]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ext4/inode.c
ext4: journal credits reservation fixes for DIO, fallocate
[mirror_ubuntu-artful-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec
DK
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
3dcf5451 39#include "ext4_jbd2.h"
ac27a0ec
DK
40#include "xattr.h"
41#include "acl.h"
d2a17637 42#include "ext4_extents.h"
ac27a0ec 43
678aaf48
JK
44static inline int ext4_begin_ordered_truncate(struct inode *inode,
45 loff_t new_size)
46{
47 return jbd2_journal_begin_ordered_truncate(&EXT4_I(inode)->jinode,
48 new_size);
49}
50
64769240
AT
51static void ext4_invalidatepage(struct page *page, unsigned long offset);
52
ac27a0ec
DK
53/*
54 * Test whether an inode is a fast symlink.
55 */
617ba13b 56static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 57{
617ba13b 58 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
59 (inode->i_sb->s_blocksize >> 9) : 0;
60
61 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
62}
63
64/*
617ba13b 65 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
66 * which has been journaled. Metadata (eg. indirect blocks) must be
67 * revoked in all cases.
68 *
69 * "bh" may be NULL: a metadata block may have been freed from memory
70 * but there may still be a record of it in the journal, and that record
71 * still needs to be revoked.
72 */
617ba13b
MC
73int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
74 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
75{
76 int err;
77
78 might_sleep();
79
80 BUFFER_TRACE(bh, "enter");
81
82 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
83 "data mode %lx\n",
84 bh, is_metadata, inode->i_mode,
85 test_opt(inode->i_sb, DATA_FLAGS));
86
87 /* Never use the revoke function if we are doing full data
88 * journaling: there is no need to, and a V1 superblock won't
89 * support it. Otherwise, only skip the revoke on un-journaled
90 * data blocks. */
91
617ba13b
MC
92 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
93 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 94 if (bh) {
dab291af 95 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 96 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
97 }
98 return 0;
99 }
100
101 /*
102 * data!=journal && (is_metadata || should_journal_data(inode))
103 */
617ba13b
MC
104 BUFFER_TRACE(bh, "call ext4_journal_revoke");
105 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 106 if (err)
46e665e9 107 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
108 "error %d when attempting revoke", err);
109 BUFFER_TRACE(bh, "exit");
110 return err;
111}
112
113/*
114 * Work out how many blocks we need to proceed with the next chunk of a
115 * truncate transaction.
116 */
117static unsigned long blocks_for_truncate(struct inode *inode)
118{
725d26d3 119 ext4_lblk_t needed;
ac27a0ec
DK
120
121 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
122
123 /* Give ourselves just enough room to cope with inodes in which
124 * i_blocks is corrupt: we've seen disk corruptions in the past
125 * which resulted in random data in an inode which looked enough
617ba13b 126 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
127 * will go a bit crazy if that happens, but at least we should
128 * try not to panic the whole kernel. */
129 if (needed < 2)
130 needed = 2;
131
132 /* But we need to bound the transaction so we don't overflow the
133 * journal. */
617ba13b
MC
134 if (needed > EXT4_MAX_TRANS_DATA)
135 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 136
617ba13b 137 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
138}
139
140/*
141 * Truncate transactions can be complex and absolutely huge. So we need to
142 * be able to restart the transaction at a conventient checkpoint to make
143 * sure we don't overflow the journal.
144 *
145 * start_transaction gets us a new handle for a truncate transaction,
146 * and extend_transaction tries to extend the existing one a bit. If
147 * extend fails, we need to propagate the failure up and restart the
148 * transaction in the top-level truncate loop. --sct
149 */
150static handle_t *start_transaction(struct inode *inode)
151{
152 handle_t *result;
153
617ba13b 154 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
155 if (!IS_ERR(result))
156 return result;
157
617ba13b 158 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
159 return result;
160}
161
162/*
163 * Try to extend this transaction for the purposes of truncation.
164 *
165 * Returns 0 if we managed to create more room. If we can't create more
166 * room, and the transaction must be restarted we return 1.
167 */
168static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
169{
617ba13b 170 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 171 return 0;
617ba13b 172 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
173 return 0;
174 return 1;
175}
176
177/*
178 * Restart the transaction associated with *handle. This does a commit,
179 * so before we call here everything must be consistently dirtied against
180 * this transaction.
181 */
617ba13b 182static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
183{
184 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 185 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
186}
187
188/*
189 * Called at the last iput() if i_nlink is zero.
190 */
617ba13b 191void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
192{
193 handle_t *handle;
bc965ab3 194 int err;
ac27a0ec 195
678aaf48
JK
196 if (ext4_should_order_data(inode))
197 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
198 truncate_inode_pages(&inode->i_data, 0);
199
200 if (is_bad_inode(inode))
201 goto no_delete;
202
bc965ab3 203 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 204 if (IS_ERR(handle)) {
bc965ab3 205 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
206 /*
207 * If we're going to skip the normal cleanup, we still need to
208 * make sure that the in-core orphan linked list is properly
209 * cleaned up.
210 */
617ba13b 211 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
212 goto no_delete;
213 }
214
215 if (IS_SYNC(inode))
216 handle->h_sync = 1;
217 inode->i_size = 0;
bc965ab3
TT
218 err = ext4_mark_inode_dirty(handle, inode);
219 if (err) {
220 ext4_warning(inode->i_sb, __func__,
221 "couldn't mark inode dirty (err %d)", err);
222 goto stop_handle;
223 }
ac27a0ec 224 if (inode->i_blocks)
617ba13b 225 ext4_truncate(inode);
bc965ab3
TT
226
227 /*
228 * ext4_ext_truncate() doesn't reserve any slop when it
229 * restarts journal transactions; therefore there may not be
230 * enough credits left in the handle to remove the inode from
231 * the orphan list and set the dtime field.
232 */
233 if (handle->h_buffer_credits < 3) {
234 err = ext4_journal_extend(handle, 3);
235 if (err > 0)
236 err = ext4_journal_restart(handle, 3);
237 if (err != 0) {
238 ext4_warning(inode->i_sb, __func__,
239 "couldn't extend journal (err %d)", err);
240 stop_handle:
241 ext4_journal_stop(handle);
242 goto no_delete;
243 }
244 }
245
ac27a0ec 246 /*
617ba13b 247 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 248 * AKPM: I think this can be inside the above `if'.
617ba13b 249 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 250 * deletion of a non-existent orphan - this is because we don't
617ba13b 251 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
252 * (Well, we could do this if we need to, but heck - it works)
253 */
617ba13b
MC
254 ext4_orphan_del(handle, inode);
255 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
256
257 /*
258 * One subtle ordering requirement: if anything has gone wrong
259 * (transaction abort, IO errors, whatever), then we can still
260 * do these next steps (the fs will already have been marked as
261 * having errors), but we can't free the inode if the mark_dirty
262 * fails.
263 */
617ba13b 264 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
265 /* If that failed, just do the required in-core inode clear. */
266 clear_inode(inode);
267 else
617ba13b
MC
268 ext4_free_inode(handle, inode);
269 ext4_journal_stop(handle);
ac27a0ec
DK
270 return;
271no_delete:
272 clear_inode(inode); /* We must guarantee clearing of inode... */
273}
274
275typedef struct {
276 __le32 *p;
277 __le32 key;
278 struct buffer_head *bh;
279} Indirect;
280
281static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
282{
283 p->key = *(p->p = v);
284 p->bh = bh;
285}
286
ac27a0ec 287/**
617ba13b 288 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
289 * @inode: inode in question (we are only interested in its superblock)
290 * @i_block: block number to be parsed
291 * @offsets: array to store the offsets in
8c55e204
DK
292 * @boundary: set this non-zero if the referred-to block is likely to be
293 * followed (on disk) by an indirect block.
ac27a0ec 294 *
617ba13b 295 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
296 * for UNIX filesystems - tree of pointers anchored in the inode, with
297 * data blocks at leaves and indirect blocks in intermediate nodes.
298 * This function translates the block number into path in that tree -
299 * return value is the path length and @offsets[n] is the offset of
300 * pointer to (n+1)th node in the nth one. If @block is out of range
301 * (negative or too large) warning is printed and zero returned.
302 *
303 * Note: function doesn't find node addresses, so no IO is needed. All
304 * we need to know is the capacity of indirect blocks (taken from the
305 * inode->i_sb).
306 */
307
308/*
309 * Portability note: the last comparison (check that we fit into triple
310 * indirect block) is spelled differently, because otherwise on an
311 * architecture with 32-bit longs and 8Kb pages we might get into trouble
312 * if our filesystem had 8Kb blocks. We might use long long, but that would
313 * kill us on x86. Oh, well, at least the sign propagation does not matter -
314 * i_block would have to be negative in the very beginning, so we would not
315 * get there at all.
316 */
317
617ba13b 318static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
319 ext4_lblk_t i_block,
320 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 321{
617ba13b
MC
322 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
329
330 if (i_block < 0) {
617ba13b 331 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 336 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 340 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 345 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
e2b46574 351 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 352 "block %lu > max",
e2b46574
ES
353 i_block + direct_blocks +
354 indirect_blocks + double_blocks);
ac27a0ec
DK
355 }
356 if (boundary)
357 *boundary = final - 1 - (i_block & (ptrs - 1));
358 return n;
359}
360
361/**
617ba13b 362 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
363 * @inode: inode in question
364 * @depth: depth of the chain (1 - direct pointer, etc.)
365 * @offsets: offsets of pointers in inode/indirect blocks
366 * @chain: place to store the result
367 * @err: here we store the error value
368 *
369 * Function fills the array of triples <key, p, bh> and returns %NULL
370 * if everything went OK or the pointer to the last filled triple
371 * (incomplete one) otherwise. Upon the return chain[i].key contains
372 * the number of (i+1)-th block in the chain (as it is stored in memory,
373 * i.e. little-endian 32-bit), chain[i].p contains the address of that
374 * number (it points into struct inode for i==0 and into the bh->b_data
375 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
376 * block for i>0 and NULL for i==0. In other words, it holds the block
377 * numbers of the chain, addresses they were taken from (and where we can
378 * verify that chain did not change) and buffer_heads hosting these
379 * numbers.
380 *
381 * Function stops when it stumbles upon zero pointer (absent block)
382 * (pointer to last triple returned, *@err == 0)
383 * or when it gets an IO error reading an indirect block
384 * (ditto, *@err == -EIO)
ac27a0ec
DK
385 * or when it reads all @depth-1 indirect blocks successfully and finds
386 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
387 *
388 * Need to be called with
0e855ac8 389 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 390 */
725d26d3
AK
391static Indirect *ext4_get_branch(struct inode *inode, int depth,
392 ext4_lblk_t *offsets,
ac27a0ec
DK
393 Indirect chain[4], int *err)
394{
395 struct super_block *sb = inode->i_sb;
396 Indirect *p = chain;
397 struct buffer_head *bh;
398
399 *err = 0;
400 /* i_data is not going away, no lock needed */
617ba13b 401 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
402 if (!p->key)
403 goto no_block;
404 while (--depth) {
405 bh = sb_bread(sb, le32_to_cpu(p->key));
406 if (!bh)
407 goto failure;
ac27a0ec
DK
408 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
409 /* Reader: end */
410 if (!p->key)
411 goto no_block;
412 }
413 return NULL;
414
ac27a0ec
DK
415failure:
416 *err = -EIO;
417no_block:
418 return p;
419}
420
421/**
617ba13b 422 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
423 * @inode: owner
424 * @ind: descriptor of indirect block.
425 *
1cc8dcf5 426 * This function returns the preferred place for block allocation.
ac27a0ec
DK
427 * It is used when heuristic for sequential allocation fails.
428 * Rules are:
429 * + if there is a block to the left of our position - allocate near it.
430 * + if pointer will live in indirect block - allocate near that block.
431 * + if pointer will live in inode - allocate in the same
432 * cylinder group.
433 *
434 * In the latter case we colour the starting block by the callers PID to
435 * prevent it from clashing with concurrent allocations for a different inode
436 * in the same block group. The PID is used here so that functionally related
437 * files will be close-by on-disk.
438 *
439 * Caller must make sure that @ind is valid and will stay that way.
440 */
617ba13b 441static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 442{
617ba13b 443 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
444 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
445 __le32 *p;
617ba13b 446 ext4_fsblk_t bg_start;
74d3487f 447 ext4_fsblk_t last_block;
617ba13b 448 ext4_grpblk_t colour;
ac27a0ec
DK
449
450 /* Try to find previous block */
451 for (p = ind->p - 1; p >= start; p--) {
452 if (*p)
453 return le32_to_cpu(*p);
454 }
455
456 /* No such thing, so let's try location of indirect block */
457 if (ind->bh)
458 return ind->bh->b_blocknr;
459
460 /*
461 * It is going to be referred to from the inode itself? OK, just put it
462 * into the same cylinder group then.
463 */
617ba13b 464 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
74d3487f
VC
465 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
466
467 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
468 colour = (current->pid % 16) *
617ba13b 469 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
470 else
471 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
472 return bg_start + colour;
473}
474
475/**
1cc8dcf5 476 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
477 * @inode: owner
478 * @block: block we want
ac27a0ec 479 * @partial: pointer to the last triple within a chain
ac27a0ec 480 *
1cc8dcf5 481 * Normally this function find the preferred place for block allocation,
fb01bfda 482 * returns it.
ac27a0ec 483 */
725d26d3 484static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 485 Indirect *partial)
ac27a0ec 486{
617ba13b 487 struct ext4_block_alloc_info *block_i;
ac27a0ec 488
617ba13b 489 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
490
491 /*
492 * try the heuristic for sequential allocation,
493 * failing that at least try to get decent locality.
494 */
495 if (block_i && (block == block_i->last_alloc_logical_block + 1)
496 && (block_i->last_alloc_physical_block != 0)) {
497 return block_i->last_alloc_physical_block + 1;
498 }
499
617ba13b 500 return ext4_find_near(inode, partial);
ac27a0ec
DK
501}
502
503/**
617ba13b 504 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
505 * of direct blocks need to be allocated for the given branch.
506 *
507 * @branch: chain of indirect blocks
508 * @k: number of blocks need for indirect blocks
509 * @blks: number of data blocks to be mapped.
510 * @blocks_to_boundary: the offset in the indirect block
511 *
512 * return the total number of blocks to be allocate, including the
513 * direct and indirect blocks.
514 */
617ba13b 515static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
516 int blocks_to_boundary)
517{
518 unsigned long count = 0;
519
520 /*
521 * Simple case, [t,d]Indirect block(s) has not allocated yet
522 * then it's clear blocks on that path have not allocated
523 */
524 if (k > 0) {
525 /* right now we don't handle cross boundary allocation */
526 if (blks < blocks_to_boundary + 1)
527 count += blks;
528 else
529 count += blocks_to_boundary + 1;
530 return count;
531 }
532
533 count++;
534 while (count < blks && count <= blocks_to_boundary &&
535 le32_to_cpu(*(branch[0].p + count)) == 0) {
536 count++;
537 }
538 return count;
539}
540
541/**
617ba13b 542 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
543 * @indirect_blks: the number of blocks need to allocate for indirect
544 * blocks
545 *
546 * @new_blocks: on return it will store the new block numbers for
547 * the indirect blocks(if needed) and the first direct block,
548 * @blks: on return it will store the total number of allocated
549 * direct blocks
550 */
617ba13b 551static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
7061eba7
AK
552 ext4_lblk_t iblock, ext4_fsblk_t goal,
553 int indirect_blks, int blks,
554 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
555{
556 int target, i;
7061eba7 557 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 558 int index = 0;
617ba13b 559 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
560 int ret = 0;
561
562 /*
563 * Here we try to allocate the requested multiple blocks at once,
564 * on a best-effort basis.
565 * To build a branch, we should allocate blocks for
566 * the indirect blocks(if not allocated yet), and at least
567 * the first direct block of this branch. That's the
568 * minimum number of blocks need to allocate(required)
569 */
7061eba7
AK
570 /* first we try to allocate the indirect blocks */
571 target = indirect_blks;
572 while (target > 0) {
ac27a0ec
DK
573 count = target;
574 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
575 current_block = ext4_new_meta_blocks(handle, inode,
576 goal, &count, err);
ac27a0ec
DK
577 if (*err)
578 goto failed_out;
579
580 target -= count;
581 /* allocate blocks for indirect blocks */
582 while (index < indirect_blks && count) {
583 new_blocks[index++] = current_block++;
584 count--;
585 }
7061eba7
AK
586 if (count > 0) {
587 /*
588 * save the new block number
589 * for the first direct block
590 */
591 new_blocks[index] = current_block;
592 printk(KERN_INFO "%s returned more blocks than "
593 "requested\n", __func__);
594 WARN_ON(1);
ac27a0ec 595 break;
7061eba7 596 }
ac27a0ec
DK
597 }
598
7061eba7
AK
599 target = blks - count ;
600 blk_allocated = count;
601 if (!target)
602 goto allocated;
603 /* Now allocate data blocks */
604 count = target;
654b4908 605 /* allocating blocks for data blocks */
7061eba7
AK
606 current_block = ext4_new_blocks(handle, inode, iblock,
607 goal, &count, err);
608 if (*err && (target == blks)) {
609 /*
610 * if the allocation failed and we didn't allocate
611 * any blocks before
612 */
613 goto failed_out;
614 }
615 if (!*err) {
616 if (target == blks) {
617 /*
618 * save the new block number
619 * for the first direct block
620 */
621 new_blocks[index] = current_block;
622 }
623 blk_allocated += count;
624 }
625allocated:
ac27a0ec 626 /* total number of blocks allocated for direct blocks */
7061eba7 627 ret = blk_allocated;
ac27a0ec
DK
628 *err = 0;
629 return ret;
630failed_out:
631 for (i = 0; i <index; i++)
c9de560d 632 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
633 return ret;
634}
635
636/**
617ba13b 637 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
638 * @inode: owner
639 * @indirect_blks: number of allocated indirect blocks
640 * @blks: number of allocated direct blocks
641 * @offsets: offsets (in the blocks) to store the pointers to next.
642 * @branch: place to store the chain in.
643 *
644 * This function allocates blocks, zeroes out all but the last one,
645 * links them into chain and (if we are synchronous) writes them to disk.
646 * In other words, it prepares a branch that can be spliced onto the
647 * inode. It stores the information about that chain in the branch[], in
617ba13b 648 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
649 * we had read the existing part of chain and partial points to the last
650 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 651 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
652 * place chain is disconnected - *branch->p is still zero (we did not
653 * set the last link), but branch->key contains the number that should
654 * be placed into *branch->p to fill that gap.
655 *
656 * If allocation fails we free all blocks we've allocated (and forget
657 * their buffer_heads) and return the error value the from failed
617ba13b 658 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
659 * as described above and return 0.
