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1943 NULL, bget_one);
1944 }
bdf96838
TT
1945 /*
1946 * We need to release the page lock before we start the
1947 * journal, so grab a reference so the page won't disappear
1948 * out from under us.
1949 */
1950 get_page(page);
62e086be
AK
1951 unlock_page(page);
1952
9924a92a
TT
1953 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1954 ext4_writepage_trans_blocks(inode));
62e086be
AK
1955 if (IS_ERR(handle)) {
1956 ret = PTR_ERR(handle);
bdf96838
TT
1957 put_page(page);
1958 goto out_no_pagelock;
62e086be 1959 }
441c8508
CW
1960 BUG_ON(!ext4_handle_valid(handle));
1961
bdf96838
TT
1962 lock_page(page);
1963 put_page(page);
1964 if (page->mapping != mapping) {
1965 /* The page got truncated from under us */
1966 ext4_journal_stop(handle);
1967 ret = 0;
1968 goto out;
1969 }
1970
3fdcfb66 1971 if (inline_data) {
5d601255 1972 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1973 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1974
3fdcfb66
TM
1975 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1976
1977 } else {
1978 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1979 do_journal_get_write_access);
1980
1981 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1982 write_end_fn);
1983 }
62e086be
AK
1984 if (ret == 0)
1985 ret = err;
2d859db3 1986 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1987 err = ext4_journal_stop(handle);
1988 if (!ret)
1989 ret = err;
1990
3fdcfb66 1991 if (!ext4_has_inline_data(inode))
8c9367fd 1992 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1993 NULL, bput_one);
19f5fb7a 1994 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1995out:
bdf96838
TT
1996 unlock_page(page);
1997out_no_pagelock:
3fdcfb66 1998 brelse(inode_bh);
62e086be
AK
1999 return ret;
2000}
2001
61628a3f 2002/*
43ce1d23
AK
2003 * Note that we don't need to start a transaction unless we're journaling data
2004 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2005 * need to file the inode to the transaction's list in ordered mode because if
2006 * we are writing back data added by write(), the inode is already there and if
25985edc 2007 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2008 * transaction the data will hit the disk. In case we are journaling data, we
2009 * cannot start transaction directly because transaction start ranks above page
2010 * lock so we have to do some magic.
2011 *
b920c755 2012 * This function can get called via...
20970ba6 2013 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2014 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2015 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2016 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2017 *
2018 * We don't do any block allocation in this function. If we have page with
2019 * multiple blocks we need to write those buffer_heads that are mapped. This
2020 * is important for mmaped based write. So if we do with blocksize 1K
2021 * truncate(f, 1024);
2022 * a = mmap(f, 0, 4096);
2023 * a[0] = 'a';
2024 * truncate(f, 4096);
2025 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2026 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2027 * do_wp_page). So writepage should write the first block. If we modify
2028 * the mmap area beyond 1024 we will again get a page_fault and the
2029 * page_mkwrite callback will do the block allocation and mark the
2030 * buffer_heads mapped.
2031 *
2032 * We redirty the page if we have any buffer_heads that is either delay or
2033 * unwritten in the page.
2034 *
2035 * We can get recursively called as show below.
2036 *
2037 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2038 * ext4_writepage()
2039 *
2040 * But since we don't do any block allocation we should not deadlock.
2041 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2042 */
43ce1d23 2043static int ext4_writepage(struct page *page,
62e086be 2044 struct writeback_control *wbc)
64769240 2045{
f8bec370 2046 int ret = 0;
61628a3f 2047 loff_t size;
498e5f24 2048 unsigned int len;
744692dc 2049 struct buffer_head *page_bufs = NULL;
61628a3f 2050 struct inode *inode = page->mapping->host;
36ade451 2051 struct ext4_io_submit io_submit;
1c8349a1 2052 bool keep_towrite = false;
61628a3f 2053
0db1ff22
TT
2054 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2055 ext4_invalidatepage(page, 0, PAGE_SIZE);
2056 unlock_page(page);
2057 return -EIO;
2058 }
2059
a9c667f8 2060 trace_ext4_writepage(page);
f0e6c985 2061 size = i_size_read(inode);
09cbfeaf
KS
2062 if (page->index == size >> PAGE_SHIFT)
2063 len = size & ~PAGE_MASK;
f0e6c985 2064 else
09cbfeaf 2065 len = PAGE_SIZE;
64769240 2066
a42afc5f 2067 page_bufs = page_buffers(page);
a42afc5f 2068 /*
fe386132
JK
2069 * We cannot do block allocation or other extent handling in this
2070 * function. If there are buffers needing that, we have to redirty
2071 * the page. But we may reach here when we do a journal commit via
2072 * journal_submit_inode_data_buffers() and in that case we must write
2073 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2074 *
2075 * Also, if there is only one buffer per page (the fs block
2076 * size == the page size), if one buffer needs block
2077 * allocation or needs to modify the extent tree to clear the
2078 * unwritten flag, we know that the page can't be written at
2079 * all, so we might as well refuse the write immediately.
2080 * Unfortunately if the block size != page size, we can't as
2081 * easily detect this case using ext4_walk_page_buffers(), but
2082 * for the extremely common case, this is an optimization that
2083 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2084 */
f19d5870
TM
2085 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2086 ext4_bh_delay_or_unwritten)) {
f8bec370 2087 redirty_page_for_writepage(wbc, page);
cccd147a 2088 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2089 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2090 /*
2091 * For memory cleaning there's no point in writing only
2092 * some buffers. So just bail out. Warn if we came here
2093 * from direct reclaim.
2094 */
2095 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2096 == PF_MEMALLOC);
f0e6c985
AK
2097 unlock_page(page);
2098 return 0;
2099 }
1c8349a1 2100 keep_towrite = true;
a42afc5f 2101 }
64769240 2102
cb20d518 2103 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2104 /*
2105 * It's mmapped pagecache. Add buffers and journal it. There
2106 * doesn't seem much point in redirtying the page here.
2107 */
3f0ca309 2108 return __ext4_journalled_writepage(page, len);
43ce1d23 2109
97a851ed
JK
2110 ext4_io_submit_init(&io_submit, wbc);
2111 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2112 if (!io_submit.io_end) {
2113 redirty_page_for_writepage(wbc, page);
2114 unlock_page(page);
2115 return -ENOMEM;
2116 }
1c8349a1 2117 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2118 ext4_io_submit(&io_submit);
97a851ed
JK
2119 /* Drop io_end reference we got from init */
2120 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2121 return ret;
2122}
2123
5f1132b2
JK
2124static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2125{
2126 int len;
2127 loff_t size = i_size_read(mpd->inode);
2128 int err;
2129
2130 BUG_ON(page->index != mpd->first_page);
09cbfeaf
KS
2131 if (page->index == size >> PAGE_SHIFT)
2132 len = size & ~PAGE_MASK;
5f1132b2 2133 else
09cbfeaf 2134 len = PAGE_SIZE;
5f1132b2 2135 clear_page_dirty_for_io(page);
1c8349a1 2136 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2137 if (!err)
2138 mpd->wbc->nr_to_write--;
2139 mpd->first_page++;
2140
2141 return err;
2142}
2143
4e7ea81d
JK
2144#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2145
61628a3f 2146/*
fffb2739
JK
2147 * mballoc gives us at most this number of blocks...
2148 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2149 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2150 */
fffb2739 2151#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2152
4e7ea81d
JK
2153/*
2154 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2155 *
2156 * @mpd - extent of blocks
2157 * @lblk - logical number of the block in the file
09930042 2158 * @bh - buffer head we want to add to the extent
4e7ea81d 2159 *
09930042
JK
2160 * The function is used to collect contig. blocks in the same state. If the
2161 * buffer doesn't require mapping for writeback and we haven't started the
2162 * extent of buffers to map yet, the function returns 'true' immediately - the
2163 * caller can write the buffer right away. Otherwise the function returns true
2164 * if the block has been added to the extent, false if the block couldn't be
2165 * added.
4e7ea81d 2166 */
09930042
JK
2167static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2168 struct buffer_head *bh)
4e7ea81d
JK
2169{
2170 struct ext4_map_blocks *map = &mpd->map;
2171
09930042
JK
2172 /* Buffer that doesn't need mapping for writeback? */
2173 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2174 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2175 /* So far no extent to map => we write the buffer right away */
2176 if (map->m_len == 0)
2177 return true;
2178 return false;
2179 }
4e7ea81d
JK
2180
2181 /* First block in the extent? */
2182 if (map->m_len == 0) {
dddbd6ac
JK
2183 /* We cannot map unless handle is started... */
2184 if (!mpd->do_map)
2185 return false;
4e7ea81d
JK
2186 map->m_lblk = lblk;
2187 map->m_len = 1;
09930042
JK
2188 map->m_flags = bh->b_state & BH_FLAGS;
2189 return true;
4e7ea81d
JK
2190 }
2191
09930042
JK
2192 /* Don't go larger than mballoc is willing to allocate */
2193 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2194 return false;
2195
4e7ea81d
JK
2196 /* Can we merge the block to our big extent? */
2197 if (lblk == map->m_lblk + map->m_len &&
09930042 2198 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2199 map->m_len++;
09930042 2200 return true;
4e7ea81d 2201 }
09930042 2202 return false;
4e7ea81d
JK
2203}
2204
5f1132b2
JK
2205/*
2206 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2207 *
2208 * @mpd - extent of blocks for mapping
2209 * @head - the first buffer in the page
2210 * @bh - buffer we should start processing from
2211 * @lblk - logical number of the block in the file corresponding to @bh
2212 *
2213 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2214 * the page for IO if all buffers in this page were mapped and there's no
2215 * accumulated extent of buffers to map or add buffers in the page to the
2216 * extent of buffers to map. The function returns 1 if the caller can continue
2217 * by processing the next page, 0 if it should stop adding buffers to the
2218 * extent to map because we cannot extend it anymore. It can also return value
2219 * < 0 in case of error during IO submission.
2220 */
2221static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2222 struct buffer_head *head,
2223 struct buffer_head *bh,
2224 ext4_lblk_t lblk)
4e7ea81d
JK
2225{
2226 struct inode *inode = mpd->inode;
5f1132b2 2227 int err;
93407472 2228 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2229 >> inode->i_blkbits;
2230
2231 do {
2232 BUG_ON(buffer_locked(bh));
2233
09930042 2234 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2235 /* Found extent to map? */
2236 if (mpd->map.m_len)
5f1132b2 2237 return 0;
dddbd6ac
JK
2238 /* Buffer needs mapping and handle is not started? */
2239 if (!mpd->do_map)
2240 return 0;
09930042 2241 /* Everything mapped so far and we hit EOF */
5f1132b2 2242 break;
4e7ea81d 2243 }
4e7ea81d 2244 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2245 /* So far everything mapped? Submit the page for IO. */
2246 if (mpd->map.m_len == 0) {
2247 err = mpage_submit_page(mpd, head->b_page);
2248 if (err < 0)
2249 return err;
2250 }
2251 return lblk < blocks;
4e7ea81d
JK
2252}
2253
2254/*
2255 * mpage_map_buffers - update buffers corresponding to changed extent and
2256 * submit fully mapped pages for IO
2257 *
2258 * @mpd - description of extent to map, on return next extent to map
2259 *
2260 * Scan buffers corresponding to changed extent (we expect corresponding pages
2261 * to be already locked) and update buffer state according to new extent state.
2262 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2263 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2264 * and do extent conversion after IO is finished. If the last page is not fully
2265 * mapped, we update @map to the next extent in the last page that needs
2266 * mapping. Otherwise we submit the page for IO.
2267 */
2268static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2269{
2270 struct pagevec pvec;
2271 int nr_pages, i;
2272 struct inode *inode = mpd->inode;
2273 struct buffer_head *head, *bh;
09cbfeaf 2274 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2275 pgoff_t start, end;
2276 ext4_lblk_t lblk;
2277 sector_t pblock;
2278 int err;
2279
2280 start = mpd->map.m_lblk >> bpp_bits;
2281 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2282 lblk = start << bpp_bits;
2283 pblock = mpd->map.m_pblk;
2284
2285 pagevec_init(&pvec, 0);
2286 while (start <= end) {
2287 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2288 PAGEVEC_SIZE);
2289 if (nr_pages == 0)
2290 break;
2291 for (i = 0; i < nr_pages; i++) {
2292 struct page *page = pvec.pages[i];
2293
2294 if (page->index > end)
2295 break;
70261f56 2296 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2297 BUG_ON(page->index != start);
2298 bh = head = page_buffers(page);
2299 do {
2300 if (lblk < mpd->map.m_lblk)
2301 continue;
2302 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2303 /*
2304 * Buffer after end of mapped extent.
2305 * Find next buffer in the page to map.
2306 */
2307 mpd->map.m_len = 0;
2308 mpd->map.m_flags = 0;
5f1132b2
JK
2309 /*
2310 * FIXME: If dioread_nolock supports
2311 * blocksize < pagesize, we need to make
2312 * sure we add size mapped so far to
2313 * io_end->size as the following call
2314 * can submit the page for IO.
2315 */
2316 err = mpage_process_page_bufs(mpd, head,
2317 bh, lblk);
4e7ea81d 2318 pagevec_release(&pvec);
5f1132b2
JK
2319 if (err > 0)
2320 err = 0;
2321 return err;
4e7ea81d
JK
2322 }
2323 if (buffer_delay(bh)) {
2324 clear_buffer_delay(bh);
2325 bh->b_blocknr = pblock++;
2326 }
4e7ea81d 2327 clear_buffer_unwritten(bh);
5f1132b2 2328 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2329
2330 /*
2331 * FIXME: This is going to break if dioread_nolock
2332 * supports blocksize < pagesize as we will try to
2333 * convert potentially unmapped parts of inode.
2334 */
09cbfeaf 2335 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2336 /* Page fully mapped - let IO run! */
2337 err = mpage_submit_page(mpd, page);
2338 if (err < 0) {
2339 pagevec_release(&pvec);
2340 return err;
2341 }
2342 start++;
2343 }
2344 pagevec_release(&pvec);
2345 }
2346 /* Extent fully mapped and matches with page boundary. We are done. */
2347 mpd->map.m_len = 0;
2348 mpd->map.m_flags = 0;
2349 return 0;
2350}
2351
2352static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2353{
2354 struct inode *inode = mpd->inode;
2355 struct ext4_map_blocks *map = &mpd->map;
2356 int get_blocks_flags;
090f32ee 2357 int err, dioread_nolock;
4e7ea81d
JK
2358
2359 trace_ext4_da_write_pages_extent(inode, map);
2360 /*
2361 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2362 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2363 * where we have written into one or more preallocated blocks). It is
2364 * possible that we're going to need more metadata blocks than
2365 * previously reserved. However we must not fail because we're in
2366 * writeback and there is nothing we can do about it so it might result
2367 * in data loss. So use reserved blocks to allocate metadata if
2368 * possible.
2369 *
754cfed6
TT
2370 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2371 * the blocks in question are delalloc blocks. This indicates
2372 * that the blocks and quotas has already been checked when
2373 * the data was copied into the page cache.
4e7ea81d
JK
2374 */
2375 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2376 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2377 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2378 dioread_nolock = ext4_should_dioread_nolock(inode);
2379 if (dioread_nolock)
4e7ea81d
JK
2380 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2381 if (map->m_flags & (1 << BH_Delay))
2382 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2383
2384 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2385 if (err < 0)
2386 return err;
090f32ee 2387 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2388 if (!mpd->io_submit.io_end->handle &&
2389 ext4_handle_valid(handle)) {
2390 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2391 handle->h_rsv_handle = NULL;
2392 }
3613d228 2393 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2394 }
4e7ea81d
JK
2395
2396 BUG_ON(map->m_len == 0);
2397 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2398 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2399 map->m_len);
4e7ea81d
JK
2400 }
2401 return 0;
2402}
2403
2404/*
2405 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2406 * mpd->len and submit pages underlying it for IO
2407 *
2408 * @handle - handle for journal operations
2409 * @mpd - extent to map
7534e854
JK
2410 * @give_up_on_write - we set this to true iff there is a fatal error and there
2411 * is no hope of writing the data. The caller should discard
2412 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2413 *
2414 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2415 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2416 * them to initialized or split the described range from larger unwritten
2417 * extent. Note that we need not map all the described range since allocation
2418 * can return less blocks or the range is covered by more unwritten extents. We
2419 * cannot map more because we are limited by reserved transaction credits. On
2420 * the other hand we always make sure that the last touched page is fully
2421 * mapped so that it can be written out (and thus forward progress is
2422 * guaranteed). After mapping we submit all mapped pages for IO.
2423 */
2424static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2425 struct mpage_da_data *mpd,
2426 bool *give_up_on_write)
4e7ea81d
JK
2427{
2428 struct inode *inode = mpd->inode;
2429 struct ext4_map_blocks *map = &mpd->map;
2430 int err;
2431 loff_t disksize;
6603120e 2432 int progress = 0;
4e7ea81d
JK
2433
2434 mpd->io_submit.io_end->offset =
2435 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2436 do {
4e7ea81d
JK
2437 err = mpage_map_one_extent(handle, mpd);
2438 if (err < 0) {
2439 struct super_block *sb = inode->i_sb;
2440
0db1ff22
TT
2441 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2442 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2443 goto invalidate_dirty_pages;
4e7ea81d 2444 /*
cb530541
TT
2445 * Let the uper layers retry transient errors.
