]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ext4/inode.c
ext4: discard preallocation when restarting a transaction during truncate
[mirror_ubuntu-bionic-kernel.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
d2a17637 45#include "ext4_extents.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
678aaf48
JK
51static inline int ext4_begin_ordered_truncate(struct inode *inode,
52 loff_t new_size)
53{
7f5aa215
JK
54 return jbd2_journal_begin_ordered_truncate(
55 EXT4_SB(inode->i_sb)->s_journal,
56 &EXT4_I(inode)->jinode,
57 new_size);
678aaf48
JK
58}
59
64769240
AT
60static void ext4_invalidatepage(struct page *page, unsigned long offset);
61
ac27a0ec
DK
62/*
63 * Test whether an inode is a fast symlink.
64 */
617ba13b 65static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 66{
617ba13b 67 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
68 (inode->i_sb->s_blocksize >> 9) : 0;
69
70 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
71}
72
73/*
617ba13b 74 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
75 * which has been journaled. Metadata (eg. indirect blocks) must be
76 * revoked in all cases.
77 *
78 * "bh" may be NULL: a metadata block may have been freed from memory
79 * but there may still be a record of it in the journal, and that record
80 * still needs to be revoked.
0390131b 81 *
e6b5d301
CW
82 * If the handle isn't valid we're not journaling, but we still need to
83 * call into ext4_journal_revoke() to put the buffer head.
ac27a0ec 84 */
617ba13b 85int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
de9a55b8 86 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
87{
88 int err;
89
90 might_sleep();
91
92 BUFFER_TRACE(bh, "enter");
93
94 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
7f4520cc 95 "data mode %x\n",
ac27a0ec
DK
96 bh, is_metadata, inode->i_mode,
97 test_opt(inode->i_sb, DATA_FLAGS));
98
99 /* Never use the revoke function if we are doing full data
100 * journaling: there is no need to, and a V1 superblock won't
101 * support it. Otherwise, only skip the revoke on un-journaled
102 * data blocks. */
103
617ba13b
MC
104 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
105 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 106 if (bh) {
dab291af 107 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 108 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
109 }
110 return 0;
111 }
112
113 /*
114 * data!=journal && (is_metadata || should_journal_data(inode))
115 */
617ba13b
MC
116 BUFFER_TRACE(bh, "call ext4_journal_revoke");
117 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 118 if (err)
46e665e9 119 ext4_abort(inode->i_sb, __func__,
ac27a0ec
DK
120 "error %d when attempting revoke", err);
121 BUFFER_TRACE(bh, "exit");
122 return err;
123}
124
125/*
126 * Work out how many blocks we need to proceed with the next chunk of a
127 * truncate transaction.
128 */
129static unsigned long blocks_for_truncate(struct inode *inode)
130{
725d26d3 131 ext4_lblk_t needed;
ac27a0ec
DK
132
133 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
134
135 /* Give ourselves just enough room to cope with inodes in which
136 * i_blocks is corrupt: we've seen disk corruptions in the past
137 * which resulted in random data in an inode which looked enough
617ba13b 138 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
139 * will go a bit crazy if that happens, but at least we should
140 * try not to panic the whole kernel. */
141 if (needed < 2)
142 needed = 2;
143
144 /* But we need to bound the transaction so we don't overflow the
145 * journal. */
617ba13b
MC
146 if (needed > EXT4_MAX_TRANS_DATA)
147 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 148
617ba13b 149 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
150}
151
152/*
153 * Truncate transactions can be complex and absolutely huge. So we need to
154 * be able to restart the transaction at a conventient checkpoint to make
155 * sure we don't overflow the journal.
156 *
157 * start_transaction gets us a new handle for a truncate transaction,
158 * and extend_transaction tries to extend the existing one a bit. If
159 * extend fails, we need to propagate the failure up and restart the
160 * transaction in the top-level truncate loop. --sct
161 */
162static handle_t *start_transaction(struct inode *inode)
163{
164 handle_t *result;
165
617ba13b 166 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
167 if (!IS_ERR(result))
168 return result;
169
617ba13b 170 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
171 return result;
172}
173
174/*
175 * Try to extend this transaction for the purposes of truncation.
176 *
177 * Returns 0 if we managed to create more room. If we can't create more
178 * room, and the transaction must be restarted we return 1.
179 */
180static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
181{
0390131b
FM
182 if (!ext4_handle_valid(handle))
183 return 0;
184 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 185 return 0;
617ba13b 186 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
187 return 0;
188 return 1;
189}
190
191/*
192 * Restart the transaction associated with *handle. This does a commit,
193 * so before we call here everything must be consistently dirtied against
194 * this transaction.
195 */
fa5d1113 196int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 197 int nblocks)
ac27a0ec 198{
487caeef
JK
199 int ret;
200
201 /*
202 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
203 * moment, get_block can be called only for blocks inside i_size since
204 * page cache has been already dropped and writes are blocked by
205 * i_mutex. So we can safely drop the i_data_sem here.
206 */
0390131b 207 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 208 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
209 up_write(&EXT4_I(inode)->i_data_sem);
210 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
211 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 212 ext4_discard_preallocations(inode);
487caeef
JK
213
214 return ret;
ac27a0ec
DK
215}
216
217/*
218 * Called at the last iput() if i_nlink is zero.
219 */
af5bc92d 220void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
221{
222 handle_t *handle;
bc965ab3 223 int err;
ac27a0ec 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
227 truncate_inode_pages(&inode->i_data, 0);
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
bc965ab3 232 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 233 if (IS_ERR(handle)) {
bc965ab3 234 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
235 /*
236 * If we're going to skip the normal cleanup, we still need to
237 * make sure that the in-core orphan linked list is properly
238 * cleaned up.
239 */
617ba13b 240 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
241 goto no_delete;
242 }
243
244 if (IS_SYNC(inode))
0390131b 245 ext4_handle_sync(handle);
ac27a0ec 246 inode->i_size = 0;
bc965ab3
TT
247 err = ext4_mark_inode_dirty(handle, inode);
248 if (err) {
249 ext4_warning(inode->i_sb, __func__,
250 "couldn't mark inode dirty (err %d)", err);
251 goto stop_handle;
252 }
ac27a0ec 253 if (inode->i_blocks)
617ba13b 254 ext4_truncate(inode);
bc965ab3
TT
255
256 /*
257 * ext4_ext_truncate() doesn't reserve any slop when it
258 * restarts journal transactions; therefore there may not be
259 * enough credits left in the handle to remove the inode from
260 * the orphan list and set the dtime field.
261 */
0390131b 262 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
263 err = ext4_journal_extend(handle, 3);
264 if (err > 0)
265 err = ext4_journal_restart(handle, 3);
266 if (err != 0) {
267 ext4_warning(inode->i_sb, __func__,
268 "couldn't extend journal (err %d)", err);
269 stop_handle:
270 ext4_journal_stop(handle);
271 goto no_delete;
272 }
273 }
274
ac27a0ec 275 /*
617ba13b 276 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 277 * AKPM: I think this can be inside the above `if'.
617ba13b 278 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 279 * deletion of a non-existent orphan - this is because we don't
617ba13b 280 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
281 * (Well, we could do this if we need to, but heck - it works)
282 */
617ba13b
MC
283 ext4_orphan_del(handle, inode);
284 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
285
286 /*
287 * One subtle ordering requirement: if anything has gone wrong
288 * (transaction abort, IO errors, whatever), then we can still
289 * do these next steps (the fs will already have been marked as
290 * having errors), but we can't free the inode if the mark_dirty
291 * fails.
292 */
617ba13b 293 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
294 /* If that failed, just do the required in-core inode clear. */
295 clear_inode(inode);
296 else
617ba13b
MC
297 ext4_free_inode(handle, inode);
298 ext4_journal_stop(handle);
ac27a0ec
DK
299 return;
300no_delete:
301 clear_inode(inode); /* We must guarantee clearing of inode... */
302}
303
304typedef struct {
305 __le32 *p;
306 __le32 key;
307 struct buffer_head *bh;
308} Indirect;
309
310static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
311{
312 p->key = *(p->p = v);
313 p->bh = bh;
314}
315
ac27a0ec 316/**
617ba13b 317 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
318 * @inode: inode in question (we are only interested in its superblock)
319 * @i_block: block number to be parsed
320 * @offsets: array to store the offsets in
8c55e204
DK
321 * @boundary: set this non-zero if the referred-to block is likely to be
322 * followed (on disk) by an indirect block.
ac27a0ec 323 *
617ba13b 324 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
325 * for UNIX filesystems - tree of pointers anchored in the inode, with
326 * data blocks at leaves and indirect blocks in intermediate nodes.
327 * This function translates the block number into path in that tree -
328 * return value is the path length and @offsets[n] is the offset of
329 * pointer to (n+1)th node in the nth one. If @block is out of range
330 * (negative or too large) warning is printed and zero returned.
331 *
332 * Note: function doesn't find node addresses, so no IO is needed. All
333 * we need to know is the capacity of indirect blocks (taken from the
334 * inode->i_sb).
335 */
336
337/*
338 * Portability note: the last comparison (check that we fit into triple
339 * indirect block) is spelled differently, because otherwise on an
340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
341 * if our filesystem had 8Kb blocks. We might use long long, but that would
342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
343 * i_block would have to be negative in the very beginning, so we would not
344 * get there at all.
345 */
346
617ba13b 347static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
348 ext4_lblk_t i_block,
349 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 350{
617ba13b
MC
351 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
352 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
353 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
354 indirect_blocks = ptrs,
355 double_blocks = (1 << (ptrs_bits * 2));
356 int n = 0;
357 int final = 0;
358
c333e073 359 if (i_block < direct_blocks) {
ac27a0ec
DK
360 offsets[n++] = i_block;
361 final = direct_blocks;
af5bc92d 362 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 363 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
364 offsets[n++] = i_block;
365 final = ptrs;
366 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 367 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
368 offsets[n++] = i_block >> ptrs_bits;
369 offsets[n++] = i_block & (ptrs - 1);
370 final = ptrs;
371 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 372 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
373 offsets[n++] = i_block >> (ptrs_bits * 2);
374 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
375 offsets[n++] = i_block & (ptrs - 1);
376 final = ptrs;
377 } else {
e2b46574 378 ext4_warning(inode->i_sb, "ext4_block_to_path",
de9a55b8
TT
379 "block %lu > max in inode %lu",
380 i_block + direct_blocks +
381 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
382 }
383 if (boundary)
384 *boundary = final - 1 - (i_block & (ptrs - 1));
385 return n;
386}
387
fe2c8191 388static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
389 __le32 *p, unsigned int max)
390{
f73953c0 391 __le32 *bref = p;
6fd058f7
TT
392 unsigned int blk;
393
fe2c8191 394 while (bref < p+max) {
6fd058f7 395 blk = le32_to_cpu(*bref++);
de9a55b8
TT
396 if (blk &&
397 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 398 blk, 1))) {
fe2c8191 399 ext4_error(inode->i_sb, function,
6fd058f7
TT
400 "invalid block reference %u "
401 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
402 return -EIO;
403 }
404 }
405 return 0;
fe2c8191
TN
406}
407
408
409#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 410 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
411 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
412
413#define ext4_check_inode_blockref(inode) \
de9a55b8 414 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
415 EXT4_NDIR_BLOCKS)
416
ac27a0ec 417/**
617ba13b 418 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
419 * @inode: inode in question
420 * @depth: depth of the chain (1 - direct pointer, etc.)
421 * @offsets: offsets of pointers in inode/indirect blocks
422 * @chain: place to store the result
423 * @err: here we store the error value
424 *
425 * Function fills the array of triples <key, p, bh> and returns %NULL
426 * if everything went OK or the pointer to the last filled triple
427 * (incomplete one) otherwise. Upon the return chain[i].key contains
428 * the number of (i+1)-th block in the chain (as it is stored in memory,
429 * i.e. little-endian 32-bit), chain[i].p contains the address of that
430 * number (it points into struct inode for i==0 and into the bh->b_data
431 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
432 * block for i>0 and NULL for i==0. In other words, it holds the block
433 * numbers of the chain, addresses they were taken from (and where we can
434 * verify that chain did not change) and buffer_heads hosting these
435 * numbers.
436 *
437 * Function stops when it stumbles upon zero pointer (absent block)
438 * (pointer to last triple returned, *@err == 0)
439 * or when it gets an IO error reading an indirect block
440 * (ditto, *@err == -EIO)
ac27a0ec
DK
441 * or when it reads all @depth-1 indirect blocks successfully and finds
442 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
443 *
444 * Need to be called with
0e855ac8 445 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 446 */
725d26d3
AK
447static Indirect *ext4_get_branch(struct inode *inode, int depth,
448 ext4_lblk_t *offsets,
ac27a0ec
DK
449 Indirect chain[4], int *err)
450{
451 struct super_block *sb = inode->i_sb;
452 Indirect *p = chain;
453 struct buffer_head *bh;
454
455 *err = 0;
456 /* i_data is not going away, no lock needed */
af5bc92d 457 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
458 if (!p->key)
459 goto no_block;
460 while (--depth) {
fe2c8191
TN
461 bh = sb_getblk(sb, le32_to_cpu(p->key));
462 if (unlikely(!bh))
ac27a0ec 463 goto failure;
de9a55b8 464
fe2c8191
TN
465 if (!bh_uptodate_or_lock(bh)) {
466 if (bh_submit_read(bh) < 0) {
467 put_bh(bh);
468 goto failure;
469 }
470 /* validate block references */
471 if (ext4_check_indirect_blockref(inode, bh)) {
472 put_bh(bh);
473 goto failure;
474 }
475 }
de9a55b8 476
af5bc92d 477 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
478 /* Reader: end */
479 if (!p->key)
480 goto no_block;
481 }
482 return NULL;
483
ac27a0ec
DK
484failure:
485 *err = -EIO;
486no_block:
487 return p;
488}
489
490/**
617ba13b 491 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
492 * @inode: owner
493 * @ind: descriptor of indirect block.
494 *
1cc8dcf5 495 * This function returns the preferred place for block allocation.
ac27a0ec
DK
496 * It is used when heuristic for sequential allocation fails.
497 * Rules are:
498 * + if there is a block to the left of our position - allocate near it.
499 * + if pointer will live in indirect block - allocate near that block.
500 * + if pointer will live in inode - allocate in the same
501 * cylinder group.
502 *
503 * In the latter case we colour the starting block by the callers PID to
504 * prevent it from clashing with concurrent allocations for a different inode
505 * in the same block group. The PID is used here so that functionally related
506 * files will be close-by on-disk.
507 *
508 * Caller must make sure that @ind is valid and will stay that way.
509 */
617ba13b 510static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 511{
617ba13b 512 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 513 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 514 __le32 *p;
617ba13b 515 ext4_fsblk_t bg_start;
74d3487f 516 ext4_fsblk_t last_block;
617ba13b 517 ext4_grpblk_t colour;
a4912123
TT
518 ext4_group_t block_group;
519 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
520
521 /* Try to find previous block */
522 for (p = ind->p - 1; p >= start; p--) {
523 if (*p)
524 return le32_to_cpu(*p);
525 }
526
527 /* No such thing, so let's try location of indirect block */
528 if (ind->bh)
529 return ind->bh->b_blocknr;
530
531 /*
532 * It is going to be referred to from the inode itself? OK, just put it
533 * into the same cylinder group then.
534 */
a4912123
TT
535 block_group = ei->i_block_group;
536 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
537 block_group &= ~(flex_size-1);
538 if (S_ISREG(inode->i_mode))
539 block_group++;
540 }
541 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
542 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
543
a4912123
TT
544 /*
545 * If we are doing delayed allocation, we don't need take
546 * colour into account.
547 */
548 if (test_opt(inode->i_sb, DELALLOC))
549 return bg_start;
550
74d3487f
VC
551 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
552 colour = (current->pid % 16) *
617ba13b 553 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
554 else
555 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
556 return bg_start + colour;
557}
558
559/**
1cc8dcf5 560 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
561 * @inode: owner
562 * @block: block we want
ac27a0ec 563 * @partial: pointer to the last triple within a chain
ac27a0ec 564 *
1cc8dcf5 565 * Normally this function find the preferred place for block allocation,
fb01bfda 566 * returns it.
fb0a387d
ES
567 * Because this is only used for non-extent files, we limit the block nr
568 * to 32 bits.
ac27a0ec 569 */
725d26d3 570static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 571 Indirect *partial)
ac27a0ec 572{
fb0a387d
ES
573 ext4_fsblk_t goal;
574
ac27a0ec 575 /*
c2ea3fde 576 * XXX need to get goal block from mballoc's data structures
ac27a0ec 577 */
ac27a0ec 578
fb0a387d
ES
579 goal = ext4_find_near(inode, partial);
580 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
581 return goal;
ac27a0ec
DK
582}
583
584/**
617ba13b 585 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
586 * of direct blocks need to be allocated for the given branch.
587 *
588 * @branch: chain of indirect blocks
589 * @k: number of blocks need for indirect blocks
590 * @blks: number of data blocks to be mapped.
591 * @blocks_to_boundary: the offset in the indirect block
592 *
593 * return the total number of blocks to be allocate, including the
594 * direct and indirect blocks.
595 */
498e5f24 596static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 597 int blocks_to_boundary)
ac27a0ec 598{
498e5f24 599 unsigned int count = 0;
ac27a0ec
DK
600
601 /*
602 * Simple case, [t,d]Indirect block(s) has not allocated yet
603 * then it's clear blocks on that path have not allocated
604 */
605 if (k > 0) {
606 /* right now we don't handle cross boundary allocation */
607 if (blks < blocks_to_boundary + 1)
608 count += blks;
609 else
610 count += blocks_to_boundary + 1;
611 return count;
612 }
613
614 count++;
615 while (count < blks && count <= blocks_to_boundary &&
616 le32_to_cpu(*(branch[0].p + count)) == 0) {
617 count++;
618 }
619 return count;
620}
621
622/**
617ba13b 623 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
624 * @indirect_blks: the number of blocks need to allocate for indirect
625 * blocks
626 *
627 * @new_blocks: on return it will store the new block numbers for
628 * the indirect blocks(if needed) and the first direct block,
629 * @blks: on return it will store the total number of allocated
630 * direct blocks
631 */
617ba13b 632static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
633 ext4_lblk_t iblock, ext4_fsblk_t goal,
634 int indirect_blks, int blks,
635 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 636{
815a1130 637 struct ext4_allocation_request ar;
ac27a0ec 638 int target, i;
7061eba7 639 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 640 int index = 0;
617ba13b 641 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
642 int ret = 0;
643
644 /*
645 * Here we try to allocate the requested multiple blocks at once,
646 * on a best-effort basis.
647 * To build a branch, we should allocate blocks for
648 * the indirect blocks(if not allocated yet), and at least
649 * the first direct block of this branch. That's the
650 * minimum number of blocks need to allocate(required)
651 */
7061eba7
AK
652 /* first we try to allocate the indirect blocks */
653 target = indirect_blks;
654 while (target > 0) {
ac27a0ec
DK
655 count = target;
656 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
657 current_block = ext4_new_meta_blocks(handle, inode,
658 goal, &count, err);
ac27a0ec
DK
659 if (*err)
660 goto failed_out;
661
fb0a387d
ES
662 BUG_ON(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS);
663
ac27a0ec
DK
664 target -= count;
665 /* allocate blocks for indirect blocks */
666 while (index < indirect_blks && count) {
667 new_blocks[index++] = current_block++;
668 count--;
669 }
7061eba7
AK
670 if (count > 0) {
671 /*
672 * save the new block number
673 * for the first direct block
674 */
675 new_blocks[index] = current_block;
676 printk(KERN_INFO "%s returned more blocks than "
677 "requested\n", __func__);
678 WARN_ON(1);
ac27a0ec 679 break;
7061eba7 680 }
ac27a0ec
DK
681 }
682
7061eba7
AK
683 target = blks - count ;
684 blk_allocated = count;
685 if (!target)
686 goto allocated;
687 /* Now allocate data blocks */
815a1130
TT
688 memset(&ar, 0, sizeof(ar));
689 ar.inode = inode;
690 ar.goal = goal;
691 ar.len = target;
692 ar.logical = iblock;
693 if (S_ISREG(inode->i_mode))
694 /* enable in-core preallocation only for regular files */
695 ar.flags = EXT4_MB_HINT_DATA;
696
697 current_block = ext4_mb_new_blocks(handle, &ar, err);
fb0a387d 698 BUG_ON(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS);
815a1130 699
7061eba7
AK
700 if (*err && (target == blks)) {
701 /*
702 * if the allocation failed and we didn't allocate
703 * any blocks before
704 */
705 goto failed_out;
706 }
707 if (!*err) {
708 if (target == blks) {
de9a55b8
TT
709 /*
710 * save the new block number
711 * for the first direct block
712 */
7061eba7
AK
713 new_blocks[index] = current_block;
714 }
815a1130 715 blk_allocated += ar.len;
7061eba7
AK
716 }
717allocated:
ac27a0ec 718 /* total number of blocks allocated for direct blocks */
7061eba7 719 ret = blk_allocated;
ac27a0ec
DK
720 *err = 0;
721 return ret;
722failed_out:
af5bc92d 723 for (i = 0; i < index; i++)
c9de560d 724 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
725 return ret;
726}
727
728/**
617ba13b 729 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
730 * @inode: owner
731 * @indirect_blks: number of allocated indirect blocks
732 * @blks: number of allocated direct blocks
733 * @offsets: offsets (in the blocks) to store the pointers to next.