660 */
617ba13b 661static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
7061eba7
AK
662 ext4_lblk_t iblock, int indirect_blks,
663 int *blks, ext4_fsblk_t goal,
664 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
665{
666 int blocksize = inode->i_sb->s_blocksize;
667 int i, n = 0;
668 int err = 0;
669 struct buffer_head *bh;
670 int num;
617ba13b
MC
671 ext4_fsblk_t new_blocks[4];
672 ext4_fsblk_t current_block;
ac27a0ec 673
7061eba7 674 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
675 *blks, new_blocks, &err);
676 if (err)
677 return err;
678
679 branch[0].key = cpu_to_le32(new_blocks[0]);
680 /*
681 * metadata blocks and data blocks are allocated.
682 */
683 for (n = 1; n <= indirect_blks; n++) {
684 /*
685 * Get buffer_head for parent block, zero it out
686 * and set the pointer to new one, then send
687 * parent to disk.
688 */
689 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
690 branch[n].bh = bh;
691 lock_buffer(bh);
692 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 693 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
694 if (err) {
695 unlock_buffer(bh);
696 brelse(bh);
697 goto failed;
698 }
699
700 memset(bh->b_data, 0, blocksize);
701 branch[n].p = (__le32 *) bh->b_data + offsets[n];
702 branch[n].key = cpu_to_le32(new_blocks[n]);
703 *branch[n].p = branch[n].key;
704 if ( n == indirect_blks) {
705 current_block = new_blocks[n];
706 /*
707 * End of chain, update the last new metablock of
708 * the chain to point to the new allocated
709 * data blocks numbers
710 */
711 for (i=1; i < num; i++)
712 *(branch[n].p + i) = cpu_to_le32(++current_block);
713 }
714 BUFFER_TRACE(bh, "marking uptodate");
715 set_buffer_uptodate(bh);
716 unlock_buffer(bh);
717
617ba13b
MC
718 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
719 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
720 if (err)
721 goto failed;
722 }
723 *blks = num;
724 return err;
725failed:
726 /* Allocation failed, free what we already allocated */
727 for (i = 1; i <= n ; i++) {
dab291af 728 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 729 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
730 }
731 for (i = 0; i <indirect_blks; i++)
c9de560d 732 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 733
c9de560d 734 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
735
736 return err;
737}
738
739/**
617ba13b 740 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
741 * @inode: owner
742 * @block: (logical) number of block we are adding
743 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 744 * ext4_alloc_branch)
ac27a0ec
DK
745 * @where: location of missing link
746 * @num: number of indirect blocks we are adding
747 * @blks: number of direct blocks we are adding
748 *
749 * This function fills the missing link and does all housekeeping needed in
750 * inode (->i_blocks, etc.). In case of success we end up with the full
751 * chain to new block and return 0.
752 */
617ba13b 753static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 754 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
755{
756 int i;
757 int err = 0;
617ba13b
MC
758 struct ext4_block_alloc_info *block_i;
759 ext4_fsblk_t current_block;
ac27a0ec 760
617ba13b 761 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
762 /*
763 * If we're splicing into a [td]indirect block (as opposed to the
764 * inode) then we need to get write access to the [td]indirect block
765 * before the splice.
766 */
767 if (where->bh) {
768 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 769 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
770 if (err)
771 goto err_out;
772 }
773 /* That's it */
774
775 *where->p = where->key;
776
777 /*
778 * Update the host buffer_head or inode to point to more just allocated
779 * direct blocks blocks
780 */
781 if (num == 0 && blks > 1) {
782 current_block = le32_to_cpu(where->key) + 1;
783 for (i = 1; i < blks; i++)
784 *(where->p + i ) = cpu_to_le32(current_block++);
785 }
786
787 /*
788 * update the most recently allocated logical & physical block
789 * in i_block_alloc_info, to assist find the proper goal block for next
790 * allocation
791 */
792 if (block_i) {
793 block_i->last_alloc_logical_block = block + blks - 1;
794 block_i->last_alloc_physical_block =
795 le32_to_cpu(where[num].key) + blks - 1;
796 }
797
798 /* We are done with atomic stuff, now do the rest of housekeeping */
799
ef7f3835 800 inode->i_ctime = ext4_current_time(inode);
617ba13b 801 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
802
803 /* had we spliced it onto indirect block? */
804 if (where->bh) {
805 /*
806 * If we spliced it onto an indirect block, we haven't
807 * altered the inode. Note however that if it is being spliced
808 * onto an indirect block at the very end of the file (the
809 * file is growing) then we *will* alter the inode to reflect
810 * the new i_size. But that is not done here - it is done in
617ba13b 811 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
812 */
813 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
814 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
815 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
816 if (err)
817 goto err_out;
818 } else {
819 /*
820 * OK, we spliced it into the inode itself on a direct block.
821 * Inode was dirtied above.
822 */
823 jbd_debug(5, "splicing direct\n");
824 }
825 return err;
826
827err_out:
828 for (i = 1; i <= num; i++) {
dab291af 829 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 830 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
831 ext4_free_blocks(handle, inode,
832 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 833 }
c9de560d 834 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
835
836 return err;
837}
838
839/*
840 * Allocation strategy is simple: if we have to allocate something, we will
841 * have to go the whole way to leaf. So let's do it before attaching anything
842 * to tree, set linkage between the newborn blocks, write them if sync is
843 * required, recheck the path, free and repeat if check fails, otherwise
844 * set the last missing link (that will protect us from any truncate-generated
845 * removals - all blocks on the path are immune now) and possibly force the
846 * write on the parent block.
847 * That has a nice additional property: no special recovery from the failed
848 * allocations is needed - we simply release blocks and do not touch anything
849 * reachable from inode.
850 *
851 * `handle' can be NULL if create == 0.
852 *
ac27a0ec
DK
853 * return > 0, # of blocks mapped or allocated.
854 * return = 0, if plain lookup failed.
855 * return < 0, error case.
c278bfec
AK
856 *
857 *
858 * Need to be called with
0e855ac8
AK
859 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
860 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 861 */
617ba13b 862int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 863 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
864 struct buffer_head *bh_result,
865 int create, int extend_disksize)
866{
867 int err = -EIO;
725d26d3 868 ext4_lblk_t offsets[4];
ac27a0ec
DK
869 Indirect chain[4];
870 Indirect *partial;
617ba13b 871 ext4_fsblk_t goal;
ac27a0ec
DK
872 int indirect_blks;
873 int blocks_to_boundary = 0;
874 int depth;
617ba13b 875 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 876 int count = 0;
617ba13b 877 ext4_fsblk_t first_block = 0;
61628a3f 878 loff_t disksize;
ac27a0ec
DK
879
880
a86c6181 881 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 882 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
883 depth = ext4_block_to_path(inode, iblock, offsets,
884 &blocks_to_boundary);
ac27a0ec
DK
885
886 if (depth == 0)
887 goto out;
888
617ba13b 889 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
890
891 /* Simplest case - block found, no allocation needed */
892 if (!partial) {
893 first_block = le32_to_cpu(chain[depth - 1].key);
894 clear_buffer_new(bh_result);
895 count++;
896 /*map more blocks*/
897 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 898 ext4_fsblk_t blk;
ac27a0ec 899
ac27a0ec
DK
900 blk = le32_to_cpu(*(chain[depth-1].p + count));
901
902 if (blk == first_block + count)
903 count++;
904 else
905 break;
906 }
c278bfec 907 goto got_it;
ac27a0ec
DK
908 }
909
910 /* Next simple case - plain lookup or failed read of indirect block */
911 if (!create || err == -EIO)
912 goto cleanup;
913
ac27a0ec
DK
914 /*
915 * Okay, we need to do block allocation. Lazily initialize the block
916 * allocation info here if necessary
917 */
918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 919 ext4_init_block_alloc_info(inode);
ac27a0ec 920
fb01bfda 921 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
922
923 /* the number of blocks need to allocate for [d,t]indirect blocks */
924 indirect_blks = (chain + depth) - partial - 1;
925
926 /*
927 * Next look up the indirect map to count the totoal number of
928 * direct blocks to allocate for this branch.
929 */
617ba13b 930 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
931 maxblocks, blocks_to_boundary);
932 /*
617ba13b 933 * Block out ext4_truncate while we alter the tree
ac27a0ec 934 */
7061eba7
AK
935 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
936 &count, goal,
937 offsets + (partial - chain), partial);
ac27a0ec
DK
938
939 /*
617ba13b 940 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
941 * on the new chain if there is a failure, but that risks using
942 * up transaction credits, especially for bitmaps where the
943 * credits cannot be returned. Can we handle this somehow? We
944 * may need to return -EAGAIN upwards in the worst case. --sct
945 */
946 if (!err)
617ba13b 947 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
948 partial, indirect_blks, count);
949 /*
0e855ac8 950 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 951 * protect it if you're about to implement concurrent
617ba13b 952 * ext4_get_block() -bzzz
ac27a0ec 953 */
61628a3f
MC
954 if (!err && extend_disksize) {
955 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
956 if (disksize > i_size_read(inode))
957 disksize = i_size_read(inode);
958 if (disksize > ei->i_disksize)
959 ei->i_disksize = disksize;
960 }
ac27a0ec
DK
961 if (err)
962 goto cleanup;
963
964 set_buffer_new(bh_result);
965got_it:
966 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
967 if (count > blocks_to_boundary)
968 set_buffer_boundary(bh_result);
969 err = count;
970 /* Clean up and exit */
971 partial = chain + depth - 1; /* the whole chain */
972cleanup:
973 while (partial > chain) {
974 BUFFER_TRACE(partial->bh, "call brelse");
975 brelse(partial->bh);
976 partial--;
977 }
978 BUFFER_TRACE(bh_result, "returned");
979out:
980 return err;
981}
982
12219aea
AK
983/*
984 * Calculate the number of metadata blocks need to reserve
985 * to allocate @blocks for non extent file based file
986 */
987static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
988{
989 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
990 int ind_blks, dind_blks, tind_blks;
991
992 /* number of new indirect blocks needed */
993 ind_blks = (blocks + icap - 1) / icap;
994
995 dind_blks = (ind_blks + icap - 1) / icap;
996
997 tind_blks = 1;
998
999 return ind_blks + dind_blks + tind_blks;
1000}
1001
1002/*
1003 * Calculate the number of metadata blocks need to reserve
1004 * to allocate given number of blocks
1005 */
1006static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1007{
cd213226
MC
1008 if (!blocks)
1009 return 0;
1010
12219aea
AK
1011 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1012 return ext4_ext_calc_metadata_amount(inode, blocks);
1013
1014 return ext4_indirect_calc_metadata_amount(inode, blocks);
1015}
1016
1017static void ext4_da_update_reserve_space(struct inode *inode, int used)
1018{
1019 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1020 int total, mdb, mdb_free;
1021
1022 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1023 /* recalculate the number of metablocks still need to be reserved */
1024 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1025 mdb = ext4_calc_metadata_amount(inode, total);
1026
1027 /* figure out how many metablocks to release */
1028 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1029 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1030
1031 /* Account for allocated meta_blocks */
1032 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1033
1034 /* update fs free blocks counter for truncate case */
1035 percpu_counter_add(&sbi->s_freeblocks_counter, mdb_free);
1036
1037 /* update per-inode reservations */
1038 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1039 EXT4_I(inode)->i_reserved_data_blocks -= used;
1040
1041 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1042 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1043 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1044 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1045}
1046
f5ab0d1f 1047/*
2b2d6d01
TT
1048 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1049 * and returns if the blocks are already mapped.
f5ab0d1f 1050 *
f5ab0d1f
MC
1051 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1052 * and store the allocated blocks in the result buffer head and mark it
1053 * mapped.
1054 *
1055 * If file type is extents based, it will call ext4_ext_get_blocks(),
1056 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1057 * based files
1058 *
1059 * On success, it returns the number of blocks being mapped or allocate.
1060 * if create==0 and the blocks are pre-allocated and uninitialized block,
1061 * the result buffer head is unmapped. If the create ==1, it will make sure
1062 * the buffer head is mapped.
1063 *
1064 * It returns 0 if plain look up failed (blocks have not been allocated), in
1065 * that casem, buffer head is unmapped
1066 *
1067 * It returns the error in case of allocation failure.
1068 */
0e855ac8
AK
1069int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1070 unsigned long max_blocks, struct buffer_head *bh,
d2a17637 1071 int create, int extend_disksize, int flag)
0e855ac8
AK
1072{
1073 int retval;
f5ab0d1f
MC
1074
1075 clear_buffer_mapped(bh);
1076
4df3d265
AK
1077 /*
1078 * Try to see if we can get the block without requesting
1079 * for new file system block.
1080 */
1081 down_read((&EXT4_I(inode)->i_data_sem));
1082 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1083 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1084 bh, 0, 0);
0e855ac8 1085 } else {
4df3d265
AK
1086 retval = ext4_get_blocks_handle(handle,
1087 inode, block, max_blocks, bh, 0, 0);
0e855ac8 1088 }
4df3d265 1089 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f
MC
1090
1091 /* If it is only a block(s) look up */
1092 if (!create)
1093 return retval;
1094
1095 /*
1096 * Returns if the blocks have already allocated
1097 *
1098 * Note that if blocks have been preallocated
1099 * ext4_ext_get_block() returns th create = 0
1100 * with buffer head unmapped.
1101 */
1102 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1103 return retval;
1104
1105 /*
f5ab0d1f
MC
1106 * New blocks allocate and/or writing to uninitialized extent
1107 * will possibly result in updating i_data, so we take
1108 * the write lock of i_data_sem, and call get_blocks()
1109 * with create == 1 flag.
4df3d265
AK
1110 */
1111 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1112
1113 /*
1114 * if the caller is from delayed allocation writeout path
1115 * we have already reserved fs blocks for allocation
1116 * let the underlying get_block() function know to
1117 * avoid double accounting
1118 */
1119 if (flag)
1120 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1121 /*
1122 * We need to check for EXT4 here because migrate
1123 * could have changed the inode type in between
1124 */
0e855ac8
AK
1125 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1126 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1127 bh, create, extend_disksize);
1128 } else {
1129 retval = ext4_get_blocks_handle(handle, inode, block,
1130 max_blocks, bh, create, extend_disksize);
267e4db9
AK
1131
1132 if (retval > 0 && buffer_new(bh)) {
1133 /*
1134 * We allocated new blocks which will result in
1135 * i_data's format changing. Force the migrate
1136 * to fail by clearing migrate flags
1137 */
1138 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1139 ~EXT4_EXT_MIGRATE;
1140 }
0e855ac8 1141 }
d2a17637
MC
1142
1143 if (flag) {
1144 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1145 /*
1146 * Update reserved blocks/metadata blocks
1147 * after successful block allocation
1148 * which were deferred till now
1149 */
1150 if ((retval > 0) && buffer_delay(bh))
12219aea 1151 ext4_da_update_reserve_space(inode, retval);
d2a17637
MC
1152 }
1153
4df3d265 1154 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
1155 return retval;
1156}
1157
f3bd1f3f
MC
1158/* Maximum number of blocks we map for direct IO at once. */
1159#define DIO_MAX_BLOCKS 4096
1160
617ba13b 1161static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
1162 struct buffer_head *bh_result, int create)
1163{
3e4fdaf8 1164 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1165 int ret = 0, started = 0;
ac27a0ec 1166 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1167 int dio_credits;
ac27a0ec 1168
7fb5409d
JK
1169 if (create && !handle) {
1170 /* Direct IO write... */
1171 if (max_blocks > DIO_MAX_BLOCKS)
1172 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1173 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1174 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1175 if (IS_ERR(handle)) {
ac27a0ec 1176 ret = PTR_ERR(handle);
7fb5409d 1177 goto out;
ac27a0ec 1178 }
7fb5409d 1179 started = 1;
ac27a0ec
DK
1180 }
1181
7fb5409d 1182 ret = ext4_get_blocks_wrap(handle, inode, iblock,
d2a17637 1183 max_blocks, bh_result, create, 0, 0);
7fb5409d
JK
1184 if (ret > 0) {
1185 bh_result->b_size = (ret << inode->i_blkbits);
1186 ret = 0;
ac27a0ec 1187 }
7fb5409d
JK
1188 if (started)
1189 ext4_journal_stop(handle);
1190out:
ac27a0ec
DK
1191 return ret;
1192}
1193
1194/*
1195 * `handle' can be NULL if create is zero
1196 */
617ba13b 1197struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1198 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1199{
1200 struct buffer_head dummy;
1201 int fatal = 0, err;
1202
1203 J_ASSERT(handle != NULL || create == 0);
1204
1205 dummy.b_state = 0;
1206 dummy.b_blocknr = -1000;
1207 buffer_trace_init(&dummy.b_history);
a86c6181 1208 err = ext4_get_blocks_wrap(handle, inode, block, 1,
d2a17637 1209 &dummy, create, 1, 0);
ac27a0ec 1210 /*
617ba13b 1211 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
1212 * mapped. 0 in case of a HOLE.
1213 */
1214 if (err > 0) {
1215 if (err > 1)
1216 WARN_ON(1);
1217 err = 0;
1218 }
1219 *errp = err;
1220 if (!err && buffer_mapped(&dummy)) {
1221 struct buffer_head *bh;
1222 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1223 if (!bh) {
1224 *errp = -EIO;
1225 goto err;
1226 }
1227 if (buffer_new(&dummy)) {
1228 J_ASSERT(create != 0);
ac39849d 1229 J_ASSERT(handle != NULL);
ac27a0ec
DK
1230
1231 /*
1232 * Now that we do not always journal data, we should
1233 * keep in mind whether this should always journal the
1234 * new buffer as metadata. For now, regular file
617ba13b 1235 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1236 * problem.
1237 */
1238 lock_buffer(bh);
1239 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1240 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1241 if (!fatal && !buffer_uptodate(bh)) {
1242 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1243 set_buffer_uptodate(bh);
1244 }
1245 unlock_buffer(bh);
617ba13b
MC
1246 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1247 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1248 if (!fatal)
1249 fatal = err;
1250 } else {
1251 BUFFER_TRACE(bh, "not a new buffer");
1252 }
1253 if (fatal) {
1254 *errp = fatal;
1255 brelse(bh);
1256 bh = NULL;
1257 }
1258 return bh;
1259 }
1260err:
1261 return NULL;
1262}
1263
617ba13b 1264struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1265 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1266{
1267 struct buffer_head * bh;
1268
617ba13b 1269 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1270 if (!bh)
1271 return bh;
1272 if (buffer_uptodate(bh))
1273 return bh;
1274 ll_rw_block(READ_META, 1, &bh);
1275 wait_on_buffer(bh);
1276 if (buffer_uptodate(bh))
1277 return bh;
1278 put_bh(bh);
1279 *err = -EIO;
1280 return NULL;
1281}
1282
1283static int walk_page_buffers( handle_t *handle,
1284 struct buffer_head *head,
1285 unsigned from,
1286 unsigned to,
1287 int *partial,
1288 int (*fn)( handle_t *handle,
1289 struct buffer_head *bh))
1290{
1291 struct buffer_head *bh;
1292 unsigned block_start, block_end;
1293 unsigned blocksize = head->b_size;
1294 int err, ret = 0;
1295 struct buffer_head *next;
1296
1297 for ( bh = head, block_start = 0;
1298 ret == 0 && (bh != head || !block_start);
1299 block_start = block_end, bh = next)
1300 {
1301 next = bh->b_this_page;
1302 block_end = block_start + blocksize;
1303 if (block_end <= from || block_start >= to) {
1304 if (partial && !buffer_uptodate(bh))
1305 *partial = 1;
1306 continue;
1307 }
1308 err = (*fn)(handle, bh);
1309 if (!ret)
1310 ret = err;
1311 }
1312 return ret;
1313}
1314
1315/*
1316 * To preserve ordering, it is essential that the hole instantiation and
1317 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1318 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1319 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1320 * prepare_write() is the right place.
