]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: cleanup handling of bh->b_state in DAX mmap
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
ac27a0ec
DK
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
c94c2acf 25#include <linux/dax.h>
ac27a0ec
DK
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
00a1a053 39#include <linux/bitops.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 84 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
85 return 1;
86
87 provided = le16_to_cpu(raw->i_checksum_lo);
88 calculated = ext4_inode_csum(inode, raw, ei);
89 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
90 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
91 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
92 else
93 calculated &= 0xFFFF;
94
95 return provided == calculated;
96}
97
98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
99 struct ext4_inode_info *ei)
100{
101 __u32 csum;
102
103 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
104 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 105 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
106 return;
107
108 csum = ext4_inode_csum(inode, raw, ei);
109 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
111 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
112 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
113}
114
678aaf48
JK
115static inline int ext4_begin_ordered_truncate(struct inode *inode,
116 loff_t new_size)
117{
7ff9c073 118 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
119 /*
120 * If jinode is zero, then we never opened the file for
121 * writing, so there's no need to call
122 * jbd2_journal_begin_ordered_truncate() since there's no
123 * outstanding writes we need to flush.
124 */
125 if (!EXT4_I(inode)->jinode)
126 return 0;
127 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
128 EXT4_I(inode)->jinode,
129 new_size);
678aaf48
JK
130}
131
d47992f8
LC
132static void ext4_invalidatepage(struct page *page, unsigned int offset,
133 unsigned int length);
cb20d518
TT
134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
137 int pextents);
64769240 138
ac27a0ec
DK
139/*
140 * Test whether an inode is a fast symlink.
141 */
f348c252 142int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 143{
65eddb56
YY
144 int ea_blocks = EXT4_I(inode)->i_file_acl ?
145 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec 146
bd9db175
ZL
147 if (ext4_has_inline_data(inode))
148 return 0;
149
ac27a0ec
DK
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
91b0abe3 217 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 218
0930fcc1
AV
219 goto no_delete;
220 }
221
e2bfb088
TT
222 if (is_bad_inode(inode))
223 goto no_delete;
224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 228 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 229
8e8ad8a5
JK
230 /*
231 * Protect us against freezing - iput() caller didn't have to have any
232 * protection against it
233 */
234 sb_start_intwrite(inode->i_sb);
9924a92a
TT
235 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
236 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 237 if (IS_ERR(handle)) {
bc965ab3 238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
617ba13b 244 ext4_orphan_del(NULL, inode);
8e8ad8a5 245 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
246 goto no_delete;
247 }
248
249 if (IS_SYNC(inode))
0390131b 250 ext4_handle_sync(handle);
ac27a0ec 251 inode->i_size = 0;
bc965ab3
TT
252 err = ext4_mark_inode_dirty(handle, inode);
253 if (err) {
12062ddd 254 ext4_warning(inode->i_sb,
bc965ab3
TT
255 "couldn't mark inode dirty (err %d)", err);
256 goto stop_handle;
257 }
ac27a0ec 258 if (inode->i_blocks)
617ba13b 259 ext4_truncate(inode);
bc965ab3
TT
260
261 /*
262 * ext4_ext_truncate() doesn't reserve any slop when it
263 * restarts journal transactions; therefore there may not be
264 * enough credits left in the handle to remove the inode from
265 * the orphan list and set the dtime field.
266 */
0390131b 267 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
268 err = ext4_journal_extend(handle, 3);
269 if (err > 0)
270 err = ext4_journal_restart(handle, 3);
271 if (err != 0) {
12062ddd 272 ext4_warning(inode->i_sb,
bc965ab3
TT
273 "couldn't extend journal (err %d)", err);
274 stop_handle:
275 ext4_journal_stop(handle);
45388219 276 ext4_orphan_del(NULL, inode);
8e8ad8a5 277 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
278 goto no_delete;
279 }
280 }
281
ac27a0ec 282 /*
617ba13b 283 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 284 * AKPM: I think this can be inside the above `if'.
617ba13b 285 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 286 * deletion of a non-existent orphan - this is because we don't
617ba13b 287 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
288 * (Well, we could do this if we need to, but heck - it works)
289 */
617ba13b
MC
290 ext4_orphan_del(handle, inode);
291 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
292
293 /*
294 * One subtle ordering requirement: if anything has gone wrong
295 * (transaction abort, IO errors, whatever), then we can still
296 * do these next steps (the fs will already have been marked as
297 * having errors), but we can't free the inode if the mark_dirty
298 * fails.
299 */
617ba13b 300 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 301 /* If that failed, just do the required in-core inode clear. */
0930fcc1 302 ext4_clear_inode(inode);
ac27a0ec 303 else
617ba13b
MC
304 ext4_free_inode(handle, inode);
305 ext4_journal_stop(handle);
8e8ad8a5 306 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
307 return;
308no_delete:
0930fcc1 309 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
310}
311
a9e7f447
DM
312#ifdef CONFIG_QUOTA
313qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 314{
a9e7f447 315 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 316}
a9e7f447 317#endif
9d0be502 318
0637c6f4
TT
319/*
320 * Called with i_data_sem down, which is important since we can call
321 * ext4_discard_preallocations() from here.
322 */
5f634d06
AK
323void ext4_da_update_reserve_space(struct inode *inode,
324 int used, int quota_claim)
12219aea
AK
325{
326 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 327 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
328
329 spin_lock(&ei->i_block_reservation_lock);
d8990240 330 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 331 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 332 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 333 "with only %d reserved data blocks",
0637c6f4
TT
334 __func__, inode->i_ino, used,
335 ei->i_reserved_data_blocks);
336 WARN_ON(1);
337 used = ei->i_reserved_data_blocks;
338 }
12219aea 339
0637c6f4
TT
340 /* Update per-inode reservations */
341 ei->i_reserved_data_blocks -= used;
71d4f7d0 342 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 343
12219aea 344 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 345
72b8ab9d
ES
346 /* Update quota subsystem for data blocks */
347 if (quota_claim)
7b415bf6 348 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 349 else {
5f634d06
AK
350 /*
351 * We did fallocate with an offset that is already delayed
352 * allocated. So on delayed allocated writeback we should
72b8ab9d 353 * not re-claim the quota for fallocated blocks.
5f634d06 354 */
7b415bf6 355 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 356 }
d6014301
AK
357
358 /*
359 * If we have done all the pending block allocations and if
360 * there aren't any writers on the inode, we can discard the
361 * inode's preallocations.
362 */
0637c6f4
TT
363 if ((ei->i_reserved_data_blocks == 0) &&
364 (atomic_read(&inode->i_writecount) == 0))
d6014301 365 ext4_discard_preallocations(inode);
12219aea
AK
366}
367
e29136f8 368static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
369 unsigned int line,
370 struct ext4_map_blocks *map)
6fd058f7 371{
24676da4
TT
372 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
373 map->m_len)) {
c398eda0
TT
374 ext4_error_inode(inode, func, line, map->m_pblk,
375 "lblock %lu mapped to illegal pblock "
376 "(length %d)", (unsigned long) map->m_lblk,
377 map->m_len);
6a797d27 378 return -EFSCORRUPTED;
6fd058f7
TT
379 }
380 return 0;
381}
382
53085fac
JK
383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
384 ext4_lblk_t len)
385{
386 int ret;
387
388 if (ext4_encrypted_inode(inode))
389 return ext4_encrypted_zeroout(inode, lblk, pblk, len);
390
391 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
392 if (ret > 0)
393 ret = 0;
394
395 return ret;
396}
397
e29136f8 398#define check_block_validity(inode, map) \
c398eda0 399 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 400
921f266b
DM
401#ifdef ES_AGGRESSIVE_TEST
402static void ext4_map_blocks_es_recheck(handle_t *handle,
403 struct inode *inode,
404 struct ext4_map_blocks *es_map,
405 struct ext4_map_blocks *map,
406 int flags)
407{
408 int retval;
409
410 map->m_flags = 0;
411 /*
412 * There is a race window that the result is not the same.
413 * e.g. xfstests #223 when dioread_nolock enables. The reason
414 * is that we lookup a block mapping in extent status tree with
415 * out taking i_data_sem. So at the time the unwritten extent
416 * could be converted.
417 */
2dcba478 418 down_read(&EXT4_I(inode)->i_data_sem);
921f266b
DM
419 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
420 retval = ext4_ext_map_blocks(handle, inode, map, flags &
421 EXT4_GET_BLOCKS_KEEP_SIZE);
422 } else {
423 retval = ext4_ind_map_blocks(handle, inode, map, flags &
424 EXT4_GET_BLOCKS_KEEP_SIZE);
425 }
2dcba478 426 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
427
428 /*
429 * We don't check m_len because extent will be collpased in status
430 * tree. So the m_len might not equal.
431 */
432 if (es_map->m_lblk != map->m_lblk ||
433 es_map->m_flags != map->m_flags ||
434 es_map->m_pblk != map->m_pblk) {
bdafe42a 435 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
436 "es_cached ex [%d/%d/%llu/%x] != "
437 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
438 inode->i_ino, es_map->m_lblk, es_map->m_len,
439 es_map->m_pblk, es_map->m_flags, map->m_lblk,
440 map->m_len, map->m_pblk, map->m_flags,
441 retval, flags);
442 }
443}
444#endif /* ES_AGGRESSIVE_TEST */
445
f5ab0d1f 446/*
e35fd660 447 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 448 * and returns if the blocks are already mapped.
f5ab0d1f 449 *
f5ab0d1f
MC
450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
451 * and store the allocated blocks in the result buffer head and mark it
452 * mapped.
453 *
e35fd660
TT
454 * If file type is extents based, it will call ext4_ext_map_blocks(),
455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
456 * based files
457 *
facab4d9
JK
458 * On success, it returns the number of blocks being mapped or allocated. if
459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
463 * that case, @map is returned as unmapped but we still do fill map->m_len to
464 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
465 *
466 * It returns the error in case of allocation failure.
467 */
e35fd660
TT
468int ext4_map_blocks(handle_t *handle, struct inode *inode,
469 struct ext4_map_blocks *map, int flags)
0e855ac8 470{
d100eef2 471 struct extent_status es;
0e855ac8 472 int retval;
b8a86845 473 int ret = 0;
921f266b
DM
474#ifdef ES_AGGRESSIVE_TEST
475 struct ext4_map_blocks orig_map;
476
477 memcpy(&orig_map, map, sizeof(*map));
478#endif
f5ab0d1f 479
e35fd660
TT
480 map->m_flags = 0;
481 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
482 "logical block %lu\n", inode->i_ino, flags, map->m_len,
483 (unsigned long) map->m_lblk);
d100eef2 484
e861b5e9
TT
485 /*
486 * ext4_map_blocks returns an int, and m_len is an unsigned int
487 */
488 if (unlikely(map->m_len > INT_MAX))
489 map->m_len = INT_MAX;
490
4adb6ab3
KM
491 /* We can handle the block number less than EXT_MAX_BLOCKS */
492 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 493 return -EFSCORRUPTED;
4adb6ab3 494
d100eef2
ZL
495 /* Lookup extent status tree firstly */
496 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
497 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
498 map->m_pblk = ext4_es_pblock(&es) +
499 map->m_lblk - es.es_lblk;
500 map->m_flags |= ext4_es_is_written(&es) ?
501 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
502 retval = es.es_len - (map->m_lblk - es.es_lblk);
503 if (retval > map->m_len)
504 retval = map->m_len;
505 map->m_len = retval;
506 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
507 map->m_pblk = 0;
508 retval = es.es_len - (map->m_lblk - es.es_lblk);
509 if (retval > map->m_len)
510 retval = map->m_len;
511 map->m_len = retval;
d100eef2
ZL
512 retval = 0;
513 } else {
514 BUG_ON(1);
515 }
921f266b
DM
516#ifdef ES_AGGRESSIVE_TEST
517 ext4_map_blocks_es_recheck(handle, inode, map,
518 &orig_map, flags);
519#endif
d100eef2
ZL
520 goto found;
521 }
522
4df3d265 523 /*
b920c755
TT
524 * Try to see if we can get the block without requesting a new
525 * file system block.
4df3d265 526 */
2dcba478 527 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 528 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
529 retval = ext4_ext_map_blocks(handle, inode, map, flags &
530 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 531 } else {
a4e5d88b
DM
532 retval = ext4_ind_map_blocks(handle, inode, map, flags &
533 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 534 }
f7fec032 535 if (retval > 0) {
3be78c73 536 unsigned int status;
f7fec032 537
44fb851d
ZL
538 if (unlikely(retval != map->m_len)) {
539 ext4_warning(inode->i_sb,
540 "ES len assertion failed for inode "
541 "%lu: retval %d != map->m_len %d",
542 inode->i_ino, retval, map->m_len);
543 WARN_ON(1);
921f266b 544 }
921f266b 545
f7fec032
ZL
546 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
547 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
548 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 549 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
550 ext4_find_delalloc_range(inode, map->m_lblk,
551 map->m_lblk + map->m_len - 1))
552 status |= EXTENT_STATUS_DELAYED;
553 ret = ext4_es_insert_extent(inode, map->m_lblk,
554 map->m_len, map->m_pblk, status);
555 if (ret < 0)
556 retval = ret;
557 }
2dcba478 558 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 559
d100eef2 560found:
e35fd660 561 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 562 ret = check_block_validity(inode, map);
6fd058f7
TT
563 if (ret != 0)
564 return ret;
565 }
566
f5ab0d1f 567 /* If it is only a block(s) look up */
c2177057 568 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
569 return retval;
570
571 /*
572 * Returns if the blocks have already allocated
573 *
574 * Note that if blocks have been preallocated
df3ab170 575 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
576 * with buffer head unmapped.
577 */
e35fd660 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
579 /*
580 * If we need to convert extent to unwritten
581 * we continue and do the actual work in
582 * ext4_ext_map_blocks()
583 */
584 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
585 return retval;
4df3d265 586
2a8964d6 587 /*
a25a4e1a
ZL
588 * Here we clear m_flags because after allocating an new extent,
589 * it will be set again.
2a8964d6 590 */
a25a4e1a 591 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 592
4df3d265 593 /*
556615dc 594 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 595 * will possibly result in updating i_data, so we take
d91bd2c1 596 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 597 * with create == 1 flag.
4df3d265 598 */
c8b459f4 599 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 600
4df3d265
AK
601 /*
602 * We need to check for EXT4 here because migrate
603 * could have changed the inode type in between
604 */
12e9b892 605 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 606 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 607 } else {
e35fd660 608 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 609
e35fd660 610 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
611 /*
612 * We allocated new blocks which will result in
613 * i_data's format changing. Force the migrate
614 * to fail by clearing migrate flags
615 */
19f5fb7a 616 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 617 }
d2a17637 618
5f634d06
AK
619 /*
620 * Update reserved blocks/metadata blocks after successful
621 * block allocation which had been deferred till now. We don't
622 * support fallocate for non extent files. So we can update
623 * reserve space here.
624 */
625 if ((retval > 0) &&
1296cc85 626 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
627 ext4_da_update_reserve_space(inode, retval, 1);
628 }
2ac3b6e0 629
f7fec032 630 if (retval > 0) {
3be78c73 631 unsigned int status;
f7fec032 632
44fb851d
ZL
633 if (unlikely(retval != map->m_len)) {
634 ext4_warning(inode->i_sb,
635 "ES len assertion failed for inode "
636 "%lu: retval %d != map->m_len %d",
637 inode->i_ino, retval, map->m_len);
638 WARN_ON(1);
921f266b 639 }
921f266b 640
c86d8db3
JK
641 /*
642 * We have to zeroout blocks before inserting them into extent
643 * status tree. Otherwise someone could look them up there and
644 * use them before they are really zeroed.
645 */
646 if (flags & EXT4_GET_BLOCKS_ZERO &&
647 map->m_flags & EXT4_MAP_MAPPED &&
648 map->m_flags & EXT4_MAP_NEW) {
649 ret = ext4_issue_zeroout(inode, map->m_lblk,
650 map->m_pblk, map->m_len);
651 if (ret) {
652 retval = ret;
653 goto out_sem;
654 }
655 }
656
adb23551
ZL
657 /*
658 * If the extent has been zeroed out, we don't need to update
659 * extent status tree.
660 */
661 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
662 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
663 if (ext4_es_is_written(&es))
c86d8db3 664 goto out_sem;
adb23551 665 }
f7fec032
ZL
666 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
667 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
668 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 669 !(status & EXTENT_STATUS_WRITTEN) &&
f7fec032
ZL
670 ext4_find_delalloc_range(inode, map->m_lblk,
671 map->m_lblk + map->m_len - 1))
672 status |= EXTENT_STATUS_DELAYED;
673 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
674 map->m_pblk, status);
c86d8db3 675 if (ret < 0) {
f7fec032 676 retval = ret;
c86d8db3
JK
677 goto out_sem;
678 }
5356f261
AK
679 }
680
c86d8db3 681out_sem:
4df3d265 682 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 683 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 684 ret = check_block_validity(inode, map);
6fd058f7
TT
685 if (ret != 0)
686 return ret;
687 }
0e855ac8
AK
688 return retval;
689}
690
ed8ad838
JK
691/*
692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
693 * we have to be careful as someone else may be manipulating b_state as well.
694 */
695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
696{
697 unsigned long old_state;
698 unsigned long new_state;
699
700 flags &= EXT4_MAP_FLAGS;
701
702 /* Dummy buffer_head? Set non-atomically. */
703 if (!bh->b_page) {
704 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
705 return;
706 }
707 /*
708 * Someone else may be modifying b_state. Be careful! This is ugly but
709 * once we get rid of using bh as a container for mapping information
710 * to pass to / from get_block functions, this can go away.
711 */
712 do {
713 old_state = READ_ONCE(bh->b_state);
714 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
715 } while (unlikely(
716 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
717}
718
2ed88685
TT
719static int _ext4_get_block(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh, int flags)
ac27a0ec 721{
2ed88685 722 struct ext4_map_blocks map;
efe70c29 723 int ret = 0;
ac27a0ec 724
46c7f254
TM
725 if (ext4_has_inline_data(inode))
726 return -ERANGE;
727
2ed88685
TT
728 map.m_lblk = iblock;
729 map.m_len = bh->b_size >> inode->i_blkbits;
730
efe70c29
JK
731 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
732 flags);
7fb5409d 733 if (ret > 0) {
2ed88685 734 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 735 ext4_update_bh_state(bh, map.m_flags);
2ed88685 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 737 ret = 0;
ac27a0ec
DK
738 }
739 return ret;
740}
741
2ed88685
TT
742int ext4_get_block(struct inode *inode, sector_t iblock,
743 struct buffer_head *bh, int create)
744{
745 return _ext4_get_block(inode, iblock, bh,
746 create ? EXT4_GET_BLOCKS_CREATE : 0);
747}
748
705965bd
JK
749/*
750 * Get block function used when preparing for buffered write if we require
751 * creating an unwritten extent if blocks haven't been allocated. The extent
752 * will be converted to written after the IO is complete.
753 */
754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh_result, int create)
756{
757 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
758 inode->i_ino, create);
759 return _ext4_get_block(inode, iblock, bh_result,
760 EXT4_GET_BLOCKS_IO_CREATE_EXT);
761}
762
efe70c29
JK
763/* Maximum number of blocks we map for direct IO at once. */
764#define DIO_MAX_BLOCKS 4096
765
766static handle_t *start_dio_trans(struct inode *inode,
767 struct buffer_head *bh_result)
768{
769 int dio_credits;
770
771 /* Trim mapping request to maximum we can map at once for DIO */
772 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
773 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
774 dio_credits = ext4_chunk_trans_blocks(inode,
775 bh_result->b_size >> inode->i_blkbits);
776 return ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
777}
778
705965bd
JK
779/* Get block function for DIO reads and writes to inodes without extents */
780int ext4_dio_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
efe70c29
JK
783 handle_t *handle;
784 int ret;
785
786 /* We don't expect handle for direct IO */
787 WARN_ON_ONCE(ext4_journal_current_handle());
788
789 if (create) {
790 handle = start_dio_trans(inode, bh);
791 if (IS_ERR(handle))
792 return PTR_ERR(handle);
793 }
794 ret = _ext4_get_block(inode, iblock, bh,
795 create ? EXT4_GET_BLOCKS_CREATE : 0);
796 if (create)
797 ext4_journal_stop(handle);
798 return ret;
705965bd
JK
799}
800
801/*
109811c2 802 * Get block function for AIO DIO writes when we create unwritten extent if
705965bd
JK
803 * blocks are not allocated yet. The extent will be converted to written
804 * after IO is complete.
805 */
109811c2
JK
806static int ext4_dio_get_block_unwritten_async(struct inode *inode,
807 sector_t iblock, struct buffer_head *bh_result, int create)
705965bd 808{
efe70c29
JK
809 handle_t *handle;
810 int ret;
811
efe70c29
JK
812 /* We don't expect handle for direct IO */
813 WARN_ON_ONCE(ext4_journal_current_handle());
814
815 handle = start_dio_trans(inode, bh_result);
816 if (IS_ERR(handle))
817 return PTR_ERR(handle);
818 ret = _ext4_get_block(inode, iblock, bh_result,
819 EXT4_GET_BLOCKS_IO_CREATE_EXT);
820 ext4_journal_stop(handle);
efe70c29 821
109811c2
JK
822 /*
823 * When doing DIO using unwritten extents, we need io_end to convert
824 * unwritten extents to written on IO completion. We allocate io_end
825 * once we spot unwritten extent and store it in b_private. Generic
826 * DIO code keeps b_private set and furthermore passes the value to
827 * our completion callback in 'private' argument.
828 */
829 if (!ret && buffer_unwritten(bh_result)) {
830 if (!bh_result->b_private) {
831 ext4_io_end_t *io_end;
832
833 io_end = ext4_init_io_end(inode, GFP_KERNEL);
834 if (!io_end)
835 return -ENOMEM;
836 bh_result->b_private = io_end;
837 ext4_set_io_unwritten_flag(inode, io_end);
838 }
efe70c29 839 set_buffer_defer_completion(bh_result);
efe70c29
JK
840 }
841
842 return ret;
705965bd
JK
843}
844
109811c2
JK
845/*
846 * Get block function for non-AIO DIO writes when we create unwritten extent if
847 * blocks are not allocated yet. The extent will be converted to written
848 * after IO is complete from ext4_ext_direct_IO() function.
849 */
850static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
851 sector_t iblock, struct buffer_head *bh_result, int create)
852{
853 handle_t *handle;
854 int ret;
855
856 /* We don't expect handle for direct IO */
857 WARN_ON_ONCE(ext4_journal_current_handle());
858
859 handle = start_dio_trans(inode, bh_result);
860 if (IS_ERR(handle))
861 return PTR_ERR(handle);
862 ret = _ext4_get_block(inode, iblock, bh_result,
863 EXT4_GET_BLOCKS_IO_CREATE_EXT);
864 ext4_journal_stop(handle);
865
866 /*
867 * Mark inode as having pending DIO writes to unwritten extents.
868 * ext4_ext_direct_IO() checks this flag and converts extents to
869 * written.