734 * @branch: place to store the chain in.
735 *
736 * This function allocates blocks, zeroes out all but the last one,
737 * links them into chain and (if we are synchronous) writes them to disk.
738 * In other words, it prepares a branch that can be spliced onto the
739 * inode. It stores the information about that chain in the branch[], in
617ba13b 740 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
741 * we had read the existing part of chain and partial points to the last
742 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 743 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
744 * place chain is disconnected - *branch->p is still zero (we did not
745 * set the last link), but branch->key contains the number that should
746 * be placed into *branch->p to fill that gap.
747 *
748 * If allocation fails we free all blocks we've allocated (and forget
749 * their buffer_heads) and return the error value the from failed
617ba13b 750 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
751 * as described above and return 0.
752 */
617ba13b 753static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
754 ext4_lblk_t iblock, int indirect_blks,
755 int *blks, ext4_fsblk_t goal,
756 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
757{
758 int blocksize = inode->i_sb->s_blocksize;
759 int i, n = 0;
760 int err = 0;
761 struct buffer_head *bh;
762 int num;
617ba13b
MC
763 ext4_fsblk_t new_blocks[4];
764 ext4_fsblk_t current_block;
ac27a0ec 765
7061eba7 766 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
767 *blks, new_blocks, &err);
768 if (err)
769 return err;
770
771 branch[0].key = cpu_to_le32(new_blocks[0]);
772 /*
773 * metadata blocks and data blocks are allocated.
774 */
775 for (n = 1; n <= indirect_blks; n++) {
776 /*
777 * Get buffer_head for parent block, zero it out
778 * and set the pointer to new one, then send
779 * parent to disk.
780 */
781 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
782 branch[n].bh = bh;
783 lock_buffer(bh);
784 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 785 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 786 if (err) {
6487a9d3
CW
787 /* Don't brelse(bh) here; it's done in
788 * ext4_journal_forget() below */
ac27a0ec 789 unlock_buffer(bh);
ac27a0ec
DK
790 goto failed;
791 }
792
793 memset(bh->b_data, 0, blocksize);
794 branch[n].p = (__le32 *) bh->b_data + offsets[n];
795 branch[n].key = cpu_to_le32(new_blocks[n]);
796 *branch[n].p = branch[n].key;
af5bc92d 797 if (n == indirect_blks) {
ac27a0ec
DK
798 current_block = new_blocks[n];
799 /*
800 * End of chain, update the last new metablock of
801 * the chain to point to the new allocated
802 * data blocks numbers
803 */
de9a55b8 804 for (i = 1; i < num; i++)
ac27a0ec
DK
805 *(branch[n].p + i) = cpu_to_le32(++current_block);
806 }
807 BUFFER_TRACE(bh, "marking uptodate");
808 set_buffer_uptodate(bh);
809 unlock_buffer(bh);
810
0390131b
FM
811 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
812 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
813 if (err)
814 goto failed;
815 }
816 *blks = num;
817 return err;
818failed:
819 /* Allocation failed, free what we already allocated */
820 for (i = 1; i <= n ; i++) {
dab291af 821 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 822 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec 823 }
af5bc92d 824 for (i = 0; i < indirect_blks; i++)
c9de560d 825 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 826
c9de560d 827 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
828
829 return err;
830}
831
832/**
617ba13b 833 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
834 * @inode: owner
835 * @block: (logical) number of block we are adding
836 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 837 * ext4_alloc_branch)
ac27a0ec
DK
838 * @where: location of missing link
839 * @num: number of indirect blocks we are adding
840 * @blks: number of direct blocks we are adding
841 *
842 * This function fills the missing link and does all housekeeping needed in
843 * inode (->i_blocks, etc.). In case of success we end up with the full
844 * chain to new block and return 0.
845 */
617ba13b 846static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
847 ext4_lblk_t block, Indirect *where, int num,
848 int blks)
ac27a0ec
DK
849{
850 int i;
851 int err = 0;
617ba13b 852 ext4_fsblk_t current_block;
ac27a0ec 853
ac27a0ec
DK
854 /*
855 * If we're splicing into a [td]indirect block (as opposed to the
856 * inode) then we need to get write access to the [td]indirect block
857 * before the splice.
858 */
859 if (where->bh) {
860 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 861 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
862 if (err)
863 goto err_out;
864 }
865 /* That's it */
866
867 *where->p = where->key;
868
869 /*
870 * Update the host buffer_head or inode to point to more just allocated
871 * direct blocks blocks
872 */
873 if (num == 0 && blks > 1) {
874 current_block = le32_to_cpu(where->key) + 1;
875 for (i = 1; i < blks; i++)
af5bc92d 876 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
877 }
878
ac27a0ec 879 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
880 /* had we spliced it onto indirect block? */
881 if (where->bh) {
882 /*
883 * If we spliced it onto an indirect block, we haven't
884 * altered the inode. Note however that if it is being spliced
885 * onto an indirect block at the very end of the file (the
886 * file is growing) then we *will* alter the inode to reflect
887 * the new i_size. But that is not done here - it is done in
617ba13b 888 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
889 */
890 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
891 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
892 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
893 if (err)
894 goto err_out;
895 } else {
896 /*
897 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 898 */
41591750 899 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
900 jbd_debug(5, "splicing direct\n");
901 }
902 return err;
903
904err_out:
905 for (i = 1; i <= num; i++) {
dab291af 906 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 907 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
908 ext4_free_blocks(handle, inode,
909 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 910 }
c9de560d 911 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
912
913 return err;
914}
915
916/*
b920c755
TT
917 * The ext4_ind_get_blocks() function handles non-extents inodes
918 * (i.e., using the traditional indirect/double-indirect i_blocks
919 * scheme) for ext4_get_blocks().
920 *
ac27a0ec
DK
921 * Allocation strategy is simple: if we have to allocate something, we will
922 * have to go the whole way to leaf. So let's do it before attaching anything
923 * to tree, set linkage between the newborn blocks, write them if sync is
924 * required, recheck the path, free and repeat if check fails, otherwise
925 * set the last missing link (that will protect us from any truncate-generated
926 * removals - all blocks on the path are immune now) and possibly force the
927 * write on the parent block.
928 * That has a nice additional property: no special recovery from the failed
929 * allocations is needed - we simply release blocks and do not touch anything
930 * reachable from inode.
931 *
932 * `handle' can be NULL if create == 0.
933 *
ac27a0ec
DK
934 * return > 0, # of blocks mapped or allocated.
935 * return = 0, if plain lookup failed.
936 * return < 0, error case.
c278bfec 937 *
b920c755
TT
938 * The ext4_ind_get_blocks() function should be called with
939 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
940 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
941 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
942 * blocks.
ac27a0ec 943 */
e4d996ca 944static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
945 ext4_lblk_t iblock, unsigned int maxblocks,
946 struct buffer_head *bh_result,
947 int flags)
ac27a0ec
DK
948{
949 int err = -EIO;
725d26d3 950 ext4_lblk_t offsets[4];
ac27a0ec
DK
951 Indirect chain[4];
952 Indirect *partial;
617ba13b 953 ext4_fsblk_t goal;
ac27a0ec
DK
954 int indirect_blks;
955 int blocks_to_boundary = 0;
956 int depth;
ac27a0ec 957 int count = 0;
617ba13b 958 ext4_fsblk_t first_block = 0;
ac27a0ec 959
a86c6181 960 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 961 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 962 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 963 &blocks_to_boundary);
ac27a0ec
DK
964
965 if (depth == 0)
966 goto out;
967
617ba13b 968 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
969
970 /* Simplest case - block found, no allocation needed */
971 if (!partial) {
972 first_block = le32_to_cpu(chain[depth - 1].key);
973 clear_buffer_new(bh_result);
974 count++;
975 /*map more blocks*/
976 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 977 ext4_fsblk_t blk;
ac27a0ec 978
ac27a0ec
DK
979 blk = le32_to_cpu(*(chain[depth-1].p + count));
980
981 if (blk == first_block + count)
982 count++;
983 else
984 break;
985 }
c278bfec 986 goto got_it;
ac27a0ec
DK
987 }
988
989 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 990 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
991 goto cleanup;
992
ac27a0ec 993 /*
c2ea3fde 994 * Okay, we need to do block allocation.
ac27a0ec 995 */
fb01bfda 996 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
997
998 /* the number of blocks need to allocate for [d,t]indirect blocks */
999 indirect_blks = (chain + depth) - partial - 1;
1000
1001 /*
1002 * Next look up the indirect map to count the totoal number of
1003 * direct blocks to allocate for this branch.
1004 */
617ba13b 1005 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
1006 maxblocks, blocks_to_boundary);
1007 /*
617ba13b 1008 * Block out ext4_truncate while we alter the tree
ac27a0ec 1009 */
7061eba7 1010 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
1011 &count, goal,
1012 offsets + (partial - chain), partial);
ac27a0ec
DK
1013
1014 /*
617ba13b 1015 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1016 * on the new chain if there is a failure, but that risks using
1017 * up transaction credits, especially for bitmaps where the
1018 * credits cannot be returned. Can we handle this somehow? We
1019 * may need to return -EAGAIN upwards in the worst case. --sct
1020 */
1021 if (!err)
617ba13b 1022 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8
TT
1023 partial, indirect_blks, count);
1024 else
ac27a0ec
DK
1025 goto cleanup;
1026
1027 set_buffer_new(bh_result);
1028got_it:
1029 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1030 if (count > blocks_to_boundary)
1031 set_buffer_boundary(bh_result);
1032 err = count;
1033 /* Clean up and exit */
1034 partial = chain + depth - 1; /* the whole chain */
1035cleanup:
1036 while (partial > chain) {
1037 BUFFER_TRACE(partial->bh, "call brelse");
1038 brelse(partial->bh);
1039 partial--;
1040 }
1041 BUFFER_TRACE(bh_result, "returned");
1042out:
1043 return err;
1044}
1045
60e58e0f
MC
1046qsize_t ext4_get_reserved_space(struct inode *inode)
1047{
1048 unsigned long long total;
1049
1050 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1051 total = EXT4_I(inode)->i_reserved_data_blocks +
1052 EXT4_I(inode)->i_reserved_meta_blocks;
1053 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1054
1055 return total;
1056}
12219aea
AK
1057/*
1058 * Calculate the number of metadata blocks need to reserve
1059 * to allocate @blocks for non extent file based file
1060 */
1061static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1062{
1063 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1064 int ind_blks, dind_blks, tind_blks;
1065
1066 /* number of new indirect blocks needed */
1067 ind_blks = (blocks + icap - 1) / icap;
1068
1069 dind_blks = (ind_blks + icap - 1) / icap;
1070
1071 tind_blks = 1;
1072
1073 return ind_blks + dind_blks + tind_blks;
1074}
1075
1076/*
1077 * Calculate the number of metadata blocks need to reserve
1078 * to allocate given number of blocks
1079 */
1080static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1081{
cd213226
MC
1082 if (!blocks)
1083 return 0;
1084
12219aea
AK
1085 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1086 return ext4_ext_calc_metadata_amount(inode, blocks);
1087
1088 return ext4_indirect_calc_metadata_amount(inode, blocks);
1089}
1090
1091static void ext4_da_update_reserve_space(struct inode *inode, int used)
1092{
1093 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1094 int total, mdb, mdb_free;
1095
1096 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1097 /* recalculate the number of metablocks still need to be reserved */
1098 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1099 mdb = ext4_calc_metadata_amount(inode, total);
1100
1101 /* figure out how many metablocks to release */
1102 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1103 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1104
6bc6e63f
AK
1105 if (mdb_free) {
1106 /* Account for allocated meta_blocks */
1107 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1108
1109 /* update fs dirty blocks counter */
1110 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1111 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1112 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1113 }
12219aea
AK
1114
1115 /* update per-inode reservations */
1116 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1117 EXT4_I(inode)->i_reserved_data_blocks -= used;
12219aea 1118 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1119
1120 /*
1121 * free those over-booking quota for metadata blocks
1122 */
60e58e0f
MC
1123 if (mdb_free)
1124 vfs_dq_release_reservation_block(inode, mdb_free);
d6014301
AK
1125
1126 /*
1127 * If we have done all the pending block allocations and if
1128 * there aren't any writers on the inode, we can discard the
1129 * inode's preallocations.
1130 */
1131 if (!total && (atomic_read(&inode->i_writecount) == 0))
1132 ext4_discard_preallocations(inode);
12219aea
AK
1133}
1134
80e42468
TT
1135static int check_block_validity(struct inode *inode, const char *msg,
1136 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1137{
1138 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
80e42468 1139 ext4_error(inode->i_sb, msg,
6fd058f7
TT
1140 "inode #%lu logical block %llu mapped to %llu "
1141 "(size %d)", inode->i_ino,
1142 (unsigned long long) logical,
1143 (unsigned long long) phys, len);
6fd058f7
TT
1144 return -EIO;
1145 }
1146 return 0;
1147}
1148
55138e0b 1149/*
1f94533d
TT
1150 * Return the number of contiguous dirty pages in a given inode
1151 * starting at page frame idx.
55138e0b
TT
1152 */
1153static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1154 unsigned int max_pages)
1155{
1156 struct address_space *mapping = inode->i_mapping;
1157 pgoff_t index;
1158 struct pagevec pvec;
1159 pgoff_t num = 0;
1160 int i, nr_pages, done = 0;
1161
1162 if (max_pages == 0)
1163 return 0;
1164 pagevec_init(&pvec, 0);
1165 while (!done) {
1166 index = idx;
1167 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1168 PAGECACHE_TAG_DIRTY,
1169 (pgoff_t)PAGEVEC_SIZE);
1170 if (nr_pages == 0)
1171 break;
1172 for (i = 0; i < nr_pages; i++) {
1173 struct page *page = pvec.pages[i];
1174 struct buffer_head *bh, *head;
1175
1176 lock_page(page);
1177 if (unlikely(page->mapping != mapping) ||
1178 !PageDirty(page) ||
1179 PageWriteback(page) ||
1180 page->index != idx) {
1181 done = 1;
1182 unlock_page(page);
1183 break;
1184 }
1f94533d
TT
1185 if (page_has_buffers(page)) {
1186 bh = head = page_buffers(page);
1187 do {
1188 if (!buffer_delay(bh) &&
1189 !buffer_unwritten(bh))
1190 done = 1;
1191 bh = bh->b_this_page;
1192 } while (!done && (bh != head));
1193 }
55138e0b
TT
1194 unlock_page(page);
1195 if (done)
1196 break;
1197 idx++;
1198 num++;
1199 if (num >= max_pages)
1200 break;
1201 }
1202 pagevec_release(&pvec);
1203 }
1204 return num;
1205}
1206
f5ab0d1f 1207/*
12b7ac17 1208 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1209 * and returns if the blocks are already mapped.
f5ab0d1f 1210 *
f5ab0d1f
MC
1211 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1212 * and store the allocated blocks in the result buffer head and mark it
1213 * mapped.
1214 *
1215 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1216 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1217 * based files
1218 *
1219 * On success, it returns the number of blocks being mapped or allocate.
1220 * if create==0 and the blocks are pre-allocated and uninitialized block,
1221 * the result buffer head is unmapped. If the create ==1, it will make sure
1222 * the buffer head is mapped.
1223 *
1224 * It returns 0 if plain look up failed (blocks have not been allocated), in
1225 * that casem, buffer head is unmapped
1226 *
1227 * It returns the error in case of allocation failure.
1228 */
12b7ac17
TT
1229int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1230 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1231 int flags)
0e855ac8
AK
1232{
1233 int retval;
f5ab0d1f
MC
1234
1235 clear_buffer_mapped(bh);
2a8964d6 1236 clear_buffer_unwritten(bh);
f5ab0d1f 1237
0031462b
MC
1238 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1239 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1240 (unsigned long)block);
4df3d265 1241 /*
b920c755
TT
1242 * Try to see if we can get the block without requesting a new
1243 * file system block.
4df3d265
AK
1244 */
1245 down_read((&EXT4_I(inode)->i_data_sem));
1246 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1247 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1248 bh, 0);
0e855ac8 1249 } else {
e4d996ca 1250 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1251 bh, 0);
0e855ac8 1252 }
4df3d265 1253 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1254
6fd058f7 1255 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1256 int ret = check_block_validity(inode, "file system corruption",
1257 block, bh->b_blocknr, retval);
6fd058f7
TT
1258 if (ret != 0)
1259 return ret;
1260 }
1261
f5ab0d1f 1262 /* If it is only a block(s) look up */
c2177057 1263 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1264 return retval;
1265
1266 /*
1267 * Returns if the blocks have already allocated
1268 *
1269 * Note that if blocks have been preallocated
1270 * ext4_ext_get_block() returns th create = 0
1271 * with buffer head unmapped.
1272 */
1273 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1274 return retval;
1275
2a8964d6
AK
1276 /*
1277 * When we call get_blocks without the create flag, the
1278 * BH_Unwritten flag could have gotten set if the blocks
1279 * requested were part of a uninitialized extent. We need to
1280 * clear this flag now that we are committed to convert all or
1281 * part of the uninitialized extent to be an initialized
1282 * extent. This is because we need to avoid the combination
1283 * of BH_Unwritten and BH_Mapped flags being simultaneously
1284 * set on the buffer_head.
1285 */
1286 clear_buffer_unwritten(bh);
1287
4df3d265 1288 /*
f5ab0d1f
MC
1289 * New blocks allocate and/or writing to uninitialized extent
1290 * will possibly result in updating i_data, so we take
1291 * the write lock of i_data_sem, and call get_blocks()
1292 * with create == 1 flag.
4df3d265
AK
1293 */
1294 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1295
1296 /*
1297 * if the caller is from delayed allocation writeout path
1298 * we have already reserved fs blocks for allocation
1299 * let the underlying get_block() function know to
1300 * avoid double accounting
1301 */
c2177057 1302 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1303 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1304 /*
1305 * We need to check for EXT4 here because migrate
1306 * could have changed the inode type in between
1307 */
0e855ac8
AK
1308 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1309 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1310 bh, flags);
0e855ac8 1311 } else {
e4d996ca 1312 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1313 max_blocks, bh, flags);
267e4db9
AK
1314
1315 if (retval > 0 && buffer_new(bh)) {
1316 /*
1317 * We allocated new blocks which will result in
1318 * i_data's format changing. Force the migrate
1319 * to fail by clearing migrate flags
1320 */
1b9c12f4 1321 EXT4_I(inode)->i_state &= ~EXT4_STATE_EXT_MIGRATE;
267e4db9 1322 }
0e855ac8 1323 }
d2a17637 1324
2ac3b6e0 1325 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1326 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0
TT
1327
1328 /*
1329 * Update reserved blocks/metadata blocks after successful
1330 * block allocation which had been deferred till now.