1321 *
617ba13b
MC
1322 * Also, this function can nest inside ext4_writepage() ->
1323 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1324 * has generated enough buffer credits to do the whole page. So we won't
1325 * block on the journal in that case, which is good, because the caller may
1326 * be PF_MEMALLOC.
1327 *
617ba13b 1328 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1329 * quota file writes. If we were to commit the transaction while thus
1330 * reentered, there can be a deadlock - we would be holding a quota
1331 * lock, and the commit would never complete if another thread had a
1332 * transaction open and was blocking on the quota lock - a ranking
1333 * violation.
1334 *
dab291af 1335 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1336 * will _not_ run commit under these circumstances because handle->h_ref
1337 * is elevated. We'll still have enough credits for the tiny quotafile
1338 * write.
1339 */
1340static int do_journal_get_write_access(handle_t *handle,
1341 struct buffer_head *bh)
1342{
1343 if (!buffer_mapped(bh) || buffer_freed(bh))
1344 return 0;
617ba13b 1345 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1346}
1347
bfc1af65
NP
1348static int ext4_write_begin(struct file *file, struct address_space *mapping,
1349 loff_t pos, unsigned len, unsigned flags,
1350 struct page **pagep, void **fsdata)
ac27a0ec 1351{
bfc1af65 1352 struct inode *inode = mapping->host;
7479d2b9 1353 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1354 handle_t *handle;
1355 int retries = 0;
bfc1af65
NP
1356 struct page *page;
1357 pgoff_t index;
1358 unsigned from, to;
1359
1360 index = pos >> PAGE_CACHE_SHIFT;
1361 from = pos & (PAGE_CACHE_SIZE - 1);
1362 to = from + len;
ac27a0ec
DK
1363
1364retry:
bfc1af65
NP
1365 handle = ext4_journal_start(inode, needed_blocks);
1366 if (IS_ERR(handle)) {
bfc1af65
NP
1367 ret = PTR_ERR(handle);
1368 goto out;
7479d2b9 1369 }
ac27a0ec 1370
cf108bca
JK
1371 page = __grab_cache_page(mapping, index);
1372 if (!page) {
1373 ext4_journal_stop(handle);
1374 ret = -ENOMEM;
1375 goto out;
1376 }
1377 *pagep = page;
1378
bfc1af65
NP
1379 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1380 ext4_get_block);
1381
1382 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1383 ret = walk_page_buffers(handle, page_buffers(page),
1384 from, to, NULL, do_journal_get_write_access);
1385 }
bfc1af65
NP
1386
1387 if (ret) {
bfc1af65 1388 unlock_page(page);
cf108bca 1389 ext4_journal_stop(handle);
bfc1af65
NP
1390 page_cache_release(page);
1391 }
1392
617ba13b 1393 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1394 goto retry;
7479d2b9 1395out:
ac27a0ec
DK
1396 return ret;
1397}
1398
bfc1af65
NP
1399/* For write_end() in data=journal mode */
1400static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1401{
1402 if (!buffer_mapped(bh) || buffer_freed(bh))
1403 return 0;
1404 set_buffer_uptodate(bh);
617ba13b 1405 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1406}
1407
1408/*
1409 * We need to pick up the new inode size which generic_commit_write gave us
1410 * `file' can be NULL - eg, when called from page_symlink().
1411 *
617ba13b 1412 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1413 * buffers are managed internally.
1414 */
bfc1af65
NP
1415static int ext4_ordered_write_end(struct file *file,
1416 struct address_space *mapping,
1417 loff_t pos, unsigned len, unsigned copied,
1418 struct page *page, void *fsdata)
ac27a0ec 1419{
617ba13b 1420 handle_t *handle = ext4_journal_current_handle();
cf108bca 1421 struct inode *inode = mapping->host;
ac27a0ec
DK
1422 int ret = 0, ret2;
1423
678aaf48 1424 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1425
1426 if (ret == 0) {
1427 /*
bfc1af65 1428 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1429 * changes. So let's piggyback the i_disksize mark_inode_dirty
1430 * into that.
1431 */
1432 loff_t new_i_size;
1433
bfc1af65 1434 new_i_size = pos + copied;
617ba13b
MC
1435 if (new_i_size > EXT4_I(inode)->i_disksize)
1436 EXT4_I(inode)->i_disksize = new_i_size;
cf108bca 1437 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1438 page, fsdata);
f8a87d89
RK
1439 copied = ret2;
1440 if (ret2 < 0)
1441 ret = ret2;
ac27a0ec 1442 }
617ba13b 1443 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1444 if (!ret)
1445 ret = ret2;
bfc1af65
NP
1446
1447 return ret ? ret : copied;
ac27a0ec
DK
1448}
1449
bfc1af65
NP
1450static int ext4_writeback_write_end(struct file *file,
1451 struct address_space *mapping,
1452 loff_t pos, unsigned len, unsigned copied,
1453 struct page *page, void *fsdata)
ac27a0ec 1454{
617ba13b 1455 handle_t *handle = ext4_journal_current_handle();
cf108bca 1456 struct inode *inode = mapping->host;
ac27a0ec
DK
1457 int ret = 0, ret2;
1458 loff_t new_i_size;
1459
bfc1af65 1460 new_i_size = pos + copied;
617ba13b
MC
1461 if (new_i_size > EXT4_I(inode)->i_disksize)
1462 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1463
cf108bca 1464 ret2 = generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1465 page, fsdata);
f8a87d89
RK
1466 copied = ret2;
1467 if (ret2 < 0)
1468 ret = ret2;
ac27a0ec 1469
617ba13b 1470 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1471 if (!ret)
1472 ret = ret2;
bfc1af65
NP
1473
1474 return ret ? ret : copied;
ac27a0ec
DK
1475}
1476
bfc1af65
NP
1477static int ext4_journalled_write_end(struct file *file,
1478 struct address_space *mapping,
1479 loff_t pos, unsigned len, unsigned copied,
1480 struct page *page, void *fsdata)
ac27a0ec 1481{
617ba13b 1482 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1483 struct inode *inode = mapping->host;
ac27a0ec
DK
1484 int ret = 0, ret2;
1485 int partial = 0;
bfc1af65 1486 unsigned from, to;
ac27a0ec 1487
bfc1af65
NP
1488 from = pos & (PAGE_CACHE_SIZE - 1);
1489 to = from + len;
1490
1491 if (copied < len) {
1492 if (!PageUptodate(page))
1493 copied = 0;
1494 page_zero_new_buffers(page, from+copied, to);
1495 }
ac27a0ec
DK
1496
1497 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1498 to, &partial, write_end_fn);
ac27a0ec
DK
1499 if (!partial)
1500 SetPageUptodate(page);
bfc1af65
NP
1501 if (pos+copied > inode->i_size)
1502 i_size_write(inode, pos+copied);
617ba13b
MC
1503 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1504 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1505 EXT4_I(inode)->i_disksize = inode->i_size;
1506 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1507 if (!ret)
1508 ret = ret2;
1509 }
bfc1af65 1510
cf108bca 1511 unlock_page(page);
617ba13b 1512 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1513 if (!ret)
1514 ret = ret2;
bfc1af65
NP
1515 page_cache_release(page);
1516
1517 return ret ? ret : copied;
ac27a0ec 1518}
d2a17637
MC
1519
1520static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1521{
1522 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1523 unsigned long md_needed, mdblocks, total = 0;
1524
1525 /*
1526 * recalculate the amount of metadata blocks to reserve
1527 * in order to allocate nrblocks
1528 * worse case is one extent per block
1529 */
1530 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1531 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1532 mdblocks = ext4_calc_metadata_amount(inode, total);
1533 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1534
1535 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1536 total = md_needed + nrblocks;
1537
1538 if (ext4_has_free_blocks(sbi, total) < total) {
1539 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1540 return -ENOSPC;
1541 }
d2a17637
MC
1542 /* reduce fs free blocks counter */
1543 percpu_counter_sub(&sbi->s_freeblocks_counter, total);
1544
1545 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1546 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1547
1548 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1549 return 0; /* success */
1550}
1551
12219aea 1552static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1553{
1554 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1555 int total, mdb, mdb_free, release;
1556
cd213226
MC
1557 if (!to_free)
1558 return; /* Nothing to release, exit */
1559
d2a17637 1560 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1561
1562 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1563 /*
1564 * if there is no reserved blocks, but we try to free some
1565 * then the counter is messed up somewhere.
1566 * but since this function is called from invalidate
1567 * page, it's harmless to return without any action
1568 */
1569 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1570 "blocks for inode %lu, but there is no reserved "
1571 "data blocks\n", to_free, inode->i_ino);
1572 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1573 return;
1574 }
1575
d2a17637 1576 /* recalculate the number of metablocks still need to be reserved */
12219aea 1577 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1578 mdb = ext4_calc_metadata_amount(inode, total);
1579
1580 /* figure out how many metablocks to release */
1581 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1582 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1583
d2a17637
MC
1584 release = to_free + mdb_free;
1585
1586 /* update fs free blocks counter for truncate case */
1587 percpu_counter_add(&sbi->s_freeblocks_counter, release);
1588
1589 /* update per-inode reservations */
12219aea
AK
1590 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1591 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1592
1593 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1594 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637
MC
1595 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1596}
1597
1598static void ext4_da_page_release_reservation(struct page *page,
1599 unsigned long offset)
1600{
1601 int to_release = 0;
1602 struct buffer_head *head, *bh;
1603 unsigned int curr_off = 0;
1604
1605 head = page_buffers(page);
1606 bh = head;
1607 do {
1608 unsigned int next_off = curr_off + bh->b_size;
1609
1610 if ((offset <= curr_off) && (buffer_delay(bh))) {
1611 to_release++;
1612 clear_buffer_delay(bh);
1613 }
1614 curr_off = next_off;
1615 } while ((bh = bh->b_this_page) != head);
12219aea 1616 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1617}
ac27a0ec 1618
64769240
AT
1619/*
1620 * Delayed allocation stuff
1621 */
1622
1623struct mpage_da_data {
1624 struct inode *inode;
1625 struct buffer_head lbh; /* extent of blocks */
1626 unsigned long first_page, next_page; /* extent of pages */
1627 get_block_t *get_block;
1628 struct writeback_control *wbc;
1629};
1630
1631/*
1632 * mpage_da_submit_io - walks through extent of pages and try to write
1633 * them with __mpage_writepage()
1634 *
1635 * @mpd->inode: inode
1636 * @mpd->first_page: first page of the extent
1637 * @mpd->next_page: page after the last page of the extent
1638 * @mpd->get_block: the filesystem's block mapper function
1639 *
1640 * By the time mpage_da_submit_io() is called we expect all blocks
1641 * to be allocated. this may be wrong if allocation failed.
1642 *
1643 * As pages are already locked by write_cache_pages(), we can't use it
1644 */
1645static int mpage_da_submit_io(struct mpage_da_data *mpd)
1646{
1647 struct address_space *mapping = mpd->inode->i_mapping;
1648 struct mpage_data mpd_pp = {
1649 .bio = NULL,
1650 .last_block_in_bio = 0,
1651 .get_block = mpd->get_block,
1652 .use_writepage = 1,
1653 };
1654 int ret = 0, err, nr_pages, i;
1655 unsigned long index, end;
1656 struct pagevec pvec;
1657
1658 BUG_ON(mpd->next_page <= mpd->first_page);
1659
1660 pagevec_init(&pvec, 0);
1661 index = mpd->first_page;
1662 end = mpd->next_page - 1;
1663
1664 while (index <= end) {
1665 /* XXX: optimize tail */
1666 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1667 if (nr_pages == 0)
1668 break;
1669 for (i = 0; i < nr_pages; i++) {
1670 struct page *page = pvec.pages[i];
1671
1672 index = page->index;
1673 if (index > end)
1674 break;
1675 index++;
1676
1677 err = __mpage_writepage(page, mpd->wbc, &mpd_pp);
1678
1679 /*
1680 * In error case, we have to continue because
1681 * remaining pages are still locked
1682 * XXX: unlock and re-dirty them?
1683 */
1684 if (ret == 0)
1685 ret = err;
1686 }
1687 pagevec_release(&pvec);
1688 }
1689 if (mpd_pp.bio)
1690 mpage_bio_submit(WRITE, mpd_pp.bio);
1691
1692 return ret;
1693}
1694
1695/*
1696 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1697 *
1698 * @mpd->inode - inode to walk through
1699 * @exbh->b_blocknr - first block on a disk
1700 * @exbh->b_size - amount of space in bytes
1701 * @logical - first logical block to start assignment with
1702 *
1703 * the function goes through all passed space and put actual disk
1704 * block numbers into buffer heads, dropping BH_Delay
1705 */
1706static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1707 struct buffer_head *exbh)
1708{
1709 struct inode *inode = mpd->inode;
1710 struct address_space *mapping = inode->i_mapping;
1711 int blocks = exbh->b_size >> inode->i_blkbits;
1712 sector_t pblock = exbh->b_blocknr, cur_logical;
1713 struct buffer_head *head, *bh;
1714 unsigned long index, end;
1715 struct pagevec pvec;
1716 int nr_pages, i;
1717
1718 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1719 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1720 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1721
1722 pagevec_init(&pvec, 0);
1723
1724 while (index <= end) {
1725 /* XXX: optimize tail */
1726 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1727 if (nr_pages == 0)
1728 break;
1729 for (i = 0; i < nr_pages; i++) {
1730 struct page *page = pvec.pages[i];
1731
1732 index = page->index;
1733 if (index > end)
1734 break;
1735 index++;
1736
1737 BUG_ON(!PageLocked(page));
1738 BUG_ON(PageWriteback(page));
1739 BUG_ON(!page_has_buffers(page));
1740
1741 bh = page_buffers(page);
1742 head = bh;
1743
1744 /* skip blocks out of the range */
1745 do {
1746 if (cur_logical >= logical)
1747 break;
1748 cur_logical++;
1749 } while ((bh = bh->b_this_page) != head);
1750
1751 do {
1752 if (cur_logical >= logical + blocks)
1753 break;
64769240
AT
1754 if (buffer_delay(bh)) {
1755 bh->b_blocknr = pblock;
1756 clear_buffer_delay(bh);
bf068ee2
AK
1757 bh->b_bdev = inode->i_sb->s_bdev;
1758 } else if (buffer_unwritten(bh)) {
1759 bh->b_blocknr = pblock;
1760 clear_buffer_unwritten(bh);
1761 set_buffer_mapped(bh);
1762 set_buffer_new(bh);
1763 bh->b_bdev = inode->i_sb->s_bdev;
61628a3f 1764 } else if (buffer_mapped(bh))
64769240 1765 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
1766
1767 cur_logical++;
1768 pblock++;
1769 } while ((bh = bh->b_this_page) != head);
1770 }
1771 pagevec_release(&pvec);
1772 }
1773}
1774
1775
1776/*
1777 * __unmap_underlying_blocks - just a helper function to unmap
1778 * set of blocks described by @bh
1779 */
1780static inline void __unmap_underlying_blocks(struct inode *inode,
1781 struct buffer_head *bh)
1782{
1783 struct block_device *bdev = inode->i_sb->s_bdev;
1784 int blocks, i;
1785
1786 blocks = bh->b_size >> inode->i_blkbits;
1787 for (i = 0; i < blocks; i++)
1788 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1789}
1790
1791/*
1792 * mpage_da_map_blocks - go through given space
1793 *
1794 * @mpd->lbh - bh describing space
1795 * @mpd->get_block - the filesystem's block mapper function
1796 *
1797 * The function skips space we know is already mapped to disk blocks.
1798 *
1799 * The function ignores errors ->get_block() returns, thus real
1800 * error handling is postponed to __mpage_writepage()
1801 */
1802static void mpage_da_map_blocks(struct mpage_da_data *mpd)
1803{
1804 struct buffer_head *lbh = &mpd->lbh;
1805 int err = 0, remain = lbh->b_size;
1806 sector_t next = lbh->b_blocknr;
1807 struct buffer_head new;
1808
1809 /*
1810 * We consider only non-mapped and non-allocated blocks
1811 */
1812 if (buffer_mapped(lbh) && !buffer_delay(lbh))
1813 return;
1814
1815 while (remain) {
1816 new.b_state = lbh->b_state;
1817 new.b_blocknr = 0;
1818 new.b_size = remain;
1819 err = mpd->get_block(mpd->inode, next, &new, 1);
1820 if (err) {
1821 /*
1822 * Rather than implement own error handling
1823 * here, we just leave remaining blocks
1824 * unallocated and try again with ->writepage()
1825 */
1826 break;
1827 }
1828 BUG_ON(new.b_size == 0);
1829
1830 if (buffer_new(&new))
1831 __unmap_underlying_blocks(mpd->inode, &new);
1832
1833 /*
1834 * If blocks are delayed marked, we need to
1835 * put actual blocknr and drop delayed bit
1836 */
bf068ee2 1837 if (buffer_delay(lbh) || buffer_unwritten(lbh))
64769240
AT
1838 mpage_put_bnr_to_bhs(mpd, next, &new);
1839
61628a3f
MC
1840 /* go for the remaining blocks */
1841 next += new.b_size >> mpd->inode->i_blkbits;
1842 remain -= new.b_size;
1843 }
64769240
AT
1844}
1845
bf068ee2
AK
1846#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1847 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1848
1849/*
1850 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1851 *
1852 * @mpd->lbh - extent of blocks
1853 * @logical - logical number of the block in the file
1854 * @bh - bh of the block (used to access block's state)
1855 *
1856 * the function is used to collect contig. blocks in same state
1857 */
1858static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1859 sector_t logical, struct buffer_head *bh)
1860{
1861 struct buffer_head *lbh = &mpd->lbh;
1862 sector_t next;
1863
1864 next = lbh->b_blocknr + (lbh->b_size >> mpd->inode->i_blkbits);
1865
1866 /*
1867 * First block in the extent
1868 */
1869 if (lbh->b_size == 0) {
1870 lbh->b_blocknr = logical;
1871 lbh->b_size = bh->b_size;
1872 lbh->b_state = bh->b_state & BH_FLAGS;
1873 return;
1874 }
1875
1876 /*
1877 * Can we merge the block to our big extent?
