]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/ext4/inode.c
ext4: use pagevec_lookup_range_tag()
[mirror_ubuntu-focal-kernel.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec
DK
22#include <linux/fs.h>
23#include <linux/time.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
c94c2acf 26#include <linux/dax.h>
ac27a0ec
DK
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
64769240 31#include <linux/pagevec.h>
ac27a0ec 32#include <linux/mpage.h>
e83c1397 33#include <linux/namei.h>
ac27a0ec
DK
34#include <linux/uio.h>
35#include <linux/bio.h>
4c0425ff 36#include <linux/workqueue.h>
744692dc 37#include <linux/kernel.h>
6db26ffc 38#include <linux/printk.h>
5a0e3ad6 39#include <linux/slab.h>
00a1a053 40#include <linux/bitops.h>
364443cb 41#include <linux/iomap.h>
9bffad1e 42
3dcf5451 43#include "ext4_jbd2.h"
ac27a0ec
DK
44#include "xattr.h"
45#include "acl.h"
9f125d64 46#include "truncate.h"
ac27a0ec 47
9bffad1e
TT
48#include <trace/events/ext4.h>
49
a1d6cc56
AK
50#define MPAGE_DA_EXTENT_TAIL 0x01
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
105static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518
TT
141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
142static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
dec214d0
TE
143static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
144 int pextents);
64769240 145
ac27a0ec
DK
146/*
147 * Test whether an inode is a fast symlink.
407cd7fb 148 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 149 */
f348c252 150int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 151{
407cd7fb
TE
152 return S_ISLNK(inode->i_mode) && inode->i_size &&
153 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
e50e5129 189 int extra_credits = 3;
0421a189 190 struct ext4_xattr_inode_array *ea_inode_array = NULL;
ac27a0ec 191
7ff9c073 192 trace_ext4_evict_inode(inode);
2581fdc8 193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
6a7fd522
VN
213 if (inode->i_ino != EXT4_JOURNAL_INO &&
214 ext4_should_journal_data(inode) &&
3abb1a0f
JK
215 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
216 inode->i_data.nrpages) {
2d859db3
JK
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
d76a3a77 220 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
221 filemap_write_and_wait(&inode->i_data);
222 }
91b0abe3 223 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 224
0930fcc1
AV
225 goto no_delete;
226 }
227
e2bfb088
TT
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
907f4554 231
678aaf48
JK
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 234 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
e50e5129 241
30a7eb97
TE
242 if (!IS_NOQUOTA(inode))
243 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
244
245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
246 ext4_blocks_for_truncate(inode)+extra_credits);
ac27a0ec 247 if (IS_ERR(handle)) {
bc965ab3 248 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
249 /*
250 * If we're going to skip the normal cleanup, we still need to
251 * make sure that the in-core orphan linked list is properly
252 * cleaned up.
253 */
617ba13b 254 ext4_orphan_del(NULL, inode);
8e8ad8a5 255 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
256 goto no_delete;
257 }
30a7eb97 258
ac27a0ec 259 if (IS_SYNC(inode))
0390131b 260 ext4_handle_sync(handle);
407cd7fb
TE
261
262 /*
263 * Set inode->i_size to 0 before calling ext4_truncate(). We need
264 * special handling of symlinks here because i_size is used to
265 * determine whether ext4_inode_info->i_data contains symlink data or
266 * block mappings. Setting i_size to 0 will remove its fast symlink
267 * status. Erase i_data so that it becomes a valid empty block map.
268 */
269 if (ext4_inode_is_fast_symlink(inode))
270 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 271 inode->i_size = 0;
bc965ab3
TT
272 err = ext4_mark_inode_dirty(handle, inode);
273 if (err) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't mark inode dirty (err %d)", err);
276 goto stop_handle;
277 }
2c98eb5e
TT
278 if (inode->i_blocks) {
279 err = ext4_truncate(inode);
280 if (err) {
281 ext4_error(inode->i_sb,
282 "couldn't truncate inode %lu (err %d)",
283 inode->i_ino, err);
284 goto stop_handle;
285 }
286 }
bc965ab3 287
30a7eb97
TE
288 /* Remove xattr references. */
289 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
290 extra_credits);
291 if (err) {
292 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
293stop_handle:
294 ext4_journal_stop(handle);
295 ext4_orphan_del(NULL, inode);
296 sb_end_intwrite(inode->i_sb);
297 ext4_xattr_inode_array_free(ea_inode_array);
298 goto no_delete;
bc965ab3
TT
299 }
300
ac27a0ec 301 /*
617ba13b 302 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 303 * AKPM: I think this can be inside the above `if'.
617ba13b 304 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 305 * deletion of a non-existent orphan - this is because we don't
617ba13b 306 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
307 * (Well, we could do this if we need to, but heck - it works)
308 */
617ba13b
MC
309 ext4_orphan_del(handle, inode);
310 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
311
312 /*
313 * One subtle ordering requirement: if anything has gone wrong
314 * (transaction abort, IO errors, whatever), then we can still
315 * do these next steps (the fs will already have been marked as
316 * having errors), but we can't free the inode if the mark_dirty
317 * fails.
318 */
617ba13b 319 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 320 /* If that failed, just do the required in-core inode clear. */
0930fcc1 321 ext4_clear_inode(inode);
ac27a0ec 322 else
617ba13b
MC
323 ext4_free_inode(handle, inode);
324 ext4_journal_stop(handle);
8e8ad8a5 325 sb_end_intwrite(inode->i_sb);
0421a189 326 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
327 return;
328no_delete:
0930fcc1 329 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
330}
331
a9e7f447
DM
332#ifdef CONFIG_QUOTA
333qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 334{
a9e7f447 335 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 336}
a9e7f447 337#endif
9d0be502 338
0637c6f4
TT
339/*
340 * Called with i_data_sem down, which is important since we can call
341 * ext4_discard_preallocations() from here.
342 */
5f634d06
AK
343void ext4_da_update_reserve_space(struct inode *inode,
344 int used, int quota_claim)
12219aea
AK
345{
346 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 347 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
348
349 spin_lock(&ei->i_block_reservation_lock);
d8990240 350 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 351 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 352 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 353 "with only %d reserved data blocks",
0637c6f4
TT
354 __func__, inode->i_ino, used,
355 ei->i_reserved_data_blocks);
356 WARN_ON(1);
357 used = ei->i_reserved_data_blocks;
358 }
12219aea 359
0637c6f4
TT
360 /* Update per-inode reservations */
361 ei->i_reserved_data_blocks -= used;
71d4f7d0 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 363
12219aea 364 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 365
72b8ab9d
ES
366 /* Update quota subsystem for data blocks */
367 if (quota_claim)
7b415bf6 368 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 369 else {
5f634d06
AK
370 /*
371 * We did fallocate with an offset that is already delayed
372 * allocated. So on delayed allocated writeback we should
72b8ab9d 373 * not re-claim the quota for fallocated blocks.
5f634d06 374 */
7b415bf6 375 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 376 }
d6014301
AK
377
378 /*
379 * If we have done all the pending block allocations and if
380 * there aren't any writers on the inode, we can discard the
381 * inode's preallocations.
382 */
0637c6f4
TT
383 if ((ei->i_reserved_data_blocks == 0) &&
384 (atomic_read(&inode->i_writecount) == 0))
d6014301 385 ext4_discard_preallocations(inode);
12219aea
AK
386}
387
e29136f8 388static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
389 unsigned int line,
390 struct ext4_map_blocks *map)
6fd058f7 391{
24676da4
TT
392 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
393 map->m_len)) {
c398eda0
TT
394 ext4_error_inode(inode, func, line, map->m_pblk,
395 "lblock %lu mapped to illegal pblock "
396 "(length %d)", (unsigned long) map->m_lblk,
397 map->m_len);
6a797d27 398 return -EFSCORRUPTED;
6fd058f7
TT
399 }
400 return 0;
401}
402
53085fac
JK
403int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
404 ext4_lblk_t len)
405{
406 int ret;
407
408 if (ext4_encrypted_inode(inode))
a7550b30 409 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
410
411 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
412 if (ret > 0)
413 ret = 0;
414
415 return ret;
416}
417
e29136f8 418#define check_block_validity(inode, map) \
c398eda0 419 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 420
921f266b
DM
421#ifdef ES_AGGRESSIVE_TEST
422static void ext4_map_blocks_es_recheck(handle_t *handle,
423 struct inode *inode,
424 struct ext4_map_blocks *es_map,
425 struct ext4_map_blocks *map,
426 int flags)
427{
428 int retval;
429
430 map->m_flags = 0;
431 /*
432 * There is a race window that the result is not the same.
433 * e.g. xfstests #223 when dioread_nolock enables. The reason
434 * is that we lookup a block mapping in extent status tree with
435 * out taking i_data_sem. So at the time the unwritten extent
436 * could be converted.
437 */
2dcba478 438 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
439 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
440 retval = ext4_ext_map_blocks(handle, inode, map, flags &
441 EXT4_GET_BLOCKS_KEEP_SIZE);
442 } else {
443 retval = ext4_ind_map_blocks(handle, inode, map, flags &
444 EXT4_GET_BLOCKS_KEEP_SIZE);
445 }
2dcba478 446 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
447
448 /*
449 * We don't check m_len because extent will be collpased in status
450 * tree. So the m_len might not equal.
451 */
452 if (es_map->m_lblk != map->m_lblk ||
453 es_map->m_flags != map->m_flags ||
454 es_map->m_pblk != map->m_pblk) {
bdafe42a 455 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
456 "es_cached ex [%d/%d/%llu/%x] != "
457 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
458 inode->i_ino, es_map->m_lblk, es_map->m_len,
459 es_map->m_pblk, es_map->m_flags, map->m_lblk,
460 map->m_len, map->m_pblk, map->m_flags,
461 retval, flags);
462 }
463}
464#endif /* ES_AGGRESSIVE_TEST */
465
f5ab0d1f 466/*
e35fd660 467 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 468 * and returns if the blocks are already mapped.
f5ab0d1f 469 *
f5ab0d1f
MC
470 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
471 * and store the allocated blocks in the result buffer head and mark it
472 * mapped.
473 *
e35fd660
TT
474 * If file type is extents based, it will call ext4_ext_map_blocks(),
475 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
476 * based files
477 *
facab4d9
JK
478 * On success, it returns the number of blocks being mapped or allocated. if
479 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
480 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
481 *
482 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
483 * that case, @map is returned as unmapped but we still do fill map->m_len to
484 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
485 *
486 * It returns the error in case of allocation failure.
487 */
e35fd660
TT
488int ext4_map_blocks(handle_t *handle, struct inode *inode,
489 struct ext4_map_blocks *map, int flags)
0e855ac8 490{
d100eef2 491 struct extent_status es;
0e855ac8 492 int retval;
b8a86845 493 int ret = 0;
921f266b
DM
494#ifdef ES_AGGRESSIVE_TEST
495 struct ext4_map_blocks orig_map;
496
497 memcpy(&orig_map, map, sizeof(*map));
498#endif
f5ab0d1f 499
e35fd660
TT
500 map->m_flags = 0;
501 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
502 "logical block %lu\n", inode->i_ino, flags, map->m_len,
503 (unsigned long) map->m_lblk);
d100eef2 504
e861b5e9
TT
505 /*
506 * ext4_map_blocks returns an int, and m_len is an unsigned int
507 */
508 if (unlikely(map->m_len > INT_MAX))
509 map->m_len = INT_MAX;
510
4adb6ab3
KM
511 /* We can handle the block number less than EXT_MAX_BLOCKS */
512 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 513 return -EFSCORRUPTED;
4adb6ab3 514
d100eef2
ZL
515 /* Lookup extent status tree firstly */
516 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
517 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
518 map->m_pblk = ext4_es_pblock(&es) +
519 map->m_lblk - es.es_lblk;
520 map->m_flags |= ext4_es_is_written(&es) ?
521 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
522 retval = es.es_len - (map->m_lblk - es.es_lblk);
523 if (retval > map->m_len)
524 retval = map->m_len;
525 map->m_len = retval;
526 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
527 map->m_pblk = 0;
528 retval = es.es_len - (map->m_lblk - es.es_lblk);
529 if (retval > map->m_len)
530 retval = map->m_len;
531 map->m_len = retval;
d100eef2
ZL
532 retval = 0;
533 } else {
534 BUG_ON(1);
535 }
921f266b
DM
536#ifdef ES_AGGRESSIVE_TEST
537 ext4_map_blocks_es_recheck(handle, inode, map,
538 &orig_map, flags);
539#endif
d100eef2
ZL
540 goto found;
541 }
542
4df3d265 543 /*
b920c755
TT
544 * Try to see if we can get the block without requesting a new
545 * file system block.
4df3d265 546 */
2dcba478 547 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 } else {
a4e5d88b
DM
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 554 }
f7fec032 555 if (retval > 0) {
3be78c73 556 unsigned int status;
f7fec032 557
44fb851d
ZL
558 if (unlikely(retval != map->m_len)) {
559 ext4_warning(inode->i_sb,
560 "ES len assertion failed for inode "
561 "%lu: retval %d != map->m_len %d",
562 inode->i_ino, retval, map->m_len);
563 WARN_ON(1);
921f266b 564 }
921f266b 565
f7fec032
ZL
566 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
567 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
568 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 569 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
570 ext4_find_delalloc_range(inode, map->m_lblk,
571 map->m_lblk + map->m_len - 1))
572 status |= EXTENT_STATUS_DELAYED;
573 ret = ext4_es_insert_extent(inode, map->m_lblk,
574 map->m_len, map->m_pblk, status);
575 if (ret < 0)
576 retval = ret;
577 }
2dcba478 578 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 579
d100eef2 580found:
e35fd660 581 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 582 ret = check_block_validity(inode, map);
6fd058f7
TT
583 if (ret != 0)
584 return ret;
585 }
586
f5ab0d1f 587 /* If it is only a block(s) look up */
c2177057 588 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
589 return retval;
590
591 /*
592 * Returns if the blocks have already allocated
593 *
594 * Note that if blocks have been preallocated
df3ab170 595 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
596 * with buffer head unmapped.
597 */
e35fd660 598 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
599 /*
600 * If we need to convert extent to unwritten
601 * we continue and do the actual work in
602 * ext4_ext_map_blocks()
603 */
604 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
605 return retval;
4df3d265 606
2a8964d6 607 /*
a25a4e1a
ZL
608 * Here we clear m_flags because after allocating an new extent,
609 * it will be set again.
2a8964d6 610 */
a25a4e1a 611 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 612
4df3d265 613 /*
556615dc 614 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 615 * will possibly result in updating i_data, so we take
d91bd2c1 616 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 617 * with create == 1 flag.
4df3d265 618 */
c8b459f4 619 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 620
4df3d265
AK
621 /*
622 * We need to check for EXT4 here because migrate
623 * could have changed the inode type in between
624 */
12e9b892 625 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 626 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 627 } else {
e35fd660 628 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 629
e35fd660 630 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
631 /*
632 * We allocated new blocks which will result in
633 * i_data's format changing. Force the migrate
634 * to fail by clearing migrate flags
635 */
19f5fb7a 636 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 637 }
d2a17637 638
5f634d06
AK
639 /*
640 * Update reserved blocks/metadata blocks after successful
641 * block allocation which had been deferred till now. We don't
642 * support fallocate for non extent files. So we can update
643 * reserve space here.
644 */
645 if ((retval > 0) &&
1296cc85 646 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
647 ext4_da_update_reserve_space(inode, retval, 1);
648 }
2ac3b6e0 649
f7fec032 650 if (retval > 0) {
3be78c73 651 unsigned int status;
f7fec032 652
44fb851d
ZL
653 if (unlikely(retval != map->m_len)) {
654 ext4_warning(inode->i_sb,
655 "ES len assertion failed for inode "
656 "%lu: retval %d != map->m_len %d",
657 inode->i_ino, retval, map->m_len);
658 WARN_ON(1);
921f266b 659 }
921f266b 660
c86d8db3
JK
661 /*
662 * We have to zeroout blocks before inserting them into extent
663 * status tree. Otherwise someone could look them up there and
9b623df6
JK
664 * use them before they are really zeroed. We also have to
665 * unmap metadata before zeroing as otherwise writeback can
666 * overwrite zeros with stale data from block device.
c86d8db3
JK
667 */
668 if (flags & EXT4_GET_BLOCKS_ZERO &&
669 map->m_flags & EXT4_MAP_MAPPED &&
670 map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
671 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
672 map->m_len);
c86d8db3
JK
673 ret = ext4_issue_zeroout(inode, map->m_lblk,
674 map->m_pblk, map->m_len);
675 if (ret) {
676 retval = ret;
677 goto out_sem;
678 }
679 }
680
adb23551
ZL
681 /*
682 * If the extent has been zeroed out, we don't need to update
683 * extent status tree.
684 */
685 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
686 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
687 if (ext4_es_is_written(&es))
c86d8db3 688 goto out_sem;
adb23551 689 }
f7fec032
ZL
690 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
691 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
692 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 693 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
694 ext4_find_delalloc_range(inode, map->m_lblk,
695 map->m_lblk + map->m_len - 1))
696 status |= EXTENT_STATUS_DELAYED;
697 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
698 map->m_pblk, status);
c86d8db3 699 if (ret < 0) {
f7fec032 700 retval = ret;
c86d8db3
JK
701 goto out_sem;
702 }
5356f261
AK
703 }
704
c86d8db3 705out_sem:
4df3d265 706 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 707 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 708 ret = check_block_validity(inode, map);
6fd058f7
TT
709 if (ret != 0)
710 return ret;
06bd3c36
JK
711
712 /*
713 * Inodes with freshly allocated blocks where contents will be
714 * visible after transaction commit must be on transaction's
715 * ordered data list.
716 */
717 if (map->m_flags & EXT4_MAP_NEW &&
718 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
719 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 720 !ext4_is_quota_file(inode) &&
06bd3c36 721 ext4_should_order_data(inode)) {
ee0876bc
JK
722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
723 ret = ext4_jbd2_inode_add_wait(handle, inode);
724 else
725 ret = ext4_jbd2_inode_add_write(handle, inode);
06bd3c36
JK
726 if (ret)
727 return ret;
728 }
6fd058f7 729 }
0e855ac8
AK
730 return retval;
731}
732
ed8ad838
JK
733/*
734 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
735 * we have to be careful as someone else may be manipulating b_state as well.
736 */
737static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
738{
739 unsigned long old_state;
740 unsigned long new_state;
741
742 flags &= EXT4_MAP_FLAGS;
743
744 /* Dummy buffer_head? Set non-atomically. */
745 if (!bh->b_page) {
746 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
747 return;
748 }
749 /*
750 * Someone else may be modifying b_state. Be careful! This is ugly but
751 * once we get rid of using bh as a container for mapping information
752 * to pass to / from get_block functions, this can go away.
753 */
754 do {
755 old_state = READ_ONCE(bh->b_state);
756 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
757 } while (unlikely(
758 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
759}
760
2ed88685
TT
761static int _ext4_get_block(struct inode *inode, sector_t iblock,
762 struct buffer_head *bh, int flags)
ac27a0ec 763{
2ed88685 764 struct ext4_map_blocks map;
efe70c29 765 int ret = 0;
ac27a0ec 766
46c7f254
TM
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
769
2ed88685
TT
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
772
efe70c29
JK
773 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
774 flags);
7fb5409d 775 if (ret > 0) {
2ed88685 776 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 777 ext4_update_bh_state(bh, map.m_flags);
2ed88685 778 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 779 ret = 0;
547edce3
RZ
780 } else if (ret == 0) {
781 /* hole case, need to fill in bh->b_size */
782 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
783 }
784 return ret;
785}
786
2ed88685
TT
787int ext4_get_block(struct inode *inode, sector_t iblock,
788 struct buffer_head *bh, int create)
789{
790 return _ext4_get_block(inode, iblock, bh,
791 create ? EXT4_GET_BLOCKS_CREATE : 0);
792}
793
705965bd
JK
794/*
795 * Get block function used when preparing for buffered write if we require
796 * creating an unwritten extent if blocks haven't been allocated. The extent
797 * will be converted to written after the IO is complete.
798 */
799int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh_result, int create)
801{
802 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
803 inode->i_ino, create);
804 return _ext4_get_block(inode, iblock, bh_result,
805 EXT4_GET_BLOCKS_IO_CREATE_EXT);
806}
807
efe70c29
JK
808/* Maximum number of blocks we map for direct IO at once. */
809#define DIO_MAX_BLOCKS 4096
810
e84dfbe2
JK
811/*
812 * Get blocks function for the cases that need to start a transaction -
813 * generally difference cases of direct IO and DAX IO. It also handles retries
814 * in case of ENOSPC.
815 */
816static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
817 struct buffer_head *bh_result, int flags)
efe70c29
JK
818{
819 int dio_credits;
e84dfbe2
JK
820 handle_t *handle;
821 int retries = 0;
822 int ret;
efe70c29
JK
823
824 /* Trim mapping request to maximum we can map at once for DIO */
825 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
826 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
827 dio_credits = ext4_chunk_trans_blocks(inode,
828 bh_result->b_size >> inode->i_blkbits);
e84dfbe2
JK
829retry:
830 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
831 if (IS_ERR(handle))
832 return PTR_ERR(handle);
833
834 ret = _ext4_get_block(inode, iblock, bh_result, flags);
835 ext4_journal_stop(handle);
836
837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
838 goto retry;
839 return ret;
efe70c29
JK
840}
841
705965bd
JK
842/* Get block function for DIO reads and writes to inodes without extents */
843int ext4_dio_get_block(struct inode *inode, sector_t iblock,
844 struct buffer_head *bh, int create)
845{
efe70c29
JK
846 /* We don't expect handle for direct IO */
847 WARN_ON_ONCE(ext4_journal_current_handle());
848
e84dfbe2
JK
849 if (!create)
850 return _ext4_get_block(inode, iblock, bh, 0);
851 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
705965bd
JK
852}
853
854/*
109811c2 855 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
856 * blocks are not allocated yet. The extent will be converted to written
857 * after IO is complete.
858 */
109811c2
JK
859static int ext4_dio_get_block_unwritten_async(struct inode *inode,
860 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 861{
efe70c29
JK
862 int ret;
863
efe70c29
JK
864 /* We don't expect handle for direct IO */
865 WARN_ON_ONCE(ext4_journal_current_handle());
866
e84dfbe2
JK
867 ret = ext4_get_block_trans(inode, iblock, bh_result,
868 EXT4_GET_BLOCKS_IO_CREATE_EXT);
efe70c29 869
109811c2
JK
870 /*
871 * When doing DIO using unwritten extents, we need io_end to convert
872 * unwritten extents to written on IO completion. We allocate io_end
873 * once we spot unwritten extent and store it in b_private. Generic
874 * DIO code keeps b_private set and furthermore passes the value to
875 * our completion callback in 'private' argument.
876 */
877 if (!ret && buffer_unwritten(bh_result)) {
878 if (!bh_result->b_private) {
879 ext4_io_end_t *io_end;
880
881 io_end = ext4_init_io_end(inode, GFP_KERNEL);
882 if (!io_end)
883 return -ENOMEM;
884 bh_result->b_private = io_end;
885 ext4_set_io_unwritten_flag(inode, io_end);
886 }
efe70c29 887 set_buffer_defer_completion(bh_result);
efe70c29
JK
888 }
889
890 return ret;
705965bd
JK
891}
892
109811c2
JK
893/*
894 * Get block function for non-AIO DIO writes when we create unwritten extent if
895 * blocks are not allocated yet. The extent will be converted to written
1e21196c 896 * after IO is complete by ext4_direct_IO_write().
109811c2
JK
897 */
898static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
899 sector_t iblock, struct buffer_head *bh_result, int create)
900{
109811c2
JK
901 int ret;
902
903 /* We don't expect handle for direct IO */
904 WARN_ON_ONCE(ext4_journal_current_handle());
905
e84dfbe2
JK
906 ret = ext4_get_block_trans(inode, iblock, bh_result,
907 EXT4_GET_BLOCKS_IO_CREATE_EXT);
109811c2
JK
908
909 /*
910 * Mark inode as having pending DIO writes to unwritten extents.
1e21196c 911 * ext4_direct_IO_write() checks this flag and converts extents to
109811c2
JK
912 * written.
913 */
914 if (!ret && buffer_unwritten(bh_result))
915 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
916
917 return ret;
918}
919
705965bd
JK
920static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
921 struct buffer_head *bh_result, int create)
922{
923 int ret;
924
925 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
926 inode->i_ino, create);
efe70c29
JK
927 /* We don't expect handle for direct IO */
928 WARN_ON_ONCE(ext4_journal_current_handle());
929
705965bd
JK
930 ret = _ext4_get_block(inode, iblock, bh_result, 0);
931 /*
932 * Blocks should have been preallocated! ext4_file_write_iter() checks
933 * that.
934 */
efe70c29 935 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
936
937 return ret;
938}
939
940
ac27a0ec
DK
941/*
942 * `handle' can be NULL if create is zero
943 */
617ba13b 944struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 945 ext4_lblk_t block, int map_flags)
ac27a0ec 946{
2ed88685
TT
947 struct ext4_map_blocks map;
948 struct buffer_head *bh;
c5e298ae 949 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 950 int err;
ac27a0ec
DK
951
952 J_ASSERT(handle != NULL || create == 0);
953
2ed88685
TT
954 map.m_lblk = block;
955 map.m_len = 1;
c5e298ae 956 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 957
10560082
TT
958 if (err == 0)
959 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 960 if (err < 0)
10560082 961 return ERR_PTR(err);
2ed88685
TT
962
963 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
964 if (unlikely(!bh))
965 return ERR_PTR(-ENOMEM);
2ed88685
TT
966 if (map.m_flags & EXT4_MAP_NEW) {
967 J_ASSERT(create != 0);
968 J_ASSERT(handle != NULL);
ac27a0ec 969
2ed88685
TT
970 /*
971 * Now that we do not always journal data, we should
972 * keep in mind whether this should always journal the
973 * new buffer as metadata. For now, regular file
974 * writes use ext4_get_block instead, so it's not a
975 * problem.