2446 * In the case of ENOSPC, if ext4_count_free_blocks()
2447 * is non-zero, a commit should free up blocks.
4e7ea81d 2448 */
cb530541 2449 if ((err == -ENOMEM) ||
6603120e
DM
2450 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2451 if (progress)
2452 goto update_disksize;
cb530541 2453 return err;
6603120e 2454 }
cb530541
TT
2455 ext4_msg(sb, KERN_CRIT,
2456 "Delayed block allocation failed for "
2457 "inode %lu at logical offset %llu with"
2458 " max blocks %u with error %d",
2459 inode->i_ino,
2460 (unsigned long long)map->m_lblk,
2461 (unsigned)map->m_len, -err);
2462 ext4_msg(sb, KERN_CRIT,
2463 "This should not happen!! Data will "
2464 "be lost\n");
2465 if (err == -ENOSPC)
2466 ext4_print_free_blocks(inode);
2467 invalidate_dirty_pages:
2468 *give_up_on_write = true;
4e7ea81d
JK
2469 return err;
2470 }
6603120e 2471 progress = 1;
4e7ea81d
JK
2472 /*
2473 * Update buffer state, submit mapped pages, and get us new
2474 * extent to map
2475 */
2476 err = mpage_map_and_submit_buffers(mpd);
2477 if (err < 0)
6603120e 2478 goto update_disksize;
27d7c4ed 2479 } while (map->m_len);
4e7ea81d 2480
6603120e 2481update_disksize:
622cad13
TT
2482 /*
2483 * Update on-disk size after IO is submitted. Races with
2484 * truncate are avoided by checking i_size under i_data_sem.
2485 */
09cbfeaf 2486 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2487 if (disksize > EXT4_I(inode)->i_disksize) {
2488 int err2;
622cad13
TT
2489 loff_t i_size;
2490
2491 down_write(&EXT4_I(inode)->i_data_sem);
2492 i_size = i_size_read(inode);
2493 if (disksize > i_size)
2494 disksize = i_size;
2495 if (disksize > EXT4_I(inode)->i_disksize)
2496 EXT4_I(inode)->i_disksize = disksize;
622cad13 2497 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2498 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2499 if (err2)
2500 ext4_error(inode->i_sb,
2501 "Failed to mark inode %lu dirty",
2502 inode->i_ino);
2503 if (!err)
2504 err = err2;
2505 }
2506 return err;
2507}
2508
fffb2739
JK
2509/*
2510 * Calculate the total number of credits to reserve for one writepages
20970ba6 2511 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2512 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2513 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514 * bpp - 1 blocks in bpp different extents.
2515 */
525f4ed8
MC
2516static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517{
fffb2739 2518 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2519
fffb2739
JK
2520 return ext4_meta_trans_blocks(inode,
2521 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2522}
61628a3f 2523
8e48dcfb 2524/*
4e7ea81d
JK
2525 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526 * and underlying extent to map
2527 *
2528 * @mpd - where to look for pages
2529 *
2530 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531 * IO immediately. When we find a page which isn't mapped we start accumulating
2532 * extent of buffers underlying these pages that needs mapping (formed by
2533 * either delayed or unwritten buffers). We also lock the pages containing
2534 * these buffers. The extent found is returned in @mpd structure (starting at
2535 * mpd->lblk with length mpd->len blocks).
2536 *
2537 * Note that this function can attach bios to one io_end structure which are
2538 * neither logically nor physically contiguous. Although it may seem as an
2539 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2541 */
4e7ea81d 2542static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2543{
4e7ea81d
JK
2544 struct address_space *mapping = mpd->inode->i_mapping;
2545 struct pagevec pvec;
2546 unsigned int nr_pages;
aeac589a 2547 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2548 pgoff_t index = mpd->first_page;
2549 pgoff_t end = mpd->last_page;
2550 int tag;
2551 int i, err = 0;
2552 int blkbits = mpd->inode->i_blkbits;
2553 ext4_lblk_t lblk;
2554 struct buffer_head *head;
8e48dcfb 2555
4e7ea81d 2556 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2557 tag = PAGECACHE_TAG_TOWRITE;
2558 else
2559 tag = PAGECACHE_TAG_DIRTY;
2560
4e7ea81d
JK
2561 pagevec_init(&pvec, 0);
2562 mpd->map.m_len = 0;
2563 mpd->next_page = index;
4f01b02c 2564 while (index <= end) {
5b41d924 2565 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2566 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2567 if (nr_pages == 0)
4e7ea81d 2568 goto out;
8e48dcfb
TT
2569
2570 for (i = 0; i < nr_pages; i++) {
2571 struct page *page = pvec.pages[i];
2572
2573 /*
2574 * At this point, the page may be truncated or
2575 * invalidated (changing page->mapping to NULL), or
2576 * even swizzled back from swapper_space to tmpfs file
2577 * mapping. However, page->index will not change
2578 * because we have a reference on the page.
2579 */
4f01b02c
TT
2580 if (page->index > end)
2581 goto out;
8e48dcfb 2582
aeac589a
ML
2583 /*
2584 * Accumulated enough dirty pages? This doesn't apply
2585 * to WB_SYNC_ALL mode. For integrity sync we have to
2586 * keep going because someone may be concurrently
2587 * dirtying pages, and we might have synced a lot of
2588 * newly appeared dirty pages, but have not synced all
2589 * of the old dirty pages.
2590 */
2591 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2592 goto out;
2593
4e7ea81d
JK
2594 /* If we can't merge this page, we are done. */
2595 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2596 goto out;
78aaced3 2597
8e48dcfb 2598 lock_page(page);
8e48dcfb 2599 /*
4e7ea81d
JK
2600 * If the page is no longer dirty, or its mapping no
2601 * longer corresponds to inode we are writing (which
2602 * means it has been truncated or invalidated), or the
2603 * page is already under writeback and we are not doing
2604 * a data integrity writeback, skip the page
8e48dcfb 2605 */
4f01b02c
TT
2606 if (!PageDirty(page) ||
2607 (PageWriteback(page) &&
4e7ea81d 2608 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2609 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2610 unlock_page(page);
2611 continue;
2612 }
2613
7cb1a535 2614 wait_on_page_writeback(page);
8e48dcfb 2615 BUG_ON(PageWriteback(page));
8e48dcfb 2616
4e7ea81d 2617 if (mpd->map.m_len == 0)
8eb9e5ce 2618 mpd->first_page = page->index;
8eb9e5ce 2619 mpd->next_page = page->index + 1;
f8bec370 2620 /* Add all dirty buffers to mpd */
4e7ea81d 2621 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2622 (PAGE_SHIFT - blkbits);
f8bec370 2623 head = page_buffers(page);
5f1132b2
JK
2624 err = mpage_process_page_bufs(mpd, head, head, lblk);
2625 if (err <= 0)
4e7ea81d 2626 goto out;
5f1132b2 2627 err = 0;
aeac589a 2628 left--;
8e48dcfb
TT
2629 }
2630 pagevec_release(&pvec);
2631 cond_resched();
2632 }
4f01b02c 2633 return 0;
8eb9e5ce
TT
2634out:
2635 pagevec_release(&pvec);
4e7ea81d 2636 return err;
8e48dcfb
TT
2637}
2638
20970ba6
TT
2639static int __writepage(struct page *page, struct writeback_control *wbc,
2640 void *data)
2641{
2642 struct address_space *mapping = data;
2643 int ret = ext4_writepage(page, wbc);
2644 mapping_set_error(mapping, ret);
2645 return ret;
2646}
2647
2648static int ext4_writepages(struct address_space *mapping,
2649 struct writeback_control *wbc)
64769240 2650{
4e7ea81d
JK
2651 pgoff_t writeback_index = 0;
2652 long nr_to_write = wbc->nr_to_write;
22208ded 2653 int range_whole = 0;
4e7ea81d 2654 int cycled = 1;
61628a3f 2655 handle_t *handle = NULL;
df22291f 2656 struct mpage_da_data mpd;
5e745b04 2657 struct inode *inode = mapping->host;
6b523df4 2658 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2659 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2660 bool done;
1bce63d1 2661 struct blk_plug plug;
cb530541 2662 bool give_up_on_write = false;
61628a3f 2663
0db1ff22
TT
2664 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2665 return -EIO;
2666
c8585c6f 2667 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2668 trace_ext4_writepages(inode, wbc);
ba80b101 2669
c8585c6f
DJ
2670 if (dax_mapping(mapping)) {
2671 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2672 wbc);
2673 goto out_writepages;
2674 }
7f6d5b52 2675
61628a3f
MC
2676 /*
2677 * No pages to write? This is mainly a kludge to avoid starting
2678 * a transaction for special inodes like journal inode on last iput()
2679 * because that could violate lock ordering on umount
2680 */
a1d6cc56 2681 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2682 goto out_writepages;
2a21e37e 2683
20970ba6
TT
2684 if (ext4_should_journal_data(inode)) {
2685 struct blk_plug plug;
20970ba6
TT
2686
2687 blk_start_plug(&plug);
2688 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2689 blk_finish_plug(&plug);
bbf023c7 2690 goto out_writepages;
20970ba6
TT
2691 }
2692
2a21e37e
TT
2693 /*
2694 * If the filesystem has aborted, it is read-only, so return
2695 * right away instead of dumping stack traces later on that
2696 * will obscure the real source of the problem. We test
4ab2f15b 2697 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2698 * the latter could be true if the filesystem is mounted
20970ba6 2699 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2700 * *never* be called, so if that ever happens, we would want
2701 * the stack trace.
2702 */
0db1ff22
TT
2703 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2704 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2705 ret = -EROFS;
2706 goto out_writepages;
2707 }
2a21e37e 2708
6b523df4
JK
2709 if (ext4_should_dioread_nolock(inode)) {
2710 /*
70261f56 2711 * We may need to convert up to one extent per block in
6b523df4
JK
2712 * the page and we may dirty the inode.
2713 */
09cbfeaf 2714 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2715 }
2716
4e7ea81d
JK
2717 /*
2718 * If we have inline data and arrive here, it means that
2719 * we will soon create the block for the 1st page, so
2720 * we'd better clear the inline data here.
2721 */
2722 if (ext4_has_inline_data(inode)) {
2723 /* Just inode will be modified... */
2724 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2725 if (IS_ERR(handle)) {
2726 ret = PTR_ERR(handle);
2727 goto out_writepages;
2728 }
2729 BUG_ON(ext4_test_inode_state(inode,
2730 EXT4_STATE_MAY_INLINE_DATA));
2731 ext4_destroy_inline_data(handle, inode);
2732 ext4_journal_stop(handle);
2733 }
2734
22208ded
AK
2735 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2736 range_whole = 1;
61628a3f 2737
2acf2c26 2738 if (wbc->range_cyclic) {
4e7ea81d
JK
2739 writeback_index = mapping->writeback_index;
2740 if (writeback_index)
2acf2c26 2741 cycled = 0;
4e7ea81d
JK
2742 mpd.first_page = writeback_index;
2743 mpd.last_page = -1;
5b41d924 2744 } else {
09cbfeaf
KS
2745 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2746 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2747 }
a1d6cc56 2748
4e7ea81d
JK
2749 mpd.inode = inode;
2750 mpd.wbc = wbc;
2751 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2752retry:
6e6938b6 2753 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2754 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2755 done = false;
1bce63d1 2756 blk_start_plug(&plug);
dddbd6ac
JK
2757
2758 /*
2759 * First writeback pages that don't need mapping - we can avoid
2760 * starting a transaction unnecessarily and also avoid being blocked
2761 * in the block layer on device congestion while having transaction
2762 * started.
2763 */
2764 mpd.do_map = 0;
2765 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2766 if (!mpd.io_submit.io_end) {
2767 ret = -ENOMEM;
2768 goto unplug;
2769 }
2770 ret = mpage_prepare_extent_to_map(&mpd);
2771 /* Submit prepared bio */
2772 ext4_io_submit(&mpd.io_submit);
2773 ext4_put_io_end_defer(mpd.io_submit.io_end);
2774 mpd.io_submit.io_end = NULL;
2775 /* Unlock pages we didn't use */
2776 mpage_release_unused_pages(&mpd, false);
2777 if (ret < 0)
2778 goto unplug;
2779
4e7ea81d
JK
2780 while (!done && mpd.first_page <= mpd.last_page) {
2781 /* For each extent of pages we use new io_end */
2782 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2783 if (!mpd.io_submit.io_end) {
2784 ret = -ENOMEM;
2785 break;
2786 }
a1d6cc56
AK
2787
2788 /*
4e7ea81d
JK
2789 * We have two constraints: We find one extent to map and we
2790 * must always write out whole page (makes a difference when
2791 * blocksize < pagesize) so that we don't block on IO when we
2792 * try to write out the rest of the page. Journalled mode is
2793 * not supported by delalloc.
a1d6cc56
AK
2794 */
2795 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2796 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2797
4e7ea81d 2798 /* start a new transaction */
6b523df4
JK
2799 handle = ext4_journal_start_with_reserve(inode,
2800 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2801 if (IS_ERR(handle)) {
2802 ret = PTR_ERR(handle);
1693918e 2803 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2804 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2805 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2806 /* Release allocated io_end */
2807 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2808 mpd.io_submit.io_end = NULL;
4e7ea81d 2809 break;
61628a3f 2810 }
dddbd6ac 2811 mpd.do_map = 1;
f63e6005 2812
4e7ea81d
JK
2813 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2814 ret = mpage_prepare_extent_to_map(&mpd);
2815 if (!ret) {
2816 if (mpd.map.m_len)
cb530541
TT
2817 ret = mpage_map_and_submit_extent(handle, &mpd,
2818 &give_up_on_write);
4e7ea81d
JK
2819 else {
2820 /*
2821 * We scanned the whole range (or exhausted
2822 * nr_to_write), submitted what was mapped and
2823 * didn't find anything needing mapping. We are
2824 * done.
2825 */
2826 done = true;
2827 }
f63e6005 2828 }
646caa9c
JK
2829 /*
2830 * Caution: If the handle is synchronous,
2831 * ext4_journal_stop() can wait for transaction commit
2832 * to finish which may depend on writeback of pages to
2833 * complete or on page lock to be released. In that
2834 * case, we have to wait until after after we have
2835 * submitted all the IO, released page locks we hold,
2836 * and dropped io_end reference (for extent conversion
2837 * to be able to complete) before stopping the handle.
2838 */
2839 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2840 ext4_journal_stop(handle);
2841 handle = NULL;
dddbd6ac 2842 mpd.do_map = 0;
646caa9c 2843 }
4e7ea81d
JK
2844 /* Submit prepared bio */
2845 ext4_io_submit(&mpd.io_submit);
2846 /* Unlock pages we didn't use */
cb530541 2847 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2848 /*
2849 * Drop our io_end reference we got from init. We have
2850 * to be careful and use deferred io_end finishing if
2851 * we are still holding the transaction as we can
2852 * release the last reference to io_end which may end
2853 * up doing unwritten extent conversion.
2854 */
2855 if (handle) {
2856 ext4_put_io_end_defer(mpd.io_submit.io_end);
2857 ext4_journal_stop(handle);
2858 } else
2859 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2860 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2861
2862 if (ret == -ENOSPC && sbi->s_journal) {
2863 /*
2864 * Commit the transaction which would
22208ded
AK
2865 * free blocks released in the transaction
2866 * and try again
2867 */
df22291f 2868 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2869 ret = 0;
4e7ea81d
JK
2870 continue;
2871 }
2872 /* Fatal error - ENOMEM, EIO... */
2873 if (ret)
61628a3f 2874 break;
a1d6cc56 2875 }
dddbd6ac 2876unplug:
1bce63d1 2877 blk_finish_plug(&plug);
9c12a831 2878 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2879 cycled = 1;
4e7ea81d
JK
2880 mpd.last_page = writeback_index - 1;
2881 mpd.first_page = 0;
2acf2c26
AK
2882 goto retry;
2883 }
22208ded
AK
2884
2885 /* Update index */
22208ded
AK
2886 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2887 /*
4e7ea81d 2888 * Set the writeback_index so that range_cyclic
22208ded
AK
2889 * mode will write it back later
2890 */
4e7ea81d 2891 mapping->writeback_index = mpd.first_page;
a1d6cc56 2892
61628a3f 2893out_writepages:
20970ba6
TT
2894 trace_ext4_writepages_result(inode, wbc, ret,
2895 nr_to_write - wbc->nr_to_write);
c8585c6f 2896 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2897 return ret;
64769240
AT
2898}
2899
79f0be8d
AK
2900static int ext4_nonda_switch(struct super_block *sb)
2901{
5c1ff336 2902 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2903 struct ext4_sb_info *sbi = EXT4_SB(sb);
2904
2905 /*
2906 * switch to non delalloc mode if we are running low
2907 * on free block. The free block accounting via percpu
179f7ebf 2908 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2909 * accumulated on each CPU without updating global counters
2910 * Delalloc need an accurate free block accounting. So switch
2911 * to non delalloc when we are near to error range.
2912 */
5c1ff336
EW
2913 free_clusters =
2914 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2915 dirty_clusters =
2916 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2917 /*
2918 * Start pushing delalloc when 1/2 of free blocks are dirty.