1878 */
1879 if (logical == next && (bh->b_state & BH_FLAGS) == lbh->b_state) {
1880 lbh->b_size += bh->b_size;
1881 return;
1882 }
1883
1884 /*
1885 * We couldn't merge the block to our extent, so we
1886 * need to flush current extent and start new one
1887 */
1888 mpage_da_map_blocks(mpd);
1889
1890 /*
1891 * Now start a new extent
1892 */
1893 lbh->b_size = bh->b_size;
1894 lbh->b_state = bh->b_state & BH_FLAGS;
1895 lbh->b_blocknr = logical;
1896}
1897
1898/*
1899 * __mpage_da_writepage - finds extent of pages and blocks
1900 *
1901 * @page: page to consider
1902 * @wbc: not used, we just follow rules
1903 * @data: context
1904 *
1905 * The function finds extents of pages and scan them for all blocks.
1906 */
1907static int __mpage_da_writepage(struct page *page,
1908 struct writeback_control *wbc, void *data)
1909{
1910 struct mpage_da_data *mpd = data;
1911 struct inode *inode = mpd->inode;
1912 struct buffer_head *bh, *head, fake;
1913 sector_t logical;
1914
1915 /*
1916 * Can we merge this page to current extent?
1917 */
1918 if (mpd->next_page != page->index) {
1919 /*
1920 * Nope, we can't. So, we map non-allocated blocks
1921 * and start IO on them using __mpage_writepage()
1922 */
1923 if (mpd->next_page != mpd->first_page) {
1924 mpage_da_map_blocks(mpd);
1925 mpage_da_submit_io(mpd);
1926 }
1927
1928 /*
1929 * Start next extent of pages ...
1930 */
1931 mpd->first_page = page->index;
1932
1933 /*
1934 * ... and blocks
1935 */
1936 mpd->lbh.b_size = 0;
1937 mpd->lbh.b_state = 0;
1938 mpd->lbh.b_blocknr = 0;
1939 }
1940
1941 mpd->next_page = page->index + 1;
1942 logical = (sector_t) page->index <<
1943 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1944
1945 if (!page_has_buffers(page)) {
1946 /*
1947 * There is no attached buffer heads yet (mmap?)
1948 * we treat the page asfull of dirty blocks
1949 */
1950 bh = &fake;
1951 bh->b_size = PAGE_CACHE_SIZE;
1952 bh->b_state = 0;
1953 set_buffer_dirty(bh);
1954 set_buffer_uptodate(bh);
1955 mpage_add_bh_to_extent(mpd, logical, bh);
1956 } else {
1957 /*
1958 * Page with regular buffer heads, just add all dirty ones
1959 */
1960 head = page_buffers(page);
1961 bh = head;
1962 do {
1963 BUG_ON(buffer_locked(bh));
1964 if (buffer_dirty(bh))
1965 mpage_add_bh_to_extent(mpd, logical, bh);
1966 logical++;
1967 } while ((bh = bh->b_this_page) != head);
1968 }
1969
1970 return 0;
1971}
1972
1973/*
1974 * mpage_da_writepages - walk the list of dirty pages of the given
1975 * address space, allocates non-allocated blocks, maps newly-allocated
1976 * blocks to existing bhs and issue IO them
1977 *
1978 * @mapping: address space structure to write
1979 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1980 * @get_block: the filesystem's block mapper function.
1981 *
1982 * This is a library function, which implements the writepages()
1983 * address_space_operation.
1984 *
1985 * In order to avoid duplication of logic that deals with partial pages,
1986 * multiple bio per page, etc, we find non-allocated blocks, allocate
1987 * them with minimal calls to ->get_block() and re-use __mpage_writepage()
1988 *
1989 * It's important that we call __mpage_writepage() only once for each
1990 * involved page, otherwise we'd have to implement more complicated logic
1991 * to deal with pages w/o PG_lock or w/ PG_writeback and so on.
1992 *
1993 * See comments to mpage_writepages()
1994 */
1995static int mpage_da_writepages(struct address_space *mapping,
1996 struct writeback_control *wbc,
1997 get_block_t get_block)
1998{
1999 struct mpage_da_data mpd;
2000 int ret;
2001
2002 if (!get_block)
2003 return generic_writepages(mapping, wbc);
2004
2005 mpd.wbc = wbc;
2006 mpd.inode = mapping->host;
2007 mpd.lbh.b_size = 0;
2008 mpd.lbh.b_state = 0;
2009 mpd.lbh.b_blocknr = 0;
2010 mpd.first_page = 0;
2011 mpd.next_page = 0;
2012 mpd.get_block = get_block;
2013
2014 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage, &mpd);
2015
2016 /*
2017 * Handle last extent of pages
2018 */
2019 if (mpd.next_page != mpd.first_page) {
2020 mpage_da_map_blocks(&mpd);
2021 mpage_da_submit_io(&mpd);
2022 }
2023
2024 return ret;
2025}
2026
2027/*
2028 * this is a special callback for ->write_begin() only
2029 * it's intention is to return mapped block or reserve space
2030 */
2031static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2032 struct buffer_head *bh_result, int create)
2033{
2034 int ret = 0;
2035
2036 BUG_ON(create == 0);
2037 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2038
2039 /*
2040 * first, we need to know whether the block is allocated already
2041 * preallocated blocks are unmapped but should treated
2042 * the same as allocated blocks.
2043 */
d2a17637
MC
2044 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2045 if ((ret == 0) && !buffer_delay(bh_result)) {
2046 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2047 /*
2048 * XXX: __block_prepare_write() unmaps passed block,
2049 * is it OK?
2050 */
d2a17637
MC
2051 ret = ext4_da_reserve_space(inode, 1);
2052 if (ret)
2053 /* not enough space to reserve */
2054 return ret;
2055
64769240
AT
2056 map_bh(bh_result, inode->i_sb, 0);
2057 set_buffer_new(bh_result);
2058 set_buffer_delay(bh_result);
2059 } else if (ret > 0) {
2060 bh_result->b_size = (ret << inode->i_blkbits);
2061 ret = 0;
2062 }
2063
2064 return ret;
2065}
d2a17637 2066#define EXT4_DELALLOC_RSVED 1
64769240
AT
2067static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
2068 struct buffer_head *bh_result, int create)
2069{
61628a3f 2070 int ret;
64769240
AT
2071 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2072 loff_t disksize = EXT4_I(inode)->i_disksize;
2073 handle_t *handle = NULL;
2074
61628a3f 2075 handle = ext4_journal_current_handle();
f0e6c985
AK
2076 if (!handle) {
2077 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2078 bh_result, 0, 0, 0);
2079 BUG_ON(!ret);
2080 } else {
2081 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
d2a17637 2082 bh_result, create, 0, EXT4_DELALLOC_RSVED);
f0e6c985
AK
2083 }
2084
64769240
AT
2085 if (ret > 0) {
2086 bh_result->b_size = (ret << inode->i_blkbits);
2087
2088 /*
2089 * Update on-disk size along with block allocation
2090 * we don't use 'extend_disksize' as size may change
2091 * within already allocated block -bzzz
2092 */
2093 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2094 if (disksize > i_size_read(inode))
2095 disksize = i_size_read(inode);
2096 if (disksize > EXT4_I(inode)->i_disksize) {
2097 /*
2098 * XXX: replace with spinlock if seen contended -bzzz
2099 */
2100 down_write(&EXT4_I(inode)->i_data_sem);
2101 if (disksize > EXT4_I(inode)->i_disksize)
2102 EXT4_I(inode)->i_disksize = disksize;
2103 up_write(&EXT4_I(inode)->i_data_sem);
2104
2105 if (EXT4_I(inode)->i_disksize == disksize) {
61628a3f
MC
2106 ret = ext4_mark_inode_dirty(handle, inode);
2107 return ret;
64769240
AT
2108 }
2109 }
64769240
AT
2110 ret = 0;
2111 }
64769240
AT
2112 return ret;
2113}
61628a3f
MC
2114
2115static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2116{
f0e6c985
AK
2117 /*
2118 * unmapped buffer is possible for holes.
2119 * delay buffer is possible with delayed allocation
2120 */
2121 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2122}
2123
2124static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2125 struct buffer_head *bh_result, int create)
2126{
2127 int ret = 0;
2128 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2129
2130 /*
2131 * we don't want to do block allocation in writepage
2132 * so call get_block_wrap with create = 0
2133 */
2134 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2135 bh_result, 0, 0, 0);
2136 if (ret > 0) {
2137 bh_result->b_size = (ret << inode->i_blkbits);
2138 ret = 0;
2139 }
2140 return ret;
61628a3f
MC
2141}
2142
61628a3f 2143/*
f0e6c985
AK
2144 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2145 * get called via journal_submit_inode_data_buffers (no journal handle)
2146 * get called via shrink_page_list via pdflush (no journal handle)
2147 * or grab_page_cache when doing write_begin (have journal handle)
61628a3f 2148 */
64769240
AT
2149static int ext4_da_writepage(struct page *page,
2150 struct writeback_control *wbc)
2151{
64769240 2152 int ret = 0;
61628a3f
MC
2153 loff_t size;
2154 unsigned long len;
61628a3f
MC
2155 struct buffer_head *page_bufs;
2156 struct inode *inode = page->mapping->host;
2157
f0e6c985
AK
2158 size = i_size_read(inode);
2159 if (page->index == size >> PAGE_CACHE_SHIFT)
2160 len = size & ~PAGE_CACHE_MASK;
2161 else
2162 len = PAGE_CACHE_SIZE;
64769240 2163
f0e6c985 2164 if (page_has_buffers(page)) {
61628a3f 2165 page_bufs = page_buffers(page);
f0e6c985
AK
2166 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2167 ext4_bh_unmapped_or_delay)) {
61628a3f 2168 /*
f0e6c985
AK
2169 * We don't want to do block allocation
2170 * So redirty the page and return
cd1aac32
AK
2171 * We may reach here when we do a journal commit
2172 * via journal_submit_inode_data_buffers.
2173 * If we don't have mapping block we just ignore
f0e6c985
AK
2174 * them. We can also reach here via shrink_page_list
2175 */
2176 redirty_page_for_writepage(wbc, page);
2177 unlock_page(page);
2178 return 0;
2179 }
2180 } else {
2181 /*
2182 * The test for page_has_buffers() is subtle:
2183 * We know the page is dirty but it lost buffers. That means
2184 * that at some moment in time after write_begin()/write_end()
2185 * has been called all buffers have been clean and thus they
2186 * must have been written at least once. So they are all
2187 * mapped and we can happily proceed with mapping them
2188 * and writing the page.
2189 *
2190 * Try to initialize the buffer_heads and check whether
2191 * all are mapped and non delay. We don't want to
2192 * do block allocation here.
2193 */
2194 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2195 ext4_normal_get_block_write);
2196 if (!ret) {
2197 page_bufs = page_buffers(page);
2198 /* check whether all are mapped and non delay */
2199 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2200 ext4_bh_unmapped_or_delay)) {
2201 redirty_page_for_writepage(wbc, page);
2202 unlock_page(page);
2203 return 0;
2204 }
2205 } else {
2206 /*
2207 * We can't do block allocation here
2208 * so just redity the page and unlock
2209 * and return
61628a3f 2210 */
61628a3f
MC
2211 redirty_page_for_writepage(wbc, page);
2212 unlock_page(page);
2213 return 0;
2214 }
64769240
AT
2215 }
2216
2217 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
f0e6c985 2218 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
64769240 2219 else
f0e6c985
AK
2220 ret = block_write_full_page(page,
2221 ext4_normal_get_block_write,
2222 wbc);
64769240 2223
64769240
AT
2224 return ret;
2225}
2226
61628a3f
MC
2227/*
2228 * For now just follow the DIO way to estimate the max credits
2229 * needed to write out EXT4_MAX_WRITEBACK_PAGES.
2230 * todo: need to calculate the max credits need for
2231 * extent based files, currently the DIO credits is based on
2232 * indirect-blocks mapping way.
2233 *
2234 * Probably should have a generic way to calculate credits
2235 * for DIO, writepages, and truncate
2236 */
2237#define EXT4_MAX_WRITEBACK_PAGES DIO_MAX_BLOCKS
f3bd1f3f 2238#define EXT4_MAX_WRITEBACK_CREDITS 25
61628a3f 2239
64769240
AT
2240static int ext4_da_writepages(struct address_space *mapping,
2241 struct writeback_control *wbc)
2242{
61628a3f
MC
2243 struct inode *inode = mapping->host;
2244 handle_t *handle = NULL;
2245 int needed_blocks;
2246 int ret = 0;
2247 long to_write;
2248 loff_t range_start = 0;
2249
2250 /*
2251 * No pages to write? This is mainly a kludge to avoid starting
2252 * a transaction for special inodes like journal inode on last iput()
2253 * because that could violate lock ordering on umount
2254 */
2255 if (!mapping->nrpages)
2256 return 0;
2257
2258 /*
cd1aac32 2259 * Estimate the worse case needed credits to write out
61628a3f
MC
2260 * EXT4_MAX_BUF_BLOCKS pages
2261 */
2262 needed_blocks = EXT4_MAX_WRITEBACK_CREDITS;
2263
2264 to_write = wbc->nr_to_write;
2265 if (!wbc->range_cyclic) {
2266 /*
2267 * If range_cyclic is not set force range_cont
2268 * and save the old writeback_index
2269 */
2270 wbc->range_cont = 1;
2271 range_start = wbc->range_start;
2272 }
2273
2274 while (!ret && to_write) {
2275 /* start a new transaction*/
2276 handle = ext4_journal_start(inode, needed_blocks);
2277 if (IS_ERR(handle)) {
2278 ret = PTR_ERR(handle);
2279 goto out_writepages;
2280 }
cd1aac32
AK
2281 if (ext4_should_order_data(inode)) {
2282 /*
2283 * With ordered mode we need to add
2284 * the inode to the journal handle
2285 * when we do block allocation.
2286 */
2287 ret = ext4_jbd2_file_inode(handle, inode);
2288 if (ret) {
2289 ext4_journal_stop(handle);
2290 goto out_writepages;
2291 }
2292
2293 }
61628a3f
MC
2294 /*
2295 * set the max dirty pages could be write at a time
2296 * to fit into the reserved transaction credits
2297 */
2298 if (wbc->nr_to_write > EXT4_MAX_WRITEBACK_PAGES)
2299 wbc->nr_to_write = EXT4_MAX_WRITEBACK_PAGES;
2300
2301 to_write -= wbc->nr_to_write;
2302 ret = mpage_da_writepages(mapping, wbc,
2303 ext4_da_get_block_write);
2304 ext4_journal_stop(handle);
2305 if (wbc->nr_to_write) {
2306 /*
2307 * There is no more writeout needed
2308 * or we requested for a noblocking writeout
2309 * and we found the device congested
2310 */
2311 to_write += wbc->nr_to_write;
2312 break;
2313 }
2314 wbc->nr_to_write = to_write;
2315 }
2316
2317out_writepages:
2318 wbc->nr_to_write = to_write;
2319 if (range_start)
2320 wbc->range_start = range_start;
2321 return ret;
64769240
AT
2322}
2323
2324static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2325 loff_t pos, unsigned len, unsigned flags,
2326 struct page **pagep, void **fsdata)
2327{
d2a17637 2328 int ret, retries = 0;
64769240
AT
2329 struct page *page;
2330 pgoff_t index;
2331 unsigned from, to;
2332 struct inode *inode = mapping->host;
2333 handle_t *handle;
2334
2335 index = pos >> PAGE_CACHE_SHIFT;
2336 from = pos & (PAGE_CACHE_SIZE - 1);
2337 to = from + len;
2338
d2a17637 2339retry:
64769240
AT
2340 /*
2341 * With delayed allocation, we don't log the i_disksize update
2342 * if there is delayed block allocation. But we still need
2343 * to journalling the i_disksize update if writes to the end
2344 * of file which has an already mapped buffer.
2345 */
2346 handle = ext4_journal_start(inode, 1);
2347 if (IS_ERR(handle)) {
2348 ret = PTR_ERR(handle);
2349 goto out;
2350 }
2351
2352 page = __grab_cache_page(mapping, index);
d5a0d4f7
ES
2353 if (!page) {
2354 ext4_journal_stop(handle);
2355 ret = -ENOMEM;
2356 goto out;
2357 }
64769240
AT
2358 *pagep = page;
2359
2360 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2361 ext4_da_get_block_prep);
2362 if (ret < 0) {
2363 unlock_page(page);
2364 ext4_journal_stop(handle);
2365 page_cache_release(page);
2366 }
2367
d2a17637
MC
2368 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2369 goto retry;
64769240
AT
2370out:
2371 return ret;
2372}
2373
632eaeab
MC
2374/*
2375 * Check if we should update i_disksize
2376 * when write to the end of file but not require block allocation
2377 */
2378static int ext4_da_should_update_i_disksize(struct page *page,
2379 unsigned long offset)
2380{
2381 struct buffer_head *bh;
2382 struct inode *inode = page->mapping->host;
2383 unsigned int idx;
2384 int i;
2385
2386 bh = page_buffers(page);
2387 idx = offset >> inode->i_blkbits;
2388
2389 for (i=0; i < idx; i++)
2390 bh = bh->b_this_page;
2391
2392 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2393 return 0;
2394 return 1;
2395}
2396
64769240
AT
2397static int ext4_da_write_end(struct file *file,
2398 struct address_space *mapping,
2399 loff_t pos, unsigned len, unsigned copied,
2400 struct page *page, void *fsdata)
2401{
2402 struct inode *inode = mapping->host;
2403 int ret = 0, ret2;
2404 handle_t *handle = ext4_journal_current_handle();
2405 loff_t new_i_size;
632eaeab
MC
2406 unsigned long start, end;
2407
2408 start = pos & (PAGE_CACHE_SIZE - 1);
2409 end = start + copied -1;
64769240
AT
2410
2411 /*
2412 * generic_write_end() will run mark_inode_dirty() if i_size
2413 * changes. So let's piggyback the i_disksize mark_inode_dirty
2414 * into that.
2415 */
2416
2417 new_i_size = pos + copied;
632eaeab
MC
2418 if (new_i_size > EXT4_I(inode)->i_disksize) {
2419 if (ext4_da_should_update_i_disksize(page, end)) {
2420 down_write(&EXT4_I(inode)->i_data_sem);
2421 if (new_i_size > EXT4_I(inode)->i_disksize) {
2422 /*
2423 * Updating i_disksize when extending file
2424 * without needing block allocation
2425 */
2426 if (ext4_should_order_data(inode))
2427 ret = ext4_jbd2_file_inode(handle,
2428 inode);
64769240 2429
632eaeab
MC
2430 EXT4_I(inode)->i_disksize = new_i_size;
2431 }
2432 up_write(&EXT4_I(inode)->i_data_sem);
64769240 2433 }
632eaeab 2434 }
64769240
AT
2435 ret2 = generic_write_end(file, mapping, pos, len, copied,
2436 page, fsdata);
2437 copied = ret2;
2438 if (ret2 < 0)
2439 ret = ret2;
2440 ret2 = ext4_journal_stop(handle);
2441 if (!ret)
2442 ret = ret2;
2443
2444 return ret ? ret : copied;
2445}
2446
2447static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2448{
64769240
AT
2449 /*
2450 * Drop reserved blocks
2451 */
2452 BUG_ON(!PageLocked(page));
2453 if (!page_has_buffers(page))
2454 goto out;
2455
d2a17637 2456 ext4_da_page_release_reservation(page, offset);
64769240
AT
2457
2458out:
2459 ext4_invalidatepage(page, offset);
2460
2461 return;
2462}
2463
2464
ac27a0ec
DK
2465/*
2466 * bmap() is special. It gets used by applications such as lilo and by
2467 * the swapper to find the on-disk block of a specific piece of data.