976 */
977 lock_buffer(bh);
978 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
979 err = ext4_journal_get_create_access(handle, bh);
980 if (unlikely(err)) {
981 unlock_buffer(bh);
982 goto errout;
983 }
984 if (!buffer_uptodate(bh)) {
2ed88685
TT
985 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
986 set_buffer_uptodate(bh);
ac27a0ec 987 }
2ed88685
TT
988 unlock_buffer(bh);
989 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
990 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
991 if (unlikely(err))
992 goto errout;
993 } else
2ed88685 994 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 995 return bh;
10560082
TT
996errout:
997 brelse(bh);
998 return ERR_PTR(err);
ac27a0ec
DK
999}
1000
617ba13b 1001struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 1002 ext4_lblk_t block, int map_flags)
ac27a0ec 1003{
af5bc92d 1004 struct buffer_head *bh;
ac27a0ec 1005
c5e298ae 1006 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 1007 if (IS_ERR(bh))
ac27a0ec 1008 return bh;
1c215028 1009 if (!bh || buffer_uptodate(bh))
ac27a0ec 1010 return bh;
dfec8a14 1011 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
1012 wait_on_buffer(bh);
1013 if (buffer_uptodate(bh))
1014 return bh;
1015 put_bh(bh);
1c215028 1016 return ERR_PTR(-EIO);
ac27a0ec
DK
1017}
1018
9699d4f9
TE
1019/* Read a contiguous batch of blocks. */
1020int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1021 bool wait, struct buffer_head **bhs)
1022{
1023 int i, err;
1024
1025 for (i = 0; i < bh_count; i++) {
1026 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1027 if (IS_ERR(bhs[i])) {
1028 err = PTR_ERR(bhs[i]);
1029 bh_count = i;
1030 goto out_brelse;
1031 }
1032 }
1033
1034 for (i = 0; i < bh_count; i++)
1035 /* Note that NULL bhs[i] is valid because of holes. */
1036 if (bhs[i] && !buffer_uptodate(bhs[i]))
1037 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1038 &bhs[i]);
1039
1040 if (!wait)
1041 return 0;
1042
1043 for (i = 0; i < bh_count; i++)
1044 if (bhs[i])
1045 wait_on_buffer(bhs[i]);
1046
1047 for (i = 0; i < bh_count; i++) {
1048 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1049 err = -EIO;
1050 goto out_brelse;
1051 }
1052 }
1053 return 0;
1054
1055out_brelse:
1056 for (i = 0; i < bh_count; i++) {
1057 brelse(bhs[i]);
1058 bhs[i] = NULL;
1059 }
1060 return err;
1061}
1062
f19d5870
TM
1063int ext4_walk_page_buffers(handle_t *handle,
1064 struct buffer_head *head,
1065 unsigned from,
1066 unsigned to,
1067 int *partial,
1068 int (*fn)(handle_t *handle,
1069 struct buffer_head *bh))
ac27a0ec
DK
1070{
1071 struct buffer_head *bh;
1072 unsigned block_start, block_end;
1073 unsigned blocksize = head->b_size;
1074 int err, ret = 0;
1075 struct buffer_head *next;
1076
af5bc92d
TT
1077 for (bh = head, block_start = 0;
1078 ret == 0 && (bh != head || !block_start);
de9a55b8 1079 block_start = block_end, bh = next) {
ac27a0ec
DK
1080 next = bh->b_this_page;
1081 block_end = block_start + blocksize;
1082 if (block_end <= from || block_start >= to) {
1083 if (partial && !buffer_uptodate(bh))
1084 *partial = 1;
1085 continue;
1086 }
1087 err = (*fn)(handle, bh);
1088 if (!ret)
1089 ret = err;
1090 }
1091 return ret;
1092}
1093
1094/*
1095 * To preserve ordering, it is essential that the hole instantiation and
1096 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1097 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1098 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1099 * prepare_write() is the right place.
1100 *
36ade451
JK
1101 * Also, this function can nest inside ext4_writepage(). In that case, we
1102 * *know* that ext4_writepage() has generated enough buffer credits to do the
1103 * whole page. So we won't block on the journal in that case, which is good,
1104 * because the caller may be PF_MEMALLOC.
ac27a0ec 1105 *
617ba13b 1106 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1107 * quota file writes. If we were to commit the transaction while thus
1108 * reentered, there can be a deadlock - we would be holding a quota
1109 * lock, and the commit would never complete if another thread had a
1110 * transaction open and was blocking on the quota lock - a ranking
1111 * violation.
1112 *
dab291af 1113 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1114 * will _not_ run commit under these circumstances because handle->h_ref
1115 * is elevated. We'll still have enough credits for the tiny quotafile
1116 * write.
1117 */
f19d5870
TM
1118int do_journal_get_write_access(handle_t *handle,
1119 struct buffer_head *bh)
ac27a0ec 1120{
56d35a4c
JK
1121 int dirty = buffer_dirty(bh);
1122 int ret;
1123
ac27a0ec
DK
1124 if (!buffer_mapped(bh) || buffer_freed(bh))
1125 return 0;
56d35a4c 1126 /*
ebdec241 1127 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1128 * the dirty bit as jbd2_journal_get_write_access() could complain
1129 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1130 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1131 * the bit before releasing a page lock and thus writeback cannot
1132 * ever write the buffer.
1133 */
1134 if (dirty)
1135 clear_buffer_dirty(bh);
5d601255 1136 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1137 ret = ext4_journal_get_write_access(handle, bh);
1138 if (!ret && dirty)
1139 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1140 return ret;
ac27a0ec
DK
1141}
1142
2058f83a
MH
1143#ifdef CONFIG_EXT4_FS_ENCRYPTION
1144static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1145 get_block_t *get_block)
1146{
09cbfeaf 1147 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1148 unsigned to = from + len;
1149 struct inode *inode = page->mapping->host;
1150 unsigned block_start, block_end;
1151 sector_t block;
1152 int err = 0;
1153 unsigned blocksize = inode->i_sb->s_blocksize;
1154 unsigned bbits;
1155 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1156 bool decrypt = false;
1157
1158 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1159 BUG_ON(from > PAGE_SIZE);
1160 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1161 BUG_ON(from > to);
1162
1163 if (!page_has_buffers(page))
1164 create_empty_buffers(page, blocksize, 0);
1165 head = page_buffers(page);
1166 bbits = ilog2(blocksize);
09cbfeaf 1167 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1168
1169 for (bh = head, block_start = 0; bh != head || !block_start;
1170 block++, block_start = block_end, bh = bh->b_this_page) {
1171 block_end = block_start + blocksize;
1172 if (block_end <= from || block_start >= to) {
1173 if (PageUptodate(page)) {
1174 if (!buffer_uptodate(bh))
1175 set_buffer_uptodate(bh);
1176 }
1177 continue;
1178 }
1179 if (buffer_new(bh))
1180 clear_buffer_new(bh);
1181 if (!buffer_mapped(bh)) {
1182 WARN_ON(bh->b_size != blocksize);
1183 err = get_block(inode, block, bh, 1);
1184 if (err)
1185 break;
1186 if (buffer_new(bh)) {
e64855c6 1187 clean_bdev_bh_alias(bh);
2058f83a
MH
1188 if (PageUptodate(page)) {
1189 clear_buffer_new(bh);
1190 set_buffer_uptodate(bh);
1191 mark_buffer_dirty(bh);
1192 continue;
1193 }
1194 if (block_end > to || block_start < from)
1195 zero_user_segments(page, to, block_end,
1196 block_start, from);
1197 continue;
1198 }
1199 }
1200 if (PageUptodate(page)) {
1201 if (!buffer_uptodate(bh))
1202 set_buffer_uptodate(bh);
1203 continue;
1204 }
1205 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1206 !buffer_unwritten(bh) &&
1207 (block_start < from || block_end > to)) {
dfec8a14 1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2058f83a
MH
1209 *wait_bh++ = bh;
1210 decrypt = ext4_encrypted_inode(inode) &&
1211 S_ISREG(inode->i_mode);
1212 }
1213 }
1214 /*
1215 * If we issued read requests, let them complete.
1216 */
1217 while (wait_bh > wait) {
1218 wait_on_buffer(*--wait_bh);
1219 if (!buffer_uptodate(*wait_bh))
1220 err = -EIO;
1221 }
1222 if (unlikely(err))
1223 page_zero_new_buffers(page, from, to);
1224 else if (decrypt)
7821d4dd 1225 err = fscrypt_decrypt_page(page->mapping->host, page,
9c4bb8a3 1226 PAGE_SIZE, 0, page->index);
2058f83a
MH
1227 return err;
1228}
1229#endif
1230
bfc1af65 1231static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1232 loff_t pos, unsigned len, unsigned flags,
1233 struct page **pagep, void **fsdata)
ac27a0ec 1234{
af5bc92d 1235 struct inode *inode = mapping->host;
1938a150 1236 int ret, needed_blocks;
ac27a0ec
DK
1237 handle_t *handle;
1238 int retries = 0;
af5bc92d 1239 struct page *page;
de9a55b8 1240 pgoff_t index;
af5bc92d 1241 unsigned from, to;
bfc1af65 1242
0db1ff22
TT
1243 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1244 return -EIO;
1245
9bffad1e 1246 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1247 /*
1248 * Reserve one block more for addition to orphan list in case
1249 * we allocate blocks but write fails for some reason
1250 */
1251 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1252 index = pos >> PAGE_SHIFT;
1253 from = pos & (PAGE_SIZE - 1);
af5bc92d 1254 to = from + len;
ac27a0ec 1255
f19d5870
TM
1256 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1257 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1258 flags, pagep);
1259 if (ret < 0)
47564bfb
TT
1260 return ret;
1261 if (ret == 1)
1262 return 0;
f19d5870
TM
1263 }
1264
47564bfb
TT
1265 /*
1266 * grab_cache_page_write_begin() can take a long time if the
1267 * system is thrashing due to memory pressure, or if the page
1268 * is being written back. So grab it first before we start
1269 * the transaction handle. This also allows us to allocate
1270 * the page (if needed) without using GFP_NOFS.
1271 */
1272retry_grab:
1273 page = grab_cache_page_write_begin(mapping, index, flags);
1274 if (!page)
1275 return -ENOMEM;
1276 unlock_page(page);
1277
1278retry_journal:
9924a92a 1279 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1280 if (IS_ERR(handle)) {
09cbfeaf 1281 put_page(page);
47564bfb 1282 return PTR_ERR(handle);
7479d2b9 1283 }
ac27a0ec 1284
47564bfb
TT
1285 lock_page(page);
1286 if (page->mapping != mapping) {
1287 /* The page got truncated from under us */
1288 unlock_page(page);
09cbfeaf 1289 put_page(page);
cf108bca 1290 ext4_journal_stop(handle);
47564bfb 1291 goto retry_grab;
cf108bca 1292 }
7afe5aa5
DM
1293 /* In case writeback began while the page was unlocked */
1294 wait_for_stable_page(page);
cf108bca 1295
2058f83a
MH
1296#ifdef CONFIG_EXT4_FS_ENCRYPTION
1297 if (ext4_should_dioread_nolock(inode))
1298 ret = ext4_block_write_begin(page, pos, len,
705965bd 1299 ext4_get_block_unwritten);
2058f83a
MH
1300 else
1301 ret = ext4_block_write_begin(page, pos, len,
1302 ext4_get_block);
1303#else
744692dc 1304 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1305 ret = __block_write_begin(page, pos, len,
1306 ext4_get_block_unwritten);
744692dc 1307 else
6e1db88d 1308 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1309#endif
bfc1af65 1310 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1311 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1312 from, to, NULL,
1313 do_journal_get_write_access);
ac27a0ec 1314 }
bfc1af65
NP
1315
1316 if (ret) {
af5bc92d 1317 unlock_page(page);
ae4d5372 1318 /*
6e1db88d 1319 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1320 * outside i_size. Trim these off again. Don't need
1321 * i_size_read because we hold i_mutex.
1938a150
AK
1322 *
1323 * Add inode to orphan list in case we crash before
1324 * truncate finishes
ae4d5372 1325 */
ffacfa7a 1326 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1327 ext4_orphan_add(handle, inode);
1328
1329 ext4_journal_stop(handle);
1330 if (pos + len > inode->i_size) {
b9a4207d 1331 ext4_truncate_failed_write(inode);
de9a55b8 1332 /*
ffacfa7a 1333 * If truncate failed early the inode might
1938a150
AK
1334 * still be on the orphan list; we need to
1335 * make sure the inode is removed from the
1336 * orphan list in that case.
1337 */
1338 if (inode->i_nlink)
1339 ext4_orphan_del(NULL, inode);
1340 }
bfc1af65 1341
47564bfb
TT
1342 if (ret == -ENOSPC &&
1343 ext4_should_retry_alloc(inode->i_sb, &retries))
1344 goto retry_journal;
09cbfeaf 1345 put_page(page);
47564bfb
TT
1346 return ret;
1347 }
1348 *pagep = page;
ac27a0ec
DK
1349 return ret;
1350}
1351
bfc1af65
NP
1352/* For write_end() in data=journal mode */
1353static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1354{
13fca323 1355 int ret;
ac27a0ec
DK
1356 if (!buffer_mapped(bh) || buffer_freed(bh))
1357 return 0;
1358 set_buffer_uptodate(bh);
13fca323
TT
1359 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1360 clear_buffer_meta(bh);
1361 clear_buffer_prio(bh);
1362 return ret;
ac27a0ec
DK
1363}
1364
eed4333f
ZL
1365/*
1366 * We need to pick up the new inode size which generic_commit_write gave us
1367 * `file' can be NULL - eg, when called from page_symlink().
1368 *
1369 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1370 * buffers are managed internally.
1371 */
1372static int ext4_write_end(struct file *file,
1373 struct address_space *mapping,
1374 loff_t pos, unsigned len, unsigned copied,
1375 struct page *page, void *fsdata)
f8514083 1376{
f8514083 1377 handle_t *handle = ext4_journal_current_handle();
eed4333f 1378 struct inode *inode = mapping->host;
0572639f 1379 loff_t old_size = inode->i_size;
eed4333f
ZL
1380 int ret = 0, ret2;
1381 int i_size_changed = 0;
1382
1383 trace_ext4_write_end(inode, pos, len, copied);
42c832de
TT
1384 if (ext4_has_inline_data(inode)) {
1385 ret = ext4_write_inline_data_end(inode, pos, len,
1386 copied, page);
eb5efbcb
TT
1387 if (ret < 0) {
1388 unlock_page(page);
1389 put_page(page);
42c832de 1390 goto errout;
eb5efbcb 1391 }
42c832de
TT
1392 copied = ret;
1393 } else
f19d5870
TM
1394 copied = block_write_end(file, mapping, pos,
1395 len, copied, page, fsdata);
f8514083 1396 /*
4631dbf6 1397 * it's important to update i_size while still holding page lock:
f8514083
AK
1398 * page writeout could otherwise come in and zero beyond i_size.
1399 */
4631dbf6 1400 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1401 unlock_page(page);
09cbfeaf 1402 put_page(page);
f8514083 1403
0572639f
XW
1404 if (old_size < pos)
1405 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1406 /*
1407 * Don't mark the inode dirty under page lock. First, it unnecessarily
1408 * makes the holding time of page lock longer. Second, it forces lock
1409 * ordering of page lock and transaction start for journaling
1410 * filesystems.
1411 */
1412 if (i_size_changed)
1413 ext4_mark_inode_dirty(handle, inode);
1414
ffacfa7a 1415 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1416 /* if we have allocated more blocks and copied
1417 * less. We will have blocks allocated outside
1418 * inode->i_size. So truncate them
1419 */
1420 ext4_orphan_add(handle, inode);
74d553aa 1421errout:
617ba13b 1422 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1423 if (!ret)
1424 ret = ret2;
bfc1af65 1425
f8514083 1426 if (pos + len > inode->i_size) {
b9a4207d 1427 ext4_truncate_failed_write(inode);
de9a55b8 1428 /*
ffacfa7a 1429 * If truncate failed early the inode might still be
f8514083
AK
1430 * on the orphan list; we need to make sure the inode
1431 * is removed from the orphan list in that case.
1432 */
1433 if (inode->i_nlink)
1434 ext4_orphan_del(NULL, inode);
1435 }
1436
bfc1af65 1437 return ret ? ret : copied;
ac27a0ec
DK
1438}
1439
b90197b6
TT
1440/*
1441 * This is a private version of page_zero_new_buffers() which doesn't
1442 * set the buffer to be dirty, since in data=journalled mode we need
1443 * to call ext4_handle_dirty_metadata() instead.
1444 */
3b136499
JK
1445static void ext4_journalled_zero_new_buffers(handle_t *handle,
1446 struct page *page,
1447 unsigned from, unsigned to)
b90197b6
TT
1448{
1449 unsigned int block_start = 0, block_end;
1450 struct buffer_head *head, *bh;
1451
1452 bh = head = page_buffers(page);
1453 do {
1454 block_end = block_start + bh->b_size;
1455 if (buffer_new(bh)) {
1456 if (block_end > from && block_start < to) {
1457 if (!PageUptodate(page)) {
1458 unsigned start, size;
1459
1460 start = max(from, block_start);
1461 size = min(to, block_end) - start;
1462
1463 zero_user(page, start, size);
3b136499 1464 write_end_fn(handle, bh);
b90197b6
TT
1465 }
1466 clear_buffer_new(bh);
1467 }
1468 }
1469 block_start = block_end;
1470 bh = bh->b_this_page;
1471 } while (bh != head);
1472}
1473
bfc1af65 1474static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1475 struct address_space *mapping,
1476 loff_t pos, unsigned len, unsigned copied,
1477 struct page *page, void *fsdata)
ac27a0ec 1478{
617ba13b 1479 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1480 struct inode *inode = mapping->host;
0572639f 1481 loff_t old_size = inode->i_size;
ac27a0ec
DK
1482 int ret = 0, ret2;
1483 int partial = 0;
bfc1af65 1484 unsigned from, to;
4631dbf6 1485 int size_changed = 0;
ac27a0ec 1486
9bffad1e 1487 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1488 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1489 to = from + len;
1490
441c8508
CW
1491 BUG_ON(!ext4_handle_valid(handle));
1492
eb5efbcb
TT
1493 if (ext4_has_inline_data(inode)) {
1494 ret = ext4_write_inline_data_end(inode, pos, len,
1495 copied, page);
1496 if (ret < 0) {
1497 unlock_page(page);
1498 put_page(page);
1499 goto errout;
1500 }
1501 copied = ret;
1502 } else if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499
JK
1503 copied = 0;
1504 ext4_journalled_zero_new_buffers(handle, page, from, to);
1505 } else {
1506 if (unlikely(copied < len))
1507 ext4_journalled_zero_new_buffers(handle, page,
1508 from + copied, to);
3fdcfb66 1509 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
3b136499
JK
1510 from + copied, &partial,
1511 write_end_fn);
3fdcfb66
TM
1512 if (!partial)
1513 SetPageUptodate(page);
1514 }
4631dbf6 1515 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1516 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1517 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1518 unlock_page(page);
09cbfeaf 1519 put_page(page);
4631dbf6 1520
0572639f
XW
1521 if (old_size < pos)
1522 pagecache_isize_extended(inode, old_size, pos);
1523
4631dbf6 1524 if (size_changed) {
617ba13b 1525 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1526 if (!ret)
1527 ret = ret2;
1528 }
bfc1af65 1529
ffacfa7a 1530 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1531 /* if we have allocated more blocks and copied
1532 * less. We will have blocks allocated outside
1533 * inode->i_size. So truncate them
1534 */
1535 ext4_orphan_add(handle, inode);
1536
eb5efbcb 1537errout:
617ba13b 1538 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1539 if (!ret)
1540 ret = ret2;
f8514083 1541 if (pos + len > inode->i_size) {
b9a4207d 1542 ext4_truncate_failed_write(inode);
de9a55b8 1543 /*
ffacfa7a 1544 * If truncate failed early the inode might still be
f8514083
AK
1545 * on the orphan list; we need to make sure the inode
1546 * is removed from the orphan list in that case.
1547 */
1548 if (inode->i_nlink)
1549 ext4_orphan_del(NULL, inode);
1550 }
bfc1af65
NP
1551
1552 return ret ? ret : copied;
ac27a0ec 1553}
d2a17637 1554
9d0be502 1555/*
c27e43a1 1556 * Reserve space for a single cluster
9d0be502 1557 */
c27e43a1 1558static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1559{
60e58e0f 1560 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1561 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1562 int ret;
03179fe9
TT
1563
1564 /*
1565 * We will charge metadata quota at writeout time; this saves
1566 * us from metadata over-estimation, though we may go over by
1567 * a small amount in the end. Here we just reserve for data.
1568 */
1569 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1570 if (ret)
1571 return ret;
d2a17637 1572
0637c6f4 1573 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1574 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1575 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1576 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1577 return -ENOSPC;
1578 }
9d0be502 1579 ei->i_reserved_data_blocks++;
c27e43a1 1580 trace_ext4_da_reserve_space(inode);
0637c6f4 1581 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1582
d2a17637
MC
1583 return 0; /* success */
1584}
1585
12219aea 1586static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1587{
1588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1589 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1590
cd213226
MC
1591 if (!to_free)
1592 return; /* Nothing to release, exit */
1593
d2a17637 1594 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1595
5a58ec87 1596 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1597 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1598 /*
0637c6f4
TT
1599 * if there aren't enough reserved blocks, then the
1600 * counter is messed up somewhere. Since this
1601 * function is called from invalidate page, it's
1602 * harmless to return without any action.
cd213226 1603 */
8de5c325 1604 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1605 "ino %lu, to_free %d with only %d reserved "
1084f252 1606 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1607 ei->i_reserved_data_blocks);
1608 WARN_ON(1);
1609 to_free = ei->i_reserved_data_blocks;
cd213226 1610 }
0637c6f4 1611 ei->i_reserved_data_blocks -= to_free;
cd213226 1612
72b8ab9d 1613 /* update fs dirty data blocks counter */
57042651 1614 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1615
d2a17637 1616 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1617
7b415bf6 1618 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1619}
1620
1621static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1622 unsigned int offset,
1623 unsigned int length)
d2a17637 1624{
9705acd6 1625 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1626 struct buffer_head *head, *bh;
1627 unsigned int curr_off = 0;
7b415bf6
AK
1628 struct inode *inode = page->mapping->host;
1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1630 unsigned int stop = offset + length;
7b415bf6 1631 int num_clusters;
51865fda 1632 ext4_fsblk_t lblk;
d2a17637 1633
09cbfeaf 1634 BUG_ON(stop > PAGE_SIZE || stop < length);
ca99fdd2 1635
d2a17637
MC
1636 head = page_buffers(page);
1637 bh = head;
1638 do {
1639 unsigned int next_off = curr_off + bh->b_size;
1640
ca99fdd2
LC
1641 if (next_off > stop)
1642 break;
1643
d2a17637
MC
1644 if ((offset <= curr_off) && (buffer_delay(bh))) {
1645 to_release++;
9705acd6 1646 contiguous_blks++;
d2a17637 1647 clear_buffer_delay(bh);
9705acd6
LC
1648 } else if (contiguous_blks) {
1649 lblk = page->index <<
09cbfeaf 1650 (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1651 lblk += (curr_off >> inode->i_blkbits) -
1652 contiguous_blks;
1653 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1654 contiguous_blks = 0;
d2a17637
MC
1655 }
1656 curr_off = next_off;
1657 } while ((bh = bh->b_this_page) != head);
7b415bf6 1658
9705acd6 1659 if (contiguous_blks) {
09cbfeaf 1660 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
9705acd6
LC
1661 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1662 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1663 }
1664
7b415bf6
AK
1665 /* If we have released all the blocks belonging to a cluster, then we
1666 * need to release the reserved space for that cluster. */
1667 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1668 while (num_clusters > 0) {
09cbfeaf 1669 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
7b415bf6
AK
1670 ((num_clusters - 1) << sbi->s_cluster_bits);
1671 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1672 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1673 ext4_da_release_space(inode, 1);
1674
1675 num_clusters--;
1676 }
d2a17637 1677}
ac27a0ec 1678
64769240
AT
1679/*
1680 * Delayed allocation stuff
1681 */
1682
4e7ea81d
JK
1683struct mpage_da_data {
1684 struct inode *inode;
1685 struct writeback_control *wbc;
6b523df4 1686
4e7ea81d
JK
1687 pgoff_t first_page; /* The first page to write */
1688 pgoff_t next_page; /* Current page to examine */
1689 pgoff_t last_page; /* Last page to examine */
791b7f08 1690 /*
4e7ea81d
JK
1691 * Extent to map - this can be after first_page because that can be
1692 * fully mapped. We somewhat abuse m_flags to store whether the extent
1693 * is delalloc or unwritten.