2919 */
5c1ff336 2920 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2921 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2922
5c1ff336
EW
2923 if (2 * free_clusters < 3 * dirty_clusters ||
2924 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2925 /*
c8afb446
ES
2926 * free block count is less than 150% of dirty blocks
2927 * or free blocks is less than watermark
79f0be8d
AK
2928 */
2929 return 1;
2930 }
2931 return 0;
2932}
2933
0ff8947f
ES
2934/* We always reserve for an inode update; the superblock could be there too */
2935static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2936{
e2b911c5 2937 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2938 return 1;
2939
2940 if (pos + len <= 0x7fffffffULL)
2941 return 1;
2942
2943 /* We might need to update the superblock to set LARGE_FILE */
2944 return 2;
2945}
2946
64769240 2947static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2948 loff_t pos, unsigned len, unsigned flags,
2949 struct page **pagep, void **fsdata)
64769240 2950{
72b8ab9d 2951 int ret, retries = 0;
64769240
AT
2952 struct page *page;
2953 pgoff_t index;
64769240
AT
2954 struct inode *inode = mapping->host;
2955 handle_t *handle;
2956
0db1ff22
TT
2957 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2958 return -EIO;
2959
09cbfeaf 2960 index = pos >> PAGE_SHIFT;
79f0be8d 2961
4db0d88e
TT
2962 if (ext4_nonda_switch(inode->i_sb) ||
2963 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
2964 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2965 return ext4_write_begin(file, mapping, pos,
2966 len, flags, pagep, fsdata);
2967 }
2968 *fsdata = (void *)0;
9bffad1e 2969 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2970
2971 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2972 ret = ext4_da_write_inline_data_begin(mapping, inode,
2973 pos, len, flags,
2974 pagep, fsdata);
2975 if (ret < 0)
47564bfb
TT
2976 return ret;
2977 if (ret == 1)
2978 return 0;
9c3569b5
TM
2979 }
2980
47564bfb
TT
2981 /*
2982 * grab_cache_page_write_begin() can take a long time if the
2983 * system is thrashing due to memory pressure, or if the page
2984 * is being written back. So grab it first before we start
2985 * the transaction handle. This also allows us to allocate
2986 * the page (if needed) without using GFP_NOFS.
2987 */
2988retry_grab:
2989 page = grab_cache_page_write_begin(mapping, index, flags);
2990 if (!page)
2991 return -ENOMEM;
2992 unlock_page(page);
2993
64769240
AT
2994 /*
2995 * With delayed allocation, we don't log the i_disksize update
2996 * if there is delayed block allocation. But we still need
2997 * to journalling the i_disksize update if writes to the end
2998 * of file which has an already mapped buffer.
2999 */
47564bfb 3000retry_journal:
0ff8947f
ES
3001 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3002 ext4_da_write_credits(inode, pos, len));
64769240 3003 if (IS_ERR(handle)) {
09cbfeaf 3004 put_page(page);
47564bfb 3005 return PTR_ERR(handle);
64769240
AT
3006 }
3007
47564bfb
TT
3008 lock_page(page);
3009 if (page->mapping != mapping) {
3010 /* The page got truncated from under us */
3011 unlock_page(page);
09cbfeaf 3012 put_page(page);
d5a0d4f7 3013 ext4_journal_stop(handle);
47564bfb 3014 goto retry_grab;
d5a0d4f7 3015 }
47564bfb 3016 /* In case writeback began while the page was unlocked */
7afe5aa5 3017 wait_for_stable_page(page);
64769240 3018
2058f83a
MH
3019#ifdef CONFIG_EXT4_FS_ENCRYPTION
3020 ret = ext4_block_write_begin(page, pos, len,
3021 ext4_da_get_block_prep);
3022#else
6e1db88d 3023 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3024#endif
64769240
AT
3025 if (ret < 0) {
3026 unlock_page(page);
3027 ext4_journal_stop(handle);
ae4d5372
AK
3028 /*
3029 * block_write_begin may have instantiated a few blocks
3030 * outside i_size. Trim these off again. Don't need
3031 * i_size_read because we hold i_mutex.
3032 */
3033 if (pos + len > inode->i_size)
b9a4207d 3034 ext4_truncate_failed_write(inode);
47564bfb
TT
3035
3036 if (ret == -ENOSPC &&
3037 ext4_should_retry_alloc(inode->i_sb, &retries))
3038 goto retry_journal;
3039
09cbfeaf 3040 put_page(page);
47564bfb 3041 return ret;
64769240
AT
3042 }
3043
47564bfb 3044 *pagep = page;
64769240
AT
3045 return ret;
3046}
3047
632eaeab
MC
3048/*
3049 * Check if we should update i_disksize
3050 * when write to the end of file but not require block allocation
3051 */
3052static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3053 unsigned long offset)
632eaeab
MC
3054{
3055 struct buffer_head *bh;
3056 struct inode *inode = page->mapping->host;
3057 unsigned int idx;
3058 int i;
3059
3060 bh = page_buffers(page);
3061 idx = offset >> inode->i_blkbits;
3062
af5bc92d 3063 for (i = 0; i < idx; i++)
632eaeab
MC
3064 bh = bh->b_this_page;
3065
29fa89d0 3066 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3067 return 0;
3068 return 1;
3069}
3070
64769240 3071static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3072 struct address_space *mapping,
3073 loff_t pos, unsigned len, unsigned copied,
3074 struct page *page, void *fsdata)
64769240
AT
3075{
3076 struct inode *inode = mapping->host;
3077 int ret = 0, ret2;
3078 handle_t *handle = ext4_journal_current_handle();
3079 loff_t new_i_size;
632eaeab 3080 unsigned long start, end;
79f0be8d
AK
3081 int write_mode = (int)(unsigned long)fsdata;
3082
74d553aa
TT
3083 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3084 return ext4_write_end(file, mapping, pos,
3085 len, copied, page, fsdata);
632eaeab 3086
9bffad1e 3087 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3088 start = pos & (PAGE_SIZE - 1);
af5bc92d 3089 end = start + copied - 1;
64769240
AT
3090
3091 /*
3092 * generic_write_end() will run mark_inode_dirty() if i_size
3093 * changes. So let's piggyback the i_disksize mark_inode_dirty
3094 * into that.
3095 */
64769240 3096 new_i_size = pos + copied;
ea51d132 3097 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3098 if (ext4_has_inline_data(inode) ||
3099 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3100 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3101 /* We need to mark inode dirty even if
3102 * new_i_size is less that inode->i_size
3103 * bu greater than i_disksize.(hint delalloc)
3104 */
3105 ext4_mark_inode_dirty(handle, inode);
64769240 3106 }
632eaeab 3107 }
9c3569b5
TM
3108
3109 if (write_mode != CONVERT_INLINE_DATA &&
3110 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3111 ext4_has_inline_data(inode))
3112 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3113 page);
3114 else
3115 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3116 page, fsdata);
9c3569b5 3117
64769240
AT
3118 copied = ret2;
3119 if (ret2 < 0)
3120 ret = ret2;
3121 ret2 = ext4_journal_stop(handle);
3122 if (!ret)
3123 ret = ret2;
3124
3125 return ret ? ret : copied;
3126}
3127
d47992f8
LC
3128static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3129 unsigned int length)
64769240 3130{
64769240
AT
3131 /*
3132 * Drop reserved blocks
3133 */
3134 BUG_ON(!PageLocked(page));
3135 if (!page_has_buffers(page))
3136 goto out;
3137
ca99fdd2 3138 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3139
3140out:
d47992f8 3141 ext4_invalidatepage(page, offset, length);
64769240
AT
3142
3143 return;
3144}
3145
ccd2506b
TT
3146/*
3147 * Force all delayed allocation blocks to be allocated for a given inode.
3148 */
3149int ext4_alloc_da_blocks(struct inode *inode)
3150{
fb40ba0d
TT
3151 trace_ext4_alloc_da_blocks(inode);
3152
71d4f7d0 3153 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3154 return 0;
3155
3156 /*
3157 * We do something simple for now. The filemap_flush() will
3158 * also start triggering a write of the data blocks, which is
3159 * not strictly speaking necessary (and for users of
3160 * laptop_mode, not even desirable). However, to do otherwise
3161 * would require replicating code paths in:
de9a55b8 3162 *
20970ba6 3163 * ext4_writepages() ->
ccd2506b
TT
3164 * write_cache_pages() ---> (via passed in callback function)
3165 * __mpage_da_writepage() -->
3166 * mpage_add_bh_to_extent()
3167 * mpage_da_map_blocks()
3168 *
3169 * The problem is that write_cache_pages(), located in
3170 * mm/page-writeback.c, marks pages clean in preparation for
3171 * doing I/O, which is not desirable if we're not planning on
3172 * doing I/O at all.
3173 *
3174 * We could call write_cache_pages(), and then redirty all of
380cf090 3175 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3176 * would be ugly in the extreme. So instead we would need to
3177 * replicate parts of the code in the above functions,
25985edc 3178 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3179 * write out the pages, but rather only collect contiguous
3180 * logical block extents, call the multi-block allocator, and
3181 * then update the buffer heads with the block allocations.
de9a55b8 3182 *
ccd2506b
TT
3183 * For now, though, we'll cheat by calling filemap_flush(),
3184 * which will map the blocks, and start the I/O, but not
3185 * actually wait for the I/O to complete.
3186 */
3187 return filemap_flush(inode->i_mapping);
3188}
64769240 3189
ac27a0ec
DK
3190/*
3191 * bmap() is special. It gets used by applications such as lilo and by
3192 * the swapper to find the on-disk block of a specific piece of data.
3193 *
3194 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3195 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3196 * filesystem and enables swap, then they may get a nasty shock when the
3197 * data getting swapped to that swapfile suddenly gets overwritten by
3198 * the original zero's written out previously to the journal and
3199 * awaiting writeback in the kernel's buffer cache.
3200 *
3201 * So, if we see any bmap calls here on a modified, data-journaled file,
3202 * take extra steps to flush any blocks which might be in the cache.
3203 */
617ba13b 3204static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3205{
3206 struct inode *inode = mapping->host;
3207 journal_t *journal;
3208 int err;
3209
46c7f254
TM
3210 /*
3211 * We can get here for an inline file via the FIBMAP ioctl
3212 */
3213 if (ext4_has_inline_data(inode))
3214 return 0;
3215
64769240
AT
3216 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3217 test_opt(inode->i_sb, DELALLOC)) {
3218 /*
3219 * With delalloc we want to sync the file
3220 * so that we can make sure we allocate
3221 * blocks for file
3222 */
3223 filemap_write_and_wait(mapping);
3224 }
3225
19f5fb7a
TT
3226 if (EXT4_JOURNAL(inode) &&
3227 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3228 /*
3229 * This is a REALLY heavyweight approach, but the use of
3230 * bmap on dirty files is expected to be extremely rare:
3231 * only if we run lilo or swapon on a freshly made file
3232 * do we expect this to happen.
3233 *
3234 * (bmap requires CAP_SYS_RAWIO so this does not
3235 * represent an unprivileged user DOS attack --- we'd be
3236 * in trouble if mortal users could trigger this path at
3237 * will.)
3238 *
617ba13b 3239 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3240 * regular files. If somebody wants to bmap a directory
3241 * or symlink and gets confused because the buffer
3242 * hasn't yet been flushed to disk, they deserve
3243 * everything they get.
3244 */
3245
19f5fb7a 3246 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3247 journal = EXT4_JOURNAL(inode);
dab291af
MC
3248 jbd2_journal_lock_updates(journal);
3249 err = jbd2_journal_flush(journal);
3250 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3251
3252 if (err)
3253 return 0;
3254 }
3255
af5bc92d 3256 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3257}
3258
617ba13b 3259static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3260{
46c7f254
TM
3261 int ret = -EAGAIN;
3262 struct inode *inode = page->mapping->host;
3263
0562e0ba 3264 trace_ext4_readpage(page);
46c7f254
TM
3265
3266 if (ext4_has_inline_data(inode))
3267 ret = ext4_readpage_inline(inode, page);
3268
3269 if (ret == -EAGAIN)
f64e02fe 3270 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3271
3272 return ret;
ac27a0ec
DK
3273}
3274
3275static int
617ba13b 3276ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3277 struct list_head *pages, unsigned nr_pages)
3278{
46c7f254
TM
3279 struct inode *inode = mapping->host;
3280
3281 /* If the file has inline data, no need to do readpages. */
3282 if (ext4_has_inline_data(inode))
3283 return 0;
3284
f64e02fe 3285 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3286}
3287
d47992f8
LC
3288static void ext4_invalidatepage(struct page *page, unsigned int offset,
3289 unsigned int length)
ac27a0ec 3290{
ca99fdd2 3291 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3292
4520fb3c
JK
3293 /* No journalling happens on data buffers when this function is used */
3294 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3295
ca99fdd2 3296 block_invalidatepage(page, offset, length);
4520fb3c
JK
3297}
3298
53e87268 3299static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3300 unsigned int offset,
3301 unsigned int length)
4520fb3c
JK
3302{
3303 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3304
ca99fdd2 3305 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3306
ac27a0ec
DK
3307 /*
3308 * If it's a full truncate we just forget about the pending dirtying
3309 */
09cbfeaf 3310 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3311 ClearPageChecked(page);
3312
ca99fdd2 3313 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3314}
3315
3316/* Wrapper for aops... */
3317static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3318 unsigned int offset,
3319 unsigned int length)
53e87268 3320{
ca99fdd2 3321 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3322}
3323
617ba13b 3324static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3325{
617ba13b 3326 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3327
0562e0ba
JZ
3328 trace_ext4_releasepage(page);
3329
e1c36595
JK
3330 /* Page has dirty journalled data -> cannot release */
3331 if (PageChecked(page))
ac27a0ec 3332 return 0;
0390131b
FM
3333 if (journal)
3334 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3335 else
3336 return try_to_free_buffers(page);
ac27a0ec
DK
3337}
3338
ba5843f5 3339#ifdef CONFIG_FS_DAX
364443cb
JK
3340static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3341 unsigned flags, struct iomap *iomap)
3342{
fa5d932c 3343 struct block_device *bdev;
364443cb
JK
3344 unsigned int blkbits = inode->i_blkbits;
3345 unsigned long first_block = offset >> blkbits;
3346 unsigned long last_block = (offset + length - 1) >> blkbits;
3347 struct ext4_map_blocks map;
3348 int ret;
3349
364443cb
JK
3350 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3351 return -ERANGE;
3352
3353 map.m_lblk = first_block;
3354 map.m_len = last_block - first_block + 1;
3355
776722e8
JK
3356 if (!(flags & IOMAP_WRITE)) {
3357 ret = ext4_map_blocks(NULL, inode, &map, 0);
3358 } else {
3359 int dio_credits;
3360 handle_t *handle;
3361 int retries = 0;
3362
3363 /* Trim mapping request to maximum we can map at once for DIO */
3364 if (map.m_len > DIO_MAX_BLOCKS)
3365 map.m_len = DIO_MAX_BLOCKS;
3366 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3367retry:
3368 /*
3369 * Either we allocate blocks and then we don't get unwritten
3370 * extent so we have reserved enough credits, or the blocks
3371 * are already allocated and unwritten and in that case
3372 * extent conversion fits in the credits as well.
3373 */
3374 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3375 dio_credits);
3376 if (IS_ERR(handle))
3377 return PTR_ERR(handle);
3378
3379 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3380 EXT4_GET_BLOCKS_CREATE_ZERO);
3381 if (ret < 0) {
3382 ext4_journal_stop(handle);
3383 if (ret == -ENOSPC &&
3384 ext4_should_retry_alloc(inode->i_sb, &retries))
3385 goto retry;
3386 return ret;
3387 }
776722e8
JK
3388
3389 /*
e2ae766c 3390 * If we added blocks beyond i_size, we need to make sure they
776722e8 3391 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3392 * ext4_iomap_end(). For faults we don't need to do that (and
3393 * even cannot because for orphan list operations inode_lock is
3394 * required) - if we happen to instantiate block beyond i_size,
3395 * it is because we race with truncate which has already added
3396 * the inode to the orphan list.
776722e8 3397 */
e2ae766c
JK
3398 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3399 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3400 int err;
3401
3402 err = ext4_orphan_add(handle, inode);
3403 if (err < 0) {
3404 ext4_journal_stop(handle);
3405 return err;
3406 }
3407 }
3408 ext4_journal_stop(handle);
3409 }
364443cb
JK
3410
3411 iomap->flags = 0;
fa5d932c
DW
3412 bdev = inode->i_sb->s_bdev;
3413 iomap->bdev = bdev;
3414 if (blk_queue_dax(bdev->bd_queue))
f5705aa8 3415 iomap->dax_dev = fs_dax_get_by_host(bdev->bd_disk->disk_name);
fa5d932c
DW
3416 else
3417 iomap->dax_dev = NULL;
364443cb
JK
3418 iomap->offset = first_block << blkbits;
3419
3420 if (ret == 0) {
3421 iomap->type = IOMAP_HOLE;
3422 iomap->blkno = IOMAP_NULL_BLOCK;
3423 iomap->length = (u64)map.m_len << blkbits;
3424 } else {
3425 if (map.m_flags & EXT4_MAP_MAPPED) {
3426 iomap->type = IOMAP_MAPPED;
3427 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3428 iomap->type = IOMAP_UNWRITTEN;
3429 } else {
3430 WARN_ON_ONCE(1);
3431 return -EIO;
3432 }
3433 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3434 iomap->length = (u64)map.m_len << blkbits;
3435 }
3436
3437 if (map.m_flags & EXT4_MAP_NEW)
3438 iomap->flags |= IOMAP_F_NEW;
3439 return 0;
3440}
3441
776722e8
JK
3442static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3443 ssize_t written, unsigned flags, struct iomap *iomap)
3444{
3445 int ret = 0;
3446 handle_t *handle;
3447 int blkbits = inode->i_blkbits;
3448 bool truncate = false;
3449
f5705aa8 3450 fs_put_dax(iomap->dax_dev);
e2ae766c 3451 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3452 return 0;
3453
3454 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3455 if (IS_ERR(handle)) {
3456 ret = PTR_ERR(handle);
3457 goto orphan_del;
3458 }
3459 if (ext4_update_inode_size(inode, offset + written))
3460 ext4_mark_inode_dirty(handle, inode);
3461 /*
3462 * We may need to truncate allocated but not written blocks beyond EOF.