2468 *
2469 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2470 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2471 * filesystem and enables swap, then they may get a nasty shock when the
2472 * data getting swapped to that swapfile suddenly gets overwritten by
2473 * the original zero's written out previously to the journal and
2474 * awaiting writeback in the kernel's buffer cache.
2475 *
2476 * So, if we see any bmap calls here on a modified, data-journaled file,
2477 * take extra steps to flush any blocks which might be in the cache.
2478 */
617ba13b 2479static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2480{
2481 struct inode *inode = mapping->host;
2482 journal_t *journal;
2483 int err;
2484
64769240
AT
2485 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2486 test_opt(inode->i_sb, DELALLOC)) {
2487 /*
2488 * With delalloc we want to sync the file
2489 * so that we can make sure we allocate
2490 * blocks for file
2491 */
2492 filemap_write_and_wait(mapping);
2493 }
2494
617ba13b 2495 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
2496 /*
2497 * This is a REALLY heavyweight approach, but the use of
2498 * bmap on dirty files is expected to be extremely rare:
2499 * only if we run lilo or swapon on a freshly made file
2500 * do we expect this to happen.
2501 *
2502 * (bmap requires CAP_SYS_RAWIO so this does not
2503 * represent an unprivileged user DOS attack --- we'd be
2504 * in trouble if mortal users could trigger this path at
2505 * will.)
2506 *
617ba13b 2507 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2508 * regular files. If somebody wants to bmap a directory
2509 * or symlink and gets confused because the buffer
2510 * hasn't yet been flushed to disk, they deserve
2511 * everything they get.
2512 */
2513
617ba13b
MC
2514 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2515 journal = EXT4_JOURNAL(inode);
dab291af
MC
2516 jbd2_journal_lock_updates(journal);
2517 err = jbd2_journal_flush(journal);
2518 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2519
2520 if (err)
2521 return 0;
2522 }
2523
617ba13b 2524 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
2525}
2526
2527static int bget_one(handle_t *handle, struct buffer_head *bh)
2528{
2529 get_bh(bh);
2530 return 0;
2531}
2532
2533static int bput_one(handle_t *handle, struct buffer_head *bh)
2534{
2535 put_bh(bh);
2536 return 0;
2537}
2538
ac27a0ec 2539/*
678aaf48
JK
2540 * Note that we don't need to start a transaction unless we're journaling data
2541 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2542 * need to file the inode to the transaction's list in ordered mode because if
2543 * we are writing back data added by write(), the inode is already there and if
2544 * we are writing back data modified via mmap(), noone guarantees in which
2545 * transaction the data will hit the disk. In case we are journaling data, we
2546 * cannot start transaction directly because transaction start ranks above page
2547 * lock so we have to do some magic.
ac27a0ec 2548 *
678aaf48 2549 * In all journaling modes block_write_full_page() will start the I/O.
ac27a0ec
DK
2550 *
2551 * Problem:
2552 *
617ba13b
MC
2553 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2554 * ext4_writepage()
ac27a0ec
DK
2555 *
2556 * Similar for:
2557 *
617ba13b 2558 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 2559 *
617ba13b 2560 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 2561 * lock_journal and i_data_sem
ac27a0ec
DK
2562 *
2563 * Setting PF_MEMALLOC here doesn't work - too many internal memory
2564 * allocations fail.
2565 *
2566 * 16May01: If we're reentered then journal_current_handle() will be
2567 * non-zero. We simply *return*.
2568 *
2569 * 1 July 2001: @@@ FIXME:
2570 * In journalled data mode, a data buffer may be metadata against the
2571 * current transaction. But the same file is part of a shared mapping
2572 * and someone does a writepage() on it.
2573 *
2574 * We will move the buffer onto the async_data list, but *after* it has
2575 * been dirtied. So there's a small window where we have dirty data on
2576 * BJ_Metadata.
2577 *
2578 * Note that this only applies to the last partial page in the file. The
2579 * bit which block_write_full_page() uses prepare/commit for. (That's
2580 * broken code anyway: it's wrong for msync()).
2581 *
2582 * It's a rare case: affects the final partial page, for journalled data
2583 * where the file is subject to bith write() and writepage() in the same
2584 * transction. To fix it we'll need a custom block_write_full_page().
2585 * We'll probably need that anyway for journalling writepage() output.
2586 *
2587 * We don't honour synchronous mounts for writepage(). That would be
2588 * disastrous. Any write() or metadata operation will sync the fs for
2589 * us.
2590 *
ac27a0ec 2591 */
678aaf48 2592static int __ext4_normal_writepage(struct page *page,
cf108bca
JK
2593 struct writeback_control *wbc)
2594{
2595 struct inode *inode = page->mapping->host;
2596
2597 if (test_opt(inode->i_sb, NOBH))
f0e6c985
AK
2598 return nobh_writepage(page,
2599 ext4_normal_get_block_write, wbc);
cf108bca 2600 else
f0e6c985
AK
2601 return block_write_full_page(page,
2602 ext4_normal_get_block_write,
2603 wbc);
cf108bca
JK
2604}
2605
678aaf48 2606static int ext4_normal_writepage(struct page *page,
ac27a0ec
DK
2607 struct writeback_control *wbc)
2608{
2609 struct inode *inode = page->mapping->host;
cf108bca
JK
2610 loff_t size = i_size_read(inode);
2611 loff_t len;
2612
2613 J_ASSERT(PageLocked(page));
cf108bca
JK
2614 if (page->index == size >> PAGE_CACHE_SHIFT)
2615 len = size & ~PAGE_CACHE_MASK;
2616 else
2617 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2618
2619 if (page_has_buffers(page)) {
2620 /* if page has buffers it should all be mapped
2621 * and allocated. If there are not buffers attached
2622 * to the page we know the page is dirty but it lost
2623 * buffers. That means that at some moment in time
2624 * after write_begin() / write_end() has been called
2625 * all buffers have been clean and thus they must have been
2626 * written at least once. So they are all mapped and we can
2627 * happily proceed with mapping them and writing the page.
2628 */
2629 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2630 ext4_bh_unmapped_or_delay));
2631 }
cf108bca
JK
2632
2633 if (!ext4_journal_current_handle())
678aaf48 2634 return __ext4_normal_writepage(page, wbc);
cf108bca
JK
2635
2636 redirty_page_for_writepage(wbc, page);
2637 unlock_page(page);
2638 return 0;
2639}
2640
2641static int __ext4_journalled_writepage(struct page *page,
2642 struct writeback_control *wbc)
2643{
2644 struct address_space *mapping = page->mapping;
2645 struct inode *inode = mapping->host;
2646 struct buffer_head *page_bufs;
ac27a0ec
DK
2647 handle_t *handle = NULL;
2648 int ret = 0;
2649 int err;
2650
f0e6c985
AK
2651 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2652 ext4_normal_get_block_write);
cf108bca
JK
2653 if (ret != 0)
2654 goto out_unlock;
2655
2656 page_bufs = page_buffers(page);
2657 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
2658 bget_one);
2659 /* As soon as we unlock the page, it can go away, but we have
2660 * references to buffers so we are safe */
2661 unlock_page(page);
ac27a0ec 2662
617ba13b 2663 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
2664 if (IS_ERR(handle)) {
2665 ret = PTR_ERR(handle);
cf108bca 2666 goto out;
ac27a0ec
DK
2667 }
2668
cf108bca
JK
2669 ret = walk_page_buffers(handle, page_bufs, 0,
2670 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
ac27a0ec 2671
cf108bca
JK
2672 err = walk_page_buffers(handle, page_bufs, 0,
2673 PAGE_CACHE_SIZE, NULL, write_end_fn);
2674 if (ret == 0)
2675 ret = err;
617ba13b 2676 err = ext4_journal_stop(handle);
ac27a0ec
DK
2677 if (!ret)
2678 ret = err;
ac27a0ec 2679
cf108bca
JK
2680 walk_page_buffers(handle, page_bufs, 0,
2681 PAGE_CACHE_SIZE, NULL, bput_one);
2682 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2683 goto out;
2684
2685out_unlock:
ac27a0ec 2686 unlock_page(page);
cf108bca 2687out:
ac27a0ec
DK
2688 return ret;
2689}
2690
617ba13b 2691static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
2692 struct writeback_control *wbc)
2693{
2694 struct inode *inode = page->mapping->host;
cf108bca
JK
2695 loff_t size = i_size_read(inode);
2696 loff_t len;
ac27a0ec 2697
cf108bca 2698 J_ASSERT(PageLocked(page));
cf108bca
JK
2699 if (page->index == size >> PAGE_CACHE_SHIFT)
2700 len = size & ~PAGE_CACHE_MASK;
2701 else
2702 len = PAGE_CACHE_SIZE;
f0e6c985
AK
2703
2704 if (page_has_buffers(page)) {
2705 /* if page has buffers it should all be mapped
2706 * and allocated. If there are not buffers attached
2707 * to the page we know the page is dirty but it lost
2708 * buffers. That means that at some moment in time
2709 * after write_begin() / write_end() has been called
2710 * all buffers have been clean and thus they must have been
2711 * written at least once. So they are all mapped and we can
2712 * happily proceed with mapping them and writing the page.
2713 */
2714 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
2715 ext4_bh_unmapped_or_delay));
2716 }
ac27a0ec 2717
cf108bca 2718 if (ext4_journal_current_handle())
ac27a0ec 2719 goto no_write;
ac27a0ec 2720
cf108bca 2721 if (PageChecked(page)) {
ac27a0ec
DK
2722 /*
2723 * It's mmapped pagecache. Add buffers and journal it. There
2724 * doesn't seem much point in redirtying the page here.
2725 */
2726 ClearPageChecked(page);
cf108bca 2727 return __ext4_journalled_writepage(page, wbc);
ac27a0ec
DK
2728 } else {
2729 /*
2730 * It may be a page full of checkpoint-mode buffers. We don't
2731 * really know unless we go poke around in the buffer_heads.
2732 * But block_write_full_page will do the right thing.
2733 */
f0e6c985
AK
2734 return block_write_full_page(page,
2735 ext4_normal_get_block_write,
2736 wbc);
ac27a0ec 2737 }
ac27a0ec
DK
2738no_write:
2739 redirty_page_for_writepage(wbc, page);
ac27a0ec 2740 unlock_page(page);
cf108bca 2741 return 0;
ac27a0ec
DK
2742}
2743
617ba13b 2744static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2745{
617ba13b 2746 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2747}
2748
2749static int
617ba13b 2750ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2751 struct list_head *pages, unsigned nr_pages)
2752{
617ba13b 2753 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2754}
2755
617ba13b 2756static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2757{
617ba13b 2758 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2759
2760 /*
2761 * If it's a full truncate we just forget about the pending dirtying
2762 */
2763 if (offset == 0)
2764 ClearPageChecked(page);
2765
dab291af 2766 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
2767}
2768
617ba13b 2769static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2770{
617ba13b 2771 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
2772
2773 WARN_ON(PageChecked(page));
2774 if (!page_has_buffers(page))
2775 return 0;
dab291af 2776 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
2777}
2778
2779/*
2780 * If the O_DIRECT write will extend the file then add this inode to the
2781 * orphan list. So recovery will truncate it back to the original size
2782 * if the machine crashes during the write.
2783 *
2784 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
2785 * crashes then stale disk data _may_ be exposed inside the file. But current
2786 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 2787 */
617ba13b 2788static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
2789 const struct iovec *iov, loff_t offset,
2790 unsigned long nr_segs)
2791{
2792 struct file *file = iocb->ki_filp;
2793 struct inode *inode = file->f_mapping->host;
617ba13b 2794 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 2795 handle_t *handle;
ac27a0ec
DK
2796 ssize_t ret;
2797 int orphan = 0;
2798 size_t count = iov_length(iov, nr_segs);
2799
2800 if (rw == WRITE) {
2801 loff_t final_size = offset + count;
2802
ac27a0ec 2803 if (final_size > inode->i_size) {
7fb5409d
JK
2804 /* Credits for sb + inode write */
2805 handle = ext4_journal_start(inode, 2);
2806 if (IS_ERR(handle)) {
2807 ret = PTR_ERR(handle);
2808 goto out;
2809 }
617ba13b 2810 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
2811 if (ret) {
2812 ext4_journal_stop(handle);
2813 goto out;
2814 }
ac27a0ec
DK
2815 orphan = 1;
2816 ei->i_disksize = inode->i_size;
7fb5409d 2817 ext4_journal_stop(handle);
ac27a0ec
DK
2818 }
2819 }
2820
2821 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
2822 offset, nr_segs,
617ba13b 2823 ext4_get_block, NULL);
ac27a0ec 2824
7fb5409d 2825 if (orphan) {
ac27a0ec
DK
2826 int err;
2827
7fb5409d
JK
2828 /* Credits for sb + inode write */
2829 handle = ext4_journal_start(inode, 2);
2830 if (IS_ERR(handle)) {
2831 /* This is really bad luck. We've written the data
2832 * but cannot extend i_size. Bail out and pretend
2833 * the write failed... */
2834 ret = PTR_ERR(handle);
2835 goto out;
2836 }
2837 if (inode->i_nlink)
617ba13b 2838 ext4_orphan_del(handle, inode);
7fb5409d 2839 if (ret > 0) {
ac27a0ec
DK
2840 loff_t end = offset + ret;
2841 if (end > inode->i_size) {
2842 ei->i_disksize = end;
2843 i_size_write(inode, end);
2844 /*
2845 * We're going to return a positive `ret'
2846 * here due to non-zero-length I/O, so there's
2847 * no way of reporting error returns from
617ba13b 2848 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
2849 * ignore it.
2850 */
617ba13b 2851 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2852 }
2853 }
617ba13b 2854 err = ext4_journal_stop(handle);
ac27a0ec
DK
2855 if (ret == 0)
2856 ret = err;
2857 }
2858out:
2859 return ret;
2860}
2861
2862/*
617ba13b 2863 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
2864 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
2865 * much here because ->set_page_dirty is called under VFS locks. The page is
2866 * not necessarily locked.
2867 *
2868 * We cannot just dirty the page and leave attached buffers clean, because the
2869 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
2870 * or jbddirty because all the journalling code will explode.
2871 *
2872 * So what we do is to mark the page "pending dirty" and next time writepage
2873 * is called, propagate that into the buffers appropriately.
2874 */
617ba13b 2875static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
2876{
2877 SetPageChecked(page);
2878 return __set_page_dirty_nobuffers(page);
2879}
2880
617ba13b 2881static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
2882 .readpage = ext4_readpage,
2883 .readpages = ext4_readpages,
2884 .writepage = ext4_normal_writepage,
2885 .sync_page = block_sync_page,
2886 .write_begin = ext4_write_begin,
2887 .write_end = ext4_ordered_write_end,
2888 .bmap = ext4_bmap,
2889 .invalidatepage = ext4_invalidatepage,
2890 .releasepage = ext4_releasepage,
2891 .direct_IO = ext4_direct_IO,
2892 .migratepage = buffer_migrate_page,
2893 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2894};
2895
617ba13b 2896static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
2897 .readpage = ext4_readpage,
2898 .readpages = ext4_readpages,
2899 .writepage = ext4_normal_writepage,
2900 .sync_page = block_sync_page,
2901 .write_begin = ext4_write_begin,
2902 .write_end = ext4_writeback_write_end,
2903 .bmap = ext4_bmap,
2904 .invalidatepage = ext4_invalidatepage,
2905 .releasepage = ext4_releasepage,
2906 .direct_IO = ext4_direct_IO,
2907 .migratepage = buffer_migrate_page,
2908 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2909};
2910
617ba13b 2911static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
2912 .readpage = ext4_readpage,
2913 .readpages = ext4_readpages,
2914 .writepage = ext4_journalled_writepage,
2915 .sync_page = block_sync_page,
2916 .write_begin = ext4_write_begin,
2917 .write_end = ext4_journalled_write_end,
2918 .set_page_dirty = ext4_journalled_set_page_dirty,
2919 .bmap = ext4_bmap,
2920 .invalidatepage = ext4_invalidatepage,
2921 .releasepage = ext4_releasepage,
2922 .is_partially_uptodate = block_is_partially_uptodate,
ac27a0ec
DK
2923};
2924
64769240 2925static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
2926 .readpage = ext4_readpage,
2927 .readpages = ext4_readpages,
2928 .writepage = ext4_da_writepage,
2929 .writepages = ext4_da_writepages,
2930 .sync_page = block_sync_page,
2931 .write_begin = ext4_da_write_begin,
2932 .write_end = ext4_da_write_end,
2933 .bmap = ext4_bmap,
2934 .invalidatepage = ext4_da_invalidatepage,
2935 .releasepage = ext4_releasepage,
2936 .direct_IO = ext4_direct_IO,
2937 .migratepage = buffer_migrate_page,
2938 .is_partially_uptodate = block_is_partially_uptodate,
64769240
AT
2939};
2940
617ba13b 2941void ext4_set_aops(struct inode *inode)
ac27a0ec 2942{
cd1aac32
AK
2943 if (ext4_should_order_data(inode) &&
2944 test_opt(inode->i_sb, DELALLOC))
2945 inode->i_mapping->a_ops = &ext4_da_aops;
2946 else if (ext4_should_order_data(inode))
617ba13b 2947 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
2948 else if (ext4_should_writeback_data(inode) &&
2949 test_opt(inode->i_sb, DELALLOC))
2950 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
2951 else if (ext4_should_writeback_data(inode))
2952 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 2953 else
617ba13b 2954 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
2955}
2956
2957/*
617ba13b 2958 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
2959 * up to the end of the block which corresponds to `from'.
2960 * This required during truncate. We need to physically zero the tail end
2961 * of that block so it doesn't yield old data if the file is later grown.
2962 */
cf108bca 2963int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
2964 struct address_space *mapping, loff_t from)
2965{
617ba13b 2966 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 2967 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
2968 unsigned blocksize, length, pos;
2969 ext4_lblk_t iblock;
ac27a0ec
DK
2970 struct inode *inode = mapping->host;
2971 struct buffer_head *bh;
cf108bca 2972 struct page *page;
ac27a0ec 2973 int err = 0;
ac27a0ec 2974
cf108bca
JK
2975 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
2976 if (!page)
2977 return -EINVAL;
2978
ac27a0ec
DK
2979 blocksize = inode->i_sb->s_blocksize;
2980 length = blocksize - (offset & (blocksize - 1));
2981 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2982
2983 /*
2984 * For "nobh" option, we can only work if we don't need to
2985 * read-in the page - otherwise we create buffers to do the IO.