791b7f08 1694 */
4e7ea81d
JK
1695 struct ext4_map_blocks map;
1696 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1697 unsigned int do_map:1;
4e7ea81d 1698};
64769240 1699
4e7ea81d
JK
1700static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1701 bool invalidate)
c4a0c46e
AK
1702{
1703 int nr_pages, i;
1704 pgoff_t index, end;
1705 struct pagevec pvec;
1706 struct inode *inode = mpd->inode;
1707 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1708
1709 /* This is necessary when next_page == 0. */
1710 if (mpd->first_page >= mpd->next_page)
1711 return;
c4a0c46e 1712
c7f5938a
CW
1713 index = mpd->first_page;
1714 end = mpd->next_page - 1;
4e7ea81d
JK
1715 if (invalidate) {
1716 ext4_lblk_t start, last;
09cbfeaf
KS
1717 start = index << (PAGE_SHIFT - inode->i_blkbits);
1718 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1719 ext4_es_remove_extent(inode, start, last - start + 1);
1720 }
51865fda 1721
66bea92c 1722 pagevec_init(&pvec, 0);
c4a0c46e 1723 while (index <= end) {
397162ff 1724 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1725 if (nr_pages == 0)
1726 break;
1727 for (i = 0; i < nr_pages; i++) {
1728 struct page *page = pvec.pages[i];
2b85a617 1729
c4a0c46e
AK
1730 BUG_ON(!PageLocked(page));
1731 BUG_ON(PageWriteback(page));
4e7ea81d 1732 if (invalidate) {
4e800c03 1733 if (page_mapped(page))
1734 clear_page_dirty_for_io(page);
09cbfeaf 1735 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1736 ClearPageUptodate(page);
1737 }
c4a0c46e
AK
1738 unlock_page(page);
1739 }
9b1d0998 1740 pagevec_release(&pvec);
c4a0c46e 1741 }
c4a0c46e
AK
1742}
1743
df22291f
AK
1744static void ext4_print_free_blocks(struct inode *inode)
1745{
1746 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1747 struct super_block *sb = inode->i_sb;
f78ee70d 1748 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1749
1750 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1751 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1752 ext4_count_free_clusters(sb)));
92b97816
TT
1753 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1754 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1755 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1756 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1757 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1758 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1759 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1760 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1761 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1762 ei->i_reserved_data_blocks);
df22291f
AK
1763 return;
1764}
1765
c364b22c 1766static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1767{
c364b22c 1768 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1769}
1770
5356f261
AK
1771/*
1772 * This function is grabs code from the very beginning of
1773 * ext4_map_blocks, but assumes that the caller is from delayed write
1774 * time. This function looks up the requested blocks and sets the
1775 * buffer delay bit under the protection of i_data_sem.
1776 */
1777static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1778 struct ext4_map_blocks *map,
1779 struct buffer_head *bh)
1780{
d100eef2 1781 struct extent_status es;
5356f261
AK
1782 int retval;
1783 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1784#ifdef ES_AGGRESSIVE_TEST
1785 struct ext4_map_blocks orig_map;
1786
1787 memcpy(&orig_map, map, sizeof(*map));
1788#endif
5356f261
AK
1789
1790 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1791 invalid_block = ~0;
1792
1793 map->m_flags = 0;
1794 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1795 "logical block %lu\n", inode->i_ino, map->m_len,
1796 (unsigned long) map->m_lblk);
d100eef2
ZL
1797
1798 /* Lookup extent status tree firstly */
1799 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1800 if (ext4_es_is_hole(&es)) {
1801 retval = 0;
c8b459f4 1802 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1803 goto add_delayed;
1804 }
1805
1806 /*
1807 * Delayed extent could be allocated by fallocate.
1808 * So we need to check it.
1809 */
1810 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1811 map_bh(bh, inode->i_sb, invalid_block);
1812 set_buffer_new(bh);
1813 set_buffer_delay(bh);
1814 return 0;
1815 }
1816
1817 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1818 retval = es.es_len - (iblock - es.es_lblk);
1819 if (retval > map->m_len)
1820 retval = map->m_len;
1821 map->m_len = retval;
1822 if (ext4_es_is_written(&es))
1823 map->m_flags |= EXT4_MAP_MAPPED;
1824 else if (ext4_es_is_unwritten(&es))
1825 map->m_flags |= EXT4_MAP_UNWRITTEN;
1826 else
1827 BUG_ON(1);
1828
921f266b
DM
1829#ifdef ES_AGGRESSIVE_TEST
1830 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1831#endif
d100eef2
ZL
1832 return retval;
1833 }
1834
5356f261
AK
1835 /*
1836 * Try to see if we can get the block without requesting a new
1837 * file system block.
1838 */
c8b459f4 1839 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1840 if (ext4_has_inline_data(inode))
9c3569b5 1841 retval = 0;
cbd7584e 1842 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1843 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1844 else
2f8e0a7c 1845 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1846
d100eef2 1847add_delayed:
5356f261 1848 if (retval == 0) {
f7fec032 1849 int ret;
5356f261
AK
1850 /*
1851 * XXX: __block_prepare_write() unmaps passed block,
1852 * is it OK?
1853 */
386ad67c
LC
1854 /*
1855 * If the block was allocated from previously allocated cluster,
1856 * then we don't need to reserve it again. However we still need
1857 * to reserve metadata for every block we're going to write.
1858 */
c27e43a1 1859 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1860 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1861 ret = ext4_da_reserve_space(inode);
f7fec032 1862 if (ret) {
5356f261 1863 /* not enough space to reserve */
f7fec032 1864 retval = ret;
5356f261 1865 goto out_unlock;
f7fec032 1866 }
5356f261
AK
1867 }
1868
f7fec032
ZL
1869 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1870 ~0, EXTENT_STATUS_DELAYED);
1871 if (ret) {
1872 retval = ret;
51865fda 1873 goto out_unlock;
f7fec032 1874 }
51865fda 1875
5356f261
AK
1876 map_bh(bh, inode->i_sb, invalid_block);
1877 set_buffer_new(bh);
1878 set_buffer_delay(bh);
f7fec032
ZL
1879 } else if (retval > 0) {
1880 int ret;
3be78c73 1881 unsigned int status;
f7fec032 1882
44fb851d
ZL
1883 if (unlikely(retval != map->m_len)) {
1884 ext4_warning(inode->i_sb,
1885 "ES len assertion failed for inode "
1886 "%lu: retval %d != map->m_len %d",
1887 inode->i_ino, retval, map->m_len);
1888 WARN_ON(1);
921f266b 1889 }
921f266b 1890
f7fec032
ZL
1891 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1892 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1893 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1894 map->m_pblk, status);
1895 if (ret != 0)
1896 retval = ret;
5356f261
AK
1897 }
1898
1899out_unlock:
1900 up_read((&EXT4_I(inode)->i_data_sem));
1901
1902 return retval;
1903}
1904
64769240 1905/*
d91bd2c1 1906 * This is a special get_block_t callback which is used by
b920c755
TT
1907 * ext4_da_write_begin(). It will either return mapped block or
1908 * reserve space for a single block.
29fa89d0
AK
1909 *
1910 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1911 * We also have b_blocknr = -1 and b_bdev initialized properly
1912 *
1913 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1914 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1915 * initialized properly.
64769240 1916 */
9c3569b5
TM
1917int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1918 struct buffer_head *bh, int create)
64769240 1919{
2ed88685 1920 struct ext4_map_blocks map;
64769240
AT
1921 int ret = 0;
1922
1923 BUG_ON(create == 0);
2ed88685
TT
1924 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1925
1926 map.m_lblk = iblock;
1927 map.m_len = 1;
64769240
AT
1928
1929 /*
1930 * first, we need to know whether the block is allocated already
1931 * preallocated blocks are unmapped but should treated
1932 * the same as allocated blocks.
1933 */
5356f261
AK
1934 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1935 if (ret <= 0)
2ed88685 1936 return ret;
64769240 1937
2ed88685 1938 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1939 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1940
1941 if (buffer_unwritten(bh)) {
1942 /* A delayed write to unwritten bh should be marked
1943 * new and mapped. Mapped ensures that we don't do
1944 * get_block multiple times when we write to the same
1945 * offset and new ensures that we do proper zero out
1946 * for partial write.
1947 */
1948 set_buffer_new(bh);
c8205636 1949 set_buffer_mapped(bh);
2ed88685
TT
1950 }
1951 return 0;
64769240 1952}
61628a3f 1953
62e086be
AK
1954static int bget_one(handle_t *handle, struct buffer_head *bh)
1955{
1956 get_bh(bh);
1957 return 0;
1958}
1959
1960static int bput_one(handle_t *handle, struct buffer_head *bh)
1961{
1962 put_bh(bh);
1963 return 0;
1964}
1965
1966static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1967 unsigned int len)
1968{
1969 struct address_space *mapping = page->mapping;
1970 struct inode *inode = mapping->host;
3fdcfb66 1971 struct buffer_head *page_bufs = NULL;
62e086be 1972 handle_t *handle = NULL;
3fdcfb66
TM
1973 int ret = 0, err = 0;
1974 int inline_data = ext4_has_inline_data(inode);
1975 struct buffer_head *inode_bh = NULL;
62e086be 1976
cb20d518 1977 ClearPageChecked(page);
3fdcfb66
TM
1978
1979 if (inline_data) {
1980 BUG_ON(page->index != 0);
1981 BUG_ON(len > ext4_get_max_inline_size(inode));
1982 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1983 if (inode_bh == NULL)
1984 goto out;
1985 } else {
1986 page_bufs = page_buffers(page);
1987 if (!page_bufs) {
1988 BUG();
1989 goto out;
1990 }
1991 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1992 NULL, bget_one);
1993 }
bdf96838
TT
1994 /*
1995 * We need to release the page lock before we start the
1996 * journal, so grab a reference so the page won't disappear
1997 * out from under us.
1998 */
1999 get_page(page);
62e086be
AK
2000 unlock_page(page);
2001
9924a92a
TT
2002 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2003 ext4_writepage_trans_blocks(inode));
62e086be
AK
2004 if (IS_ERR(handle)) {
2005 ret = PTR_ERR(handle);
bdf96838
TT
2006 put_page(page);
2007 goto out_no_pagelock;
62e086be 2008 }
441c8508
CW
2009 BUG_ON(!ext4_handle_valid(handle));
2010
bdf96838
TT
2011 lock_page(page);
2012 put_page(page);
2013 if (page->mapping != mapping) {
2014 /* The page got truncated from under us */
2015 ext4_journal_stop(handle);
2016 ret = 0;
2017 goto out;
2018 }
2019
3fdcfb66 2020 if (inline_data) {
5d601255 2021 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 2022 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2023
3fdcfb66
TM
2024 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2025
2026 } else {
2027 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2028 do_journal_get_write_access);
2029
2030 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2031 write_end_fn);
2032 }
62e086be
AK
2033 if (ret == 0)
2034 ret = err;
2d859db3 2035 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2036 err = ext4_journal_stop(handle);
2037 if (!ret)
2038 ret = err;
2039
3fdcfb66 2040 if (!ext4_has_inline_data(inode))
8c9367fd 2041 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 2042 NULL, bput_one);
19f5fb7a 2043 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2044out:
bdf96838
TT
2045 unlock_page(page);
2046out_no_pagelock:
3fdcfb66 2047 brelse(inode_bh);
62e086be
AK
2048 return ret;
2049}
2050
61628a3f 2051/*
43ce1d23
AK
2052 * Note that we don't need to start a transaction unless we're journaling data
2053 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2054 * need to file the inode to the transaction's list in ordered mode because if
2055 * we are writing back data added by write(), the inode is already there and if
25985edc 2056 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2057 * transaction the data will hit the disk. In case we are journaling data, we
2058 * cannot start transaction directly because transaction start ranks above page
2059 * lock so we have to do some magic.
2060 *
b920c755 2061 * This function can get called via...
20970ba6 2062 * - ext4_writepages after taking page lock (have journal handle)
b920c755 2063 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2064 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2065 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2066 *
2067 * We don't do any block allocation in this function. If we have page with
2068 * multiple blocks we need to write those buffer_heads that are mapped. This
2069 * is important for mmaped based write. So if we do with blocksize 1K
2070 * truncate(f, 1024);
2071 * a = mmap(f, 0, 4096);
2072 * a[0] = 'a';
2073 * truncate(f, 4096);
2074 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2075 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2076 * do_wp_page). So writepage should write the first block. If we modify
2077 * the mmap area beyond 1024 we will again get a page_fault and the
2078 * page_mkwrite callback will do the block allocation and mark the
2079 * buffer_heads mapped.
2080 *
2081 * We redirty the page if we have any buffer_heads that is either delay or
2082 * unwritten in the page.
2083 *
2084 * We can get recursively called as show below.
2085 *
2086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2087 * ext4_writepage()
2088 *
2089 * But since we don't do any block allocation we should not deadlock.
2090 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2091 */
43ce1d23 2092static int ext4_writepage(struct page *page,
62e086be 2093 struct writeback_control *wbc)
64769240 2094{
f8bec370 2095 int ret = 0;
61628a3f 2096 loff_t size;
498e5f24 2097 unsigned int len;
744692dc 2098 struct buffer_head *page_bufs = NULL;
61628a3f 2099 struct inode *inode = page->mapping->host;
36ade451 2100 struct ext4_io_submit io_submit;
1c8349a1 2101 bool keep_towrite = false;
61628a3f 2102
0db1ff22
TT
2103 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2104 ext4_invalidatepage(page, 0, PAGE_SIZE);
2105 unlock_page(page);
2106 return -EIO;
2107 }
2108
a9c667f8 2109 trace_ext4_writepage(page);
f0e6c985 2110 size = i_size_read(inode);
09cbfeaf
KS
2111 if (page->index == size >> PAGE_SHIFT)
2112 len = size & ~PAGE_MASK;
f0e6c985 2113 else
09cbfeaf 2114 len = PAGE_SIZE;
64769240 2115
a42afc5f 2116 page_bufs = page_buffers(page);
a42afc5f 2117 /*
fe386132
JK
2118 * We cannot do block allocation or other extent handling in this
2119 * function. If there are buffers needing that, we have to redirty
2120 * the page. But we may reach here when we do a journal commit via
2121 * journal_submit_inode_data_buffers() and in that case we must write
2122 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2123 *
2124 * Also, if there is only one buffer per page (the fs block
2125 * size == the page size), if one buffer needs block
2126 * allocation or needs to modify the extent tree to clear the
2127 * unwritten flag, we know that the page can't be written at
2128 * all, so we might as well refuse the write immediately.
2129 * Unfortunately if the block size != page size, we can't as
2130 * easily detect this case using ext4_walk_page_buffers(), but
2131 * for the extremely common case, this is an optimization that
2132 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2133 */
f19d5870
TM
2134 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2135 ext4_bh_delay_or_unwritten)) {
f8bec370 2136 redirty_page_for_writepage(wbc, page);
cccd147a 2137 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2138 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2139 /*
2140 * For memory cleaning there's no point in writing only
2141 * some buffers. So just bail out. Warn if we came here
2142 * from direct reclaim.
2143 */
2144 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2145 == PF_MEMALLOC);
f0e6c985
AK
2146 unlock_page(page);
2147 return 0;
2148 }
1c8349a1 2149 keep_towrite = true;
a42afc5f 2150 }
64769240 2151
cb20d518 2152 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2153 /*
2154 * It's mmapped pagecache. Add buffers and journal it. There
2155 * doesn't seem much point in redirtying the page here.
2156 */
3f0ca309 2157 return __ext4_journalled_writepage(page, len);
43ce1d23 2158
97a851ed
JK
2159 ext4_io_submit_init(&io_submit, wbc);
2160 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2161 if (!io_submit.io_end) {
2162 redirty_page_for_writepage(wbc, page);
2163 unlock_page(page);
2164 return -ENOMEM;
2165 }
1c8349a1 2166 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2167 ext4_io_submit(&io_submit);
97a851ed
JK
2168 /* Drop io_end reference we got from init */
2169 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2170 return ret;
2171}
2172
5f1132b2
JK
2173static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2174{
2175 int len;
a056bdaa 2176 loff_t size;
5f1132b2
JK
2177 int err;
2178
2179 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2180 clear_page_dirty_for_io(page);
2181 /*
2182 * We have to be very careful here! Nothing protects writeback path
2183 * against i_size changes and the page can be writeably mapped into
2184 * page tables. So an application can be growing i_size and writing
2185 * data through mmap while writeback runs. clear_page_dirty_for_io()
2186 * write-protects our page in page tables and the page cannot get
2187 * written to again until we release page lock. So only after
2188 * clear_page_dirty_for_io() we are safe to sample i_size for
2189 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2190 * on the barrier provided by TestClearPageDirty in
2191 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2192 * after page tables are updated.
2193 */
2194 size = i_size_read(mpd->inode);
09cbfeaf
KS
2195 if (page->index == size >> PAGE_SHIFT)
2196 len = size & ~PAGE_MASK;
5f1132b2 2197 else
09cbfeaf 2198 len = PAGE_SIZE;
1c8349a1 2199 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2200 if (!err)
2201 mpd->wbc->nr_to_write--;
2202 mpd->first_page++;
2203
2204 return err;
2205}
2206
4e7ea81d
JK
2207#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2208
61628a3f 2209/*
fffb2739
JK
2210 * mballoc gives us at most this number of blocks...
2211 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2212 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2213 */
fffb2739 2214#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2215
4e7ea81d
JK
2216/*
2217 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2218 *
2219 * @mpd - extent of blocks
2220 * @lblk - logical number of the block in the file
09930042 2221 * @bh - buffer head we want to add to the extent
4e7ea81d 2222 *
09930042
JK
2223 * The function is used to collect contig. blocks in the same state. If the
2224 * buffer doesn't require mapping for writeback and we haven't started the
2225 * extent of buffers to map yet, the function returns 'true' immediately - the
2226 * caller can write the buffer right away. Otherwise the function returns true
2227 * if the block has been added to the extent, false if the block couldn't be
2228 * added.
4e7ea81d 2229 */
09930042
JK
2230static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2231 struct buffer_head *bh)
4e7ea81d
JK
2232{
2233 struct ext4_map_blocks *map = &mpd->map;
2234
09930042
JK
2235 /* Buffer that doesn't need mapping for writeback? */
2236 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2237 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2238 /* So far no extent to map => we write the buffer right away */
2239 if (map->m_len == 0)
2240 return true;
2241 return false;
2242 }
4e7ea81d
JK
2243
2244 /* First block in the extent? */
2245 if (map->m_len == 0) {
dddbd6ac
JK
2246 /* We cannot map unless handle is started... */
2247 if (!mpd->do_map)
2248 return false;
4e7ea81d
JK
2249 map->m_lblk = lblk;
2250 map->m_len = 1;
09930042
JK
2251 map->m_flags = bh->b_state & BH_FLAGS;
2252 return true;
4e7ea81d
JK
2253 }
2254
09930042
JK
2255 /* Don't go larger than mballoc is willing to allocate */
2256 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2257 return false;
2258
4e7ea81d
JK
2259 /* Can we merge the block to our big extent? */
2260 if (lblk == map->m_lblk + map->m_len &&
09930042 2261 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2262 map->m_len++;
09930042 2263 return true;
4e7ea81d 2264 }
09930042 2265 return false;
4e7ea81d
JK
2266}
2267
5f1132b2
JK
2268/*
2269 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2270 *
2271 * @mpd - extent of blocks for mapping
2272 * @head - the first buffer in the page
2273 * @bh - buffer we should start processing from
2274 * @lblk - logical number of the block in the file corresponding to @bh
2275 *
2276 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2277 * the page for IO if all buffers in this page were mapped and there's no
2278 * accumulated extent of buffers to map or add buffers in the page to the
2279 * extent of buffers to map. The function returns 1 if the caller can continue
2280 * by processing the next page, 0 if it should stop adding buffers to the
2281 * extent to map because we cannot extend it anymore. It can also return value
2282 * < 0 in case of error during IO submission.
2283 */
2284static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2285 struct buffer_head *head,
2286 struct buffer_head *bh,
2287 ext4_lblk_t lblk)
4e7ea81d
JK
2288{
2289 struct inode *inode = mpd->inode;
5f1132b2 2290 int err;
93407472 2291 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2292 >> inode->i_blkbits;
2293
2294 do {
2295 BUG_ON(buffer_locked(bh));
2296
09930042 2297 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2298 /* Found extent to map? */
2299 if (mpd->map.m_len)
5f1132b2 2300 return 0;
dddbd6ac
JK
2301 /* Buffer needs mapping and handle is not started? */
2302 if (!mpd->do_map)
2303 return 0;
09930042 2304 /* Everything mapped so far and we hit EOF */
5f1132b2 2305 break;
4e7ea81d 2306 }
4e7ea81d 2307 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2308 /* So far everything mapped? Submit the page for IO. */
2309 if (mpd->map.m_len == 0) {
2310 err = mpage_submit_page(mpd, head->b_page);
2311 if (err < 0)
2312 return err;
2313 }
2314 return lblk < blocks;
4e7ea81d
JK
2315}
2316
2317/*
2318 * mpage_map_buffers - update buffers corresponding to changed extent and
2319 * submit fully mapped pages for IO
2320 *
2321 * @mpd - description of extent to map, on return next extent to map
2322 *
2323 * Scan buffers corresponding to changed extent (we expect corresponding pages
2324 * to be already locked) and update buffer state according to new extent state.
2325 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2326 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2327 * and do extent conversion after IO is finished. If the last page is not fully
2328 * mapped, we update @map to the next extent in the last page that needs
2329 * mapping. Otherwise we submit the page for IO.
2330 */
2331static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2332{
2333 struct pagevec pvec;
2334 int nr_pages, i;
2335 struct inode *inode = mpd->inode;
2336 struct buffer_head *head, *bh;
09cbfeaf 2337 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2338 pgoff_t start, end;
2339 ext4_lblk_t lblk;
2340 sector_t pblock;
2341 int err;
2342
2343 start = mpd->map.m_lblk >> bpp_bits;
2344 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2345 lblk = start << bpp_bits;
2346 pblock = mpd->map.m_pblk;
2347
2348 pagevec_init(&pvec, 0);
2349 while (start <= end) {
2b85a617 2350 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2351 &start, end);
4e7ea81d
JK
2352 if (nr_pages == 0)
2353 break;
2354 for (i = 0; i < nr_pages; i++) {
2355 struct page *page = pvec.pages[i];
2356
4e7ea81d
JK
2357 bh = head = page_buffers(page);
2358 do {
2359 if (lblk < mpd->map.m_lblk)
2360 continue;
2361 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2362 /*
2363 * Buffer after end of mapped extent.
2364 * Find next buffer in the page to map.
2365 */
2366 mpd->map.m_len = 0;
2367 mpd->map.m_flags = 0;
5f1132b2
JK
2368 /*
2369 * FIXME: If dioread_nolock supports
2370 * blocksize < pagesize, we need to make
2371 * sure we add size mapped so far to
2372 * io_end->size as the following call
2373 * can submit the page for IO.
2374 */
2375 err = mpage_process_page_bufs(mpd, head,
2376 bh, lblk);
4e7ea81d 2377 pagevec_release(&pvec);
5f1132b2
JK
2378 if (err > 0)
2379 err = 0;
2380 return err;
4e7ea81d
JK
2381 }
2382 if (buffer_delay(bh)) {
2383 clear_buffer_delay(bh);
2384 bh->b_blocknr = pblock++;
2385 }
4e7ea81d 2386 clear_buffer_unwritten(bh);
5f1132b2 2387 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2388
2389 /*
2390 * FIXME: This is going to break if dioread_nolock
2391 * supports blocksize < pagesize as we will try to
2392 * convert potentially unmapped parts of inode.
2393 */
09cbfeaf 2394 mpd->io_submit.io_end->size += PAGE_SIZE;
4e7ea81d
JK
2395 /* Page fully mapped - let IO run! */
2396 err = mpage_submit_page(mpd, page);
2397 if (err < 0) {
2398 pagevec_release(&pvec);
2399 return err;
2400 }
4e7ea81d
JK
2401 }
2402 pagevec_release(&pvec);
2403 }
2404 /* Extent fully mapped and matches with page boundary. We are done. */
2405 mpd->map.m_len = 0;
2406 mpd->map.m_flags = 0;
2407 return 0;
2408}
2409
2410static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2411{
2412 struct inode *inode = mpd->inode;
2413 struct ext4_map_blocks *map = &mpd->map;
2414 int get_blocks_flags;
090f32ee 2415 int err, dioread_nolock;
4e7ea81d
JK
2416
2417 trace_ext4_da_write_pages_extent(inode, map);
2418 /*
2419 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2420 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2421 * where we have written into one or more preallocated blocks). It is
2422 * possible that we're going to need more metadata blocks than
2423 * previously reserved. However we must not fail because we're in
2424 * writeback and there is nothing we can do about it so it might result
2425 * in data loss. So use reserved blocks to allocate metadata if
2426 * possible.
2427 *
754cfed6
TT
2428 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2429 * the blocks in question are delalloc blocks. This indicates
2430 * that the blocks and quotas has already been checked when
2431 * the data was copied into the page cache.