3463 */
3464 if (iomap->offset + iomap->length >
3465 ALIGN(inode->i_size, 1 << blkbits)) {
3466 ext4_lblk_t written_blk, end_blk;
3467
3468 written_blk = (offset + written) >> blkbits;
3469 end_blk = (offset + length) >> blkbits;
3470 if (written_blk < end_blk && ext4_can_truncate(inode))
3471 truncate = true;
3472 }
3473 /*
3474 * Remove inode from orphan list if we were extending a inode and
3475 * everything went fine.
3476 */
3477 if (!truncate && inode->i_nlink &&
3478 !list_empty(&EXT4_I(inode)->i_orphan))
3479 ext4_orphan_del(handle, inode);
3480 ext4_journal_stop(handle);
3481 if (truncate) {
3482 ext4_truncate_failed_write(inode);
3483orphan_del:
3484 /*
3485 * If truncate failed early the inode might still be on the
3486 * orphan list; we need to make sure the inode is removed from
3487 * the orphan list in that case.
3488 */
3489 if (inode->i_nlink)
3490 ext4_orphan_del(NULL, inode);
3491 }
3492 return ret;
3493}
3494
8ff6daa1 3495const struct iomap_ops ext4_iomap_ops = {
364443cb 3496 .iomap_begin = ext4_iomap_begin,
776722e8 3497 .iomap_end = ext4_iomap_end,
364443cb
JK
3498};
3499
ba5843f5 3500#endif
ed923b57 3501
187372a3 3502static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3503 ssize_t size, void *private)
4c0425ff 3504{
109811c2 3505 ext4_io_end_t *io_end = private;
4c0425ff 3506
97a851ed 3507 /* if not async direct IO just return */
7b7a8665 3508 if (!io_end)
187372a3 3509 return 0;
4b70df18 3510
88635ca2 3511 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3512 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3513 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3514
74c66bcb
JK
3515 /*
3516 * Error during AIO DIO. We cannot convert unwritten extents as the
3517 * data was not written. Just clear the unwritten flag and drop io_end.
3518 */
3519 if (size <= 0) {
3520 ext4_clear_io_unwritten_flag(io_end);
3521 size = 0;
3522 }
4c0425ff
MC
3523 io_end->offset = offset;
3524 io_end->size = size;
7b7a8665 3525 ext4_put_io_end(io_end);
187372a3
CH
3526
3527 return 0;
4c0425ff 3528}
c7064ef1 3529
4c0425ff 3530/*
914f82a3
JK
3531 * Handling of direct IO writes.
3532 *
3533 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3534 * preallocated extents, and those write extend the file, no need to
3535 * fall back to buffered IO.
3536 *
556615dc 3537 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3538 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3539 * still keep the range to write as unwritten.
4c0425ff 3540 *
69c499d1 3541 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3542 * For async direct IO, since the IO may still pending when return, we
25985edc 3543 * set up an end_io call back function, which will do the conversion
8d5d02e6 3544 * when async direct IO completed.
4c0425ff
MC
3545 *
3546 * If the O_DIRECT write will extend the file then add this inode to the
3547 * orphan list. So recovery will truncate it back to the original size
3548 * if the machine crashes during the write.
3549 *
3550 */
0e01df10 3551static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3552{
3553 struct file *file = iocb->ki_filp;
3554 struct inode *inode = file->f_mapping->host;
914f82a3 3555 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3556 ssize_t ret;
c8b8e32d 3557 loff_t offset = iocb->ki_pos;
a6cbcd4a 3558 size_t count = iov_iter_count(iter);
69c499d1
TT
3559 int overwrite = 0;
3560 get_block_t *get_block_func = NULL;
3561 int dio_flags = 0;
4c0425ff 3562 loff_t final_size = offset + count;
914f82a3
JK
3563 int orphan = 0;
3564 handle_t *handle;
729f52c6 3565
914f82a3
JK
3566 if (final_size > inode->i_size) {
3567 /* Credits for sb + inode write */
3568 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3569 if (IS_ERR(handle)) {
3570 ret = PTR_ERR(handle);
3571 goto out;
3572 }
3573 ret = ext4_orphan_add(handle, inode);
3574 if (ret) {
3575 ext4_journal_stop(handle);
3576 goto out;
3577 }
3578 orphan = 1;
3579 ei->i_disksize = inode->i_size;
3580 ext4_journal_stop(handle);
3581 }
4bd809db 3582
69c499d1 3583 BUG_ON(iocb->private == NULL);
4bd809db 3584
e8340395
JK
3585 /*
3586 * Make all waiters for direct IO properly wait also for extent
3587 * conversion. This also disallows race between truncate() and
3588 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3589 */
914f82a3 3590 inode_dio_begin(inode);
e8340395 3591
69c499d1
TT
3592 /* If we do a overwrite dio, i_mutex locking can be released */
3593 overwrite = *((int *)iocb->private);
4bd809db 3594
2dcba478 3595 if (overwrite)
5955102c 3596 inode_unlock(inode);
8d5d02e6 3597
69c499d1 3598 /*
914f82a3 3599 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3600 *
109811c2
JK
3601 * Allocated blocks to fill the hole are marked as unwritten to prevent
3602 * parallel buffered read to expose the stale data before DIO complete
3603 * the data IO.
69c499d1 3604 *
109811c2
JK
3605 * As to previously fallocated extents, ext4 get_block will just simply
3606 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3607 *
109811c2
JK
3608 * For non AIO case, we will convert those unwritten extents to written
3609 * after return back from blockdev_direct_IO. That way we save us from
3610 * allocating io_end structure and also the overhead of offloading
3611 * the extent convertion to a workqueue.
69c499d1
TT
3612 *
3613 * For async DIO, the conversion needs to be deferred when the
3614 * IO is completed. The ext4 end_io callback function will be
3615 * called to take care of the conversion work. Here for async
3616 * case, we allocate an io_end structure to hook to the iocb.
3617 */
3618 iocb->private = NULL;
109811c2 3619 if (overwrite)
705965bd 3620 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3621 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3622 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3623 get_block_func = ext4_dio_get_block;
3624 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3625 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3626 get_block_func = ext4_dio_get_block_unwritten_sync;
3627 dio_flags = DIO_LOCKING;
69c499d1 3628 } else {
109811c2 3629 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3630 dio_flags = DIO_LOCKING;
3631 }
0bd2d5ec
JK
3632 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3633 get_block_func, ext4_end_io_dio, NULL,
3634 dio_flags);
69c499d1 3635
97a851ed 3636 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3637 EXT4_STATE_DIO_UNWRITTEN)) {
3638 int err;
3639 /*
3640 * for non AIO case, since the IO is already
3641 * completed, we could do the conversion right here
3642 */
6b523df4 3643 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3644 offset, ret);
3645 if (err < 0)
3646 ret = err;
3647 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3648 }
4bd809db 3649
914f82a3 3650 inode_dio_end(inode);
69c499d1 3651 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3652 if (overwrite)
5955102c 3653 inode_lock(inode);
8d5d02e6 3654
914f82a3
JK
3655 if (ret < 0 && final_size > inode->i_size)
3656 ext4_truncate_failed_write(inode);
3657
3658 /* Handle extending of i_size after direct IO write */
3659 if (orphan) {
3660 int err;
3661
3662 /* Credits for sb + inode write */
3663 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3664 if (IS_ERR(handle)) {
3665 /* This is really bad luck. We've written the data
3666 * but cannot extend i_size. Bail out and pretend
3667 * the write failed... */
3668 ret = PTR_ERR(handle);
3669 if (inode->i_nlink)
3670 ext4_orphan_del(NULL, inode);
3671
3672 goto out;
3673 }
3674 if (inode->i_nlink)
3675 ext4_orphan_del(handle, inode);
3676 if (ret > 0) {
3677 loff_t end = offset + ret;
3678 if (end > inode->i_size) {
3679 ei->i_disksize = end;
3680 i_size_write(inode, end);
3681 /*
3682 * We're going to return a positive `ret'
3683 * here due to non-zero-length I/O, so there's
3684 * no way of reporting error returns from
3685 * ext4_mark_inode_dirty() to userspace. So
3686 * ignore it.
3687 */
3688 ext4_mark_inode_dirty(handle, inode);
3689 }
3690 }
3691 err = ext4_journal_stop(handle);
3692 if (ret == 0)
3693 ret = err;
3694 }
3695out:
3696 return ret;
3697}
3698
0e01df10 3699static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3700{
16c54688
JK
3701 struct address_space *mapping = iocb->ki_filp->f_mapping;
3702 struct inode *inode = mapping->host;
0bd2d5ec 3703 size_t count = iov_iter_count(iter);
914f82a3
JK
3704 ssize_t ret;
3705
16c54688
JK
3706 /*
3707 * Shared inode_lock is enough for us - it protects against concurrent
3708 * writes & truncates and since we take care of writing back page cache,
3709 * we are protected against page writeback as well.
3710 */
3711 inode_lock_shared(inode);
0bd2d5ec 3712 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3713 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3714 if (ret)
3715 goto out_unlock;
3716 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3717 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3718out_unlock:
3719 inode_unlock_shared(inode);
69c499d1 3720 return ret;
4c0425ff
MC
3721}
3722
c8b8e32d 3723static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3724{
3725 struct file *file = iocb->ki_filp;
3726 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3727 size_t count = iov_iter_count(iter);
c8b8e32d 3728 loff_t offset = iocb->ki_pos;
0562e0ba 3729 ssize_t ret;
4c0425ff 3730
2058f83a
MH
3731#ifdef CONFIG_EXT4_FS_ENCRYPTION
3732 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3733 return 0;
3734#endif
3735
84ebd795
TT
3736 /*
3737 * If we are doing data journalling we don't support O_DIRECT
3738 */
3739 if (ext4_should_journal_data(inode))
3740 return 0;
3741
46c7f254
TM
3742 /* Let buffer I/O handle the inline data case. */
3743 if (ext4_has_inline_data(inode))
3744 return 0;
3745
0bd2d5ec
JK
3746 /* DAX uses iomap path now */
3747 if (WARN_ON_ONCE(IS_DAX(inode)))
3748 return 0;
3749
6f673763 3750 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3751 if (iov_iter_rw(iter) == READ)
0e01df10 3752 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3753 else
0e01df10 3754 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3755 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3756 return ret;
4c0425ff
MC
3757}
3758
ac27a0ec 3759/*
617ba13b 3760 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3761 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3762 * much here because ->set_page_dirty is called under VFS locks. The page is
3763 * not necessarily locked.
3764 *
3765 * We cannot just dirty the page and leave attached buffers clean, because the
3766 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3767 * or jbddirty because all the journalling code will explode.
3768 *
3769 * So what we do is to mark the page "pending dirty" and next time writepage
3770 * is called, propagate that into the buffers appropriately.
3771 */
617ba13b 3772static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3773{
3774 SetPageChecked(page);
3775 return __set_page_dirty_nobuffers(page);
3776}
3777
6dcc693b
JK
3778static int ext4_set_page_dirty(struct page *page)
3779{
3780 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3781 WARN_ON_ONCE(!page_has_buffers(page));
3782 return __set_page_dirty_buffers(page);
3783}
3784
74d553aa 3785static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3786 .readpage = ext4_readpage,
3787 .readpages = ext4_readpages,
43ce1d23 3788 .writepage = ext4_writepage,
20970ba6 3789 .writepages = ext4_writepages,
8ab22b9a 3790 .write_begin = ext4_write_begin,
74d553aa 3791 .write_end = ext4_write_end,
6dcc693b 3792 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3793 .bmap = ext4_bmap,
3794 .invalidatepage = ext4_invalidatepage,
3795 .releasepage = ext4_releasepage,
3796 .direct_IO = ext4_direct_IO,
3797 .migratepage = buffer_migrate_page,
3798 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3799 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3800};
3801
617ba13b 3802static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3803 .readpage = ext4_readpage,
3804 .readpages = ext4_readpages,
43ce1d23 3805 .writepage = ext4_writepage,
20970ba6 3806 .writepages = ext4_writepages,
8ab22b9a
HH
3807 .write_begin = ext4_write_begin,
3808 .write_end = ext4_journalled_write_end,
3809 .set_page_dirty = ext4_journalled_set_page_dirty,
3810 .bmap = ext4_bmap,
4520fb3c 3811 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3812 .releasepage = ext4_releasepage,
84ebd795 3813 .direct_IO = ext4_direct_IO,
8ab22b9a 3814 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3815 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3816};
3817
64769240 3818static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3819 .readpage = ext4_readpage,
3820 .readpages = ext4_readpages,
43ce1d23 3821 .writepage = ext4_writepage,
20970ba6 3822 .writepages = ext4_writepages,
8ab22b9a
HH
3823 .write_begin = ext4_da_write_begin,
3824 .write_end = ext4_da_write_end,
6dcc693b 3825 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3826 .bmap = ext4_bmap,
3827 .invalidatepage = ext4_da_invalidatepage,
3828 .releasepage = ext4_releasepage,
3829 .direct_IO = ext4_direct_IO,
3830 .migratepage = buffer_migrate_page,
3831 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3832 .error_remove_page = generic_error_remove_page,
64769240
AT
3833};
3834
617ba13b 3835void ext4_set_aops(struct inode *inode)
ac27a0ec 3836{
3d2b1582
LC
3837 switch (ext4_inode_journal_mode(inode)) {
3838 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3839 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3840 break;
3841 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3842 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3843 return;
3d2b1582
LC
3844 default:
3845 BUG();
3846 }
74d553aa
TT
3847 if (test_opt(inode->i_sb, DELALLOC))
3848 inode->i_mapping->a_ops = &ext4_da_aops;
3849 else
3850 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3851}
3852
923ae0ff 3853static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3854 struct address_space *mapping, loff_t from, loff_t length)
3855{
09cbfeaf
KS
3856 ext4_fsblk_t index = from >> PAGE_SHIFT;
3857 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3858 unsigned blocksize, pos;
d863dc36
LC
3859 ext4_lblk_t iblock;
3860 struct inode *inode = mapping->host;
3861 struct buffer_head *bh;
3862 struct page *page;
3863 int err = 0;
3864
09cbfeaf 3865 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3866 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3867 if (!page)
3868 return -ENOMEM;
3869
3870 blocksize = inode->i_sb->s_blocksize;
d863dc36 3871
09cbfeaf 3872 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3873
3874 if (!page_has_buffers(page))
3875 create_empty_buffers(page, blocksize, 0);
3876
3877 /* Find the buffer that contains "offset" */
3878 bh = page_buffers(page);
3879 pos = blocksize;
3880 while (offset >= pos) {
3881 bh = bh->b_this_page;
3882 iblock++;
3883 pos += blocksize;
3884 }
d863dc36
LC
3885 if (buffer_freed(bh)) {
3886 BUFFER_TRACE(bh, "freed: skip");
3887 goto unlock;
3888 }
d863dc36
LC
3889 if (!buffer_mapped(bh)) {
3890 BUFFER_TRACE(bh, "unmapped");
3891 ext4_get_block(inode, iblock, bh, 0);
3892 /* unmapped? It's a hole - nothing to do */
3893 if (!buffer_mapped(bh)) {
3894 BUFFER_TRACE(bh, "still unmapped");
3895 goto unlock;
3896 }
3897 }
3898
3899 /* Ok, it's mapped. Make sure it's up-to-date */
3900 if (PageUptodate(page))
3901 set_buffer_uptodate(bh);
3902
3903 if (!buffer_uptodate(bh)) {
3904 err = -EIO;
dfec8a14 3905 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3906 wait_on_buffer(bh);
3907 /* Uhhuh. Read error. Complain and punt. */
3908 if (!buffer_uptodate(bh))
3909 goto unlock;
c9c7429c
MH
3910 if (S_ISREG(inode->i_mode) &&
3911 ext4_encrypted_inode(inode)) {
3912 /* We expect the key to be set. */
a7550b30 3913 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3914 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3915 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3916 page, PAGE_SIZE, 0, page->index));
c9c7429c 3917 }
d863dc36 3918 }
d863dc36
LC
3919 if (ext4_should_journal_data(inode)) {
3920 BUFFER_TRACE(bh, "get write access");
3921 err = ext4_journal_get_write_access(handle, bh);
3922 if (err)
3923 goto unlock;
3924 }
d863dc36 3925 zero_user(page, offset, length);
d863dc36
LC
3926 BUFFER_TRACE(bh, "zeroed end of block");
3927
d863dc36
LC
3928 if (ext4_should_journal_data(inode)) {
3929 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3930 } else {
353eefd3 3931 err = 0;
d863dc36 3932 mark_buffer_dirty(bh);
3957ef53 3933 if (ext4_should_order_data(inode))
ee0876bc 3934 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 3935 }
d863dc36
LC
3936
3937unlock:
3938 unlock_page(page);
09cbfeaf 3939 put_page(page);
d863dc36
LC
3940 return err;
3941}
3942
923ae0ff
RZ
3943/*
3944 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3945 * starting from file offset 'from'. The range to be zero'd must
3946 * be contained with in one block. If the specified range exceeds
3947 * the end of the block it will be shortened to end of the block
3948 * that cooresponds to 'from'
3949 */
3950static int ext4_block_zero_page_range(handle_t *handle,
3951 struct address_space *mapping, loff_t from, loff_t length)
3952{
3953 struct inode *inode = mapping->host;
09cbfeaf 3954 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3955 unsigned blocksize = inode->i_sb->s_blocksize;
3956 unsigned max = blocksize - (offset & (blocksize - 1));
3957
3958 /*
3959 * correct length if it does not fall between
3960 * 'from' and the end of the block
3961 */
3962 if (length > max || length < 0)
3963 length = max;
3964
47e69351
JK
3965 if (IS_DAX(inode)) {
3966 return iomap_zero_range(inode, from, length, NULL,
3967 &ext4_iomap_ops);
3968 }
923ae0ff
RZ
3969 return __ext4_block_zero_page_range(handle, mapping, from, length);
3970}
3971
94350ab5
MW
3972/*
3973 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3974 * up to the end of the block which corresponds to `from'.