1331 */
1332 if ((retval > 0) && (flags & EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE))
1333 ext4_da_update_reserve_space(inode, retval);
d2a17637 1334
4df3d265 1335 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1336 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1337 int ret = check_block_validity(inode, "file system "
1338 "corruption after allocation",
1339 block, bh->b_blocknr, retval);
6fd058f7
TT
1340 if (ret != 0)
1341 return ret;
1342 }
0e855ac8
AK
1343 return retval;
1344}
1345
f3bd1f3f
MC
1346/* Maximum number of blocks we map for direct IO at once. */
1347#define DIO_MAX_BLOCKS 4096
1348
6873fa0d
ES
1349int ext4_get_block(struct inode *inode, sector_t iblock,
1350 struct buffer_head *bh_result, int create)
ac27a0ec 1351{
3e4fdaf8 1352 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1353 int ret = 0, started = 0;
ac27a0ec 1354 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1355 int dio_credits;
ac27a0ec 1356
7fb5409d
JK
1357 if (create && !handle) {
1358 /* Direct IO write... */
1359 if (max_blocks > DIO_MAX_BLOCKS)
1360 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1361 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1363 if (IS_ERR(handle)) {
ac27a0ec 1364 ret = PTR_ERR(handle);
7fb5409d 1365 goto out;
ac27a0ec 1366 }
7fb5409d 1367 started = 1;
ac27a0ec
DK
1368 }
1369
12b7ac17 1370 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1371 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1372 if (ret > 0) {
1373 bh_result->b_size = (ret << inode->i_blkbits);
1374 ret = 0;
ac27a0ec 1375 }
7fb5409d
JK
1376 if (started)
1377 ext4_journal_stop(handle);
1378out:
ac27a0ec
DK
1379 return ret;
1380}
1381
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
617ba13b 1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1386 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1387{
1388 struct buffer_head dummy;
1389 int fatal = 0, err;
03f5d8bc 1390 int flags = 0;
ac27a0ec
DK
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
1394 dummy.b_state = 0;
1395 dummy.b_blocknr = -1000;
1396 buffer_trace_init(&dummy.b_history);
c2177057
TT
1397 if (create)
1398 flags |= EXT4_GET_BLOCKS_CREATE;
1399 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1400 /*
c2177057
TT
1401 * ext4_get_blocks() returns number of blocks mapped. 0 in
1402 * case of a HOLE.
ac27a0ec
DK
1403 */
1404 if (err > 0) {
1405 if (err > 1)
1406 WARN_ON(1);
1407 err = 0;
1408 }
1409 *errp = err;
1410 if (!err && buffer_mapped(&dummy)) {
1411 struct buffer_head *bh;
1412 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413 if (!bh) {
1414 *errp = -EIO;
1415 goto err;
1416 }
1417 if (buffer_new(&dummy)) {
1418 J_ASSERT(create != 0);
ac39849d 1419 J_ASSERT(handle != NULL);
ac27a0ec
DK
1420
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
617ba13b 1425 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1430 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1431 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1433 set_buffer_uptodate(bh);
1434 }
1435 unlock_buffer(bh);
0390131b
FM
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
1442 }
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
1449 }
1450err:
1451 return NULL;
1452}
1453
617ba13b 1454struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1455 ext4_lblk_t block, int create, int *err)
ac27a0ec 1456{
af5bc92d 1457 struct buffer_head *bh;
ac27a0ec 1458
617ba13b 1459 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1460 if (!bh)
1461 return bh;
1462 if (buffer_uptodate(bh))
1463 return bh;
1464 ll_rw_block(READ_META, 1, &bh);
1465 wait_on_buffer(bh);
1466 if (buffer_uptodate(bh))
1467 return bh;
1468 put_bh(bh);
1469 *err = -EIO;
1470 return NULL;
1471}
1472
af5bc92d
TT
1473static int walk_page_buffers(handle_t *handle,
1474 struct buffer_head *head,
1475 unsigned from,
1476 unsigned to,
1477 int *partial,
1478 int (*fn)(handle_t *handle,
1479 struct buffer_head *bh))
ac27a0ec
DK
1480{
1481 struct buffer_head *bh;
1482 unsigned block_start, block_end;
1483 unsigned blocksize = head->b_size;
1484 int err, ret = 0;
1485 struct buffer_head *next;
1486
af5bc92d
TT
1487 for (bh = head, block_start = 0;
1488 ret == 0 && (bh != head || !block_start);
de9a55b8 1489 block_start = block_end, bh = next) {
ac27a0ec
DK
1490 next = bh->b_this_page;
1491 block_end = block_start + blocksize;
1492 if (block_end <= from || block_start >= to) {
1493 if (partial && !buffer_uptodate(bh))
1494 *partial = 1;
1495 continue;
1496 }
1497 err = (*fn)(handle, bh);
1498 if (!ret)
1499 ret = err;
1500 }
1501 return ret;
1502}
1503
1504/*
1505 * To preserve ordering, it is essential that the hole instantiation and
1506 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1507 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1508 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1509 * prepare_write() is the right place.
1510 *
617ba13b
MC
1511 * Also, this function can nest inside ext4_writepage() ->
1512 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1513 * has generated enough buffer credits to do the whole page. So we won't
1514 * block on the journal in that case, which is good, because the caller may
1515 * be PF_MEMALLOC.
1516 *
617ba13b 1517 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1518 * quota file writes. If we were to commit the transaction while thus
1519 * reentered, there can be a deadlock - we would be holding a quota
1520 * lock, and the commit would never complete if another thread had a
1521 * transaction open and was blocking on the quota lock - a ranking
1522 * violation.
1523 *
dab291af 1524 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1525 * will _not_ run commit under these circumstances because handle->h_ref
1526 * is elevated. We'll still have enough credits for the tiny quotafile
1527 * write.
1528 */
1529static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1530 struct buffer_head *bh)
ac27a0ec
DK
1531{
1532 if (!buffer_mapped(bh) || buffer_freed(bh))
1533 return 0;
617ba13b 1534 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1535}
1536
bfc1af65 1537static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1538 loff_t pos, unsigned len, unsigned flags,
1539 struct page **pagep, void **fsdata)
ac27a0ec 1540{
af5bc92d 1541 struct inode *inode = mapping->host;
1938a150 1542 int ret, needed_blocks;
ac27a0ec
DK
1543 handle_t *handle;
1544 int retries = 0;
af5bc92d 1545 struct page *page;
de9a55b8 1546 pgoff_t index;
af5bc92d 1547 unsigned from, to;
bfc1af65 1548
9bffad1e 1549 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1550 /*
1551 * Reserve one block more for addition to orphan list in case
1552 * we allocate blocks but write fails for some reason
1553 */
1554 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1555 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1556 from = pos & (PAGE_CACHE_SIZE - 1);
1557 to = from + len;
ac27a0ec
DK
1558
1559retry:
af5bc92d
TT
1560 handle = ext4_journal_start(inode, needed_blocks);
1561 if (IS_ERR(handle)) {
1562 ret = PTR_ERR(handle);
1563 goto out;
7479d2b9 1564 }
ac27a0ec 1565
ebd3610b
JK
1566 /* We cannot recurse into the filesystem as the transaction is already
1567 * started */
1568 flags |= AOP_FLAG_NOFS;
1569
54566b2c 1570 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1571 if (!page) {
1572 ext4_journal_stop(handle);
1573 ret = -ENOMEM;
1574 goto out;
1575 }
1576 *pagep = page;
1577
bfc1af65 1578 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
ebd3610b 1579 ext4_get_block);
bfc1af65
NP
1580
1581 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1582 ret = walk_page_buffers(handle, page_buffers(page),
1583 from, to, NULL, do_journal_get_write_access);
1584 }
bfc1af65
NP
1585
1586 if (ret) {
af5bc92d 1587 unlock_page(page);
af5bc92d 1588 page_cache_release(page);
ae4d5372
AK
1589 /*
1590 * block_write_begin may have instantiated a few blocks
1591 * outside i_size. Trim these off again. Don't need
1592 * i_size_read because we hold i_mutex.
1938a150
AK
1593 *
1594 * Add inode to orphan list in case we crash before
1595 * truncate finishes
ae4d5372 1596 */
ffacfa7a 1597 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1598 ext4_orphan_add(handle, inode);
1599
1600 ext4_journal_stop(handle);
1601 if (pos + len > inode->i_size) {
ffacfa7a 1602 ext4_truncate(inode);
de9a55b8 1603 /*
ffacfa7a 1604 * If truncate failed early the inode might
1938a150
AK
1605 * still be on the orphan list; we need to
1606 * make sure the inode is removed from the
1607 * orphan list in that case.
1608 */
1609 if (inode->i_nlink)
1610 ext4_orphan_del(NULL, inode);
1611 }
bfc1af65
NP
1612 }
1613
617ba13b 1614 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1615 goto retry;
7479d2b9 1616out:
ac27a0ec
DK
1617 return ret;
1618}
1619
bfc1af65
NP
1620/* For write_end() in data=journal mode */
1621static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1622{
1623 if (!buffer_mapped(bh) || buffer_freed(bh))
1624 return 0;
1625 set_buffer_uptodate(bh);
0390131b 1626 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1627}
1628
f8514083 1629static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1630 struct address_space *mapping,
1631 loff_t pos, unsigned len, unsigned copied,
1632 struct page *page, void *fsdata)
f8514083
AK
1633{
1634 int i_size_changed = 0;
1635 struct inode *inode = mapping->host;
1636 handle_t *handle = ext4_journal_current_handle();
1637
1638 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1639
1640 /*
1641 * No need to use i_size_read() here, the i_size
1642 * cannot change under us because we hold i_mutex.
1643 *
1644 * But it's important to update i_size while still holding page lock:
1645 * page writeout could otherwise come in and zero beyond i_size.
1646 */
1647 if (pos + copied > inode->i_size) {
1648 i_size_write(inode, pos + copied);
1649 i_size_changed = 1;
1650 }
1651
1652 if (pos + copied > EXT4_I(inode)->i_disksize) {
1653 /* We need to mark inode dirty even if
1654 * new_i_size is less that inode->i_size
1655 * bu greater than i_disksize.(hint delalloc)
1656 */
1657 ext4_update_i_disksize(inode, (pos + copied));
1658 i_size_changed = 1;
1659 }
1660 unlock_page(page);
1661 page_cache_release(page);
1662
1663 /*
1664 * Don't mark the inode dirty under page lock. First, it unnecessarily
1665 * makes the holding time of page lock longer. Second, it forces lock
1666 * ordering of page lock and transaction start for journaling
1667 * filesystems.
1668 */
1669 if (i_size_changed)
1670 ext4_mark_inode_dirty(handle, inode);
1671
1672 return copied;
1673}
1674
ac27a0ec
DK
1675/*
1676 * We need to pick up the new inode size which generic_commit_write gave us
1677 * `file' can be NULL - eg, when called from page_symlink().
1678 *
617ba13b 1679 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1680 * buffers are managed internally.
1681 */
bfc1af65 1682static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1683 struct address_space *mapping,
1684 loff_t pos, unsigned len, unsigned copied,
1685 struct page *page, void *fsdata)
ac27a0ec 1686{
617ba13b 1687 handle_t *handle = ext4_journal_current_handle();
cf108bca 1688 struct inode *inode = mapping->host;
ac27a0ec
DK
1689 int ret = 0, ret2;
1690
9bffad1e 1691 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1692 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1693
1694 if (ret == 0) {
f8514083 1695 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1696 page, fsdata);
f8a87d89 1697 copied = ret2;
ffacfa7a 1698 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1699 /* if we have allocated more blocks and copied
1700 * less. We will have blocks allocated outside
1701 * inode->i_size. So truncate them
1702 */
1703 ext4_orphan_add(handle, inode);
f8a87d89
RK
1704 if (ret2 < 0)
1705 ret = ret2;
ac27a0ec 1706 }
617ba13b 1707 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1708 if (!ret)
1709 ret = ret2;
bfc1af65 1710
f8514083 1711 if (pos + len > inode->i_size) {
ffacfa7a 1712 ext4_truncate(inode);
de9a55b8 1713 /*
ffacfa7a 1714 * If truncate failed early the inode might still be
f8514083
AK
1715 * on the orphan list; we need to make sure the inode
1716 * is removed from the orphan list in that case.
1717 */
1718 if (inode->i_nlink)
1719 ext4_orphan_del(NULL, inode);
1720 }
1721
1722
bfc1af65 1723 return ret ? ret : copied;
ac27a0ec
DK
1724}
1725
bfc1af65 1726static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1727 struct address_space *mapping,
1728 loff_t pos, unsigned len, unsigned copied,
1729 struct page *page, void *fsdata)
ac27a0ec 1730{
617ba13b 1731 handle_t *handle = ext4_journal_current_handle();
cf108bca 1732 struct inode *inode = mapping->host;
ac27a0ec 1733 int ret = 0, ret2;
ac27a0ec 1734
9bffad1e 1735 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1737 page, fsdata);
f8a87d89 1738 copied = ret2;
ffacfa7a 1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1743 */
1744 ext4_orphan_add(handle, inode);
1745
f8a87d89
RK
1746 if (ret2 < 0)
1747 ret = ret2;
ac27a0ec 1748
617ba13b 1749 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1750 if (!ret)
1751 ret = ret2;
bfc1af65 1752
f8514083 1753 if (pos + len > inode->i_size) {
ffacfa7a 1754 ext4_truncate(inode);
de9a55b8 1755 /*
ffacfa7a 1756 * If truncate failed early the inode might still be
f8514083
AK
1757 * on the orphan list; we need to make sure the inode
1758 * is removed from the orphan list in that case.
1759 */
1760 if (inode->i_nlink)
1761 ext4_orphan_del(NULL, inode);
1762 }
1763
bfc1af65 1764 return ret ? ret : copied;
ac27a0ec
DK
1765}
1766
bfc1af65 1767static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
ac27a0ec 1771{
617ba13b 1772 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1773 struct inode *inode = mapping->host;
ac27a0ec
DK
1774 int ret = 0, ret2;
1775 int partial = 0;
bfc1af65 1776 unsigned from, to;
cf17fea6 1777 loff_t new_i_size;
ac27a0ec 1778
9bffad1e 1779 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1780 from = pos & (PAGE_CACHE_SIZE - 1);
1781 to = from + len;
1782
1783 if (copied < len) {
1784 if (!PageUptodate(page))
1785 copied = 0;
1786 page_zero_new_buffers(page, from+copied, to);
1787 }
ac27a0ec
DK
1788
1789 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1790 to, &partial, write_end_fn);
ac27a0ec
DK
1791 if (!partial)
1792 SetPageUptodate(page);
cf17fea6
AK
1793 new_i_size = pos + copied;
1794 if (new_i_size > inode->i_size)
bfc1af65 1795 i_size_write(inode, pos+copied);
617ba13b 1796 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
cf17fea6
AK
1797 if (new_i_size > EXT4_I(inode)->i_disksize) {
1798 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1799 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1800 if (!ret)
1801 ret = ret2;
1802 }
bfc1af65 1803
cf108bca 1804 unlock_page(page);
f8514083 1805 page_cache_release(page);
ffacfa7a 1806 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1807 /* if we have allocated more blocks and copied
1808 * less. We will have blocks allocated outside
1809 * inode->i_size. So truncate them
1810 */
1811 ext4_orphan_add(handle, inode);
1812
617ba13b 1813 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1814 if (!ret)
1815 ret = ret2;
f8514083 1816 if (pos + len > inode->i_size) {
ffacfa7a 1817 ext4_truncate(inode);
de9a55b8 1818 /*
ffacfa7a 1819 * If truncate failed early the inode might still be
f8514083
AK
1820 * on the orphan list; we need to make sure the inode
1821 * is removed from the orphan list in that case.
1822 */
1823 if (inode->i_nlink)
1824 ext4_orphan_del(NULL, inode);
1825 }
bfc1af65
NP
1826
1827 return ret ? ret : copied;
ac27a0ec 1828}
d2a17637
MC
1829
1830static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1831{
030ba6bc 1832 int retries = 0;
60e58e0f
MC
1833 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1834 unsigned long md_needed, mdblocks, total = 0;
d2a17637
MC
1835
1836 /*
1837 * recalculate the amount of metadata blocks to reserve
1838 * in order to allocate nrblocks
1839 * worse case is one extent per block
1840 */
030ba6bc 1841repeat:
d2a17637
MC
1842 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1843 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1844 mdblocks = ext4_calc_metadata_amount(inode, total);
1845 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1846
1847 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1848 total = md_needed + nrblocks;
1849
60e58e0f
MC
1850 /*
1851 * Make quota reservation here to prevent quota overflow
1852 * later. Real quota accounting is done at pages writeout
1853 * time.
1854 */
1855 if (vfs_dq_reserve_block(inode, total)) {
1856 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1857 return -EDQUOT;
1858 }
1859
a30d542a 1860 if (ext4_claim_free_blocks(sbi, total)) {
d2a17637 1861 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
9f0ccfd8 1862 vfs_dq_release_reservation_block(inode, total);
030ba6bc
AK
1863 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1864 yield();
1865 goto repeat;
1866 }
d2a17637
MC
1867 return -ENOSPC;
1868 }
d2a17637
MC
1869 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1870 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1871
1872 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1873 return 0; /* success */
1874}
1875
12219aea 1876static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1877{
1878 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1879 int total, mdb, mdb_free, release;
1880
cd213226
MC
1881 if (!to_free)
1882 return; /* Nothing to release, exit */
1883
d2a17637 1884 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226
MC
1885
1886 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1887 /*
1888 * if there is no reserved blocks, but we try to free some
1889 * then the counter is messed up somewhere.
1890 * but since this function is called from invalidate
1891 * page, it's harmless to return without any action
1892 */
1893 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1894 "blocks for inode %lu, but there is no reserved "
1895 "data blocks\n", to_free, inode->i_ino);
1896 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1897 return;
1898 }
1899
d2a17637 1900 /* recalculate the number of metablocks still need to be reserved */
12219aea 1901 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
d2a17637
MC
1902 mdb = ext4_calc_metadata_amount(inode, total);
1903
1904 /* figure out how many metablocks to release */
1905 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1906 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1907
d2a17637
MC
1908 release = to_free + mdb_free;
1909
6bc6e63f
AK
1910 /* update fs dirty blocks counter for truncate case */
1911 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
d2a17637
MC
1912
1913 /* update per-inode reservations */
12219aea
AK
1914 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1915 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
d2a17637
MC
1916
1917 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1918 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
d2a17637 1919 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f
MC
1920
1921 vfs_dq_release_reservation_block(inode, release);
d2a17637
MC
1922}
1923
1924static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1925 unsigned long offset)
d2a17637
MC
1926{
1927 int to_release = 0;
1928 struct buffer_head *head, *bh;
1929 unsigned int curr_off = 0;
1930
1931 head = page_buffers(page);
1932 bh = head;
1933 do {
1934 unsigned int next_off = curr_off + bh->b_size;
1935
1936 if ((offset <= curr_off) && (buffer_delay(bh))) {
1937 to_release++;
1938 clear_buffer_delay(bh);
1939 }
1940 curr_off = next_off;
1941 } while ((bh = bh->b_this_page) != head);
12219aea 1942 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1943}
ac27a0ec 1944
64769240
AT
1945/*
1946 * Delayed allocation stuff
1947 */
1948
64769240
AT
1949/*
1950 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1951 * them with writepage() call back
64769240
AT
1952 *
1953 * @mpd->inode: inode
1954 * @mpd->first_page: first page of the extent
1955 * @mpd->next_page: page after the last page of the extent
64769240
AT
1956 *
1957 * By the time mpage_da_submit_io() is called we expect all blocks
1958 * to be allocated. this may be wrong if allocation failed.
1959 *
1960 * As pages are already locked by write_cache_pages(), we can't use it
1961 */
1962static int mpage_da_submit_io(struct mpage_da_data *mpd)
1963{
22208ded 1964 long pages_skipped;
791b7f08
AK
1965 struct pagevec pvec;
1966 unsigned long index, end;
1967 int ret = 0, err, nr_pages, i;
1968 struct inode *inode = mpd->inode;
1969 struct address_space *mapping = inode->i_mapping;
64769240
AT
1970
1971 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1972 /*
1973 * We need to start from the first_page to the next_page - 1
1974 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1975 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1976 * at the currently mapped buffer_heads.