4e7ea81d
JK
2432 */
2433 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2434 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2435 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2436 dioread_nolock = ext4_should_dioread_nolock(inode);
2437 if (dioread_nolock)
4e7ea81d
JK
2438 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2439 if (map->m_flags & (1 << BH_Delay))
2440 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2441
2442 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2443 if (err < 0)
2444 return err;
090f32ee 2445 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2446 if (!mpd->io_submit.io_end->handle &&
2447 ext4_handle_valid(handle)) {
2448 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2449 handle->h_rsv_handle = NULL;
2450 }
3613d228 2451 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2452 }
4e7ea81d
JK
2453
2454 BUG_ON(map->m_len == 0);
2455 if (map->m_flags & EXT4_MAP_NEW) {
64e1c57f
JK
2456 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2457 map->m_len);
4e7ea81d
JK
2458 }
2459 return 0;
2460}
2461
2462/*
2463 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2464 * mpd->len and submit pages underlying it for IO
2465 *
2466 * @handle - handle for journal operations
2467 * @mpd - extent to map
7534e854
JK
2468 * @give_up_on_write - we set this to true iff there is a fatal error and there
2469 * is no hope of writing the data. The caller should discard
2470 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2471 *
2472 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2473 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2474 * them to initialized or split the described range from larger unwritten
2475 * extent. Note that we need not map all the described range since allocation
2476 * can return less blocks or the range is covered by more unwritten extents. We
2477 * cannot map more because we are limited by reserved transaction credits. On
2478 * the other hand we always make sure that the last touched page is fully
2479 * mapped so that it can be written out (and thus forward progress is
2480 * guaranteed). After mapping we submit all mapped pages for IO.
2481 */
2482static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2483 struct mpage_da_data *mpd,
2484 bool *give_up_on_write)
4e7ea81d
JK
2485{
2486 struct inode *inode = mpd->inode;
2487 struct ext4_map_blocks *map = &mpd->map;
2488 int err;
2489 loff_t disksize;
6603120e 2490 int progress = 0;
4e7ea81d
JK
2491
2492 mpd->io_submit.io_end->offset =
2493 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2494 do {
4e7ea81d
JK
2495 err = mpage_map_one_extent(handle, mpd);
2496 if (err < 0) {
2497 struct super_block *sb = inode->i_sb;
2498
0db1ff22
TT
2499 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2500 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
cb530541 2501 goto invalidate_dirty_pages;
4e7ea81d 2502 /*
cb530541
TT
2503 * Let the uper layers retry transient errors.
2504 * In the case of ENOSPC, if ext4_count_free_blocks()
2505 * is non-zero, a commit should free up blocks.
4e7ea81d 2506 */
cb530541 2507 if ((err == -ENOMEM) ||
6603120e
DM
2508 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2509 if (progress)
2510 goto update_disksize;
cb530541 2511 return err;
6603120e 2512 }
cb530541
TT
2513 ext4_msg(sb, KERN_CRIT,
2514 "Delayed block allocation failed for "
2515 "inode %lu at logical offset %llu with"
2516 " max blocks %u with error %d",
2517 inode->i_ino,
2518 (unsigned long long)map->m_lblk,
2519 (unsigned)map->m_len, -err);
2520 ext4_msg(sb, KERN_CRIT,
2521 "This should not happen!! Data will "
2522 "be lost\n");
2523 if (err == -ENOSPC)
2524 ext4_print_free_blocks(inode);
2525 invalidate_dirty_pages:
2526 *give_up_on_write = true;
4e7ea81d
JK
2527 return err;
2528 }
6603120e 2529 progress = 1;
4e7ea81d
JK
2530 /*
2531 * Update buffer state, submit mapped pages, and get us new
2532 * extent to map
2533 */
2534 err = mpage_map_and_submit_buffers(mpd);
2535 if (err < 0)
6603120e 2536 goto update_disksize;
27d7c4ed 2537 } while (map->m_len);
4e7ea81d 2538
6603120e 2539update_disksize:
622cad13
TT
2540 /*
2541 * Update on-disk size after IO is submitted. Races with
2542 * truncate are avoided by checking i_size under i_data_sem.
2543 */
09cbfeaf 2544 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
4e7ea81d
JK
2545 if (disksize > EXT4_I(inode)->i_disksize) {
2546 int err2;
622cad13
TT
2547 loff_t i_size;
2548
2549 down_write(&EXT4_I(inode)->i_data_sem);
2550 i_size = i_size_read(inode);
2551 if (disksize > i_size)
2552 disksize = i_size;
2553 if (disksize > EXT4_I(inode)->i_disksize)
2554 EXT4_I(inode)->i_disksize = disksize;
622cad13 2555 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2556 err2 = ext4_mark_inode_dirty(handle, inode);
4e7ea81d
JK
2557 if (err2)
2558 ext4_error(inode->i_sb,
2559 "Failed to mark inode %lu dirty",
2560 inode->i_ino);
2561 if (!err)
2562 err = err2;
2563 }
2564 return err;
2565}
2566
fffb2739
JK
2567/*
2568 * Calculate the total number of credits to reserve for one writepages
20970ba6 2569 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2570 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2571 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2572 * bpp - 1 blocks in bpp different extents.
2573 */
525f4ed8
MC
2574static int ext4_da_writepages_trans_blocks(struct inode *inode)
2575{
fffb2739 2576 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2577
fffb2739
JK
2578 return ext4_meta_trans_blocks(inode,
2579 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2580}
61628a3f 2581
8e48dcfb 2582/*
4e7ea81d
JK
2583 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2584 * and underlying extent to map
2585 *
2586 * @mpd - where to look for pages
2587 *
2588 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2589 * IO immediately. When we find a page which isn't mapped we start accumulating
2590 * extent of buffers underlying these pages that needs mapping (formed by
2591 * either delayed or unwritten buffers). We also lock the pages containing
2592 * these buffers. The extent found is returned in @mpd structure (starting at
2593 * mpd->lblk with length mpd->len blocks).
2594 *
2595 * Note that this function can attach bios to one io_end structure which are
2596 * neither logically nor physically contiguous. Although it may seem as an
2597 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2598 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2599 */
4e7ea81d 2600static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2601{
4e7ea81d
JK
2602 struct address_space *mapping = mpd->inode->i_mapping;
2603 struct pagevec pvec;
2604 unsigned int nr_pages;
aeac589a 2605 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2606 pgoff_t index = mpd->first_page;
2607 pgoff_t end = mpd->last_page;
2608 int tag;
2609 int i, err = 0;
2610 int blkbits = mpd->inode->i_blkbits;
2611 ext4_lblk_t lblk;
2612 struct buffer_head *head;
8e48dcfb 2613
4e7ea81d 2614 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2615 tag = PAGECACHE_TAG_TOWRITE;
2616 else
2617 tag = PAGECACHE_TAG_DIRTY;
2618
4e7ea81d
JK
2619 pagevec_init(&pvec, 0);
2620 mpd->map.m_len = 0;
2621 mpd->next_page = index;
4f01b02c 2622 while (index <= end) {
dc7f3e86
JK
2623 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2624 tag, PAGEVEC_SIZE);
8e48dcfb 2625 if (nr_pages == 0)
4e7ea81d 2626 goto out;
8e48dcfb
TT
2627
2628 for (i = 0; i < nr_pages; i++) {
2629 struct page *page = pvec.pages[i];
2630
aeac589a
ML
2631 /*
2632 * Accumulated enough dirty pages? This doesn't apply
2633 * to WB_SYNC_ALL mode. For integrity sync we have to
2634 * keep going because someone may be concurrently
2635 * dirtying pages, and we might have synced a lot of
2636 * newly appeared dirty pages, but have not synced all
2637 * of the old dirty pages.
2638 */
2639 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2640 goto out;
2641
4e7ea81d
JK
2642 /* If we can't merge this page, we are done. */
2643 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2644 goto out;
78aaced3 2645
8e48dcfb 2646 lock_page(page);
8e48dcfb 2647 /*
4e7ea81d
JK
2648 * If the page is no longer dirty, or its mapping no
2649 * longer corresponds to inode we are writing (which
2650 * means it has been truncated or invalidated), or the
2651 * page is already under writeback and we are not doing
2652 * a data integrity writeback, skip the page
8e48dcfb 2653 */
4f01b02c
TT
2654 if (!PageDirty(page) ||
2655 (PageWriteback(page) &&
4e7ea81d 2656 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2657 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2658 unlock_page(page);
2659 continue;
2660 }
2661
7cb1a535 2662 wait_on_page_writeback(page);
8e48dcfb 2663 BUG_ON(PageWriteback(page));
8e48dcfb 2664
4e7ea81d 2665 if (mpd->map.m_len == 0)
8eb9e5ce 2666 mpd->first_page = page->index;
8eb9e5ce 2667 mpd->next_page = page->index + 1;
f8bec370 2668 /* Add all dirty buffers to mpd */
4e7ea81d 2669 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2670 (PAGE_SHIFT - blkbits);
f8bec370 2671 head = page_buffers(page);
5f1132b2
JK
2672 err = mpage_process_page_bufs(mpd, head, head, lblk);
2673 if (err <= 0)
4e7ea81d 2674 goto out;
5f1132b2 2675 err = 0;
aeac589a 2676 left--;
8e48dcfb
TT
2677 }
2678 pagevec_release(&pvec);
2679 cond_resched();
2680 }
4f01b02c 2681 return 0;
8eb9e5ce
TT
2682out:
2683 pagevec_release(&pvec);
4e7ea81d 2684 return err;
8e48dcfb
TT
2685}
2686
20970ba6
TT
2687static int __writepage(struct page *page, struct writeback_control *wbc,
2688 void *data)
2689{
2690 struct address_space *mapping = data;
2691 int ret = ext4_writepage(page, wbc);
2692 mapping_set_error(mapping, ret);
2693 return ret;
2694}
2695
2696static int ext4_writepages(struct address_space *mapping,
2697 struct writeback_control *wbc)
64769240 2698{
4e7ea81d
JK
2699 pgoff_t writeback_index = 0;
2700 long nr_to_write = wbc->nr_to_write;
22208ded 2701 int range_whole = 0;
4e7ea81d 2702 int cycled = 1;
61628a3f 2703 handle_t *handle = NULL;
df22291f 2704 struct mpage_da_data mpd;
5e745b04 2705 struct inode *inode = mapping->host;
6b523df4 2706 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2707 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2708 bool done;
1bce63d1 2709 struct blk_plug plug;
cb530541 2710 bool give_up_on_write = false;
61628a3f 2711
0db1ff22
TT
2712 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2713 return -EIO;
2714
c8585c6f 2715 percpu_down_read(&sbi->s_journal_flag_rwsem);
20970ba6 2716 trace_ext4_writepages(inode, wbc);
ba80b101 2717
c8585c6f
DJ
2718 if (dax_mapping(mapping)) {
2719 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2720 wbc);
2721 goto out_writepages;
2722 }
7f6d5b52 2723
61628a3f
MC
2724 /*
2725 * No pages to write? This is mainly a kludge to avoid starting
2726 * a transaction for special inodes like journal inode on last iput()
2727 * because that could violate lock ordering on umount
2728 */
a1d6cc56 2729 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2730 goto out_writepages;
2a21e37e 2731
20970ba6
TT
2732 if (ext4_should_journal_data(inode)) {
2733 struct blk_plug plug;
20970ba6
TT
2734
2735 blk_start_plug(&plug);
2736 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2737 blk_finish_plug(&plug);
bbf023c7 2738 goto out_writepages;
20970ba6
TT
2739 }
2740
2a21e37e
TT
2741 /*
2742 * If the filesystem has aborted, it is read-only, so return
2743 * right away instead of dumping stack traces later on that
2744 * will obscure the real source of the problem. We test
4ab2f15b 2745 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2746 * the latter could be true if the filesystem is mounted
20970ba6 2747 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2748 * *never* be called, so if that ever happens, we would want
2749 * the stack trace.
2750 */
0db1ff22
TT
2751 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2752 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
bbf023c7
ML
2753 ret = -EROFS;
2754 goto out_writepages;
2755 }
2a21e37e 2756
6b523df4
JK
2757 if (ext4_should_dioread_nolock(inode)) {
2758 /*
70261f56 2759 * We may need to convert up to one extent per block in
6b523df4
JK
2760 * the page and we may dirty the inode.
2761 */
09cbfeaf 2762 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
6b523df4
JK
2763 }
2764
4e7ea81d
JK
2765 /*
2766 * If we have inline data and arrive here, it means that
2767 * we will soon create the block for the 1st page, so
2768 * we'd better clear the inline data here.
2769 */
2770 if (ext4_has_inline_data(inode)) {
2771 /* Just inode will be modified... */
2772 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2773 if (IS_ERR(handle)) {
2774 ret = PTR_ERR(handle);
2775 goto out_writepages;
2776 }
2777 BUG_ON(ext4_test_inode_state(inode,
2778 EXT4_STATE_MAY_INLINE_DATA));
2779 ext4_destroy_inline_data(handle, inode);
2780 ext4_journal_stop(handle);
2781 }
2782
22208ded
AK
2783 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2784 range_whole = 1;
61628a3f 2785
2acf2c26 2786 if (wbc->range_cyclic) {
4e7ea81d
JK
2787 writeback_index = mapping->writeback_index;
2788 if (writeback_index)
2acf2c26 2789 cycled = 0;
4e7ea81d
JK
2790 mpd.first_page = writeback_index;
2791 mpd.last_page = -1;
5b41d924 2792 } else {
09cbfeaf
KS
2793 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2794 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2795 }
a1d6cc56 2796
4e7ea81d
JK
2797 mpd.inode = inode;
2798 mpd.wbc = wbc;
2799 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2800retry:
6e6938b6 2801 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2802 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2803 done = false;
1bce63d1 2804 blk_start_plug(&plug);
dddbd6ac
JK
2805
2806 /*
2807 * First writeback pages that don't need mapping - we can avoid
2808 * starting a transaction unnecessarily and also avoid being blocked
2809 * in the block layer on device congestion while having transaction
2810 * started.
2811 */
2812 mpd.do_map = 0;
2813 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2814 if (!mpd.io_submit.io_end) {
2815 ret = -ENOMEM;
2816 goto unplug;
2817 }
2818 ret = mpage_prepare_extent_to_map(&mpd);
2819 /* Submit prepared bio */
2820 ext4_io_submit(&mpd.io_submit);
2821 ext4_put_io_end_defer(mpd.io_submit.io_end);
2822 mpd.io_submit.io_end = NULL;
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, false);
2825 if (ret < 0)
2826 goto unplug;
2827
4e7ea81d
JK
2828 while (!done && mpd.first_page <= mpd.last_page) {
2829 /* For each extent of pages we use new io_end */
2830 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2831 if (!mpd.io_submit.io_end) {
2832 ret = -ENOMEM;
2833 break;
2834 }
a1d6cc56
AK
2835
2836 /*
4e7ea81d
JK
2837 * We have two constraints: We find one extent to map and we
2838 * must always write out whole page (makes a difference when
2839 * blocksize < pagesize) so that we don't block on IO when we
2840 * try to write out the rest of the page. Journalled mode is
2841 * not supported by delalloc.
a1d6cc56
AK
2842 */
2843 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2844 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2845
4e7ea81d 2846 /* start a new transaction */
6b523df4
JK
2847 handle = ext4_journal_start_with_reserve(inode,
2848 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2849 if (IS_ERR(handle)) {
2850 ret = PTR_ERR(handle);
1693918e 2851 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2852 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2853 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2854 /* Release allocated io_end */
2855 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2856 mpd.io_submit.io_end = NULL;
4e7ea81d 2857 break;
61628a3f 2858 }
dddbd6ac 2859 mpd.do_map = 1;
f63e6005 2860
4e7ea81d
JK
2861 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2862 ret = mpage_prepare_extent_to_map(&mpd);
2863 if (!ret) {
2864 if (mpd.map.m_len)
cb530541
TT
2865 ret = mpage_map_and_submit_extent(handle, &mpd,
2866 &give_up_on_write);
4e7ea81d
JK
2867 else {
2868 /*
2869 * We scanned the whole range (or exhausted
2870 * nr_to_write), submitted what was mapped and
2871 * didn't find anything needing mapping. We are
2872 * done.
2873 */
2874 done = true;
2875 }
f63e6005 2876 }
646caa9c
JK
2877 /*
2878 * Caution: If the handle is synchronous,
2879 * ext4_journal_stop() can wait for transaction commit
2880 * to finish which may depend on writeback of pages to
2881 * complete or on page lock to be released. In that
2882 * case, we have to wait until after after we have
2883 * submitted all the IO, released page locks we hold,
2884 * and dropped io_end reference (for extent conversion
2885 * to be able to complete) before stopping the handle.
2886 */
2887 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2888 ext4_journal_stop(handle);
2889 handle = NULL;
dddbd6ac 2890 mpd.do_map = 0;
646caa9c 2891 }
4e7ea81d
JK
2892 /* Submit prepared bio */
2893 ext4_io_submit(&mpd.io_submit);
2894 /* Unlock pages we didn't use */
cb530541 2895 mpage_release_unused_pages(&mpd, give_up_on_write);
646caa9c
JK
2896 /*
2897 * Drop our io_end reference we got from init. We have
2898 * to be careful and use deferred io_end finishing if
2899 * we are still holding the transaction as we can
2900 * release the last reference to io_end which may end
2901 * up doing unwritten extent conversion.
2902 */
2903 if (handle) {
2904 ext4_put_io_end_defer(mpd.io_submit.io_end);
2905 ext4_journal_stop(handle);
2906 } else
2907 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2908 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2909
2910 if (ret == -ENOSPC && sbi->s_journal) {
2911 /*
2912 * Commit the transaction which would
22208ded
AK
2913 * free blocks released in the transaction
2914 * and try again
2915 */
df22291f 2916 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2917 ret = 0;
4e7ea81d
JK
2918 continue;
2919 }
2920 /* Fatal error - ENOMEM, EIO... */
2921 if (ret)
61628a3f 2922 break;
a1d6cc56 2923 }
dddbd6ac 2924unplug:
1bce63d1 2925 blk_finish_plug(&plug);
9c12a831 2926 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2927 cycled = 1;
4e7ea81d
JK
2928 mpd.last_page = writeback_index - 1;
2929 mpd.first_page = 0;
2acf2c26
AK
2930 goto retry;
2931 }
22208ded
AK
2932
2933 /* Update index */
22208ded
AK
2934 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2935 /*
4e7ea81d 2936 * Set the writeback_index so that range_cyclic
22208ded
AK
2937 * mode will write it back later
2938 */
4e7ea81d 2939 mapping->writeback_index = mpd.first_page;
a1d6cc56 2940
61628a3f 2941out_writepages:
20970ba6
TT
2942 trace_ext4_writepages_result(inode, wbc, ret,
2943 nr_to_write - wbc->nr_to_write);
c8585c6f 2944 percpu_up_read(&sbi->s_journal_flag_rwsem);
61628a3f 2945 return ret;
64769240
AT
2946}
2947
79f0be8d
AK
2948static int ext4_nonda_switch(struct super_block *sb)
2949{
5c1ff336 2950 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2951 struct ext4_sb_info *sbi = EXT4_SB(sb);
2952
2953 /*
2954 * switch to non delalloc mode if we are running low
2955 * on free block. The free block accounting via percpu
179f7ebf 2956 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2957 * accumulated on each CPU without updating global counters
2958 * Delalloc need an accurate free block accounting. So switch
2959 * to non delalloc when we are near to error range.
2960 */
5c1ff336
EW
2961 free_clusters =
2962 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2963 dirty_clusters =
2964 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2965 /*
2966 * Start pushing delalloc when 1/2 of free blocks are dirty.
2967 */
5c1ff336 2968 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2969 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2970
5c1ff336
EW
2971 if (2 * free_clusters < 3 * dirty_clusters ||
2972 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2973 /*
c8afb446
ES
2974 * free block count is less than 150% of dirty blocks
2975 * or free blocks is less than watermark
79f0be8d
AK
2976 */
2977 return 1;
2978 }
2979 return 0;
2980}
2981
0ff8947f
ES
2982/* We always reserve for an inode update; the superblock could be there too */
2983static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2984{
e2b911c5 2985 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2986 return 1;
2987
2988 if (pos + len <= 0x7fffffffULL)
2989 return 1;
2990
2991 /* We might need to update the superblock to set LARGE_FILE */
2992 return 2;
2993}
2994
64769240 2995static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2996 loff_t pos, unsigned len, unsigned flags,
2997 struct page **pagep, void **fsdata)
64769240 2998{
72b8ab9d 2999 int ret, retries = 0;
64769240
AT
3000 struct page *page;
3001 pgoff_t index;
64769240
AT
3002 struct inode *inode = mapping->host;
3003 handle_t *handle;
3004
0db1ff22
TT
3005 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3006 return -EIO;
3007
09cbfeaf 3008 index = pos >> PAGE_SHIFT;
79f0be8d 3009
4db0d88e
TT
3010 if (ext4_nonda_switch(inode->i_sb) ||
3011 S_ISLNK(inode->i_mode)) {
79f0be8d
AK
3012 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3013 return ext4_write_begin(file, mapping, pos,
3014 len, flags, pagep, fsdata);
3015 }
3016 *fsdata = (void *)0;
9bffad1e 3017 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
3018
3019 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3020 ret = ext4_da_write_inline_data_begin(mapping, inode,
3021 pos, len, flags,
3022 pagep, fsdata);
3023 if (ret < 0)
47564bfb
TT
3024 return ret;
3025 if (ret == 1)
3026 return 0;
9c3569b5
TM
3027 }
3028
47564bfb
TT
3029 /*
3030 * grab_cache_page_write_begin() can take a long time if the
3031 * system is thrashing due to memory pressure, or if the page
3032 * is being written back. So grab it first before we start
3033 * the transaction handle. This also allows us to allocate
3034 * the page (if needed) without using GFP_NOFS.
3035 */
3036retry_grab:
3037 page = grab_cache_page_write_begin(mapping, index, flags);
3038 if (!page)
3039 return -ENOMEM;
3040 unlock_page(page);
3041
64769240
AT
3042 /*
3043 * With delayed allocation, we don't log the i_disksize update
3044 * if there is delayed block allocation. But we still need
3045 * to journalling the i_disksize update if writes to the end
3046 * of file which has an already mapped buffer.
3047 */
47564bfb 3048retry_journal:
0ff8947f
ES
3049 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3050 ext4_da_write_credits(inode, pos, len));
64769240 3051 if (IS_ERR(handle)) {
09cbfeaf 3052 put_page(page);
47564bfb 3053 return PTR_ERR(handle);
64769240
AT
3054 }
3055
47564bfb
TT
3056 lock_page(page);
3057 if (page->mapping != mapping) {
3058 /* The page got truncated from under us */
3059 unlock_page(page);
09cbfeaf 3060 put_page(page);
d5a0d4f7 3061 ext4_journal_stop(handle);
47564bfb 3062 goto retry_grab;
d5a0d4f7 3063 }
47564bfb 3064 /* In case writeback began while the page was unlocked */
7afe5aa5 3065 wait_for_stable_page(page);
64769240 3066
2058f83a
MH
3067#ifdef CONFIG_EXT4_FS_ENCRYPTION
3068 ret = ext4_block_write_begin(page, pos, len,
3069 ext4_da_get_block_prep);
3070#else
6e1db88d 3071 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 3072#endif
64769240
AT
3073 if (ret < 0) {
3074 unlock_page(page);
3075 ext4_journal_stop(handle);
ae4d5372
AK
3076 /*
3077 * block_write_begin may have instantiated a few blocks
3078 * outside i_size. Trim these off again. Don't need
3079 * i_size_read because we hold i_mutex.
3080 */
3081 if (pos + len > inode->i_size)
b9a4207d 3082 ext4_truncate_failed_write(inode);
47564bfb
TT
3083
3084 if (ret == -ENOSPC &&
3085 ext4_should_retry_alloc(inode->i_sb, &retries))
3086 goto retry_journal;
3087
09cbfeaf 3088 put_page(page);
47564bfb 3089 return ret;
64769240
AT
3090 }
3091
47564bfb 3092 *pagep = page;
64769240
AT
3093 return ret;
3094}
3095
632eaeab
MC
3096/*
3097 * Check if we should update i_disksize
3098 * when write to the end of file but not require block allocation
3099 */
3100static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3101 unsigned long offset)
632eaeab
MC
3102{
3103 struct buffer_head *bh;
3104 struct inode *inode = page->mapping->host;
3105 unsigned int idx;
3106 int i;
3107
3108 bh = page_buffers(page);
3109 idx = offset >> inode->i_blkbits;
3110
af5bc92d 3111 for (i = 0; i < idx; i++)
632eaeab
MC
3112 bh = bh->b_this_page;
3113
29fa89d0 3114 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3115 return 0;
3116 return 1;
3117}
3118
64769240 3119static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3120 struct address_space *mapping,
3121 loff_t pos, unsigned len, unsigned copied,
3122 struct page *page, void *fsdata)
64769240
AT
3123{
3124 struct inode *inode = mapping->host;
3125 int ret = 0, ret2;
3126 handle_t *handle = ext4_journal_current_handle();
3127 loff_t new_i_size;
632eaeab 3128 unsigned long start, end;
79f0be8d
AK
3129 int write_mode = (int)(unsigned long)fsdata;
3130
74d553aa
TT
3131 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3132 return ext4_write_end(file, mapping, pos,
3133 len, copied, page, fsdata);
632eaeab 3134
9bffad1e 3135 trace_ext4_da_write_end(inode, pos, len, copied);
09cbfeaf 3136 start = pos & (PAGE_SIZE - 1);
af5bc92d 3137 end = start + copied - 1;
64769240
AT
3138
3139 /*
3140 * generic_write_end() will run mark_inode_dirty() if i_size
3141 * changes. So let's piggyback the i_disksize mark_inode_dirty
3142 * into that.