2986 */
2987 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 2988 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 2989 zero_user(page, offset, length);
ac27a0ec
DK
2990 set_page_dirty(page);
2991 goto unlock;
2992 }
2993
2994 if (!page_has_buffers(page))
2995 create_empty_buffers(page, blocksize, 0);
2996
2997 /* Find the buffer that contains "offset" */
2998 bh = page_buffers(page);
2999 pos = blocksize;
3000 while (offset >= pos) {
3001 bh = bh->b_this_page;
3002 iblock++;
3003 pos += blocksize;
3004 }
3005
3006 err = 0;
3007 if (buffer_freed(bh)) {
3008 BUFFER_TRACE(bh, "freed: skip");
3009 goto unlock;
3010 }
3011
3012 if (!buffer_mapped(bh)) {
3013 BUFFER_TRACE(bh, "unmapped");
617ba13b 3014 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3015 /* unmapped? It's a hole - nothing to do */
3016 if (!buffer_mapped(bh)) {
3017 BUFFER_TRACE(bh, "still unmapped");
3018 goto unlock;
3019 }
3020 }
3021
3022 /* Ok, it's mapped. Make sure it's up-to-date */
3023 if (PageUptodate(page))
3024 set_buffer_uptodate(bh);
3025
3026 if (!buffer_uptodate(bh)) {
3027 err = -EIO;
3028 ll_rw_block(READ, 1, &bh);
3029 wait_on_buffer(bh);
3030 /* Uhhuh. Read error. Complain and punt. */
3031 if (!buffer_uptodate(bh))
3032 goto unlock;
3033 }
3034
617ba13b 3035 if (ext4_should_journal_data(inode)) {
ac27a0ec 3036 BUFFER_TRACE(bh, "get write access");
617ba13b 3037 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3038 if (err)
3039 goto unlock;
3040 }
3041
eebd2aa3 3042 zero_user(page, offset, length);
ac27a0ec
DK
3043
3044 BUFFER_TRACE(bh, "zeroed end of block");
3045
3046 err = 0;
617ba13b
MC
3047 if (ext4_should_journal_data(inode)) {
3048 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3049 } else {
617ba13b 3050 if (ext4_should_order_data(inode))
678aaf48 3051 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3052 mark_buffer_dirty(bh);
3053 }
3054
3055unlock:
3056 unlock_page(page);
3057 page_cache_release(page);
3058 return err;
3059}
3060
3061/*
3062 * Probably it should be a library function... search for first non-zero word
3063 * or memcmp with zero_page, whatever is better for particular architecture.
3064 * Linus?
3065 */
3066static inline int all_zeroes(__le32 *p, __le32 *q)
3067{
3068 while (p < q)
3069 if (*p++)
3070 return 0;
3071 return 1;
3072}
3073
3074/**
617ba13b 3075 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
3076 * @inode: inode in question
3077 * @depth: depth of the affected branch
617ba13b 3078 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
3079 * @chain: place to store the pointers to partial indirect blocks
3080 * @top: place to the (detached) top of branch
3081 *
617ba13b 3082 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
3083 *
3084 * When we do truncate() we may have to clean the ends of several
3085 * indirect blocks but leave the blocks themselves alive. Block is
3086 * partially truncated if some data below the new i_size is refered
3087 * from it (and it is on the path to the first completely truncated
3088 * data block, indeed). We have to free the top of that path along
3089 * with everything to the right of the path. Since no allocation
617ba13b 3090 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
3091 * finishes, we may safely do the latter, but top of branch may
3092 * require special attention - pageout below the truncation point
3093 * might try to populate it.
3094 *
3095 * We atomically detach the top of branch from the tree, store the
3096 * block number of its root in *@top, pointers to buffer_heads of
3097 * partially truncated blocks - in @chain[].bh and pointers to
3098 * their last elements that should not be removed - in
3099 * @chain[].p. Return value is the pointer to last filled element
3100 * of @chain.
3101 *
3102 * The work left to caller to do the actual freeing of subtrees:
3103 * a) free the subtree starting from *@top
3104 * b) free the subtrees whose roots are stored in
3105 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3106 * c) free the subtrees growing from the inode past the @chain[0].
3107 * (no partially truncated stuff there). */
3108
617ba13b 3109static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 3110 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
3111{
3112 Indirect *partial, *p;
3113 int k, err;
3114
3115 *top = 0;
3116 /* Make k index the deepest non-null offest + 1 */
3117 for (k = depth; k > 1 && !offsets[k-1]; k--)
3118 ;
617ba13b 3119 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
3120 /* Writer: pointers */
3121 if (!partial)
3122 partial = chain + k-1;
3123 /*
3124 * If the branch acquired continuation since we've looked at it -
3125 * fine, it should all survive and (new) top doesn't belong to us.
3126 */
3127 if (!partial->key && *partial->p)
3128 /* Writer: end */
3129 goto no_top;
3130 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
3131 ;
3132 /*
3133 * OK, we've found the last block that must survive. The rest of our
3134 * branch should be detached before unlocking. However, if that rest
3135 * of branch is all ours and does not grow immediately from the inode
3136 * it's easier to cheat and just decrement partial->p.
3137 */
3138 if (p == chain + k - 1 && p > chain) {
3139 p->p--;
3140 } else {
3141 *top = *p->p;
617ba13b 3142 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
3143#if 0
3144 *p->p = 0;
3145#endif
3146 }
3147 /* Writer: end */
3148
3149 while(partial > p) {
3150 brelse(partial->bh);
3151 partial--;
3152 }
3153no_top:
3154 return partial;
3155}
3156
3157/*
3158 * Zero a number of block pointers in either an inode or an indirect block.
3159 * If we restart the transaction we must again get write access to the
3160 * indirect block for further modification.
3161 *
3162 * We release `count' blocks on disk, but (last - first) may be greater
3163 * than `count' because there can be holes in there.
3164 */
617ba13b
MC
3165static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3166 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
3167 unsigned long count, __le32 *first, __le32 *last)
3168{
3169 __le32 *p;
3170 if (try_to_extend_transaction(handle, inode)) {
3171 if (bh) {
617ba13b
MC
3172 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
3173 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 3174 }
617ba13b
MC
3175 ext4_mark_inode_dirty(handle, inode);
3176 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3177 if (bh) {
3178 BUFFER_TRACE(bh, "retaking write access");
617ba13b 3179 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3180 }
3181 }
3182
3183 /*
3184 * Any buffers which are on the journal will be in memory. We find
dab291af 3185 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 3186 * on them. We've already detached each block from the file, so
dab291af 3187 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 3188 *
dab291af 3189 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
3190 */
3191 for (p = first; p < last; p++) {
3192 u32 nr = le32_to_cpu(*p);
3193 if (nr) {
1d03ec98 3194 struct buffer_head *tbh;
ac27a0ec
DK
3195
3196 *p = 0;
1d03ec98
AK
3197 tbh = sb_find_get_block(inode->i_sb, nr);
3198 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
3199 }
3200 }
3201
c9de560d 3202 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
3203}
3204
3205/**
617ba13b 3206 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
3207 * @handle: handle for this transaction
3208 * @inode: inode we are dealing with
3209 * @this_bh: indirect buffer_head which contains *@first and *@last
3210 * @first: array of block numbers
3211 * @last: points immediately past the end of array
3212 *
3213 * We are freeing all blocks refered from that array (numbers are stored as
3214 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3215 *
3216 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3217 * blocks are contiguous then releasing them at one time will only affect one
3218 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3219 * actually use a lot of journal space.
3220 *
3221 * @this_bh will be %NULL if @first and @last point into the inode's direct
3222 * block pointers.
3223 */
617ba13b 3224static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3225 struct buffer_head *this_bh,
3226 __le32 *first, __le32 *last)
3227{
617ba13b 3228 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
3229 unsigned long count = 0; /* Number of blocks in the run */
3230 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3231 corresponding to
3232 block_to_free */
617ba13b 3233 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
3234 __le32 *p; /* Pointer into inode/ind
3235 for current block */
3236 int err;
3237
3238 if (this_bh) { /* For indirect block */
3239 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 3240 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
3241 /* Important: if we can't update the indirect pointers
3242 * to the blocks, we can't free them. */
3243 if (err)
3244 return;
3245 }
3246
3247 for (p = first; p < last; p++) {
3248 nr = le32_to_cpu(*p);
3249 if (nr) {
3250 /* accumulate blocks to free if they're contiguous */
3251 if (count == 0) {
3252 block_to_free = nr;
3253 block_to_free_p = p;
3254 count = 1;
3255 } else if (nr == block_to_free + count) {
3256 count++;
3257 } else {
617ba13b 3258 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
3259 block_to_free,
3260 count, block_to_free_p, p);
3261 block_to_free = nr;
3262 block_to_free_p = p;
3263 count = 1;
3264 }
3265 }
3266 }
3267
3268 if (count > 0)
617ba13b 3269 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
3270 count, block_to_free_p, p);
3271
3272 if (this_bh) {
617ba13b 3273 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
71dc8fbc
DG
3274
3275 /*
3276 * The buffer head should have an attached journal head at this
3277 * point. However, if the data is corrupted and an indirect
3278 * block pointed to itself, it would have been detached when
3279 * the block was cleared. Check for this instead of OOPSing.
3280 */
3281 if (bh2jh(this_bh))
3282 ext4_journal_dirty_metadata(handle, this_bh);
3283 else
3284 ext4_error(inode->i_sb, __func__,
3285 "circular indirect block detected, "
3286 "inode=%lu, block=%llu",
3287 inode->i_ino,
3288 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
3289 }
3290}
3291
3292/**
617ba13b 3293 * ext4_free_branches - free an array of branches
ac27a0ec
DK
3294 * @handle: JBD handle for this transaction
3295 * @inode: inode we are dealing with
3296 * @parent_bh: the buffer_head which contains *@first and *@last
3297 * @first: array of block numbers
3298 * @last: pointer immediately past the end of array
3299 * @depth: depth of the branches to free
3300 *
3301 * We are freeing all blocks refered from these branches (numbers are
3302 * stored as little-endian 32-bit) and updating @inode->i_blocks
3303 * appropriately.
3304 */
617ba13b 3305static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
3306 struct buffer_head *parent_bh,
3307 __le32 *first, __le32 *last, int depth)
3308{
617ba13b 3309 ext4_fsblk_t nr;
ac27a0ec
DK
3310 __le32 *p;
3311
3312 if (is_handle_aborted(handle))
3313 return;
3314
3315 if (depth--) {
3316 struct buffer_head *bh;
617ba13b 3317 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
3318 p = last;
3319 while (--p >= first) {
3320 nr = le32_to_cpu(*p);
3321 if (!nr)
3322 continue; /* A hole */
3323
3324 /* Go read the buffer for the next level down */
3325 bh = sb_bread(inode->i_sb, nr);
3326
3327 /*
3328 * A read failure? Report error and clear slot
3329 * (should be rare).
3330 */
3331 if (!bh) {
617ba13b 3332 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 3333 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
3334 inode->i_ino, nr);
3335 continue;
3336 }
3337
3338 /* This zaps the entire block. Bottom up. */
3339 BUFFER_TRACE(bh, "free child branches");
617ba13b 3340 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
3341 (__le32*)bh->b_data,
3342 (__le32*)bh->b_data + addr_per_block,
3343 depth);
3344
3345 /*
3346 * We've probably journalled the indirect block several
3347 * times during the truncate. But it's no longer
3348 * needed and we now drop it from the transaction via
dab291af 3349 * jbd2_journal_revoke().
ac27a0ec
DK
3350 *
3351 * That's easy if it's exclusively part of this
3352 * transaction. But if it's part of the committing
dab291af 3353 * transaction then jbd2_journal_forget() will simply
ac27a0ec 3354 * brelse() it. That means that if the underlying
617ba13b 3355 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
3356 * unmap_underlying_metadata() will find this block
3357 * and will try to get rid of it. damn, damn.
3358 *
3359 * If this block has already been committed to the
3360 * journal, a revoke record will be written. And
3361 * revoke records must be emitted *before* clearing
3362 * this block's bit in the bitmaps.
3363 */
617ba13b 3364 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
3365
3366 /*
3367 * Everything below this this pointer has been
3368 * released. Now let this top-of-subtree go.
3369 *
3370 * We want the freeing of this indirect block to be
3371 * atomic in the journal with the updating of the
3372 * bitmap block which owns it. So make some room in
3373 * the journal.
3374 *
3375 * We zero the parent pointer *after* freeing its
3376 * pointee in the bitmaps, so if extend_transaction()
3377 * for some reason fails to put the bitmap changes and
3378 * the release into the same transaction, recovery
3379 * will merely complain about releasing a free block,
3380 * rather than leaking blocks.
3381 */
3382 if (is_handle_aborted(handle))
3383 return;
3384 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
3385 ext4_mark_inode_dirty(handle, inode);
3386 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
3387 }
3388
c9de560d 3389 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
3390
3391 if (parent_bh) {
3392 /*
3393 * The block which we have just freed is
3394 * pointed to by an indirect block: journal it
3395 */
3396 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 3397 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
3398 parent_bh)){
3399 *p = 0;
3400 BUFFER_TRACE(parent_bh,
617ba13b
MC
3401 "call ext4_journal_dirty_metadata");
3402 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3403 parent_bh);
3404 }
3405 }
3406 }
3407 } else {
3408 /* We have reached the bottom of the tree. */
3409 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 3410 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
3411 }
3412}
3413
91ef4caf
DG
3414int ext4_can_truncate(struct inode *inode)
3415{
3416 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3417 return 0;
3418 if (S_ISREG(inode->i_mode))
3419 return 1;
3420 if (S_ISDIR(inode->i_mode))
3421 return 1;
3422 if (S_ISLNK(inode->i_mode))
3423 return !ext4_inode_is_fast_symlink(inode);
3424 return 0;
3425}
3426
ac27a0ec 3427/*
617ba13b 3428 * ext4_truncate()
ac27a0ec 3429 *
617ba13b
MC
3430 * We block out ext4_get_block() block instantiations across the entire
3431 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3432 * simultaneously on behalf of the same inode.
3433 *
3434 * As we work through the truncate and commmit bits of it to the journal there
3435 * is one core, guiding principle: the file's tree must always be consistent on
3436 * disk. We must be able to restart the truncate after a crash.
3437 *
3438 * The file's tree may be transiently inconsistent in memory (although it
3439 * probably isn't), but whenever we close off and commit a journal transaction,
3440 * the contents of (the filesystem + the journal) must be consistent and
3441 * restartable. It's pretty simple, really: bottom up, right to left (although
3442 * left-to-right works OK too).
3443 *
3444 * Note that at recovery time, journal replay occurs *before* the restart of
3445 * truncate against the orphan inode list.
3446 *
3447 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3448 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3449 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3450 * ext4_truncate() to have another go. So there will be instantiated blocks
3451 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3452 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3453 * ext4_truncate() run will find them and release them.
ac27a0ec 3454 */
617ba13b 3455void ext4_truncate(struct inode *inode)
ac27a0ec
DK
3456{
3457 handle_t *handle;
617ba13b 3458 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 3459 __le32 *i_data = ei->i_data;
617ba13b 3460 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 3461 struct address_space *mapping = inode->i_mapping;
725d26d3 3462 ext4_lblk_t offsets[4];
ac27a0ec
DK
3463 Indirect chain[4];
3464 Indirect *partial;
3465 __le32 nr = 0;
3466 int n;
725d26d3 3467 ext4_lblk_t last_block;
ac27a0ec 3468 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 3469
91ef4caf 3470 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3471 return;
3472
1d03ec98 3473 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 3474 ext4_ext_truncate(inode);
1d03ec98
AK
3475 return;
3476 }
a86c6181 3477
ac27a0ec 3478 handle = start_transaction(inode);
cf108bca 3479 if (IS_ERR(handle))
ac27a0ec 3480 return; /* AKPM: return what? */
ac27a0ec
DK
3481
3482 last_block = (inode->i_size + blocksize-1)
617ba13b 3483 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 3484
cf108bca
JK
3485 if (inode->i_size & (blocksize - 1))
3486 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3487 goto out_stop;
ac27a0ec 3488
617ba13b 3489 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
3490 if (n == 0)
3491 goto out_stop; /* error */
3492
3493 /*
3494 * OK. This truncate is going to happen. We add the inode to the
3495 * orphan list, so that if this truncate spans multiple transactions,
3496 * and we crash, we will resume the truncate when the filesystem
3497 * recovers. It also marks the inode dirty, to catch the new size.
3498 *
3499 * Implication: the file must always be in a sane, consistent
3500 * truncatable state while each transaction commits.
3501 */
617ba13b 3502 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
3503 goto out_stop;
3504
632eaeab
MC
3505 /*
3506 * From here we block out all ext4_get_block() callers who want to
3507 * modify the block allocation tree.
3508 */
3509 down_write(&ei->i_data_sem);
b4df2030
TT
3510
3511 ext4_discard_reservation(inode);
3512
ac27a0ec
DK
3513 /*
3514 * The orphan list entry will now protect us from any crash which
3515 * occurs before the truncate completes, so it is now safe to propagate
3516 * the new, shorter inode size (held for now in i_size) into the
3517 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 3518 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
3519 */
3520 ei->i_disksize = inode->i_size;
3521
ac27a0ec 3522 if (n == 1) { /* direct blocks */
617ba13b
MC
3523 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
3524 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
3525 goto do_indirects;
3526 }
3527
617ba13b 3528 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
3529 /* Kill the top of shared branch (not detached) */
3530 if (nr) {
3531 if (partial == chain) {
3532 /* Shared branch grows from the inode */
617ba13b 3533 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
3534 &nr, &nr+1, (chain+n-1) - partial);
3535 *partial->p = 0;
3536 /*
3537 * We mark the inode dirty prior to restart,
3538 * and prior to stop. No need for it here.
3539 */
3540 } else {
3541 /* Shared branch grows from an indirect block */
3542 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 3543 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
3544 partial->p,
3545 partial->p+1, (chain+n-1) - partial);
3546 }
3547 }
3548 /* Clear the ends of indirect blocks on the shared branch */
3549 while (partial > chain) {
617ba13b 3550 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
3551 (__le32*)partial->bh->b_data+addr_per_block,
3552 (chain+n-1) - partial);
3553 BUFFER_TRACE(partial->bh, "call brelse");
3554 brelse (partial->bh);
3555 partial--;
3556 }
3557do_indirects:
3558 /* Kill the remaining (whole) subtrees */
3559 switch (offsets[0]) {
3560 default:
617ba13b 3561 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 3562 if (nr) {
617ba13b
MC
3563 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
3564 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 3565 }
617ba13b
MC
3566 case EXT4_IND_BLOCK:
3567 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 3568 if (nr) {
617ba13b
MC
3569 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
3570 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 3571 }
617ba13b
MC
3572 case EXT4_DIND_BLOCK:
3573 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 3574 if (nr) {
617ba13b
MC
3575 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
3576 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 3577 }
617ba13b 3578 case EXT4_TIND_BLOCK:
ac27a0ec
DK
3579 ;
3580 }
3581
0e855ac8 3582 up_write(&ei->i_data_sem);
ef7f3835 3583 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 3584 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3585
3586 /*
3587 * In a multi-transaction truncate, we only make the final transaction
3588 * synchronous
3589 */
3590 if (IS_SYNC(inode))
3591 handle->h_sync = 1;
3592out_stop:
3593 /*
3594 * If this was a simple ftruncate(), and the file will remain alive
3595 * then we need to clear up the orphan record which we created above.