1977 */
64769240
AT
1978 index = mpd->first_page;
1979 end = mpd->next_page - 1;
1980
791b7f08 1981 pagevec_init(&pvec, 0);
64769240 1982 while (index <= end) {
791b7f08 1983 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1984 if (nr_pages == 0)
1985 break;
1986 for (i = 0; i < nr_pages; i++) {
1987 struct page *page = pvec.pages[i];
1988
791b7f08
AK
1989 index = page->index;
1990 if (index > end)
1991 break;
1992 index++;
1993
1994 BUG_ON(!PageLocked(page));
1995 BUG_ON(PageWriteback(page));
1996
22208ded 1997 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 1998 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
1999 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2000 /*
2001 * have successfully written the page
2002 * without skipping the same
2003 */
a1d6cc56 2004 mpd->pages_written++;
64769240
AT
2005 /*
2006 * In error case, we have to continue because
2007 * remaining pages are still locked
2008 * XXX: unlock and re-dirty them?
2009 */
2010 if (ret == 0)
2011 ret = err;
2012 }
2013 pagevec_release(&pvec);
2014 }
64769240
AT
2015 return ret;
2016}
2017
2018/*
2019 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2020 *
2021 * @mpd->inode - inode to walk through
2022 * @exbh->b_blocknr - first block on a disk
2023 * @exbh->b_size - amount of space in bytes
2024 * @logical - first logical block to start assignment with
2025 *
2026 * the function goes through all passed space and put actual disk
29fa89d0 2027 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2028 */
2029static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2030 struct buffer_head *exbh)
2031{
2032 struct inode *inode = mpd->inode;
2033 struct address_space *mapping = inode->i_mapping;
2034 int blocks = exbh->b_size >> inode->i_blkbits;
2035 sector_t pblock = exbh->b_blocknr, cur_logical;
2036 struct buffer_head *head, *bh;
a1d6cc56 2037 pgoff_t index, end;
64769240
AT
2038 struct pagevec pvec;
2039 int nr_pages, i;
2040
2041 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2042 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2043 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2044
2045 pagevec_init(&pvec, 0);
2046
2047 while (index <= end) {
2048 /* XXX: optimize tail */
2049 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2050 if (nr_pages == 0)
2051 break;
2052 for (i = 0; i < nr_pages; i++) {
2053 struct page *page = pvec.pages[i];
2054
2055 index = page->index;
2056 if (index > end)
2057 break;
2058 index++;
2059
2060 BUG_ON(!PageLocked(page));
2061 BUG_ON(PageWriteback(page));
2062 BUG_ON(!page_has_buffers(page));
2063
2064 bh = page_buffers(page);
2065 head = bh;
2066
2067 /* skip blocks out of the range */
2068 do {
2069 if (cur_logical >= logical)
2070 break;
2071 cur_logical++;
2072 } while ((bh = bh->b_this_page) != head);
2073
2074 do {
2075 if (cur_logical >= logical + blocks)
2076 break;
29fa89d0
AK
2077
2078 if (buffer_delay(bh) ||
2079 buffer_unwritten(bh)) {
2080
2081 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2082
2083 if (buffer_delay(bh)) {
2084 clear_buffer_delay(bh);
2085 bh->b_blocknr = pblock;
2086 } else {
2087 /*
2088 * unwritten already should have
2089 * blocknr assigned. Verify that
2090 */
2091 clear_buffer_unwritten(bh);
2092 BUG_ON(bh->b_blocknr != pblock);
2093 }
2094
61628a3f 2095 } else if (buffer_mapped(bh))
64769240 2096 BUG_ON(bh->b_blocknr != pblock);
64769240
AT
2097
2098 cur_logical++;
2099 pblock++;
2100 } while ((bh = bh->b_this_page) != head);
2101 }
2102 pagevec_release(&pvec);
2103 }
2104}
2105
2106
2107/*
2108 * __unmap_underlying_blocks - just a helper function to unmap
2109 * set of blocks described by @bh
2110 */
2111static inline void __unmap_underlying_blocks(struct inode *inode,
2112 struct buffer_head *bh)
2113{
2114 struct block_device *bdev = inode->i_sb->s_bdev;
2115 int blocks, i;
2116
2117 blocks = bh->b_size >> inode->i_blkbits;
2118 for (i = 0; i < blocks; i++)
2119 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2120}
2121
c4a0c46e
AK
2122static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2123 sector_t logical, long blk_cnt)
2124{
2125 int nr_pages, i;
2126 pgoff_t index, end;
2127 struct pagevec pvec;
2128 struct inode *inode = mpd->inode;
2129 struct address_space *mapping = inode->i_mapping;
2130
2131 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2132 end = (logical + blk_cnt - 1) >>
2133 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2134 while (index <= end) {
2135 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2136 if (nr_pages == 0)
2137 break;
2138 for (i = 0; i < nr_pages; i++) {
2139 struct page *page = pvec.pages[i];
2140 index = page->index;
2141 if (index > end)
2142 break;
2143 index++;
2144
2145 BUG_ON(!PageLocked(page));
2146 BUG_ON(PageWriteback(page));
2147 block_invalidatepage(page, 0);
2148 ClearPageUptodate(page);
2149 unlock_page(page);
2150 }
2151 }
2152 return;
2153}
2154
df22291f
AK
2155static void ext4_print_free_blocks(struct inode *inode)
2156{
2157 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2158 printk(KERN_CRIT "Total free blocks count %lld\n",
2159 ext4_count_free_blocks(inode->i_sb));
2160 printk(KERN_CRIT "Free/Dirty block details\n");
2161 printk(KERN_CRIT "free_blocks=%lld\n",
2162 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2163 printk(KERN_CRIT "dirty_blocks=%lld\n",
2164 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2165 printk(KERN_CRIT "Block reservation details\n");
2166 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2167 EXT4_I(inode)->i_reserved_data_blocks);
2168 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2169 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2170 return;
2171}
2172
64769240
AT
2173/*
2174 * mpage_da_map_blocks - go through given space
2175 *
8dc207c0 2176 * @mpd - bh describing space
64769240
AT
2177 *
2178 * The function skips space we know is already mapped to disk blocks.
2179 *
64769240 2180 */
ed5bde0b 2181static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2182{
2ac3b6e0 2183 int err, blks, get_blocks_flags;
030ba6bc 2184 struct buffer_head new;
2fa3cdfb
TT
2185 sector_t next = mpd->b_blocknr;
2186 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2187 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2188 handle_t *handle = NULL;
64769240
AT
2189
2190 /*
2191 * We consider only non-mapped and non-allocated blocks
2192 */
8dc207c0 2193 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2194 !(mpd->b_state & (1 << BH_Delay)) &&
2195 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2196 return 0;
2fa3cdfb
TT
2197
2198 /*
2199 * If we didn't accumulate anything to write simply return
2200 */
2201 if (!mpd->b_size)
2202 return 0;
2203
2204 handle = ext4_journal_current_handle();
2205 BUG_ON(!handle);
2206
79ffab34 2207 /*
2ac3b6e0
TT
2208 * Call ext4_get_blocks() to allocate any delayed allocation
2209 * blocks, or to convert an uninitialized extent to be
2210 * initialized (in the case where we have written into
2211 * one or more preallocated blocks).
2212 *
2213 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2214 * indicate that we are on the delayed allocation path. This
2215 * affects functions in many different parts of the allocation
2216 * call path. This flag exists primarily because we don't
2217 * want to change *many* call functions, so ext4_get_blocks()
2218 * will set the magic i_delalloc_reserved_flag once the
2219 * inode's allocation semaphore is taken.
2220 *
2221 * If the blocks in questions were delalloc blocks, set
2222 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2223 * variables are updated after the blocks have been allocated.
79ffab34 2224 */
2ac3b6e0
TT
2225 new.b_state = 0;
2226 get_blocks_flags = (EXT4_GET_BLOCKS_CREATE |
2227 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2228 if (mpd->b_state & (1 << BH_Delay))
2229 get_blocks_flags |= EXT4_GET_BLOCKS_UPDATE_RESERVE_SPACE;
2fa3cdfb 2230 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2231 &new, get_blocks_flags);
2fa3cdfb
TT
2232 if (blks < 0) {
2233 err = blks;
ed5bde0b
TT
2234 /*
2235 * If get block returns with error we simply
2236 * return. Later writepage will redirty the page and
2237 * writepages will find the dirty page again
c4a0c46e
AK
2238 */
2239 if (err == -EAGAIN)
2240 return 0;
df22291f
AK
2241
2242 if (err == -ENOSPC &&
ed5bde0b 2243 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2244 mpd->retval = err;
2245 return 0;
2246 }
2247
c4a0c46e 2248 /*
ed5bde0b
TT
2249 * get block failure will cause us to loop in
2250 * writepages, because a_ops->writepage won't be able
2251 * to make progress. The page will be redirtied by
2252 * writepage and writepages will again try to write
2253 * the same.
c4a0c46e 2254 */
1693918e
TT
2255 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2256 "delayed block allocation failed for inode %lu at "
2257 "logical offset %llu with max blocks %zd with "
2258 "error %d\n", mpd->inode->i_ino,
2259 (unsigned long long) next,
2260 mpd->b_size >> mpd->inode->i_blkbits, err);
2261 printk(KERN_CRIT "This should not happen!! "
2262 "Data will be lost\n");
030ba6bc 2263 if (err == -ENOSPC) {
df22291f 2264 ext4_print_free_blocks(mpd->inode);
030ba6bc 2265 }
2fa3cdfb 2266 /* invalidate all the pages */
c4a0c46e 2267 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2268 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2269 return err;
2270 }
2fa3cdfb
TT
2271 BUG_ON(blks == 0);
2272
2273 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2274
a1d6cc56
AK
2275 if (buffer_new(&new))
2276 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2277
a1d6cc56
AK
2278 /*
2279 * If blocks are delayed marked, we need to
2280 * put actual blocknr and drop delayed bit
2281 */
8dc207c0
TT
2282 if ((mpd->b_state & (1 << BH_Delay)) ||
2283 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2284 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2285
2fa3cdfb
TT
2286 if (ext4_should_order_data(mpd->inode)) {
2287 err = ext4_jbd2_file_inode(handle, mpd->inode);
2288 if (err)
2289 return err;
2290 }
2291
2292 /*
03f5d8bc 2293 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2294 */
2295 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2296 if (disksize > i_size_read(mpd->inode))
2297 disksize = i_size_read(mpd->inode);
2298 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2299 ext4_update_i_disksize(mpd->inode, disksize);
2300 return ext4_mark_inode_dirty(handle, mpd->inode);
2301 }
2302
c4a0c46e 2303 return 0;
64769240
AT
2304}
2305
bf068ee2
AK
2306#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2307 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2308
2309/*
2310 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2311 *
2312 * @mpd->lbh - extent of blocks
2313 * @logical - logical number of the block in the file
2314 * @bh - bh of the block (used to access block's state)
2315 *
2316 * the function is used to collect contig. blocks in same state
2317 */
2318static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2319 sector_t logical, size_t b_size,
2320 unsigned long b_state)
64769240 2321{
64769240 2322 sector_t next;
8dc207c0 2323 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2324
525f4ed8
MC
2325 /* check if thereserved journal credits might overflow */
2326 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2327 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2328 /*
2329 * With non-extent format we are limited by the journal
2330 * credit available. Total credit needed to insert
2331 * nrblocks contiguous blocks is dependent on the
2332 * nrblocks. So limit nrblocks.
2333 */
2334 goto flush_it;
2335 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2336 EXT4_MAX_TRANS_DATA) {
2337 /*
2338 * Adding the new buffer_head would make it cross the
2339 * allowed limit for which we have journal credit
2340 * reserved. So limit the new bh->b_size
2341 */
2342 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2343 mpd->inode->i_blkbits;
2344 /* we will do mpage_da_submit_io in the next loop */
2345 }
2346 }
64769240
AT
2347 /*
2348 * First block in the extent
2349 */
8dc207c0
TT
2350 if (mpd->b_size == 0) {
2351 mpd->b_blocknr = logical;
2352 mpd->b_size = b_size;
2353 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2354 return;
2355 }
2356
8dc207c0 2357 next = mpd->b_blocknr + nrblocks;
64769240
AT
2358 /*
2359 * Can we merge the block to our big extent?
2360 */
8dc207c0
TT
2361 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2362 mpd->b_size += b_size;
64769240
AT
2363 return;
2364 }
2365
525f4ed8 2366flush_it:
64769240
AT
2367 /*
2368 * We couldn't merge the block to our extent, so we
2369 * need to flush current extent and start new one
2370 */
c4a0c46e
AK
2371 if (mpage_da_map_blocks(mpd) == 0)
2372 mpage_da_submit_io(mpd);
a1d6cc56
AK
2373 mpd->io_done = 1;
2374 return;
64769240
AT
2375}
2376
c364b22c 2377static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2378{
c364b22c 2379 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2380}
2381
64769240
AT
2382/*
2383 * __mpage_da_writepage - finds extent of pages and blocks
2384 *
2385 * @page: page to consider
2386 * @wbc: not used, we just follow rules
2387 * @data: context
2388 *
2389 * The function finds extents of pages and scan them for all blocks.
2390 */
2391static int __mpage_da_writepage(struct page *page,
2392 struct writeback_control *wbc, void *data)
2393{
2394 struct mpage_da_data *mpd = data;
2395 struct inode *inode = mpd->inode;
8dc207c0 2396 struct buffer_head *bh, *head;
64769240
AT
2397 sector_t logical;
2398
a1d6cc56
AK
2399 if (mpd->io_done) {
2400 /*
2401 * Rest of the page in the page_vec
2402 * redirty then and skip then. We will
fd589a8f 2403 * try to write them again after
a1d6cc56
AK
2404 * starting a new transaction
2405 */
2406 redirty_page_for_writepage(wbc, page);
2407 unlock_page(page);
2408 return MPAGE_DA_EXTENT_TAIL;
2409 }
64769240
AT
2410 /*
2411 * Can we merge this page to current extent?
2412 */
2413 if (mpd->next_page != page->index) {
2414 /*
2415 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2416 * and start IO on them using writepage()
64769240
AT
2417 */
2418 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2419 if (mpage_da_map_blocks(mpd) == 0)
2420 mpage_da_submit_io(mpd);
a1d6cc56
AK
2421 /*
2422 * skip rest of the page in the page_vec
2423 */
2424 mpd->io_done = 1;
2425 redirty_page_for_writepage(wbc, page);
2426 unlock_page(page);
2427 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2428 }
2429
2430 /*
2431 * Start next extent of pages ...
2432 */
2433 mpd->first_page = page->index;
2434
2435 /*
2436 * ... and blocks
2437 */
8dc207c0
TT
2438 mpd->b_size = 0;
2439 mpd->b_state = 0;
2440 mpd->b_blocknr = 0;
64769240
AT
2441 }
2442
2443 mpd->next_page = page->index + 1;
2444 logical = (sector_t) page->index <<
2445 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2446
2447 if (!page_has_buffers(page)) {
8dc207c0
TT
2448 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2449 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2450 if (mpd->io_done)
2451 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2452 } else {
2453 /*
2454 * Page with regular buffer heads, just add all dirty ones
2455 */
2456 head = page_buffers(page);
2457 bh = head;
2458 do {
2459 BUG_ON(buffer_locked(bh));
791b7f08
AK
2460 /*
2461 * We need to try to allocate
2462 * unmapped blocks in the same page.
2463 * Otherwise we won't make progress
43ce1d23 2464 * with the page in ext4_writepage
791b7f08 2465 */
c364b22c 2466 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2467 mpage_add_bh_to_extent(mpd, logical,
2468 bh->b_size,
2469 bh->b_state);
a1d6cc56
AK
2470 if (mpd->io_done)
2471 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2472 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2473 /*
2474 * mapped dirty buffer. We need to update
2475 * the b_state because we look at
2476 * b_state in mpage_da_map_blocks. We don't
2477 * update b_size because if we find an
2478 * unmapped buffer_head later we need to
2479 * use the b_state flag of that buffer_head.
2480 */
8dc207c0
TT
2481 if (mpd->b_size == 0)
2482 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2483 }
64769240
AT
2484 logical++;
2485 } while ((bh = bh->b_this_page) != head);
2486 }
2487
2488 return 0;
2489}
2490
64769240 2491/*
b920c755
TT
2492 * This is a special get_blocks_t callback which is used by
2493 * ext4_da_write_begin(). It will either return mapped block or
2494 * reserve space for a single block.
29fa89d0
AK
2495 *
2496 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2497 * We also have b_blocknr = -1 and b_bdev initialized properly
2498 *
2499 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2500 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2501 * initialized properly.
64769240
AT
2502 */
2503static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2504 struct buffer_head *bh_result, int create)
2505{
2506 int ret = 0;
33b9817e
AK
2507 sector_t invalid_block = ~((sector_t) 0xffff);
2508
2509 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2510 invalid_block = ~0;
64769240
AT
2511
2512 BUG_ON(create == 0);
2513 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2514
2515 /*
2516 * first, we need to know whether the block is allocated already
2517 * preallocated blocks are unmapped but should treated
2518 * the same as allocated blocks.
2519 */
c2177057 2520 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2521 if ((ret == 0) && !buffer_delay(bh_result)) {
2522 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2523 /*
2524 * XXX: __block_prepare_write() unmaps passed block,
2525 * is it OK?
2526 */
d2a17637
MC
2527 ret = ext4_da_reserve_space(inode, 1);
2528 if (ret)
2529 /* not enough space to reserve */
2530 return ret;
2531
33b9817e 2532 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2533 set_buffer_new(bh_result);
2534 set_buffer_delay(bh_result);
2535 } else if (ret > 0) {
2536 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2537 if (buffer_unwritten(bh_result)) {
2538 /* A delayed write to unwritten bh should
2539 * be marked new and mapped. Mapped ensures
2540 * that we don't do get_block multiple times
2541 * when we write to the same offset and new
2542 * ensures that we do proper zero out for
2543 * partial write.
2544 */
9c1ee184 2545 set_buffer_new(bh_result);
29fa89d0
AK
2546 set_buffer_mapped(bh_result);
2547 }
64769240
AT
2548 ret = 0;
2549 }
2550
2551 return ret;
2552}
61628a3f 2553
b920c755
TT
2554/*
2555 * This function is used as a standard get_block_t calback function
2556 * when there is no desire to allocate any blocks. It is used as a
2557 * callback function for block_prepare_write(), nobh_writepage(), and
2558 * block_write_full_page(). These functions should only try to map a
2559 * single block at a time.
2560 *
2561 * Since this function doesn't do block allocations even if the caller
2562 * requests it by passing in create=1, it is critically important that
2563 * any caller checks to make sure that any buffer heads are returned
2564 * by this function are either all already mapped or marked for
2565 * delayed allocation before calling nobh_writepage() or
2566 * block_write_full_page(). Otherwise, b_blocknr could be left
2567 * unitialized, and the page write functions will be taken by
2568 * surprise.
2569 */
2570static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2571 struct buffer_head *bh_result, int create)
2572{
2573 int ret = 0;
2574 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2575
a2dc52b5
TT
2576 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2577
f0e6c985
AK
2578 /*
2579 * we don't want to do block allocation in writepage
2580 * so call get_block_wrap with create = 0
2581 */
c2177057 2582 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2583 if (ret > 0) {
2584 bh_result->b_size = (ret << inode->i_blkbits);
2585 ret = 0;
2586 }
2587 return ret;
61628a3f
MC
2588}
2589
62e086be
AK
2590static int bget_one(handle_t *handle, struct buffer_head *bh)
2591{
2592 get_bh(bh);
2593 return 0;
2594}
2595
2596static int bput_one(handle_t *handle, struct buffer_head *bh)
2597{
2598 put_bh(bh);
2599 return 0;
2600}
2601
2602static int __ext4_journalled_writepage(struct page *page,
2603 struct writeback_control *wbc,
2604 unsigned int len)
2605{
2606 struct address_space *mapping = page->mapping;
2607 struct inode *inode = mapping->host;
2608 struct buffer_head *page_bufs;
2609 handle_t *handle = NULL;
2610 int ret = 0;
2611 int err;
2612
2613 page_bufs = page_buffers(page);
2614 BUG_ON(!page_bufs);
2615 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2616 /* As soon as we unlock the page, it can go away, but we have
2617 * references to buffers so we are safe */
2618 unlock_page(page);
2619
2620 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2621 if (IS_ERR(handle)) {
2622 ret = PTR_ERR(handle);
2623 goto out;
2624 }
2625
2626 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2627 do_journal_get_write_access);
2628
2629 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2630 write_end_fn);
2631 if (ret == 0)
2632 ret = err;
2633 err = ext4_journal_stop(handle);
2634 if (!ret)
2635 ret = err;
2636
2637 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2638 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
2639out:
2640 return ret;
2641}
2642
61628a3f 2643/*
43ce1d23
AK
2644 * Note that we don't need to start a transaction unless we're journaling data
2645 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2646 * need to file the inode to the transaction's list in ordered mode because if
2647 * we are writing back data added by write(), the inode is already there and if
2648 * we are writing back data modified via mmap(), noone guarantees in which
2649 * transaction the data will hit the disk. In case we are journaling data, we
2650 * cannot start transaction directly because transaction start ranks above page
2651 * lock so we have to do some magic.