3143 */
64769240 3144 new_i_size = pos + copied;
ea51d132 3145 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
3146 if (ext4_has_inline_data(inode) ||
3147 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 3148 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
3149 /* We need to mark inode dirty even if
3150 * new_i_size is less that inode->i_size
3151 * bu greater than i_disksize.(hint delalloc)
3152 */
3153 ext4_mark_inode_dirty(handle, inode);
64769240 3154 }
632eaeab 3155 }
9c3569b5
TM
3156
3157 if (write_mode != CONVERT_INLINE_DATA &&
3158 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3159 ext4_has_inline_data(inode))
3160 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3161 page);
3162 else
3163 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 3164 page, fsdata);
9c3569b5 3165
64769240
AT
3166 copied = ret2;
3167 if (ret2 < 0)
3168 ret = ret2;
3169 ret2 = ext4_journal_stop(handle);
3170 if (!ret)
3171 ret = ret2;
3172
3173 return ret ? ret : copied;
3174}
3175
d47992f8
LC
3176static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3177 unsigned int length)
64769240 3178{
64769240
AT
3179 /*
3180 * Drop reserved blocks
3181 */
3182 BUG_ON(!PageLocked(page));
3183 if (!page_has_buffers(page))
3184 goto out;
3185
ca99fdd2 3186 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3187
3188out:
d47992f8 3189 ext4_invalidatepage(page, offset, length);
64769240
AT
3190
3191 return;
3192}
3193
ccd2506b
TT
3194/*
3195 * Force all delayed allocation blocks to be allocated for a given inode.
3196 */
3197int ext4_alloc_da_blocks(struct inode *inode)
3198{
fb40ba0d
TT
3199 trace_ext4_alloc_da_blocks(inode);
3200
71d4f7d0 3201 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3202 return 0;
3203
3204 /*
3205 * We do something simple for now. The filemap_flush() will
3206 * also start triggering a write of the data blocks, which is
3207 * not strictly speaking necessary (and for users of
3208 * laptop_mode, not even desirable). However, to do otherwise
3209 * would require replicating code paths in:
de9a55b8 3210 *
20970ba6 3211 * ext4_writepages() ->
ccd2506b
TT
3212 * write_cache_pages() ---> (via passed in callback function)
3213 * __mpage_da_writepage() -->
3214 * mpage_add_bh_to_extent()
3215 * mpage_da_map_blocks()
3216 *
3217 * The problem is that write_cache_pages(), located in
3218 * mm/page-writeback.c, marks pages clean in preparation for
3219 * doing I/O, which is not desirable if we're not planning on
3220 * doing I/O at all.
3221 *
3222 * We could call write_cache_pages(), and then redirty all of
380cf090 3223 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3224 * would be ugly in the extreme. So instead we would need to
3225 * replicate parts of the code in the above functions,
25985edc 3226 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3227 * write out the pages, but rather only collect contiguous
3228 * logical block extents, call the multi-block allocator, and
3229 * then update the buffer heads with the block allocations.
de9a55b8 3230 *
ccd2506b
TT
3231 * For now, though, we'll cheat by calling filemap_flush(),
3232 * which will map the blocks, and start the I/O, but not
3233 * actually wait for the I/O to complete.
3234 */
3235 return filemap_flush(inode->i_mapping);
3236}
64769240 3237
ac27a0ec
DK
3238/*
3239 * bmap() is special. It gets used by applications such as lilo and by
3240 * the swapper to find the on-disk block of a specific piece of data.
3241 *
3242 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3243 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3244 * filesystem and enables swap, then they may get a nasty shock when the
3245 * data getting swapped to that swapfile suddenly gets overwritten by
3246 * the original zero's written out previously to the journal and
3247 * awaiting writeback in the kernel's buffer cache.
3248 *
3249 * So, if we see any bmap calls here on a modified, data-journaled file,
3250 * take extra steps to flush any blocks which might be in the cache.
3251 */
617ba13b 3252static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3253{
3254 struct inode *inode = mapping->host;
3255 journal_t *journal;
3256 int err;
3257
46c7f254
TM
3258 /*
3259 * We can get here for an inline file via the FIBMAP ioctl
3260 */
3261 if (ext4_has_inline_data(inode))
3262 return 0;
3263
64769240
AT
3264 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3265 test_opt(inode->i_sb, DELALLOC)) {
3266 /*
3267 * With delalloc we want to sync the file
3268 * so that we can make sure we allocate
3269 * blocks for file
3270 */
3271 filemap_write_and_wait(mapping);
3272 }
3273
19f5fb7a
TT
3274 if (EXT4_JOURNAL(inode) &&
3275 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3276 /*
3277 * This is a REALLY heavyweight approach, but the use of
3278 * bmap on dirty files is expected to be extremely rare:
3279 * only if we run lilo or swapon on a freshly made file
3280 * do we expect this to happen.
3281 *
3282 * (bmap requires CAP_SYS_RAWIO so this does not
3283 * represent an unprivileged user DOS attack --- we'd be
3284 * in trouble if mortal users could trigger this path at
3285 * will.)
3286 *
617ba13b 3287 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3288 * regular files. If somebody wants to bmap a directory
3289 * or symlink and gets confused because the buffer
3290 * hasn't yet been flushed to disk, they deserve
3291 * everything they get.
3292 */
3293
19f5fb7a 3294 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3295 journal = EXT4_JOURNAL(inode);
dab291af
MC
3296 jbd2_journal_lock_updates(journal);
3297 err = jbd2_journal_flush(journal);
3298 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3299
3300 if (err)
3301 return 0;
3302 }
3303
af5bc92d 3304 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3305}
3306
617ba13b 3307static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3308{
46c7f254
TM
3309 int ret = -EAGAIN;
3310 struct inode *inode = page->mapping->host;
3311
0562e0ba 3312 trace_ext4_readpage(page);
46c7f254
TM
3313
3314 if (ext4_has_inline_data(inode))
3315 ret = ext4_readpage_inline(inode, page);
3316
3317 if (ret == -EAGAIN)
f64e02fe 3318 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3319
3320 return ret;
ac27a0ec
DK
3321}
3322
3323static int
617ba13b 3324ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3325 struct list_head *pages, unsigned nr_pages)
3326{
46c7f254
TM
3327 struct inode *inode = mapping->host;
3328
3329 /* If the file has inline data, no need to do readpages. */
3330 if (ext4_has_inline_data(inode))
3331 return 0;
3332
f64e02fe 3333 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3334}
3335
d47992f8
LC
3336static void ext4_invalidatepage(struct page *page, unsigned int offset,
3337 unsigned int length)
ac27a0ec 3338{
ca99fdd2 3339 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3340
4520fb3c
JK
3341 /* No journalling happens on data buffers when this function is used */
3342 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3343
ca99fdd2 3344 block_invalidatepage(page, offset, length);
4520fb3c
JK
3345}
3346
53e87268 3347static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3348 unsigned int offset,
3349 unsigned int length)
4520fb3c
JK
3350{
3351 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3352
ca99fdd2 3353 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3354
ac27a0ec
DK
3355 /*
3356 * If it's a full truncate we just forget about the pending dirtying
3357 */
09cbfeaf 3358 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3359 ClearPageChecked(page);
3360
ca99fdd2 3361 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3362}
3363
3364/* Wrapper for aops... */
3365static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3366 unsigned int offset,
3367 unsigned int length)
53e87268 3368{
ca99fdd2 3369 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3370}
3371
617ba13b 3372static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3373{
617ba13b 3374 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3375
0562e0ba
JZ
3376 trace_ext4_releasepage(page);
3377
e1c36595
JK
3378 /* Page has dirty journalled data -> cannot release */
3379 if (PageChecked(page))
ac27a0ec 3380 return 0;
0390131b
FM
3381 if (journal)
3382 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3383 else
3384 return try_to_free_buffers(page);
ac27a0ec
DK
3385}
3386
364443cb
JK
3387static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3388 unsigned flags, struct iomap *iomap)
3389{
5e405595 3390 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
364443cb
JK
3391 unsigned int blkbits = inode->i_blkbits;
3392 unsigned long first_block = offset >> blkbits;
3393 unsigned long last_block = (offset + length - 1) >> blkbits;
3394 struct ext4_map_blocks map;
545052e9 3395 bool delalloc = false;
364443cb
JK
3396 int ret;
3397
7046ae35
AG
3398
3399 if (flags & IOMAP_REPORT) {
3400 if (ext4_has_inline_data(inode)) {
3401 ret = ext4_inline_data_iomap(inode, iomap);
3402 if (ret != -EAGAIN) {
3403 if (ret == 0 && offset >= iomap->length)
3404 ret = -ENOENT;
3405 return ret;
3406 }
3407 }
3408 } else {
3409 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3410 return -ERANGE;
3411 }
364443cb
JK
3412
3413 map.m_lblk = first_block;
3414 map.m_len = last_block - first_block + 1;
3415
545052e9 3416 if (flags & IOMAP_REPORT) {
776722e8 3417 ret = ext4_map_blocks(NULL, inode, &map, 0);
545052e9
CH
3418 if (ret < 0)
3419 return ret;
3420
3421 if (ret == 0) {
3422 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3423 struct extent_status es;
3424
3425 ext4_es_find_delayed_extent_range(inode, map.m_lblk, end, &es);
3426
3427 if (!es.es_len || es.es_lblk > end) {
3428 /* entire range is a hole */
3429 } else if (es.es_lblk > map.m_lblk) {
3430 /* range starts with a hole */
3431 map.m_len = es.es_lblk - map.m_lblk;
3432 } else {
3433 ext4_lblk_t offs = 0;
3434
3435 if (es.es_lblk < map.m_lblk)
3436 offs = map.m_lblk - es.es_lblk;
3437 map.m_lblk = es.es_lblk + offs;
3438 map.m_len = es.es_len - offs;
3439 delalloc = true;
3440 }
3441 }
3442 } else if (flags & IOMAP_WRITE) {
776722e8
JK
3443 int dio_credits;
3444 handle_t *handle;
3445 int retries = 0;
3446
3447 /* Trim mapping request to maximum we can map at once for DIO */
3448 if (map.m_len > DIO_MAX_BLOCKS)
3449 map.m_len = DIO_MAX_BLOCKS;
3450 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3451retry:
3452 /*
3453 * Either we allocate blocks and then we don't get unwritten
3454 * extent so we have reserved enough credits, or the blocks
3455 * are already allocated and unwritten and in that case
3456 * extent conversion fits in the credits as well.
3457 */
3458 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3459 dio_credits);
3460 if (IS_ERR(handle))
3461 return PTR_ERR(handle);
3462
3463 ret = ext4_map_blocks(handle, inode, &map,
776722e8
JK
3464 EXT4_GET_BLOCKS_CREATE_ZERO);
3465 if (ret < 0) {
3466 ext4_journal_stop(handle);
3467 if (ret == -ENOSPC &&
3468 ext4_should_retry_alloc(inode->i_sb, &retries))
3469 goto retry;
3470 return ret;
3471 }
776722e8
JK
3472
3473 /*
e2ae766c 3474 * If we added blocks beyond i_size, we need to make sure they
776722e8 3475 * will get truncated if we crash before updating i_size in
e2ae766c
JK
3476 * ext4_iomap_end(). For faults we don't need to do that (and
3477 * even cannot because for orphan list operations inode_lock is
3478 * required) - if we happen to instantiate block beyond i_size,
3479 * it is because we race with truncate which has already added
3480 * the inode to the orphan list.
776722e8 3481 */
e2ae766c
JK
3482 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3483 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
776722e8
JK
3484 int err;
3485
3486 err = ext4_orphan_add(handle, inode);
3487 if (err < 0) {
3488 ext4_journal_stop(handle);
3489 return err;
3490 }
3491 }
3492 ext4_journal_stop(handle);
545052e9
CH
3493 } else {
3494 ret = ext4_map_blocks(NULL, inode, &map, 0);
3495 if (ret < 0)
3496 return ret;
776722e8 3497 }
364443cb
JK
3498
3499 iomap->flags = 0;
5e405595
DW
3500 iomap->bdev = inode->i_sb->s_bdev;
3501 iomap->dax_dev = sbi->s_daxdev;
364443cb 3502 iomap->offset = first_block << blkbits;
545052e9 3503 iomap->length = (u64)map.m_len << blkbits;
364443cb
JK
3504
3505 if (ret == 0) {
545052e9 3506 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
19fe5f64 3507 iomap->addr = IOMAP_NULL_ADDR;
364443cb
JK
3508 } else {
3509 if (map.m_flags & EXT4_MAP_MAPPED) {
3510 iomap->type = IOMAP_MAPPED;
3511 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3512 iomap->type = IOMAP_UNWRITTEN;
3513 } else {
3514 WARN_ON_ONCE(1);
3515 return -EIO;
3516 }
19fe5f64 3517 iomap->addr = (u64)map.m_pblk << blkbits;
364443cb
JK
3518 }
3519
3520 if (map.m_flags & EXT4_MAP_NEW)
3521 iomap->flags |= IOMAP_F_NEW;
545052e9 3522
364443cb
JK
3523 return 0;
3524}
3525
776722e8
JK
3526static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3527 ssize_t written, unsigned flags, struct iomap *iomap)
3528{
3529 int ret = 0;
3530 handle_t *handle;
3531 int blkbits = inode->i_blkbits;
3532 bool truncate = false;
3533
e2ae766c 3534 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
776722e8
JK
3535 return 0;
3536
3537 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3538 if (IS_ERR(handle)) {
3539 ret = PTR_ERR(handle);
3540 goto orphan_del;
3541 }
3542 if (ext4_update_inode_size(inode, offset + written))
3543 ext4_mark_inode_dirty(handle, inode);
3544 /*
3545 * We may need to truncate allocated but not written blocks beyond EOF.
3546 */
3547 if (iomap->offset + iomap->length >
3548 ALIGN(inode->i_size, 1 << blkbits)) {
3549 ext4_lblk_t written_blk, end_blk;
3550
3551 written_blk = (offset + written) >> blkbits;
3552 end_blk = (offset + length) >> blkbits;
3553 if (written_blk < end_blk && ext4_can_truncate(inode))
3554 truncate = true;
3555 }
3556 /*
3557 * Remove inode from orphan list if we were extending a inode and
3558 * everything went fine.
3559 */
3560 if (!truncate && inode->i_nlink &&
3561 !list_empty(&EXT4_I(inode)->i_orphan))
3562 ext4_orphan_del(handle, inode);
3563 ext4_journal_stop(handle);
3564 if (truncate) {
3565 ext4_truncate_failed_write(inode);
3566orphan_del:
3567 /*
3568 * If truncate failed early the inode might still be on the
3569 * orphan list; we need to make sure the inode is removed from
3570 * the orphan list in that case.
3571 */
3572 if (inode->i_nlink)
3573 ext4_orphan_del(NULL, inode);
3574 }
3575 return ret;
3576}
3577
8ff6daa1 3578const struct iomap_ops ext4_iomap_ops = {
364443cb 3579 .iomap_begin = ext4_iomap_begin,
776722e8 3580 .iomap_end = ext4_iomap_end,
364443cb
JK
3581};
3582
187372a3 3583static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3584 ssize_t size, void *private)
4c0425ff 3585{
109811c2 3586 ext4_io_end_t *io_end = private;
4c0425ff 3587
97a851ed 3588 /* if not async direct IO just return */
7b7a8665 3589 if (!io_end)
187372a3 3590 return 0;
4b70df18 3591
88635ca2 3592 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3593 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3594 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3595
74c66bcb
JK
3596 /*
3597 * Error during AIO DIO. We cannot convert unwritten extents as the
3598 * data was not written. Just clear the unwritten flag and drop io_end.
3599 */
3600 if (size <= 0) {
3601 ext4_clear_io_unwritten_flag(io_end);
3602 size = 0;
3603 }
4c0425ff
MC
3604 io_end->offset = offset;
3605 io_end->size = size;
7b7a8665 3606 ext4_put_io_end(io_end);
187372a3
CH
3607
3608 return 0;
4c0425ff 3609}
c7064ef1 3610
4c0425ff 3611/*
914f82a3
JK
3612 * Handling of direct IO writes.
3613 *
3614 * For ext4 extent files, ext4 will do direct-io write even to holes,
4c0425ff
MC
3615 * preallocated extents, and those write extend the file, no need to
3616 * fall back to buffered IO.
3617 *
556615dc 3618 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3619 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3620 * still keep the range to write as unwritten.
4c0425ff 3621 *
69c499d1 3622 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3623 * For async direct IO, since the IO may still pending when return, we
25985edc 3624 * set up an end_io call back function, which will do the conversion
8d5d02e6 3625 * when async direct IO completed.
4c0425ff
MC
3626 *
3627 * If the O_DIRECT write will extend the file then add this inode to the
3628 * orphan list. So recovery will truncate it back to the original size
3629 * if the machine crashes during the write.
3630 *
3631 */
0e01df10 3632static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3633{
3634 struct file *file = iocb->ki_filp;
3635 struct inode *inode = file->f_mapping->host;
914f82a3 3636 struct ext4_inode_info *ei = EXT4_I(inode);
4c0425ff 3637 ssize_t ret;
c8b8e32d 3638 loff_t offset = iocb->ki_pos;
a6cbcd4a 3639 size_t count = iov_iter_count(iter);
69c499d1
TT
3640 int overwrite = 0;
3641 get_block_t *get_block_func = NULL;
3642 int dio_flags = 0;
4c0425ff 3643 loff_t final_size = offset + count;
914f82a3
JK
3644 int orphan = 0;
3645 handle_t *handle;
729f52c6 3646
914f82a3
JK
3647 if (final_size > inode->i_size) {
3648 /* Credits for sb + inode write */
3649 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3650 if (IS_ERR(handle)) {
3651 ret = PTR_ERR(handle);
3652 goto out;
3653 }
3654 ret = ext4_orphan_add(handle, inode);
3655 if (ret) {
3656 ext4_journal_stop(handle);
3657 goto out;
3658 }
3659 orphan = 1;
3660 ei->i_disksize = inode->i_size;
3661 ext4_journal_stop(handle);
3662 }
4bd809db 3663
69c499d1 3664 BUG_ON(iocb->private == NULL);
4bd809db 3665
e8340395
JK
3666 /*
3667 * Make all waiters for direct IO properly wait also for extent
3668 * conversion. This also disallows race between truncate() and
3669 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3670 */
914f82a3 3671 inode_dio_begin(inode);
e8340395 3672
69c499d1
TT
3673 /* If we do a overwrite dio, i_mutex locking can be released */
3674 overwrite = *((int *)iocb->private);
4bd809db 3675
2dcba478 3676 if (overwrite)
5955102c 3677 inode_unlock(inode);
8d5d02e6 3678
69c499d1 3679 /*
914f82a3 3680 * For extent mapped files we could direct write to holes and fallocate.
69c499d1 3681 *
109811c2
JK
3682 * Allocated blocks to fill the hole are marked as unwritten to prevent
3683 * parallel buffered read to expose the stale data before DIO complete
3684 * the data IO.
69c499d1 3685 *
109811c2
JK
3686 * As to previously fallocated extents, ext4 get_block will just simply
3687 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3688 *
109811c2
JK
3689 * For non AIO case, we will convert those unwritten extents to written
3690 * after return back from blockdev_direct_IO. That way we save us from
3691 * allocating io_end structure and also the overhead of offloading
3692 * the extent convertion to a workqueue.
69c499d1
TT
3693 *
3694 * For async DIO, the conversion needs to be deferred when the
3695 * IO is completed. The ext4 end_io callback function will be
3696 * called to take care of the conversion work. Here for async
3697 * case, we allocate an io_end structure to hook to the iocb.
3698 */
3699 iocb->private = NULL;
109811c2 3700 if (overwrite)
705965bd 3701 get_block_func = ext4_dio_get_block_overwrite;
0bd2d5ec 3702 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
93407472 3703 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
914f82a3
JK
3704 get_block_func = ext4_dio_get_block;
3705 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3706 } else if (is_sync_kiocb(iocb)) {
109811c2
JK
3707 get_block_func = ext4_dio_get_block_unwritten_sync;
3708 dio_flags = DIO_LOCKING;
69c499d1 3709 } else {
109811c2 3710 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3711 dio_flags = DIO_LOCKING;
3712 }
0bd2d5ec
JK
3713 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3714 get_block_func, ext4_end_io_dio, NULL,
3715 dio_flags);
69c499d1 3716
97a851ed 3717 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3718 EXT4_STATE_DIO_UNWRITTEN)) {
3719 int err;
3720 /*
3721 * for non AIO case, since the IO is already
3722 * completed, we could do the conversion right here
3723 */
6b523df4 3724 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3725 offset, ret);
3726 if (err < 0)
3727 ret = err;
3728 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3729 }
4bd809db 3730
914f82a3 3731 inode_dio_end(inode);
69c499d1 3732 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3733 if (overwrite)
5955102c 3734 inode_lock(inode);
8d5d02e6 3735
914f82a3
JK
3736 if (ret < 0 && final_size > inode->i_size)
3737 ext4_truncate_failed_write(inode);
3738
3739 /* Handle extending of i_size after direct IO write */
3740 if (orphan) {
3741 int err;
3742
3743 /* Credits for sb + inode write */
3744 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3745 if (IS_ERR(handle)) {
3746 /* This is really bad luck. We've written the data
3747 * but cannot extend i_size. Bail out and pretend
3748 * the write failed... */
3749 ret = PTR_ERR(handle);
3750 if (inode->i_nlink)
3751 ext4_orphan_del(NULL, inode);
3752
3753 goto out;
3754 }
3755 if (inode->i_nlink)
3756 ext4_orphan_del(handle, inode);
3757 if (ret > 0) {
3758 loff_t end = offset + ret;
3759 if (end > inode->i_size) {
3760 ei->i_disksize = end;
3761 i_size_write(inode, end);
3762 /*
3763 * We're going to return a positive `ret'
3764 * here due to non-zero-length I/O, so there's
3765 * no way of reporting error returns from
3766 * ext4_mark_inode_dirty() to userspace. So
3767 * ignore it.
3768 */
3769 ext4_mark_inode_dirty(handle, inode);
3770 }
3771 }
3772 err = ext4_journal_stop(handle);
3773 if (ret == 0)
3774 ret = err;
3775 }
3776out:
3777 return ret;
3778}
3779
0e01df10 3780static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
914f82a3 3781{
16c54688
JK
3782 struct address_space *mapping = iocb->ki_filp->f_mapping;
3783 struct inode *inode = mapping->host;
0bd2d5ec 3784 size_t count = iov_iter_count(iter);
914f82a3
JK
3785 ssize_t ret;
3786
16c54688
JK
3787 /*
3788 * Shared inode_lock is enough for us - it protects against concurrent
3789 * writes & truncates and since we take care of writing back page cache,
3790 * we are protected against page writeback as well.
3791 */
3792 inode_lock_shared(inode);
0bd2d5ec 3793 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
e5465795 3794 iocb->ki_pos + count - 1);
0bd2d5ec
JK
3795 if (ret)
3796 goto out_unlock;
3797 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3798 iter, ext4_dio_get_block, NULL, NULL, 0);
16c54688
JK
3799out_unlock:
3800 inode_unlock_shared(inode);
69c499d1 3801 return ret;
4c0425ff
MC
3802}
3803
c8b8e32d 3804static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
4c0425ff
MC
3805{
3806 struct file *file = iocb->ki_filp;
3807 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3808 size_t count = iov_iter_count(iter);
c8b8e32d 3809 loff_t offset = iocb->ki_pos;
0562e0ba 3810 ssize_t ret;
4c0425ff 3811
2058f83a
MH
3812#ifdef CONFIG_EXT4_FS_ENCRYPTION
3813 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3814 return 0;
3815#endif
3816
84ebd795
TT
3817 /*
3818 * If we are doing data journalling we don't support O_DIRECT
3819 */
3820 if (ext4_should_journal_data(inode))
3821 return 0;
3822
46c7f254
TM
3823 /* Let buffer I/O handle the inline data case. */
3824 if (ext4_has_inline_data(inode))
3825 return 0;
3826
0bd2d5ec
JK
3827 /* DAX uses iomap path now */
3828 if (WARN_ON_ONCE(IS_DAX(inode)))
3829 return 0;
3830
6f673763 3831 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
914f82a3 3832 if (iov_iter_rw(iter) == READ)
0e01df10 3833 ret = ext4_direct_IO_read(iocb, iter);
0562e0ba 3834 else
0e01df10 3835 ret = ext4_direct_IO_write(iocb, iter);
6f673763 3836 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3837 return ret;
4c0425ff
MC
3838}
3839
ac27a0ec 3840/*
617ba13b 3841 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3842 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3843 * much here because ->set_page_dirty is called under VFS locks. The page is
3844 * not necessarily locked.
3845 *
3846 * We cannot just dirty the page and leave attached buffers clean, because the
3847 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3848 * or jbddirty because all the journalling code will explode.
3849 *
3850 * So what we do is to mark the page "pending dirty" and next time writepage
3851 * is called, propagate that into the buffers appropriately.