3596 * However, if this was a real unlink then we were called by
617ba13b 3597 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
3598 * orphan info for us.
3599 */
3600 if (inode->i_nlink)
617ba13b 3601 ext4_orphan_del(handle, inode);
ac27a0ec 3602
617ba13b 3603 ext4_journal_stop(handle);
ac27a0ec
DK
3604}
3605
617ba13b
MC
3606static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
3607 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 3608{
fd2d4291 3609 ext4_group_t block_group;
ac27a0ec 3610 unsigned long offset;
617ba13b 3611 ext4_fsblk_t block;
c0a4ef38 3612 struct ext4_group_desc *gdp;
ac27a0ec 3613
617ba13b 3614 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
3615 /*
3616 * This error is already checked for in namei.c unless we are
3617 * looking at an NFS filehandle, in which case no error
3618 * report is needed
3619 */
3620 return 0;
3621 }
3622
617ba13b 3623 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
c0a4ef38
AM
3624 gdp = ext4_get_group_desc(sb, block_group, NULL);
3625 if (!gdp)
ac27a0ec 3626 return 0;
ac27a0ec 3627
ac27a0ec
DK
3628 /*
3629 * Figure out the offset within the block group inode table
3630 */
617ba13b
MC
3631 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
3632 EXT4_INODE_SIZE(sb);
8fadc143
AR
3633 block = ext4_inode_table(sb, gdp) +
3634 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
3635
3636 iloc->block_group = block_group;
617ba13b 3637 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
3638 return block;
3639}
3640
3641/*
617ba13b 3642 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3643 * underlying buffer_head on success. If 'in_mem' is true, we have all
3644 * data in memory that is needed to recreate the on-disk version of this
3645 * inode.
3646 */
617ba13b
MC
3647static int __ext4_get_inode_loc(struct inode *inode,
3648 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3649{
617ba13b 3650 ext4_fsblk_t block;
ac27a0ec
DK
3651 struct buffer_head *bh;
3652
617ba13b 3653 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
3654 if (!block)
3655 return -EIO;
3656
3657 bh = sb_getblk(inode->i_sb, block);
3658 if (!bh) {
617ba13b 3659 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3660 "unable to read inode block - "
2ae02107 3661 "inode=%lu, block=%llu",
ac27a0ec
DK
3662 inode->i_ino, block);
3663 return -EIO;
3664 }
3665 if (!buffer_uptodate(bh)) {
3666 lock_buffer(bh);
9c83a923
HK
3667
3668 /*
3669 * If the buffer has the write error flag, we have failed
3670 * to write out another inode in the same block. In this
3671 * case, we don't have to read the block because we may
3672 * read the old inode data successfully.
3673 */
3674 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3675 set_buffer_uptodate(bh);
3676
ac27a0ec
DK
3677 if (buffer_uptodate(bh)) {
3678 /* someone brought it uptodate while we waited */
3679 unlock_buffer(bh);
3680 goto has_buffer;
3681 }
3682
3683 /*
3684 * If we have all information of the inode in memory and this
3685 * is the only valid inode in the block, we need not read the
3686 * block.
3687 */
3688 if (in_mem) {
3689 struct buffer_head *bitmap_bh;
617ba13b 3690 struct ext4_group_desc *desc;
ac27a0ec
DK
3691 int inodes_per_buffer;
3692 int inode_offset, i;
fd2d4291 3693 ext4_group_t block_group;
ac27a0ec
DK
3694 int start;
3695
3696 block_group = (inode->i_ino - 1) /
617ba13b 3697 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 3698 inodes_per_buffer = bh->b_size /
617ba13b 3699 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 3700 inode_offset = ((inode->i_ino - 1) %
617ba13b 3701 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
3702 start = inode_offset & ~(inodes_per_buffer - 1);
3703
3704 /* Is the inode bitmap in cache? */
617ba13b 3705 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
3706 block_group, NULL);
3707 if (!desc)
3708 goto make_io;
3709
3710 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 3711 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
3712 if (!bitmap_bh)
3713 goto make_io;
3714
3715 /*
3716 * If the inode bitmap isn't in cache then the
3717 * optimisation may end up performing two reads instead
3718 * of one, so skip it.
3719 */
3720 if (!buffer_uptodate(bitmap_bh)) {
3721 brelse(bitmap_bh);
3722 goto make_io;
3723 }
3724 for (i = start; i < start + inodes_per_buffer; i++) {
3725 if (i == inode_offset)
3726 continue;
617ba13b 3727 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3728 break;
3729 }
3730 brelse(bitmap_bh);
3731 if (i == start + inodes_per_buffer) {
3732 /* all other inodes are free, so skip I/O */
3733 memset(bh->b_data, 0, bh->b_size);
3734 set_buffer_uptodate(bh);
3735 unlock_buffer(bh);
3736 goto has_buffer;
3737 }
3738 }
3739
3740make_io:
3741 /*
3742 * There are other valid inodes in the buffer, this inode
3743 * has in-inode xattrs, or we don't have this inode in memory.
3744 * Read the block from disk.
3745 */
3746 get_bh(bh);
3747 bh->b_end_io = end_buffer_read_sync;
3748 submit_bh(READ_META, bh);
3749 wait_on_buffer(bh);
3750 if (!buffer_uptodate(bh)) {
617ba13b 3751 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 3752 "unable to read inode block - "
2ae02107 3753 "inode=%lu, block=%llu",
ac27a0ec
DK
3754 inode->i_ino, block);
3755 brelse(bh);
3756 return -EIO;
3757 }
3758 }
3759has_buffer:
3760 iloc->bh = bh;
3761 return 0;
3762}
3763
617ba13b 3764int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3765{
3766 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
3767 return __ext4_get_inode_loc(inode, iloc,
3768 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
3769}
3770
617ba13b 3771void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3772{
617ba13b 3773 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3774
3775 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3776 if (flags & EXT4_SYNC_FL)
ac27a0ec 3777 inode->i_flags |= S_SYNC;
617ba13b 3778 if (flags & EXT4_APPEND_FL)
ac27a0ec 3779 inode->i_flags |= S_APPEND;
617ba13b 3780 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3781 inode->i_flags |= S_IMMUTABLE;
617ba13b 3782 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3783 inode->i_flags |= S_NOATIME;
617ba13b 3784 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3785 inode->i_flags |= S_DIRSYNC;
3786}
3787
ff9ddf7e
JK
3788/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3789void ext4_get_inode_flags(struct ext4_inode_info *ei)
3790{
3791 unsigned int flags = ei->vfs_inode.i_flags;
3792
3793 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3794 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
3795 if (flags & S_SYNC)
3796 ei->i_flags |= EXT4_SYNC_FL;
3797 if (flags & S_APPEND)
3798 ei->i_flags |= EXT4_APPEND_FL;
3799 if (flags & S_IMMUTABLE)
3800 ei->i_flags |= EXT4_IMMUTABLE_FL;
3801 if (flags & S_NOATIME)
3802 ei->i_flags |= EXT4_NOATIME_FL;
3803 if (flags & S_DIRSYNC)
3804 ei->i_flags |= EXT4_DIRSYNC_FL;
3805}
0fc1b451
AK
3806static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3807 struct ext4_inode_info *ei)
3808{
3809 blkcnt_t i_blocks ;
8180a562
AK
3810 struct inode *inode = &(ei->vfs_inode);
3811 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3812
3813 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3814 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3815 /* we are using combined 48 bit field */
3816 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3817 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
3818 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
3819 /* i_blocks represent file system block size */
3820 return i_blocks << (inode->i_blkbits - 9);
3821 } else {
3822 return i_blocks;
3823 }
0fc1b451
AK
3824 } else {
3825 return le32_to_cpu(raw_inode->i_blocks_lo);
3826 }
3827}
ff9ddf7e 3828
1d1fe1ee 3829struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3830{
617ba13b
MC
3831 struct ext4_iloc iloc;
3832 struct ext4_inode *raw_inode;
1d1fe1ee 3833 struct ext4_inode_info *ei;
ac27a0ec 3834 struct buffer_head *bh;
1d1fe1ee
DH
3835 struct inode *inode;
3836 long ret;
ac27a0ec
DK
3837 int block;
3838
1d1fe1ee
DH
3839 inode = iget_locked(sb, ino);
3840 if (!inode)
3841 return ERR_PTR(-ENOMEM);
3842 if (!(inode->i_state & I_NEW))
3843 return inode;
3844
3845 ei = EXT4_I(inode);
617ba13b
MC
3846#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
3847 ei->i_acl = EXT4_ACL_NOT_CACHED;
3848 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
3849#endif
3850 ei->i_block_alloc_info = NULL;
3851
1d1fe1ee
DH
3852 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3853 if (ret < 0)
ac27a0ec
DK
3854 goto bad_inode;
3855 bh = iloc.bh;
617ba13b 3856 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3857 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3858 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3859 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3860 if(!(test_opt (inode->i_sb, NO_UID32))) {
3861 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3862 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3863 }
3864 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
3865
3866 ei->i_state = 0;
3867 ei->i_dir_start_lookup = 0;
3868 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3869 /* We now have enough fields to check if the inode was active or not.
3870 * This is needed because nfsd might try to access dead inodes
3871 * the test is that same one that e2fsck uses
3872 * NeilBrown 1999oct15
3873 */
3874 if (inode->i_nlink == 0) {
3875 if (inode->i_mode == 0 ||
617ba13b 3876 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
3877 /* this inode is deleted */
3878 brelse (bh);
1d1fe1ee 3879 ret = -ESTALE;
ac27a0ec
DK
3880 goto bad_inode;
3881 }
3882 /* The only unlinked inodes we let through here have
3883 * valid i_mode and are being read by the orphan
3884 * recovery code: that's fine, we're about to complete
3885 * the process of deleting those. */
3886 }
ac27a0ec 3887 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3888 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3889 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 3890 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 3891 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
3892 ei->i_file_acl |=
3893 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 3894 }
a48380f7 3895 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
3896 ei->i_disksize = inode->i_size;
3897 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3898 ei->i_block_group = iloc.block_group;
3899 /*
3900 * NOTE! The in-memory inode i_data array is in little-endian order
3901 * even on big-endian machines: we do NOT byteswap the block numbers!
3902 */
617ba13b 3903 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3904 ei->i_data[block] = raw_inode->i_block[block];
3905 INIT_LIST_HEAD(&ei->i_orphan);
3906
0040d987 3907 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3908 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3909 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
3910 EXT4_INODE_SIZE(inode->i_sb)) {
3911 brelse (bh);
1d1fe1ee 3912 ret = -EIO;
ac27a0ec 3913 goto bad_inode;
e5d2861f 3914 }
ac27a0ec
DK
3915 if (ei->i_extra_isize == 0) {
3916 /* The extra space is currently unused. Use it. */
617ba13b
MC
3917 ei->i_extra_isize = sizeof(struct ext4_inode) -
3918 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3919 } else {
3920 __le32 *magic = (void *)raw_inode +
617ba13b 3921 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3922 ei->i_extra_isize;
617ba13b
MC
3923 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3924 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
3925 }
3926 } else
3927 ei->i_extra_isize = 0;
3928
ef7f3835
KS
3929 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3930 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3931 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3932 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3933
25ec56b5
JNC
3934 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3935 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3936 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3937 inode->i_version |=
3938 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3939 }
3940
ac27a0ec 3941 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3942 inode->i_op = &ext4_file_inode_operations;
3943 inode->i_fop = &ext4_file_operations;
3944 ext4_set_aops(inode);
ac27a0ec 3945 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3946 inode->i_op = &ext4_dir_inode_operations;
3947 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3948 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
3949 if (ext4_inode_is_fast_symlink(inode))
3950 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 3951 else {
617ba13b
MC
3952 inode->i_op = &ext4_symlink_inode_operations;
3953 ext4_set_aops(inode);
ac27a0ec
DK
3954 }
3955 } else {
617ba13b 3956 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3957 if (raw_inode->i_block[0])
3958 init_special_inode(inode, inode->i_mode,
3959 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3960 else
3961 init_special_inode(inode, inode->i_mode,
3962 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3963 }
3964 brelse (iloc.bh);
617ba13b 3965 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3966 unlock_new_inode(inode);
3967 return inode;
ac27a0ec
DK
3968
3969bad_inode:
1d1fe1ee
DH
3970 iget_failed(inode);
3971 return ERR_PTR(ret);
ac27a0ec
DK
3972}
3973
0fc1b451
AK
3974static int ext4_inode_blocks_set(handle_t *handle,
3975 struct ext4_inode *raw_inode,
3976 struct ext4_inode_info *ei)
3977{
3978 struct inode *inode = &(ei->vfs_inode);
3979 u64 i_blocks = inode->i_blocks;
3980 struct super_block *sb = inode->i_sb;
3981 int err = 0;
3982
3983 if (i_blocks <= ~0U) {
3984 /*
3985 * i_blocks can be represnted in a 32 bit variable
3986 * as multiple of 512 bytes
3987 */
8180a562 3988 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3989 raw_inode->i_blocks_high = 0;
8180a562 3990 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
3991 } else if (i_blocks <= 0xffffffffffffULL) {
3992 /*
3993 * i_blocks can be represented in a 48 bit variable
3994 * as multiple of 512 bytes
3995 */
3996 err = ext4_update_rocompat_feature(handle, sb,
3997 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3998 if (err)
3999 goto err_out;
4000 /* i_block is stored in the split 48 bit fields */
8180a562 4001 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4002 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4003 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4004 } else {
8180a562
AK
4005 /*
4006 * i_blocks should be represented in a 48 bit variable
4007 * as multiple of file system block size
4008 */
4009 err = ext4_update_rocompat_feature(handle, sb,
4010 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
4011 if (err)
4012 goto err_out;
4013 ei->i_flags |= EXT4_HUGE_FILE_FL;
4014 /* i_block is stored in file system block size */
4015 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4016 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4017 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
4018 }
4019err_out:
4020 return err;
4021}
4022
ac27a0ec
DK
4023/*
4024 * Post the struct inode info into an on-disk inode location in the
4025 * buffer-cache. This gobbles the caller's reference to the
4026 * buffer_head in the inode location struct.
4027 *
4028 * The caller must have write access to iloc->bh.
4029 */
617ba13b 4030static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4031 struct inode *inode,
617ba13b 4032 struct ext4_iloc *iloc)
ac27a0ec 4033{
617ba13b
MC
4034 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4035 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4036 struct buffer_head *bh = iloc->bh;
4037 int err = 0, rc, block;
4038
4039 /* For fields not not tracking in the in-memory inode,
4040 * initialise them to zero for new inodes. */
617ba13b
MC
4041 if (ei->i_state & EXT4_STATE_NEW)
4042 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4043
ff9ddf7e 4044 ext4_get_inode_flags(ei);
ac27a0ec
DK
4045 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4046 if(!(test_opt(inode->i_sb, NO_UID32))) {
4047 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4048 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4049/*
4050 * Fix up interoperability with old kernels. Otherwise, old inodes get
4051 * re-used with the upper 16 bits of the uid/gid intact
4052 */
4053 if(!ei->i_dtime) {
4054 raw_inode->i_uid_high =
4055 cpu_to_le16(high_16_bits(inode->i_uid));
4056 raw_inode->i_gid_high =
4057 cpu_to_le16(high_16_bits(inode->i_gid));
4058 } else {
4059 raw_inode->i_uid_high = 0;
4060 raw_inode->i_gid_high = 0;
4061 }
4062 } else {
4063 raw_inode->i_uid_low =
4064 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4065 raw_inode->i_gid_low =
4066 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4067 raw_inode->i_uid_high = 0;
4068 raw_inode->i_gid_high = 0;
4069 }
4070 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4071
4072 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4073 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4074 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4075 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4076
0fc1b451
AK
4077 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4078 goto out_brelse;
ac27a0ec 4079 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
267e4db9
AK
4080 /* clear the migrate flag in the raw_inode */
4081 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
9b8f1f01
MC
4082 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4083 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4084 raw_inode->i_file_acl_high =
4085 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4086 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4087 ext4_isize_set(raw_inode, ei->i_disksize);
4088 if (ei->i_disksize > 0x7fffffffULL) {
4089 struct super_block *sb = inode->i_sb;
4090 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4091 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4092 EXT4_SB(sb)->s_es->s_rev_level ==
4093 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4094 /* If this is the first large file
4095 * created, add a flag to the superblock.
4096 */
4097 err = ext4_journal_get_write_access(handle,
4098 EXT4_SB(sb)->s_sbh);
4099 if (err)
4100 goto out_brelse;
4101 ext4_update_dynamic_rev(sb);
4102 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4103 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
4104 sb->s_dirt = 1;
4105 handle->h_sync = 1;
4106 err = ext4_journal_dirty_metadata(handle,
4107 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
4108 }
4109 }
4110 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4111 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4112 if (old_valid_dev(inode->i_rdev)) {
4113 raw_inode->i_block[0] =
4114 cpu_to_le32(old_encode_dev(inode->i_rdev));
4115 raw_inode->i_block[1] = 0;
4116 } else {
4117 raw_inode->i_block[0] = 0;
4118 raw_inode->i_block[1] =
4119 cpu_to_le32(new_encode_dev(inode->i_rdev));
4120 raw_inode->i_block[2] = 0;
4121 }
617ba13b 4122 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4123 raw_inode->i_block[block] = ei->i_data[block];
4124
25ec56b5
JNC
4125 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4126 if (ei->i_extra_isize) {
4127 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4128 raw_inode->i_version_hi =
4129 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4130 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4131 }
4132
ac27a0ec 4133
617ba13b
MC
4134 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
4135 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
4136 if (!err)
4137 err = rc;
617ba13b 4138 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
4139
4140out_brelse:
4141 brelse (bh);
617ba13b 4142 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4143 return err;
4144}
4145
4146/*
617ba13b 4147 * ext4_write_inode()
ac27a0ec
DK
4148 *
4149 * We are called from a few places:
4150 *
4151 * - Within generic_file_write() for O_SYNC files.
4152 * Here, there will be no transaction running. We wait for any running
4153 * trasnaction to commit.
4154 *
4155 * - Within sys_sync(), kupdate and such.
4156 * We wait on commit, if tol to.
4157 *
4158 * - Within prune_icache() (PF_MEMALLOC == true)
4159 * Here we simply return. We can't afford to block kswapd on the
4160 * journal commit.
4161 *
4162 * In all cases it is actually safe for us to return without doing anything,
4163 * because the inode has been copied into a raw inode buffer in
617ba13b 4164 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4165 * knfsd.
4166 *
4167 * Note that we are absolutely dependent upon all inode dirtiers doing the
4168 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4169 * which we are interested.
4170 *
4171 * It would be a bug for them to not do this. The code:
4172 *
4173 * mark_inode_dirty(inode)
4174 * stuff();
4175 * inode->i_size = expr;
4176 *
4177 * is in error because a kswapd-driven write_inode() could occur while
4178 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4179 * will no longer be on the superblock's dirty inode list.