870 */
871 if (!ret && buffer_unwritten(bh_result))
872 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
873
874 return ret;
875}
876
705965bd
JK
877static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
878 struct buffer_head *bh_result, int create)
879{
880 int ret;
881
882 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
883 inode->i_ino, create);
efe70c29
JK
884 /* We don't expect handle for direct IO */
885 WARN_ON_ONCE(ext4_journal_current_handle());
886
705965bd
JK
887 ret = _ext4_get_block(inode, iblock, bh_result, 0);
888 /*
889 * Blocks should have been preallocated! ext4_file_write_iter() checks
890 * that.
891 */
efe70c29 892 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
705965bd
JK
893
894 return ret;
895}
896
897
ac27a0ec
DK
898/*
899 * `handle' can be NULL if create is zero
900 */
617ba13b 901struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 902 ext4_lblk_t block, int map_flags)
ac27a0ec 903{
2ed88685
TT
904 struct ext4_map_blocks map;
905 struct buffer_head *bh;
c5e298ae 906 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 907 int err;
ac27a0ec
DK
908
909 J_ASSERT(handle != NULL || create == 0);
910
2ed88685
TT
911 map.m_lblk = block;
912 map.m_len = 1;
c5e298ae 913 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 914
10560082
TT
915 if (err == 0)
916 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 917 if (err < 0)
10560082 918 return ERR_PTR(err);
2ed88685
TT
919
920 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
921 if (unlikely(!bh))
922 return ERR_PTR(-ENOMEM);
2ed88685
TT
923 if (map.m_flags & EXT4_MAP_NEW) {
924 J_ASSERT(create != 0);
925 J_ASSERT(handle != NULL);
ac27a0ec 926
2ed88685
TT
927 /*
928 * Now that we do not always journal data, we should
929 * keep in mind whether this should always journal the
930 * new buffer as metadata. For now, regular file
931 * writes use ext4_get_block instead, so it's not a
932 * problem.
933 */
934 lock_buffer(bh);
935 BUFFER_TRACE(bh, "call get_create_access");
10560082
TT
936 err = ext4_journal_get_create_access(handle, bh);
937 if (unlikely(err)) {
938 unlock_buffer(bh);
939 goto errout;
940 }
941 if (!buffer_uptodate(bh)) {
2ed88685
TT
942 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
943 set_buffer_uptodate(bh);
ac27a0ec 944 }
2ed88685
TT
945 unlock_buffer(bh);
946 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
947 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
948 if (unlikely(err))
949 goto errout;
950 } else
2ed88685 951 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 952 return bh;
10560082
TT
953errout:
954 brelse(bh);
955 return ERR_PTR(err);
ac27a0ec
DK
956}
957
617ba13b 958struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 959 ext4_lblk_t block, int map_flags)
ac27a0ec 960{
af5bc92d 961 struct buffer_head *bh;
ac27a0ec 962
c5e298ae 963 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 964 if (IS_ERR(bh))
ac27a0ec 965 return bh;
1c215028 966 if (!bh || buffer_uptodate(bh))
ac27a0ec 967 return bh;
65299a3b 968 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
969 wait_on_buffer(bh);
970 if (buffer_uptodate(bh))
971 return bh;
972 put_bh(bh);
1c215028 973 return ERR_PTR(-EIO);
ac27a0ec
DK
974}
975
f19d5870
TM
976int ext4_walk_page_buffers(handle_t *handle,
977 struct buffer_head *head,
978 unsigned from,
979 unsigned to,
980 int *partial,
981 int (*fn)(handle_t *handle,
982 struct buffer_head *bh))
ac27a0ec
DK
983{
984 struct buffer_head *bh;
985 unsigned block_start, block_end;
986 unsigned blocksize = head->b_size;
987 int err, ret = 0;
988 struct buffer_head *next;
989
af5bc92d
TT
990 for (bh = head, block_start = 0;
991 ret == 0 && (bh != head || !block_start);
de9a55b8 992 block_start = block_end, bh = next) {
ac27a0ec
DK
993 next = bh->b_this_page;
994 block_end = block_start + blocksize;
995 if (block_end <= from || block_start >= to) {
996 if (partial && !buffer_uptodate(bh))
997 *partial = 1;
998 continue;
999 }
1000 err = (*fn)(handle, bh);
1001 if (!ret)
1002 ret = err;
1003 }
1004 return ret;
1005}
1006
1007/*
1008 * To preserve ordering, it is essential that the hole instantiation and
1009 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1010 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1011 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1012 * prepare_write() is the right place.
1013 *
36ade451
JK
1014 * Also, this function can nest inside ext4_writepage(). In that case, we
1015 * *know* that ext4_writepage() has generated enough buffer credits to do the
1016 * whole page. So we won't block on the journal in that case, which is good,
1017 * because the caller may be PF_MEMALLOC.
ac27a0ec 1018 *
617ba13b 1019 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1020 * quota file writes. If we were to commit the transaction while thus
1021 * reentered, there can be a deadlock - we would be holding a quota
1022 * lock, and the commit would never complete if another thread had a
1023 * transaction open and was blocking on the quota lock - a ranking
1024 * violation.
1025 *
dab291af 1026 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1027 * will _not_ run commit under these circumstances because handle->h_ref
1028 * is elevated. We'll still have enough credits for the tiny quotafile
1029 * write.
1030 */
f19d5870
TM
1031int do_journal_get_write_access(handle_t *handle,
1032 struct buffer_head *bh)
ac27a0ec 1033{
56d35a4c
JK
1034 int dirty = buffer_dirty(bh);
1035 int ret;
1036
ac27a0ec
DK
1037 if (!buffer_mapped(bh) || buffer_freed(bh))
1038 return 0;
56d35a4c 1039 /*
ebdec241 1040 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1041 * the dirty bit as jbd2_journal_get_write_access() could complain
1042 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1043 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1044 * the bit before releasing a page lock and thus writeback cannot
1045 * ever write the buffer.
1046 */
1047 if (dirty)
1048 clear_buffer_dirty(bh);
5d601255 1049 BUFFER_TRACE(bh, "get write access");
56d35a4c
JK
1050 ret = ext4_journal_get_write_access(handle, bh);
1051 if (!ret && dirty)
1052 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1053 return ret;
ac27a0ec
DK
1054}
1055
2058f83a
MH
1056#ifdef CONFIG_EXT4_FS_ENCRYPTION
1057static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1058 get_block_t *get_block)
1059{
1060 unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1061 unsigned to = from + len;
1062 struct inode *inode = page->mapping->host;
1063 unsigned block_start, block_end;
1064 sector_t block;
1065 int err = 0;
1066 unsigned blocksize = inode->i_sb->s_blocksize;
1067 unsigned bbits;
1068 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1069 bool decrypt = false;
1070
1071 BUG_ON(!PageLocked(page));
1072 BUG_ON(from > PAGE_CACHE_SIZE);
1073 BUG_ON(to > PAGE_CACHE_SIZE);
1074 BUG_ON(from > to);
1075
1076 if (!page_has_buffers(page))
1077 create_empty_buffers(page, blocksize, 0);
1078 head = page_buffers(page);
1079 bbits = ilog2(blocksize);
1080 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1081
1082 for (bh = head, block_start = 0; bh != head || !block_start;
1083 block++, block_start = block_end, bh = bh->b_this_page) {
1084 block_end = block_start + blocksize;
1085 if (block_end <= from || block_start >= to) {
1086 if (PageUptodate(page)) {
1087 if (!buffer_uptodate(bh))
1088 set_buffer_uptodate(bh);
1089 }
1090 continue;
1091 }
1092 if (buffer_new(bh))
1093 clear_buffer_new(bh);
1094 if (!buffer_mapped(bh)) {
1095 WARN_ON(bh->b_size != blocksize);
1096 err = get_block(inode, block, bh, 1);
1097 if (err)
1098 break;
1099 if (buffer_new(bh)) {
1100 unmap_underlying_metadata(bh->b_bdev,
1101 bh->b_blocknr);
1102 if (PageUptodate(page)) {
1103 clear_buffer_new(bh);
1104 set_buffer_uptodate(bh);
1105 mark_buffer_dirty(bh);
1106 continue;
1107 }
1108 if (block_end > to || block_start < from)
1109 zero_user_segments(page, to, block_end,
1110 block_start, from);
1111 continue;
1112 }
1113 }
1114 if (PageUptodate(page)) {
1115 if (!buffer_uptodate(bh))
1116 set_buffer_uptodate(bh);
1117 continue;
1118 }
1119 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1120 !buffer_unwritten(bh) &&
1121 (block_start < from || block_end > to)) {
1122 ll_rw_block(READ, 1, &bh);
1123 *wait_bh++ = bh;
1124 decrypt = ext4_encrypted_inode(inode) &&
1125 S_ISREG(inode->i_mode);
1126 }
1127 }
1128 /*
1129 * If we issued read requests, let them complete.
1130 */
1131 while (wait_bh > wait) {
1132 wait_on_buffer(*--wait_bh);
1133 if (!buffer_uptodate(*wait_bh))
1134 err = -EIO;
1135 }
1136 if (unlikely(err))
1137 page_zero_new_buffers(page, from, to);
1138 else if (decrypt)
3684de8c 1139 err = ext4_decrypt(page);
2058f83a
MH
1140 return err;
1141}
1142#endif
1143
bfc1af65 1144static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1145 loff_t pos, unsigned len, unsigned flags,
1146 struct page **pagep, void **fsdata)
ac27a0ec 1147{
af5bc92d 1148 struct inode *inode = mapping->host;
1938a150 1149 int ret, needed_blocks;
ac27a0ec
DK
1150 handle_t *handle;
1151 int retries = 0;
af5bc92d 1152 struct page *page;
de9a55b8 1153 pgoff_t index;
af5bc92d 1154 unsigned from, to;
bfc1af65 1155
9bffad1e 1156 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1157 /*
1158 * Reserve one block more for addition to orphan list in case
1159 * we allocate blocks but write fails for some reason
1160 */
1161 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1162 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1163 from = pos & (PAGE_CACHE_SIZE - 1);
1164 to = from + len;
ac27a0ec 1165
f19d5870
TM
1166 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1167 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1168 flags, pagep);
1169 if (ret < 0)
47564bfb
TT
1170 return ret;
1171 if (ret == 1)
1172 return 0;
f19d5870
TM
1173 }
1174
47564bfb
TT
1175 /*
1176 * grab_cache_page_write_begin() can take a long time if the
1177 * system is thrashing due to memory pressure, or if the page
1178 * is being written back. So grab it first before we start
1179 * the transaction handle. This also allows us to allocate
1180 * the page (if needed) without using GFP_NOFS.
1181 */
1182retry_grab:
1183 page = grab_cache_page_write_begin(mapping, index, flags);
1184 if (!page)
1185 return -ENOMEM;
1186 unlock_page(page);
1187
1188retry_journal:
9924a92a 1189 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1190 if (IS_ERR(handle)) {
47564bfb
TT
1191 page_cache_release(page);
1192 return PTR_ERR(handle);
7479d2b9 1193 }
ac27a0ec 1194
47564bfb
TT
1195 lock_page(page);
1196 if (page->mapping != mapping) {
1197 /* The page got truncated from under us */
1198 unlock_page(page);
1199 page_cache_release(page);
cf108bca 1200 ext4_journal_stop(handle);
47564bfb 1201 goto retry_grab;
cf108bca 1202 }
7afe5aa5
DM
1203 /* In case writeback began while the page was unlocked */
1204 wait_for_stable_page(page);
cf108bca 1205
2058f83a
MH
1206#ifdef CONFIG_EXT4_FS_ENCRYPTION
1207 if (ext4_should_dioread_nolock(inode))
1208 ret = ext4_block_write_begin(page, pos, len,
705965bd 1209 ext4_get_block_unwritten);
2058f83a
MH
1210 else
1211 ret = ext4_block_write_begin(page, pos, len,
1212 ext4_get_block);
1213#else
744692dc 1214 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1215 ret = __block_write_begin(page, pos, len,
1216 ext4_get_block_unwritten);
744692dc 1217 else
6e1db88d 1218 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1219#endif
bfc1af65 1220 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1221 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1222 from, to, NULL,
1223 do_journal_get_write_access);
ac27a0ec 1224 }
bfc1af65
NP
1225
1226 if (ret) {
af5bc92d 1227 unlock_page(page);
ae4d5372 1228 /*
6e1db88d 1229 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1230 * outside i_size. Trim these off again. Don't need
1231 * i_size_read because we hold i_mutex.
1938a150
AK
1232 *
1233 * Add inode to orphan list in case we crash before
1234 * truncate finishes
ae4d5372 1235 */
ffacfa7a 1236 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1237 ext4_orphan_add(handle, inode);
1238
1239 ext4_journal_stop(handle);
1240 if (pos + len > inode->i_size) {
b9a4207d 1241 ext4_truncate_failed_write(inode);
de9a55b8 1242 /*
ffacfa7a 1243 * If truncate failed early the inode might
1938a150
AK
1244 * still be on the orphan list; we need to
1245 * make sure the inode is removed from the
1246 * orphan list in that case.
1247 */
1248 if (inode->i_nlink)
1249 ext4_orphan_del(NULL, inode);
1250 }
bfc1af65 1251
47564bfb
TT
1252 if (ret == -ENOSPC &&
1253 ext4_should_retry_alloc(inode->i_sb, &retries))
1254 goto retry_journal;
1255 page_cache_release(page);
1256 return ret;
1257 }
1258 *pagep = page;
ac27a0ec
DK
1259 return ret;
1260}
1261
bfc1af65
NP
1262/* For write_end() in data=journal mode */
1263static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1264{
13fca323 1265 int ret;
ac27a0ec
DK
1266 if (!buffer_mapped(bh) || buffer_freed(bh))
1267 return 0;
1268 set_buffer_uptodate(bh);
13fca323
TT
1269 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1270 clear_buffer_meta(bh);
1271 clear_buffer_prio(bh);
1272 return ret;
ac27a0ec
DK
1273}
1274
eed4333f
ZL
1275/*
1276 * We need to pick up the new inode size which generic_commit_write gave us
1277 * `file' can be NULL - eg, when called from page_symlink().
1278 *
1279 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1280 * buffers are managed internally.
1281 */
1282static int ext4_write_end(struct file *file,
1283 struct address_space *mapping,
1284 loff_t pos, unsigned len, unsigned copied,
1285 struct page *page, void *fsdata)
f8514083 1286{
f8514083 1287 handle_t *handle = ext4_journal_current_handle();
eed4333f 1288 struct inode *inode = mapping->host;
0572639f 1289 loff_t old_size = inode->i_size;
eed4333f
ZL
1290 int ret = 0, ret2;
1291 int i_size_changed = 0;
1292
1293 trace_ext4_write_end(inode, pos, len, copied);
1294 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1295 ret = ext4_jbd2_file_inode(handle, inode);
1296 if (ret) {
1297 unlock_page(page);
1298 page_cache_release(page);
1299 goto errout;
1300 }
1301 }
f8514083 1302
42c832de
TT
1303 if (ext4_has_inline_data(inode)) {
1304 ret = ext4_write_inline_data_end(inode, pos, len,
1305 copied, page);
1306 if (ret < 0)
1307 goto errout;
1308 copied = ret;
1309 } else
f19d5870
TM
1310 copied = block_write_end(file, mapping, pos,
1311 len, copied, page, fsdata);
f8514083 1312 /*
4631dbf6 1313 * it's important to update i_size while still holding page lock:
f8514083
AK
1314 * page writeout could otherwise come in and zero beyond i_size.
1315 */
4631dbf6 1316 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083
AK
1317 unlock_page(page);
1318 page_cache_release(page);
1319
0572639f
XW
1320 if (old_size < pos)
1321 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1322 /*
1323 * Don't mark the inode dirty under page lock. First, it unnecessarily
1324 * makes the holding time of page lock longer. Second, it forces lock
1325 * ordering of page lock and transaction start for journaling
1326 * filesystems.
1327 */
1328 if (i_size_changed)
1329 ext4_mark_inode_dirty(handle, inode);
1330
ffacfa7a 1331 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1332 /* if we have allocated more blocks and copied
1333 * less. We will have blocks allocated outside
1334 * inode->i_size. So truncate them
1335 */
1336 ext4_orphan_add(handle, inode);
74d553aa 1337errout:
617ba13b 1338 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1339 if (!ret)
1340 ret = ret2;
bfc1af65 1341
f8514083 1342 if (pos + len > inode->i_size) {
b9a4207d 1343 ext4_truncate_failed_write(inode);
de9a55b8 1344 /*
ffacfa7a 1345 * If truncate failed early the inode might still be
f8514083
AK
1346 * on the orphan list; we need to make sure the inode
1347 * is removed from the orphan list in that case.
1348 */
1349 if (inode->i_nlink)
1350 ext4_orphan_del(NULL, inode);
1351 }
1352
bfc1af65 1353 return ret ? ret : copied;
ac27a0ec
DK
1354}
1355
b90197b6
TT
1356/*
1357 * This is a private version of page_zero_new_buffers() which doesn't
1358 * set the buffer to be dirty, since in data=journalled mode we need
1359 * to call ext4_handle_dirty_metadata() instead.
1360 */
1361static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
1362{
1363 unsigned int block_start = 0, block_end;
1364 struct buffer_head *head, *bh;
1365
1366 bh = head = page_buffers(page);
1367 do {
1368 block_end = block_start + bh->b_size;
1369 if (buffer_new(bh)) {
1370 if (block_end > from && block_start < to) {
1371 if (!PageUptodate(page)) {
1372 unsigned start, size;
1373
1374 start = max(from, block_start);
1375 size = min(to, block_end) - start;
1376
1377 zero_user(page, start, size);
1378 set_buffer_uptodate(bh);
1379 }
1380 clear_buffer_new(bh);
1381 }
1382 }
1383 block_start = block_end;
1384 bh = bh->b_this_page;
1385 } while (bh != head);
1386}
1387
bfc1af65 1388static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1389 struct address_space *mapping,
1390 loff_t pos, unsigned len, unsigned copied,
1391 struct page *page, void *fsdata)
ac27a0ec 1392{
617ba13b 1393 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1394 struct inode *inode = mapping->host;
0572639f 1395 loff_t old_size = inode->i_size;
ac27a0ec
DK
1396 int ret = 0, ret2;
1397 int partial = 0;
bfc1af65 1398 unsigned from, to;
4631dbf6 1399 int size_changed = 0;
ac27a0ec 1400
9bffad1e 1401 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1402 from = pos & (PAGE_CACHE_SIZE - 1);
1403 to = from + len;
1404
441c8508
CW
1405 BUG_ON(!ext4_handle_valid(handle));
1406
3fdcfb66
TM
1407 if (ext4_has_inline_data(inode))
1408 copied = ext4_write_inline_data_end(inode, pos, len,
1409 copied, page);
1410 else {
1411 if (copied < len) {
1412 if (!PageUptodate(page))
1413 copied = 0;
b90197b6 1414 zero_new_buffers(page, from+copied, to);
3fdcfb66 1415 }
ac27a0ec 1416
3fdcfb66
TM
1417 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1418 to, &partial, write_end_fn);
1419 if (!partial)
1420 SetPageUptodate(page);
1421 }
4631dbf6 1422 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1423 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1424 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6
DM
1425 unlock_page(page);
1426 page_cache_release(page);
1427
0572639f
XW
1428 if (old_size < pos)
1429 pagecache_isize_extended(inode, old_size, pos);
1430
4631dbf6 1431 if (size_changed) {
617ba13b 1432 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1433 if (!ret)
1434 ret = ret2;
1435 }
bfc1af65 1436
ffacfa7a 1437 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1438 /* if we have allocated more blocks and copied
1439 * less. We will have blocks allocated outside
1440 * inode->i_size. So truncate them
1441 */
1442 ext4_orphan_add(handle, inode);
1443
617ba13b 1444 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1445 if (!ret)
1446 ret = ret2;
f8514083 1447 if (pos + len > inode->i_size) {
b9a4207d 1448 ext4_truncate_failed_write(inode);
de9a55b8 1449 /*
ffacfa7a 1450 * If truncate failed early the inode might still be
f8514083
AK
1451 * on the orphan list; we need to make sure the inode
1452 * is removed from the orphan list in that case.
1453 */
1454 if (inode->i_nlink)
1455 ext4_orphan_del(NULL, inode);
1456 }
bfc1af65
NP
1457
1458 return ret ? ret : copied;
ac27a0ec 1459}
d2a17637 1460
9d0be502 1461/*
c27e43a1 1462 * Reserve space for a single cluster
9d0be502 1463 */
c27e43a1 1464static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1465{
60e58e0f 1466 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1467 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1468 int ret;
03179fe9
TT
1469
1470 /*
1471 * We will charge metadata quota at writeout time; this saves
1472 * us from metadata over-estimation, though we may go over by
1473 * a small amount in the end. Here we just reserve for data.
1474 */
1475 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1476 if (ret)
1477 return ret;
d2a17637 1478
0637c6f4 1479 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1480 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1481 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1482 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1483 return -ENOSPC;
1484 }
9d0be502 1485 ei->i_reserved_data_blocks++;
c27e43a1 1486 trace_ext4_da_reserve_space(inode);
0637c6f4 1487 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1488
d2a17637
MC
1489 return 0; /* success */
1490}
1491
12219aea 1492static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1493{
1494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1495 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1496
cd213226
MC
1497 if (!to_free)
1498 return; /* Nothing to release, exit */
1499
d2a17637 1500 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1501
5a58ec87 1502 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1503 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1504 /*
0637c6f4
TT
1505 * if there aren't enough reserved blocks, then the
1506 * counter is messed up somewhere. Since this
1507 * function is called from invalidate page, it's
1508 * harmless to return without any action.
cd213226 1509 */
8de5c325 1510 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1511 "ino %lu, to_free %d with only %d reserved "
1084f252 1512 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1513 ei->i_reserved_data_blocks);
1514 WARN_ON(1);
1515 to_free = ei->i_reserved_data_blocks;
cd213226 1516 }
0637c6f4 1517 ei->i_reserved_data_blocks -= to_free;
cd213226 1518
72b8ab9d 1519 /* update fs dirty data blocks counter */
57042651 1520 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1521
d2a17637 1522 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1523
7b415bf6 1524 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1525}
1526
1527static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1528 unsigned int offset,
1529 unsigned int length)
d2a17637 1530{
9705acd6 1531 int to_release = 0, contiguous_blks = 0;
d2a17637
MC
1532 struct buffer_head *head, *bh;
1533 unsigned int curr_off = 0;
7b415bf6
AK
1534 struct inode *inode = page->mapping->host;
1535 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1536 unsigned int stop = offset + length;
7b415bf6 1537 int num_clusters;
51865fda 1538 ext4_fsblk_t lblk;
d2a17637 1539
ca99fdd2
LC
1540 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1541
d2a17637
MC
1542 head = page_buffers(page);
1543 bh = head;
1544 do {
1545 unsigned int next_off = curr_off + bh->b_size;
1546
ca99fdd2
LC
1547 if (next_off > stop)
1548 break;
1549
d2a17637
MC
1550 if ((offset <= curr_off) && (buffer_delay(bh))) {
1551 to_release++;
9705acd6 1552 contiguous_blks++;
d2a17637 1553 clear_buffer_delay(bh);
9705acd6
LC
1554 } else if (contiguous_blks) {
1555 lblk = page->index <<
1556 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1557 lblk += (curr_off >> inode->i_blkbits) -
1558 contiguous_blks;
1559 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1560 contiguous_blks = 0;
d2a17637
MC
1561 }
1562 curr_off = next_off;
1563 } while ((bh = bh->b_this_page) != head);
7b415bf6 1564
9705acd6 1565 if (contiguous_blks) {
51865fda 1566 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
9705acd6
LC
1567 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1568 ext4_es_remove_extent(inode, lblk, contiguous_blks);
51865fda
ZL
1569 }
1570
7b415bf6
AK
1571 /* If we have released all the blocks belonging to a cluster, then we
1572 * need to release the reserved space for that cluster. */
1573 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1574 while (num_clusters > 0) {
7b415bf6
AK
1575 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1576 ((num_clusters - 1) << sbi->s_cluster_bits);
1577 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1578 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1579 ext4_da_release_space(inode, 1);
1580
1581 num_clusters--;
1582 }
d2a17637 1583}
ac27a0ec 1584
64769240
AT
1585/*
1586 * Delayed allocation stuff
1587 */
1588
4e7ea81d
JK
1589struct mpage_da_data {
1590 struct inode *inode;
1591 struct writeback_control *wbc;
6b523df4 1592
4e7ea81d
JK
1593 pgoff_t first_page; /* The first page to write */
1594 pgoff_t next_page; /* Current page to examine */
1595 pgoff_t last_page; /* Last page to examine */
791b7f08 1596 /*
4e7ea81d
JK
1597 * Extent to map - this can be after first_page because that can be
1598 * fully mapped. We somewhat abuse m_flags to store whether the extent
1599 * is delalloc or unwritten.