3975 * This required during truncate. We need to physically zero the tail end
3976 * of that block so it doesn't yield old data if the file is later grown.
3977 */
c197855e 3978static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3979 struct address_space *mapping, loff_t from)
3980{
09cbfeaf 3981 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3982 unsigned length;
3983 unsigned blocksize;
3984 struct inode *inode = mapping->host;
3985
0d06863f
TT
3986 /* If we are processing an encrypted inode during orphan list handling */
3987 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3988 return 0;
3989
94350ab5
MW
3990 blocksize = inode->i_sb->s_blocksize;
3991 length = blocksize - (offset & (blocksize - 1));
3992
3993 return ext4_block_zero_page_range(handle, mapping, from, length);
3994}
3995
a87dd18c
LC
3996int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3997 loff_t lstart, loff_t length)
3998{
3999 struct super_block *sb = inode->i_sb;
4000 struct address_space *mapping = inode->i_mapping;
e1be3a92 4001 unsigned partial_start, partial_end;
a87dd18c
LC
4002 ext4_fsblk_t start, end;
4003 loff_t byte_end = (lstart + length - 1);
4004 int err = 0;
4005
e1be3a92
LC
4006 partial_start = lstart & (sb->s_blocksize - 1);
4007 partial_end = byte_end & (sb->s_blocksize - 1);
4008
a87dd18c
LC
4009 start = lstart >> sb->s_blocksize_bits;
4010 end = byte_end >> sb->s_blocksize_bits;
4011
4012 /* Handle partial zero within the single block */
e1be3a92
LC
4013 if (start == end &&
4014 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4015 err = ext4_block_zero_page_range(handle, mapping,
4016 lstart, length);
4017 return err;
4018 }
4019 /* Handle partial zero out on the start of the range */
e1be3a92 4020 if (partial_start) {
a87dd18c
LC
4021 err = ext4_block_zero_page_range(handle, mapping,
4022 lstart, sb->s_blocksize);
4023 if (err)
4024 return err;
4025 }
4026 /* Handle partial zero out on the end of the range */
e1be3a92 4027 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4028 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4029 byte_end - partial_end,
4030 partial_end + 1);
a87dd18c
LC
4031 return err;
4032}
4033
91ef4caf
DG
4034int ext4_can_truncate(struct inode *inode)
4035{
91ef4caf
DG
4036 if (S_ISREG(inode->i_mode))
4037 return 1;
4038 if (S_ISDIR(inode->i_mode))
4039 return 1;
4040 if (S_ISLNK(inode->i_mode))
4041 return !ext4_inode_is_fast_symlink(inode);
4042 return 0;
4043}
4044
01127848
JK
4045/*
4046 * We have to make sure i_disksize gets properly updated before we truncate
4047 * page cache due to hole punching or zero range. Otherwise i_disksize update
4048 * can get lost as it may have been postponed to submission of writeback but
4049 * that will never happen after we truncate page cache.
4050 */
4051int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4052 loff_t len)
4053{
4054 handle_t *handle;
4055 loff_t size = i_size_read(inode);
4056
5955102c 4057 WARN_ON(!inode_is_locked(inode));
01127848
JK
4058 if (offset > size || offset + len < size)
4059 return 0;
4060
4061 if (EXT4_I(inode)->i_disksize >= size)
4062 return 0;
4063
4064 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4065 if (IS_ERR(handle))
4066 return PTR_ERR(handle);
4067 ext4_update_i_disksize(inode, size);
4068 ext4_mark_inode_dirty(handle, inode);
4069 ext4_journal_stop(handle);
4070
4071 return 0;
4072}
4073
a4bb6b64 4074/*
cca32b7e 4075 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4076 * associated with the given offset and length
4077 *
4078 * @inode: File inode
4079 * @offset: The offset where the hole will begin
4080 * @len: The length of the hole
4081 *
4907cb7b 4082 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4083 */
4084
aeb2817a 4085int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4086{
26a4c0c6
TT
4087 struct super_block *sb = inode->i_sb;
4088 ext4_lblk_t first_block, stop_block;
4089 struct address_space *mapping = inode->i_mapping;
a87dd18c 4090 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4091 handle_t *handle;
4092 unsigned int credits;
4093 int ret = 0;
4094
a4bb6b64 4095 if (!S_ISREG(inode->i_mode))
73355192 4096 return -EOPNOTSUPP;
a4bb6b64 4097
b8a86845 4098 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4099
26a4c0c6
TT
4100 /*
4101 * Write out all dirty pages to avoid race conditions
4102 * Then release them.
4103 */
cca32b7e 4104 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4105 ret = filemap_write_and_wait_range(mapping, offset,
4106 offset + length - 1);
4107 if (ret)
4108 return ret;
4109 }
4110
5955102c 4111 inode_lock(inode);
9ef06cec 4112
26a4c0c6
TT
4113 /* No need to punch hole beyond i_size */
4114 if (offset >= inode->i_size)
4115 goto out_mutex;
4116
4117 /*
4118 * If the hole extends beyond i_size, set the hole
4119 * to end after the page that contains i_size
4120 */
4121 if (offset + length > inode->i_size) {
4122 length = inode->i_size +
09cbfeaf 4123 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4124 offset;
4125 }
4126
a361293f
JK
4127 if (offset & (sb->s_blocksize - 1) ||
4128 (offset + length) & (sb->s_blocksize - 1)) {
4129 /*
4130 * Attach jinode to inode for jbd2 if we do any zeroing of
4131 * partial block
4132 */
4133 ret = ext4_inode_attach_jinode(inode);
4134 if (ret < 0)
4135 goto out_mutex;
4136
4137 }
4138
ea3d7209
JK
4139 /* Wait all existing dio workers, newcomers will block on i_mutex */
4140 ext4_inode_block_unlocked_dio(inode);
4141 inode_dio_wait(inode);
4142
4143 /*
4144 * Prevent page faults from reinstantiating pages we have released from
4145 * page cache.
4146 */
4147 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4148 first_block_offset = round_up(offset, sb->s_blocksize);
4149 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4150
a87dd18c 4151 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4152 if (last_block_offset > first_block_offset) {
4153 ret = ext4_update_disksize_before_punch(inode, offset, length);
4154 if (ret)
4155 goto out_dio;
a87dd18c
LC
4156 truncate_pagecache_range(inode, first_block_offset,
4157 last_block_offset);
01127848 4158 }
26a4c0c6
TT
4159
4160 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4161 credits = ext4_writepage_trans_blocks(inode);
4162 else
4163 credits = ext4_blocks_for_truncate(inode);
4164 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4165 if (IS_ERR(handle)) {
4166 ret = PTR_ERR(handle);
4167 ext4_std_error(sb, ret);
4168 goto out_dio;
4169 }
4170
a87dd18c
LC
4171 ret = ext4_zero_partial_blocks(handle, inode, offset,
4172 length);
4173 if (ret)
4174 goto out_stop;
26a4c0c6
TT
4175
4176 first_block = (offset + sb->s_blocksize - 1) >>
4177 EXT4_BLOCK_SIZE_BITS(sb);
4178 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4179
4180 /* If there are no blocks to remove, return now */
4181 if (first_block >= stop_block)
4182 goto out_stop;
4183
4184 down_write(&EXT4_I(inode)->i_data_sem);
4185 ext4_discard_preallocations(inode);
4186
4187 ret = ext4_es_remove_extent(inode, first_block,
4188 stop_block - first_block);
4189 if (ret) {
4190 up_write(&EXT4_I(inode)->i_data_sem);
4191 goto out_stop;
4192 }
4193
4194 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4195 ret = ext4_ext_remove_space(inode, first_block,
4196 stop_block - 1);
4197 else
4f579ae7 4198 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4199 stop_block);
4200
819c4920 4201 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4202 if (IS_SYNC(inode))
4203 ext4_handle_sync(handle);
e251f9bc 4204
eeca7ea1 4205 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6
TT
4206 ext4_mark_inode_dirty(handle, inode);
4207out_stop:
4208 ext4_journal_stop(handle);
4209out_dio:
ea3d7209 4210 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4211 ext4_inode_resume_unlocked_dio(inode);
4212out_mutex:
5955102c 4213 inode_unlock(inode);
26a4c0c6 4214 return ret;
a4bb6b64
AH
4215}
4216
a361293f
JK
4217int ext4_inode_attach_jinode(struct inode *inode)
4218{
4219 struct ext4_inode_info *ei = EXT4_I(inode);
4220 struct jbd2_inode *jinode;
4221
4222 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4223 return 0;
4224
4225 jinode = jbd2_alloc_inode(GFP_KERNEL);
4226 spin_lock(&inode->i_lock);
4227 if (!ei->jinode) {
4228 if (!jinode) {
4229 spin_unlock(&inode->i_lock);
4230 return -ENOMEM;
4231 }
4232 ei->jinode = jinode;
4233 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4234 jinode = NULL;
4235 }
4236 spin_unlock(&inode->i_lock);
4237 if (unlikely(jinode != NULL))
4238 jbd2_free_inode(jinode);
4239 return 0;
4240}
4241
ac27a0ec 4242/*
617ba13b 4243 * ext4_truncate()
ac27a0ec 4244 *
617ba13b
MC
4245 * We block out ext4_get_block() block instantiations across the entire
4246 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4247 * simultaneously on behalf of the same inode.
4248 *
42b2aa86 4249 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4250 * is one core, guiding principle: the file's tree must always be consistent on
4251 * disk. We must be able to restart the truncate after a crash.
4252 *
4253 * The file's tree may be transiently inconsistent in memory (although it
4254 * probably isn't), but whenever we close off and commit a journal transaction,
4255 * the contents of (the filesystem + the journal) must be consistent and
4256 * restartable. It's pretty simple, really: bottom up, right to left (although
4257 * left-to-right works OK too).
4258 *
4259 * Note that at recovery time, journal replay occurs *before* the restart of
4260 * truncate against the orphan inode list.
4261 *
4262 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4263 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4264 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4265 * ext4_truncate() to have another go. So there will be instantiated blocks
4266 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4267 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4268 * ext4_truncate() run will find them and release them.
ac27a0ec 4269 */
2c98eb5e 4270int ext4_truncate(struct inode *inode)
ac27a0ec 4271{
819c4920
TT
4272 struct ext4_inode_info *ei = EXT4_I(inode);
4273 unsigned int credits;
2c98eb5e 4274 int err = 0;
819c4920
TT
4275 handle_t *handle;
4276 struct address_space *mapping = inode->i_mapping;
819c4920 4277
19b5ef61
TT
4278 /*
4279 * There is a possibility that we're either freeing the inode
e04027e8 4280 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4281 * have i_mutex locked because it's not necessary.
4282 */
4283 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4284 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4285 trace_ext4_truncate_enter(inode);
4286
91ef4caf 4287 if (!ext4_can_truncate(inode))
2c98eb5e 4288 return 0;
ac27a0ec 4289
12e9b892 4290 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4291
5534fb5b 4292 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4293 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4294
aef1c851
TM
4295 if (ext4_has_inline_data(inode)) {
4296 int has_inline = 1;
4297
01daf945
TT
4298 err = ext4_inline_data_truncate(inode, &has_inline);
4299 if (err)
4300 return err;
aef1c851 4301 if (has_inline)
2c98eb5e 4302 return 0;
aef1c851
TM
4303 }
4304
a361293f
JK
4305 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4306 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4307 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4308 return 0;
a361293f
JK
4309 }
4310
819c4920
TT
4311 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4312 credits = ext4_writepage_trans_blocks(inode);
4313 else
4314 credits = ext4_blocks_for_truncate(inode);
4315
4316 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4317 if (IS_ERR(handle))
4318 return PTR_ERR(handle);
819c4920 4319
eb3544c6
LC
4320 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4321 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4322
4323 /*
4324 * We add the inode to the orphan list, so that if this
4325 * truncate spans multiple transactions, and we crash, we will
4326 * resume the truncate when the filesystem recovers. It also
4327 * marks the inode dirty, to catch the new size.
4328 *
4329 * Implication: the file must always be in a sane, consistent
4330 * truncatable state while each transaction commits.
4331 */
2c98eb5e
TT
4332 err = ext4_orphan_add(handle, inode);
4333 if (err)
819c4920
TT
4334 goto out_stop;
4335
4336 down_write(&EXT4_I(inode)->i_data_sem);
4337
4338 ext4_discard_preallocations(inode);
4339
ff9893dc 4340 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4341 err = ext4_ext_truncate(handle, inode);
ff9893dc 4342 else
819c4920
TT
4343 ext4_ind_truncate(handle, inode);
4344
4345 up_write(&ei->i_data_sem);
d0abb36d
TT
4346 if (err)
4347 goto out_stop;
819c4920
TT
4348
4349 if (IS_SYNC(inode))
4350 ext4_handle_sync(handle);
4351
4352out_stop:
4353 /*
4354 * If this was a simple ftruncate() and the file will remain alive,
4355 * then we need to clear up the orphan record which we created above.
4356 * However, if this was a real unlink then we were called by
58d86a50 4357 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4358 * orphan info for us.
4359 */
4360 if (inode->i_nlink)
4361 ext4_orphan_del(handle, inode);
4362
eeca7ea1 4363 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4364 ext4_mark_inode_dirty(handle, inode);
4365 ext4_journal_stop(handle);
ac27a0ec 4366
0562e0ba 4367 trace_ext4_truncate_exit(inode);
2c98eb5e 4368 return err;
ac27a0ec
DK
4369}
4370
ac27a0ec 4371/*
617ba13b 4372 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4373 * underlying buffer_head on success. If 'in_mem' is true, we have all
4374 * data in memory that is needed to recreate the on-disk version of this
4375 * inode.
4376 */
617ba13b
MC
4377static int __ext4_get_inode_loc(struct inode *inode,
4378 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4379{
240799cd
TT
4380 struct ext4_group_desc *gdp;
4381 struct buffer_head *bh;
4382 struct super_block *sb = inode->i_sb;
4383 ext4_fsblk_t block;
4384 int inodes_per_block, inode_offset;
4385
3a06d778 4386 iloc->bh = NULL;
240799cd 4387 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4388 return -EFSCORRUPTED;
ac27a0ec 4389
240799cd
TT
4390 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4391 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4392 if (!gdp)
ac27a0ec
DK
4393 return -EIO;
4394
240799cd
TT
4395 /*
4396 * Figure out the offset within the block group inode table
4397 */
00d09882 4398 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4399 inode_offset = ((inode->i_ino - 1) %
4400 EXT4_INODES_PER_GROUP(sb));
4401 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4402 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4403
4404 bh = sb_getblk(sb, block);
aebf0243 4405 if (unlikely(!bh))
860d21e2 4406 return -ENOMEM;
ac27a0ec
DK
4407 if (!buffer_uptodate(bh)) {
4408 lock_buffer(bh);
9c83a923
HK
4409
4410 /*
4411 * If the buffer has the write error flag, we have failed
4412 * to write out another inode in the same block. In this
4413 * case, we don't have to read the block because we may
4414 * read the old inode data successfully.
4415 */
4416 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4417 set_buffer_uptodate(bh);
4418
ac27a0ec
DK
4419 if (buffer_uptodate(bh)) {
4420 /* someone brought it uptodate while we waited */
4421 unlock_buffer(bh);
4422 goto has_buffer;
4423 }
4424
4425 /*
4426 * If we have all information of the inode in memory and this
4427 * is the only valid inode in the block, we need not read the
4428 * block.
4429 */
4430 if (in_mem) {
4431 struct buffer_head *bitmap_bh;
240799cd 4432 int i, start;
ac27a0ec 4433
240799cd 4434 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4435
240799cd
TT
4436 /* Is the inode bitmap in cache? */
4437 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4438 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4439 goto make_io;
4440
4441 /*
4442 * If the inode bitmap isn't in cache then the
4443 * optimisation may end up performing two reads instead
4444 * of one, so skip it.