2652 *
b920c755
TT
2653 * This function can get called via...
2654 * - ext4_da_writepages after taking page lock (have journal handle)
2655 * - journal_submit_inode_data_buffers (no journal handle)
2656 * - shrink_page_list via pdflush (no journal handle)
2657 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2658 *
2659 * We don't do any block allocation in this function. If we have page with
2660 * multiple blocks we need to write those buffer_heads that are mapped. This
2661 * is important for mmaped based write. So if we do with blocksize 1K
2662 * truncate(f, 1024);
2663 * a = mmap(f, 0, 4096);
2664 * a[0] = 'a';
2665 * truncate(f, 4096);
2666 * we have in the page first buffer_head mapped via page_mkwrite call back
2667 * but other bufer_heads would be unmapped but dirty(dirty done via the
2668 * do_wp_page). So writepage should write the first block. If we modify
2669 * the mmap area beyond 1024 we will again get a page_fault and the
2670 * page_mkwrite callback will do the block allocation and mark the
2671 * buffer_heads mapped.
2672 *
2673 * We redirty the page if we have any buffer_heads that is either delay or
2674 * unwritten in the page.
2675 *
2676 * We can get recursively called as show below.
2677 *
2678 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2679 * ext4_writepage()
2680 *
2681 * But since we don't do any block allocation we should not deadlock.
2682 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2683 */
43ce1d23 2684static int ext4_writepage(struct page *page,
62e086be 2685 struct writeback_control *wbc)
64769240 2686{
64769240 2687 int ret = 0;
61628a3f 2688 loff_t size;
498e5f24 2689 unsigned int len;
61628a3f
MC
2690 struct buffer_head *page_bufs;
2691 struct inode *inode = page->mapping->host;
2692
43ce1d23 2693 trace_ext4_writepage(inode, page);
f0e6c985
AK
2694 size = i_size_read(inode);
2695 if (page->index == size >> PAGE_CACHE_SHIFT)
2696 len = size & ~PAGE_CACHE_MASK;
2697 else
2698 len = PAGE_CACHE_SIZE;
64769240 2699
f0e6c985 2700 if (page_has_buffers(page)) {
61628a3f 2701 page_bufs = page_buffers(page);
f0e6c985 2702 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2703 ext4_bh_delay_or_unwritten)) {
61628a3f 2704 /*
f0e6c985
AK
2705 * We don't want to do block allocation
2706 * So redirty the page and return
cd1aac32
AK
2707 * We may reach here when we do a journal commit
2708 * via journal_submit_inode_data_buffers.
2709 * If we don't have mapping block we just ignore
f0e6c985
AK
2710 * them. We can also reach here via shrink_page_list
2711 */
2712 redirty_page_for_writepage(wbc, page);
2713 unlock_page(page);
2714 return 0;
2715 }
2716 } else {
2717 /*
2718 * The test for page_has_buffers() is subtle:
2719 * We know the page is dirty but it lost buffers. That means
2720 * that at some moment in time after write_begin()/write_end()
2721 * has been called all buffers have been clean and thus they
2722 * must have been written at least once. So they are all
2723 * mapped and we can happily proceed with mapping them
2724 * and writing the page.
2725 *
2726 * Try to initialize the buffer_heads and check whether
2727 * all are mapped and non delay. We don't want to
2728 * do block allocation here.
2729 */
b767e78a 2730 ret = block_prepare_write(page, 0, len,
b920c755 2731 noalloc_get_block_write);
f0e6c985
AK
2732 if (!ret) {
2733 page_bufs = page_buffers(page);
2734 /* check whether all are mapped and non delay */
2735 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2736 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2737 redirty_page_for_writepage(wbc, page);
2738 unlock_page(page);
2739 return 0;
2740 }
2741 } else {
2742 /*
2743 * We can't do block allocation here
2744 * so just redity the page and unlock
2745 * and return
61628a3f 2746 */
61628a3f
MC
2747 redirty_page_for_writepage(wbc, page);
2748 unlock_page(page);
2749 return 0;
2750 }
ed9b3e33 2751 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2752 block_commit_write(page, 0, len);
64769240
AT
2753 }
2754
43ce1d23
AK
2755 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2756 /*
2757 * It's mmapped pagecache. Add buffers and journal it. There
2758 * doesn't seem much point in redirtying the page here.
2759 */
2760 ClearPageChecked(page);
2761 return __ext4_journalled_writepage(page, wbc, len);
2762 }
2763
64769240 2764 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2765 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
64769240 2766 else
b920c755
TT
2767 ret = block_write_full_page(page, noalloc_get_block_write,
2768 wbc);
64769240 2769
64769240
AT
2770 return ret;
2771}
2772
61628a3f 2773/*
525f4ed8
MC
2774 * This is called via ext4_da_writepages() to
2775 * calulate the total number of credits to reserve to fit
2776 * a single extent allocation into a single transaction,
2777 * ext4_da_writpeages() will loop calling this before
2778 * the block allocation.
61628a3f 2779 */
525f4ed8
MC
2780
2781static int ext4_da_writepages_trans_blocks(struct inode *inode)
2782{
2783 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2784
2785 /*
2786 * With non-extent format the journal credit needed to
2787 * insert nrblocks contiguous block is dependent on
2788 * number of contiguous block. So we will limit
2789 * number of contiguous block to a sane value
2790 */
2791 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2792 (max_blocks > EXT4_MAX_TRANS_DATA))
2793 max_blocks = EXT4_MAX_TRANS_DATA;
2794
2795 return ext4_chunk_trans_blocks(inode, max_blocks);
2796}
61628a3f 2797
64769240 2798static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2799 struct writeback_control *wbc)
64769240 2800{
22208ded
AK
2801 pgoff_t index;
2802 int range_whole = 0;
61628a3f 2803 handle_t *handle = NULL;
df22291f 2804 struct mpage_da_data mpd;
5e745b04 2805 struct inode *inode = mapping->host;
22208ded 2806 int no_nrwrite_index_update;
498e5f24
TT
2807 int pages_written = 0;
2808 long pages_skipped;
55138e0b 2809 unsigned int max_pages;
2acf2c26 2810 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2811 int needed_blocks, ret = 0;
2812 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2813 loff_t range_start = wbc->range_start;
5e745b04 2814 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2815
9bffad1e 2816 trace_ext4_da_writepages(inode, wbc);
ba80b101 2817
61628a3f
MC
2818 /*
2819 * No pages to write? This is mainly a kludge to avoid starting
2820 * a transaction for special inodes like journal inode on last iput()
2821 * because that could violate lock ordering on umount
2822 */
a1d6cc56 2823 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2824 return 0;
2a21e37e
TT
2825
2826 /*
2827 * If the filesystem has aborted, it is read-only, so return
2828 * right away instead of dumping stack traces later on that
2829 * will obscure the real source of the problem. We test
4ab2f15b 2830 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2831 * the latter could be true if the filesystem is mounted
2832 * read-only, and in that case, ext4_da_writepages should
2833 * *never* be called, so if that ever happens, we would want
2834 * the stack trace.
2835 */
4ab2f15b 2836 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2837 return -EROFS;
2838
22208ded
AK
2839 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2840 range_whole = 1;
61628a3f 2841
2acf2c26
AK
2842 range_cyclic = wbc->range_cyclic;
2843 if (wbc->range_cyclic) {
22208ded 2844 index = mapping->writeback_index;
2acf2c26
AK
2845 if (index)
2846 cycled = 0;
2847 wbc->range_start = index << PAGE_CACHE_SHIFT;
2848 wbc->range_end = LLONG_MAX;
2849 wbc->range_cyclic = 0;
2850 } else
22208ded 2851 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2852
55138e0b
TT
2853 /*
2854 * This works around two forms of stupidity. The first is in
2855 * the writeback code, which caps the maximum number of pages
2856 * written to be 1024 pages. This is wrong on multiple
2857 * levels; different architectues have a different page size,
2858 * which changes the maximum amount of data which gets
2859 * written. Secondly, 4 megabytes is way too small. XFS
2860 * forces this value to be 16 megabytes by multiplying
2861 * nr_to_write parameter by four, and then relies on its
2862 * allocator to allocate larger extents to make them
2863 * contiguous. Unfortunately this brings us to the second
2864 * stupidity, which is that ext4's mballoc code only allocates
2865 * at most 2048 blocks. So we force contiguous writes up to
2866 * the number of dirty blocks in the inode, or
2867 * sbi->max_writeback_mb_bump whichever is smaller.
2868 */
2869 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2870 if (!range_cyclic && range_whole)
2871 desired_nr_to_write = wbc->nr_to_write * 8;
2872 else
2873 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2874 max_pages);
2875 if (desired_nr_to_write > max_pages)
2876 desired_nr_to_write = max_pages;
2877
2878 if (wbc->nr_to_write < desired_nr_to_write) {
2879 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2880 wbc->nr_to_write = desired_nr_to_write;
2881 }
2882
df22291f
AK
2883 mpd.wbc = wbc;
2884 mpd.inode = mapping->host;
2885
22208ded
AK
2886 /*
2887 * we don't want write_cache_pages to update
2888 * nr_to_write and writeback_index
2889 */
2890 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2891 wbc->no_nrwrite_index_update = 1;
2892 pages_skipped = wbc->pages_skipped;
2893
2acf2c26 2894retry:
22208ded 2895 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2896
2897 /*
2898 * we insert one extent at a time. So we need
2899 * credit needed for single extent allocation.
2900 * journalled mode is currently not supported
2901 * by delalloc
2902 */
2903 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2904 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2905
61628a3f
MC
2906 /* start a new transaction*/
2907 handle = ext4_journal_start(inode, needed_blocks);
2908 if (IS_ERR(handle)) {
2909 ret = PTR_ERR(handle);
1693918e 2910 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
a1d6cc56
AK
2911 "%ld pages, ino %lu; err %d\n", __func__,
2912 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2913 goto out_writepages;
2914 }
f63e6005
TT
2915
2916 /*
2917 * Now call __mpage_da_writepage to find the next
2918 * contiguous region of logical blocks that need
2919 * blocks to be allocated by ext4. We don't actually
2920 * submit the blocks for I/O here, even though
2921 * write_cache_pages thinks it will, and will set the
2922 * pages as clean for write before calling
2923 * __mpage_da_writepage().
2924 */
2925 mpd.b_size = 0;
2926 mpd.b_state = 0;
2927 mpd.b_blocknr = 0;
2928 mpd.first_page = 0;
2929 mpd.next_page = 0;
2930 mpd.io_done = 0;
2931 mpd.pages_written = 0;
2932 mpd.retval = 0;
2933 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2934 &mpd);
2935 /*
2936 * If we have a contigous extent of pages and we
2937 * haven't done the I/O yet, map the blocks and submit
2938 * them for I/O.
2939 */
2940 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2941 if (mpage_da_map_blocks(&mpd) == 0)
2942 mpage_da_submit_io(&mpd);
2943 mpd.io_done = 1;
2944 ret = MPAGE_DA_EXTENT_TAIL;
2945 }
b3a3ca8c 2946 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2947 wbc->nr_to_write -= mpd.pages_written;
df22291f 2948
61628a3f 2949 ext4_journal_stop(handle);
df22291f 2950
8f64b32e 2951 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2952 /* commit the transaction which would
2953 * free blocks released in the transaction
2954 * and try again
2955 */
df22291f 2956 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2957 wbc->pages_skipped = pages_skipped;
2958 ret = 0;
2959 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2960 /*
2961 * got one extent now try with
2962 * rest of the pages
2963 */
22208ded
AK
2964 pages_written += mpd.pages_written;
2965 wbc->pages_skipped = pages_skipped;
a1d6cc56 2966 ret = 0;
2acf2c26 2967 io_done = 1;
22208ded 2968 } else if (wbc->nr_to_write)
61628a3f
MC
2969 /*
2970 * There is no more writeout needed
2971 * or we requested for a noblocking writeout
2972 * and we found the device congested
2973 */
61628a3f 2974 break;
a1d6cc56 2975 }
2acf2c26
AK
2976 if (!io_done && !cycled) {
2977 cycled = 1;
2978 index = 0;
2979 wbc->range_start = index << PAGE_CACHE_SHIFT;
2980 wbc->range_end = mapping->writeback_index - 1;
2981 goto retry;
2982 }
22208ded 2983 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
2984 ext4_msg(inode->i_sb, KERN_CRIT,
2985 "This should not happen leaving %s "
2986 "with nr_to_write = %ld ret = %d\n",
2987 __func__, wbc->nr_to_write, ret);
22208ded
AK
2988
2989 /* Update index */
2990 index += pages_written;
2acf2c26 2991 wbc->range_cyclic = range_cyclic;
22208ded
AK
2992 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2993 /*
2994 * set the writeback_index so that range_cyclic
2995 * mode will write it back later
2996 */
2997 mapping->writeback_index = index;
a1d6cc56 2998
61628a3f 2999out_writepages:
22208ded
AK
3000 if (!no_nrwrite_index_update)
3001 wbc->no_nrwrite_index_update = 0;
55138e0b
TT
3002 if (wbc->nr_to_write > nr_to_writebump)
3003 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3004 wbc->range_start = range_start;
9bffad1e 3005 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3006 return ret;
64769240
AT
3007}
3008
79f0be8d
AK
3009#define FALL_BACK_TO_NONDELALLOC 1
3010static int ext4_nonda_switch(struct super_block *sb)
3011{
3012 s64 free_blocks, dirty_blocks;
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3014
3015 /*
3016 * switch to non delalloc mode if we are running low
3017 * on free block. The free block accounting via percpu
179f7ebf 3018 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3019 * accumulated on each CPU without updating global counters
3020 * Delalloc need an accurate free block accounting. So switch
3021 * to non delalloc when we are near to error range.
3022 */
3023 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3024 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3025 if (2 * free_blocks < 3 * dirty_blocks ||
3026 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3027 /*
3028 * free block count is less that 150% of dirty blocks
3029 * or free blocks is less that watermark
3030 */
3031 return 1;
3032 }
3033 return 0;
3034}
3035
64769240 3036static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3037 loff_t pos, unsigned len, unsigned flags,
3038 struct page **pagep, void **fsdata)
64769240 3039{
d2a17637 3040 int ret, retries = 0;
64769240
AT
3041 struct page *page;
3042 pgoff_t index;
3043 unsigned from, to;
3044 struct inode *inode = mapping->host;
3045 handle_t *handle;
3046
3047 index = pos >> PAGE_CACHE_SHIFT;
3048 from = pos & (PAGE_CACHE_SIZE - 1);
3049 to = from + len;
79f0be8d
AK
3050
3051 if (ext4_nonda_switch(inode->i_sb)) {
3052 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3053 return ext4_write_begin(file, mapping, pos,
3054 len, flags, pagep, fsdata);
3055 }
3056 *fsdata = (void *)0;
9bffad1e 3057 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3058retry:
64769240
AT
3059 /*
3060 * With delayed allocation, we don't log the i_disksize update
3061 * if there is delayed block allocation. But we still need
3062 * to journalling the i_disksize update if writes to the end
3063 * of file which has an already mapped buffer.
3064 */
3065 handle = ext4_journal_start(inode, 1);
3066 if (IS_ERR(handle)) {
3067 ret = PTR_ERR(handle);
3068 goto out;
3069 }
ebd3610b
JK
3070 /* We cannot recurse into the filesystem as the transaction is already
3071 * started */
3072 flags |= AOP_FLAG_NOFS;
64769240 3073
54566b2c 3074 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3075 if (!page) {
3076 ext4_journal_stop(handle);
3077 ret = -ENOMEM;
3078 goto out;
3079 }
64769240
AT
3080 *pagep = page;
3081
3082 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3083 ext4_da_get_block_prep);
64769240
AT
3084 if (ret < 0) {
3085 unlock_page(page);
3086 ext4_journal_stop(handle);
3087 page_cache_release(page);
ae4d5372
AK
3088 /*
3089 * block_write_begin may have instantiated a few blocks
3090 * outside i_size. Trim these off again. Don't need
3091 * i_size_read because we hold i_mutex.
3092 */
3093 if (pos + len > inode->i_size)
ffacfa7a 3094 ext4_truncate(inode);
64769240
AT
3095 }
3096
d2a17637
MC
3097 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3098 goto retry;
64769240
AT
3099out:
3100 return ret;
3101}
3102
632eaeab
MC
3103/*
3104 * Check if we should update i_disksize
3105 * when write to the end of file but not require block allocation
3106 */
3107static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3108 unsigned long offset)
632eaeab
MC
3109{
3110 struct buffer_head *bh;
3111 struct inode *inode = page->mapping->host;
3112 unsigned int idx;
3113 int i;
3114
3115 bh = page_buffers(page);
3116 idx = offset >> inode->i_blkbits;
3117
af5bc92d 3118 for (i = 0; i < idx; i++)
632eaeab
MC
3119 bh = bh->b_this_page;
3120
29fa89d0 3121 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3122 return 0;
3123 return 1;
3124}
3125
64769240 3126static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3127 struct address_space *mapping,
3128 loff_t pos, unsigned len, unsigned copied,
3129 struct page *page, void *fsdata)
64769240
AT
3130{
3131 struct inode *inode = mapping->host;
3132 int ret = 0, ret2;
3133 handle_t *handle = ext4_journal_current_handle();
3134 loff_t new_i_size;
632eaeab 3135 unsigned long start, end;
79f0be8d
AK
3136 int write_mode = (int)(unsigned long)fsdata;
3137
3138 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3139 if (ext4_should_order_data(inode)) {
3140 return ext4_ordered_write_end(file, mapping, pos,
3141 len, copied, page, fsdata);
3142 } else if (ext4_should_writeback_data(inode)) {
3143 return ext4_writeback_write_end(file, mapping, pos,
3144 len, copied, page, fsdata);
3145 } else {
3146 BUG();
3147 }
3148 }
632eaeab 3149
9bffad1e 3150 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3151 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3152 end = start + copied - 1;
64769240
AT
3153
3154 /*
3155 * generic_write_end() will run mark_inode_dirty() if i_size
3156 * changes. So let's piggyback the i_disksize mark_inode_dirty
3157 * into that.
3158 */
3159
3160 new_i_size = pos + copied;
632eaeab
MC
3161 if (new_i_size > EXT4_I(inode)->i_disksize) {
3162 if (ext4_da_should_update_i_disksize(page, end)) {
3163 down_write(&EXT4_I(inode)->i_data_sem);
3164 if (new_i_size > EXT4_I(inode)->i_disksize) {
3165 /*
3166 * Updating i_disksize when extending file
3167 * without needing block allocation
3168 */
3169 if (ext4_should_order_data(inode))
3170 ret = ext4_jbd2_file_inode(handle,
3171 inode);
64769240 3172
632eaeab
MC
3173 EXT4_I(inode)->i_disksize = new_i_size;
3174 }
3175 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3176 /* We need to mark inode dirty even if
3177 * new_i_size is less that inode->i_size
3178 * bu greater than i_disksize.(hint delalloc)
3179 */
3180 ext4_mark_inode_dirty(handle, inode);
64769240 3181 }
632eaeab 3182 }
64769240
AT
3183 ret2 = generic_write_end(file, mapping, pos, len, copied,
3184 page, fsdata);
3185 copied = ret2;
3186 if (ret2 < 0)
3187 ret = ret2;
3188 ret2 = ext4_journal_stop(handle);
3189 if (!ret)
3190 ret = ret2;
3191
3192 return ret ? ret : copied;
3193}
3194
3195static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3196{
64769240
AT
3197 /*
3198 * Drop reserved blocks
3199 */
3200 BUG_ON(!PageLocked(page));
3201 if (!page_has_buffers(page))
3202 goto out;
3203
d2a17637 3204 ext4_da_page_release_reservation(page, offset);
64769240
AT
3205
3206out:
3207 ext4_invalidatepage(page, offset);
3208
3209 return;
3210}
3211
ccd2506b
TT
3212/*
3213 * Force all delayed allocation blocks to be allocated for a given inode.