791b7f08 1600 */
4e7ea81d
JK
1601 struct ext4_map_blocks map;
1602 struct ext4_io_submit io_submit; /* IO submission data */
1603};
64769240 1604
4e7ea81d
JK
1605static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1606 bool invalidate)
c4a0c46e
AK
1607{
1608 int nr_pages, i;
1609 pgoff_t index, end;
1610 struct pagevec pvec;
1611 struct inode *inode = mpd->inode;
1612 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1613
1614 /* This is necessary when next_page == 0. */
1615 if (mpd->first_page >= mpd->next_page)
1616 return;
c4a0c46e 1617
c7f5938a
CW
1618 index = mpd->first_page;
1619 end = mpd->next_page - 1;
4e7ea81d
JK
1620 if (invalidate) {
1621 ext4_lblk_t start, last;
1622 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1623 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1624 ext4_es_remove_extent(inode, start, last - start + 1);
1625 }
51865fda 1626
66bea92c 1627 pagevec_init(&pvec, 0);
c4a0c46e
AK
1628 while (index <= end) {
1629 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1630 if (nr_pages == 0)
1631 break;
1632 for (i = 0; i < nr_pages; i++) {
1633 struct page *page = pvec.pages[i];
9b1d0998 1634 if (page->index > end)
c4a0c46e 1635 break;
c4a0c46e
AK
1636 BUG_ON(!PageLocked(page));
1637 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1638 if (invalidate) {
1639 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1640 ClearPageUptodate(page);
1641 }
c4a0c46e
AK
1642 unlock_page(page);
1643 }
9b1d0998
JK
1644 index = pvec.pages[nr_pages - 1]->index + 1;
1645 pagevec_release(&pvec);
c4a0c46e 1646 }
c4a0c46e
AK
1647}
1648
df22291f
AK
1649static void ext4_print_free_blocks(struct inode *inode)
1650{
1651 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1652 struct super_block *sb = inode->i_sb;
f78ee70d 1653 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1654
1655 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1656 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1657 ext4_count_free_clusters(sb)));
92b97816
TT
1658 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1659 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1660 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1661 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1662 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1663 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1664 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1665 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1666 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1667 ei->i_reserved_data_blocks);
df22291f
AK
1668 return;
1669}
1670
c364b22c 1671static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1672{
c364b22c 1673 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1674}
1675
5356f261
AK
1676/*
1677 * This function is grabs code from the very beginning of
1678 * ext4_map_blocks, but assumes that the caller is from delayed write
1679 * time. This function looks up the requested blocks and sets the
1680 * buffer delay bit under the protection of i_data_sem.
1681 */
1682static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1683 struct ext4_map_blocks *map,
1684 struct buffer_head *bh)
1685{
d100eef2 1686 struct extent_status es;
5356f261
AK
1687 int retval;
1688 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1689#ifdef ES_AGGRESSIVE_TEST
1690 struct ext4_map_blocks orig_map;
1691
1692 memcpy(&orig_map, map, sizeof(*map));
1693#endif
5356f261
AK
1694
1695 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1696 invalid_block = ~0;
1697
1698 map->m_flags = 0;
1699 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1700 "logical block %lu\n", inode->i_ino, map->m_len,
1701 (unsigned long) map->m_lblk);
d100eef2
ZL
1702
1703 /* Lookup extent status tree firstly */
1704 if (ext4_es_lookup_extent(inode, iblock, &es)) {
d100eef2
ZL
1705 if (ext4_es_is_hole(&es)) {
1706 retval = 0;
c8b459f4 1707 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1708 goto add_delayed;
1709 }
1710
1711 /*
1712 * Delayed extent could be allocated by fallocate.
1713 * So we need to check it.
1714 */
1715 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1716 map_bh(bh, inode->i_sb, invalid_block);
1717 set_buffer_new(bh);
1718 set_buffer_delay(bh);
1719 return 0;
1720 }
1721
1722 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1723 retval = es.es_len - (iblock - es.es_lblk);
1724 if (retval > map->m_len)
1725 retval = map->m_len;
1726 map->m_len = retval;
1727 if (ext4_es_is_written(&es))
1728 map->m_flags |= EXT4_MAP_MAPPED;
1729 else if (ext4_es_is_unwritten(&es))
1730 map->m_flags |= EXT4_MAP_UNWRITTEN;
1731 else
1732 BUG_ON(1);
1733
921f266b
DM
1734#ifdef ES_AGGRESSIVE_TEST
1735 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1736#endif
d100eef2
ZL
1737 return retval;
1738 }
1739
5356f261
AK
1740 /*
1741 * Try to see if we can get the block without requesting a new
1742 * file system block.
1743 */
c8b459f4 1744 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1745 if (ext4_has_inline_data(inode))
9c3569b5 1746 retval = 0;
cbd7584e 1747 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1748 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1749 else
2f8e0a7c 1750 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1751
d100eef2 1752add_delayed:
5356f261 1753 if (retval == 0) {
f7fec032 1754 int ret;
5356f261
AK
1755 /*
1756 * XXX: __block_prepare_write() unmaps passed block,
1757 * is it OK?
1758 */
386ad67c
LC
1759 /*
1760 * If the block was allocated from previously allocated cluster,
1761 * then we don't need to reserve it again. However we still need
1762 * to reserve metadata for every block we're going to write.
1763 */
c27e43a1 1764 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
cbd7584e 1765 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
c27e43a1 1766 ret = ext4_da_reserve_space(inode);
f7fec032 1767 if (ret) {
5356f261 1768 /* not enough space to reserve */
f7fec032 1769 retval = ret;
5356f261 1770 goto out_unlock;
f7fec032 1771 }
5356f261
AK
1772 }
1773
f7fec032
ZL
1774 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1775 ~0, EXTENT_STATUS_DELAYED);
1776 if (ret) {
1777 retval = ret;
51865fda 1778 goto out_unlock;
f7fec032 1779 }
51865fda 1780
5356f261
AK
1781 map_bh(bh, inode->i_sb, invalid_block);
1782 set_buffer_new(bh);
1783 set_buffer_delay(bh);
f7fec032
ZL
1784 } else if (retval > 0) {
1785 int ret;
3be78c73 1786 unsigned int status;
f7fec032 1787
44fb851d
ZL
1788 if (unlikely(retval != map->m_len)) {
1789 ext4_warning(inode->i_sb,
1790 "ES len assertion failed for inode "
1791 "%lu: retval %d != map->m_len %d",
1792 inode->i_ino, retval, map->m_len);
1793 WARN_ON(1);
921f266b 1794 }
921f266b 1795
f7fec032
ZL
1796 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1797 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1798 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1799 map->m_pblk, status);
1800 if (ret != 0)
1801 retval = ret;
5356f261
AK
1802 }
1803
1804out_unlock:
1805 up_read((&EXT4_I(inode)->i_data_sem));
1806
1807 return retval;
1808}
1809
64769240 1810/*
d91bd2c1 1811 * This is a special get_block_t callback which is used by
b920c755
TT
1812 * ext4_da_write_begin(). It will either return mapped block or
1813 * reserve space for a single block.
29fa89d0
AK
1814 *
1815 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1816 * We also have b_blocknr = -1 and b_bdev initialized properly
1817 *
1818 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1819 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1820 * initialized properly.
64769240 1821 */
9c3569b5
TM
1822int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1823 struct buffer_head *bh, int create)
64769240 1824{
2ed88685 1825 struct ext4_map_blocks map;
64769240
AT
1826 int ret = 0;
1827
1828 BUG_ON(create == 0);
2ed88685
TT
1829 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1830
1831 map.m_lblk = iblock;
1832 map.m_len = 1;
64769240
AT
1833
1834 /*
1835 * first, we need to know whether the block is allocated already
1836 * preallocated blocks are unmapped but should treated
1837 * the same as allocated blocks.
1838 */
5356f261
AK
1839 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1840 if (ret <= 0)
2ed88685 1841 return ret;
64769240 1842
2ed88685 1843 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1844 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1845
1846 if (buffer_unwritten(bh)) {
1847 /* A delayed write to unwritten bh should be marked
1848 * new and mapped. Mapped ensures that we don't do
1849 * get_block multiple times when we write to the same
1850 * offset and new ensures that we do proper zero out
1851 * for partial write.
1852 */
1853 set_buffer_new(bh);
c8205636 1854 set_buffer_mapped(bh);
2ed88685
TT
1855 }
1856 return 0;
64769240 1857}
61628a3f 1858
62e086be
AK
1859static int bget_one(handle_t *handle, struct buffer_head *bh)
1860{
1861 get_bh(bh);
1862 return 0;
1863}
1864
1865static int bput_one(handle_t *handle, struct buffer_head *bh)
1866{
1867 put_bh(bh);
1868 return 0;
1869}
1870
1871static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1872 unsigned int len)
1873{
1874 struct address_space *mapping = page->mapping;
1875 struct inode *inode = mapping->host;
3fdcfb66 1876 struct buffer_head *page_bufs = NULL;
62e086be 1877 handle_t *handle = NULL;
3fdcfb66
TM
1878 int ret = 0, err = 0;
1879 int inline_data = ext4_has_inline_data(inode);
1880 struct buffer_head *inode_bh = NULL;
62e086be 1881
cb20d518 1882 ClearPageChecked(page);
3fdcfb66
TM
1883
1884 if (inline_data) {
1885 BUG_ON(page->index != 0);
1886 BUG_ON(len > ext4_get_max_inline_size(inode));
1887 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1888 if (inode_bh == NULL)
1889 goto out;
1890 } else {
1891 page_bufs = page_buffers(page);
1892 if (!page_bufs) {
1893 BUG();
1894 goto out;
1895 }
1896 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1897 NULL, bget_one);
1898 }
bdf96838
TT
1899 /*
1900 * We need to release the page lock before we start the
1901 * journal, so grab a reference so the page won't disappear
1902 * out from under us.
1903 */
1904 get_page(page);
62e086be
AK
1905 unlock_page(page);
1906
9924a92a
TT
1907 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1908 ext4_writepage_trans_blocks(inode));
62e086be
AK
1909 if (IS_ERR(handle)) {
1910 ret = PTR_ERR(handle);
bdf96838
TT
1911 put_page(page);
1912 goto out_no_pagelock;
62e086be 1913 }
441c8508
CW
1914 BUG_ON(!ext4_handle_valid(handle));
1915
bdf96838
TT
1916 lock_page(page);
1917 put_page(page);
1918 if (page->mapping != mapping) {
1919 /* The page got truncated from under us */
1920 ext4_journal_stop(handle);
1921 ret = 0;
1922 goto out;
1923 }
1924
3fdcfb66 1925 if (inline_data) {
5d601255 1926 BUFFER_TRACE(inode_bh, "get write access");
3fdcfb66 1927 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1928
3fdcfb66
TM
1929 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1930
1931 } else {
1932 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1933 do_journal_get_write_access);
1934
1935 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936 write_end_fn);
1937 }
62e086be
AK
1938 if (ret == 0)
1939 ret = err;
2d859db3 1940 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1941 err = ext4_journal_stop(handle);
1942 if (!ret)
1943 ret = err;
1944
3fdcfb66 1945 if (!ext4_has_inline_data(inode))
8c9367fd 1946 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1947 NULL, bput_one);
19f5fb7a 1948 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1949out:
bdf96838
TT
1950 unlock_page(page);
1951out_no_pagelock:
3fdcfb66 1952 brelse(inode_bh);
62e086be
AK
1953 return ret;
1954}
1955
61628a3f 1956/*
43ce1d23
AK
1957 * Note that we don't need to start a transaction unless we're journaling data
1958 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1959 * need to file the inode to the transaction's list in ordered mode because if
1960 * we are writing back data added by write(), the inode is already there and if
25985edc 1961 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1962 * transaction the data will hit the disk. In case we are journaling data, we
1963 * cannot start transaction directly because transaction start ranks above page
1964 * lock so we have to do some magic.
1965 *
b920c755 1966 * This function can get called via...
20970ba6 1967 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1968 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1969 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1970 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1971 *
1972 * We don't do any block allocation in this function. If we have page with
1973 * multiple blocks we need to write those buffer_heads that are mapped. This
1974 * is important for mmaped based write. So if we do with blocksize 1K
1975 * truncate(f, 1024);
1976 * a = mmap(f, 0, 4096);
1977 * a[0] = 'a';
1978 * truncate(f, 4096);
1979 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1980 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1981 * do_wp_page). So writepage should write the first block. If we modify
1982 * the mmap area beyond 1024 we will again get a page_fault and the
1983 * page_mkwrite callback will do the block allocation and mark the
1984 * buffer_heads mapped.
1985 *
1986 * We redirty the page if we have any buffer_heads that is either delay or
1987 * unwritten in the page.
1988 *
1989 * We can get recursively called as show below.
1990 *
1991 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1992 * ext4_writepage()
1993 *
1994 * But since we don't do any block allocation we should not deadlock.
1995 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1996 */
43ce1d23 1997static int ext4_writepage(struct page *page,
62e086be 1998 struct writeback_control *wbc)
64769240 1999{
f8bec370 2000 int ret = 0;
61628a3f 2001 loff_t size;
498e5f24 2002 unsigned int len;
744692dc 2003 struct buffer_head *page_bufs = NULL;
61628a3f 2004 struct inode *inode = page->mapping->host;
36ade451 2005 struct ext4_io_submit io_submit;
1c8349a1 2006 bool keep_towrite = false;
61628a3f 2007
a9c667f8 2008 trace_ext4_writepage(page);
f0e6c985
AK
2009 size = i_size_read(inode);
2010 if (page->index == size >> PAGE_CACHE_SHIFT)
2011 len = size & ~PAGE_CACHE_MASK;
2012 else
2013 len = PAGE_CACHE_SIZE;
64769240 2014
a42afc5f 2015 page_bufs = page_buffers(page);
a42afc5f 2016 /*
fe386132
JK
2017 * We cannot do block allocation or other extent handling in this
2018 * function. If there are buffers needing that, we have to redirty
2019 * the page. But we may reach here when we do a journal commit via
2020 * journal_submit_inode_data_buffers() and in that case we must write
2021 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2022 *
2023 * Also, if there is only one buffer per page (the fs block
2024 * size == the page size), if one buffer needs block
2025 * allocation or needs to modify the extent tree to clear the
2026 * unwritten flag, we know that the page can't be written at
2027 * all, so we might as well refuse the write immediately.
2028 * Unfortunately if the block size != page size, we can't as
2029 * easily detect this case using ext4_walk_page_buffers(), but
2030 * for the extremely common case, this is an optimization that
2031 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2032 */
f19d5870
TM
2033 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2034 ext4_bh_delay_or_unwritten)) {
f8bec370 2035 redirty_page_for_writepage(wbc, page);
cccd147a
TT
2036 if ((current->flags & PF_MEMALLOC) ||
2037 (inode->i_sb->s_blocksize == PAGE_CACHE_SIZE)) {
fe386132
JK
2038 /*
2039 * For memory cleaning there's no point in writing only
2040 * some buffers. So just bail out. Warn if we came here
2041 * from direct reclaim.
2042 */
2043 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2044 == PF_MEMALLOC);
f0e6c985
AK
2045 unlock_page(page);
2046 return 0;
2047 }
1c8349a1 2048 keep_towrite = true;
a42afc5f 2049 }
64769240 2050
cb20d518 2051 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2052 /*
2053 * It's mmapped pagecache. Add buffers and journal it. There
2054 * doesn't seem much point in redirtying the page here.
2055 */
3f0ca309 2056 return __ext4_journalled_writepage(page, len);
43ce1d23 2057
97a851ed
JK
2058 ext4_io_submit_init(&io_submit, wbc);
2059 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2060 if (!io_submit.io_end) {
2061 redirty_page_for_writepage(wbc, page);
2062 unlock_page(page);
2063 return -ENOMEM;
2064 }
1c8349a1 2065 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
36ade451 2066 ext4_io_submit(&io_submit);
97a851ed
JK
2067 /* Drop io_end reference we got from init */
2068 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2069 return ret;
2070}
2071
5f1132b2
JK
2072static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2073{
2074 int len;
2075 loff_t size = i_size_read(mpd->inode);
2076 int err;
2077
2078 BUG_ON(page->index != mpd->first_page);
2079 if (page->index == size >> PAGE_CACHE_SHIFT)
2080 len = size & ~PAGE_CACHE_MASK;
2081 else
2082 len = PAGE_CACHE_SIZE;
2083 clear_page_dirty_for_io(page);
1c8349a1 2084 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
5f1132b2
JK
2085 if (!err)
2086 mpd->wbc->nr_to_write--;
2087 mpd->first_page++;
2088
2089 return err;
2090}
2091
4e7ea81d
JK
2092#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2093
61628a3f 2094/*
fffb2739
JK
2095 * mballoc gives us at most this number of blocks...
2096 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2097 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2098 */
fffb2739 2099#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2100
4e7ea81d
JK
2101/*
2102 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2103 *
2104 * @mpd - extent of blocks
2105 * @lblk - logical number of the block in the file
09930042 2106 * @bh - buffer head we want to add to the extent
4e7ea81d 2107 *
09930042
JK
2108 * The function is used to collect contig. blocks in the same state. If the
2109 * buffer doesn't require mapping for writeback and we haven't started the
2110 * extent of buffers to map yet, the function returns 'true' immediately - the
2111 * caller can write the buffer right away. Otherwise the function returns true
2112 * if the block has been added to the extent, false if the block couldn't be
2113 * added.
4e7ea81d 2114 */
09930042
JK
2115static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2116 struct buffer_head *bh)
4e7ea81d
JK
2117{
2118 struct ext4_map_blocks *map = &mpd->map;
2119
09930042
JK
2120 /* Buffer that doesn't need mapping for writeback? */
2121 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2122 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2123 /* So far no extent to map => we write the buffer right away */
2124 if (map->m_len == 0)
2125 return true;
2126 return false;
2127 }
4e7ea81d
JK
2128
2129 /* First block in the extent? */
2130 if (map->m_len == 0) {
2131 map->m_lblk = lblk;
2132 map->m_len = 1;
09930042
JK
2133 map->m_flags = bh->b_state & BH_FLAGS;
2134 return true;
4e7ea81d
JK
2135 }
2136
09930042
JK
2137 /* Don't go larger than mballoc is willing to allocate */
2138 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2139 return false;
2140
4e7ea81d
JK
2141 /* Can we merge the block to our big extent? */
2142 if (lblk == map->m_lblk + map->m_len &&
09930042 2143 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2144 map->m_len++;
09930042 2145 return true;
4e7ea81d 2146 }
09930042 2147 return false;
4e7ea81d
JK
2148}
2149
5f1132b2
JK
2150/*
2151 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2152 *
2153 * @mpd - extent of blocks for mapping
2154 * @head - the first buffer in the page
2155 * @bh - buffer we should start processing from
2156 * @lblk - logical number of the block in the file corresponding to @bh
2157 *
2158 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2159 * the page for IO if all buffers in this page were mapped and there's no
2160 * accumulated extent of buffers to map or add buffers in the page to the
2161 * extent of buffers to map. The function returns 1 if the caller can continue
2162 * by processing the next page, 0 if it should stop adding buffers to the
2163 * extent to map because we cannot extend it anymore. It can also return value
2164 * < 0 in case of error during IO submission.
2165 */
2166static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2167 struct buffer_head *head,
2168 struct buffer_head *bh,
2169 ext4_lblk_t lblk)
4e7ea81d
JK
2170{
2171 struct inode *inode = mpd->inode;
5f1132b2 2172 int err;
4e7ea81d
JK
2173 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2174 >> inode->i_blkbits;
2175
2176 do {
2177 BUG_ON(buffer_locked(bh));
2178
09930042 2179 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2180 /* Found extent to map? */
2181 if (mpd->map.m_len)
5f1132b2 2182 return 0;
09930042 2183 /* Everything mapped so far and we hit EOF */
5f1132b2 2184 break;
4e7ea81d 2185 }
4e7ea81d 2186 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2187 /* So far everything mapped? Submit the page for IO. */
2188 if (mpd->map.m_len == 0) {
2189 err = mpage_submit_page(mpd, head->b_page);
2190 if (err < 0)
2191 return err;
2192 }
2193 return lblk < blocks;
4e7ea81d
JK
2194}
2195
2196/*
2197 * mpage_map_buffers - update buffers corresponding to changed extent and
2198 * submit fully mapped pages for IO
2199 *
2200 * @mpd - description of extent to map, on return next extent to map
2201 *
2202 * Scan buffers corresponding to changed extent (we expect corresponding pages
2203 * to be already locked) and update buffer state according to new extent state.
2204 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2205 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2206 * and do extent conversion after IO is finished. If the last page is not fully
2207 * mapped, we update @map to the next extent in the last page that needs
2208 * mapping. Otherwise we submit the page for IO.
2209 */
2210static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2211{
2212 struct pagevec pvec;
2213 int nr_pages, i;
2214 struct inode *inode = mpd->inode;
2215 struct buffer_head *head, *bh;
2216 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2217 pgoff_t start, end;
2218 ext4_lblk_t lblk;
2219 sector_t pblock;
2220 int err;
2221
2222 start = mpd->map.m_lblk >> bpp_bits;
2223 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2224 lblk = start << bpp_bits;
2225 pblock = mpd->map.m_pblk;
2226
2227 pagevec_init(&pvec, 0);
2228 while (start <= end) {
2229 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2230 PAGEVEC_SIZE);
2231 if (nr_pages == 0)
2232 break;
2233 for (i = 0; i < nr_pages; i++) {
2234 struct page *page = pvec.pages[i];
2235
2236 if (page->index > end)
2237 break;
70261f56 2238 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2239 BUG_ON(page->index != start);
2240 bh = head = page_buffers(page);
2241 do {
2242 if (lblk < mpd->map.m_lblk)
2243 continue;
2244 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2245 /*
2246 * Buffer after end of mapped extent.