4445 */
4446 if (!buffer_uptodate(bitmap_bh)) {
4447 brelse(bitmap_bh);
4448 goto make_io;
4449 }
240799cd 4450 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4451 if (i == inode_offset)
4452 continue;
617ba13b 4453 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4454 break;
4455 }
4456 brelse(bitmap_bh);
240799cd 4457 if (i == start + inodes_per_block) {
ac27a0ec
DK
4458 /* all other inodes are free, so skip I/O */
4459 memset(bh->b_data, 0, bh->b_size);
4460 set_buffer_uptodate(bh);
4461 unlock_buffer(bh);
4462 goto has_buffer;
4463 }
4464 }
4465
4466make_io:
240799cd
TT
4467 /*
4468 * If we need to do any I/O, try to pre-readahead extra
4469 * blocks from the inode table.
4470 */
4471 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4472 ext4_fsblk_t b, end, table;
4473 unsigned num;
0d606e2c 4474 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4475
4476 table = ext4_inode_table(sb, gdp);
b713a5ec 4477 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4478 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4479 if (table > b)
4480 b = table;
0d606e2c 4481 end = b + ra_blks;
240799cd 4482 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4483 if (ext4_has_group_desc_csum(sb))
560671a0 4484 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4485 table += num / inodes_per_block;
4486 if (end > table)
4487 end = table;
4488 while (b <= end)
4489 sb_breadahead(sb, b++);
4490 }
4491
ac27a0ec
DK
4492 /*
4493 * There are other valid inodes in the buffer, this inode
4494 * has in-inode xattrs, or we don't have this inode in memory.
4495 * Read the block from disk.
4496 */
0562e0ba 4497 trace_ext4_load_inode(inode);
ac27a0ec
DK
4498 get_bh(bh);
4499 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4500 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4501 wait_on_buffer(bh);
4502 if (!buffer_uptodate(bh)) {
c398eda0
TT
4503 EXT4_ERROR_INODE_BLOCK(inode, block,
4504 "unable to read itable block");
ac27a0ec
DK
4505 brelse(bh);
4506 return -EIO;
4507 }
4508 }
4509has_buffer:
4510 iloc->bh = bh;
4511 return 0;
4512}
4513
617ba13b 4514int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4515{
4516 /* We have all inode data except xattrs in memory here. */
617ba13b 4517 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4518 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4519}
4520
617ba13b 4521void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4522{
617ba13b 4523 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4524 unsigned int new_fl = 0;
ac27a0ec 4525
617ba13b 4526 if (flags & EXT4_SYNC_FL)
00a1a053 4527 new_fl |= S_SYNC;
617ba13b 4528 if (flags & EXT4_APPEND_FL)
00a1a053 4529 new_fl |= S_APPEND;
617ba13b 4530 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4531 new_fl |= S_IMMUTABLE;
617ba13b 4532 if (flags & EXT4_NOATIME_FL)
00a1a053 4533 new_fl |= S_NOATIME;
617ba13b 4534 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4535 new_fl |= S_DIRSYNC;
a3caa24b
JK
4536 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4537 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4538 !ext4_encrypted_inode(inode))
923ae0ff 4539 new_fl |= S_DAX;
5f16f322 4540 inode_set_flags(inode, new_fl,
923ae0ff 4541 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4542}
4543
0fc1b451 4544static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4545 struct ext4_inode_info *ei)
0fc1b451
AK
4546{
4547 blkcnt_t i_blocks ;
8180a562
AK
4548 struct inode *inode = &(ei->vfs_inode);
4549 struct super_block *sb = inode->i_sb;
0fc1b451 4550
e2b911c5 4551 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4552 /* we are using combined 48 bit field */
4553 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4554 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4555 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4556 /* i_blocks represent file system block size */
4557 return i_blocks << (inode->i_blkbits - 9);
4558 } else {
4559 return i_blocks;
4560 }
0fc1b451
AK
4561 } else {
4562 return le32_to_cpu(raw_inode->i_blocks_lo);
4563 }
4564}
ff9ddf7e 4565
152a7b0a
TM
4566static inline void ext4_iget_extra_inode(struct inode *inode,
4567 struct ext4_inode *raw_inode,
4568 struct ext4_inode_info *ei)
4569{
4570 __le32 *magic = (void *)raw_inode +
4571 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4572 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4573 EXT4_INODE_SIZE(inode->i_sb) &&
4574 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4575 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4576 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4577 } else
4578 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4579}
4580
040cb378
LX
4581int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4582{
0b7b7779 4583 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4584 return -EOPNOTSUPP;
4585 *projid = EXT4_I(inode)->i_projid;
4586 return 0;
4587}
4588
1d1fe1ee 4589struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4590{
617ba13b
MC
4591 struct ext4_iloc iloc;
4592 struct ext4_inode *raw_inode;
1d1fe1ee 4593 struct ext4_inode_info *ei;
1d1fe1ee 4594 struct inode *inode;
b436b9be 4595 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4596 long ret;
7e6e1ef4 4597 loff_t size;
ac27a0ec 4598 int block;
08cefc7a
EB
4599 uid_t i_uid;
4600 gid_t i_gid;
040cb378 4601 projid_t i_projid;
ac27a0ec 4602
1d1fe1ee
DH
4603 inode = iget_locked(sb, ino);
4604 if (!inode)
4605 return ERR_PTR(-ENOMEM);
4606 if (!(inode->i_state & I_NEW))
4607 return inode;
4608
4609 ei = EXT4_I(inode);
7dc57615 4610 iloc.bh = NULL;
ac27a0ec 4611
1d1fe1ee
DH
4612 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4613 if (ret < 0)
ac27a0ec 4614 goto bad_inode;
617ba13b 4615 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4616
4617 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4618 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4619 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4620 EXT4_INODE_SIZE(inode->i_sb) ||
4621 (ei->i_extra_isize & 3)) {
4622 EXT4_ERROR_INODE(inode,
4623 "bad extra_isize %u (inode size %u)",
4624 ei->i_extra_isize,
4625 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4626 ret = -EFSCORRUPTED;
814525f4
DW
4627 goto bad_inode;
4628 }
4629 } else
4630 ei->i_extra_isize = 0;
4631
4632 /* Precompute checksum seed for inode metadata */
9aa5d32b 4633 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4634 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4635 __u32 csum;
4636 __le32 inum = cpu_to_le32(inode->i_ino);
4637 __le32 gen = raw_inode->i_generation;
4638 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4639 sizeof(inum));
4640 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4641 sizeof(gen));
4642 }
4643
4644 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4645 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4646 ret = -EFSBADCRC;
814525f4
DW
4647 goto bad_inode;
4648 }
4649
ac27a0ec 4650 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4651 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4652 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4653 if (ext4_has_feature_project(sb) &&
040cb378
LX
4654 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4655 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4656 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4657 else
4658 i_projid = EXT4_DEF_PROJID;
4659
af5bc92d 4660 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4661 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4662 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4663 }
08cefc7a
EB
4664 i_uid_write(inode, i_uid);
4665 i_gid_write(inode, i_gid);
040cb378 4666 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4667 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4668
353eb83c 4669 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4670 ei->i_inline_off = 0;
ac27a0ec
DK
4671 ei->i_dir_start_lookup = 0;
4672 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4673 /* We now have enough fields to check if the inode was active or not.
4674 * This is needed because nfsd might try to access dead inodes
4675 * the test is that same one that e2fsck uses
4676 * NeilBrown 1999oct15
4677 */
4678 if (inode->i_nlink == 0) {
393d1d1d
DTB
4679 if ((inode->i_mode == 0 ||
4680 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4681 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4682 /* this inode is deleted */
1d1fe1ee 4683 ret = -ESTALE;
ac27a0ec
DK
4684 goto bad_inode;
4685 }
4686 /* The only unlinked inodes we let through here have
4687 * valid i_mode and are being read by the orphan
4688 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4689 * the process of deleting those.
4690 * OR it is the EXT4_BOOT_LOADER_INO which is
4691 * not initialized on a new filesystem. */
ac27a0ec 4692 }
ac27a0ec 4693 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4694 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4695 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4696 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4697 ei->i_file_acl |=
4698 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4699 inode->i_size = ext4_isize(raw_inode);
7e6e1ef4
DW
4700 if ((size = i_size_read(inode)) < 0) {
4701 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4702 ret = -EFSCORRUPTED;
4703 goto bad_inode;
4704 }
ac27a0ec 4705 ei->i_disksize = inode->i_size;
a9e7f447
DM
4706#ifdef CONFIG_QUOTA
4707 ei->i_reserved_quota = 0;
4708#endif
ac27a0ec
DK
4709 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4710 ei->i_block_group = iloc.block_group;
a4912123 4711 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4712 /*
4713 * NOTE! The in-memory inode i_data array is in little-endian order
4714 * even on big-endian machines: we do NOT byteswap the block numbers!
4715 */
617ba13b 4716 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4717 ei->i_data[block] = raw_inode->i_block[block];
4718 INIT_LIST_HEAD(&ei->i_orphan);
4719
b436b9be
JK
4720 /*
4721 * Set transaction id's of transactions that have to be committed
4722 * to finish f[data]sync. We set them to currently running transaction
4723 * as we cannot be sure that the inode or some of its metadata isn't
4724 * part of the transaction - the inode could have been reclaimed and
4725 * now it is reread from disk.
4726 */
4727 if (journal) {
4728 transaction_t *transaction;
4729 tid_t tid;
4730
a931da6a 4731 read_lock(&journal->j_state_lock);
b436b9be
JK
4732 if (journal->j_running_transaction)
4733 transaction = journal->j_running_transaction;
4734 else
4735 transaction = journal->j_committing_transaction;
4736 if (transaction)
4737 tid = transaction->t_tid;
4738 else
4739 tid = journal->j_commit_sequence;
a931da6a 4740 read_unlock(&journal->j_state_lock);
b436b9be
JK
4741 ei->i_sync_tid = tid;
4742 ei->i_datasync_tid = tid;
4743 }
4744
0040d987 4745 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4746 if (ei->i_extra_isize == 0) {
4747 /* The extra space is currently unused. Use it. */
2dc8d9e1 4748 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4749 ei->i_extra_isize = sizeof(struct ext4_inode) -
4750 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4751 } else {
152a7b0a 4752 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4753 }
814525f4 4754 }
ac27a0ec 4755
ef7f3835
KS
4756 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4757 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4758 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4759 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4760
ed3654eb 4761 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4762 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4763 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4764 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4765 inode->i_version |=
4766 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4767 }
25ec56b5
JNC
4768 }
4769
c4b5a614 4770 ret = 0;
485c26ec 4771 if (ei->i_file_acl &&
1032988c 4772 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4773 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4774 ei->i_file_acl);
6a797d27 4775 ret = -EFSCORRUPTED;
485c26ec 4776 goto bad_inode;
f19d5870
TM
4777 } else if (!ext4_has_inline_data(inode)) {
4778 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4779 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4780 (S_ISLNK(inode->i_mode) &&
4781 !ext4_inode_is_fast_symlink(inode))))
4782 /* Validate extent which is part of inode */
4783 ret = ext4_ext_check_inode(inode);
4784 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4785 (S_ISLNK(inode->i_mode) &&
4786 !ext4_inode_is_fast_symlink(inode))) {
4787 /* Validate block references which are part of inode */
4788 ret = ext4_ind_check_inode(inode);
4789 }
fe2c8191 4790 }
567f3e9a 4791 if (ret)
de9a55b8 4792 goto bad_inode;
7a262f7c 4793
ac27a0ec 4794 if (S_ISREG(inode->i_mode)) {
617ba13b 4795 inode->i_op = &ext4_file_inode_operations;
be64f884 4796 inode->i_fop = &ext4_file_operations;
617ba13b 4797 ext4_set_aops(inode);
ac27a0ec 4798 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4799 inode->i_op = &ext4_dir_inode_operations;
4800 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4801 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4802 if (ext4_encrypted_inode(inode)) {
4803 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4804 ext4_set_aops(inode);
4805 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4806 inode->i_link = (char *)ei->i_data;
617ba13b 4807 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4808 nd_terminate_link(ei->i_data, inode->i_size,
4809 sizeof(ei->i_data) - 1);
4810 } else {
617ba13b
MC
4811 inode->i_op = &ext4_symlink_inode_operations;
4812 ext4_set_aops(inode);
ac27a0ec 4813 }
21fc61c7 4814 inode_nohighmem(inode);
563bdd61
TT
4815 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4816 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4817 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4818 if (raw_inode->i_block[0])
4819 init_special_inode(inode, inode->i_mode,
4820 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4821 else
4822 init_special_inode(inode, inode->i_mode,
4823 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4824 } else if (ino == EXT4_BOOT_LOADER_INO) {
4825 make_bad_inode(inode);
563bdd61 4826 } else {
6a797d27 4827 ret = -EFSCORRUPTED;
24676da4 4828 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4829 goto bad_inode;
ac27a0ec 4830 }
af5bc92d 4831 brelse(iloc.bh);
617ba13b 4832 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4833 unlock_new_inode(inode);
4834 return inode;
ac27a0ec
DK
4835
4836bad_inode:
567f3e9a 4837 brelse(iloc.bh);
1d1fe1ee
DH
4838 iget_failed(inode);
4839 return ERR_PTR(ret);
ac27a0ec
DK
4840}
4841
f4bb2981
TT
4842struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4843{
4844 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4845 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4846 return ext4_iget(sb, ino);
4847}
4848
0fc1b451
AK
4849static int ext4_inode_blocks_set(handle_t *handle,
4850 struct ext4_inode *raw_inode,
4851 struct ext4_inode_info *ei)
4852{
4853 struct inode *inode = &(ei->vfs_inode);
4854 u64 i_blocks = inode->i_blocks;
4855 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4856
4857 if (i_blocks <= ~0U) {
4858 /*
4907cb7b 4859 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4860 * as multiple of 512 bytes
4861 */
8180a562 4862 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4863 raw_inode->i_blocks_high = 0;
84a8dce2 4864 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4865 return 0;
4866 }
e2b911c5 4867 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4868 return -EFBIG;
4869
4870 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4871 /*
4872 * i_blocks can be represented in a 48 bit variable
4873 * as multiple of 512 bytes
4874 */
8180a562 4875 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4876 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4877 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4878 } else {
84a8dce2 4879 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4880 /* i_block is stored in file system block size */
4881 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4882 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4883 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4884 }
f287a1a5 4885 return 0;
0fc1b451
AK
4886}
4887
a26f4992
TT
4888struct other_inode {
4889 unsigned long orig_ino;
4890 struct ext4_inode *raw_inode;
4891};
4892
4893static int other_inode_match(struct inode * inode, unsigned long ino,
4894 void *data)
4895{
4896 struct other_inode *oi = (struct other_inode *) data;
4897
4898 if ((inode->i_ino != ino) ||
4899 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4900 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4901 ((inode->i_state & I_DIRTY_TIME) == 0))
4902 return 0;
4903 spin_lock(&inode->i_lock);
4904 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4905 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4906 (inode->i_state & I_DIRTY_TIME)) {
4907 struct ext4_inode_info *ei = EXT4_I(inode);
4908
4909 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4910 spin_unlock(&inode->i_lock);
4911
4912 spin_lock(&ei->i_raw_lock);
4913 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4914 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4915 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4916 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4917 spin_unlock(&ei->i_raw_lock);
4918 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4919 return -1;
4920 }
4921 spin_unlock(&inode->i_lock);
4922 return -1;
4923}
4924
4925/*
4926 * Opportunistically update the other time fields for other inodes in
4927 * the same inode table block.
4928 */
4929static void ext4_update_other_inodes_time(struct super_block *sb,
4930 unsigned long orig_ino, char *buf)
4931{
4932 struct other_inode oi;
4933 unsigned long ino;
4934 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4935 int inode_size = EXT4_INODE_SIZE(sb);
4936
4937 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4938 /*
4939 * Calculate the first inode in the inode table block. Inode
4940 * numbers are one-based. That is, the first inode in a block
4941 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4942 */
4943 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4944 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4945 if (ino == orig_ino)
4946 continue;
4947 oi.raw_inode = (struct ext4_inode *) buf;
4948 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4949 }
4950}
4951
ac27a0ec
DK
4952/*
4953 * Post the struct inode info into an on-disk inode location in the
4954 * buffer-cache. This gobbles the caller's reference to the
4955 * buffer_head in the inode location struct.
4956 *
4957 * The caller must have write access to iloc->bh.