3214 */
3215int ext4_alloc_da_blocks(struct inode *inode)
3216{
fb40ba0d
TT
3217 trace_ext4_alloc_da_blocks(inode);
3218
ccd2506b
TT
3219 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3220 !EXT4_I(inode)->i_reserved_meta_blocks)
3221 return 0;
3222
3223 /*
3224 * We do something simple for now. The filemap_flush() will
3225 * also start triggering a write of the data blocks, which is
3226 * not strictly speaking necessary (and for users of
3227 * laptop_mode, not even desirable). However, to do otherwise
3228 * would require replicating code paths in:
de9a55b8 3229 *
ccd2506b
TT
3230 * ext4_da_writepages() ->
3231 * write_cache_pages() ---> (via passed in callback function)
3232 * __mpage_da_writepage() -->
3233 * mpage_add_bh_to_extent()
3234 * mpage_da_map_blocks()
3235 *
3236 * The problem is that write_cache_pages(), located in
3237 * mm/page-writeback.c, marks pages clean in preparation for
3238 * doing I/O, which is not desirable if we're not planning on
3239 * doing I/O at all.
3240 *
3241 * We could call write_cache_pages(), and then redirty all of
3242 * the pages by calling redirty_page_for_writeback() but that
3243 * would be ugly in the extreme. So instead we would need to
3244 * replicate parts of the code in the above functions,
3245 * simplifying them becuase we wouldn't actually intend to
3246 * write out the pages, but rather only collect contiguous
3247 * logical block extents, call the multi-block allocator, and
3248 * then update the buffer heads with the block allocations.
de9a55b8 3249 *
ccd2506b
TT
3250 * For now, though, we'll cheat by calling filemap_flush(),
3251 * which will map the blocks, and start the I/O, but not
3252 * actually wait for the I/O to complete.
3253 */
3254 return filemap_flush(inode->i_mapping);
3255}
64769240 3256
ac27a0ec
DK
3257/*
3258 * bmap() is special. It gets used by applications such as lilo and by
3259 * the swapper to find the on-disk block of a specific piece of data.
3260 *
3261 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3262 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3263 * filesystem and enables swap, then they may get a nasty shock when the
3264 * data getting swapped to that swapfile suddenly gets overwritten by
3265 * the original zero's written out previously to the journal and
3266 * awaiting writeback in the kernel's buffer cache.
3267 *
3268 * So, if we see any bmap calls here on a modified, data-journaled file,
3269 * take extra steps to flush any blocks which might be in the cache.
3270 */
617ba13b 3271static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3272{
3273 struct inode *inode = mapping->host;
3274 journal_t *journal;
3275 int err;
3276
64769240
AT
3277 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3278 test_opt(inode->i_sb, DELALLOC)) {
3279 /*
3280 * With delalloc we want to sync the file
3281 * so that we can make sure we allocate
3282 * blocks for file
3283 */
3284 filemap_write_and_wait(mapping);
3285 }
3286
0390131b 3287 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
3288 /*
3289 * This is a REALLY heavyweight approach, but the use of
3290 * bmap on dirty files is expected to be extremely rare:
3291 * only if we run lilo or swapon on a freshly made file
3292 * do we expect this to happen.
3293 *
3294 * (bmap requires CAP_SYS_RAWIO so this does not
3295 * represent an unprivileged user DOS attack --- we'd be
3296 * in trouble if mortal users could trigger this path at
3297 * will.)
3298 *
617ba13b 3299 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3300 * regular files. If somebody wants to bmap a directory
3301 * or symlink and gets confused because the buffer
3302 * hasn't yet been flushed to disk, they deserve
3303 * everything they get.
3304 */
3305
617ba13b
MC
3306 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3307 journal = EXT4_JOURNAL(inode);
dab291af
MC
3308 jbd2_journal_lock_updates(journal);
3309 err = jbd2_journal_flush(journal);
3310 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3311
3312 if (err)
3313 return 0;
3314 }
3315
af5bc92d 3316 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3317}
3318
617ba13b 3319static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3320{
617ba13b 3321 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3322}
3323
3324static int
617ba13b 3325ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3326 struct list_head *pages, unsigned nr_pages)
3327{
617ba13b 3328 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3329}
3330
617ba13b 3331static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3332{
617ba13b 3333 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3334
3335 /*
3336 * If it's a full truncate we just forget about the pending dirtying
3337 */
3338 if (offset == 0)
3339 ClearPageChecked(page);
3340
0390131b
FM
3341 if (journal)
3342 jbd2_journal_invalidatepage(journal, page, offset);
3343 else
3344 block_invalidatepage(page, offset);
ac27a0ec
DK
3345}
3346
617ba13b 3347static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3348{
617ba13b 3349 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3350
3351 WARN_ON(PageChecked(page));
3352 if (!page_has_buffers(page))
3353 return 0;
0390131b
FM
3354 if (journal)
3355 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3356 else
3357 return try_to_free_buffers(page);
ac27a0ec
DK
3358}
3359
3360/*
4c0425ff
MC
3361 * O_DIRECT for ext3 (or indirect map) based files
3362 *
ac27a0ec
DK
3363 * If the O_DIRECT write will extend the file then add this inode to the
3364 * orphan list. So recovery will truncate it back to the original size
3365 * if the machine crashes during the write.
3366 *
3367 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3368 * crashes then stale disk data _may_ be exposed inside the file. But current
3369 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3370 */
4c0425ff 3371static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3372 const struct iovec *iov, loff_t offset,
3373 unsigned long nr_segs)
ac27a0ec
DK
3374{
3375 struct file *file = iocb->ki_filp;
3376 struct inode *inode = file->f_mapping->host;
617ba13b 3377 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3378 handle_t *handle;
ac27a0ec
DK
3379 ssize_t ret;
3380 int orphan = 0;
3381 size_t count = iov_length(iov, nr_segs);
fbbf6945 3382 int retries = 0;
ac27a0ec
DK
3383
3384 if (rw == WRITE) {
3385 loff_t final_size = offset + count;
3386
ac27a0ec 3387 if (final_size > inode->i_size) {
7fb5409d
JK
3388 /* Credits for sb + inode write */
3389 handle = ext4_journal_start(inode, 2);
3390 if (IS_ERR(handle)) {
3391 ret = PTR_ERR(handle);
3392 goto out;
3393 }
617ba13b 3394 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3395 if (ret) {
3396 ext4_journal_stop(handle);
3397 goto out;
3398 }
ac27a0ec
DK
3399 orphan = 1;
3400 ei->i_disksize = inode->i_size;
7fb5409d 3401 ext4_journal_stop(handle);
ac27a0ec
DK
3402 }
3403 }
3404
fbbf6945 3405retry:
ac27a0ec
DK
3406 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3407 offset, nr_segs,
617ba13b 3408 ext4_get_block, NULL);
fbbf6945
ES
3409 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3410 goto retry;
ac27a0ec 3411
7fb5409d 3412 if (orphan) {
ac27a0ec
DK
3413 int err;
3414
7fb5409d
JK
3415 /* Credits for sb + inode write */
3416 handle = ext4_journal_start(inode, 2);
3417 if (IS_ERR(handle)) {
3418 /* This is really bad luck. We've written the data
3419 * but cannot extend i_size. Bail out and pretend
3420 * the write failed... */
3421 ret = PTR_ERR(handle);
3422 goto out;
3423 }
3424 if (inode->i_nlink)
617ba13b 3425 ext4_orphan_del(handle, inode);
7fb5409d 3426 if (ret > 0) {
ac27a0ec
DK
3427 loff_t end = offset + ret;
3428 if (end > inode->i_size) {
3429 ei->i_disksize = end;
3430 i_size_write(inode, end);
3431 /*
3432 * We're going to return a positive `ret'
3433 * here due to non-zero-length I/O, so there's
3434 * no way of reporting error returns from
617ba13b 3435 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3436 * ignore it.
3437 */
617ba13b 3438 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3439 }
3440 }
617ba13b 3441 err = ext4_journal_stop(handle);
ac27a0ec
DK
3442 if (ret == 0)
3443 ret = err;
3444 }
3445out:
3446 return ret;
3447}
3448
4c0425ff
MC
3449/* Maximum number of blocks we map for direct IO at once. */
3450
3451static int ext4_get_block_dio_write(struct inode *inode, sector_t iblock,
3452 struct buffer_head *bh_result, int create)
3453{
3454 handle_t *handle = NULL;
3455 int ret = 0;
3456 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3457 int dio_credits;
3458
8d5d02e6
MC
3459 ext4_debug("ext4_get_block_dio_write: inode %lu, create flag %d\n",
3460 inode->i_ino, create);
4c0425ff
MC
3461 /*
3462 * DIO VFS code passes create = 0 flag for write to
3463 * the middle of file. It does this to avoid block
3464 * allocation for holes, to prevent expose stale data
3465 * out when there is parallel buffered read (which does
3466 * not hold the i_mutex lock) while direct IO write has
3467 * not completed. DIO request on holes finally falls back
3468 * to buffered IO for this reason.
3469 *
3470 * For ext4 extent based file, since we support fallocate,
3471 * new allocated extent as uninitialized, for holes, we
3472 * could fallocate blocks for holes, thus parallel
3473 * buffered IO read will zero out the page when read on
3474 * a hole while parallel DIO write to the hole has not completed.
3475 *
3476 * when we come here, we know it's a direct IO write to
3477 * to the middle of file (<i_size)
3478 * so it's safe to override the create flag from VFS.
3479 */
3480 create = EXT4_GET_BLOCKS_DIO_CREATE_EXT;
3481
3482 if (max_blocks > DIO_MAX_BLOCKS)
3483 max_blocks = DIO_MAX_BLOCKS;
3484 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3485 handle = ext4_journal_start(inode, dio_credits);
3486 if (IS_ERR(handle)) {
3487 ret = PTR_ERR(handle);
3488 goto out;
3489 }
3490 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3491 create);
3492 if (ret > 0) {
3493 bh_result->b_size = (ret << inode->i_blkbits);
3494 ret = 0;
3495 }
3496 ext4_journal_stop(handle);
3497out:
3498 return ret;
3499}
3500
4c0425ff
MC
3501static void ext4_free_io_end(ext4_io_end_t *io)
3502{
8d5d02e6
MC
3503 BUG_ON(!io);
3504 iput(io->inode);
4c0425ff
MC
3505 kfree(io);
3506}
8d5d02e6
MC
3507static void dump_aio_dio_list(struct inode * inode)
3508{
3509#ifdef EXT4_DEBUG
3510 struct list_head *cur, *before, *after;
3511 ext4_io_end_t *io, *io0, *io1;
3512
3513 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3514 ext4_debug("inode %lu aio dio list is empty\n", inode->i_ino);
3515 return;
3516 }
3517
3518 ext4_debug("Dump inode %lu aio_dio_completed_IO list \n", inode->i_ino);
3519 list_for_each_entry(io, &EXT4_I(inode)->i_aio_dio_complete_list, list){
3520 cur = &io->list;
3521 before = cur->prev;
3522 io0 = container_of(before, ext4_io_end_t, list);
3523 after = cur->next;
3524 io1 = container_of(after, ext4_io_end_t, list);
3525
3526 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3527 io, inode->i_ino, io0, io1);
3528 }
3529#endif
3530}
4c0425ff
MC
3531
3532/*
4c0425ff
MC
3533 * check a range of space and convert unwritten extents to written.
3534 */
8d5d02e6 3535static int ext4_end_aio_dio_nolock(ext4_io_end_t *io)
4c0425ff 3536{
4c0425ff
MC
3537 struct inode *inode = io->inode;
3538 loff_t offset = io->offset;
3539 size_t size = io->size;
3540 int ret = 0;
4c0425ff 3541
8d5d02e6
MC
3542 ext4_debug("end_aio_dio_onlock: io 0x%p from inode %lu,list->next 0x%p,"
3543 "list->prev 0x%p\n",
3544 io, inode->i_ino, io->list.next, io->list.prev);
3545
3546 if (list_empty(&io->list))
3547 return ret;
3548
3549 if (io->flag != DIO_AIO_UNWRITTEN)
3550 return ret;
3551
4c0425ff
MC
3552 if (offset + size <= i_size_read(inode))
3553 ret = ext4_convert_unwritten_extents(inode, offset, size);
3554
8d5d02e6 3555 if (ret < 0) {
4c0425ff 3556 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3557 "extents to written extents, error is %d"
3558 " io is still on inode %lu aio dio list\n",
3559 __func__, ret, inode->i_ino);
3560 return ret;
3561 }
4c0425ff 3562
8d5d02e6
MC
3563 /* clear the DIO AIO unwritten flag */
3564 io->flag = 0;
3565 return ret;
4c0425ff 3566}
8d5d02e6
MC
3567/*
3568 * work on completed aio dio IO, to convert unwritten extents to extents
3569 */
3570static void ext4_end_aio_dio_work(struct work_struct *work)
3571{
3572 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3573 struct inode *inode = io->inode;
3574 int ret = 0;
4c0425ff 3575
8d5d02e6
MC
3576 mutex_lock(&inode->i_mutex);
3577 ret = ext4_end_aio_dio_nolock(io);
3578 if (ret >= 0) {
3579 if (!list_empty(&io->list))
3580 list_del_init(&io->list);
3581 ext4_free_io_end(io);
3582 }
3583 mutex_unlock(&inode->i_mutex);
3584}
3585/*
3586 * This function is called from ext4_sync_file().
3587 *
3588 * When AIO DIO IO is completed, the work to convert unwritten
3589 * extents to written is queued on workqueue but may not get immediately
3590 * scheduled. When fsync is called, we need to ensure the
3591 * conversion is complete before fsync returns.
3592 * The inode keeps track of a list of completed AIO from DIO path
3593 * that might needs to do the conversion. This function walks through
3594 * the list and convert the related unwritten extents to written.
3595 */
3596int flush_aio_dio_completed_IO(struct inode *inode)
3597{
3598 ext4_io_end_t *io;
3599 int ret = 0;
3600 int ret2 = 0;
3601
3602 if (list_empty(&EXT4_I(inode)->i_aio_dio_complete_list))
3603 return ret;
3604
3605 dump_aio_dio_list(inode);
3606 while (!list_empty(&EXT4_I(inode)->i_aio_dio_complete_list)){
3607 io = list_entry(EXT4_I(inode)->i_aio_dio_complete_list.next,
3608 ext4_io_end_t, list);
3609 /*
3610 * Calling ext4_end_aio_dio_nolock() to convert completed
3611 * IO to written.
3612 *
3613 * When ext4_sync_file() is called, run_queue() may already
3614 * about to flush the work corresponding to this io structure.
3615 * It will be upset if it founds the io structure related
3616 * to the work-to-be schedule is freed.
3617 *
3618 * Thus we need to keep the io structure still valid here after
3619 * convertion finished. The io structure has a flag to
3620 * avoid double converting from both fsync and background work
3621 * queue work.
3622 */
3623 ret = ext4_end_aio_dio_nolock(io);
3624 if (ret < 0)
3625 ret2 = ret;
3626 else
3627 list_del_init(&io->list);
3628 }
3629 return (ret2 < 0) ? ret2 : 0;
3630}
3631
3632static ext4_io_end_t *ext4_init_io_end (struct inode *inode)
4c0425ff
MC
3633{
3634 ext4_io_end_t *io = NULL;
3635
3636 io = kmalloc(sizeof(*io), GFP_NOFS);
3637
3638 if (io) {
8d5d02e6 3639 igrab(inode);
4c0425ff 3640 io->inode = inode;
8d5d02e6 3641 io->flag = 0;
4c0425ff
MC
3642 io->offset = 0;
3643 io->size = 0;
3644 io->error = 0;
8d5d02e6
MC
3645 INIT_WORK(&io->work, ext4_end_aio_dio_work);
3646 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3647 }
3648
3649 return io;
3650}
3651
3652static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3653 ssize_t size, void *private)
3654{
3655 ext4_io_end_t *io_end = iocb->private;
3656 struct workqueue_struct *wq;
3657
8d5d02e6
MC
3658 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3659 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3660 iocb->private, io_end->inode->i_ino, iocb, offset,
3661 size);
3662 /* if not async direct IO or dio with 0 bytes write, just return */
3663 if (!io_end || !size)
3664 return;
3665
3666 /* if not aio dio with unwritten extents, just free io and return */
3667 if (io_end->flag != DIO_AIO_UNWRITTEN){
3668 ext4_free_io_end(io_end);
3669 iocb->private = NULL;
4c0425ff 3670 return;
8d5d02e6
MC
3671 }
3672
4c0425ff
MC
3673 io_end->offset = offset;
3674 io_end->size = size;
3675 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3676
8d5d02e6 3677 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3678 queue_work(wq, &io_end->work);
3679
8d5d02e6
MC
3680 /* Add the io_end to per-inode completed aio dio list*/
3681 list_add_tail(&io_end->list,
3682 &EXT4_I(io_end->inode)->i_aio_dio_complete_list);
4c0425ff
MC
3683 iocb->private = NULL;
3684}
3685/*
3686 * For ext4 extent files, ext4 will do direct-io write to holes,
3687 * preallocated extents, and those write extend the file, no need to
3688 * fall back to buffered IO.
3689 *
3690 * For holes, we fallocate those blocks, mark them as unintialized
3691 * If those blocks were preallocated, we mark sure they are splited, but
3692 * still keep the range to write as unintialized.
3693 *
8d5d02e6
MC
3694 * The unwrritten extents will be converted to written when DIO is completed.
3695 * For async direct IO, since the IO may still pending when return, we
3696 * set up an end_io call back function, which will do the convertion
3697 * when async direct IO completed.
4c0425ff
MC
3698 *
3699 * If the O_DIRECT write will extend the file then add this inode to the
3700 * orphan list. So recovery will truncate it back to the original size
3701 * if the machine crashes during the write.
3702 *
3703 */
3704static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3705 const struct iovec *iov, loff_t offset,
3706 unsigned long nr_segs)
3707{
3708 struct file *file = iocb->ki_filp;
3709 struct inode *inode = file->f_mapping->host;
3710 ssize_t ret;
3711 size_t count = iov_length(iov, nr_segs);
3712
3713 loff_t final_size = offset + count;
3714 if (rw == WRITE && final_size <= inode->i_size) {
3715 /*
8d5d02e6
MC
3716 * We could direct write to holes and fallocate.
3717 *
3718 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3719 * to prevent paralel buffered read to expose the stale data
3720 * before DIO complete the data IO.
8d5d02e6
MC
3721 *
3722 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3723 * will just simply mark the buffer mapped but still
3724 * keep the extents uninitialized.
3725 *
8d5d02e6
MC
3726 * for non AIO case, we will convert those unwritten extents
3727 * to written after return back from blockdev_direct_IO.
3728 *
3729 * for async DIO, the conversion needs to be defered when
3730 * the IO is completed. The ext4 end_io callback function
3731 * will be called to take care of the conversion work.
3732 * Here for async case, we allocate an io_end structure to
3733 * hook to the iocb.
4c0425ff 3734 */
8d5d02e6
MC
3735 iocb->private = NULL;
3736 EXT4_I(inode)->cur_aio_dio = NULL;
3737 if (!is_sync_kiocb(iocb)) {
3738 iocb->private = ext4_init_io_end(inode);
3739 if (!iocb->private)
3740 return -ENOMEM;
3741 /*
3742 * we save the io structure for current async
3743 * direct IO, so that later ext4_get_blocks()
3744 * could flag the io structure whether there
3745 * is a unwritten extents needs to be converted
3746 * when IO is completed.