2247 * Find next buffer in the page to map.
2248 */
2249 mpd->map.m_len = 0;
2250 mpd->map.m_flags = 0;
5f1132b2
JK
2251 /*
2252 * FIXME: If dioread_nolock supports
2253 * blocksize < pagesize, we need to make
2254 * sure we add size mapped so far to
2255 * io_end->size as the following call
2256 * can submit the page for IO.
2257 */
2258 err = mpage_process_page_bufs(mpd, head,
2259 bh, lblk);
4e7ea81d 2260 pagevec_release(&pvec);
5f1132b2
JK
2261 if (err > 0)
2262 err = 0;
2263 return err;
4e7ea81d
JK
2264 }
2265 if (buffer_delay(bh)) {
2266 clear_buffer_delay(bh);
2267 bh->b_blocknr = pblock++;
2268 }
4e7ea81d 2269 clear_buffer_unwritten(bh);
5f1132b2 2270 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2271
2272 /*
2273 * FIXME: This is going to break if dioread_nolock
2274 * supports blocksize < pagesize as we will try to
2275 * convert potentially unmapped parts of inode.
2276 */
2277 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2278 /* Page fully mapped - let IO run! */
2279 err = mpage_submit_page(mpd, page);
2280 if (err < 0) {
2281 pagevec_release(&pvec);
2282 return err;
2283 }
2284 start++;
2285 }
2286 pagevec_release(&pvec);
2287 }
2288 /* Extent fully mapped and matches with page boundary. We are done. */
2289 mpd->map.m_len = 0;
2290 mpd->map.m_flags = 0;
2291 return 0;
2292}
2293
2294static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2295{
2296 struct inode *inode = mpd->inode;
2297 struct ext4_map_blocks *map = &mpd->map;
2298 int get_blocks_flags;
090f32ee 2299 int err, dioread_nolock;
4e7ea81d
JK
2300
2301 trace_ext4_da_write_pages_extent(inode, map);
2302 /*
2303 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2304 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2305 * where we have written into one or more preallocated blocks). It is
2306 * possible that we're going to need more metadata blocks than
2307 * previously reserved. However we must not fail because we're in
2308 * writeback and there is nothing we can do about it so it might result
2309 * in data loss. So use reserved blocks to allocate metadata if
2310 * possible.
2311 *
754cfed6
TT
2312 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2313 * the blocks in question are delalloc blocks. This indicates
2314 * that the blocks and quotas has already been checked when
2315 * the data was copied into the page cache.
4e7ea81d
JK
2316 */
2317 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2318 EXT4_GET_BLOCKS_METADATA_NOFAIL;
090f32ee
LC
2319 dioread_nolock = ext4_should_dioread_nolock(inode);
2320 if (dioread_nolock)
4e7ea81d
JK
2321 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2322 if (map->m_flags & (1 << BH_Delay))
2323 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2324
2325 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2326 if (err < 0)
2327 return err;
090f32ee 2328 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2329 if (!mpd->io_submit.io_end->handle &&
2330 ext4_handle_valid(handle)) {
2331 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2332 handle->h_rsv_handle = NULL;
2333 }
3613d228 2334 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2335 }
4e7ea81d
JK
2336
2337 BUG_ON(map->m_len == 0);
2338 if (map->m_flags & EXT4_MAP_NEW) {
2339 struct block_device *bdev = inode->i_sb->s_bdev;
2340 int i;
2341
2342 for (i = 0; i < map->m_len; i++)
2343 unmap_underlying_metadata(bdev, map->m_pblk + i);
2344 }
2345 return 0;
2346}
2347
2348/*
2349 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2350 * mpd->len and submit pages underlying it for IO
2351 *
2352 * @handle - handle for journal operations
2353 * @mpd - extent to map
7534e854
JK
2354 * @give_up_on_write - we set this to true iff there is a fatal error and there
2355 * is no hope of writing the data. The caller should discard
2356 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2357 *
2358 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2359 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2360 * them to initialized or split the described range from larger unwritten
2361 * extent. Note that we need not map all the described range since allocation
2362 * can return less blocks or the range is covered by more unwritten extents. We
2363 * cannot map more because we are limited by reserved transaction credits. On
2364 * the other hand we always make sure that the last touched page is fully
2365 * mapped so that it can be written out (and thus forward progress is
2366 * guaranteed). After mapping we submit all mapped pages for IO.
2367 */
2368static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2369 struct mpage_da_data *mpd,
2370 bool *give_up_on_write)
4e7ea81d
JK
2371{
2372 struct inode *inode = mpd->inode;
2373 struct ext4_map_blocks *map = &mpd->map;
2374 int err;
2375 loff_t disksize;
6603120e 2376 int progress = 0;
4e7ea81d
JK
2377
2378 mpd->io_submit.io_end->offset =
2379 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2380 do {
4e7ea81d
JK
2381 err = mpage_map_one_extent(handle, mpd);
2382 if (err < 0) {
2383 struct super_block *sb = inode->i_sb;
2384
cb530541
TT
2385 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2386 goto invalidate_dirty_pages;
4e7ea81d 2387 /*
cb530541
TT
2388 * Let the uper layers retry transient errors.
2389 * In the case of ENOSPC, if ext4_count_free_blocks()
2390 * is non-zero, a commit should free up blocks.
4e7ea81d 2391 */
cb530541 2392 if ((err == -ENOMEM) ||
6603120e
DM
2393 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2394 if (progress)
2395 goto update_disksize;
cb530541 2396 return err;
6603120e 2397 }
cb530541
TT
2398 ext4_msg(sb, KERN_CRIT,
2399 "Delayed block allocation failed for "
2400 "inode %lu at logical offset %llu with"
2401 " max blocks %u with error %d",
2402 inode->i_ino,
2403 (unsigned long long)map->m_lblk,
2404 (unsigned)map->m_len, -err);
2405 ext4_msg(sb, KERN_CRIT,
2406 "This should not happen!! Data will "
2407 "be lost\n");
2408 if (err == -ENOSPC)
2409 ext4_print_free_blocks(inode);
2410 invalidate_dirty_pages:
2411 *give_up_on_write = true;
4e7ea81d
JK
2412 return err;
2413 }
6603120e 2414 progress = 1;
4e7ea81d
JK
2415 /*
2416 * Update buffer state, submit mapped pages, and get us new
2417 * extent to map
2418 */
2419 err = mpage_map_and_submit_buffers(mpd);
2420 if (err < 0)
6603120e 2421 goto update_disksize;
27d7c4ed 2422 } while (map->m_len);
4e7ea81d 2423
6603120e 2424update_disksize:
622cad13
TT
2425 /*
2426 * Update on-disk size after IO is submitted. Races with
2427 * truncate are avoided by checking i_size under i_data_sem.
2428 */
4e7ea81d 2429 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2430 if (disksize > EXT4_I(inode)->i_disksize) {
2431 int err2;
622cad13
TT
2432 loff_t i_size;
2433
2434 down_write(&EXT4_I(inode)->i_data_sem);
2435 i_size = i_size_read(inode);
2436 if (disksize > i_size)
2437 disksize = i_size;
2438 if (disksize > EXT4_I(inode)->i_disksize)
2439 EXT4_I(inode)->i_disksize = disksize;
4e7ea81d 2440 err2 = ext4_mark_inode_dirty(handle, inode);
622cad13 2441 up_write(&EXT4_I(inode)->i_data_sem);
4e7ea81d
JK
2442 if (err2)
2443 ext4_error(inode->i_sb,
2444 "Failed to mark inode %lu dirty",
2445 inode->i_ino);
2446 if (!err)
2447 err = err2;
2448 }
2449 return err;
2450}
2451
fffb2739
JK
2452/*
2453 * Calculate the total number of credits to reserve for one writepages
20970ba6 2454 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2455 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2456 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2457 * bpp - 1 blocks in bpp different extents.
2458 */
525f4ed8
MC
2459static int ext4_da_writepages_trans_blocks(struct inode *inode)
2460{
fffb2739 2461 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2462
fffb2739
JK
2463 return ext4_meta_trans_blocks(inode,
2464 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2465}
61628a3f 2466
8e48dcfb 2467/*
4e7ea81d
JK
2468 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2469 * and underlying extent to map
2470 *
2471 * @mpd - where to look for pages
2472 *
2473 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2474 * IO immediately. When we find a page which isn't mapped we start accumulating
2475 * extent of buffers underlying these pages that needs mapping (formed by
2476 * either delayed or unwritten buffers). We also lock the pages containing
2477 * these buffers. The extent found is returned in @mpd structure (starting at
2478 * mpd->lblk with length mpd->len blocks).
2479 *
2480 * Note that this function can attach bios to one io_end structure which are
2481 * neither logically nor physically contiguous. Although it may seem as an
2482 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2483 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2484 */
4e7ea81d 2485static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2486{
4e7ea81d
JK
2487 struct address_space *mapping = mpd->inode->i_mapping;
2488 struct pagevec pvec;
2489 unsigned int nr_pages;
aeac589a 2490 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2491 pgoff_t index = mpd->first_page;
2492 pgoff_t end = mpd->last_page;
2493 int tag;
2494 int i, err = 0;
2495 int blkbits = mpd->inode->i_blkbits;
2496 ext4_lblk_t lblk;
2497 struct buffer_head *head;
8e48dcfb 2498
4e7ea81d 2499 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2500 tag = PAGECACHE_TAG_TOWRITE;
2501 else
2502 tag = PAGECACHE_TAG_DIRTY;
2503
4e7ea81d
JK
2504 pagevec_init(&pvec, 0);
2505 mpd->map.m_len = 0;
2506 mpd->next_page = index;
4f01b02c 2507 while (index <= end) {
5b41d924 2508 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2509 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2510 if (nr_pages == 0)
4e7ea81d 2511 goto out;
8e48dcfb
TT
2512
2513 for (i = 0; i < nr_pages; i++) {
2514 struct page *page = pvec.pages[i];
2515
2516 /*
2517 * At this point, the page may be truncated or
2518 * invalidated (changing page->mapping to NULL), or
2519 * even swizzled back from swapper_space to tmpfs file
2520 * mapping. However, page->index will not change
2521 * because we have a reference on the page.
2522 */
4f01b02c
TT
2523 if (page->index > end)
2524 goto out;
8e48dcfb 2525
aeac589a
ML
2526 /*
2527 * Accumulated enough dirty pages? This doesn't apply
2528 * to WB_SYNC_ALL mode. For integrity sync we have to
2529 * keep going because someone may be concurrently
2530 * dirtying pages, and we might have synced a lot of
2531 * newly appeared dirty pages, but have not synced all
2532 * of the old dirty pages.
2533 */
2534 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2535 goto out;
2536
4e7ea81d
JK
2537 /* If we can't merge this page, we are done. */
2538 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2539 goto out;
78aaced3 2540
8e48dcfb 2541 lock_page(page);
8e48dcfb 2542 /*
4e7ea81d
JK
2543 * If the page is no longer dirty, or its mapping no
2544 * longer corresponds to inode we are writing (which
2545 * means it has been truncated or invalidated), or the
2546 * page is already under writeback and we are not doing
2547 * a data integrity writeback, skip the page
8e48dcfb 2548 */
4f01b02c
TT
2549 if (!PageDirty(page) ||
2550 (PageWriteback(page) &&
4e7ea81d 2551 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2552 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2553 unlock_page(page);
2554 continue;
2555 }
2556
7cb1a535 2557 wait_on_page_writeback(page);
8e48dcfb 2558 BUG_ON(PageWriteback(page));
8e48dcfb 2559
4e7ea81d 2560 if (mpd->map.m_len == 0)
8eb9e5ce 2561 mpd->first_page = page->index;
8eb9e5ce 2562 mpd->next_page = page->index + 1;
f8bec370 2563 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2564 lblk = ((ext4_lblk_t)page->index) <<
2565 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2566 head = page_buffers(page);
5f1132b2
JK
2567 err = mpage_process_page_bufs(mpd, head, head, lblk);
2568 if (err <= 0)
4e7ea81d 2569 goto out;
5f1132b2 2570 err = 0;
aeac589a 2571 left--;
8e48dcfb
TT
2572 }
2573 pagevec_release(&pvec);
2574 cond_resched();
2575 }
4f01b02c 2576 return 0;
8eb9e5ce
TT
2577out:
2578 pagevec_release(&pvec);
4e7ea81d 2579 return err;
8e48dcfb
TT
2580}
2581
20970ba6
TT
2582static int __writepage(struct page *page, struct writeback_control *wbc,
2583 void *data)
2584{
2585 struct address_space *mapping = data;
2586 int ret = ext4_writepage(page, wbc);
2587 mapping_set_error(mapping, ret);
2588 return ret;
2589}
2590
2591static int ext4_writepages(struct address_space *mapping,
2592 struct writeback_control *wbc)
64769240 2593{
4e7ea81d
JK
2594 pgoff_t writeback_index = 0;
2595 long nr_to_write = wbc->nr_to_write;
22208ded 2596 int range_whole = 0;
4e7ea81d 2597 int cycled = 1;
61628a3f 2598 handle_t *handle = NULL;
df22291f 2599 struct mpage_da_data mpd;
5e745b04 2600 struct inode *inode = mapping->host;
6b523df4 2601 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2602 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2603 bool done;
1bce63d1 2604 struct blk_plug plug;
cb530541 2605 bool give_up_on_write = false;
61628a3f 2606
20970ba6 2607 trace_ext4_writepages(inode, wbc);
ba80b101 2608
61628a3f
MC
2609 /*
2610 * No pages to write? This is mainly a kludge to avoid starting
2611 * a transaction for special inodes like journal inode on last iput()
2612 * because that could violate lock ordering on umount
2613 */
a1d6cc56 2614 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2615 goto out_writepages;
2a21e37e 2616
20970ba6
TT
2617 if (ext4_should_journal_data(inode)) {
2618 struct blk_plug plug;
20970ba6
TT
2619
2620 blk_start_plug(&plug);
2621 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2622 blk_finish_plug(&plug);
bbf023c7 2623 goto out_writepages;
20970ba6
TT
2624 }
2625
2a21e37e
TT
2626 /*
2627 * If the filesystem has aborted, it is read-only, so return
2628 * right away instead of dumping stack traces later on that
2629 * will obscure the real source of the problem. We test
4ab2f15b 2630 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2631 * the latter could be true if the filesystem is mounted
20970ba6 2632 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2633 * *never* be called, so if that ever happens, we would want
2634 * the stack trace.
2635 */
bbf023c7
ML
2636 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2637 ret = -EROFS;
2638 goto out_writepages;
2639 }
2a21e37e 2640
6b523df4
JK
2641 if (ext4_should_dioread_nolock(inode)) {
2642 /*
70261f56 2643 * We may need to convert up to one extent per block in
6b523df4
JK
2644 * the page and we may dirty the inode.
2645 */
2646 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2647 }
2648
4e7ea81d
JK
2649 /*
2650 * If we have inline data and arrive here, it means that
2651 * we will soon create the block for the 1st page, so
2652 * we'd better clear the inline data here.
2653 */
2654 if (ext4_has_inline_data(inode)) {
2655 /* Just inode will be modified... */
2656 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2657 if (IS_ERR(handle)) {
2658 ret = PTR_ERR(handle);
2659 goto out_writepages;
2660 }
2661 BUG_ON(ext4_test_inode_state(inode,
2662 EXT4_STATE_MAY_INLINE_DATA));
2663 ext4_destroy_inline_data(handle, inode);
2664 ext4_journal_stop(handle);
2665 }
2666
22208ded
AK
2667 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2668 range_whole = 1;
61628a3f 2669
2acf2c26 2670 if (wbc->range_cyclic) {
4e7ea81d
JK
2671 writeback_index = mapping->writeback_index;
2672 if (writeback_index)
2acf2c26 2673 cycled = 0;
4e7ea81d
JK
2674 mpd.first_page = writeback_index;
2675 mpd.last_page = -1;
5b41d924 2676 } else {
4e7ea81d
JK
2677 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2678 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2679 }
a1d6cc56 2680
4e7ea81d
JK
2681 mpd.inode = inode;
2682 mpd.wbc = wbc;
2683 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2684retry:
6e6938b6 2685 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2686 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2687 done = false;
1bce63d1 2688 blk_start_plug(&plug);
4e7ea81d
JK
2689 while (!done && mpd.first_page <= mpd.last_page) {
2690 /* For each extent of pages we use new io_end */
2691 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2692 if (!mpd.io_submit.io_end) {
2693 ret = -ENOMEM;
2694 break;
2695 }
a1d6cc56
AK
2696
2697 /*
4e7ea81d
JK
2698 * We have two constraints: We find one extent to map and we
2699 * must always write out whole page (makes a difference when
2700 * blocksize < pagesize) so that we don't block on IO when we
2701 * try to write out the rest of the page. Journalled mode is
2702 * not supported by delalloc.
a1d6cc56
AK
2703 */
2704 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2705 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2706
4e7ea81d 2707 /* start a new transaction */
6b523df4
JK
2708 handle = ext4_journal_start_with_reserve(inode,
2709 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2710 if (IS_ERR(handle)) {
2711 ret = PTR_ERR(handle);
1693918e 2712 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2713 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2714 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2715 /* Release allocated io_end */
2716 ext4_put_io_end(mpd.io_submit.io_end);
2717 break;
61628a3f 2718 }
f63e6005 2719
4e7ea81d
JK
2720 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2721 ret = mpage_prepare_extent_to_map(&mpd);
2722 if (!ret) {
2723 if (mpd.map.m_len)
cb530541
TT
2724 ret = mpage_map_and_submit_extent(handle, &mpd,
2725 &give_up_on_write);
4e7ea81d
JK
2726 else {
2727 /*
2728 * We scanned the whole range (or exhausted
2729 * nr_to_write), submitted what was mapped and
2730 * didn't find anything needing mapping. We are
2731 * done.
2732 */
2733 done = true;
2734 }
f63e6005 2735 }
61628a3f 2736 ext4_journal_stop(handle);
4e7ea81d
JK
2737 /* Submit prepared bio */
2738 ext4_io_submit(&mpd.io_submit);
2739 /* Unlock pages we didn't use */
cb530541 2740 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2741 /* Drop our io_end reference we got from init */
2742 ext4_put_io_end(mpd.io_submit.io_end);
2743
2744 if (ret == -ENOSPC && sbi->s_journal) {
2745 /*
2746 * Commit the transaction which would
22208ded
AK
2747 * free blocks released in the transaction
2748 * and try again
2749 */
df22291f 2750 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2751 ret = 0;
4e7ea81d
JK
2752 continue;
2753 }
2754 /* Fatal error - ENOMEM, EIO... */
2755 if (ret)
61628a3f 2756 break;
a1d6cc56 2757 }
1bce63d1 2758 blk_finish_plug(&plug);
9c12a831 2759 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2760 cycled = 1;
4e7ea81d
JK
2761 mpd.last_page = writeback_index - 1;
2762 mpd.first_page = 0;
2acf2c26
AK
2763 goto retry;
2764 }
22208ded
AK
2765
2766 /* Update index */
22208ded
AK
2767 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2768 /*
4e7ea81d 2769 * Set the writeback_index so that range_cyclic
22208ded
AK
2770 * mode will write it back later
2771 */
4e7ea81d 2772 mapping->writeback_index = mpd.first_page;
a1d6cc56 2773
61628a3f 2774out_writepages:
20970ba6
TT
2775 trace_ext4_writepages_result(inode, wbc, ret,
2776 nr_to_write - wbc->nr_to_write);
61628a3f 2777 return ret;
64769240
AT
2778}
2779
79f0be8d
AK
2780static int ext4_nonda_switch(struct super_block *sb)
2781{
5c1ff336 2782 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2783 struct ext4_sb_info *sbi = EXT4_SB(sb);
2784
2785 /*
2786 * switch to non delalloc mode if we are running low
2787 * on free block. The free block accounting via percpu
179f7ebf 2788 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2789 * accumulated on each CPU without updating global counters
2790 * Delalloc need an accurate free block accounting. So switch
2791 * to non delalloc when we are near to error range.
2792 */
5c1ff336
EW
2793 free_clusters =
2794 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2795 dirty_clusters =
2796 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2797 /*
2798 * Start pushing delalloc when 1/2 of free blocks are dirty.
2799 */
5c1ff336 2800 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2801 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2802
5c1ff336
EW
2803 if (2 * free_clusters < 3 * dirty_clusters ||
2804 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2805 /*
c8afb446
ES
2806 * free block count is less than 150% of dirty blocks
2807 * or free blocks is less than watermark
79f0be8d
AK
2808 */
2809 return 1;
2810 }
2811 return 0;
2812}
2813
0ff8947f
ES
2814/* We always reserve for an inode update; the superblock could be there too */
2815static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2816{
e2b911c5 2817 if (likely(ext4_has_feature_large_file(inode->i_sb)))
0ff8947f
ES
2818 return 1;
2819
2820 if (pos + len <= 0x7fffffffULL)
2821 return 1;
2822
2823 /* We might need to update the superblock to set LARGE_FILE */
2824 return 2;
2825}
2826
64769240 2827static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2828 loff_t pos, unsigned len, unsigned flags,
2829 struct page **pagep, void **fsdata)
64769240 2830{
72b8ab9d 2831 int ret, retries = 0;
64769240
AT
2832 struct page *page;
2833 pgoff_t index;
64769240
AT
2834 struct inode *inode = mapping->host;
2835 handle_t *handle;
2836
2837 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2838
2839 if (ext4_nonda_switch(inode->i_sb)) {
2840 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2841 return ext4_write_begin(file, mapping, pos,
2842 len, flags, pagep, fsdata);
2843 }
2844 *fsdata = (void *)0;
9bffad1e 2845 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2846
2847 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2848 ret = ext4_da_write_inline_data_begin(mapping, inode,
2849 pos, len, flags,
2850 pagep, fsdata);
2851 if (ret < 0)
47564bfb
TT
2852 return ret;
2853 if (ret == 1)
2854 return 0;
9c3569b5
TM
2855 }
2856
47564bfb
TT
2857 /*
2858 * grab_cache_page_write_begin() can take a long time if the
2859 * system is thrashing due to memory pressure, or if the page
2860 * is being written back. So grab it first before we start
2861 * the transaction handle. This also allows us to allocate
2862 * the page (if needed) without using GFP_NOFS.
2863 */
2864retry_grab:
2865 page = grab_cache_page_write_begin(mapping, index, flags);
2866 if (!page)
2867 return -ENOMEM;
2868 unlock_page(page);
2869
64769240
AT
2870 /*
2871 * With delayed allocation, we don't log the i_disksize update
2872 * if there is delayed block allocation. But we still need
2873 * to journalling the i_disksize update if writes to the end
2874 * of file which has an already mapped buffer.