4958 */
617ba13b 4959static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4960 struct inode *inode,
830156c7 4961 struct ext4_iloc *iloc)
ac27a0ec 4962{
617ba13b
MC
4963 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4964 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4965 struct buffer_head *bh = iloc->bh;
202ee5df 4966 struct super_block *sb = inode->i_sb;
ac27a0ec 4967 int err = 0, rc, block;
202ee5df 4968 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4969 uid_t i_uid;
4970 gid_t i_gid;
040cb378 4971 projid_t i_projid;
ac27a0ec 4972
202ee5df
TT
4973 spin_lock(&ei->i_raw_lock);
4974
4975 /* For fields not tracked in the in-memory inode,
ac27a0ec 4976 * initialise them to zero for new inodes. */
19f5fb7a 4977 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4978 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
4979
4980 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4981 i_uid = i_uid_read(inode);
4982 i_gid = i_gid_read(inode);
040cb378 4983 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4984 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4985 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4986 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4987/*
4988 * Fix up interoperability with old kernels. Otherwise, old inodes get
4989 * re-used with the upper 16 bits of the uid/gid intact
4990 */
93e3b4e6
DJ
4991 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4992 raw_inode->i_uid_high = 0;
4993 raw_inode->i_gid_high = 0;
4994 } else {
ac27a0ec 4995 raw_inode->i_uid_high =
08cefc7a 4996 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4997 raw_inode->i_gid_high =
08cefc7a 4998 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4999 }
5000 } else {
08cefc7a
EB
5001 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5002 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5003 raw_inode->i_uid_high = 0;
5004 raw_inode->i_gid_high = 0;
5005 }
5006 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5007
5008 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5009 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5010 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5011 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5012
bce92d56
LX
5013 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5014 if (err) {
202ee5df 5015 spin_unlock(&ei->i_raw_lock);
0fc1b451 5016 goto out_brelse;
202ee5df 5017 }
ac27a0ec 5018 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5019 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5020 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5021 raw_inode->i_file_acl_high =
5022 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5023 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
5024 if (ei->i_disksize != ext4_isize(raw_inode)) {
5025 ext4_isize_set(raw_inode, ei->i_disksize);
5026 need_datasync = 1;
5027 }
a48380f7 5028 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5029 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5030 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5031 cpu_to_le32(EXT4_GOOD_OLD_REV))
5032 set_large_file = 1;
ac27a0ec
DK
5033 }
5034 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5035 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5036 if (old_valid_dev(inode->i_rdev)) {
5037 raw_inode->i_block[0] =
5038 cpu_to_le32(old_encode_dev(inode->i_rdev));
5039 raw_inode->i_block[1] = 0;
5040 } else {
5041 raw_inode->i_block[0] = 0;
5042 raw_inode->i_block[1] =
5043 cpu_to_le32(new_encode_dev(inode->i_rdev));
5044 raw_inode->i_block[2] = 0;
5045 }
f19d5870 5046 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5047 for (block = 0; block < EXT4_N_BLOCKS; block++)
5048 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5049 }
ac27a0ec 5050
ed3654eb 5051 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5052 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5053 if (ei->i_extra_isize) {
5054 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5055 raw_inode->i_version_hi =
5056 cpu_to_le32(inode->i_version >> 32);
5057 raw_inode->i_extra_isize =
5058 cpu_to_le16(ei->i_extra_isize);
5059 }
25ec56b5 5060 }
040cb378 5061
0b7b7779 5062 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5063 i_projid != EXT4_DEF_PROJID);
5064
5065 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5066 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5067 raw_inode->i_projid = cpu_to_le32(i_projid);
5068
814525f4 5069 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5070 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5071 if (inode->i_sb->s_flags & MS_LAZYTIME)
5072 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5073 bh->b_data);
202ee5df 5074
830156c7 5075 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5076 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5077 if (!err)
5078 err = rc;
19f5fb7a 5079 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5080 if (set_large_file) {
5d601255 5081 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5082 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5083 if (err)
5084 goto out_brelse;
5085 ext4_update_dynamic_rev(sb);
e2b911c5 5086 ext4_set_feature_large_file(sb);
202ee5df
TT
5087 ext4_handle_sync(handle);
5088 err = ext4_handle_dirty_super(handle, sb);
5089 }
b71fc079 5090 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5091out_brelse:
af5bc92d 5092 brelse(bh);
617ba13b 5093 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5094 return err;
5095}
5096
5097/*
617ba13b 5098 * ext4_write_inode()
ac27a0ec
DK
5099 *
5100 * We are called from a few places:
5101 *
87f7e416 5102 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5103 * Here, there will be no transaction running. We wait for any running
4907cb7b 5104 * transaction to commit.
ac27a0ec 5105 *
87f7e416
TT
5106 * - Within flush work (sys_sync(), kupdate and such).
5107 * We wait on commit, if told to.
ac27a0ec 5108 *
87f7e416
TT
5109 * - Within iput_final() -> write_inode_now()
5110 * We wait on commit, if told to.
ac27a0ec
DK
5111 *
5112 * In all cases it is actually safe for us to return without doing anything,
5113 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5114 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5115 * writeback.
ac27a0ec
DK
5116 *
5117 * Note that we are absolutely dependent upon all inode dirtiers doing the
5118 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5119 * which we are interested.
5120 *
5121 * It would be a bug for them to not do this. The code:
5122 *
5123 * mark_inode_dirty(inode)
5124 * stuff();
5125 * inode->i_size = expr;
5126 *
87f7e416
TT
5127 * is in error because write_inode() could occur while `stuff()' is running,
5128 * and the new i_size will be lost. Plus the inode will no longer be on the
5129 * superblock's dirty inode list.
ac27a0ec 5130 */
a9185b41 5131int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5132{
91ac6f43
FM
5133 int err;
5134
87f7e416 5135 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5136 return 0;
5137
91ac6f43
FM
5138 if (EXT4_SB(inode->i_sb)->s_journal) {
5139 if (ext4_journal_current_handle()) {
5140 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5141 dump_stack();
5142 return -EIO;
5143 }
ac27a0ec 5144
10542c22
JK
5145 /*
5146 * No need to force transaction in WB_SYNC_NONE mode. Also
5147 * ext4_sync_fs() will force the commit after everything is
5148 * written.
5149 */
5150 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5151 return 0;
5152
5153 err = ext4_force_commit(inode->i_sb);
5154 } else {
5155 struct ext4_iloc iloc;
ac27a0ec 5156
8b472d73 5157 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5158 if (err)
5159 return err;
10542c22
JK
5160 /*
5161 * sync(2) will flush the whole buffer cache. No need to do
5162 * it here separately for each inode.
5163 */
5164 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5165 sync_dirty_buffer(iloc.bh);
5166 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5167 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5168 "IO error syncing inode");
830156c7
FM
5169 err = -EIO;
5170 }
fd2dd9fb 5171 brelse(iloc.bh);
91ac6f43
FM
5172 }
5173 return err;
ac27a0ec
DK
5174}
5175
53e87268
JK
5176/*
5177 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5178 * buffers that are attached to a page stradding i_size and are undergoing
5179 * commit. In that case we have to wait for commit to finish and try again.
5180 */
5181static void ext4_wait_for_tail_page_commit(struct inode *inode)
5182{
5183 struct page *page;
5184 unsigned offset;
5185 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5186 tid_t commit_tid = 0;
5187 int ret;
5188
09cbfeaf 5189 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5190 /*
5191 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5192 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5193 * blocksize case
5194 */
93407472 5195 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5196 return;
5197 while (1) {
5198 page = find_lock_page(inode->i_mapping,
09cbfeaf 5199 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5200 if (!page)
5201 return;
ca99fdd2 5202 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5203 PAGE_SIZE - offset);
53e87268 5204 unlock_page(page);
09cbfeaf 5205 put_page(page);
53e87268
JK
5206 if (ret != -EBUSY)
5207 return;
5208 commit_tid = 0;
5209 read_lock(&journal->j_state_lock);
5210 if (journal->j_committing_transaction)
5211 commit_tid = journal->j_committing_transaction->t_tid;
5212 read_unlock(&journal->j_state_lock);
5213 if (commit_tid)
5214 jbd2_log_wait_commit(journal, commit_tid);
5215 }
5216}
5217
ac27a0ec 5218/*
617ba13b 5219 * ext4_setattr()
ac27a0ec
DK
5220 *
5221 * Called from notify_change.
5222 *
5223 * We want to trap VFS attempts to truncate the file as soon as
5224 * possible. In particular, we want to make sure that when the VFS
5225 * shrinks i_size, we put the inode on the orphan list and modify
5226 * i_disksize immediately, so that during the subsequent flushing of
5227 * dirty pages and freeing of disk blocks, we can guarantee that any
5228 * commit will leave the blocks being flushed in an unused state on
5229 * disk. (On recovery, the inode will get truncated and the blocks will
5230 * be freed, so we have a strong guarantee that no future commit will
5231 * leave these blocks visible to the user.)
5232 *
678aaf48
JK
5233 * Another thing we have to assure is that if we are in ordered mode
5234 * and inode is still attached to the committing transaction, we must
5235 * we start writeout of all the dirty pages which are being truncated.
5236 * This way we are sure that all the data written in the previous
5237 * transaction are already on disk (truncate waits for pages under
5238 * writeback).
5239 *
5240 * Called with inode->i_mutex down.
ac27a0ec 5241 */
617ba13b 5242int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5243{
2b0143b5 5244 struct inode *inode = d_inode(dentry);
ac27a0ec 5245 int error, rc = 0;
3d287de3 5246 int orphan = 0;
ac27a0ec
DK
5247 const unsigned int ia_valid = attr->ia_valid;
5248
0db1ff22
TT
5249 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5250 return -EIO;
5251
31051c85 5252 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5253 if (error)
5254 return error;
5255
a7cdadee
JK
5256 if (is_quota_modification(inode, attr)) {
5257 error = dquot_initialize(inode);
5258 if (error)
5259 return error;
5260 }
08cefc7a
EB
5261 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5262 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5263 handle_t *handle;
5264
5265 /* (user+group)*(old+new) structure, inode write (sb,
5266 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5267 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5268 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5269 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5270 if (IS_ERR(handle)) {
5271 error = PTR_ERR(handle);
5272 goto err_out;
5273 }
b43fa828 5274 error = dquot_transfer(inode, attr);
ac27a0ec 5275 if (error) {
617ba13b 5276 ext4_journal_stop(handle);
ac27a0ec
DK
5277 return error;
5278 }
5279 /* Update corresponding info in inode so that everything is in
5280 * one transaction */
5281 if (attr->ia_valid & ATTR_UID)
5282 inode->i_uid = attr->ia_uid;
5283 if (attr->ia_valid & ATTR_GID)
5284 inode->i_gid = attr->ia_gid;
617ba13b
MC
5285 error = ext4_mark_inode_dirty(handle, inode);
5286 ext4_journal_stop(handle);
ac27a0ec
DK
5287 }
5288
3da40c7b 5289 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5290 handle_t *handle;
3da40c7b
JB
5291 loff_t oldsize = inode->i_size;
5292 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5293
12e9b892 5294 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5295 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5296
0c095c7f
TT
5297 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5298 return -EFBIG;
e2b46574 5299 }
3da40c7b
JB
5300 if (!S_ISREG(inode->i_mode))
5301 return -EINVAL;
dff6efc3
CH
5302
5303 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5304 inode_inc_iversion(inode);
5305
3da40c7b 5306 if (ext4_should_order_data(inode) &&
5208386c 5307 (attr->ia_size < inode->i_size)) {
3da40c7b 5308 error = ext4_begin_ordered_truncate(inode,
678aaf48 5309 attr->ia_size);
3da40c7b
JB
5310 if (error)
5311 goto err_out;
5312 }
5313 if (attr->ia_size != inode->i_size) {
5208386c
JK
5314 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5315 if (IS_ERR(handle)) {
5316 error = PTR_ERR(handle);
5317 goto err_out;
5318 }
3da40c7b 5319 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5320 error = ext4_orphan_add(handle, inode);
5321 orphan = 1;
5322 }
911af577
EG
5323 /*
5324 * Update c/mtime on truncate up, ext4_truncate() will
5325 * update c/mtime in shrink case below
5326 */
5327 if (!shrink) {
eeca7ea1 5328 inode->i_mtime = current_time(inode);
911af577
EG
5329 inode->i_ctime = inode->i_mtime;
5330 }
90e775b7 5331 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5332 EXT4_I(inode)->i_disksize = attr->ia_size;
5333 rc = ext4_mark_inode_dirty(handle, inode);
5334 if (!error)
5335 error = rc;
90e775b7
JK
5336 /*
5337 * We have to update i_size under i_data_sem together
5338 * with i_disksize to avoid races with writeback code
5339 * running ext4_wb_update_i_disksize().
5340 */
5341 if (!error)
5342 i_size_write(inode, attr->ia_size);
5343 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5344 ext4_journal_stop(handle);
5345 if (error) {
3da40c7b
JB
5346 if (orphan)
5347 ext4_orphan_del(NULL, inode);
678aaf48
JK
5348 goto err_out;
5349 }
d6320cbf 5350 }
3da40c7b
JB
5351 if (!shrink)
5352 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5353
5208386c
JK
5354 /*
5355 * Blocks are going to be removed from the inode. Wait
5356 * for dio in flight. Temporarily disable
5357 * dioread_nolock to prevent livelock.
5358 */
5359 if (orphan) {
5360 if (!ext4_should_journal_data(inode)) {
5361 ext4_inode_block_unlocked_dio(inode);
5362 inode_dio_wait(inode);
5363 ext4_inode_resume_unlocked_dio(inode);
5364 } else
5365 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5366 }
ea3d7209 5367 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5368 /*
5369 * Truncate pagecache after we've waited for commit
5370 * in data=journal mode to make pages freeable.
5371 */
923ae0ff 5372 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5373 if (shrink) {
5374 rc = ext4_truncate(inode);
5375 if (rc)
5376 error = rc;
5377 }
ea3d7209 5378 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5379 }
ac27a0ec 5380
2c98eb5e 5381 if (!error) {
1025774c
CH
5382 setattr_copy(inode, attr);
5383 mark_inode_dirty(inode);
5384 }
5385
5386 /*
5387 * If the call to ext4_truncate failed to get a transaction handle at
5388 * all, we need to clean up the in-core orphan list manually.
5389 */
3d287de3 5390 if (orphan && inode->i_nlink)
617ba13b 5391 ext4_orphan_del(NULL, inode);
ac27a0ec 5392
2c98eb5e 5393 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5394 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5395
5396err_out:
617ba13b 5397 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5398 if (!error)
5399 error = rc;
5400 return error;
5401}
5402
a528d35e
DH
5403int ext4_getattr(const struct path *path, struct kstat *stat,
5404 u32 request_mask, unsigned int query_flags)
3e3398a0 5405{
99652ea5
DH
5406 struct inode *inode = d_inode(path->dentry);
5407 struct ext4_inode *raw_inode;
5408 struct ext4_inode_info *ei = EXT4_I(inode);
5409 unsigned int flags;
5410
5411 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5412 stat->result_mask |= STATX_BTIME;
5413 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5414 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5415 }
5416
5417 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5418 if (flags & EXT4_APPEND_FL)
5419 stat->attributes |= STATX_ATTR_APPEND;
5420 if (flags & EXT4_COMPR_FL)
5421 stat->attributes |= STATX_ATTR_COMPRESSED;
5422 if (flags & EXT4_ENCRYPT_FL)
5423 stat->attributes |= STATX_ATTR_ENCRYPTED;
5424 if (flags & EXT4_IMMUTABLE_FL)
5425 stat->attributes |= STATX_ATTR_IMMUTABLE;
5426 if (flags & EXT4_NODUMP_FL)
5427 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5428
3209f68b
DH
5429 stat->attributes_mask |= (STATX_ATTR_APPEND |
5430 STATX_ATTR_COMPRESSED |
5431 STATX_ATTR_ENCRYPTED |
5432 STATX_ATTR_IMMUTABLE |
5433 STATX_ATTR_NODUMP);
5434
3e3398a0 5435 generic_fillattr(inode, stat);
99652ea5
DH
5436 return 0;
5437}
5438
5439int ext4_file_getattr(const struct path *path, struct kstat *stat,
5440 u32 request_mask, unsigned int query_flags)
5441{
5442 struct inode *inode = d_inode(path->dentry);
5443 u64 delalloc_blocks;
5444
5445 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5446
9206c561
AD
5447 /*
5448 * If there is inline data in the inode, the inode will normally not
5449 * have data blocks allocated (it may have an external xattr block).
5450 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5451 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5452 */
5453 if (unlikely(ext4_has_inline_data(inode)))
5454 stat->blocks += (stat->size + 511) >> 9;
5455
3e3398a0
MC
5456 /*
5457 * We can't update i_blocks if the block allocation is delayed
5458 * otherwise in the case of system crash before the real block
5459 * allocation is done, we will have i_blocks inconsistent with
5460 * on-disk file blocks.
5461 * We always keep i_blocks updated together with real
5462 * allocation. But to not confuse with user, stat
5463 * will return the blocks that include the delayed allocation
5464 * blocks for this file.
5465 */
96607551 5466 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5467 EXT4_I(inode)->i_reserved_data_blocks);
5468 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5469 return 0;
5470}
ac27a0ec 5471
fffb2739
JK
5472static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5473 int pextents)
a02908f1 5474{
12e9b892 5475 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5476 return ext4_ind_trans_blocks(inode, lblocks);
5477 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5478}
ac51d837 5479
ac27a0ec 5480/*
a02908f1
MC
5481 * Account for index blocks, block groups bitmaps and block group
5482 * descriptor blocks if modify datablocks and index blocks
5483 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5484 *
a02908f1 5485 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5486 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5487 * they could still across block group boundary.
ac27a0ec 5488 *
a02908f1
MC
5489 * Also account for superblock, inode, quota and xattr blocks
5490 */
fffb2739
JK
5491static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5492 int pextents)
a02908f1 5493{
8df9675f
TT
5494 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5495 int gdpblocks;
a02908f1
MC
5496 int idxblocks;
5497 int ret = 0;
5498
5499 /*
fffb2739
JK
5500 * How many index blocks need to touch to map @lblocks logical blocks
5501 * to @pextents physical extents?
a02908f1 5502 */
fffb2739 5503 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5504
5505 ret = idxblocks;
5506
5507 /*
5508 * Now let's see how many group bitmaps and group descriptors need
5509 * to account
5510 */
fffb2739 5511 groups = idxblocks + pextents;
a02908f1 5512 gdpblocks = groups;
8df9675f
TT
5513 if (groups > ngroups)
5514 groups = ngroups;
a02908f1
MC
5515 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5516 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5517
5518 /* bitmaps and block group descriptor blocks */
5519 ret += groups + gdpblocks;
5520
5521 /* Blocks for super block, inode, quota and xattr blocks */
5522 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5523
5524 return ret;
5525}
5526
5527/*
25985edc 5528 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5529 * the modification of a single pages into a single transaction,
5530 * which may include multiple chunks of block allocations.
ac27a0ec 5531 *
525f4ed8 5532 * This could be called via ext4_write_begin()
ac27a0ec 5533 *
525f4ed8 5534 * We need to consider the worse case, when
a02908f1 5535 * one new block per extent.
ac27a0ec 5536 */
a86c6181 5537int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5538{
617ba13b 5539 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5540 int ret;
5541
fffb2739 5542 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5543
a02908f1 5544 /* Account for data blocks for journalled mode */
617ba13b 5545 if (ext4_should_journal_data(inode))
a02908f1 5546 ret += bpp;
ac27a0ec
DK
5547 return ret;
5548}
f3bd1f3f
MC
5549
5550/*
5551 * Calculate the journal credits for a chunk of data modification.