3852 */
617ba13b 3853static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3854{
3855 SetPageChecked(page);
3856 return __set_page_dirty_nobuffers(page);
3857}
3858
6dcc693b
JK
3859static int ext4_set_page_dirty(struct page *page)
3860{
3861 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3862 WARN_ON_ONCE(!page_has_buffers(page));
3863 return __set_page_dirty_buffers(page);
3864}
3865
74d553aa 3866static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3867 .readpage = ext4_readpage,
3868 .readpages = ext4_readpages,
43ce1d23 3869 .writepage = ext4_writepage,
20970ba6 3870 .writepages = ext4_writepages,
8ab22b9a 3871 .write_begin = ext4_write_begin,
74d553aa 3872 .write_end = ext4_write_end,
6dcc693b 3873 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3874 .bmap = ext4_bmap,
3875 .invalidatepage = ext4_invalidatepage,
3876 .releasepage = ext4_releasepage,
3877 .direct_IO = ext4_direct_IO,
3878 .migratepage = buffer_migrate_page,
3879 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3880 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3881};
3882
617ba13b 3883static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3884 .readpage = ext4_readpage,
3885 .readpages = ext4_readpages,
43ce1d23 3886 .writepage = ext4_writepage,
20970ba6 3887 .writepages = ext4_writepages,
8ab22b9a
HH
3888 .write_begin = ext4_write_begin,
3889 .write_end = ext4_journalled_write_end,
3890 .set_page_dirty = ext4_journalled_set_page_dirty,
3891 .bmap = ext4_bmap,
4520fb3c 3892 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3893 .releasepage = ext4_releasepage,
84ebd795 3894 .direct_IO = ext4_direct_IO,
8ab22b9a 3895 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3896 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3897};
3898
64769240 3899static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3900 .readpage = ext4_readpage,
3901 .readpages = ext4_readpages,
43ce1d23 3902 .writepage = ext4_writepage,
20970ba6 3903 .writepages = ext4_writepages,
8ab22b9a
HH
3904 .write_begin = ext4_da_write_begin,
3905 .write_end = ext4_da_write_end,
6dcc693b 3906 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3907 .bmap = ext4_bmap,
3908 .invalidatepage = ext4_da_invalidatepage,
3909 .releasepage = ext4_releasepage,
3910 .direct_IO = ext4_direct_IO,
3911 .migratepage = buffer_migrate_page,
3912 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3913 .error_remove_page = generic_error_remove_page,
64769240
AT
3914};
3915
617ba13b 3916void ext4_set_aops(struct inode *inode)
ac27a0ec 3917{
3d2b1582
LC
3918 switch (ext4_inode_journal_mode(inode)) {
3919 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3920 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3921 break;
3922 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3923 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3924 return;
3d2b1582
LC
3925 default:
3926 BUG();
3927 }
74d553aa
TT
3928 if (test_opt(inode->i_sb, DELALLOC))
3929 inode->i_mapping->a_ops = &ext4_da_aops;
3930 else
3931 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3932}
3933
923ae0ff 3934static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3935 struct address_space *mapping, loff_t from, loff_t length)
3936{
09cbfeaf
KS
3937 ext4_fsblk_t index = from >> PAGE_SHIFT;
3938 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3939 unsigned blocksize, pos;
d863dc36
LC
3940 ext4_lblk_t iblock;
3941 struct inode *inode = mapping->host;
3942 struct buffer_head *bh;
3943 struct page *page;
3944 int err = 0;
3945
09cbfeaf 3946 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3947 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3948 if (!page)
3949 return -ENOMEM;
3950
3951 blocksize = inode->i_sb->s_blocksize;
d863dc36 3952
09cbfeaf 3953 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3954
3955 if (!page_has_buffers(page))
3956 create_empty_buffers(page, blocksize, 0);
3957
3958 /* Find the buffer that contains "offset" */
3959 bh = page_buffers(page);
3960 pos = blocksize;
3961 while (offset >= pos) {
3962 bh = bh->b_this_page;
3963 iblock++;
3964 pos += blocksize;
3965 }
d863dc36
LC
3966 if (buffer_freed(bh)) {
3967 BUFFER_TRACE(bh, "freed: skip");
3968 goto unlock;
3969 }
d863dc36
LC
3970 if (!buffer_mapped(bh)) {
3971 BUFFER_TRACE(bh, "unmapped");
3972 ext4_get_block(inode, iblock, bh, 0);
3973 /* unmapped? It's a hole - nothing to do */
3974 if (!buffer_mapped(bh)) {
3975 BUFFER_TRACE(bh, "still unmapped");
3976 goto unlock;
3977 }
3978 }
3979
3980 /* Ok, it's mapped. Make sure it's up-to-date */
3981 if (PageUptodate(page))
3982 set_buffer_uptodate(bh);
3983
3984 if (!buffer_uptodate(bh)) {
3985 err = -EIO;
dfec8a14 3986 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
d863dc36
LC
3987 wait_on_buffer(bh);
3988 /* Uhhuh. Read error. Complain and punt. */
3989 if (!buffer_uptodate(bh))
3990 goto unlock;
c9c7429c
MH
3991 if (S_ISREG(inode->i_mode) &&
3992 ext4_encrypted_inode(inode)) {
3993 /* We expect the key to be set. */
a7550b30 3994 BUG_ON(!fscrypt_has_encryption_key(inode));
09cbfeaf 3995 BUG_ON(blocksize != PAGE_SIZE);
b50f7b26 3996 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
9c4bb8a3 3997 page, PAGE_SIZE, 0, page->index));
c9c7429c 3998 }
d863dc36 3999 }
d863dc36
LC
4000 if (ext4_should_journal_data(inode)) {
4001 BUFFER_TRACE(bh, "get write access");
4002 err = ext4_journal_get_write_access(handle, bh);
4003 if (err)
4004 goto unlock;
4005 }
d863dc36 4006 zero_user(page, offset, length);
d863dc36
LC
4007 BUFFER_TRACE(bh, "zeroed end of block");
4008
d863dc36
LC
4009 if (ext4_should_journal_data(inode)) {
4010 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 4011 } else {
353eefd3 4012 err = 0;
d863dc36 4013 mark_buffer_dirty(bh);
3957ef53 4014 if (ext4_should_order_data(inode))
ee0876bc 4015 err = ext4_jbd2_inode_add_write(handle, inode);
0713ed0c 4016 }
d863dc36
LC
4017
4018unlock:
4019 unlock_page(page);
09cbfeaf 4020 put_page(page);
d863dc36
LC
4021 return err;
4022}
4023
923ae0ff
RZ
4024/*
4025 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4026 * starting from file offset 'from'. The range to be zero'd must
4027 * be contained with in one block. If the specified range exceeds
4028 * the end of the block it will be shortened to end of the block
4029 * that cooresponds to 'from'
4030 */
4031static int ext4_block_zero_page_range(handle_t *handle,
4032 struct address_space *mapping, loff_t from, loff_t length)
4033{
4034 struct inode *inode = mapping->host;
09cbfeaf 4035 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
4036 unsigned blocksize = inode->i_sb->s_blocksize;
4037 unsigned max = blocksize - (offset & (blocksize - 1));
4038
4039 /*
4040 * correct length if it does not fall between
4041 * 'from' and the end of the block
4042 */
4043 if (length > max || length < 0)
4044 length = max;
4045
47e69351
JK
4046 if (IS_DAX(inode)) {
4047 return iomap_zero_range(inode, from, length, NULL,
4048 &ext4_iomap_ops);
4049 }
923ae0ff
RZ
4050 return __ext4_block_zero_page_range(handle, mapping, from, length);
4051}
4052
94350ab5
MW
4053/*
4054 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4055 * up to the end of the block which corresponds to `from'.
4056 * This required during truncate. We need to physically zero the tail end
4057 * of that block so it doesn't yield old data if the file is later grown.
4058 */
c197855e 4059static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
4060 struct address_space *mapping, loff_t from)
4061{
09cbfeaf 4062 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
4063 unsigned length;
4064 unsigned blocksize;
4065 struct inode *inode = mapping->host;
4066
0d06863f
TT
4067 /* If we are processing an encrypted inode during orphan list handling */
4068 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
4069 return 0;
4070
94350ab5
MW
4071 blocksize = inode->i_sb->s_blocksize;
4072 length = blocksize - (offset & (blocksize - 1));
4073
4074 return ext4_block_zero_page_range(handle, mapping, from, length);
4075}
4076
a87dd18c
LC
4077int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4078 loff_t lstart, loff_t length)
4079{
4080 struct super_block *sb = inode->i_sb;
4081 struct address_space *mapping = inode->i_mapping;
e1be3a92 4082 unsigned partial_start, partial_end;
a87dd18c
LC
4083 ext4_fsblk_t start, end;
4084 loff_t byte_end = (lstart + length - 1);
4085 int err = 0;
4086
e1be3a92
LC
4087 partial_start = lstart & (sb->s_blocksize - 1);
4088 partial_end = byte_end & (sb->s_blocksize - 1);
4089
a87dd18c
LC
4090 start = lstart >> sb->s_blocksize_bits;
4091 end = byte_end >> sb->s_blocksize_bits;
4092
4093 /* Handle partial zero within the single block */
e1be3a92
LC
4094 if (start == end &&
4095 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
4096 err = ext4_block_zero_page_range(handle, mapping,
4097 lstart, length);
4098 return err;
4099 }
4100 /* Handle partial zero out on the start of the range */
e1be3a92 4101 if (partial_start) {
a87dd18c
LC
4102 err = ext4_block_zero_page_range(handle, mapping,
4103 lstart, sb->s_blocksize);
4104 if (err)
4105 return err;
4106 }
4107 /* Handle partial zero out on the end of the range */
e1be3a92 4108 if (partial_end != sb->s_blocksize - 1)
a87dd18c 4109 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
4110 byte_end - partial_end,
4111 partial_end + 1);
a87dd18c
LC
4112 return err;
4113}
4114
91ef4caf
DG
4115int ext4_can_truncate(struct inode *inode)
4116{
91ef4caf
DG
4117 if (S_ISREG(inode->i_mode))
4118 return 1;
4119 if (S_ISDIR(inode->i_mode))
4120 return 1;
4121 if (S_ISLNK(inode->i_mode))
4122 return !ext4_inode_is_fast_symlink(inode);
4123 return 0;
4124}
4125
01127848
JK
4126/*
4127 * We have to make sure i_disksize gets properly updated before we truncate
4128 * page cache due to hole punching or zero range. Otherwise i_disksize update
4129 * can get lost as it may have been postponed to submission of writeback but
4130 * that will never happen after we truncate page cache.
4131 */
4132int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4133 loff_t len)
4134{
4135 handle_t *handle;
4136 loff_t size = i_size_read(inode);
4137
5955102c 4138 WARN_ON(!inode_is_locked(inode));
01127848
JK
4139 if (offset > size || offset + len < size)
4140 return 0;
4141
4142 if (EXT4_I(inode)->i_disksize >= size)
4143 return 0;
4144
4145 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4146 if (IS_ERR(handle))
4147 return PTR_ERR(handle);
4148 ext4_update_i_disksize(inode, size);
4149 ext4_mark_inode_dirty(handle, inode);
4150 ext4_journal_stop(handle);
4151
4152 return 0;
4153}
4154
a4bb6b64 4155/*
cca32b7e 4156 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
4157 * associated with the given offset and length
4158 *
4159 * @inode: File inode
4160 * @offset: The offset where the hole will begin
4161 * @len: The length of the hole
4162 *
4907cb7b 4163 * Returns: 0 on success or negative on failure
a4bb6b64
AH
4164 */
4165
aeb2817a 4166int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 4167{
26a4c0c6
TT
4168 struct super_block *sb = inode->i_sb;
4169 ext4_lblk_t first_block, stop_block;
4170 struct address_space *mapping = inode->i_mapping;
a87dd18c 4171 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
4172 handle_t *handle;
4173 unsigned int credits;
4174 int ret = 0;
4175
a4bb6b64 4176 if (!S_ISREG(inode->i_mode))
73355192 4177 return -EOPNOTSUPP;
a4bb6b64 4178
b8a86845 4179 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 4180
26a4c0c6
TT
4181 /*
4182 * Write out all dirty pages to avoid race conditions
4183 * Then release them.
4184 */
cca32b7e 4185 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
4186 ret = filemap_write_and_wait_range(mapping, offset,
4187 offset + length - 1);
4188 if (ret)
4189 return ret;
4190 }
4191
5955102c 4192 inode_lock(inode);
9ef06cec 4193
26a4c0c6
TT
4194 /* No need to punch hole beyond i_size */
4195 if (offset >= inode->i_size)
4196 goto out_mutex;
4197
4198 /*
4199 * If the hole extends beyond i_size, set the hole
4200 * to end after the page that contains i_size
4201 */
4202 if (offset + length > inode->i_size) {
4203 length = inode->i_size +
09cbfeaf 4204 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
4205 offset;
4206 }
4207
a361293f
JK
4208 if (offset & (sb->s_blocksize - 1) ||
4209 (offset + length) & (sb->s_blocksize - 1)) {
4210 /*
4211 * Attach jinode to inode for jbd2 if we do any zeroing of
4212 * partial block
4213 */
4214 ret = ext4_inode_attach_jinode(inode);
4215 if (ret < 0)
4216 goto out_mutex;
4217
4218 }
4219
ea3d7209
JK
4220 /* Wait all existing dio workers, newcomers will block on i_mutex */
4221 ext4_inode_block_unlocked_dio(inode);
4222 inode_dio_wait(inode);
4223
4224 /*
4225 * Prevent page faults from reinstantiating pages we have released from
4226 * page cache.
4227 */
4228 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
4229 first_block_offset = round_up(offset, sb->s_blocksize);
4230 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4231
a87dd18c 4232 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4233 if (last_block_offset > first_block_offset) {
4234 ret = ext4_update_disksize_before_punch(inode, offset, length);
4235 if (ret)
4236 goto out_dio;
a87dd18c
LC
4237 truncate_pagecache_range(inode, first_block_offset,
4238 last_block_offset);
01127848 4239 }
26a4c0c6
TT
4240
4241 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4242 credits = ext4_writepage_trans_blocks(inode);
4243 else
4244 credits = ext4_blocks_for_truncate(inode);
4245 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4246 if (IS_ERR(handle)) {
4247 ret = PTR_ERR(handle);
4248 ext4_std_error(sb, ret);
4249 goto out_dio;
4250 }
4251
a87dd18c
LC
4252 ret = ext4_zero_partial_blocks(handle, inode, offset,
4253 length);
4254 if (ret)
4255 goto out_stop;
26a4c0c6
TT
4256
4257 first_block = (offset + sb->s_blocksize - 1) >>
4258 EXT4_BLOCK_SIZE_BITS(sb);
4259 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4260
4261 /* If there are no blocks to remove, return now */
4262 if (first_block >= stop_block)
4263 goto out_stop;
4264
4265 down_write(&EXT4_I(inode)->i_data_sem);
4266 ext4_discard_preallocations(inode);
4267
4268 ret = ext4_es_remove_extent(inode, first_block,
4269 stop_block - first_block);
4270 if (ret) {
4271 up_write(&EXT4_I(inode)->i_data_sem);
4272 goto out_stop;
4273 }
4274
4275 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4276 ret = ext4_ext_remove_space(inode, first_block,
4277 stop_block - 1);
4278 else
4f579ae7 4279 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
4280 stop_block);
4281
819c4920 4282 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
4283 if (IS_SYNC(inode))
4284 ext4_handle_sync(handle);
e251f9bc 4285
eeca7ea1 4286 inode->i_mtime = inode->i_ctime = current_time(inode);
26a4c0c6 4287 ext4_mark_inode_dirty(handle, inode);
67a7d5f5
JK
4288 if (ret >= 0)
4289 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4290out_stop:
4291 ext4_journal_stop(handle);
4292out_dio:
ea3d7209 4293 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
4294 ext4_inode_resume_unlocked_dio(inode);
4295out_mutex:
5955102c 4296 inode_unlock(inode);
26a4c0c6 4297 return ret;
a4bb6b64
AH
4298}
4299
a361293f
JK
4300int ext4_inode_attach_jinode(struct inode *inode)
4301{
4302 struct ext4_inode_info *ei = EXT4_I(inode);
4303 struct jbd2_inode *jinode;
4304
4305 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4306 return 0;
4307
4308 jinode = jbd2_alloc_inode(GFP_KERNEL);
4309 spin_lock(&inode->i_lock);
4310 if (!ei->jinode) {
4311 if (!jinode) {
4312 spin_unlock(&inode->i_lock);
4313 return -ENOMEM;
4314 }
4315 ei->jinode = jinode;
4316 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4317 jinode = NULL;
4318 }
4319 spin_unlock(&inode->i_lock);
4320 if (unlikely(jinode != NULL))
4321 jbd2_free_inode(jinode);
4322 return 0;
4323}
4324
ac27a0ec 4325/*
617ba13b 4326 * ext4_truncate()
ac27a0ec 4327 *
617ba13b
MC
4328 * We block out ext4_get_block() block instantiations across the entire
4329 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4330 * simultaneously on behalf of the same inode.
4331 *
42b2aa86 4332 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4333 * is one core, guiding principle: the file's tree must always be consistent on
4334 * disk. We must be able to restart the truncate after a crash.
4335 *
4336 * The file's tree may be transiently inconsistent in memory (although it
4337 * probably isn't), but whenever we close off and commit a journal transaction,
4338 * the contents of (the filesystem + the journal) must be consistent and
4339 * restartable. It's pretty simple, really: bottom up, right to left (although
4340 * left-to-right works OK too).
4341 *
4342 * Note that at recovery time, journal replay occurs *before* the restart of
4343 * truncate against the orphan inode list.
4344 *
4345 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4346 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4347 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4348 * ext4_truncate() to have another go. So there will be instantiated blocks
4349 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4350 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4351 * ext4_truncate() run will find them and release them.
ac27a0ec 4352 */
2c98eb5e 4353int ext4_truncate(struct inode *inode)
ac27a0ec 4354{
819c4920
TT
4355 struct ext4_inode_info *ei = EXT4_I(inode);
4356 unsigned int credits;
2c98eb5e 4357 int err = 0;
819c4920
TT
4358 handle_t *handle;
4359 struct address_space *mapping = inode->i_mapping;
819c4920 4360
19b5ef61
TT
4361 /*
4362 * There is a possibility that we're either freeing the inode
e04027e8 4363 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4364 * have i_mutex locked because it's not necessary.
4365 */
4366 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4367 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4368 trace_ext4_truncate_enter(inode);
4369
91ef4caf 4370 if (!ext4_can_truncate(inode))
2c98eb5e 4371 return 0;
ac27a0ec 4372
12e9b892 4373 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4374
5534fb5b 4375 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4376 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4377
aef1c851
TM
4378 if (ext4_has_inline_data(inode)) {
4379 int has_inline = 1;
4380
01daf945
TT
4381 err = ext4_inline_data_truncate(inode, &has_inline);
4382 if (err)
4383 return err;
aef1c851 4384 if (has_inline)
2c98eb5e 4385 return 0;
aef1c851
TM
4386 }
4387
a361293f
JK
4388 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4389 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4390 if (ext4_inode_attach_jinode(inode) < 0)
2c98eb5e 4391 return 0;
a361293f
JK
4392 }
4393
819c4920
TT
4394 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4395 credits = ext4_writepage_trans_blocks(inode);
4396 else
4397 credits = ext4_blocks_for_truncate(inode);
4398
4399 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
2c98eb5e
TT
4400 if (IS_ERR(handle))
4401 return PTR_ERR(handle);
819c4920 4402
eb3544c6
LC
4403 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4404 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4405
4406 /*
4407 * We add the inode to the orphan list, so that if this
4408 * truncate spans multiple transactions, and we crash, we will
4409 * resume the truncate when the filesystem recovers. It also
4410 * marks the inode dirty, to catch the new size.
4411 *
4412 * Implication: the file must always be in a sane, consistent
4413 * truncatable state while each transaction commits.
4414 */
2c98eb5e
TT
4415 err = ext4_orphan_add(handle, inode);
4416 if (err)
819c4920
TT
4417 goto out_stop;
4418
4419 down_write(&EXT4_I(inode)->i_data_sem);
4420
4421 ext4_discard_preallocations(inode);
4422
ff9893dc 4423 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4424 err = ext4_ext_truncate(handle, inode);
ff9893dc 4425 else
819c4920
TT
4426 ext4_ind_truncate(handle, inode);
4427
4428 up_write(&ei->i_data_sem);
d0abb36d
TT
4429 if (err)
4430 goto out_stop;
819c4920
TT
4431
4432 if (IS_SYNC(inode))
4433 ext4_handle_sync(handle);
4434
4435out_stop:
4436 /*
4437 * If this was a simple ftruncate() and the file will remain alive,
4438 * then we need to clear up the orphan record which we created above.
4439 * However, if this was a real unlink then we were called by
58d86a50 4440 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4441 * orphan info for us.
4442 */
4443 if (inode->i_nlink)
4444 ext4_orphan_del(handle, inode);
4445
eeca7ea1 4446 inode->i_mtime = inode->i_ctime = current_time(inode);
819c4920
TT
4447 ext4_mark_inode_dirty(handle, inode);
4448 ext4_journal_stop(handle);
ac27a0ec 4449
0562e0ba 4450 trace_ext4_truncate_exit(inode);
2c98eb5e 4451 return err;
ac27a0ec
DK
4452}
4453
ac27a0ec 4454/*
617ba13b 4455 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4456 * underlying buffer_head on success. If 'in_mem' is true, we have all
4457 * data in memory that is needed to recreate the on-disk version of this
4458 * inode.
4459 */
617ba13b
MC
4460static int __ext4_get_inode_loc(struct inode *inode,
4461 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4462{
240799cd
TT
4463 struct ext4_group_desc *gdp;
4464 struct buffer_head *bh;
4465 struct super_block *sb = inode->i_sb;
4466 ext4_fsblk_t block;
4467 int inodes_per_block, inode_offset;
4468
3a06d778 4469 iloc->bh = NULL;
240799cd 4470 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4471 return -EFSCORRUPTED;
ac27a0ec 4472
240799cd
TT
4473 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4474 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4475 if (!gdp)
ac27a0ec
DK
4476 return -EIO;
4477
240799cd
TT
4478 /*
4479 * Figure out the offset within the block group inode table
4480 */
00d09882 4481 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4482 inode_offset = ((inode->i_ino - 1) %
4483 EXT4_INODES_PER_GROUP(sb));
4484 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4485 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4486
4487 bh = sb_getblk(sb, block);
aebf0243 4488 if (unlikely(!bh))
860d21e2 4489 return -ENOMEM;
ac27a0ec
DK
4490 if (!buffer_uptodate(bh)) {
4491 lock_buffer(bh);
9c83a923
HK
4492
4493 /*
4494 * If the buffer has the write error flag, we have failed
4495 * to write out another inode in the same block. In this
4496 * case, we don't have to read the block because we may
4497 * read the old inode data successfully.
4498 */
4499 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4500 set_buffer_uptodate(bh);
4501
ac27a0ec
DK
4502 if (buffer_uptodate(bh)) {
4503 /* someone brought it uptodate while we waited */
4504 unlock_buffer(bh);
4505 goto has_buffer;
4506 }
4507
4508 /*
4509 * If we have all information of the inode in memory and this
4510 * is the only valid inode in the block, we need not read the
4511 * block.
4512 */
4513 if (in_mem) {
4514 struct buffer_head *bitmap_bh;
240799cd 4515 int i, start;
ac27a0ec 4516
240799cd 4517 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4518
240799cd
TT
4519 /* Is the inode bitmap in cache? */
4520 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4521 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4522 goto make_io;
4523
4524 /*
4525 * If the inode bitmap isn't in cache then the
4526 * optimisation may end up performing two reads instead
4527 * of one, so skip it.
4528 */
4529 if (!buffer_uptodate(bitmap_bh)) {
4530 brelse(bitmap_bh);
4531 goto make_io;
4532 }
240799cd 4533 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4534 if (i == inode_offset)
4535 continue;
617ba13b 4536 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4537 break;
4538 }
4539 brelse(bitmap_bh);
240799cd 4540 if (i == start + inodes_per_block) {
ac27a0ec
DK
4541 /* all other inodes are free, so skip I/O */
4542 memset(bh->b_data, 0, bh->b_size);
4543 set_buffer_uptodate(bh);
4544 unlock_buffer(bh);
4545 goto has_buffer;
4546 }
4547 }
4548
4549make_io:
240799cd
TT
4550 /*
4551 * If we need to do any I/O, try to pre-readahead extra
4552 * blocks from the inode table.
4553 */
4554 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4555 ext4_fsblk_t b, end, table;
4556 unsigned num;
0d606e2c 4557 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4558
4559 table = ext4_inode_table(sb, gdp);
b713a5ec 4560 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4561 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4562 if (table > b)
4563 b = table;
0d606e2c 4564 end = b + ra_blks;
240799cd 4565 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4566 if (ext4_has_group_desc_csum(sb))
560671a0 4567 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4568 table += num / inodes_per_block;
4569 if (end > table)
4570 end = table;
4571 while (b <= end)
4572 sb_breadahead(sb, b++);
4573 }
4574
ac27a0ec
DK
4575 /*
4576 * There are other valid inodes in the buffer, this inode
4577 * has in-inode xattrs, or we don't have this inode in memory.
4578 * Read the block from disk.