2875 */
47564bfb 2876retry_journal:
0ff8947f
ES
2877 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2878 ext4_da_write_credits(inode, pos, len));
64769240 2879 if (IS_ERR(handle)) {
47564bfb
TT
2880 page_cache_release(page);
2881 return PTR_ERR(handle);
64769240
AT
2882 }
2883
47564bfb
TT
2884 lock_page(page);
2885 if (page->mapping != mapping) {
2886 /* The page got truncated from under us */
2887 unlock_page(page);
2888 page_cache_release(page);
d5a0d4f7 2889 ext4_journal_stop(handle);
47564bfb 2890 goto retry_grab;
d5a0d4f7 2891 }
47564bfb 2892 /* In case writeback began while the page was unlocked */
7afe5aa5 2893 wait_for_stable_page(page);
64769240 2894
2058f83a
MH
2895#ifdef CONFIG_EXT4_FS_ENCRYPTION
2896 ret = ext4_block_write_begin(page, pos, len,
2897 ext4_da_get_block_prep);
2898#else
6e1db88d 2899 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2900#endif
64769240
AT
2901 if (ret < 0) {
2902 unlock_page(page);
2903 ext4_journal_stop(handle);
ae4d5372
AK
2904 /*
2905 * block_write_begin may have instantiated a few blocks
2906 * outside i_size. Trim these off again. Don't need
2907 * i_size_read because we hold i_mutex.
2908 */
2909 if (pos + len > inode->i_size)
b9a4207d 2910 ext4_truncate_failed_write(inode);
47564bfb
TT
2911
2912 if (ret == -ENOSPC &&
2913 ext4_should_retry_alloc(inode->i_sb, &retries))
2914 goto retry_journal;
2915
2916 page_cache_release(page);
2917 return ret;
64769240
AT
2918 }
2919
47564bfb 2920 *pagep = page;
64769240
AT
2921 return ret;
2922}
2923
632eaeab
MC
2924/*
2925 * Check if we should update i_disksize
2926 * when write to the end of file but not require block allocation
2927 */
2928static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2929 unsigned long offset)
632eaeab
MC
2930{
2931 struct buffer_head *bh;
2932 struct inode *inode = page->mapping->host;
2933 unsigned int idx;
2934 int i;
2935
2936 bh = page_buffers(page);
2937 idx = offset >> inode->i_blkbits;
2938
af5bc92d 2939 for (i = 0; i < idx; i++)
632eaeab
MC
2940 bh = bh->b_this_page;
2941
29fa89d0 2942 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2943 return 0;
2944 return 1;
2945}
2946
64769240 2947static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2948 struct address_space *mapping,
2949 loff_t pos, unsigned len, unsigned copied,
2950 struct page *page, void *fsdata)
64769240
AT
2951{
2952 struct inode *inode = mapping->host;
2953 int ret = 0, ret2;
2954 handle_t *handle = ext4_journal_current_handle();
2955 loff_t new_i_size;
632eaeab 2956 unsigned long start, end;
79f0be8d
AK
2957 int write_mode = (int)(unsigned long)fsdata;
2958
74d553aa
TT
2959 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2960 return ext4_write_end(file, mapping, pos,
2961 len, copied, page, fsdata);
632eaeab 2962
9bffad1e 2963 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2964 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2965 end = start + copied - 1;
64769240
AT
2966
2967 /*
2968 * generic_write_end() will run mark_inode_dirty() if i_size
2969 * changes. So let's piggyback the i_disksize mark_inode_dirty
2970 * into that.
2971 */
64769240 2972 new_i_size = pos + copied;
ea51d132 2973 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2974 if (ext4_has_inline_data(inode) ||
2975 ext4_da_should_update_i_disksize(page, end)) {
ee124d27 2976 ext4_update_i_disksize(inode, new_i_size);
cf17fea6
AK
2977 /* We need to mark inode dirty even if
2978 * new_i_size is less that inode->i_size
2979 * bu greater than i_disksize.(hint delalloc)
2980 */
2981 ext4_mark_inode_dirty(handle, inode);
64769240 2982 }
632eaeab 2983 }
9c3569b5
TM
2984
2985 if (write_mode != CONVERT_INLINE_DATA &&
2986 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2987 ext4_has_inline_data(inode))
2988 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2989 page);
2990 else
2991 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2992 page, fsdata);
9c3569b5 2993
64769240
AT
2994 copied = ret2;
2995 if (ret2 < 0)
2996 ret = ret2;
2997 ret2 = ext4_journal_stop(handle);
2998 if (!ret)
2999 ret = ret2;
3000
3001 return ret ? ret : copied;
3002}
3003
d47992f8
LC
3004static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3005 unsigned int length)
64769240 3006{
64769240
AT
3007 /*
3008 * Drop reserved blocks
3009 */
3010 BUG_ON(!PageLocked(page));
3011 if (!page_has_buffers(page))
3012 goto out;
3013
ca99fdd2 3014 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
3015
3016out:
d47992f8 3017 ext4_invalidatepage(page, offset, length);
64769240
AT
3018
3019 return;
3020}
3021
ccd2506b
TT
3022/*
3023 * Force all delayed allocation blocks to be allocated for a given inode.
3024 */
3025int ext4_alloc_da_blocks(struct inode *inode)
3026{
fb40ba0d
TT
3027 trace_ext4_alloc_da_blocks(inode);
3028
71d4f7d0 3029 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3030 return 0;
3031
3032 /*
3033 * We do something simple for now. The filemap_flush() will
3034 * also start triggering a write of the data blocks, which is
3035 * not strictly speaking necessary (and for users of
3036 * laptop_mode, not even desirable). However, to do otherwise
3037 * would require replicating code paths in:
de9a55b8 3038 *
20970ba6 3039 * ext4_writepages() ->
ccd2506b
TT
3040 * write_cache_pages() ---> (via passed in callback function)
3041 * __mpage_da_writepage() -->
3042 * mpage_add_bh_to_extent()
3043 * mpage_da_map_blocks()
3044 *
3045 * The problem is that write_cache_pages(), located in
3046 * mm/page-writeback.c, marks pages clean in preparation for
3047 * doing I/O, which is not desirable if we're not planning on
3048 * doing I/O at all.
3049 *
3050 * We could call write_cache_pages(), and then redirty all of
380cf090 3051 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3052 * would be ugly in the extreme. So instead we would need to
3053 * replicate parts of the code in the above functions,
25985edc 3054 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3055 * write out the pages, but rather only collect contiguous
3056 * logical block extents, call the multi-block allocator, and
3057 * then update the buffer heads with the block allocations.
de9a55b8 3058 *
ccd2506b
TT
3059 * For now, though, we'll cheat by calling filemap_flush(),
3060 * which will map the blocks, and start the I/O, but not
3061 * actually wait for the I/O to complete.
3062 */
3063 return filemap_flush(inode->i_mapping);
3064}
64769240 3065
ac27a0ec
DK
3066/*
3067 * bmap() is special. It gets used by applications such as lilo and by
3068 * the swapper to find the on-disk block of a specific piece of data.
3069 *
3070 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3071 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3072 * filesystem and enables swap, then they may get a nasty shock when the
3073 * data getting swapped to that swapfile suddenly gets overwritten by
3074 * the original zero's written out previously to the journal and
3075 * awaiting writeback in the kernel's buffer cache.
3076 *
3077 * So, if we see any bmap calls here on a modified, data-journaled file,
3078 * take extra steps to flush any blocks which might be in the cache.
3079 */
617ba13b 3080static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3081{
3082 struct inode *inode = mapping->host;
3083 journal_t *journal;
3084 int err;
3085
46c7f254
TM
3086 /*
3087 * We can get here for an inline file via the FIBMAP ioctl
3088 */
3089 if (ext4_has_inline_data(inode))
3090 return 0;
3091
64769240
AT
3092 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3093 test_opt(inode->i_sb, DELALLOC)) {
3094 /*
3095 * With delalloc we want to sync the file
3096 * so that we can make sure we allocate
3097 * blocks for file
3098 */
3099 filemap_write_and_wait(mapping);
3100 }
3101
19f5fb7a
TT
3102 if (EXT4_JOURNAL(inode) &&
3103 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3104 /*
3105 * This is a REALLY heavyweight approach, but the use of
3106 * bmap on dirty files is expected to be extremely rare:
3107 * only if we run lilo or swapon on a freshly made file
3108 * do we expect this to happen.
3109 *
3110 * (bmap requires CAP_SYS_RAWIO so this does not
3111 * represent an unprivileged user DOS attack --- we'd be
3112 * in trouble if mortal users could trigger this path at
3113 * will.)
3114 *
617ba13b 3115 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3116 * regular files. If somebody wants to bmap a directory
3117 * or symlink and gets confused because the buffer
3118 * hasn't yet been flushed to disk, they deserve
3119 * everything they get.
3120 */
3121
19f5fb7a 3122 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3123 journal = EXT4_JOURNAL(inode);
dab291af
MC
3124 jbd2_journal_lock_updates(journal);
3125 err = jbd2_journal_flush(journal);
3126 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3127
3128 if (err)
3129 return 0;
3130 }
3131
af5bc92d 3132 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3133}
3134
617ba13b 3135static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3136{
46c7f254
TM
3137 int ret = -EAGAIN;
3138 struct inode *inode = page->mapping->host;
3139
0562e0ba 3140 trace_ext4_readpage(page);
46c7f254
TM
3141
3142 if (ext4_has_inline_data(inode))
3143 ret = ext4_readpage_inline(inode, page);
3144
3145 if (ret == -EAGAIN)
f64e02fe 3146 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
46c7f254
TM
3147
3148 return ret;
ac27a0ec
DK
3149}
3150
3151static int
617ba13b 3152ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3153 struct list_head *pages, unsigned nr_pages)
3154{
46c7f254
TM
3155 struct inode *inode = mapping->host;
3156
3157 /* If the file has inline data, no need to do readpages. */
3158 if (ext4_has_inline_data(inode))
3159 return 0;
3160
f64e02fe 3161 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
ac27a0ec
DK
3162}
3163
d47992f8
LC
3164static void ext4_invalidatepage(struct page *page, unsigned int offset,
3165 unsigned int length)
ac27a0ec 3166{
ca99fdd2 3167 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3168
4520fb3c
JK
3169 /* No journalling happens on data buffers when this function is used */
3170 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3171
ca99fdd2 3172 block_invalidatepage(page, offset, length);
4520fb3c
JK
3173}
3174
53e87268 3175static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3176 unsigned int offset,
3177 unsigned int length)
4520fb3c
JK
3178{
3179 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3180
ca99fdd2 3181 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3182
ac27a0ec
DK
3183 /*
3184 * If it's a full truncate we just forget about the pending dirtying
3185 */
ca99fdd2 3186 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
3187 ClearPageChecked(page);
3188
ca99fdd2 3189 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3190}
3191
3192/* Wrapper for aops... */
3193static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3194 unsigned int offset,
3195 unsigned int length)
53e87268 3196{
ca99fdd2 3197 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3198}
3199
617ba13b 3200static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3201{
617ba13b 3202 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3203
0562e0ba
JZ
3204 trace_ext4_releasepage(page);
3205
e1c36595
JK
3206 /* Page has dirty journalled data -> cannot release */
3207 if (PageChecked(page))
ac27a0ec 3208 return 0;
0390131b
FM
3209 if (journal)
3210 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3211 else
3212 return try_to_free_buffers(page);
ac27a0ec
DK
3213}
3214
ba5843f5
JK
3215#ifdef CONFIG_FS_DAX
3216int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3217 struct buffer_head *bh_result, int create)
ed923b57 3218{
ba5843f5
JK
3219 int ret, err;
3220 int credits;
3221 struct ext4_map_blocks map;
3222 handle_t *handle = NULL;
3223 int flags = 0;
c86d8db3 3224
ba5843f5 3225 ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
ed923b57 3226 inode->i_ino, create);
ba5843f5
JK
3227 map.m_lblk = iblock;
3228 map.m_len = bh_result->b_size >> inode->i_blkbits;
3229 credits = ext4_chunk_trans_blocks(inode, map.m_len);
3230 if (create) {
3231 flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3232 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3233 if (IS_ERR(handle)) {
3234 ret = PTR_ERR(handle);
3235 return ret;
3236 }
3237 }
3238
3239 ret = ext4_map_blocks(handle, inode, &map, flags);
3240 if (create) {
3241 err = ext4_journal_stop(handle);
3242 if (ret >= 0 && err < 0)
3243 ret = err;
3244 }
3245 if (ret <= 0)
3246 goto out;
3247 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3248 int err2;
3249
3250 /*
3251 * We are protected by i_mmap_sem so we know block cannot go
3252 * away from under us even though we dropped i_data_sem.
3253 * Convert extent to written and write zeros there.
3254 *
3255 * Note: We may get here even when create == 0.
3256 */
3257 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3258 if (IS_ERR(handle)) {
3259 ret = PTR_ERR(handle);
3260 goto out;
3261 }
3262
3263 err = ext4_map_blocks(handle, inode, &map,
3264 EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3265 if (err < 0)
3266 ret = err;
3267 err2 = ext4_journal_stop(handle);
3268 if (err2 < 0 && ret > 0)
3269 ret = err2;
3270 }
3271out:
3272 WARN_ON_ONCE(ret == 0 && create);
3273 if (ret > 0) {
3274 map_bh(bh_result, inode->i_sb, map.m_pblk);
ba5843f5
JK
3275 /*
3276 * At least for now we have to clear BH_New so that DAX code
3277 * doesn't attempt to zero blocks again in a racy way.
3278 */
e3fb8eb1
JK
3279 map.m_flags &= ~EXT4_MAP_NEW;
3280 ext4_update_bh_state(bh_result, map.m_flags);
ba5843f5
JK
3281 bh_result->b_size = map.m_len << inode->i_blkbits;
3282 ret = 0;
3283 }
3284 return ret;
ed923b57 3285}
ba5843f5 3286#endif
ed923b57 3287
4c0425ff 3288static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3289 ssize_t size, void *private)
4c0425ff 3290{
109811c2 3291 ext4_io_end_t *io_end = private;
4c0425ff 3292
97a851ed 3293 /* if not async direct IO just return */
7b7a8665 3294 if (!io_end)
97a851ed 3295 return;
4b70df18 3296
88635ca2 3297 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3298 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
109811c2 3299 io_end, io_end->inode->i_ino, iocb, offset, size);
8d5d02e6 3300
4c0425ff
MC
3301 io_end->offset = offset;
3302 io_end->size = size;
7b7a8665 3303 ext4_put_io_end(io_end);
4c0425ff 3304}
c7064ef1 3305
4c0425ff
MC
3306/*
3307 * For ext4 extent files, ext4 will do direct-io write to holes,
3308 * preallocated extents, and those write extend the file, no need to
3309 * fall back to buffered IO.
3310 *
556615dc 3311 * For holes, we fallocate those blocks, mark them as unwritten
69c499d1 3312 * If those blocks were preallocated, we mark sure they are split, but
556615dc 3313 * still keep the range to write as unwritten.
4c0425ff 3314 *
69c499d1 3315 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3316 * For async direct IO, since the IO may still pending when return, we
25985edc 3317 * set up an end_io call back function, which will do the conversion
8d5d02e6 3318 * when async direct IO completed.
4c0425ff
MC
3319 *
3320 * If the O_DIRECT write will extend the file then add this inode to the
3321 * orphan list. So recovery will truncate it back to the original size
3322 * if the machine crashes during the write.
3323 *
3324 */
6f673763
OS
3325static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3326 loff_t offset)
4c0425ff
MC
3327{
3328 struct file *file = iocb->ki_filp;
3329 struct inode *inode = file->f_mapping->host;
3330 ssize_t ret;
a6cbcd4a 3331 size_t count = iov_iter_count(iter);
69c499d1
TT
3332 int overwrite = 0;
3333 get_block_t *get_block_func = NULL;
3334 int dio_flags = 0;
4c0425ff 3335 loff_t final_size = offset + count;
729f52c6 3336
69c499d1 3337 /* Use the old path for reads and writes beyond i_size. */
6f673763
OS
3338 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3339 return ext4_ind_direct_IO(iocb, iter, offset);
4bd809db 3340
69c499d1 3341 BUG_ON(iocb->private == NULL);
4bd809db 3342
e8340395
JK
3343 /*
3344 * Make all waiters for direct IO properly wait also for extent
3345 * conversion. This also disallows race between truncate() and
3346 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3347 */
6f673763 3348 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3349 inode_dio_begin(inode);
e8340395 3350
69c499d1
TT
3351 /* If we do a overwrite dio, i_mutex locking can be released */
3352 overwrite = *((int *)iocb->private);
4bd809db 3353
2dcba478 3354 if (overwrite)
5955102c 3355 inode_unlock(inode);
8d5d02e6 3356
69c499d1
TT
3357 /*
3358 * We could direct write to holes and fallocate.
3359 *
109811c2
JK
3360 * Allocated blocks to fill the hole are marked as unwritten to prevent
3361 * parallel buffered read to expose the stale data before DIO complete
3362 * the data IO.
69c499d1 3363 *
109811c2
JK
3364 * As to previously fallocated extents, ext4 get_block will just simply
3365 * mark the buffer mapped but still keep the extents unwritten.
69c499d1 3366 *
109811c2
JK
3367 * For non AIO case, we will convert those unwritten extents to written
3368 * after return back from blockdev_direct_IO. That way we save us from
3369 * allocating io_end structure and also the overhead of offloading
3370 * the extent convertion to a workqueue.
69c499d1
TT
3371 *
3372 * For async DIO, the conversion needs to be deferred when the
3373 * IO is completed. The ext4 end_io callback function will be
3374 * called to take care of the conversion work. Here for async
3375 * case, we allocate an io_end structure to hook to the iocb.
3376 */
3377 iocb->private = NULL;
109811c2 3378 if (overwrite)
705965bd 3379 get_block_func = ext4_dio_get_block_overwrite;
109811c2
JK
3380 else if (is_sync_kiocb(iocb)) {
3381 get_block_func = ext4_dio_get_block_unwritten_sync;
3382 dio_flags = DIO_LOCKING;
69c499d1 3383 } else {
109811c2 3384 get_block_func = ext4_dio_get_block_unwritten_async;
69c499d1
TT
3385 dio_flags = DIO_LOCKING;
3386 }
2058f83a
MH
3387#ifdef CONFIG_EXT4_FS_ENCRYPTION
3388 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3389#endif
923ae0ff 3390 if (IS_DAX(inode))
a95cd631 3391 ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
923ae0ff
RZ
3392 ext4_end_io_dio, dio_flags);
3393 else
17f8c842 3394 ret = __blockdev_direct_IO(iocb, inode,
923ae0ff
RZ
3395 inode->i_sb->s_bdev, iter, offset,
3396 get_block_func,
3397 ext4_end_io_dio, NULL, dio_flags);
69c499d1 3398
97a851ed 3399 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3400 EXT4_STATE_DIO_UNWRITTEN)) {
3401 int err;
3402 /*
3403 * for non AIO case, since the IO is already
3404 * completed, we could do the conversion right here
3405 */
6b523df4 3406 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3407 offset, ret);
3408 if (err < 0)
3409 ret = err;
3410 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3411 }
4bd809db 3412
6f673763 3413 if (iov_iter_rw(iter) == WRITE)
fe0f07d0 3414 inode_dio_end(inode);
69c499d1 3415 /* take i_mutex locking again if we do a ovewrite dio */
2dcba478 3416 if (overwrite)
5955102c 3417 inode_lock(inode);
8d5d02e6 3418
69c499d1 3419 return ret;
4c0425ff
MC
3420}
3421
22c6186e
OS
3422static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3423 loff_t offset)
4c0425ff
MC
3424{
3425 struct file *file = iocb->ki_filp;
3426 struct inode *inode = file->f_mapping->host;
a6cbcd4a 3427 size_t count = iov_iter_count(iter);
0562e0ba 3428 ssize_t ret;
4c0425ff 3429
2058f83a
MH
3430#ifdef CONFIG_EXT4_FS_ENCRYPTION
3431 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3432 return 0;
3433#endif
3434
84ebd795
TT
3435 /*
3436 * If we are doing data journalling we don't support O_DIRECT
3437 */
3438 if (ext4_should_journal_data(inode))
3439 return 0;
3440
46c7f254
TM
3441 /* Let buffer I/O handle the inline data case. */
3442 if (ext4_has_inline_data(inode))
3443 return 0;
3444
6f673763 3445 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
12e9b892 3446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
6f673763 3447 ret = ext4_ext_direct_IO(iocb, iter, offset);
0562e0ba 3448 else
6f673763
OS
3449 ret = ext4_ind_direct_IO(iocb, iter, offset);
3450 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
0562e0ba 3451 return ret;
4c0425ff
MC
3452}
3453
ac27a0ec 3454/*
617ba13b 3455 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3456 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3457 * much here because ->set_page_dirty is called under VFS locks. The page is
3458 * not necessarily locked.
3459 *
3460 * We cannot just dirty the page and leave attached buffers clean, because the
3461 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3462 * or jbddirty because all the journalling code will explode.
3463 *
3464 * So what we do is to mark the page "pending dirty" and next time writepage
3465 * is called, propagate that into the buffers appropriately.