5552 *
5553 * This is called from DIO, fallocate or whoever calling
79e83036 5554 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5555 *
5556 * journal buffers for data blocks are not included here, as DIO
5557 * and fallocate do no need to journal data buffers.
5558 */
5559int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5560{
5561 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5562}
5563
ac27a0ec 5564/*
617ba13b 5565 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5566 * Give this, we know that the caller already has write access to iloc->bh.
5567 */
617ba13b 5568int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5569 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5570{
5571 int err = 0;
5572
0db1ff22
TT
5573 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5574 return -EIO;
5575
c64db50e 5576 if (IS_I_VERSION(inode))
25ec56b5
JNC
5577 inode_inc_iversion(inode);
5578
ac27a0ec
DK
5579 /* the do_update_inode consumes one bh->b_count */
5580 get_bh(iloc->bh);
5581
dab291af 5582 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5583 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5584 put_bh(iloc->bh);
5585 return err;
5586}
5587
5588/*
5589 * On success, We end up with an outstanding reference count against
5590 * iloc->bh. This _must_ be cleaned up later.
5591 */
5592
5593int
617ba13b
MC
5594ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5595 struct ext4_iloc *iloc)
ac27a0ec 5596{
0390131b
FM
5597 int err;
5598
0db1ff22
TT
5599 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5600 return -EIO;
5601
0390131b
FM
5602 err = ext4_get_inode_loc(inode, iloc);
5603 if (!err) {
5604 BUFFER_TRACE(iloc->bh, "get_write_access");
5605 err = ext4_journal_get_write_access(handle, iloc->bh);
5606 if (err) {
5607 brelse(iloc->bh);
5608 iloc->bh = NULL;
ac27a0ec
DK
5609 }
5610 }
617ba13b 5611 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5612 return err;
5613}
5614
6dd4ee7c
KS
5615/*
5616 * Expand an inode by new_extra_isize bytes.
5617 * Returns 0 on success or negative error number on failure.
5618 */
1d03ec98
AK
5619static int ext4_expand_extra_isize(struct inode *inode,
5620 unsigned int new_extra_isize,
5621 struct ext4_iloc iloc,
5622 handle_t *handle)
6dd4ee7c
KS
5623{
5624 struct ext4_inode *raw_inode;
5625 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5626
5627 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5628 return 0;
5629
5630 raw_inode = ext4_raw_inode(&iloc);
5631
5632 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5633
5634 /* No extended attributes present */
19f5fb7a
TT
5635 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5636 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
887a9730
KK
5637 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5638 EXT4_I(inode)->i_extra_isize, 0,
5639 new_extra_isize - EXT4_I(inode)->i_extra_isize);
6dd4ee7c
KS
5640 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5641 return 0;
5642 }
5643
5644 /* try to expand with EAs present */
5645 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5646 raw_inode, handle);
5647}
5648
ac27a0ec
DK
5649/*
5650 * What we do here is to mark the in-core inode as clean with respect to inode
5651 * dirtiness (it may still be data-dirty).
5652 * This means that the in-core inode may be reaped by prune_icache
5653 * without having to perform any I/O. This is a very good thing,
5654 * because *any* task may call prune_icache - even ones which
5655 * have a transaction open against a different journal.
5656 *
5657 * Is this cheating? Not really. Sure, we haven't written the
5658 * inode out, but prune_icache isn't a user-visible syncing function.
5659 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5660 * we start and wait on commits.
ac27a0ec 5661 */
617ba13b 5662int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5663{
617ba13b 5664 struct ext4_iloc iloc;
6dd4ee7c
KS
5665 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5666 static unsigned int mnt_count;
5667 int err, ret;
ac27a0ec
DK
5668
5669 might_sleep();
7ff9c073 5670 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5671 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5672 if (err)
5673 return err;
88e03877 5674 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5675 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c 5676 /*
88e03877
EW
5677 * In nojournal mode, we can immediately attempt to expand
5678 * the inode. When journaled, we first need to obtain extra
5679 * buffer credits since we may write into the EA block
6dd4ee7c
KS
5680 * with this same handle. If journal_extend fails, then it will
5681 * only result in a minor loss of functionality for that inode.
5682 * If this is felt to be critical, then e2fsck should be run to
5683 * force a large enough s_min_extra_isize.
5684 */
88e03877
EW
5685 if (!ext4_handle_valid(handle) ||
5686 jbd2_journal_extend(handle,
5687 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
6dd4ee7c
KS
5688 ret = ext4_expand_extra_isize(inode,
5689 sbi->s_want_extra_isize,
5690 iloc, handle);
5691 if (ret) {
c1bddad9
AK
5692 if (mnt_count !=
5693 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5694 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5695 "Unable to expand inode %lu. Delete"
5696 " some EAs or run e2fsck.",
5697 inode->i_ino);
c1bddad9
AK
5698 mnt_count =
5699 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5700 }
5701 }
5702 }
5703 }
5e1021f2 5704 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5705}
5706
5707/*
617ba13b 5708 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5709 *
5710 * We're really interested in the case where a file is being extended.
5711 * i_size has been changed by generic_commit_write() and we thus need
5712 * to include the updated inode in the current transaction.
5713 *
5dd4056d 5714 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5715 * are allocated to the file.
5716 *
5717 * If the inode is marked synchronous, we don't honour that here - doing
5718 * so would cause a commit on atime updates, which we don't bother doing.
5719 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5720 *
5721 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5722 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5723 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5724 */
aa385729 5725void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5726{
ac27a0ec
DK
5727 handle_t *handle;
5728
0ae45f63
TT
5729 if (flags == I_DIRTY_TIME)
5730 return;
9924a92a 5731 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5732 if (IS_ERR(handle))
5733 goto out;
f3dc272f 5734
f3dc272f
CW
5735 ext4_mark_inode_dirty(handle, inode);
5736
617ba13b 5737 ext4_journal_stop(handle);
ac27a0ec
DK
5738out:
5739 return;
5740}
5741
5742#if 0
5743/*
5744 * Bind an inode's backing buffer_head into this transaction, to prevent
5745 * it from being flushed to disk early. Unlike
617ba13b 5746 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5747 * returns no iloc structure, so the caller needs to repeat the iloc
5748 * lookup to mark the inode dirty later.
5749 */
617ba13b 5750static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5751{
617ba13b 5752 struct ext4_iloc iloc;
ac27a0ec
DK
5753
5754 int err = 0;
5755 if (handle) {
617ba13b 5756 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5757 if (!err) {
5758 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5759 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5760 if (!err)
0390131b 5761 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5762 NULL,
0390131b 5763 iloc.bh);
ac27a0ec
DK
5764 brelse(iloc.bh);
5765 }
5766 }
617ba13b 5767 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5768 return err;
5769}
5770#endif
5771
617ba13b 5772int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5773{
5774 journal_t *journal;
5775 handle_t *handle;
5776 int err;
c8585c6f 5777 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5778
5779 /*
5780 * We have to be very careful here: changing a data block's
5781 * journaling status dynamically is dangerous. If we write a
5782 * data block to the journal, change the status and then delete
5783 * that block, we risk forgetting to revoke the old log record
5784 * from the journal and so a subsequent replay can corrupt data.
5785 * So, first we make sure that the journal is empty and that
5786 * nobody is changing anything.
5787 */
5788
617ba13b 5789 journal = EXT4_JOURNAL(inode);
0390131b
FM
5790 if (!journal)
5791 return 0;
d699594d 5792 if (is_journal_aborted(journal))
ac27a0ec
DK
5793 return -EROFS;
5794
17335dcc
DM
5795 /* Wait for all existing dio workers */
5796 ext4_inode_block_unlocked_dio(inode);
5797 inode_dio_wait(inode);
5798
4c546592
DJ
5799 /*
5800 * Before flushing the journal and switching inode's aops, we have
5801 * to flush all dirty data the inode has. There can be outstanding
5802 * delayed allocations, there can be unwritten extents created by
5803 * fallocate or buffered writes in dioread_nolock mode covered by
5804 * dirty data which can be converted only after flushing the dirty
5805 * data (and journalled aops don't know how to handle these cases).
5806 */
5807 if (val) {
5808 down_write(&EXT4_I(inode)->i_mmap_sem);
5809 err = filemap_write_and_wait(inode->i_mapping);
5810 if (err < 0) {
5811 up_write(&EXT4_I(inode)->i_mmap_sem);
5812 ext4_inode_resume_unlocked_dio(inode);
5813 return err;
5814 }
5815 }
5816
c8585c6f 5817 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5818 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5819
5820 /*
5821 * OK, there are no updates running now, and all cached data is
5822 * synced to disk. We are now in a completely consistent state
5823 * which doesn't have anything in the journal, and we know that
5824 * no filesystem updates are running, so it is safe to modify
5825 * the inode's in-core data-journaling state flag now.
5826 */
5827
5828 if (val)
12e9b892 5829 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5830 else {
4f879ca6
JK
5831 err = jbd2_journal_flush(journal);
5832 if (err < 0) {
5833 jbd2_journal_unlock_updates(journal);
c8585c6f 5834 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
5835 ext4_inode_resume_unlocked_dio(inode);
5836 return err;
5837 }
12e9b892 5838 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5839 }
617ba13b 5840 ext4_set_aops(inode);
a3caa24b
JK
5841 /*
5842 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5843 * E.g. S_DAX may get cleared / set.
5844 */
5845 ext4_set_inode_flags(inode);
ac27a0ec 5846
dab291af 5847 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
5848 percpu_up_write(&sbi->s_journal_flag_rwsem);
5849
4c546592
DJ
5850 if (val)
5851 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 5852 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5853
5854 /* Finally we can mark the inode as dirty. */
5855
9924a92a 5856 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5857 if (IS_ERR(handle))
5858 return PTR_ERR(handle);
5859
617ba13b 5860 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5861 ext4_handle_sync(handle);
617ba13b
MC
5862 ext4_journal_stop(handle);
5863 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5864
5865 return err;
5866}
2e9ee850
AK
5867
5868static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5869{
5870 return !buffer_mapped(bh);
5871}
5872
11bac800 5873int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 5874{
11bac800 5875 struct vm_area_struct *vma = vmf->vma;
c2ec175c 5876 struct page *page = vmf->page;
2e9ee850
AK
5877 loff_t size;
5878 unsigned long len;
9ea7df53 5879 int ret;
2e9ee850 5880 struct file *file = vma->vm_file;
496ad9aa 5881 struct inode *inode = file_inode(file);
2e9ee850 5882 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5883 handle_t *handle;
5884 get_block_t *get_block;
5885 int retries = 0;
2e9ee850 5886
8e8ad8a5 5887 sb_start_pagefault(inode->i_sb);
041bbb6d 5888 file_update_time(vma->vm_file);
ea3d7209
JK
5889
5890 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
5891
5892 ret = ext4_convert_inline_data(inode);
5893 if (ret)
5894 goto out_ret;
5895
9ea7df53
JK
5896 /* Delalloc case is easy... */
5897 if (test_opt(inode->i_sb, DELALLOC) &&
5898 !ext4_should_journal_data(inode) &&
5899 !ext4_nonda_switch(inode->i_sb)) {
5900 do {
5c500029 5901 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5902 ext4_da_get_block_prep);
5903 } while (ret == -ENOSPC &&
5904 ext4_should_retry_alloc(inode->i_sb, &retries));
5905 goto out_ret;
2e9ee850 5906 }
0e499890
DW
5907
5908 lock_page(page);
9ea7df53
JK
5909 size = i_size_read(inode);
5910 /* Page got truncated from under us? */
5911 if (page->mapping != mapping || page_offset(page) > size) {
5912 unlock_page(page);
5913 ret = VM_FAULT_NOPAGE;
5914 goto out;
0e499890 5915 }
2e9ee850 5916
09cbfeaf
KS
5917 if (page->index == size >> PAGE_SHIFT)
5918 len = size & ~PAGE_MASK;
2e9ee850 5919 else
09cbfeaf 5920 len = PAGE_SIZE;
a827eaff 5921 /*
9ea7df53
JK
5922 * Return if we have all the buffers mapped. This avoids the need to do
5923 * journal_start/journal_stop which can block and take a long time
a827eaff 5924 */
2e9ee850 5925 if (page_has_buffers(page)) {
f19d5870
TM
5926 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5927 0, len, NULL,
5928 ext4_bh_unmapped)) {
9ea7df53 5929 /* Wait so that we don't change page under IO */
1d1d1a76 5930 wait_for_stable_page(page);
9ea7df53
JK
5931 ret = VM_FAULT_LOCKED;
5932 goto out;
a827eaff 5933 }
2e9ee850 5934 }
a827eaff 5935 unlock_page(page);
9ea7df53
JK
5936 /* OK, we need to fill the hole... */
5937 if (ext4_should_dioread_nolock(inode))
705965bd 5938 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5939 else
5940 get_block = ext4_get_block;
5941retry_alloc:
9924a92a
TT
5942 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5943 ext4_writepage_trans_blocks(inode));
9ea7df53 5944 if (IS_ERR(handle)) {
c2ec175c 5945 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5946 goto out;
5947 }
5c500029 5948 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5949 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5950 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 5951 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
5952 unlock_page(page);
5953 ret = VM_FAULT_SIGBUS;
fcbb5515 5954 ext4_journal_stop(handle);
9ea7df53
JK
5955 goto out;
5956 }
5957 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5958 }
5959 ext4_journal_stop(handle);
5960 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5961 goto retry_alloc;
5962out_ret:
5963 ret = block_page_mkwrite_return(ret);
5964out:
ea3d7209 5965 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5966 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5967 return ret;
5968}
ea3d7209 5969
11bac800 5970int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 5971{
11bac800 5972 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
5973 int err;
5974
5975 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 5976 err = filemap_fault(vmf);
ea3d7209
JK
5977 up_read(&EXT4_I(inode)->i_mmap_sem);
5978
5979 return err;
5980}
2d90c160
JK
5981
5982/*
5983 * Find the first extent at or after @lblk in an inode that is not a hole.
5984 * Search for @map_len blocks at most. The extent is returned in @result.
5985 *
5986 * The function returns 1 if we found an extent. The function returns 0 in
5987 * case there is no extent at or after @lblk and in that case also sets
5988 * @result->es_len to 0. In case of error, the error code is returned.
5989 */
5990int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5991 unsigned int map_len, struct extent_status *result)
5992{
5993 struct ext4_map_blocks map;
5994 struct extent_status es = {};
5995 int ret;
5996
5997 map.m_lblk = lblk;
5998 map.m_len = map_len;
5999
6000 /*
6001 * For non-extent based files this loop may iterate several times since
6002 * we do not determine full hole size.
6003 */
6004 while (map.m_len > 0) {
6005 ret = ext4_map_blocks(NULL, inode, &map, 0);
6006 if (ret < 0)
6007 return ret;
6008 /* There's extent covering m_lblk? Just return it. */
6009 if (ret > 0) {
6010 int status;
6011
6012 ext4_es_store_pblock(result, map.m_pblk);
6013 result->es_lblk = map.m_lblk;
6014 result->es_len = map.m_len;
6015 if (map.m_flags & EXT4_MAP_UNWRITTEN)
6016 status = EXTENT_STATUS_UNWRITTEN;
6017 else
6018 status = EXTENT_STATUS_WRITTEN;
6019 ext4_es_store_status(result, status);
6020 return 1;
6021 }
6022 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
6023 map.m_lblk + map.m_len - 1,
6024 &es);
6025 /* Is delalloc data before next block in extent tree? */
6026 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
6027 ext4_lblk_t offset = 0;
6028
6029 if (es.es_lblk < lblk)
6030 offset = lblk - es.es_lblk;
6031 result->es_lblk = es.es_lblk + offset;
6032 ext4_es_store_pblock(result,
6033 ext4_es_pblock(&es) + offset);
6034 result->es_len = es.es_len - offset;
6035 ext4_es_store_status(result, ext4_es_status(&es));
6036
6037 return 1;
6038 }
6039 /* There's a hole at m_lblk, advance us after it */
6040 map.m_lblk += map.m_len;
6041 map_len -= map.m_len;
6042 map.m_len = map_len;
6043 cond_resched();
6044 }
6045 result->es_len = 0;
6046 return 0;
6047}