4579 */
0562e0ba 4580 trace_ext4_load_inode(inode);
ac27a0ec
DK
4581 get_bh(bh);
4582 bh->b_end_io = end_buffer_read_sync;
2a222ca9 4583 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4584 wait_on_buffer(bh);
4585 if (!buffer_uptodate(bh)) {
c398eda0
TT
4586 EXT4_ERROR_INODE_BLOCK(inode, block,
4587 "unable to read itable block");
ac27a0ec
DK
4588 brelse(bh);
4589 return -EIO;
4590 }
4591 }
4592has_buffer:
4593 iloc->bh = bh;
4594 return 0;
4595}
4596
617ba13b 4597int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4598{
4599 /* We have all inode data except xattrs in memory here. */
617ba13b 4600 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4601 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4602}
4603
6642586b
RZ
4604static bool ext4_should_use_dax(struct inode *inode)
4605{
4606 if (!test_opt(inode->i_sb, DAX))
4607 return false;
4608 if (!S_ISREG(inode->i_mode))
4609 return false;
4610 if (ext4_should_journal_data(inode))
4611 return false;
4612 if (ext4_has_inline_data(inode))
4613 return false;
4614 if (ext4_encrypted_inode(inode))
4615 return false;
4616 return true;
4617}
4618
617ba13b 4619void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4620{
617ba13b 4621 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4622 unsigned int new_fl = 0;
ac27a0ec 4623
617ba13b 4624 if (flags & EXT4_SYNC_FL)
00a1a053 4625 new_fl |= S_SYNC;
617ba13b 4626 if (flags & EXT4_APPEND_FL)
00a1a053 4627 new_fl |= S_APPEND;
617ba13b 4628 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4629 new_fl |= S_IMMUTABLE;
617ba13b 4630 if (flags & EXT4_NOATIME_FL)
00a1a053 4631 new_fl |= S_NOATIME;
617ba13b 4632 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4633 new_fl |= S_DIRSYNC;
6642586b 4634 if (ext4_should_use_dax(inode))
923ae0ff 4635 new_fl |= S_DAX;
2ee6a576
EB
4636 if (flags & EXT4_ENCRYPT_FL)
4637 new_fl |= S_ENCRYPTED;
5f16f322 4638 inode_set_flags(inode, new_fl,
2ee6a576
EB
4639 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4640 S_ENCRYPTED);
ac27a0ec
DK
4641}
4642
0fc1b451 4643static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4644 struct ext4_inode_info *ei)
0fc1b451
AK
4645{
4646 blkcnt_t i_blocks ;
8180a562
AK
4647 struct inode *inode = &(ei->vfs_inode);
4648 struct super_block *sb = inode->i_sb;
0fc1b451 4649
e2b911c5 4650 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4651 /* we are using combined 48 bit field */
4652 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4653 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4654 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4655 /* i_blocks represent file system block size */
4656 return i_blocks << (inode->i_blkbits - 9);
4657 } else {
4658 return i_blocks;
4659 }
0fc1b451
AK
4660 } else {
4661 return le32_to_cpu(raw_inode->i_blocks_lo);
4662 }
4663}
ff9ddf7e 4664
152a7b0a
TM
4665static inline void ext4_iget_extra_inode(struct inode *inode,
4666 struct ext4_inode *raw_inode,
4667 struct ext4_inode_info *ei)
4668{
4669 __le32 *magic = (void *)raw_inode +
4670 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
290ab230
EB
4671 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4672 EXT4_INODE_SIZE(inode->i_sb) &&
4673 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4674 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4675 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4676 } else
4677 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4678}
4679
040cb378
LX
4680int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4681{
0b7b7779 4682 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4683 return -EOPNOTSUPP;
4684 *projid = EXT4_I(inode)->i_projid;
4685 return 0;
4686}
4687
1d1fe1ee 4688struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4689{
617ba13b
MC
4690 struct ext4_iloc iloc;
4691 struct ext4_inode *raw_inode;
1d1fe1ee 4692 struct ext4_inode_info *ei;
1d1fe1ee 4693 struct inode *inode;
b436b9be 4694 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4695 long ret;
7e6e1ef4 4696 loff_t size;
ac27a0ec 4697 int block;
08cefc7a
EB
4698 uid_t i_uid;
4699 gid_t i_gid;
040cb378 4700 projid_t i_projid;
ac27a0ec 4701
1d1fe1ee
DH
4702 inode = iget_locked(sb, ino);
4703 if (!inode)
4704 return ERR_PTR(-ENOMEM);
4705 if (!(inode->i_state & I_NEW))
4706 return inode;
4707
4708 ei = EXT4_I(inode);
7dc57615 4709 iloc.bh = NULL;
ac27a0ec 4710
1d1fe1ee
DH
4711 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4712 if (ret < 0)
ac27a0ec 4713 goto bad_inode;
617ba13b 4714 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4715
4716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4717 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4718 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4719 EXT4_INODE_SIZE(inode->i_sb) ||
4720 (ei->i_extra_isize & 3)) {
4721 EXT4_ERROR_INODE(inode,
4722 "bad extra_isize %u (inode size %u)",
4723 ei->i_extra_isize,
4724 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4725 ret = -EFSCORRUPTED;
814525f4
DW
4726 goto bad_inode;
4727 }
4728 } else
4729 ei->i_extra_isize = 0;
4730
4731 /* Precompute checksum seed for inode metadata */
9aa5d32b 4732 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4733 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4734 __u32 csum;
4735 __le32 inum = cpu_to_le32(inode->i_ino);
4736 __le32 gen = raw_inode->i_generation;
4737 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4738 sizeof(inum));
4739 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4740 sizeof(gen));
4741 }
4742
4743 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4744 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4745 ret = -EFSBADCRC;
814525f4
DW
4746 goto bad_inode;
4747 }
4748
ac27a0ec 4749 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4750 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4751 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4752 if (ext4_has_feature_project(sb) &&
040cb378
LX
4753 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4754 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4755 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4756 else
4757 i_projid = EXT4_DEF_PROJID;
4758
af5bc92d 4759 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4760 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4761 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4762 }
08cefc7a
EB
4763 i_uid_write(inode, i_uid);
4764 i_gid_write(inode, i_gid);
040cb378 4765 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4766 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4767
353eb83c 4768 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4769 ei->i_inline_off = 0;
ac27a0ec
DK
4770 ei->i_dir_start_lookup = 0;
4771 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4772 /* We now have enough fields to check if the inode was active or not.
4773 * This is needed because nfsd might try to access dead inodes
4774 * the test is that same one that e2fsck uses
4775 * NeilBrown 1999oct15
4776 */
4777 if (inode->i_nlink == 0) {
393d1d1d
DTB
4778 if ((inode->i_mode == 0 ||
4779 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4780 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4781 /* this inode is deleted */
1d1fe1ee 4782 ret = -ESTALE;
ac27a0ec
DK
4783 goto bad_inode;
4784 }
4785 /* The only unlinked inodes we let through here have
4786 * valid i_mode and are being read by the orphan
4787 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4788 * the process of deleting those.
4789 * OR it is the EXT4_BOOT_LOADER_INO which is
4790 * not initialized on a new filesystem. */
ac27a0ec 4791 }
ac27a0ec 4792 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4793 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4794 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4795 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4796 ei->i_file_acl |=
4797 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4798 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4
DW
4799 if ((size = i_size_read(inode)) < 0) {
4800 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4801 ret = -EFSCORRUPTED;
4802 goto bad_inode;
4803 }
ac27a0ec 4804 ei->i_disksize = inode->i_size;
a9e7f447
DM
4805#ifdef CONFIG_QUOTA
4806 ei->i_reserved_quota = 0;
4807#endif
ac27a0ec
DK
4808 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4809 ei->i_block_group = iloc.block_group;
a4912123 4810 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4811 /*
4812 * NOTE! The in-memory inode i_data array is in little-endian order
4813 * even on big-endian machines: we do NOT byteswap the block numbers!
4814 */
617ba13b 4815 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4816 ei->i_data[block] = raw_inode->i_block[block];
4817 INIT_LIST_HEAD(&ei->i_orphan);
4818
b436b9be
JK
4819 /*
4820 * Set transaction id's of transactions that have to be committed
4821 * to finish f[data]sync. We set them to currently running transaction
4822 * as we cannot be sure that the inode or some of its metadata isn't
4823 * part of the transaction - the inode could have been reclaimed and
4824 * now it is reread from disk.
4825 */
4826 if (journal) {
4827 transaction_t *transaction;
4828 tid_t tid;
4829
a931da6a 4830 read_lock(&journal->j_state_lock);
b436b9be
JK
4831 if (journal->j_running_transaction)
4832 transaction = journal->j_running_transaction;
4833 else
4834 transaction = journal->j_committing_transaction;
4835 if (transaction)
4836 tid = transaction->t_tid;
4837 else
4838 tid = journal->j_commit_sequence;
a931da6a 4839 read_unlock(&journal->j_state_lock);
b436b9be
JK
4840 ei->i_sync_tid = tid;
4841 ei->i_datasync_tid = tid;
4842 }
4843
0040d987 4844 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4845 if (ei->i_extra_isize == 0) {
4846 /* The extra space is currently unused. Use it. */
2dc8d9e1 4847 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4848 ei->i_extra_isize = sizeof(struct ext4_inode) -
4849 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4850 } else {
152a7b0a 4851 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4852 }
814525f4 4853 }
ac27a0ec 4854
ef7f3835
KS
4855 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4856 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4857 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4858 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4859
ed3654eb 4860 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4861 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4864 inode->i_version |=
4865 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4866 }
25ec56b5
JNC
4867 }
4868
c4b5a614 4869 ret = 0;
485c26ec 4870 if (ei->i_file_acl &&
1032988c 4871 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4872 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4873 ei->i_file_acl);
6a797d27 4874 ret = -EFSCORRUPTED;
485c26ec 4875 goto bad_inode;
f19d5870
TM
4876 } else if (!ext4_has_inline_data(inode)) {
4877 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4878 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4879 (S_ISLNK(inode->i_mode) &&
4880 !ext4_inode_is_fast_symlink(inode))))
4881 /* Validate extent which is part of inode */
4882 ret = ext4_ext_check_inode(inode);
4883 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4884 (S_ISLNK(inode->i_mode) &&
4885 !ext4_inode_is_fast_symlink(inode))) {
4886 /* Validate block references which are part of inode */
4887 ret = ext4_ind_check_inode(inode);
4888 }
fe2c8191 4889 }
567f3e9a 4890 if (ret)
de9a55b8 4891 goto bad_inode;
7a262f7c 4892
ac27a0ec 4893 if (S_ISREG(inode->i_mode)) {
617ba13b 4894 inode->i_op = &ext4_file_inode_operations;
be64f884 4895 inode->i_fop = &ext4_file_operations;
617ba13b 4896 ext4_set_aops(inode);
ac27a0ec 4897 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4898 inode->i_op = &ext4_dir_inode_operations;
4899 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4900 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4901 if (ext4_encrypted_inode(inode)) {
4902 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4903 ext4_set_aops(inode);
4904 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4905 inode->i_link = (char *)ei->i_data;
617ba13b 4906 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4907 nd_terminate_link(ei->i_data, inode->i_size,
4908 sizeof(ei->i_data) - 1);
4909 } else {
617ba13b
MC
4910 inode->i_op = &ext4_symlink_inode_operations;
4911 ext4_set_aops(inode);
ac27a0ec 4912 }
21fc61c7 4913 inode_nohighmem(inode);
563bdd61
TT
4914 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4915 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4916 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4917 if (raw_inode->i_block[0])
4918 init_special_inode(inode, inode->i_mode,
4919 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4920 else
4921 init_special_inode(inode, inode->i_mode,
4922 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4923 } else if (ino == EXT4_BOOT_LOADER_INO) {
4924 make_bad_inode(inode);
563bdd61 4925 } else {
6a797d27 4926 ret = -EFSCORRUPTED;
24676da4 4927 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4928 goto bad_inode;
ac27a0ec 4929 }
af5bc92d 4930 brelse(iloc.bh);
617ba13b 4931 ext4_set_inode_flags(inode);
dec214d0 4932
1d1fe1ee
DH
4933 unlock_new_inode(inode);
4934 return inode;
ac27a0ec
DK
4935
4936bad_inode:
567f3e9a 4937 brelse(iloc.bh);
1d1fe1ee
DH
4938 iget_failed(inode);
4939 return ERR_PTR(ret);
ac27a0ec
DK
4940}
4941
f4bb2981
TT
4942struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4943{
4944 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4945 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4946 return ext4_iget(sb, ino);
4947}
4948
0fc1b451
AK
4949static int ext4_inode_blocks_set(handle_t *handle,
4950 struct ext4_inode *raw_inode,
4951 struct ext4_inode_info *ei)
4952{
4953 struct inode *inode = &(ei->vfs_inode);
4954 u64 i_blocks = inode->i_blocks;
4955 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4956
4957 if (i_blocks <= ~0U) {
4958 /*
4907cb7b 4959 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4960 * as multiple of 512 bytes
4961 */
8180a562 4962 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4963 raw_inode->i_blocks_high = 0;
84a8dce2 4964 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4965 return 0;
4966 }
e2b911c5 4967 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4968 return -EFBIG;
4969
4970 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4971 /*
4972 * i_blocks can be represented in a 48 bit variable
4973 * as multiple of 512 bytes
4974 */
8180a562 4975 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4976 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4977 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4978 } else {
84a8dce2 4979 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4980 /* i_block is stored in file system block size */
4981 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4982 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4983 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4984 }
f287a1a5 4985 return 0;
0fc1b451
AK
4986}
4987
a26f4992
TT
4988struct other_inode {
4989 unsigned long orig_ino;
4990 struct ext4_inode *raw_inode;
4991};
4992
4993static int other_inode_match(struct inode * inode, unsigned long ino,
4994 void *data)
4995{
4996 struct other_inode *oi = (struct other_inode *) data;
4997
4998 if ((inode->i_ino != ino) ||
4999 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5000 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
5001 ((inode->i_state & I_DIRTY_TIME) == 0))
5002 return 0;
5003 spin_lock(&inode->i_lock);
5004 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5005 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
5006 (inode->i_state & I_DIRTY_TIME)) {
5007 struct ext4_inode_info *ei = EXT4_I(inode);
5008
5009 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5010 spin_unlock(&inode->i_lock);
5011
5012 spin_lock(&ei->i_raw_lock);
5013 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5014 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5015 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5016 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5017 spin_unlock(&ei->i_raw_lock);
5018 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5019 return -1;
5020 }
5021 spin_unlock(&inode->i_lock);
5022 return -1;
5023}
5024
5025/*
5026 * Opportunistically update the other time fields for other inodes in
5027 * the same inode table block.
5028 */
5029static void ext4_update_other_inodes_time(struct super_block *sb,
5030 unsigned long orig_ino, char *buf)
5031{
5032 struct other_inode oi;
5033 unsigned long ino;
5034 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5035 int inode_size = EXT4_INODE_SIZE(sb);
5036
5037 oi.orig_ino = orig_ino;
0f0ff9a9
TT
5038 /*
5039 * Calculate the first inode in the inode table block. Inode
5040 * numbers are one-based. That is, the first inode in a block
5041 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5042 */
5043 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
5044 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5045 if (ino == orig_ino)
5046 continue;
5047 oi.raw_inode = (struct ext4_inode *) buf;
5048 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5049 }
5050}
5051
ac27a0ec
DK
5052/*
5053 * Post the struct inode info into an on-disk inode location in the
5054 * buffer-cache. This gobbles the caller's reference to the
5055 * buffer_head in the inode location struct.
5056 *
5057 * The caller must have write access to iloc->bh.
5058 */
617ba13b 5059static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5060 struct inode *inode,
830156c7 5061 struct ext4_iloc *iloc)
ac27a0ec 5062{
617ba13b
MC
5063 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5064 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 5065 struct buffer_head *bh = iloc->bh;
202ee5df 5066 struct super_block *sb = inode->i_sb;
ac27a0ec 5067 int err = 0, rc, block;
202ee5df 5068 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
5069 uid_t i_uid;
5070 gid_t i_gid;
040cb378 5071 projid_t i_projid;
ac27a0ec 5072
202ee5df
TT
5073 spin_lock(&ei->i_raw_lock);
5074
5075 /* For fields not tracked in the in-memory inode,
ac27a0ec 5076 * initialise them to zero for new inodes. */
19f5fb7a 5077 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5078 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec
DK
5079
5080 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5081 i_uid = i_uid_read(inode);
5082 i_gid = i_gid_read(inode);
040cb378 5083 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5084 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5085 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5086 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
5087/*
5088 * Fix up interoperability with old kernels. Otherwise, old inodes get
5089 * re-used with the upper 16 bits of the uid/gid intact
5090 */
93e3b4e6
DJ
5091 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5092 raw_inode->i_uid_high = 0;
5093 raw_inode->i_gid_high = 0;
5094 } else {
ac27a0ec 5095 raw_inode->i_uid_high =
08cefc7a 5096 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5097 raw_inode->i_gid_high =
08cefc7a 5098 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5099 }
5100 } else {
08cefc7a
EB
5101 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5102 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5103 raw_inode->i_uid_high = 0;
5104 raw_inode->i_gid_high = 0;
5105 }
5106 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5107
5108 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5109 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5110 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5111 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5112
bce92d56
LX
5113 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5114 if (err) {
202ee5df 5115 spin_unlock(&ei->i_raw_lock);
0fc1b451 5116 goto out_brelse;
202ee5df 5117 }
ac27a0ec 5118 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5119 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5120 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5121 raw_inode->i_file_acl_high =
5122 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5123 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
e08ac99f 5124 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5125 ext4_isize_set(raw_inode, ei->i_disksize);
5126 need_datasync = 1;
5127 }
a48380f7 5128 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5129 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5130 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5131 cpu_to_le32(EXT4_GOOD_OLD_REV))
5132 set_large_file = 1;
ac27a0ec
DK
5133 }
5134 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5135 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5136 if (old_valid_dev(inode->i_rdev)) {
5137 raw_inode->i_block[0] =
5138 cpu_to_le32(old_encode_dev(inode->i_rdev));
5139 raw_inode->i_block[1] = 0;
5140 } else {
5141 raw_inode->i_block[0] = 0;
5142 raw_inode->i_block[1] =
5143 cpu_to_le32(new_encode_dev(inode->i_rdev));
5144 raw_inode->i_block[2] = 0;
5145 }
f19d5870 5146 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5147 for (block = 0; block < EXT4_N_BLOCKS; block++)
5148 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5149 }
ac27a0ec 5150
ed3654eb 5151 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
5152 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5153 if (ei->i_extra_isize) {
5154 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5155 raw_inode->i_version_hi =
5156 cpu_to_le32(inode->i_version >> 32);
5157 raw_inode->i_extra_isize =
5158 cpu_to_le16(ei->i_extra_isize);
5159 }
25ec56b5 5160 }
040cb378 5161
0b7b7779 5162 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
040cb378
LX
5163 i_projid != EXT4_DEF_PROJID);
5164
5165 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5166 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5167 raw_inode->i_projid = cpu_to_le32(i_projid);
5168
814525f4 5169 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5170 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
5171 if (inode->i_sb->s_flags & MS_LAZYTIME)
5172 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5173 bh->b_data);
202ee5df 5174
830156c7 5175 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5176 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5177 if (!err)
5178 err = rc;
19f5fb7a 5179 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5180 if (set_large_file) {
5d601255 5181 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
5182 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5183 if (err)
5184 goto out_brelse;
5185 ext4_update_dynamic_rev(sb);
e2b911c5 5186 ext4_set_feature_large_file(sb);
202ee5df
TT
5187 ext4_handle_sync(handle);
5188 err = ext4_handle_dirty_super(handle, sb);
5189 }
b71fc079 5190 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 5191out_brelse:
af5bc92d 5192 brelse(bh);
617ba13b 5193 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5194 return err;
5195}
5196
5197/*
617ba13b 5198 * ext4_write_inode()
ac27a0ec
DK
5199 *
5200 * We are called from a few places:
5201 *
87f7e416 5202 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5203 * Here, there will be no transaction running. We wait for any running
4907cb7b 5204 * transaction to commit.
ac27a0ec 5205 *
87f7e416
TT
5206 * - Within flush work (sys_sync(), kupdate and such).
5207 * We wait on commit, if told to.
ac27a0ec 5208 *
87f7e416
TT
5209 * - Within iput_final() -> write_inode_now()
5210 * We wait on commit, if told to.
ac27a0ec
DK
5211 *
5212 * In all cases it is actually safe for us to return without doing anything,
5213 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5214 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5215 * writeback.
ac27a0ec
DK
5216 *
5217 * Note that we are absolutely dependent upon all inode dirtiers doing the
5218 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5219 * which we are interested.
5220 *
5221 * It would be a bug for them to not do this. The code:
5222 *
5223 * mark_inode_dirty(inode)
5224 * stuff();
5225 * inode->i_size = expr;
5226 *
87f7e416
TT
5227 * is in error because write_inode() could occur while `stuff()' is running,
5228 * and the new i_size will be lost. Plus the inode will no longer be on the
5229 * superblock's dirty inode list.
ac27a0ec 5230 */
a9185b41 5231int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5232{
91ac6f43
FM
5233 int err;
5234
87f7e416 5235 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
5236 return 0;
5237
91ac6f43
FM
5238 if (EXT4_SB(inode->i_sb)->s_journal) {
5239 if (ext4_journal_current_handle()) {
5240 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5241 dump_stack();
5242 return -EIO;
5243 }
ac27a0ec 5244
10542c22
JK
5245 /*
5246 * No need to force transaction in WB_SYNC_NONE mode. Also
5247 * ext4_sync_fs() will force the commit after everything is
5248 * written.
5249 */
5250 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5251 return 0;
5252
5253 err = ext4_force_commit(inode->i_sb);
5254 } else {
5255 struct ext4_iloc iloc;
ac27a0ec 5256
8b472d73 5257 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5258 if (err)
5259 return err;
10542c22
JK
5260 /*
5261 * sync(2) will flush the whole buffer cache. No need to do
5262 * it here separately for each inode.
5263 */
5264 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5265 sync_dirty_buffer(iloc.bh);
5266 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5267 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5268 "IO error syncing inode");
830156c7
FM
5269 err = -EIO;
5270 }
fd2dd9fb 5271 brelse(iloc.bh);
91ac6f43
FM
5272 }
5273 return err;
ac27a0ec
DK
5274}
5275
53e87268
JK
5276/*
5277 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5278 * buffers that are attached to a page stradding i_size and are undergoing
5279 * commit. In that case we have to wait for commit to finish and try again.
5280 */
5281static void ext4_wait_for_tail_page_commit(struct inode *inode)
5282{
5283 struct page *page;
5284 unsigned offset;
5285 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5286 tid_t commit_tid = 0;
5287 int ret;
5288
09cbfeaf 5289 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268
JK
5290 /*
5291 * All buffers in the last page remain valid? Then there's nothing to
ea1754a0 5292 * do. We do the check mainly to optimize the common PAGE_SIZE ==
53e87268
JK
5293 * blocksize case
5294 */
93407472 5295 if (offset > PAGE_SIZE - i_blocksize(inode))
53e87268
JK
5296 return;
5297 while (1) {
5298 page = find_lock_page(inode->i_mapping,
09cbfeaf 5299 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5300 if (!page)
5301 return;
ca99fdd2 5302 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5303 PAGE_SIZE - offset);
53e87268 5304 unlock_page(page);
09cbfeaf 5305 put_page(page);
53e87268
JK
5306 if (ret != -EBUSY)
5307 return;
5308 commit_tid = 0;
5309 read_lock(&journal->j_state_lock);
5310 if (journal->j_committing_transaction)
5311 commit_tid = journal->j_committing_transaction->t_tid;
5312 read_unlock(&journal->j_state_lock);
5313 if (commit_tid)
5314 jbd2_log_wait_commit(journal, commit_tid);
5315 }
5316}
5317
ac27a0ec 5318/*
617ba13b 5319 * ext4_setattr()
ac27a0ec
DK
5320 *
5321 * Called from notify_change.
5322 *
5323 * We want to trap VFS attempts to truncate the file as soon as
5324 * possible. In particular, we want to make sure that when the VFS
5325 * shrinks i_size, we put the inode on the orphan list and modify
5326 * i_disksize immediately, so that during the subsequent flushing of
5327 * dirty pages and freeing of disk blocks, we can guarantee that any
5328 * commit will leave the blocks being flushed in an unused state on
5329 * disk. (On recovery, the inode will get truncated and the blocks will
5330 * be freed, so we have a strong guarantee that no future commit will
5331 * leave these blocks visible to the user.)
5332 *
678aaf48
JK
5333 * Another thing we have to assure is that if we are in ordered mode
5334 * and inode is still attached to the committing transaction, we must
5335 * we start writeout of all the dirty pages which are being truncated.
5336 * This way we are sure that all the data written in the previous
5337 * transaction are already on disk (truncate waits for pages under
5338 * writeback).
5339 *
5340 * Called with inode->i_mutex down.
ac27a0ec 5341 */
617ba13b 5342int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 5343{
2b0143b5 5344 struct inode *inode = d_inode(dentry);
ac27a0ec 5345 int error, rc = 0;
3d287de3 5346 int orphan = 0;
ac27a0ec
DK
5347 const unsigned int ia_valid = attr->ia_valid;
5348
0db1ff22
TT
5349 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5350 return -EIO;
5351
31051c85 5352 error = setattr_prepare(dentry, attr);
ac27a0ec
DK
5353 if (error)
5354 return error;
5355
3ce2b8dd
EB
5356 error = fscrypt_prepare_setattr(dentry, attr);
5357 if (error)
5358 return error;
5359
a7cdadee
JK
5360 if (is_quota_modification(inode, attr)) {
5361 error = dquot_initialize(inode);
5362 if (error)
5363 return error;
5364 }
08cefc7a
EB
5365 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5366 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5367 handle_t *handle;
5368
5369 /* (user+group)*(old+new) structure, inode write (sb,
5370 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5371 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5372 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5373 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5374 if (IS_ERR(handle)) {
5375 error = PTR_ERR(handle);
5376 goto err_out;
5377 }
7a9ca53a
TE
5378
5379 /* dquot_transfer() calls back ext4_get_inode_usage() which
5380 * counts xattr inode references.