3466 */
617ba13b 3467static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3468{
3469 SetPageChecked(page);
3470 return __set_page_dirty_nobuffers(page);
3471}
3472
74d553aa 3473static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3474 .readpage = ext4_readpage,
3475 .readpages = ext4_readpages,
43ce1d23 3476 .writepage = ext4_writepage,
20970ba6 3477 .writepages = ext4_writepages,
8ab22b9a 3478 .write_begin = ext4_write_begin,
74d553aa 3479 .write_end = ext4_write_end,
8ab22b9a
HH
3480 .bmap = ext4_bmap,
3481 .invalidatepage = ext4_invalidatepage,
3482 .releasepage = ext4_releasepage,
3483 .direct_IO = ext4_direct_IO,
3484 .migratepage = buffer_migrate_page,
3485 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3486 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3487};
3488
617ba13b 3489static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3490 .readpage = ext4_readpage,
3491 .readpages = ext4_readpages,
43ce1d23 3492 .writepage = ext4_writepage,
20970ba6 3493 .writepages = ext4_writepages,
8ab22b9a
HH
3494 .write_begin = ext4_write_begin,
3495 .write_end = ext4_journalled_write_end,
3496 .set_page_dirty = ext4_journalled_set_page_dirty,
3497 .bmap = ext4_bmap,
4520fb3c 3498 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3499 .releasepage = ext4_releasepage,
84ebd795 3500 .direct_IO = ext4_direct_IO,
8ab22b9a 3501 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3502 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3503};
3504
64769240 3505static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3506 .readpage = ext4_readpage,
3507 .readpages = ext4_readpages,
43ce1d23 3508 .writepage = ext4_writepage,
20970ba6 3509 .writepages = ext4_writepages,
8ab22b9a
HH
3510 .write_begin = ext4_da_write_begin,
3511 .write_end = ext4_da_write_end,
3512 .bmap = ext4_bmap,
3513 .invalidatepage = ext4_da_invalidatepage,
3514 .releasepage = ext4_releasepage,
3515 .direct_IO = ext4_direct_IO,
3516 .migratepage = buffer_migrate_page,
3517 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3518 .error_remove_page = generic_error_remove_page,
64769240
AT
3519};
3520
617ba13b 3521void ext4_set_aops(struct inode *inode)
ac27a0ec 3522{
3d2b1582
LC
3523 switch (ext4_inode_journal_mode(inode)) {
3524 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3525 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3526 break;
3527 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3528 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3529 break;
3530 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3531 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3532 return;
3d2b1582
LC
3533 default:
3534 BUG();
3535 }
74d553aa
TT
3536 if (test_opt(inode->i_sb, DELALLOC))
3537 inode->i_mapping->a_ops = &ext4_da_aops;
3538 else
3539 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3540}
3541
923ae0ff 3542static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3543 struct address_space *mapping, loff_t from, loff_t length)
3544{
3545 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3546 unsigned offset = from & (PAGE_CACHE_SIZE-1);
923ae0ff 3547 unsigned blocksize, pos;
d863dc36
LC
3548 ext4_lblk_t iblock;
3549 struct inode *inode = mapping->host;
3550 struct buffer_head *bh;
3551 struct page *page;
3552 int err = 0;
3553
3554 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
c62d2555 3555 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3556 if (!page)
3557 return -ENOMEM;
3558
3559 blocksize = inode->i_sb->s_blocksize;
d863dc36
LC
3560
3561 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3562
3563 if (!page_has_buffers(page))
3564 create_empty_buffers(page, blocksize, 0);
3565
3566 /* Find the buffer that contains "offset" */
3567 bh = page_buffers(page);
3568 pos = blocksize;
3569 while (offset >= pos) {
3570 bh = bh->b_this_page;
3571 iblock++;
3572 pos += blocksize;
3573 }
d863dc36
LC
3574 if (buffer_freed(bh)) {
3575 BUFFER_TRACE(bh, "freed: skip");
3576 goto unlock;
3577 }
d863dc36
LC
3578 if (!buffer_mapped(bh)) {
3579 BUFFER_TRACE(bh, "unmapped");
3580 ext4_get_block(inode, iblock, bh, 0);
3581 /* unmapped? It's a hole - nothing to do */
3582 if (!buffer_mapped(bh)) {
3583 BUFFER_TRACE(bh, "still unmapped");
3584 goto unlock;
3585 }
3586 }
3587
3588 /* Ok, it's mapped. Make sure it's up-to-date */
3589 if (PageUptodate(page))
3590 set_buffer_uptodate(bh);
3591
3592 if (!buffer_uptodate(bh)) {
3593 err = -EIO;
3594 ll_rw_block(READ, 1, &bh);
3595 wait_on_buffer(bh);
3596 /* Uhhuh. Read error. Complain and punt. */
3597 if (!buffer_uptodate(bh))
3598 goto unlock;
c9c7429c
MH
3599 if (S_ISREG(inode->i_mode) &&
3600 ext4_encrypted_inode(inode)) {
3601 /* We expect the key to be set. */
3602 BUG_ON(!ext4_has_encryption_key(inode));
3603 BUG_ON(blocksize != PAGE_CACHE_SIZE);
3684de8c 3604 WARN_ON_ONCE(ext4_decrypt(page));
c9c7429c 3605 }
d863dc36 3606 }
d863dc36
LC
3607 if (ext4_should_journal_data(inode)) {
3608 BUFFER_TRACE(bh, "get write access");
3609 err = ext4_journal_get_write_access(handle, bh);
3610 if (err)
3611 goto unlock;
3612 }
d863dc36 3613 zero_user(page, offset, length);
d863dc36
LC
3614 BUFFER_TRACE(bh, "zeroed end of block");
3615
d863dc36
LC
3616 if (ext4_should_journal_data(inode)) {
3617 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3618 } else {
353eefd3 3619 err = 0;
d863dc36 3620 mark_buffer_dirty(bh);
0713ed0c
LC
3621 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3622 err = ext4_jbd2_file_inode(handle, inode);
3623 }
d863dc36
LC
3624
3625unlock:
3626 unlock_page(page);
3627 page_cache_release(page);
3628 return err;
3629}
3630
923ae0ff
RZ
3631/*
3632 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3633 * starting from file offset 'from'. The range to be zero'd must
3634 * be contained with in one block. If the specified range exceeds
3635 * the end of the block it will be shortened to end of the block
3636 * that cooresponds to 'from'
3637 */
3638static int ext4_block_zero_page_range(handle_t *handle,
3639 struct address_space *mapping, loff_t from, loff_t length)
3640{
3641 struct inode *inode = mapping->host;
3642 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3643 unsigned blocksize = inode->i_sb->s_blocksize;
3644 unsigned max = blocksize - (offset & (blocksize - 1));
3645
3646 /*
3647 * correct length if it does not fall between
3648 * 'from' and the end of the block
3649 */
3650 if (length > max || length < 0)
3651 length = max;
3652
3653 if (IS_DAX(inode))
3654 return dax_zero_page_range(inode, from, length, ext4_get_block);
3655 return __ext4_block_zero_page_range(handle, mapping, from, length);
3656}
3657
94350ab5
MW
3658/*
3659 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3660 * up to the end of the block which corresponds to `from'.
3661 * This required during truncate. We need to physically zero the tail end
3662 * of that block so it doesn't yield old data if the file is later grown.
3663 */
c197855e 3664static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3665 struct address_space *mapping, loff_t from)
3666{
3667 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3668 unsigned length;
3669 unsigned blocksize;
3670 struct inode *inode = mapping->host;
3671
3672 blocksize = inode->i_sb->s_blocksize;
3673 length = blocksize - (offset & (blocksize - 1));
3674
3675 return ext4_block_zero_page_range(handle, mapping, from, length);
3676}
3677
a87dd18c
LC
3678int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3679 loff_t lstart, loff_t length)
3680{
3681 struct super_block *sb = inode->i_sb;
3682 struct address_space *mapping = inode->i_mapping;
e1be3a92 3683 unsigned partial_start, partial_end;
a87dd18c
LC
3684 ext4_fsblk_t start, end;
3685 loff_t byte_end = (lstart + length - 1);
3686 int err = 0;
3687
e1be3a92
LC
3688 partial_start = lstart & (sb->s_blocksize - 1);
3689 partial_end = byte_end & (sb->s_blocksize - 1);
3690
a87dd18c
LC
3691 start = lstart >> sb->s_blocksize_bits;
3692 end = byte_end >> sb->s_blocksize_bits;
3693
3694 /* Handle partial zero within the single block */
e1be3a92
LC
3695 if (start == end &&
3696 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3697 err = ext4_block_zero_page_range(handle, mapping,
3698 lstart, length);
3699 return err;
3700 }
3701 /* Handle partial zero out on the start of the range */
e1be3a92 3702 if (partial_start) {
a87dd18c
LC
3703 err = ext4_block_zero_page_range(handle, mapping,
3704 lstart, sb->s_blocksize);
3705 if (err)
3706 return err;
3707 }
3708 /* Handle partial zero out on the end of the range */
e1be3a92 3709 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3710 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3711 byte_end - partial_end,
3712 partial_end + 1);
a87dd18c
LC
3713 return err;
3714}
3715
91ef4caf
DG
3716int ext4_can_truncate(struct inode *inode)
3717{
91ef4caf
DG
3718 if (S_ISREG(inode->i_mode))
3719 return 1;
3720 if (S_ISDIR(inode->i_mode))
3721 return 1;
3722 if (S_ISLNK(inode->i_mode))
3723 return !ext4_inode_is_fast_symlink(inode);
3724 return 0;
3725}
3726
01127848
JK
3727/*
3728 * We have to make sure i_disksize gets properly updated before we truncate
3729 * page cache due to hole punching or zero range. Otherwise i_disksize update
3730 * can get lost as it may have been postponed to submission of writeback but
3731 * that will never happen after we truncate page cache.
3732 */
3733int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3734 loff_t len)
3735{
3736 handle_t *handle;
3737 loff_t size = i_size_read(inode);
3738
5955102c 3739 WARN_ON(!inode_is_locked(inode));
01127848
JK
3740 if (offset > size || offset + len < size)
3741 return 0;
3742
3743 if (EXT4_I(inode)->i_disksize >= size)
3744 return 0;
3745
3746 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3747 if (IS_ERR(handle))
3748 return PTR_ERR(handle);
3749 ext4_update_i_disksize(inode, size);
3750 ext4_mark_inode_dirty(handle, inode);
3751 ext4_journal_stop(handle);
3752
3753 return 0;
3754}
3755
a4bb6b64
AH
3756/*
3757 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3758 * associated with the given offset and length
3759 *
3760 * @inode: File inode
3761 * @offset: The offset where the hole will begin
3762 * @len: The length of the hole
3763 *
4907cb7b 3764 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3765 */
3766
aeb2817a 3767int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3768{
26a4c0c6
TT
3769 struct super_block *sb = inode->i_sb;
3770 ext4_lblk_t first_block, stop_block;
3771 struct address_space *mapping = inode->i_mapping;
a87dd18c 3772 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3773 handle_t *handle;
3774 unsigned int credits;
3775 int ret = 0;
3776
a4bb6b64 3777 if (!S_ISREG(inode->i_mode))
73355192 3778 return -EOPNOTSUPP;
a4bb6b64 3779
b8a86845 3780 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3781
26a4c0c6
TT
3782 /*
3783 * Write out all dirty pages to avoid race conditions
3784 * Then release them.
3785 */
3786 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3787 ret = filemap_write_and_wait_range(mapping, offset,
3788 offset + length - 1);
3789 if (ret)
3790 return ret;
3791 }
3792
5955102c 3793 inode_lock(inode);
9ef06cec 3794
26a4c0c6
TT
3795 /* No need to punch hole beyond i_size */
3796 if (offset >= inode->i_size)
3797 goto out_mutex;
3798
3799 /*
3800 * If the hole extends beyond i_size, set the hole
3801 * to end after the page that contains i_size
3802 */
3803 if (offset + length > inode->i_size) {
3804 length = inode->i_size +
3805 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3806 offset;
3807 }
3808
a361293f
JK
3809 if (offset & (sb->s_blocksize - 1) ||
3810 (offset + length) & (sb->s_blocksize - 1)) {
3811 /*
3812 * Attach jinode to inode for jbd2 if we do any zeroing of
3813 * partial block
3814 */
3815 ret = ext4_inode_attach_jinode(inode);
3816 if (ret < 0)
3817 goto out_mutex;
3818
3819 }
3820
ea3d7209
JK
3821 /* Wait all existing dio workers, newcomers will block on i_mutex */
3822 ext4_inode_block_unlocked_dio(inode);
3823 inode_dio_wait(inode);
3824
3825 /*
3826 * Prevent page faults from reinstantiating pages we have released from
3827 * page cache.
3828 */
3829 down_write(&EXT4_I(inode)->i_mmap_sem);
a87dd18c
LC
3830 first_block_offset = round_up(offset, sb->s_blocksize);
3831 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3832
a87dd18c 3833 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
3834 if (last_block_offset > first_block_offset) {
3835 ret = ext4_update_disksize_before_punch(inode, offset, length);
3836 if (ret)
3837 goto out_dio;
a87dd18c
LC
3838 truncate_pagecache_range(inode, first_block_offset,
3839 last_block_offset);
01127848 3840 }
26a4c0c6
TT
3841
3842 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3843 credits = ext4_writepage_trans_blocks(inode);
3844 else
3845 credits = ext4_blocks_for_truncate(inode);
3846 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3847 if (IS_ERR(handle)) {
3848 ret = PTR_ERR(handle);
3849 ext4_std_error(sb, ret);
3850 goto out_dio;
3851 }
3852
a87dd18c
LC
3853 ret = ext4_zero_partial_blocks(handle, inode, offset,
3854 length);
3855 if (ret)
3856 goto out_stop;
26a4c0c6
TT
3857
3858 first_block = (offset + sb->s_blocksize - 1) >>
3859 EXT4_BLOCK_SIZE_BITS(sb);
3860 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3861
3862 /* If there are no blocks to remove, return now */
3863 if (first_block >= stop_block)
3864 goto out_stop;
3865
3866 down_write(&EXT4_I(inode)->i_data_sem);
3867 ext4_discard_preallocations(inode);
3868
3869 ret = ext4_es_remove_extent(inode, first_block,
3870 stop_block - first_block);
3871 if (ret) {
3872 up_write(&EXT4_I(inode)->i_data_sem);
3873 goto out_stop;
3874 }
3875
3876 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3877 ret = ext4_ext_remove_space(inode, first_block,
3878 stop_block - 1);
3879 else
4f579ae7 3880 ret = ext4_ind_remove_space(handle, inode, first_block,
26a4c0c6
TT
3881 stop_block);
3882
819c4920 3883 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3884 if (IS_SYNC(inode))
3885 ext4_handle_sync(handle);
e251f9bc 3886
26a4c0c6
TT
3887 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3888 ext4_mark_inode_dirty(handle, inode);
3889out_stop:
3890 ext4_journal_stop(handle);
3891out_dio:
ea3d7209 3892 up_write(&EXT4_I(inode)->i_mmap_sem);
26a4c0c6
TT
3893 ext4_inode_resume_unlocked_dio(inode);
3894out_mutex:
5955102c 3895 inode_unlock(inode);
26a4c0c6 3896 return ret;
a4bb6b64
AH
3897}
3898
a361293f
JK
3899int ext4_inode_attach_jinode(struct inode *inode)
3900{
3901 struct ext4_inode_info *ei = EXT4_I(inode);
3902 struct jbd2_inode *jinode;
3903
3904 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3905 return 0;
3906
3907 jinode = jbd2_alloc_inode(GFP_KERNEL);
3908 spin_lock(&inode->i_lock);
3909 if (!ei->jinode) {
3910 if (!jinode) {
3911 spin_unlock(&inode->i_lock);
3912 return -ENOMEM;
3913 }
3914 ei->jinode = jinode;
3915 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3916 jinode = NULL;
3917 }
3918 spin_unlock(&inode->i_lock);
3919 if (unlikely(jinode != NULL))
3920 jbd2_free_inode(jinode);
3921 return 0;
3922}
3923
ac27a0ec 3924/*
617ba13b 3925 * ext4_truncate()
ac27a0ec 3926 *
617ba13b
MC
3927 * We block out ext4_get_block() block instantiations across the entire
3928 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3929 * simultaneously on behalf of the same inode.
3930 *
42b2aa86 3931 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3932 * is one core, guiding principle: the file's tree must always be consistent on
3933 * disk. We must be able to restart the truncate after a crash.
3934 *
3935 * The file's tree may be transiently inconsistent in memory (although it
3936 * probably isn't), but whenever we close off and commit a journal transaction,
3937 * the contents of (the filesystem + the journal) must be consistent and
3938 * restartable. It's pretty simple, really: bottom up, right to left (although
3939 * left-to-right works OK too).
3940 *
3941 * Note that at recovery time, journal replay occurs *before* the restart of
3942 * truncate against the orphan inode list.
3943 *
3944 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3945 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3946 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3947 * ext4_truncate() to have another go. So there will be instantiated blocks
3948 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3949 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3950 * ext4_truncate() run will find them and release them.
ac27a0ec 3951 */
617ba13b 3952void ext4_truncate(struct inode *inode)
ac27a0ec 3953{
819c4920
TT
3954 struct ext4_inode_info *ei = EXT4_I(inode);
3955 unsigned int credits;
3956 handle_t *handle;
3957 struct address_space *mapping = inode->i_mapping;
819c4920 3958
19b5ef61
TT
3959 /*
3960 * There is a possibility that we're either freeing the inode
e04027e8 3961 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
3962 * have i_mutex locked because it's not necessary.
3963 */
3964 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 3965 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
3966 trace_ext4_truncate_enter(inode);
3967
91ef4caf 3968 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3969 return;
3970
12e9b892 3971 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3972
5534fb5b 3973 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3974 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3975
aef1c851
TM
3976 if (ext4_has_inline_data(inode)) {
3977 int has_inline = 1;
3978
3979 ext4_inline_data_truncate(inode, &has_inline);
3980 if (has_inline)
3981 return;
3982 }
3983
a361293f
JK
3984 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3985 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3986 if (ext4_inode_attach_jinode(inode) < 0)
3987 return;
3988 }
3989
819c4920
TT
3990 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3991 credits = ext4_writepage_trans_blocks(inode);
3992 else
3993 credits = ext4_blocks_for_truncate(inode);
3994
3995 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3996 if (IS_ERR(handle)) {
3997 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3998 return;
3999 }
4000
eb3544c6
LC
4001 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4002 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4003
4004 /*
4005 * We add the inode to the orphan list, so that if this
4006 * truncate spans multiple transactions, and we crash, we will
4007 * resume the truncate when the filesystem recovers. It also
4008 * marks the inode dirty, to catch the new size.
4009 *
4010 * Implication: the file must always be in a sane, consistent
4011 * truncatable state while each transaction commits.
4012 */
4013 if (ext4_orphan_add(handle, inode))
4014 goto out_stop;
4015
4016 down_write(&EXT4_I(inode)->i_data_sem);
4017
4018 ext4_discard_preallocations(inode);
4019
ff9893dc 4020 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 4021 ext4_ext_truncate(handle, inode);
ff9893dc 4022 else
819c4920
TT
4023 ext4_ind_truncate(handle, inode);
4024
4025 up_write(&ei->i_data_sem);
4026
4027 if (IS_SYNC(inode))
4028 ext4_handle_sync(handle);
4029
4030out_stop:
4031 /*
4032 * If this was a simple ftruncate() and the file will remain alive,
4033 * then we need to clear up the orphan record which we created above.
4034 * However, if this was a real unlink then we were called by
58d86a50 4035 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4036 * orphan info for us.
4037 */
4038 if (inode->i_nlink)
4039 ext4_orphan_del(handle, inode);
4040
4041 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4042 ext4_mark_inode_dirty(handle, inode);
4043 ext4_journal_stop(handle);
ac27a0ec 4044
0562e0ba 4045 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
4046}
4047
ac27a0ec 4048/*
617ba13b 4049 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4050 * underlying buffer_head on success. If 'in_mem' is true, we have all
4051 * data in memory that is needed to recreate the on-disk version of this
4052 * inode.
4053 */
617ba13b
MC
4054static int __ext4_get_inode_loc(struct inode *inode,
4055 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4056{
240799cd
TT
4057 struct ext4_group_desc *gdp;
4058 struct buffer_head *bh;
4059 struct super_block *sb = inode->i_sb;
4060 ext4_fsblk_t block;
4061 int inodes_per_block, inode_offset;
4062
3a06d778 4063 iloc->bh = NULL;
240799cd 4064 if (!ext4_valid_inum(sb, inode->i_ino))
6a797d27 4065 return -EFSCORRUPTED;
ac27a0ec 4066
240799cd
TT
4067 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4068 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4069 if (!gdp)
ac27a0ec
DK
4070 return -EIO;
4071
240799cd
TT
4072 /*
4073 * Figure out the offset within the block group inode table
4074 */
00d09882 4075 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
4076 inode_offset = ((inode->i_ino - 1) %
4077 EXT4_INODES_PER_GROUP(sb));
4078 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4079 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4080
4081 bh = sb_getblk(sb, block);
aebf0243 4082 if (unlikely(!bh))
860d21e2 4083 return -ENOMEM;
ac27a0ec
DK
4084 if (!buffer_uptodate(bh)) {
4085 lock_buffer(bh);
9c83a923
HK
4086
4087 /*
4088 * If the buffer has the write error flag, we have failed
4089 * to write out another inode in the same block. In this
4090 * case, we don't have to read the block because we may
4091 * read the old inode data successfully.
4092 */
4093 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4094 set_buffer_uptodate(bh);
4095
ac27a0ec
DK
4096 if (buffer_uptodate(bh)) {
4097 /* someone brought it uptodate while we waited */
4098 unlock_buffer(bh);
4099 goto has_buffer;
4100 }
4101
4102 /*
4103 * If we have all information of the inode in memory and this
4104 * is the only valid inode in the block, we need not read the
4105 * block.
4106 */
4107 if (in_mem) {
4108 struct buffer_head *bitmap_bh;
240799cd 4109 int i, start;
ac27a0ec 4110
240799cd 4111 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4112
240799cd
TT
4113 /* Is the inode bitmap in cache? */
4114 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 4115 if (unlikely(!bitmap_bh))
ac27a0ec
DK
4116 goto make_io;
4117
4118 /*
4119 * If the inode bitmap isn't in cache then the
4120 * optimisation may end up performing two reads instead
4121 * of one, so skip it.
4122 */
4123 if (!buffer_uptodate(bitmap_bh)) {
4124 brelse(bitmap_bh);
4125 goto make_io;
4126 }
240799cd 4127 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4128 if (i == inode_offset)
4129 continue;
617ba13b 4130 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4131 break;
4132 }
4133 brelse(bitmap_bh);
240799cd 4134 if (i == start + inodes_per_block) {
ac27a0ec
DK
4135 /* all other inodes are free, so skip I/O */
4136 memset(bh->b_data, 0, bh->b_size);
4137 set_buffer_uptodate(bh);
4138 unlock_buffer(bh);
4139 goto has_buffer;
4140 }
4141 }
4142
4143make_io:
240799cd
TT
4144 /*
4145 * If we need to do any I/O, try to pre-readahead extra
4146 * blocks from the inode table.
4147 */
4148 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4149 ext4_fsblk_t b, end, table;
4150 unsigned num;
0d606e2c 4151 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
4152
4153 table = ext4_inode_table(sb, gdp);
b713a5ec 4154 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 4155 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
4156 if (table > b)
4157 b = table;
0d606e2c 4158 end = b + ra_blks;
240799cd 4159 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4160 if (ext4_has_group_desc_csum(sb))
560671a0 4161 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4162 table += num / inodes_per_block;
4163 if (end > table)
4164 end = table;
4165 while (b <= end)
4166 sb_breadahead(sb, b++);
4167 }
4168
ac27a0ec
DK
4169 /*
4170 * There are other valid inodes in the buffer, this inode
4171 * has in-inode xattrs, or we don't have this inode in memory.
4172 * Read the block from disk.