3747 */
3748 EXT4_I(inode)->cur_aio_dio = iocb->private;
3749 }
3750
4c0425ff
MC
3751 ret = blockdev_direct_IO(rw, iocb, inode,
3752 inode->i_sb->s_bdev, iov,
3753 offset, nr_segs,
3754 ext4_get_block_dio_write,
3755 ext4_end_io_dio);
8d5d02e6
MC
3756 if (iocb->private)
3757 EXT4_I(inode)->cur_aio_dio = NULL;
3758 /*
3759 * The io_end structure takes a reference to the inode,
3760 * that structure needs to be destroyed and the
3761 * reference to the inode need to be dropped, when IO is
3762 * complete, even with 0 byte write, or failed.
3763 *
3764 * In the successful AIO DIO case, the io_end structure will be
3765 * desctroyed and the reference to the inode will be dropped
3766 * after the end_io call back function is called.
3767 *
3768 * In the case there is 0 byte write, or error case, since
3769 * VFS direct IO won't invoke the end_io call back function,
3770 * we need to free the end_io structure here.
3771 */
3772 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3773 ext4_free_io_end(iocb->private);
3774 iocb->private = NULL;
3775 } else if (ret > 0)
3776 /*
3777 * for non AIO case, since the IO is already
3778 * completed, we could do the convertion right here
3779 */
3780 ret = ext4_convert_unwritten_extents(inode,
3781 offset, ret);
4c0425ff
MC
3782 return ret;
3783 }
8d5d02e6
MC
3784
3785 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3786 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3787}
3788
3789static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3790 const struct iovec *iov, loff_t offset,
3791 unsigned long nr_segs)
3792{
3793 struct file *file = iocb->ki_filp;
3794 struct inode *inode = file->f_mapping->host;
3795
3796 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3797 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3798
3799 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3800}
3801
ac27a0ec 3802/*
617ba13b 3803 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3804 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3805 * much here because ->set_page_dirty is called under VFS locks. The page is
3806 * not necessarily locked.
3807 *
3808 * We cannot just dirty the page and leave attached buffers clean, because the
3809 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3810 * or jbddirty because all the journalling code will explode.
3811 *
3812 * So what we do is to mark the page "pending dirty" and next time writepage
3813 * is called, propagate that into the buffers appropriately.
3814 */
617ba13b 3815static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3816{
3817 SetPageChecked(page);
3818 return __set_page_dirty_nobuffers(page);
3819}
3820
617ba13b 3821static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3822 .readpage = ext4_readpage,
3823 .readpages = ext4_readpages,
43ce1d23 3824 .writepage = ext4_writepage,
8ab22b9a
HH
3825 .sync_page = block_sync_page,
3826 .write_begin = ext4_write_begin,
3827 .write_end = ext4_ordered_write_end,
3828 .bmap = ext4_bmap,
3829 .invalidatepage = ext4_invalidatepage,
3830 .releasepage = ext4_releasepage,
3831 .direct_IO = ext4_direct_IO,
3832 .migratepage = buffer_migrate_page,
3833 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3834 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3835};
3836
617ba13b 3837static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3838 .readpage = ext4_readpage,
3839 .readpages = ext4_readpages,
43ce1d23 3840 .writepage = ext4_writepage,
8ab22b9a
HH
3841 .sync_page = block_sync_page,
3842 .write_begin = ext4_write_begin,
3843 .write_end = ext4_writeback_write_end,
3844 .bmap = ext4_bmap,
3845 .invalidatepage = ext4_invalidatepage,
3846 .releasepage = ext4_releasepage,
3847 .direct_IO = ext4_direct_IO,
3848 .migratepage = buffer_migrate_page,
3849 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3850 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3851};
3852
617ba13b 3853static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3854 .readpage = ext4_readpage,
3855 .readpages = ext4_readpages,
43ce1d23 3856 .writepage = ext4_writepage,
8ab22b9a
HH
3857 .sync_page = block_sync_page,
3858 .write_begin = ext4_write_begin,
3859 .write_end = ext4_journalled_write_end,
3860 .set_page_dirty = ext4_journalled_set_page_dirty,
3861 .bmap = ext4_bmap,
3862 .invalidatepage = ext4_invalidatepage,
3863 .releasepage = ext4_releasepage,
3864 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3865 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3866};
3867
64769240 3868static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3869 .readpage = ext4_readpage,
3870 .readpages = ext4_readpages,
43ce1d23 3871 .writepage = ext4_writepage,
8ab22b9a
HH
3872 .writepages = ext4_da_writepages,
3873 .sync_page = block_sync_page,
3874 .write_begin = ext4_da_write_begin,
3875 .write_end = ext4_da_write_end,
3876 .bmap = ext4_bmap,
3877 .invalidatepage = ext4_da_invalidatepage,
3878 .releasepage = ext4_releasepage,
3879 .direct_IO = ext4_direct_IO,
3880 .migratepage = buffer_migrate_page,
3881 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3882 .error_remove_page = generic_error_remove_page,
64769240
AT
3883};
3884
617ba13b 3885void ext4_set_aops(struct inode *inode)
ac27a0ec 3886{
cd1aac32
AK
3887 if (ext4_should_order_data(inode) &&
3888 test_opt(inode->i_sb, DELALLOC))
3889 inode->i_mapping->a_ops = &ext4_da_aops;
3890 else if (ext4_should_order_data(inode))
617ba13b 3891 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
3892 else if (ext4_should_writeback_data(inode) &&
3893 test_opt(inode->i_sb, DELALLOC))
3894 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
3895 else if (ext4_should_writeback_data(inode))
3896 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 3897 else
617ba13b 3898 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
3899}
3900
3901/*
617ba13b 3902 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
3903 * up to the end of the block which corresponds to `from'.
3904 * This required during truncate. We need to physically zero the tail end
3905 * of that block so it doesn't yield old data if the file is later grown.
3906 */
cf108bca 3907int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
3908 struct address_space *mapping, loff_t from)
3909{
617ba13b 3910 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 3911 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
3912 unsigned blocksize, length, pos;
3913 ext4_lblk_t iblock;
ac27a0ec
DK
3914 struct inode *inode = mapping->host;
3915 struct buffer_head *bh;
cf108bca 3916 struct page *page;
ac27a0ec 3917 int err = 0;
ac27a0ec 3918
f4a01017
TT
3919 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3920 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
3921 if (!page)
3922 return -EINVAL;
3923
ac27a0ec
DK
3924 blocksize = inode->i_sb->s_blocksize;
3925 length = blocksize - (offset & (blocksize - 1));
3926 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3927
3928 /*
3929 * For "nobh" option, we can only work if we don't need to
3930 * read-in the page - otherwise we create buffers to do the IO.
3931 */
3932 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 3933 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 3934 zero_user(page, offset, length);
ac27a0ec
DK
3935 set_page_dirty(page);
3936 goto unlock;
3937 }
3938
3939 if (!page_has_buffers(page))
3940 create_empty_buffers(page, blocksize, 0);
3941
3942 /* Find the buffer that contains "offset" */
3943 bh = page_buffers(page);
3944 pos = blocksize;
3945 while (offset >= pos) {
3946 bh = bh->b_this_page;
3947 iblock++;
3948 pos += blocksize;
3949 }
3950
3951 err = 0;
3952 if (buffer_freed(bh)) {
3953 BUFFER_TRACE(bh, "freed: skip");
3954 goto unlock;
3955 }
3956
3957 if (!buffer_mapped(bh)) {
3958 BUFFER_TRACE(bh, "unmapped");
617ba13b 3959 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
3960 /* unmapped? It's a hole - nothing to do */
3961 if (!buffer_mapped(bh)) {
3962 BUFFER_TRACE(bh, "still unmapped");
3963 goto unlock;
3964 }
3965 }
3966
3967 /* Ok, it's mapped. Make sure it's up-to-date */
3968 if (PageUptodate(page))
3969 set_buffer_uptodate(bh);
3970
3971 if (!buffer_uptodate(bh)) {
3972 err = -EIO;
3973 ll_rw_block(READ, 1, &bh);
3974 wait_on_buffer(bh);
3975 /* Uhhuh. Read error. Complain and punt. */
3976 if (!buffer_uptodate(bh))
3977 goto unlock;
3978 }
3979
617ba13b 3980 if (ext4_should_journal_data(inode)) {
ac27a0ec 3981 BUFFER_TRACE(bh, "get write access");
617ba13b 3982 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
3983 if (err)
3984 goto unlock;
3985 }
3986
eebd2aa3 3987 zero_user(page, offset, length);
ac27a0ec
DK
3988
3989 BUFFER_TRACE(bh, "zeroed end of block");
3990
3991 err = 0;
617ba13b 3992 if (ext4_should_journal_data(inode)) {
0390131b 3993 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 3994 } else {
617ba13b 3995 if (ext4_should_order_data(inode))
678aaf48 3996 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
3997 mark_buffer_dirty(bh);
3998 }
3999
4000unlock:
4001 unlock_page(page);
4002 page_cache_release(page);
4003 return err;
4004}
4005
4006/*
4007 * Probably it should be a library function... search for first non-zero word
4008 * or memcmp with zero_page, whatever is better for particular architecture.
4009 * Linus?
4010 */
4011static inline int all_zeroes(__le32 *p, __le32 *q)
4012{
4013 while (p < q)
4014 if (*p++)
4015 return 0;
4016 return 1;
4017}
4018
4019/**
617ba13b 4020 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4021 * @inode: inode in question
4022 * @depth: depth of the affected branch
617ba13b 4023 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4024 * @chain: place to store the pointers to partial indirect blocks
4025 * @top: place to the (detached) top of branch
4026 *
617ba13b 4027 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4028 *
4029 * When we do truncate() we may have to clean the ends of several
4030 * indirect blocks but leave the blocks themselves alive. Block is
4031 * partially truncated if some data below the new i_size is refered
4032 * from it (and it is on the path to the first completely truncated
4033 * data block, indeed). We have to free the top of that path along
4034 * with everything to the right of the path. Since no allocation
617ba13b 4035 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4036 * finishes, we may safely do the latter, but top of branch may
4037 * require special attention - pageout below the truncation point
4038 * might try to populate it.
4039 *
4040 * We atomically detach the top of branch from the tree, store the
4041 * block number of its root in *@top, pointers to buffer_heads of
4042 * partially truncated blocks - in @chain[].bh and pointers to
4043 * their last elements that should not be removed - in
4044 * @chain[].p. Return value is the pointer to last filled element
4045 * of @chain.
4046 *
4047 * The work left to caller to do the actual freeing of subtrees:
4048 * a) free the subtree starting from *@top
4049 * b) free the subtrees whose roots are stored in
4050 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4051 * c) free the subtrees growing from the inode past the @chain[0].
4052 * (no partially truncated stuff there). */
4053
617ba13b 4054static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4055 ext4_lblk_t offsets[4], Indirect chain[4],
4056 __le32 *top)
ac27a0ec
DK
4057{
4058 Indirect *partial, *p;
4059 int k, err;
4060
4061 *top = 0;
4062 /* Make k index the deepest non-null offest + 1 */
4063 for (k = depth; k > 1 && !offsets[k-1]; k--)
4064 ;
617ba13b 4065 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4066 /* Writer: pointers */
4067 if (!partial)
4068 partial = chain + k-1;
4069 /*
4070 * If the branch acquired continuation since we've looked at it -
4071 * fine, it should all survive and (new) top doesn't belong to us.
4072 */
4073 if (!partial->key && *partial->p)
4074 /* Writer: end */
4075 goto no_top;
af5bc92d 4076 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4077 ;
4078 /*
4079 * OK, we've found the last block that must survive. The rest of our
4080 * branch should be detached before unlocking. However, if that rest
4081 * of branch is all ours and does not grow immediately from the inode
4082 * it's easier to cheat and just decrement partial->p.
4083 */
4084 if (p == chain + k - 1 && p > chain) {
4085 p->p--;
4086 } else {
4087 *top = *p->p;
617ba13b 4088 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4089#if 0
4090 *p->p = 0;
4091#endif
4092 }
4093 /* Writer: end */
4094
af5bc92d 4095 while (partial > p) {
ac27a0ec
DK
4096 brelse(partial->bh);
4097 partial--;
4098 }
4099no_top:
4100 return partial;
4101}
4102
4103/*
4104 * Zero a number of block pointers in either an inode or an indirect block.
4105 * If we restart the transaction we must again get write access to the
4106 * indirect block for further modification.
4107 *
4108 * We release `count' blocks on disk, but (last - first) may be greater
4109 * than `count' because there can be holes in there.
4110 */
617ba13b 4111static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
4112 struct buffer_head *bh,
4113 ext4_fsblk_t block_to_free,
4114 unsigned long count, __le32 *first,
4115 __le32 *last)
ac27a0ec
DK
4116{
4117 __le32 *p;
4118 if (try_to_extend_transaction(handle, inode)) {
4119 if (bh) {
0390131b
FM
4120 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4121 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4122 }
617ba13b 4123 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4124 ext4_truncate_restart_trans(handle, inode,
4125 blocks_for_truncate(inode));
ac27a0ec
DK
4126 if (bh) {
4127 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4128 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4129 }
4130 }
4131
4132 /*
de9a55b8
TT
4133 * Any buffers which are on the journal will be in memory. We
4134 * find them on the hash table so jbd2_journal_revoke() will
4135 * run jbd2_journal_forget() on them. We've already detached
4136 * each block from the file, so bforget() in
4137 * jbd2_journal_forget() should be safe.
ac27a0ec 4138 *
dab291af 4139 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
4140 */
4141 for (p = first; p < last; p++) {
4142 u32 nr = le32_to_cpu(*p);
4143 if (nr) {
1d03ec98 4144 struct buffer_head *tbh;
ac27a0ec
DK
4145
4146 *p = 0;
1d03ec98
AK
4147 tbh = sb_find_get_block(inode->i_sb, nr);
4148 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
4149 }
4150 }
4151
c9de560d 4152 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
4153}
4154
4155/**
617ba13b 4156 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4157 * @handle: handle for this transaction
4158 * @inode: inode we are dealing with
4159 * @this_bh: indirect buffer_head which contains *@first and *@last
4160 * @first: array of block numbers
4161 * @last: points immediately past the end of array
4162 *
4163 * We are freeing all blocks refered from that array (numbers are stored as
4164 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4165 *
4166 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4167 * blocks are contiguous then releasing them at one time will only affect one
4168 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4169 * actually use a lot of journal space.
4170 *
4171 * @this_bh will be %NULL if @first and @last point into the inode's direct
4172 * block pointers.
4173 */
617ba13b 4174static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4175 struct buffer_head *this_bh,
4176 __le32 *first, __le32 *last)
4177{
617ba13b 4178 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4179 unsigned long count = 0; /* Number of blocks in the run */
4180 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4181 corresponding to
4182 block_to_free */
617ba13b 4183 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4184 __le32 *p; /* Pointer into inode/ind
4185 for current block */
4186 int err;
4187
4188 if (this_bh) { /* For indirect block */
4189 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4190 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4191 /* Important: if we can't update the indirect pointers
4192 * to the blocks, we can't free them. */
4193 if (err)
4194 return;
4195 }
4196
4197 for (p = first; p < last; p++) {
4198 nr = le32_to_cpu(*p);
4199 if (nr) {
4200 /* accumulate blocks to free if they're contiguous */
4201 if (count == 0) {
4202 block_to_free = nr;
4203 block_to_free_p = p;
4204 count = 1;
4205 } else if (nr == block_to_free + count) {
4206 count++;
4207 } else {
617ba13b 4208 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
4209 block_to_free,
4210 count, block_to_free_p, p);
4211 block_to_free = nr;
4212 block_to_free_p = p;
4213 count = 1;
4214 }
4215 }
4216 }
4217
4218 if (count > 0)
617ba13b 4219 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4220 count, block_to_free_p, p);
4221
4222 if (this_bh) {
0390131b 4223 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4224
4225 /*
4226 * The buffer head should have an attached journal head at this
4227 * point. However, if the data is corrupted and an indirect
4228 * block pointed to itself, it would have been detached when
4229 * the block was cleared. Check for this instead of OOPSing.
4230 */
e7f07968 4231 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4232 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc
DG
4233 else
4234 ext4_error(inode->i_sb, __func__,
4235 "circular indirect block detected, "
4236 "inode=%lu, block=%llu",
4237 inode->i_ino,
4238 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4239 }
4240}
4241
4242/**
617ba13b 4243 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4244 * @handle: JBD handle for this transaction
4245 * @inode: inode we are dealing with
4246 * @parent_bh: the buffer_head which contains *@first and *@last
4247 * @first: array of block numbers
4248 * @last: pointer immediately past the end of array
4249 * @depth: depth of the branches to free
4250 *
4251 * We are freeing all blocks refered from these branches (numbers are
4252 * stored as little-endian 32-bit) and updating @inode->i_blocks
4253 * appropriately.
4254 */
617ba13b 4255static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4256 struct buffer_head *parent_bh,
4257 __le32 *first, __le32 *last, int depth)
4258{
617ba13b 4259 ext4_fsblk_t nr;
ac27a0ec
DK
4260 __le32 *p;
4261
0390131b 4262 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4263 return;
4264
4265 if (depth--) {
4266 struct buffer_head *bh;
617ba13b 4267 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4268 p = last;
4269 while (--p >= first) {
4270 nr = le32_to_cpu(*p);
4271 if (!nr)
4272 continue; /* A hole */
4273
4274 /* Go read the buffer for the next level down */
4275 bh = sb_bread(inode->i_sb, nr);
4276
4277 /*
4278 * A read failure? Report error and clear slot
4279 * (should be rare).
4280 */
4281 if (!bh) {
617ba13b 4282 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 4283 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4284 inode->i_ino, nr);
4285 continue;
4286 }
4287
4288 /* This zaps the entire block. Bottom up. */
4289 BUFFER_TRACE(bh, "free child branches");
617ba13b 4290 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4291 (__le32 *) bh->b_data,
4292 (__le32 *) bh->b_data + addr_per_block,
4293 depth);
ac27a0ec
DK
4294
4295 /*
4296 * We've probably journalled the indirect block several
4297 * times during the truncate. But it's no longer
4298 * needed and we now drop it from the transaction via
dab291af 4299 * jbd2_journal_revoke().
ac27a0ec
DK
4300 *
4301 * That's easy if it's exclusively part of this
4302 * transaction. But if it's part of the committing
dab291af 4303 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4304 * brelse() it. That means that if the underlying
617ba13b 4305 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4306 * unmap_underlying_metadata() will find this block
4307 * and will try to get rid of it. damn, damn.
4308 *
4309 * If this block has already been committed to the
4310 * journal, a revoke record will be written. And
4311 * revoke records must be emitted *before* clearing
4312 * this block's bit in the bitmaps.
4313 */
617ba13b 4314 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4315
4316 /*
4317 * Everything below this this pointer has been
4318 * released. Now let this top-of-subtree go.
4319 *
4320 * We want the freeing of this indirect block to be
4321 * atomic in the journal with the updating of the
4322 * bitmap block which owns it. So make some room in
4323 * the journal.
4324 *
4325 * We zero the parent pointer *after* freeing its
4326 * pointee in the bitmaps, so if extend_transaction()
4327 * for some reason fails to put the bitmap changes and
4328 * the release into the same transaction, recovery
4329 * will merely complain about releasing a free block,
4330 * rather than leaking blocks.
4331 */
0390131b 4332 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4333 return;
4334 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4335 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4336 ext4_truncate_restart_trans(handle, inode,
4337 blocks_for_truncate(inode));
ac27a0ec
DK
4338 }
4339
c9de560d 4340 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
4341
4342 if (parent_bh) {
4343 /*
4344 * The block which we have just freed is
4345 * pointed to by an indirect block: journal it
4346 */
4347 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4348 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4349 parent_bh)){
4350 *p = 0;
4351 BUFFER_TRACE(parent_bh,
0390131b
FM
4352 "call ext4_handle_dirty_metadata");
4353 ext4_handle_dirty_metadata(handle,
4354 inode,
4355 parent_bh);
ac27a0ec
DK
4356 }
4357 }
4358 }
4359 } else {
4360 /* We have reached the bottom of the tree. */
4361 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4362 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4363 }
4364}
4365
91ef4caf
DG
4366int ext4_can_truncate(struct inode *inode)
4367{
4368 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4369 return 0;
4370 if (S_ISREG(inode->i_mode))
4371 return 1;
4372 if (S_ISDIR(inode->i_mode))
4373 return 1;
4374 if (S_ISLNK(inode->i_mode))
4375 return !ext4_inode_is_fast_symlink(inode);
4376 return 0;
4377}
4378
ac27a0ec 4379/*
617ba13b 4380 * ext4_truncate()
ac27a0ec 4381 *
617ba13b
MC
4382 * We block out ext4_get_block() block instantiations across the entire
4383 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4384 * simultaneously on behalf of the same inode.