4180 */
617ba13b 4181int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
4182{
4183 if (current->flags & PF_MEMALLOC)
4184 return 0;
4185
617ba13b 4186 if (ext4_journal_current_handle()) {
b38bd33a 4187 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
4188 dump_stack();
4189 return -EIO;
4190 }
4191
4192 if (!wait)
4193 return 0;
4194
617ba13b 4195 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
4196}
4197
4198/*
617ba13b 4199 * ext4_setattr()
ac27a0ec
DK
4200 *
4201 * Called from notify_change.
4202 *
4203 * We want to trap VFS attempts to truncate the file as soon as
4204 * possible. In particular, we want to make sure that when the VFS
4205 * shrinks i_size, we put the inode on the orphan list and modify
4206 * i_disksize immediately, so that during the subsequent flushing of
4207 * dirty pages and freeing of disk blocks, we can guarantee that any
4208 * commit will leave the blocks being flushed in an unused state on
4209 * disk. (On recovery, the inode will get truncated and the blocks will
4210 * be freed, so we have a strong guarantee that no future commit will
4211 * leave these blocks visible to the user.)
4212 *
678aaf48
JK
4213 * Another thing we have to assure is that if we are in ordered mode
4214 * and inode is still attached to the committing transaction, we must
4215 * we start writeout of all the dirty pages which are being truncated.
4216 * This way we are sure that all the data written in the previous
4217 * transaction are already on disk (truncate waits for pages under
4218 * writeback).
4219 *
4220 * Called with inode->i_mutex down.
ac27a0ec 4221 */
617ba13b 4222int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4223{
4224 struct inode *inode = dentry->d_inode;
4225 int error, rc = 0;
4226 const unsigned int ia_valid = attr->ia_valid;
4227
4228 error = inode_change_ok(inode, attr);
4229 if (error)
4230 return error;
4231
4232 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4233 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4234 handle_t *handle;
4235
4236 /* (user+group)*(old+new) structure, inode write (sb,
4237 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
4238 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4239 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4240 if (IS_ERR(handle)) {
4241 error = PTR_ERR(handle);
4242 goto err_out;
4243 }
4244 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
4245 if (error) {
617ba13b 4246 ext4_journal_stop(handle);
ac27a0ec
DK
4247 return error;
4248 }
4249 /* Update corresponding info in inode so that everything is in
4250 * one transaction */
4251 if (attr->ia_valid & ATTR_UID)
4252 inode->i_uid = attr->ia_uid;
4253 if (attr->ia_valid & ATTR_GID)
4254 inode->i_gid = attr->ia_gid;
617ba13b
MC
4255 error = ext4_mark_inode_dirty(handle, inode);
4256 ext4_journal_stop(handle);
ac27a0ec
DK
4257 }
4258
e2b46574
ES
4259 if (attr->ia_valid & ATTR_SIZE) {
4260 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4261 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4262
4263 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4264 error = -EFBIG;
4265 goto err_out;
4266 }
4267 }
4268 }
4269
ac27a0ec
DK
4270 if (S_ISREG(inode->i_mode) &&
4271 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4272 handle_t *handle;
4273
617ba13b 4274 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4275 if (IS_ERR(handle)) {
4276 error = PTR_ERR(handle);
4277 goto err_out;
4278 }
4279
617ba13b
MC
4280 error = ext4_orphan_add(handle, inode);
4281 EXT4_I(inode)->i_disksize = attr->ia_size;
4282 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4283 if (!error)
4284 error = rc;
617ba13b 4285 ext4_journal_stop(handle);
678aaf48
JK
4286
4287 if (ext4_should_order_data(inode)) {
4288 error = ext4_begin_ordered_truncate(inode,
4289 attr->ia_size);
4290 if (error) {
4291 /* Do as much error cleanup as possible */
4292 handle = ext4_journal_start(inode, 3);
4293 if (IS_ERR(handle)) {
4294 ext4_orphan_del(NULL, inode);
4295 goto err_out;
4296 }
4297 ext4_orphan_del(handle, inode);
4298 ext4_journal_stop(handle);
4299 goto err_out;
4300 }
4301 }
ac27a0ec
DK
4302 }
4303
4304 rc = inode_setattr(inode, attr);
4305
617ba13b 4306 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
4307 * transaction handle at all, we need to clean up the in-core
4308 * orphan list manually. */
4309 if (inode->i_nlink)
617ba13b 4310 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4311
4312 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4313 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4314
4315err_out:
617ba13b 4316 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4317 if (!error)
4318 error = rc;
4319 return error;
4320}
4321
3e3398a0
MC
4322int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4323 struct kstat *stat)
4324{
4325 struct inode *inode;
4326 unsigned long delalloc_blocks;
4327
4328 inode = dentry->d_inode;
4329 generic_fillattr(inode, stat);
4330
4331 /*
4332 * We can't update i_blocks if the block allocation is delayed
4333 * otherwise in the case of system crash before the real block
4334 * allocation is done, we will have i_blocks inconsistent with
4335 * on-disk file blocks.
4336 * We always keep i_blocks updated together with real
4337 * allocation. But to not confuse with user, stat
4338 * will return the blocks that include the delayed allocation
4339 * blocks for this file.
4340 */
4341 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4342 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4343 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4344
4345 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4346 return 0;
4347}
ac27a0ec 4348
a02908f1
MC
4349static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4350 int chunk)
4351{
4352 int indirects;
4353
4354 /* if nrblocks are contiguous */
4355 if (chunk) {
4356 /*
4357 * With N contiguous data blocks, it need at most
4358 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4359 * 2 dindirect blocks
4360 * 1 tindirect block
4361 */
4362 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4363 return indirects + 3;
4364 }
4365 /*
4366 * if nrblocks are not contiguous, worse case, each block touch
4367 * a indirect block, and each indirect block touch a double indirect
4368 * block, plus a triple indirect block
4369 */
4370 indirects = nrblocks * 2 + 1;
4371 return indirects;
4372}
4373
4374static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4375{
4376 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4377 return ext4_indirect_trans_blocks(inode, nrblocks, 0);
4378 return ext4_ext_index_trans_blocks(inode, nrblocks, 0);
4379}
ac27a0ec 4380/*
a02908f1
MC
4381 * Account for index blocks, block groups bitmaps and block group
4382 * descriptor blocks if modify datablocks and index blocks
4383 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4384 *
a02908f1
MC
4385 * If datablocks are discontiguous, they are possible to spread over
4386 * different block groups too. If they are contiugous, with flexbg,
4387 * they could still across block group boundary.
ac27a0ec 4388 *
a02908f1
MC
4389 * Also account for superblock, inode, quota and xattr blocks
4390 */
4391int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4392{
4393 int groups, gdpblocks;
4394 int idxblocks;
4395 int ret = 0;
4396
4397 /*
4398 * How many index blocks need to touch to modify nrblocks?
4399 * The "Chunk" flag indicating whether the nrblocks is
4400 * physically contiguous on disk
4401 *
4402 * For Direct IO and fallocate, they calls get_block to allocate
4403 * one single extent at a time, so they could set the "Chunk" flag
4404 */
4405 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4406
4407 ret = idxblocks;
4408
4409 /*
4410 * Now let's see how many group bitmaps and group descriptors need
4411 * to account
4412 */
4413 groups = idxblocks;
4414 if (chunk)
4415 groups += 1;
4416 else
4417 groups += nrblocks;
4418
4419 gdpblocks = groups;
4420 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4421 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4422 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4423 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4424
4425 /* bitmaps and block group descriptor blocks */
4426 ret += groups + gdpblocks;
4427
4428 /* Blocks for super block, inode, quota and xattr blocks */
4429 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4430
4431 return ret;
4432}
4433
4434/*
4435 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
4436 * the modification of a single pages into a single transaction,
4437 * which may include multiple chunks of block allocations.
ac27a0ec 4438 *
a02908f1
MC
4439 * This could be called via ext4_write_begin() or later
4440 * ext4_da_writepages() in delalyed allocation case.
ac27a0ec 4441 *
a02908f1
MC
4442 * In both case it's possible that we could allocating multiple
4443 * chunks of blocks. We need to consider the worse case, when
4444 * one new block per extent.
ac27a0ec 4445 */
a86c6181 4446int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4447{
617ba13b 4448 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4449 int ret;
4450
a02908f1 4451 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4452
a02908f1 4453 /* Account for data blocks for journalled mode */
617ba13b 4454 if (ext4_should_journal_data(inode))
a02908f1 4455 ret += bpp;
ac27a0ec
DK
4456 return ret;
4457}
f3bd1f3f
MC
4458
4459/*
4460 * Calculate the journal credits for a chunk of data modification.
4461 *
4462 * This is called from DIO, fallocate or whoever calling
4463 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4464 *
4465 * journal buffers for data blocks are not included here, as DIO
4466 * and fallocate do no need to journal data buffers.
4467 */
4468int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4469{
4470 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4471}
4472
ac27a0ec 4473/*
617ba13b 4474 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4475 * Give this, we know that the caller already has write access to iloc->bh.
4476 */
617ba13b
MC
4477int ext4_mark_iloc_dirty(handle_t *handle,
4478 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4479{
4480 int err = 0;
4481
25ec56b5
JNC
4482 if (test_opt(inode->i_sb, I_VERSION))
4483 inode_inc_iversion(inode);
4484
ac27a0ec
DK
4485 /* the do_update_inode consumes one bh->b_count */
4486 get_bh(iloc->bh);
4487
dab291af 4488 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 4489 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4490 put_bh(iloc->bh);
4491 return err;
4492}
4493
4494/*
4495 * On success, We end up with an outstanding reference count against
4496 * iloc->bh. This _must_ be cleaned up later.
4497 */
4498
4499int
617ba13b
MC
4500ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4501 struct ext4_iloc *iloc)
ac27a0ec
DK
4502{
4503 int err = 0;
4504 if (handle) {
617ba13b 4505 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
4506 if (!err) {
4507 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 4508 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
4509 if (err) {
4510 brelse(iloc->bh);
4511 iloc->bh = NULL;
4512 }
4513 }
4514 }
617ba13b 4515 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4516 return err;
4517}
4518
6dd4ee7c
KS
4519/*
4520 * Expand an inode by new_extra_isize bytes.
4521 * Returns 0 on success or negative error number on failure.
4522 */
1d03ec98
AK
4523static int ext4_expand_extra_isize(struct inode *inode,
4524 unsigned int new_extra_isize,
4525 struct ext4_iloc iloc,
4526 handle_t *handle)
6dd4ee7c
KS
4527{
4528 struct ext4_inode *raw_inode;
4529 struct ext4_xattr_ibody_header *header;
4530 struct ext4_xattr_entry *entry;
4531
4532 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4533 return 0;
4534
4535 raw_inode = ext4_raw_inode(&iloc);
4536
4537 header = IHDR(inode, raw_inode);
4538 entry = IFIRST(header);
4539
4540 /* No extended attributes present */
4541 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
4542 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4543 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4544 new_extra_isize);
4545 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4546 return 0;
4547 }
4548
4549 /* try to expand with EAs present */
4550 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4551 raw_inode, handle);
4552}
4553
ac27a0ec
DK
4554/*
4555 * What we do here is to mark the in-core inode as clean with respect to inode
4556 * dirtiness (it may still be data-dirty).
4557 * This means that the in-core inode may be reaped by prune_icache
4558 * without having to perform any I/O. This is a very good thing,
4559 * because *any* task may call prune_icache - even ones which
4560 * have a transaction open against a different journal.
4561 *
4562 * Is this cheating? Not really. Sure, we haven't written the
4563 * inode out, but prune_icache isn't a user-visible syncing function.
4564 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4565 * we start and wait on commits.
4566 *
4567 * Is this efficient/effective? Well, we're being nice to the system
4568 * by cleaning up our inodes proactively so they can be reaped
4569 * without I/O. But we are potentially leaving up to five seconds'
4570 * worth of inodes floating about which prune_icache wants us to
4571 * write out. One way to fix that would be to get prune_icache()
4572 * to do a write_super() to free up some memory. It has the desired
4573 * effect.
4574 */
617ba13b 4575int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4576{
617ba13b 4577 struct ext4_iloc iloc;
6dd4ee7c
KS
4578 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4579 static unsigned int mnt_count;
4580 int err, ret;
ac27a0ec
DK
4581
4582 might_sleep();
617ba13b 4583 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
4584 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4585 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
4586 /*
4587 * We need extra buffer credits since we may write into EA block
4588 * with this same handle. If journal_extend fails, then it will
4589 * only result in a minor loss of functionality for that inode.
4590 * If this is felt to be critical, then e2fsck should be run to
4591 * force a large enough s_min_extra_isize.
4592 */
4593 if ((jbd2_journal_extend(handle,
4594 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4595 ret = ext4_expand_extra_isize(inode,
4596 sbi->s_want_extra_isize,
4597 iloc, handle);
4598 if (ret) {
4599 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
4600 if (mnt_count !=
4601 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 4602 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
4603 "Unable to expand inode %lu. Delete"
4604 " some EAs or run e2fsck.",
4605 inode->i_ino);
c1bddad9
AK
4606 mnt_count =
4607 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4608 }
4609 }
4610 }
4611 }
ac27a0ec 4612 if (!err)
617ba13b 4613 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4614 return err;
4615}
4616
4617/*
617ba13b 4618 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4619 *
4620 * We're really interested in the case where a file is being extended.
4621 * i_size has been changed by generic_commit_write() and we thus need
4622 * to include the updated inode in the current transaction.
4623 *
4624 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
4625 * are allocated to the file.
4626 *
4627 * If the inode is marked synchronous, we don't honour that here - doing
4628 * so would cause a commit on atime updates, which we don't bother doing.
4629 * We handle synchronous inodes at the highest possible level.
4630 */
617ba13b 4631void ext4_dirty_inode(struct inode *inode)
ac27a0ec 4632{
617ba13b 4633 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
4634 handle_t *handle;
4635
617ba13b 4636 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4637 if (IS_ERR(handle))
4638 goto out;
4639 if (current_handle &&
4640 current_handle->h_transaction != handle->h_transaction) {
4641 /* This task has a transaction open against a different fs */
4642 printk(KERN_EMERG "%s: transactions do not match!\n",
46e665e9 4643 __func__);
ac27a0ec
DK
4644 } else {
4645 jbd_debug(5, "marking dirty. outer handle=%p\n",
4646 current_handle);
617ba13b 4647 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4648 }
617ba13b 4649 ext4_journal_stop(handle);
ac27a0ec
DK
4650out:
4651 return;
4652}
4653
4654#if 0
4655/*
4656 * Bind an inode's backing buffer_head into this transaction, to prevent
4657 * it from being flushed to disk early. Unlike
617ba13b 4658 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4659 * returns no iloc structure, so the caller needs to repeat the iloc
4660 * lookup to mark the inode dirty later.
4661 */
617ba13b 4662static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4663{
617ba13b 4664 struct ext4_iloc iloc;
ac27a0ec
DK
4665
4666 int err = 0;
4667 if (handle) {
617ba13b 4668 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4669 if (!err) {
4670 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4671 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4672 if (!err)
617ba13b 4673 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
4674 iloc.bh);
4675 brelse(iloc.bh);
4676 }
4677 }
617ba13b 4678 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4679 return err;
4680}
4681#endif
4682
617ba13b 4683int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4684{
4685 journal_t *journal;
4686 handle_t *handle;
4687 int err;
4688
4689 /*
4690 * We have to be very careful here: changing a data block's
4691 * journaling status dynamically is dangerous. If we write a
4692 * data block to the journal, change the status and then delete
4693 * that block, we risk forgetting to revoke the old log record
4694 * from the journal and so a subsequent replay can corrupt data.
4695 * So, first we make sure that the journal is empty and that
4696 * nobody is changing anything.
4697 */
4698
617ba13b 4699 journal = EXT4_JOURNAL(inode);
d699594d 4700 if (is_journal_aborted(journal))
ac27a0ec
DK
4701 return -EROFS;
4702
dab291af
MC
4703 jbd2_journal_lock_updates(journal);
4704 jbd2_journal_flush(journal);
ac27a0ec
DK
4705
4706 /*
4707 * OK, there are no updates running now, and all cached data is
4708 * synced to disk. We are now in a completely consistent state
4709 * which doesn't have anything in the journal, and we know that
4710 * no filesystem updates are running, so it is safe to modify
4711 * the inode's in-core data-journaling state flag now.
4712 */
4713
4714 if (val)
617ba13b 4715 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 4716 else
617ba13b
MC
4717 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
4718 ext4_set_aops(inode);
ac27a0ec 4719
dab291af 4720 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4721
4722 /* Finally we can mark the inode as dirty. */
4723
617ba13b 4724 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4725 if (IS_ERR(handle))
4726 return PTR_ERR(handle);
4727
617ba13b 4728 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 4729 handle->h_sync = 1;
617ba13b
MC
4730 ext4_journal_stop(handle);
4731 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4732
4733 return err;
4734}
2e9ee850
AK
4735
4736static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4737{
4738 return !buffer_mapped(bh);
4739}
4740
4741int ext4_page_mkwrite(struct vm_area_struct *vma, struct page *page)
4742{
4743 loff_t size;
4744 unsigned long len;
4745 int ret = -EINVAL;
4746 struct file *file = vma->vm_file;
4747 struct inode *inode = file->f_path.dentry->d_inode;
4748 struct address_space *mapping = inode->i_mapping;
4749
4750 /*
4751 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
4752 * get i_mutex because we are already holding mmap_sem.
4753 */
4754 down_read(&inode->i_alloc_sem);
4755 size = i_size_read(inode);
4756 if (page->mapping != mapping || size <= page_offset(page)
4757 || !PageUptodate(page)) {
4758 /* page got truncated from under us? */
4759 goto out_unlock;
4760 }
4761 ret = 0;
4762 if (PageMappedToDisk(page))
4763 goto out_unlock;
4764
4765 if (page->index == size >> PAGE_CACHE_SHIFT)
4766 len = size & ~PAGE_CACHE_MASK;
4767 else
4768 len = PAGE_CACHE_SIZE;
4769
4770 if (page_has_buffers(page)) {
4771 /* return if we have all the buffers mapped */
4772 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4773 ext4_bh_unmapped))
4774 goto out_unlock;
4775 }
4776 /*
4777 * OK, we need to fill the hole... Do write_begin write_end
4778 * to do block allocation/reservation.We are not holding
4779 * inode.i__mutex here. That allow * parallel write_begin,
4780 * write_end call. lock_page prevent this from happening
4781 * on the same page though
4782 */
4783 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
4784 len, AOP_FLAG_UNINTERRUPTIBLE, &page, NULL);
4785 if (ret < 0)
4786 goto out_unlock;
4787 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
4788 len, len, page, NULL);
4789 if (ret < 0)
4790 goto out_unlock;
4791 ret = 0;
4792out_unlock:
4793 up_read(&inode->i_alloc_sem);
4794 return ret;
4795}