4173 */
0562e0ba 4174 trace_ext4_load_inode(inode);
ac27a0ec
DK
4175 get_bh(bh);
4176 bh->b_end_io = end_buffer_read_sync;
65299a3b 4177 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4178 wait_on_buffer(bh);
4179 if (!buffer_uptodate(bh)) {
c398eda0
TT
4180 EXT4_ERROR_INODE_BLOCK(inode, block,
4181 "unable to read itable block");
ac27a0ec
DK
4182 brelse(bh);
4183 return -EIO;
4184 }
4185 }
4186has_buffer:
4187 iloc->bh = bh;
4188 return 0;
4189}
4190
617ba13b 4191int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4192{
4193 /* We have all inode data except xattrs in memory here. */
617ba13b 4194 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4195 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4196}
4197
617ba13b 4198void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4199{
617ba13b 4200 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4201 unsigned int new_fl = 0;
ac27a0ec 4202
617ba13b 4203 if (flags & EXT4_SYNC_FL)
00a1a053 4204 new_fl |= S_SYNC;
617ba13b 4205 if (flags & EXT4_APPEND_FL)
00a1a053 4206 new_fl |= S_APPEND;
617ba13b 4207 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4208 new_fl |= S_IMMUTABLE;
617ba13b 4209 if (flags & EXT4_NOATIME_FL)
00a1a053 4210 new_fl |= S_NOATIME;
617ba13b 4211 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4212 new_fl |= S_DIRSYNC;
923ae0ff
RZ
4213 if (test_opt(inode->i_sb, DAX))
4214 new_fl |= S_DAX;
5f16f322 4215 inode_set_flags(inode, new_fl,
923ae0ff 4216 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
ac27a0ec
DK
4217}
4218
ff9ddf7e
JK
4219/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4220void ext4_get_inode_flags(struct ext4_inode_info *ei)
4221{
84a8dce2
DM
4222 unsigned int vfs_fl;
4223 unsigned long old_fl, new_fl;
4224
4225 do {
4226 vfs_fl = ei->vfs_inode.i_flags;
4227 old_fl = ei->i_flags;
4228 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4229 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4230 EXT4_DIRSYNC_FL);
4231 if (vfs_fl & S_SYNC)
4232 new_fl |= EXT4_SYNC_FL;
4233 if (vfs_fl & S_APPEND)
4234 new_fl |= EXT4_APPEND_FL;
4235 if (vfs_fl & S_IMMUTABLE)
4236 new_fl |= EXT4_IMMUTABLE_FL;
4237 if (vfs_fl & S_NOATIME)
4238 new_fl |= EXT4_NOATIME_FL;
4239 if (vfs_fl & S_DIRSYNC)
4240 new_fl |= EXT4_DIRSYNC_FL;
4241 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4242}
de9a55b8 4243
0fc1b451 4244static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4245 struct ext4_inode_info *ei)
0fc1b451
AK
4246{
4247 blkcnt_t i_blocks ;
8180a562
AK
4248 struct inode *inode = &(ei->vfs_inode);
4249 struct super_block *sb = inode->i_sb;
0fc1b451 4250
e2b911c5 4251 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4252 /* we are using combined 48 bit field */
4253 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4254 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4255 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4256 /* i_blocks represent file system block size */
4257 return i_blocks << (inode->i_blkbits - 9);
4258 } else {
4259 return i_blocks;
4260 }
0fc1b451
AK
4261 } else {
4262 return le32_to_cpu(raw_inode->i_blocks_lo);
4263 }
4264}
ff9ddf7e 4265
152a7b0a
TM
4266static inline void ext4_iget_extra_inode(struct inode *inode,
4267 struct ext4_inode *raw_inode,
4268 struct ext4_inode_info *ei)
4269{
4270 __le32 *magic = (void *)raw_inode +
4271 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4272 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4273 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4274 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4275 } else
4276 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4277}
4278
040cb378
LX
4279int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4280{
4281 if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4282 return -EOPNOTSUPP;
4283 *projid = EXT4_I(inode)->i_projid;
4284 return 0;
4285}
4286
1d1fe1ee 4287struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4288{
617ba13b
MC
4289 struct ext4_iloc iloc;
4290 struct ext4_inode *raw_inode;
1d1fe1ee 4291 struct ext4_inode_info *ei;
1d1fe1ee 4292 struct inode *inode;
b436b9be 4293 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4294 long ret;
ac27a0ec 4295 int block;
08cefc7a
EB
4296 uid_t i_uid;
4297 gid_t i_gid;
040cb378 4298 projid_t i_projid;
ac27a0ec 4299
1d1fe1ee
DH
4300 inode = iget_locked(sb, ino);
4301 if (!inode)
4302 return ERR_PTR(-ENOMEM);
4303 if (!(inode->i_state & I_NEW))
4304 return inode;
4305
4306 ei = EXT4_I(inode);
7dc57615 4307 iloc.bh = NULL;
ac27a0ec 4308
1d1fe1ee
DH
4309 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4310 if (ret < 0)
ac27a0ec 4311 goto bad_inode;
617ba13b 4312 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4313
4314 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4315 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4316 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4317 EXT4_INODE_SIZE(inode->i_sb)) {
4318 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4319 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4320 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4321 ret = -EFSCORRUPTED;
814525f4
DW
4322 goto bad_inode;
4323 }
4324 } else
4325 ei->i_extra_isize = 0;
4326
4327 /* Precompute checksum seed for inode metadata */
9aa5d32b 4328 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4330 __u32 csum;
4331 __le32 inum = cpu_to_le32(inode->i_ino);
4332 __le32 gen = raw_inode->i_generation;
4333 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4334 sizeof(inum));
4335 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4336 sizeof(gen));
4337 }
4338
4339 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4340 EXT4_ERROR_INODE(inode, "checksum invalid");
6a797d27 4341 ret = -EFSBADCRC;
814525f4
DW
4342 goto bad_inode;
4343 }
4344
ac27a0ec 4345 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4346 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4347 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
040cb378
LX
4348 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4349 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4350 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4351 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4352 else
4353 i_projid = EXT4_DEF_PROJID;
4354
af5bc92d 4355 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4356 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4357 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4358 }
08cefc7a
EB
4359 i_uid_write(inode, i_uid);
4360 i_gid_write(inode, i_gid);
040cb378 4361 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4362 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4363
353eb83c 4364 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4365 ei->i_inline_off = 0;
ac27a0ec
DK
4366 ei->i_dir_start_lookup = 0;
4367 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4368 /* We now have enough fields to check if the inode was active or not.
4369 * This is needed because nfsd might try to access dead inodes
4370 * the test is that same one that e2fsck uses
4371 * NeilBrown 1999oct15
4372 */
4373 if (inode->i_nlink == 0) {
393d1d1d
DTB
4374 if ((inode->i_mode == 0 ||
4375 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4376 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4377 /* this inode is deleted */
1d1fe1ee 4378 ret = -ESTALE;
ac27a0ec
DK
4379 goto bad_inode;
4380 }
4381 /* The only unlinked inodes we let through here have
4382 * valid i_mode and are being read by the orphan
4383 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4384 * the process of deleting those.
4385 * OR it is the EXT4_BOOT_LOADER_INO which is
4386 * not initialized on a new filesystem. */
ac27a0ec 4387 }
ac27a0ec 4388 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4389 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4390 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4391 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4392 ei->i_file_acl |=
4393 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4394 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4395 ei->i_disksize = inode->i_size;
a9e7f447
DM
4396#ifdef CONFIG_QUOTA
4397 ei->i_reserved_quota = 0;
4398#endif
ac27a0ec
DK
4399 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4400 ei->i_block_group = iloc.block_group;
a4912123 4401 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4402 /*
4403 * NOTE! The in-memory inode i_data array is in little-endian order
4404 * even on big-endian machines: we do NOT byteswap the block numbers!
4405 */
617ba13b 4406 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4407 ei->i_data[block] = raw_inode->i_block[block];
4408 INIT_LIST_HEAD(&ei->i_orphan);
4409
b436b9be
JK
4410 /*
4411 * Set transaction id's of transactions that have to be committed
4412 * to finish f[data]sync. We set them to currently running transaction
4413 * as we cannot be sure that the inode or some of its metadata isn't
4414 * part of the transaction - the inode could have been reclaimed and
4415 * now it is reread from disk.
4416 */
4417 if (journal) {
4418 transaction_t *transaction;
4419 tid_t tid;
4420
a931da6a 4421 read_lock(&journal->j_state_lock);
b436b9be
JK
4422 if (journal->j_running_transaction)
4423 transaction = journal->j_running_transaction;
4424 else
4425 transaction = journal->j_committing_transaction;
4426 if (transaction)
4427 tid = transaction->t_tid;
4428 else
4429 tid = journal->j_commit_sequence;
a931da6a 4430 read_unlock(&journal->j_state_lock);
b436b9be
JK
4431 ei->i_sync_tid = tid;
4432 ei->i_datasync_tid = tid;
4433 }
4434
0040d987 4435 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4436 if (ei->i_extra_isize == 0) {
4437 /* The extra space is currently unused. Use it. */
617ba13b
MC
4438 ei->i_extra_isize = sizeof(struct ext4_inode) -
4439 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4440 } else {
152a7b0a 4441 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4442 }
814525f4 4443 }
ac27a0ec 4444
ef7f3835
KS
4445 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4446 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4447 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4448 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4449
ed3654eb 4450 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4451 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4452 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4453 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4454 inode->i_version |=
4455 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4456 }
25ec56b5
JNC
4457 }
4458
c4b5a614 4459 ret = 0;
485c26ec 4460 if (ei->i_file_acl &&
1032988c 4461 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4462 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4463 ei->i_file_acl);
6a797d27 4464 ret = -EFSCORRUPTED;
485c26ec 4465 goto bad_inode;
f19d5870
TM
4466 } else if (!ext4_has_inline_data(inode)) {
4467 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4468 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4469 (S_ISLNK(inode->i_mode) &&
4470 !ext4_inode_is_fast_symlink(inode))))
4471 /* Validate extent which is part of inode */
4472 ret = ext4_ext_check_inode(inode);
4473 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4474 (S_ISLNK(inode->i_mode) &&
4475 !ext4_inode_is_fast_symlink(inode))) {
4476 /* Validate block references which are part of inode */
4477 ret = ext4_ind_check_inode(inode);
4478 }
fe2c8191 4479 }
567f3e9a 4480 if (ret)
de9a55b8 4481 goto bad_inode;
7a262f7c 4482
ac27a0ec 4483 if (S_ISREG(inode->i_mode)) {
617ba13b 4484 inode->i_op = &ext4_file_inode_operations;
be64f884 4485 inode->i_fop = &ext4_file_operations;
617ba13b 4486 ext4_set_aops(inode);
ac27a0ec 4487 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4488 inode->i_op = &ext4_dir_inode_operations;
4489 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4490 } else if (S_ISLNK(inode->i_mode)) {
a7a67e8a
AV
4491 if (ext4_encrypted_inode(inode)) {
4492 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4493 ext4_set_aops(inode);
4494 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4495 inode->i_link = (char *)ei->i_data;
617ba13b 4496 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4497 nd_terminate_link(ei->i_data, inode->i_size,
4498 sizeof(ei->i_data) - 1);
4499 } else {
617ba13b
MC
4500 inode->i_op = &ext4_symlink_inode_operations;
4501 ext4_set_aops(inode);
ac27a0ec 4502 }
21fc61c7 4503 inode_nohighmem(inode);
563bdd61
TT
4504 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4505 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4506 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4507 if (raw_inode->i_block[0])
4508 init_special_inode(inode, inode->i_mode,
4509 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4510 else
4511 init_special_inode(inode, inode->i_mode,
4512 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4513 } else if (ino == EXT4_BOOT_LOADER_INO) {
4514 make_bad_inode(inode);
563bdd61 4515 } else {
6a797d27 4516 ret = -EFSCORRUPTED;
24676da4 4517 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4518 goto bad_inode;
ac27a0ec 4519 }
af5bc92d 4520 brelse(iloc.bh);
617ba13b 4521 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4522 unlock_new_inode(inode);
4523 return inode;
ac27a0ec
DK
4524
4525bad_inode:
567f3e9a 4526 brelse(iloc.bh);
1d1fe1ee
DH
4527 iget_failed(inode);
4528 return ERR_PTR(ret);
ac27a0ec
DK
4529}
4530
f4bb2981
TT
4531struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4532{
4533 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
6a797d27 4534 return ERR_PTR(-EFSCORRUPTED);
f4bb2981
TT
4535 return ext4_iget(sb, ino);
4536}
4537
0fc1b451
AK
4538static int ext4_inode_blocks_set(handle_t *handle,
4539 struct ext4_inode *raw_inode,
4540 struct ext4_inode_info *ei)
4541{
4542 struct inode *inode = &(ei->vfs_inode);
4543 u64 i_blocks = inode->i_blocks;
4544 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4545
4546 if (i_blocks <= ~0U) {
4547 /*
4907cb7b 4548 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4549 * as multiple of 512 bytes
4550 */
8180a562 4551 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4552 raw_inode->i_blocks_high = 0;
84a8dce2 4553 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4554 return 0;
4555 }
e2b911c5 4556 if (!ext4_has_feature_huge_file(sb))
f287a1a5
TT
4557 return -EFBIG;
4558
4559 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4560 /*
4561 * i_blocks can be represented in a 48 bit variable
4562 * as multiple of 512 bytes
4563 */
8180a562 4564 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4565 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4566 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4567 } else {
84a8dce2 4568 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4569 /* i_block is stored in file system block size */
4570 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4571 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4572 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4573 }
f287a1a5 4574 return 0;
0fc1b451
AK
4575}
4576
a26f4992
TT
4577struct other_inode {
4578 unsigned long orig_ino;
4579 struct ext4_inode *raw_inode;
4580};
4581
4582static int other_inode_match(struct inode * inode, unsigned long ino,
4583 void *data)
4584{
4585 struct other_inode *oi = (struct other_inode *) data;
4586
4587 if ((inode->i_ino != ino) ||
4588 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4589 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4590 ((inode->i_state & I_DIRTY_TIME) == 0))
4591 return 0;
4592 spin_lock(&inode->i_lock);
4593 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4594 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4595 (inode->i_state & I_DIRTY_TIME)) {
4596 struct ext4_inode_info *ei = EXT4_I(inode);
4597
4598 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4599 spin_unlock(&inode->i_lock);
4600
4601 spin_lock(&ei->i_raw_lock);
4602 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4603 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4604 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4605 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4606 spin_unlock(&ei->i_raw_lock);
4607 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4608 return -1;
4609 }
4610 spin_unlock(&inode->i_lock);
4611 return -1;
4612}
4613
4614/*
4615 * Opportunistically update the other time fields for other inodes in
4616 * the same inode table block.
4617 */
4618static void ext4_update_other_inodes_time(struct super_block *sb,
4619 unsigned long orig_ino, char *buf)
4620{
4621 struct other_inode oi;
4622 unsigned long ino;
4623 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4624 int inode_size = EXT4_INODE_SIZE(sb);
4625
4626 oi.orig_ino = orig_ino;
0f0ff9a9
TT
4627 /*
4628 * Calculate the first inode in the inode table block. Inode
4629 * numbers are one-based. That is, the first inode in a block
4630 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4631 */
4632 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
a26f4992
TT
4633 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4634 if (ino == orig_ino)
4635 continue;
4636 oi.raw_inode = (struct ext4_inode *) buf;
4637 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4638 }
4639}
4640
ac27a0ec
DK
4641/*
4642 * Post the struct inode info into an on-disk inode location in the
4643 * buffer-cache. This gobbles the caller's reference to the
4644 * buffer_head in the inode location struct.
4645 *
4646 * The caller must have write access to iloc->bh.
4647 */
617ba13b 4648static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4649 struct inode *inode,
830156c7 4650 struct ext4_iloc *iloc)
ac27a0ec 4651{
617ba13b
MC
4652 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4653 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4654 struct buffer_head *bh = iloc->bh;
202ee5df 4655 struct super_block *sb = inode->i_sb;
ac27a0ec 4656 int err = 0, rc, block;
202ee5df 4657 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4658 uid_t i_uid;
4659 gid_t i_gid;
040cb378 4660 projid_t i_projid;
ac27a0ec 4661
202ee5df
TT
4662 spin_lock(&ei->i_raw_lock);
4663
4664 /* For fields not tracked in the in-memory inode,
ac27a0ec 4665 * initialise them to zero for new inodes. */
19f5fb7a 4666 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4667 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4668
ff9ddf7e 4669 ext4_get_inode_flags(ei);
ac27a0ec 4670 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4671 i_uid = i_uid_read(inode);
4672 i_gid = i_gid_read(inode);
040cb378 4673 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 4674 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4675 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4676 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4677/*
4678 * Fix up interoperability with old kernels. Otherwise, old inodes get
4679 * re-used with the upper 16 bits of the uid/gid intact
4680 */
af5bc92d 4681 if (!ei->i_dtime) {
ac27a0ec 4682 raw_inode->i_uid_high =
08cefc7a 4683 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4684 raw_inode->i_gid_high =
08cefc7a 4685 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4686 } else {
4687 raw_inode->i_uid_high = 0;
4688 raw_inode->i_gid_high = 0;
4689 }
4690 } else {
08cefc7a
EB
4691 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4692 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4693 raw_inode->i_uid_high = 0;
4694 raw_inode->i_gid_high = 0;
4695 }
4696 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4697
4698 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4699 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4700 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4701 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4702
bce92d56
LX
4703 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4704 if (err) {
202ee5df 4705 spin_unlock(&ei->i_raw_lock);
0fc1b451 4706 goto out_brelse;
202ee5df 4707 }
ac27a0ec 4708 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4709 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 4710 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
4711 raw_inode->i_file_acl_high =
4712 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4713 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4714 if (ei->i_disksize != ext4_isize(raw_inode)) {
4715 ext4_isize_set(raw_inode, ei->i_disksize);
4716 need_datasync = 1;
4717 }
a48380f7 4718 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 4719 if (!ext4_has_feature_large_file(sb) ||
a48380f7 4720 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
4721 cpu_to_le32(EXT4_GOOD_OLD_REV))
4722 set_large_file = 1;
ac27a0ec
DK
4723 }
4724 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4725 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4726 if (old_valid_dev(inode->i_rdev)) {
4727 raw_inode->i_block[0] =
4728 cpu_to_le32(old_encode_dev(inode->i_rdev));
4729 raw_inode->i_block[1] = 0;
4730 } else {
4731 raw_inode->i_block[0] = 0;
4732 raw_inode->i_block[1] =
4733 cpu_to_le32(new_encode_dev(inode->i_rdev));
4734 raw_inode->i_block[2] = 0;
4735 }
f19d5870 4736 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4737 for (block = 0; block < EXT4_N_BLOCKS; block++)
4738 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4739 }
ac27a0ec 4740
ed3654eb 4741 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
c4f65706
TT
4742 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4743 if (ei->i_extra_isize) {
4744 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4745 raw_inode->i_version_hi =
4746 cpu_to_le32(inode->i_version >> 32);
4747 raw_inode->i_extra_isize =
4748 cpu_to_le16(ei->i_extra_isize);
4749 }
25ec56b5 4750 }
040cb378
LX
4751
4752 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4753 EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4754 i_projid != EXT4_DEF_PROJID);
4755
4756 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4757 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4758 raw_inode->i_projid = cpu_to_le32(i_projid);
4759
814525f4 4760 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 4761 spin_unlock(&ei->i_raw_lock);
a26f4992
TT
4762 if (inode->i_sb->s_flags & MS_LAZYTIME)
4763 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4764 bh->b_data);
202ee5df 4765
830156c7 4766 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4767 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4768 if (!err)
4769 err = rc;
19f5fb7a 4770 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 4771 if (set_large_file) {
5d601255 4772 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
202ee5df
TT
4773 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4774 if (err)
4775 goto out_brelse;
4776 ext4_update_dynamic_rev(sb);
e2b911c5 4777 ext4_set_feature_large_file(sb);
202ee5df
TT
4778 ext4_handle_sync(handle);
4779 err = ext4_handle_dirty_super(handle, sb);
4780 }
b71fc079 4781 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4782out_brelse:
af5bc92d 4783 brelse(bh);
617ba13b 4784 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4785 return err;
4786}
4787
4788/*
617ba13b 4789 * ext4_write_inode()
ac27a0ec
DK
4790 *
4791 * We are called from a few places:
4792 *
87f7e416 4793 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 4794 * Here, there will be no transaction running. We wait for any running
4907cb7b 4795 * transaction to commit.
ac27a0ec 4796 *
87f7e416
TT
4797 * - Within flush work (sys_sync(), kupdate and such).
4798 * We wait on commit, if told to.
ac27a0ec 4799 *
87f7e416
TT
4800 * - Within iput_final() -> write_inode_now()
4801 * We wait on commit, if told to.
ac27a0ec
DK
4802 *
4803 * In all cases it is actually safe for us to return without doing anything,
4804 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
4805 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4806 * writeback.
ac27a0ec
DK
4807 *
4808 * Note that we are absolutely dependent upon all inode dirtiers doing the
4809 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4810 * which we are interested.
4811 *
4812 * It would be a bug for them to not do this. The code:
4813 *
4814 * mark_inode_dirty(inode)
4815 * stuff();
4816 * inode->i_size = expr;
4817 *
87f7e416
TT
4818 * is in error because write_inode() could occur while `stuff()' is running,
4819 * and the new i_size will be lost. Plus the inode will no longer be on the
4820 * superblock's dirty inode list.
ac27a0ec 4821 */
a9185b41 4822int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4823{
91ac6f43
FM
4824 int err;
4825
87f7e416 4826 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
ac27a0ec
DK
4827 return 0;
4828
91ac6f43
FM
4829 if (EXT4_SB(inode->i_sb)->s_journal) {
4830 if (ext4_journal_current_handle()) {
4831 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4832 dump_stack();
4833 return -EIO;
4834 }
ac27a0ec 4835
10542c22
JK
4836 /*
4837 * No need to force transaction in WB_SYNC_NONE mode. Also
4838 * ext4_sync_fs() will force the commit after everything is
4839 * written.
4840 */
4841 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
4842 return 0;
4843
4844 err = ext4_force_commit(inode->i_sb);
4845 } else {
4846 struct ext4_iloc iloc;
ac27a0ec 4847
8b472d73 4848 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4849 if (err)
4850 return err;
10542c22
JK
4851 /*
4852 * sync(2) will flush the whole buffer cache. No need to do
4853 * it here separately for each inode.
4854 */
4855 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
4856 sync_dirty_buffer(iloc.bh);
4857 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4858 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4859 "IO error syncing inode");
830156c7
FM
4860 err = -EIO;
4861 }
fd2dd9fb 4862 brelse(iloc.bh);
91ac6f43
FM
4863 }
4864 return err;
ac27a0ec
DK
4865}
4866
53e87268
JK
4867/*
4868 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4869 * buffers that are attached to a page stradding i_size and are undergoing
4870 * commit. In that case we have to wait for commit to finish and try again.
4871 */
4872static void ext4_wait_for_tail_page_commit(struct inode *inode)
4873{
4874 struct page *page;
4875 unsigned offset;
4876 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4877 tid_t commit_tid = 0;
4878 int ret;
4879
4880 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4881 /*
4882 * All buffers in the last page remain valid? Then there's nothing to
4883 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4884 * blocksize case
4885 */
4886 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4887 return;
4888 while (1) {
4889 page = find_lock_page(inode->i_mapping,
4890 inode->i_size >> PAGE_CACHE_SHIFT);
4891 if (!page)
4892 return;
ca99fdd2
LC
4893 ret = __ext4_journalled_invalidatepage(page, offset,
4894 PAGE_CACHE_SIZE - offset);
53e87268
JK
4895 unlock_page(page);
4896 page_cache_release(page);
4897 if (ret != -EBUSY)
4898 return;
4899 commit_tid = 0;
4900 read_lock(&journal->j_state_lock);
4901 if (journal->j_committing_transaction)
4902 commit_tid = journal->j_committing_transaction->t_tid;
4903 read_unlock(&journal->j_state_lock);
4904 if (commit_tid)
4905 jbd2_log_wait_commit(journal, commit_tid);
4906 }
4907}
4908
ac27a0ec 4909/*
617ba13b 4910 * ext4_setattr()
ac27a0ec
DK
4911 *
4912 * Called from notify_change.
4913 *
4914 * We want to trap VFS attempts to truncate the file as soon as
4915 * possible. In particular, we want to make sure that when the VFS
4916 * shrinks i_size, we put the inode on the orphan list and modify
4917 * i_disksize immediately, so that during the subsequent flushing of
4918 * dirty pages and freeing of disk blocks, we can guarantee that any
4919 * commit will leave the blocks being flushed in an unused state on
4920 * disk. (On recovery, the inode will get truncated and the blocks will
4921 * be freed, so we have a strong guarantee that no future commit will
4922 * leave these blocks visible to the user.)