5381 */
5382 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5383 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5384 up_read(&EXT4_I(inode)->xattr_sem);
5385
ac27a0ec 5386 if (error) {
617ba13b 5387 ext4_journal_stop(handle);
ac27a0ec
DK
5388 return error;
5389 }
5390 /* Update corresponding info in inode so that everything is in
5391 * one transaction */
5392 if (attr->ia_valid & ATTR_UID)
5393 inode->i_uid = attr->ia_uid;
5394 if (attr->ia_valid & ATTR_GID)
5395 inode->i_gid = attr->ia_gid;
617ba13b
MC
5396 error = ext4_mark_inode_dirty(handle, inode);
5397 ext4_journal_stop(handle);
ac27a0ec
DK
5398 }
5399
3da40c7b 5400 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5401 handle_t *handle;
3da40c7b
JB
5402 loff_t oldsize = inode->i_size;
5403 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 5404
12e9b892 5405 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5406 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5407
0c095c7f
TT
5408 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5409 return -EFBIG;
e2b46574 5410 }
3da40c7b
JB
5411 if (!S_ISREG(inode->i_mode))
5412 return -EINVAL;
dff6efc3
CH
5413
5414 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5415 inode_inc_iversion(inode);
5416
3da40c7b 5417 if (ext4_should_order_data(inode) &&
5208386c 5418 (attr->ia_size < inode->i_size)) {
3da40c7b 5419 error = ext4_begin_ordered_truncate(inode,
678aaf48 5420 attr->ia_size);
3da40c7b
JB
5421 if (error)
5422 goto err_out;
5423 }
5424 if (attr->ia_size != inode->i_size) {
5208386c
JK
5425 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5426 if (IS_ERR(handle)) {
5427 error = PTR_ERR(handle);
5428 goto err_out;
5429 }
3da40c7b 5430 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5431 error = ext4_orphan_add(handle, inode);
5432 orphan = 1;
5433 }
911af577
EG
5434 /*
5435 * Update c/mtime on truncate up, ext4_truncate() will
5436 * update c/mtime in shrink case below
5437 */
5438 if (!shrink) {
eeca7ea1 5439 inode->i_mtime = current_time(inode);
911af577
EG
5440 inode->i_ctime = inode->i_mtime;
5441 }
90e775b7 5442 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5443 EXT4_I(inode)->i_disksize = attr->ia_size;
5444 rc = ext4_mark_inode_dirty(handle, inode);
5445 if (!error)
5446 error = rc;
90e775b7
JK
5447 /*
5448 * We have to update i_size under i_data_sem together
5449 * with i_disksize to avoid races with writeback code
5450 * running ext4_wb_update_i_disksize().
5451 */
5452 if (!error)
5453 i_size_write(inode, attr->ia_size);
5454 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5455 ext4_journal_stop(handle);
5456 if (error) {
3da40c7b
JB
5457 if (orphan)
5458 ext4_orphan_del(NULL, inode);
678aaf48
JK
5459 goto err_out;
5460 }
d6320cbf 5461 }
3da40c7b
JB
5462 if (!shrink)
5463 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5464
5208386c
JK
5465 /*
5466 * Blocks are going to be removed from the inode. Wait
5467 * for dio in flight. Temporarily disable
5468 * dioread_nolock to prevent livelock.
5469 */
5470 if (orphan) {
5471 if (!ext4_should_journal_data(inode)) {
5472 ext4_inode_block_unlocked_dio(inode);
5473 inode_dio_wait(inode);
5474 ext4_inode_resume_unlocked_dio(inode);
5475 } else
5476 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5477 }
ea3d7209 5478 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5479 /*
5480 * Truncate pagecache after we've waited for commit
5481 * in data=journal mode to make pages freeable.
5482 */
923ae0ff 5483 truncate_pagecache(inode, inode->i_size);
2c98eb5e
TT
5484 if (shrink) {
5485 rc = ext4_truncate(inode);
5486 if (rc)
5487 error = rc;
5488 }
ea3d7209 5489 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5490 }
ac27a0ec 5491
2c98eb5e 5492 if (!error) {
1025774c
CH
5493 setattr_copy(inode, attr);
5494 mark_inode_dirty(inode);
5495 }
5496
5497 /*
5498 * If the call to ext4_truncate failed to get a transaction handle at
5499 * all, we need to clean up the in-core orphan list manually.
5500 */
3d287de3 5501 if (orphan && inode->i_nlink)
617ba13b 5502 ext4_orphan_del(NULL, inode);
ac27a0ec 5503
2c98eb5e 5504 if (!error && (ia_valid & ATTR_MODE))
64e178a7 5505 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5506
5507err_out:
617ba13b 5508 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5509 if (!error)
5510 error = rc;
5511 return error;
5512}
5513
a528d35e
DH
5514int ext4_getattr(const struct path *path, struct kstat *stat,
5515 u32 request_mask, unsigned int query_flags)
3e3398a0 5516{
99652ea5
DH
5517 struct inode *inode = d_inode(path->dentry);
5518 struct ext4_inode *raw_inode;
5519 struct ext4_inode_info *ei = EXT4_I(inode);
5520 unsigned int flags;
5521
5522 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5523 stat->result_mask |= STATX_BTIME;
5524 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5525 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5526 }
5527
5528 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5529 if (flags & EXT4_APPEND_FL)
5530 stat->attributes |= STATX_ATTR_APPEND;
5531 if (flags & EXT4_COMPR_FL)
5532 stat->attributes |= STATX_ATTR_COMPRESSED;
5533 if (flags & EXT4_ENCRYPT_FL)
5534 stat->attributes |= STATX_ATTR_ENCRYPTED;
5535 if (flags & EXT4_IMMUTABLE_FL)
5536 stat->attributes |= STATX_ATTR_IMMUTABLE;
5537 if (flags & EXT4_NODUMP_FL)
5538 stat->attributes |= STATX_ATTR_NODUMP;
3e3398a0 5539
3209f68b
DH
5540 stat->attributes_mask |= (STATX_ATTR_APPEND |
5541 STATX_ATTR_COMPRESSED |
5542 STATX_ATTR_ENCRYPTED |
5543 STATX_ATTR_IMMUTABLE |
5544 STATX_ATTR_NODUMP);
5545
3e3398a0 5546 generic_fillattr(inode, stat);
99652ea5
DH
5547 return 0;
5548}
5549
5550int ext4_file_getattr(const struct path *path, struct kstat *stat,
5551 u32 request_mask, unsigned int query_flags)
5552{
5553 struct inode *inode = d_inode(path->dentry);
5554 u64 delalloc_blocks;
5555
5556 ext4_getattr(path, stat, request_mask, query_flags);
3e3398a0 5557
9206c561
AD
5558 /*
5559 * If there is inline data in the inode, the inode will normally not
5560 * have data blocks allocated (it may have an external xattr block).
5561 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5562 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5563 */
5564 if (unlikely(ext4_has_inline_data(inode)))
5565 stat->blocks += (stat->size + 511) >> 9;
5566
3e3398a0
MC
5567 /*
5568 * We can't update i_blocks if the block allocation is delayed
5569 * otherwise in the case of system crash before the real block
5570 * allocation is done, we will have i_blocks inconsistent with
5571 * on-disk file blocks.
5572 * We always keep i_blocks updated together with real
5573 * allocation. But to not confuse with user, stat
5574 * will return the blocks that include the delayed allocation
5575 * blocks for this file.
5576 */
96607551 5577 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5578 EXT4_I(inode)->i_reserved_data_blocks);
5579 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5580 return 0;
5581}
ac27a0ec 5582
fffb2739
JK
5583static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5584 int pextents)
a02908f1 5585{
12e9b892 5586 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5587 return ext4_ind_trans_blocks(inode, lblocks);
5588 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5589}
ac51d837 5590
ac27a0ec 5591/*
a02908f1
MC
5592 * Account for index blocks, block groups bitmaps and block group
5593 * descriptor blocks if modify datablocks and index blocks
5594 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5595 *
a02908f1 5596 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5597 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5598 * they could still across block group boundary.
ac27a0ec 5599 *
a02908f1
MC
5600 * Also account for superblock, inode, quota and xattr blocks
5601 */
dec214d0 5602static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5603 int pextents)
a02908f1 5604{
8df9675f
TT
5605 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5606 int gdpblocks;
a02908f1
MC
5607 int idxblocks;
5608 int ret = 0;
5609
5610 /*
fffb2739
JK
5611 * How many index blocks need to touch to map @lblocks logical blocks
5612 * to @pextents physical extents?
a02908f1 5613 */
fffb2739 5614 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5615
5616 ret = idxblocks;
5617
5618 /*
5619 * Now let's see how many group bitmaps and group descriptors need
5620 * to account
5621 */
fffb2739 5622 groups = idxblocks + pextents;
a02908f1 5623 gdpblocks = groups;
8df9675f
TT
5624 if (groups > ngroups)
5625 groups = ngroups;
a02908f1
MC
5626 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5627 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5628
5629 /* bitmaps and block group descriptor blocks */
5630 ret += groups + gdpblocks;
5631
5632 /* Blocks for super block, inode, quota and xattr blocks */
5633 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5634
5635 return ret;
5636}
5637
5638/*
25985edc 5639 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5640 * the modification of a single pages into a single transaction,
5641 * which may include multiple chunks of block allocations.
ac27a0ec 5642 *
525f4ed8 5643 * This could be called via ext4_write_begin()
ac27a0ec 5644 *
525f4ed8 5645 * We need to consider the worse case, when
a02908f1 5646 * one new block per extent.
ac27a0ec 5647 */
a86c6181 5648int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5649{
617ba13b 5650 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5651 int ret;
5652
fffb2739 5653 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5654
a02908f1 5655 /* Account for data blocks for journalled mode */
617ba13b 5656 if (ext4_should_journal_data(inode))
a02908f1 5657 ret += bpp;
ac27a0ec
DK
5658 return ret;
5659}
f3bd1f3f
MC
5660
5661/*
5662 * Calculate the journal credits for a chunk of data modification.
5663 *
5664 * This is called from DIO, fallocate or whoever calling
79e83036 5665 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5666 *
5667 * journal buffers for data blocks are not included here, as DIO
5668 * and fallocate do no need to journal data buffers.
5669 */
5670int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5671{
5672 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5673}
5674
ac27a0ec 5675/*
617ba13b 5676 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5677 * Give this, we know that the caller already has write access to iloc->bh.
5678 */
617ba13b 5679int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5680 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5681{
5682 int err = 0;
5683
0db1ff22
TT
5684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5685 return -EIO;
5686
c64db50e 5687 if (IS_I_VERSION(inode))
25ec56b5
JNC
5688 inode_inc_iversion(inode);
5689
ac27a0ec
DK
5690 /* the do_update_inode consumes one bh->b_count */
5691 get_bh(iloc->bh);
5692
dab291af 5693 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5694 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5695 put_bh(iloc->bh);
5696 return err;
5697}
5698
5699/*
5700 * On success, We end up with an outstanding reference count against
5701 * iloc->bh. This _must_ be cleaned up later.
5702 */
5703
5704int
617ba13b
MC
5705ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5706 struct ext4_iloc *iloc)
ac27a0ec 5707{
0390131b
FM
5708 int err;
5709
0db1ff22
TT
5710 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5711 return -EIO;
5712
0390131b
FM
5713 err = ext4_get_inode_loc(inode, iloc);
5714 if (!err) {
5715 BUFFER_TRACE(iloc->bh, "get_write_access");
5716 err = ext4_journal_get_write_access(handle, iloc->bh);
5717 if (err) {
5718 brelse(iloc->bh);
5719 iloc->bh = NULL;
ac27a0ec
DK
5720 }
5721 }
617ba13b 5722 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5723 return err;
5724}
5725
c03b45b8
MX
5726static int __ext4_expand_extra_isize(struct inode *inode,
5727 unsigned int new_extra_isize,
5728 struct ext4_iloc *iloc,
5729 handle_t *handle, int *no_expand)
5730{
5731 struct ext4_inode *raw_inode;
5732 struct ext4_xattr_ibody_header *header;
5733 int error;
5734
5735 raw_inode = ext4_raw_inode(iloc);
5736
5737 header = IHDR(inode, raw_inode);
5738
5739 /* No extended attributes present */
5740 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5741 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5742 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5743 EXT4_I(inode)->i_extra_isize, 0,
5744 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5745 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5746 return 0;
5747 }
5748
5749 /* try to expand with EAs present */
5750 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5751 raw_inode, handle);
5752 if (error) {
5753 /*
5754 * Inode size expansion failed; don't try again
5755 */
5756 *no_expand = 1;
5757 }
5758
5759 return error;
5760}
5761
6dd4ee7c
KS
5762/*
5763 * Expand an inode by new_extra_isize bytes.
5764 * Returns 0 on success or negative error number on failure.
5765 */
cf0a5e81
MX
5766static int ext4_try_to_expand_extra_isize(struct inode *inode,
5767 unsigned int new_extra_isize,
5768 struct ext4_iloc iloc,
5769 handle_t *handle)
6dd4ee7c 5770{
3b10fdc6
MX
5771 int no_expand;
5772 int error;
6dd4ee7c 5773
cf0a5e81
MX
5774 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5775 return -EOVERFLOW;
5776
5777 /*
5778 * In nojournal mode, we can immediately attempt to expand
5779 * the inode. When journaled, we first need to obtain extra
5780 * buffer credits since we may write into the EA block
5781 * with this same handle. If journal_extend fails, then it will
5782 * only result in a minor loss of functionality for that inode.
5783 * If this is felt to be critical, then e2fsck should be run to
5784 * force a large enough s_min_extra_isize.
5785 */
5786 if (ext4_handle_valid(handle) &&
5787 jbd2_journal_extend(handle,
5788 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5789 return -ENOSPC;
6dd4ee7c 5790
3b10fdc6 5791 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5792 return -EBUSY;
3b10fdc6 5793
c03b45b8
MX
5794 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5795 handle, &no_expand);
5796 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5797
c03b45b8
MX
5798 return error;
5799}
6dd4ee7c 5800
c03b45b8
MX
5801int ext4_expand_extra_isize(struct inode *inode,
5802 unsigned int new_extra_isize,
5803 struct ext4_iloc *iloc)
5804{
5805 handle_t *handle;
5806 int no_expand;
5807 int error, rc;
5808
5809 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5810 brelse(iloc->bh);
5811 return -EOVERFLOW;
6dd4ee7c
KS
5812 }
5813
c03b45b8
MX
5814 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5815 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5816 if (IS_ERR(handle)) {
5817 error = PTR_ERR(handle);
5818 brelse(iloc->bh);
5819 return error;
5820 }
5821
5822 ext4_write_lock_xattr(inode, &no_expand);
5823
5824 BUFFER_TRACE(iloc.bh, "get_write_access");
5825 error = ext4_journal_get_write_access(handle, iloc->bh);
3b10fdc6 5826 if (error) {
c03b45b8
MX
5827 brelse(iloc->bh);
5828 goto out_stop;
3b10fdc6 5829 }
cf0a5e81 5830
c03b45b8
MX
5831 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5832 handle, &no_expand);
5833
5834 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5835 if (!error)
5836 error = rc;
5837
5838 ext4_write_unlock_xattr(inode, &no_expand);
5839out_stop:
5840 ext4_journal_stop(handle);
3b10fdc6 5841 return error;
6dd4ee7c
KS
5842}
5843
ac27a0ec
DK
5844/*
5845 * What we do here is to mark the in-core inode as clean with respect to inode
5846 * dirtiness (it may still be data-dirty).
5847 * This means that the in-core inode may be reaped by prune_icache
5848 * without having to perform any I/O. This is a very good thing,
5849 * because *any* task may call prune_icache - even ones which
5850 * have a transaction open against a different journal.
5851 *
5852 * Is this cheating? Not really. Sure, we haven't written the
5853 * inode out, but prune_icache isn't a user-visible syncing function.
5854 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5855 * we start and wait on commits.
ac27a0ec 5856 */
617ba13b 5857int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5858{
617ba13b 5859 struct ext4_iloc iloc;
6dd4ee7c 5860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5861 int err;
ac27a0ec
DK
5862
5863 might_sleep();
7ff9c073 5864 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5865 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2
EG
5866 if (err)
5867 return err;
cf0a5e81
MX
5868
5869 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5870 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5871 iloc, handle);
5872
5e1021f2 5873 return ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5874}
5875
5876/*
617ba13b 5877 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5878 *
5879 * We're really interested in the case where a file is being extended.
5880 * i_size has been changed by generic_commit_write() and we thus need
5881 * to include the updated inode in the current transaction.
5882 *
5dd4056d 5883 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5884 * are allocated to the file.
5885 *
5886 * If the inode is marked synchronous, we don't honour that here - doing
5887 * so would cause a commit on atime updates, which we don't bother doing.
5888 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5889 *
5890 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5891 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5892 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5893 */
aa385729 5894void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5895{
ac27a0ec
DK
5896 handle_t *handle;
5897
0ae45f63
TT
5898 if (flags == I_DIRTY_TIME)
5899 return;
9924a92a 5900 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5901 if (IS_ERR(handle))
5902 goto out;
f3dc272f 5903
f3dc272f
CW
5904 ext4_mark_inode_dirty(handle, inode);
5905
617ba13b 5906 ext4_journal_stop(handle);
ac27a0ec
DK
5907out:
5908 return;
5909}
5910
5911#if 0
5912/*
5913 * Bind an inode's backing buffer_head into this transaction, to prevent
5914 * it from being flushed to disk early. Unlike
617ba13b 5915 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5916 * returns no iloc structure, so the caller needs to repeat the iloc
5917 * lookup to mark the inode dirty later.
5918 */
617ba13b 5919static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5920{
617ba13b 5921 struct ext4_iloc iloc;
ac27a0ec
DK
5922
5923 int err = 0;
5924 if (handle) {
617ba13b 5925 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5926 if (!err) {
5927 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5928 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5929 if (!err)
0390131b 5930 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5931 NULL,
0390131b 5932 iloc.bh);
ac27a0ec
DK
5933 brelse(iloc.bh);
5934 }
5935 }
617ba13b 5936 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5937 return err;
5938}
5939#endif
5940
617ba13b 5941int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5942{
5943 journal_t *journal;
5944 handle_t *handle;
5945 int err;
c8585c6f 5946 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5947
5948 /*
5949 * We have to be very careful here: changing a data block's
5950 * journaling status dynamically is dangerous. If we write a
5951 * data block to the journal, change the status and then delete
5952 * that block, we risk forgetting to revoke the old log record
5953 * from the journal and so a subsequent replay can corrupt data.
5954 * So, first we make sure that the journal is empty and that
5955 * nobody is changing anything.
5956 */
5957
617ba13b 5958 journal = EXT4_JOURNAL(inode);
0390131b
FM
5959 if (!journal)
5960 return 0;
d699594d 5961 if (is_journal_aborted(journal))
ac27a0ec
DK
5962 return -EROFS;
5963
17335dcc
DM
5964 /* Wait for all existing dio workers */
5965 ext4_inode_block_unlocked_dio(inode);
5966 inode_dio_wait(inode);
5967
4c546592
DJ
5968 /*
5969 * Before flushing the journal and switching inode's aops, we have
5970 * to flush all dirty data the inode has. There can be outstanding
5971 * delayed allocations, there can be unwritten extents created by
5972 * fallocate or buffered writes in dioread_nolock mode covered by
5973 * dirty data which can be converted only after flushing the dirty
5974 * data (and journalled aops don't know how to handle these cases).
5975 */
5976 if (val) {
5977 down_write(&EXT4_I(inode)->i_mmap_sem);
5978 err = filemap_write_and_wait(inode->i_mapping);
5979 if (err < 0) {
5980 up_write(&EXT4_I(inode)->i_mmap_sem);
5981 ext4_inode_resume_unlocked_dio(inode);
5982 return err;
5983 }
5984 }
5985
c8585c6f 5986 percpu_down_write(&sbi->s_journal_flag_rwsem);
dab291af 5987 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5988
5989 /*
5990 * OK, there are no updates running now, and all cached data is
5991 * synced to disk. We are now in a completely consistent state
5992 * which doesn't have anything in the journal, and we know that
5993 * no filesystem updates are running, so it is safe to modify
5994 * the inode's in-core data-journaling state flag now.
5995 */
5996
5997 if (val)
12e9b892 5998 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5999 else {
4f879ca6
JK
6000 err = jbd2_journal_flush(journal);
6001 if (err < 0) {
6002 jbd2_journal_unlock_updates(journal);
c8585c6f 6003 percpu_up_write(&sbi->s_journal_flag_rwsem);
4f879ca6
JK
6004 ext4_inode_resume_unlocked_dio(inode);
6005 return err;
6006 }
12e9b892 6007 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 6008 }
617ba13b 6009 ext4_set_aops(inode);
ac27a0ec 6010
dab291af 6011 jbd2_journal_unlock_updates(journal);
c8585c6f
DJ
6012 percpu_up_write(&sbi->s_journal_flag_rwsem);
6013
4c546592
DJ
6014 if (val)
6015 up_write(&EXT4_I(inode)->i_mmap_sem);
17335dcc 6016 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
6017
6018 /* Finally we can mark the inode as dirty. */
6019
9924a92a 6020 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6021 if (IS_ERR(handle))
6022 return PTR_ERR(handle);
6023
617ba13b 6024 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6025 ext4_handle_sync(handle);
617ba13b
MC
6026 ext4_journal_stop(handle);
6027 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6028
6029 return err;
6030}
2e9ee850
AK
6031
6032static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6033{
6034 return !buffer_mapped(bh);
6035}
6036
11bac800 6037int ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6038{
11bac800 6039 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6040 struct page *page = vmf->page;
2e9ee850
AK
6041 loff_t size;
6042 unsigned long len;
9ea7df53 6043 int ret;
2e9ee850 6044 struct file *file = vma->vm_file;
496ad9aa 6045 struct inode *inode = file_inode(file);
2e9ee850 6046 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6047 handle_t *handle;
6048 get_block_t *get_block;
6049 int retries = 0;
2e9ee850 6050
8e8ad8a5 6051 sb_start_pagefault(inode->i_sb);
041bbb6d 6052 file_update_time(vma->vm_file);
ea3d7209
JK
6053
6054 down_read(&EXT4_I(inode)->i_mmap_sem);
7b4cc978
EB
6055
6056 ret = ext4_convert_inline_data(inode);
6057 if (ret)
6058 goto out_ret;
6059
9ea7df53
JK
6060 /* Delalloc case is easy... */
6061 if (test_opt(inode->i_sb, DELALLOC) &&
6062 !ext4_should_journal_data(inode) &&
6063 !ext4_nonda_switch(inode->i_sb)) {
6064 do {
5c500029 6065 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
6066 ext4_da_get_block_prep);
6067 } while (ret == -ENOSPC &&
6068 ext4_should_retry_alloc(inode->i_sb, &retries));
6069 goto out_ret;
2e9ee850 6070 }
0e499890
DW
6071
6072 lock_page(page);
9ea7df53
JK
6073 size = i_size_read(inode);
6074 /* Page got truncated from under us? */
6075 if (page->mapping != mapping || page_offset(page) > size) {
6076 unlock_page(page);
6077 ret = VM_FAULT_NOPAGE;
6078 goto out;
0e499890 6079 }
2e9ee850 6080
09cbfeaf
KS
6081 if (page->index == size >> PAGE_SHIFT)
6082 len = size & ~PAGE_MASK;
2e9ee850 6083 else
09cbfeaf 6084 len = PAGE_SIZE;
a827eaff 6085 /*
9ea7df53
JK
6086 * Return if we have all the buffers mapped. This avoids the need to do
6087 * journal_start/journal_stop which can block and take a long time
a827eaff 6088 */
2e9ee850 6089 if (page_has_buffers(page)) {
f19d5870
TM
6090 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6091 0, len, NULL,
6092 ext4_bh_unmapped)) {
9ea7df53 6093 /* Wait so that we don't change page under IO */
1d1d1a76 6094 wait_for_stable_page(page);
9ea7df53
JK
6095 ret = VM_FAULT_LOCKED;
6096 goto out;
a827eaff 6097 }
2e9ee850 6098 }
a827eaff 6099 unlock_page(page);
9ea7df53
JK
6100 /* OK, we need to fill the hole... */
6101 if (ext4_should_dioread_nolock(inode))
705965bd 6102 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6103 else
6104 get_block = ext4_get_block;
6105retry_alloc:
9924a92a
TT
6106 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6107 ext4_writepage_trans_blocks(inode));
9ea7df53 6108 if (IS_ERR(handle)) {
c2ec175c 6109 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6110 goto out;
6111 }
5c500029 6112 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 6113 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 6114 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
09cbfeaf 6115 PAGE_SIZE, NULL, do_journal_get_write_access)) {
9ea7df53
JK
6116 unlock_page(page);
6117 ret = VM_FAULT_SIGBUS;
fcbb5515 6118 ext4_journal_stop(handle);
9ea7df53
JK
6119 goto out;
6120 }
6121 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6122 }
6123 ext4_journal_stop(handle);
6124 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6125 goto retry_alloc;
6126out_ret:
6127 ret = block_page_mkwrite_return(ret);
6128out:
ea3d7209 6129 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 6130 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
6131 return ret;
6132}
ea3d7209 6133
11bac800 6134int ext4_filemap_fault(struct vm_fault *vmf)
ea3d7209 6135{
11bac800 6136 struct inode *inode = file_inode(vmf->vma->vm_file);
ea3d7209
JK
6137 int err;
6138
6139 down_read(&EXT4_I(inode)->i_mmap_sem);
11bac800 6140 err = filemap_fault(vmf);
ea3d7209
JK
6141 up_read(&EXT4_I(inode)->i_mmap_sem);
6142
6143 return err;
6144}