4923 *
678aaf48
JK
4924 * Another thing we have to assure is that if we are in ordered mode
4925 * and inode is still attached to the committing transaction, we must
4926 * we start writeout of all the dirty pages which are being truncated.
4927 * This way we are sure that all the data written in the previous
4928 * transaction are already on disk (truncate waits for pages under
4929 * writeback).
4930 *
4931 * Called with inode->i_mutex down.
ac27a0ec 4932 */
617ba13b 4933int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec 4934{
2b0143b5 4935 struct inode *inode = d_inode(dentry);
ac27a0ec 4936 int error, rc = 0;
3d287de3 4937 int orphan = 0;
ac27a0ec
DK
4938 const unsigned int ia_valid = attr->ia_valid;
4939
4940 error = inode_change_ok(inode, attr);
4941 if (error)
4942 return error;
4943
a7cdadee
JK
4944 if (is_quota_modification(inode, attr)) {
4945 error = dquot_initialize(inode);
4946 if (error)
4947 return error;
4948 }
08cefc7a
EB
4949 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4950 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4951 handle_t *handle;
4952
4953 /* (user+group)*(old+new) structure, inode write (sb,
4954 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4955 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4956 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4957 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4958 if (IS_ERR(handle)) {
4959 error = PTR_ERR(handle);
4960 goto err_out;
4961 }
b43fa828 4962 error = dquot_transfer(inode, attr);
ac27a0ec 4963 if (error) {
617ba13b 4964 ext4_journal_stop(handle);
ac27a0ec
DK
4965 return error;
4966 }
4967 /* Update corresponding info in inode so that everything is in
4968 * one transaction */
4969 if (attr->ia_valid & ATTR_UID)
4970 inode->i_uid = attr->ia_uid;
4971 if (attr->ia_valid & ATTR_GID)
4972 inode->i_gid = attr->ia_gid;
617ba13b
MC
4973 error = ext4_mark_inode_dirty(handle, inode);
4974 ext4_journal_stop(handle);
ac27a0ec
DK
4975 }
4976
3da40c7b 4977 if (attr->ia_valid & ATTR_SIZE) {
5208386c 4978 handle_t *handle;
3da40c7b
JB
4979 loff_t oldsize = inode->i_size;
4980 int shrink = (attr->ia_size <= inode->i_size);
562c72aa 4981
12e9b892 4982 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4983 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4984
0c095c7f
TT
4985 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4986 return -EFBIG;
e2b46574 4987 }
3da40c7b
JB
4988 if (!S_ISREG(inode->i_mode))
4989 return -EINVAL;
dff6efc3
CH
4990
4991 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4992 inode_inc_iversion(inode);
4993
3da40c7b 4994 if (ext4_should_order_data(inode) &&
5208386c 4995 (attr->ia_size < inode->i_size)) {
3da40c7b 4996 error = ext4_begin_ordered_truncate(inode,
678aaf48 4997 attr->ia_size);
3da40c7b
JB
4998 if (error)
4999 goto err_out;
5000 }
5001 if (attr->ia_size != inode->i_size) {
5208386c
JK
5002 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5003 if (IS_ERR(handle)) {
5004 error = PTR_ERR(handle);
5005 goto err_out;
5006 }
3da40c7b 5007 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5008 error = ext4_orphan_add(handle, inode);
5009 orphan = 1;
5010 }
911af577
EG
5011 /*
5012 * Update c/mtime on truncate up, ext4_truncate() will
5013 * update c/mtime in shrink case below
5014 */
5015 if (!shrink) {
5016 inode->i_mtime = ext4_current_time(inode);
5017 inode->i_ctime = inode->i_mtime;
5018 }
90e775b7 5019 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5020 EXT4_I(inode)->i_disksize = attr->ia_size;
5021 rc = ext4_mark_inode_dirty(handle, inode);
5022 if (!error)
5023 error = rc;
90e775b7
JK
5024 /*
5025 * We have to update i_size under i_data_sem together
5026 * with i_disksize to avoid races with writeback code
5027 * running ext4_wb_update_i_disksize().
5028 */
5029 if (!error)
5030 i_size_write(inode, attr->ia_size);
5031 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5032 ext4_journal_stop(handle);
5033 if (error) {
3da40c7b
JB
5034 if (orphan)
5035 ext4_orphan_del(NULL, inode);
678aaf48
JK
5036 goto err_out;
5037 }
d6320cbf 5038 }
3da40c7b
JB
5039 if (!shrink)
5040 pagecache_isize_extended(inode, oldsize, inode->i_size);
53e87268 5041
5208386c
JK
5042 /*
5043 * Blocks are going to be removed from the inode. Wait
5044 * for dio in flight. Temporarily disable
5045 * dioread_nolock to prevent livelock.
5046 */
5047 if (orphan) {
5048 if (!ext4_should_journal_data(inode)) {
5049 ext4_inode_block_unlocked_dio(inode);
5050 inode_dio_wait(inode);
5051 ext4_inode_resume_unlocked_dio(inode);
5052 } else
5053 ext4_wait_for_tail_page_commit(inode);
1c9114f9 5054 }
ea3d7209 5055 down_write(&EXT4_I(inode)->i_mmap_sem);
5208386c
JK
5056 /*
5057 * Truncate pagecache after we've waited for commit
5058 * in data=journal mode to make pages freeable.
5059 */
923ae0ff 5060 truncate_pagecache(inode, inode->i_size);
3da40c7b
JB
5061 if (shrink)
5062 ext4_truncate(inode);
ea3d7209 5063 up_write(&EXT4_I(inode)->i_mmap_sem);
072bd7ea 5064 }
ac27a0ec 5065
1025774c
CH
5066 if (!rc) {
5067 setattr_copy(inode, attr);
5068 mark_inode_dirty(inode);
5069 }
5070
5071 /*
5072 * If the call to ext4_truncate failed to get a transaction handle at
5073 * all, we need to clean up the in-core orphan list manually.
5074 */
3d287de3 5075 if (orphan && inode->i_nlink)
617ba13b 5076 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5077
5078 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 5079 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
5080
5081err_out:
617ba13b 5082 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5083 if (!error)
5084 error = rc;
5085 return error;
5086}
5087
3e3398a0
MC
5088int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5089 struct kstat *stat)
5090{
5091 struct inode *inode;
8af8eecc 5092 unsigned long long delalloc_blocks;
3e3398a0 5093
2b0143b5 5094 inode = d_inode(dentry);
3e3398a0
MC
5095 generic_fillattr(inode, stat);
5096
9206c561
AD
5097 /*
5098 * If there is inline data in the inode, the inode will normally not
5099 * have data blocks allocated (it may have an external xattr block).
5100 * Report at least one sector for such files, so tools like tar, rsync,
5101 * others doen't incorrectly think the file is completely sparse.
5102 */
5103 if (unlikely(ext4_has_inline_data(inode)))
5104 stat->blocks += (stat->size + 511) >> 9;
5105
3e3398a0
MC
5106 /*
5107 * We can't update i_blocks if the block allocation is delayed
5108 * otherwise in the case of system crash before the real block
5109 * allocation is done, we will have i_blocks inconsistent with
5110 * on-disk file blocks.
5111 * We always keep i_blocks updated together with real
5112 * allocation. But to not confuse with user, stat
5113 * will return the blocks that include the delayed allocation
5114 * blocks for this file.
5115 */
96607551 5116 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5117 EXT4_I(inode)->i_reserved_data_blocks);
5118 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5119 return 0;
5120}
ac27a0ec 5121
fffb2739
JK
5122static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5123 int pextents)
a02908f1 5124{
12e9b892 5125 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5126 return ext4_ind_trans_blocks(inode, lblocks);
5127 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5128}
ac51d837 5129
ac27a0ec 5130/*
a02908f1
MC
5131 * Account for index blocks, block groups bitmaps and block group
5132 * descriptor blocks if modify datablocks and index blocks
5133 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5134 *
a02908f1 5135 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5136 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5137 * they could still across block group boundary.
ac27a0ec 5138 *
a02908f1
MC
5139 * Also account for superblock, inode, quota and xattr blocks
5140 */
fffb2739
JK
5141static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5142 int pextents)
a02908f1 5143{
8df9675f
TT
5144 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5145 int gdpblocks;
a02908f1
MC
5146 int idxblocks;
5147 int ret = 0;
5148
5149 /*
fffb2739
JK
5150 * How many index blocks need to touch to map @lblocks logical blocks
5151 * to @pextents physical extents?
a02908f1 5152 */
fffb2739 5153 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5154
5155 ret = idxblocks;
5156
5157 /*
5158 * Now let's see how many group bitmaps and group descriptors need
5159 * to account
5160 */
fffb2739 5161 groups = idxblocks + pextents;
a02908f1 5162 gdpblocks = groups;
8df9675f
TT
5163 if (groups > ngroups)
5164 groups = ngroups;
a02908f1
MC
5165 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5166 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5167
5168 /* bitmaps and block group descriptor blocks */
5169 ret += groups + gdpblocks;
5170
5171 /* Blocks for super block, inode, quota and xattr blocks */
5172 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5173
5174 return ret;
5175}
5176
5177/*
25985edc 5178 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5179 * the modification of a single pages into a single transaction,
5180 * which may include multiple chunks of block allocations.
ac27a0ec 5181 *
525f4ed8 5182 * This could be called via ext4_write_begin()
ac27a0ec 5183 *
525f4ed8 5184 * We need to consider the worse case, when
a02908f1 5185 * one new block per extent.
ac27a0ec 5186 */
a86c6181 5187int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5188{
617ba13b 5189 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5190 int ret;
5191
fffb2739 5192 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5193
a02908f1 5194 /* Account for data blocks for journalled mode */
617ba13b 5195 if (ext4_should_journal_data(inode))
a02908f1 5196 ret += bpp;
ac27a0ec
DK
5197 return ret;
5198}
f3bd1f3f
MC
5199
5200/*
5201 * Calculate the journal credits for a chunk of data modification.
5202 *
5203 * This is called from DIO, fallocate or whoever calling
79e83036 5204 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5205 *
5206 * journal buffers for data blocks are not included here, as DIO
5207 * and fallocate do no need to journal data buffers.
5208 */
5209int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5210{
5211 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5212}
5213
ac27a0ec 5214/*
617ba13b 5215 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5216 * Give this, we know that the caller already has write access to iloc->bh.
5217 */
617ba13b 5218int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5219 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5220{
5221 int err = 0;
5222
c64db50e 5223 if (IS_I_VERSION(inode))
25ec56b5
JNC
5224 inode_inc_iversion(inode);
5225
ac27a0ec
DK
5226 /* the do_update_inode consumes one bh->b_count */
5227 get_bh(iloc->bh);
5228
dab291af 5229 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5230 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5231 put_bh(iloc->bh);
5232 return err;
5233}
5234
5235/*
5236 * On success, We end up with an outstanding reference count against
5237 * iloc->bh. This _must_ be cleaned up later.
5238 */
5239
5240int
617ba13b
MC
5241ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5242 struct ext4_iloc *iloc)
ac27a0ec 5243{
0390131b
FM
5244 int err;
5245
5246 err = ext4_get_inode_loc(inode, iloc);
5247 if (!err) {
5248 BUFFER_TRACE(iloc->bh, "get_write_access");
5249 err = ext4_journal_get_write_access(handle, iloc->bh);
5250 if (err) {
5251 brelse(iloc->bh);
5252 iloc->bh = NULL;
ac27a0ec
DK
5253 }
5254 }
617ba13b 5255 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5256 return err;
5257}
5258
6dd4ee7c
KS
5259/*
5260 * Expand an inode by new_extra_isize bytes.
5261 * Returns 0 on success or negative error number on failure.
5262 */
1d03ec98
AK
5263static int ext4_expand_extra_isize(struct inode *inode,
5264 unsigned int new_extra_isize,
5265 struct ext4_iloc iloc,
5266 handle_t *handle)
6dd4ee7c
KS
5267{
5268 struct ext4_inode *raw_inode;
5269 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5270
5271 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5272 return 0;
5273
5274 raw_inode = ext4_raw_inode(&iloc);
5275
5276 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5277
5278 /* No extended attributes present */
19f5fb7a
TT
5279 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5280 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5281 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5282 new_extra_isize);
5283 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5284 return 0;
5285 }
5286
5287 /* try to expand with EAs present */
5288 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5289 raw_inode, handle);
5290}
5291
ac27a0ec
DK
5292/*
5293 * What we do here is to mark the in-core inode as clean with respect to inode
5294 * dirtiness (it may still be data-dirty).
5295 * This means that the in-core inode may be reaped by prune_icache
5296 * without having to perform any I/O. This is a very good thing,
5297 * because *any* task may call prune_icache - even ones which
5298 * have a transaction open against a different journal.
5299 *
5300 * Is this cheating? Not really. Sure, we haven't written the
5301 * inode out, but prune_icache isn't a user-visible syncing function.
5302 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5303 * we start and wait on commits.
ac27a0ec 5304 */
617ba13b 5305int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5306{
617ba13b 5307 struct ext4_iloc iloc;
6dd4ee7c
KS
5308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5309 static unsigned int mnt_count;
5310 int err, ret;
ac27a0ec
DK
5311
5312 might_sleep();
7ff9c073 5313 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5314 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5315 if (ext4_handle_valid(handle) &&
5316 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5317 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5318 /*
5319 * We need extra buffer credits since we may write into EA block
5320 * with this same handle. If journal_extend fails, then it will
5321 * only result in a minor loss of functionality for that inode.
5322 * If this is felt to be critical, then e2fsck should be run to
5323 * force a large enough s_min_extra_isize.
5324 */
5325 if ((jbd2_journal_extend(handle,
5326 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5327 ret = ext4_expand_extra_isize(inode,
5328 sbi->s_want_extra_isize,
5329 iloc, handle);
5330 if (ret) {
19f5fb7a
TT
5331 ext4_set_inode_state(inode,
5332 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5333 if (mnt_count !=
5334 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5335 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5336 "Unable to expand inode %lu. Delete"
5337 " some EAs or run e2fsck.",
5338 inode->i_ino);
c1bddad9
AK
5339 mnt_count =
5340 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5341 }
5342 }
5343 }
5344 }
ac27a0ec 5345 if (!err)
617ba13b 5346 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5347 return err;
5348}
5349
5350/*
617ba13b 5351 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5352 *
5353 * We're really interested in the case where a file is being extended.
5354 * i_size has been changed by generic_commit_write() and we thus need
5355 * to include the updated inode in the current transaction.
5356 *
5dd4056d 5357 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5358 * are allocated to the file.
5359 *
5360 * If the inode is marked synchronous, we don't honour that here - doing
5361 * so would cause a commit on atime updates, which we don't bother doing.
5362 * We handle synchronous inodes at the highest possible level.
0ae45f63
TT
5363 *
5364 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5365 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5366 * to copy into the on-disk inode structure are the timestamp files.
ac27a0ec 5367 */
aa385729 5368void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5369{
ac27a0ec
DK
5370 handle_t *handle;
5371
0ae45f63
TT
5372 if (flags == I_DIRTY_TIME)
5373 return;
9924a92a 5374 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5375 if (IS_ERR(handle))
5376 goto out;
f3dc272f 5377
f3dc272f
CW
5378 ext4_mark_inode_dirty(handle, inode);
5379
617ba13b 5380 ext4_journal_stop(handle);
ac27a0ec
DK
5381out:
5382 return;
5383}
5384
5385#if 0
5386/*
5387 * Bind an inode's backing buffer_head into this transaction, to prevent
5388 * it from being flushed to disk early. Unlike
617ba13b 5389 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5390 * returns no iloc structure, so the caller needs to repeat the iloc
5391 * lookup to mark the inode dirty later.
5392 */
617ba13b 5393static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5394{
617ba13b 5395 struct ext4_iloc iloc;
ac27a0ec
DK
5396
5397 int err = 0;
5398 if (handle) {
617ba13b 5399 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5400 if (!err) {
5401 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5402 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5403 if (!err)
0390131b 5404 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5405 NULL,
0390131b 5406 iloc.bh);
ac27a0ec
DK
5407 brelse(iloc.bh);
5408 }
5409 }
617ba13b 5410 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5411 return err;
5412}
5413#endif
5414
617ba13b 5415int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5416{
5417 journal_t *journal;
5418 handle_t *handle;
5419 int err;
5420
5421 /*
5422 * We have to be very careful here: changing a data block's
5423 * journaling status dynamically is dangerous. If we write a
5424 * data block to the journal, change the status and then delete
5425 * that block, we risk forgetting to revoke the old log record
5426 * from the journal and so a subsequent replay can corrupt data.
5427 * So, first we make sure that the journal is empty and that
5428 * nobody is changing anything.
5429 */
5430
617ba13b 5431 journal = EXT4_JOURNAL(inode);
0390131b
FM
5432 if (!journal)
5433 return 0;
d699594d 5434 if (is_journal_aborted(journal))
ac27a0ec 5435 return -EROFS;
2aff57b0
YY
5436 /* We have to allocate physical blocks for delalloc blocks
5437 * before flushing journal. otherwise delalloc blocks can not
5438 * be allocated any more. even more truncate on delalloc blocks
5439 * could trigger BUG by flushing delalloc blocks in journal.
5440 * There is no delalloc block in non-journal data mode.
5441 */
5442 if (val && test_opt(inode->i_sb, DELALLOC)) {
5443 err = ext4_alloc_da_blocks(inode);
5444 if (err < 0)
5445 return err;
5446 }
ac27a0ec 5447
17335dcc
DM
5448 /* Wait for all existing dio workers */
5449 ext4_inode_block_unlocked_dio(inode);
5450 inode_dio_wait(inode);
5451
dab291af 5452 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5453
5454 /*
5455 * OK, there are no updates running now, and all cached data is
5456 * synced to disk. We are now in a completely consistent state
5457 * which doesn't have anything in the journal, and we know that
5458 * no filesystem updates are running, so it is safe to modify
5459 * the inode's in-core data-journaling state flag now.
5460 */
5461
5462 if (val)
12e9b892 5463 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5464 else {
4f879ca6
JK
5465 err = jbd2_journal_flush(journal);
5466 if (err < 0) {
5467 jbd2_journal_unlock_updates(journal);
5468 ext4_inode_resume_unlocked_dio(inode);
5469 return err;
5470 }
12e9b892 5471 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5472 }
617ba13b 5473 ext4_set_aops(inode);
ac27a0ec 5474
dab291af 5475 jbd2_journal_unlock_updates(journal);
17335dcc 5476 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5477
5478 /* Finally we can mark the inode as dirty. */
5479
9924a92a 5480 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5481 if (IS_ERR(handle))
5482 return PTR_ERR(handle);
5483
617ba13b 5484 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5485 ext4_handle_sync(handle);
617ba13b
MC
5486 ext4_journal_stop(handle);
5487 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5488
5489 return err;
5490}
2e9ee850
AK
5491
5492static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5493{
5494 return !buffer_mapped(bh);
5495}
5496
c2ec175c 5497int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5498{
c2ec175c 5499 struct page *page = vmf->page;
2e9ee850
AK
5500 loff_t size;
5501 unsigned long len;
9ea7df53 5502 int ret;
2e9ee850 5503 struct file *file = vma->vm_file;
496ad9aa 5504 struct inode *inode = file_inode(file);
2e9ee850 5505 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5506 handle_t *handle;
5507 get_block_t *get_block;
5508 int retries = 0;
2e9ee850 5509
8e8ad8a5 5510 sb_start_pagefault(inode->i_sb);
041bbb6d 5511 file_update_time(vma->vm_file);
ea3d7209
JK
5512
5513 down_read(&EXT4_I(inode)->i_mmap_sem);
9ea7df53
JK
5514 /* Delalloc case is easy... */
5515 if (test_opt(inode->i_sb, DELALLOC) &&
5516 !ext4_should_journal_data(inode) &&
5517 !ext4_nonda_switch(inode->i_sb)) {
5518 do {
5c500029 5519 ret = block_page_mkwrite(vma, vmf,
9ea7df53
JK
5520 ext4_da_get_block_prep);
5521 } while (ret == -ENOSPC &&
5522 ext4_should_retry_alloc(inode->i_sb, &retries));
5523 goto out_ret;
2e9ee850 5524 }
0e499890
DW
5525
5526 lock_page(page);
9ea7df53
JK
5527 size = i_size_read(inode);
5528 /* Page got truncated from under us? */
5529 if (page->mapping != mapping || page_offset(page) > size) {
5530 unlock_page(page);
5531 ret = VM_FAULT_NOPAGE;
5532 goto out;
0e499890 5533 }
2e9ee850
AK
5534
5535 if (page->index == size >> PAGE_CACHE_SHIFT)
5536 len = size & ~PAGE_CACHE_MASK;
5537 else
5538 len = PAGE_CACHE_SIZE;
a827eaff 5539 /*
9ea7df53
JK
5540 * Return if we have all the buffers mapped. This avoids the need to do
5541 * journal_start/journal_stop which can block and take a long time
a827eaff 5542 */
2e9ee850 5543 if (page_has_buffers(page)) {
f19d5870
TM
5544 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5545 0, len, NULL,
5546 ext4_bh_unmapped)) {
9ea7df53 5547 /* Wait so that we don't change page under IO */
1d1d1a76 5548 wait_for_stable_page(page);
9ea7df53
JK
5549 ret = VM_FAULT_LOCKED;
5550 goto out;
a827eaff 5551 }
2e9ee850 5552 }
a827eaff 5553 unlock_page(page);
9ea7df53
JK
5554 /* OK, we need to fill the hole... */
5555 if (ext4_should_dioread_nolock(inode))
705965bd 5556 get_block = ext4_get_block_unwritten;
9ea7df53
JK
5557 else
5558 get_block = ext4_get_block;
5559retry_alloc:
9924a92a
TT
5560 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5561 ext4_writepage_trans_blocks(inode));
9ea7df53 5562 if (IS_ERR(handle)) {
c2ec175c 5563 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5564 goto out;
5565 }
5c500029 5566 ret = block_page_mkwrite(vma, vmf, get_block);
9ea7df53 5567 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5568 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5569 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5570 unlock_page(page);
5571 ret = VM_FAULT_SIGBUS;
fcbb5515 5572 ext4_journal_stop(handle);
9ea7df53
JK
5573 goto out;
5574 }
5575 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5576 }
5577 ext4_journal_stop(handle);
5578 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5579 goto retry_alloc;
5580out_ret:
5581 ret = block_page_mkwrite_return(ret);
5582out:
ea3d7209 5583 up_read(&EXT4_I(inode)->i_mmap_sem);
8e8ad8a5 5584 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5585 return ret;
5586}
ea3d7209
JK
5587
5588int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5589{
5590 struct inode *inode = file_inode(vma->vm_file);
5591 int err;
5592
5593 down_read(&EXT4_I(inode)->i_mmap_sem);
5594 err = filemap_fault(vma, vmf);
5595 up_read(&EXT4_I(inode)->i_mmap_sem);
5596
5597 return err;
5598}