4385 *
4386 * As we work through the truncate and commmit bits of it to the journal there
4387 * is one core, guiding principle: the file's tree must always be consistent on
4388 * disk. We must be able to restart the truncate after a crash.
4389 *
4390 * The file's tree may be transiently inconsistent in memory (although it
4391 * probably isn't), but whenever we close off and commit a journal transaction,
4392 * the contents of (the filesystem + the journal) must be consistent and
4393 * restartable. It's pretty simple, really: bottom up, right to left (although
4394 * left-to-right works OK too).
4395 *
4396 * Note that at recovery time, journal replay occurs *before* the restart of
4397 * truncate against the orphan inode list.
4398 *
4399 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4400 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4401 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4402 * ext4_truncate() to have another go. So there will be instantiated blocks
4403 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4404 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4405 * ext4_truncate() run will find them and release them.
ac27a0ec 4406 */
617ba13b 4407void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4408{
4409 handle_t *handle;
617ba13b 4410 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4411 __le32 *i_data = ei->i_data;
617ba13b 4412 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4413 struct address_space *mapping = inode->i_mapping;
725d26d3 4414 ext4_lblk_t offsets[4];
ac27a0ec
DK
4415 Indirect chain[4];
4416 Indirect *partial;
4417 __le32 nr = 0;
4418 int n;
725d26d3 4419 ext4_lblk_t last_block;
ac27a0ec 4420 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4421
91ef4caf 4422 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4423 return;
4424
5534fb5b 4425 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
7d8f9f7d
TT
4426 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4427
1d03ec98 4428 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4429 ext4_ext_truncate(inode);
1d03ec98
AK
4430 return;
4431 }
a86c6181 4432
ac27a0ec 4433 handle = start_transaction(inode);
cf108bca 4434 if (IS_ERR(handle))
ac27a0ec 4435 return; /* AKPM: return what? */
ac27a0ec
DK
4436
4437 last_block = (inode->i_size + blocksize-1)
617ba13b 4438 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4439
cf108bca
JK
4440 if (inode->i_size & (blocksize - 1))
4441 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4442 goto out_stop;
ac27a0ec 4443
617ba13b 4444 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4445 if (n == 0)
4446 goto out_stop; /* error */
4447
4448 /*
4449 * OK. This truncate is going to happen. We add the inode to the
4450 * orphan list, so that if this truncate spans multiple transactions,
4451 * and we crash, we will resume the truncate when the filesystem
4452 * recovers. It also marks the inode dirty, to catch the new size.
4453 *
4454 * Implication: the file must always be in a sane, consistent
4455 * truncatable state while each transaction commits.
4456 */
617ba13b 4457 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4458 goto out_stop;
4459
632eaeab
MC
4460 /*
4461 * From here we block out all ext4_get_block() callers who want to
4462 * modify the block allocation tree.
4463 */
4464 down_write(&ei->i_data_sem);
b4df2030 4465
c2ea3fde 4466 ext4_discard_preallocations(inode);
b4df2030 4467
ac27a0ec
DK
4468 /*
4469 * The orphan list entry will now protect us from any crash which
4470 * occurs before the truncate completes, so it is now safe to propagate
4471 * the new, shorter inode size (held for now in i_size) into the
4472 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4473 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4474 */
4475 ei->i_disksize = inode->i_size;
4476
ac27a0ec 4477 if (n == 1) { /* direct blocks */
617ba13b
MC
4478 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4479 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4480 goto do_indirects;
4481 }
4482
617ba13b 4483 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4484 /* Kill the top of shared branch (not detached) */
4485 if (nr) {
4486 if (partial == chain) {
4487 /* Shared branch grows from the inode */
617ba13b 4488 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4489 &nr, &nr+1, (chain+n-1) - partial);
4490 *partial->p = 0;
4491 /*
4492 * We mark the inode dirty prior to restart,
4493 * and prior to stop. No need for it here.
4494 */
4495 } else {
4496 /* Shared branch grows from an indirect block */
4497 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4498 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4499 partial->p,
4500 partial->p+1, (chain+n-1) - partial);
4501 }
4502 }
4503 /* Clear the ends of indirect blocks on the shared branch */
4504 while (partial > chain) {
617ba13b 4505 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4506 (__le32*)partial->bh->b_data+addr_per_block,
4507 (chain+n-1) - partial);
4508 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4509 brelse(partial->bh);
ac27a0ec
DK
4510 partial--;
4511 }
4512do_indirects:
4513 /* Kill the remaining (whole) subtrees */
4514 switch (offsets[0]) {
4515 default:
617ba13b 4516 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4517 if (nr) {
617ba13b
MC
4518 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4519 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4520 }
617ba13b
MC
4521 case EXT4_IND_BLOCK:
4522 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4523 if (nr) {
617ba13b
MC
4524 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4525 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4526 }
617ba13b
MC
4527 case EXT4_DIND_BLOCK:
4528 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4529 if (nr) {
617ba13b
MC
4530 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4531 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4532 }
617ba13b 4533 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4534 ;
4535 }
4536
0e855ac8 4537 up_write(&ei->i_data_sem);
ef7f3835 4538 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4539 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4540
4541 /*
4542 * In a multi-transaction truncate, we only make the final transaction
4543 * synchronous
4544 */
4545 if (IS_SYNC(inode))
0390131b 4546 ext4_handle_sync(handle);
ac27a0ec
DK
4547out_stop:
4548 /*
4549 * If this was a simple ftruncate(), and the file will remain alive
4550 * then we need to clear up the orphan record which we created above.
4551 * However, if this was a real unlink then we were called by
617ba13b 4552 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4553 * orphan info for us.
4554 */
4555 if (inode->i_nlink)
617ba13b 4556 ext4_orphan_del(handle, inode);
ac27a0ec 4557
617ba13b 4558 ext4_journal_stop(handle);
ac27a0ec
DK
4559}
4560
ac27a0ec 4561/*
617ba13b 4562 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4563 * underlying buffer_head on success. If 'in_mem' is true, we have all
4564 * data in memory that is needed to recreate the on-disk version of this
4565 * inode.
4566 */
617ba13b
MC
4567static int __ext4_get_inode_loc(struct inode *inode,
4568 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4569{
240799cd
TT
4570 struct ext4_group_desc *gdp;
4571 struct buffer_head *bh;
4572 struct super_block *sb = inode->i_sb;
4573 ext4_fsblk_t block;
4574 int inodes_per_block, inode_offset;
4575
3a06d778 4576 iloc->bh = NULL;
240799cd
TT
4577 if (!ext4_valid_inum(sb, inode->i_ino))
4578 return -EIO;
ac27a0ec 4579
240799cd
TT
4580 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4581 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4582 if (!gdp)
ac27a0ec
DK
4583 return -EIO;
4584
240799cd
TT
4585 /*
4586 * Figure out the offset within the block group inode table
4587 */
4588 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4589 inode_offset = ((inode->i_ino - 1) %
4590 EXT4_INODES_PER_GROUP(sb));
4591 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4592 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4593
4594 bh = sb_getblk(sb, block);
ac27a0ec 4595 if (!bh) {
240799cd
TT
4596 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4597 "inode block - inode=%lu, block=%llu",
4598 inode->i_ino, block);
ac27a0ec
DK
4599 return -EIO;
4600 }
4601 if (!buffer_uptodate(bh)) {
4602 lock_buffer(bh);
9c83a923
HK
4603
4604 /*
4605 * If the buffer has the write error flag, we have failed
4606 * to write out another inode in the same block. In this
4607 * case, we don't have to read the block because we may
4608 * read the old inode data successfully.
4609 */
4610 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4611 set_buffer_uptodate(bh);
4612
ac27a0ec
DK
4613 if (buffer_uptodate(bh)) {
4614 /* someone brought it uptodate while we waited */
4615 unlock_buffer(bh);
4616 goto has_buffer;
4617 }
4618
4619 /*
4620 * If we have all information of the inode in memory and this
4621 * is the only valid inode in the block, we need not read the
4622 * block.
4623 */
4624 if (in_mem) {
4625 struct buffer_head *bitmap_bh;
240799cd 4626 int i, start;
ac27a0ec 4627
240799cd 4628 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4629
240799cd
TT
4630 /* Is the inode bitmap in cache? */
4631 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4632 if (!bitmap_bh)
4633 goto make_io;
4634
4635 /*
4636 * If the inode bitmap isn't in cache then the
4637 * optimisation may end up performing two reads instead
4638 * of one, so skip it.
4639 */
4640 if (!buffer_uptodate(bitmap_bh)) {
4641 brelse(bitmap_bh);
4642 goto make_io;
4643 }
240799cd 4644 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4645 if (i == inode_offset)
4646 continue;
617ba13b 4647 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4648 break;
4649 }
4650 brelse(bitmap_bh);
240799cd 4651 if (i == start + inodes_per_block) {
ac27a0ec
DK
4652 /* all other inodes are free, so skip I/O */
4653 memset(bh->b_data, 0, bh->b_size);
4654 set_buffer_uptodate(bh);
4655 unlock_buffer(bh);
4656 goto has_buffer;
4657 }
4658 }
4659
4660make_io:
240799cd
TT
4661 /*
4662 * If we need to do any I/O, try to pre-readahead extra
4663 * blocks from the inode table.
4664 */
4665 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4666 ext4_fsblk_t b, end, table;
4667 unsigned num;
4668
4669 table = ext4_inode_table(sb, gdp);
b713a5ec 4670 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4671 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4672 if (table > b)
4673 b = table;
4674 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4675 num = EXT4_INODES_PER_GROUP(sb);
4676 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4677 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4678 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4679 table += num / inodes_per_block;
4680 if (end > table)
4681 end = table;
4682 while (b <= end)
4683 sb_breadahead(sb, b++);
4684 }
4685
ac27a0ec
DK
4686 /*
4687 * There are other valid inodes in the buffer, this inode
4688 * has in-inode xattrs, or we don't have this inode in memory.
4689 * Read the block from disk.
4690 */
4691 get_bh(bh);
4692 bh->b_end_io = end_buffer_read_sync;
4693 submit_bh(READ_META, bh);
4694 wait_on_buffer(bh);
4695 if (!buffer_uptodate(bh)) {
240799cd
TT
4696 ext4_error(sb, __func__,
4697 "unable to read inode block - inode=%lu, "
4698 "block=%llu", inode->i_ino, block);
ac27a0ec
DK
4699 brelse(bh);
4700 return -EIO;
4701 }
4702 }
4703has_buffer:
4704 iloc->bh = bh;
4705 return 0;
4706}
4707
617ba13b 4708int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4709{
4710 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
4711 return __ext4_get_inode_loc(inode, iloc,
4712 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
4713}
4714
617ba13b 4715void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4716{
617ba13b 4717 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4718
4719 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4720 if (flags & EXT4_SYNC_FL)
ac27a0ec 4721 inode->i_flags |= S_SYNC;
617ba13b 4722 if (flags & EXT4_APPEND_FL)
ac27a0ec 4723 inode->i_flags |= S_APPEND;
617ba13b 4724 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4725 inode->i_flags |= S_IMMUTABLE;
617ba13b 4726 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4727 inode->i_flags |= S_NOATIME;
617ba13b 4728 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4729 inode->i_flags |= S_DIRSYNC;
4730}
4731
ff9ddf7e
JK
4732/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4733void ext4_get_inode_flags(struct ext4_inode_info *ei)
4734{
4735 unsigned int flags = ei->vfs_inode.i_flags;
4736
4737 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4738 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4739 if (flags & S_SYNC)
4740 ei->i_flags |= EXT4_SYNC_FL;
4741 if (flags & S_APPEND)
4742 ei->i_flags |= EXT4_APPEND_FL;
4743 if (flags & S_IMMUTABLE)
4744 ei->i_flags |= EXT4_IMMUTABLE_FL;
4745 if (flags & S_NOATIME)
4746 ei->i_flags |= EXT4_NOATIME_FL;
4747 if (flags & S_DIRSYNC)
4748 ei->i_flags |= EXT4_DIRSYNC_FL;
4749}
de9a55b8 4750
0fc1b451 4751static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4752 struct ext4_inode_info *ei)
0fc1b451
AK
4753{
4754 blkcnt_t i_blocks ;
8180a562
AK
4755 struct inode *inode = &(ei->vfs_inode);
4756 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4757
4758 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4759 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4760 /* we are using combined 48 bit field */
4761 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4762 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4763 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4764 /* i_blocks represent file system block size */
4765 return i_blocks << (inode->i_blkbits - 9);
4766 } else {
4767 return i_blocks;
4768 }
0fc1b451
AK
4769 } else {
4770 return le32_to_cpu(raw_inode->i_blocks_lo);
4771 }
4772}
ff9ddf7e 4773
1d1fe1ee 4774struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4775{
617ba13b
MC
4776 struct ext4_iloc iloc;
4777 struct ext4_inode *raw_inode;
1d1fe1ee 4778 struct ext4_inode_info *ei;
ac27a0ec 4779 struct buffer_head *bh;
1d1fe1ee
DH
4780 struct inode *inode;
4781 long ret;
ac27a0ec
DK
4782 int block;
4783
1d1fe1ee
DH
4784 inode = iget_locked(sb, ino);
4785 if (!inode)
4786 return ERR_PTR(-ENOMEM);
4787 if (!(inode->i_state & I_NEW))
4788 return inode;
4789
4790 ei = EXT4_I(inode);
ac27a0ec 4791
1d1fe1ee
DH
4792 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4793 if (ret < 0)
ac27a0ec
DK
4794 goto bad_inode;
4795 bh = iloc.bh;
617ba13b 4796 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4797 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4798 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4799 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4800 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4801 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4802 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4803 }
4804 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
4805
4806 ei->i_state = 0;
4807 ei->i_dir_start_lookup = 0;
4808 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4809 /* We now have enough fields to check if the inode was active or not.
4810 * This is needed because nfsd might try to access dead inodes
4811 * the test is that same one that e2fsck uses
4812 * NeilBrown 1999oct15
4813 */
4814 if (inode->i_nlink == 0) {
4815 if (inode->i_mode == 0 ||
617ba13b 4816 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4817 /* this inode is deleted */
af5bc92d 4818 brelse(bh);
1d1fe1ee 4819 ret = -ESTALE;
ac27a0ec
DK
4820 goto bad_inode;
4821 }
4822 /* The only unlinked inodes we let through here have
4823 * valid i_mode and are being read by the orphan
4824 * recovery code: that's fine, we're about to complete
4825 * the process of deleting those. */
4826 }
ac27a0ec 4827 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4828 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4829 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4830 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4831 ei->i_file_acl |=
4832 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4833 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
4834 ei->i_disksize = inode->i_size;
4835 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4836 ei->i_block_group = iloc.block_group;
a4912123 4837 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4838 /*
4839 * NOTE! The in-memory inode i_data array is in little-endian order
4840 * even on big-endian machines: we do NOT byteswap the block numbers!
4841 */
617ba13b 4842 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4843 ei->i_data[block] = raw_inode->i_block[block];
4844 INIT_LIST_HEAD(&ei->i_orphan);
4845
0040d987 4846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 4847 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 4848 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 4849 EXT4_INODE_SIZE(inode->i_sb)) {
af5bc92d 4850 brelse(bh);
1d1fe1ee 4851 ret = -EIO;
ac27a0ec 4852 goto bad_inode;
e5d2861f 4853 }
ac27a0ec
DK
4854 if (ei->i_extra_isize == 0) {
4855 /* The extra space is currently unused. Use it. */
617ba13b
MC
4856 ei->i_extra_isize = sizeof(struct ext4_inode) -
4857 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
4858 } else {
4859 __le32 *magic = (void *)raw_inode +
617ba13b 4860 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 4861 ei->i_extra_isize;
617ba13b 4862 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
de9a55b8 4863 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
4864 }
4865 } else
4866 ei->i_extra_isize = 0;
4867
ef7f3835
KS
4868 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4869 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4870 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4871 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4872
25ec56b5
JNC
4873 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4874 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4875 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4876 inode->i_version |=
4877 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4878 }
4879
c4b5a614 4880 ret = 0;
485c26ec 4881 if (ei->i_file_acl &&
de9a55b8 4882 ((ei->i_file_acl <
485c26ec
TT
4883 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4884 EXT4_SB(sb)->s_gdb_count)) ||
4885 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4886 ext4_error(sb, __func__,
4887 "bad extended attribute block %llu in inode #%lu",
4888 ei->i_file_acl, inode->i_ino);
4889 ret = -EIO;
4890 goto bad_inode;
4891 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
4892 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4893 (S_ISLNK(inode->i_mode) &&
4894 !ext4_inode_is_fast_symlink(inode)))
4895 /* Validate extent which is part of inode */
4896 ret = ext4_ext_check_inode(inode);
de9a55b8 4897 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
4898 (S_ISLNK(inode->i_mode) &&
4899 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 4900 /* Validate block references which are part of inode */
fe2c8191
TN
4901 ret = ext4_check_inode_blockref(inode);
4902 }
4903 if (ret) {
de9a55b8
TT
4904 brelse(bh);
4905 goto bad_inode;
7a262f7c
AK
4906 }
4907
ac27a0ec 4908 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4909 inode->i_op = &ext4_file_inode_operations;
4910 inode->i_fop = &ext4_file_operations;
4911 ext4_set_aops(inode);
ac27a0ec 4912 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4913 inode->i_op = &ext4_dir_inode_operations;
4914 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4915 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4916 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4917 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4918 nd_terminate_link(ei->i_data, inode->i_size,
4919 sizeof(ei->i_data) - 1);
4920 } else {
617ba13b
MC
4921 inode->i_op = &ext4_symlink_inode_operations;
4922 ext4_set_aops(inode);
ac27a0ec 4923 }
563bdd61
TT
4924 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4925 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4926 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4927 if (raw_inode->i_block[0])
4928 init_special_inode(inode, inode->i_mode,
4929 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4930 else
4931 init_special_inode(inode, inode->i_mode,
4932 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61
TT
4933 } else {
4934 brelse(bh);
4935 ret = -EIO;
de9a55b8 4936 ext4_error(inode->i_sb, __func__,
563bdd61
TT
4937 "bogus i_mode (%o) for inode=%lu",
4938 inode->i_mode, inode->i_ino);
4939 goto bad_inode;
ac27a0ec 4940 }
af5bc92d 4941 brelse(iloc.bh);
617ba13b 4942 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4943 unlock_new_inode(inode);
4944 return inode;
ac27a0ec
DK
4945
4946bad_inode:
1d1fe1ee
DH
4947 iget_failed(inode);
4948 return ERR_PTR(ret);
ac27a0ec
DK
4949}
4950
0fc1b451
AK
4951static int ext4_inode_blocks_set(handle_t *handle,
4952 struct ext4_inode *raw_inode,
4953 struct ext4_inode_info *ei)
4954{
4955 struct inode *inode = &(ei->vfs_inode);
4956 u64 i_blocks = inode->i_blocks;
4957 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4958
4959 if (i_blocks <= ~0U) {
4960 /*
4961 * i_blocks can be represnted in a 32 bit variable
4962 * as multiple of 512 bytes
4963 */
8180a562 4964 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4965 raw_inode->i_blocks_high = 0;
8180a562 4966 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
4967 return 0;
4968 }
4969 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4970 return -EFBIG;
4971
4972 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4973 /*
4974 * i_blocks can be represented in a 48 bit variable
4975 * as multiple of 512 bytes
4976 */
8180a562 4977 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4978 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 4979 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 4980 } else {
8180a562
AK
4981 ei->i_flags |= EXT4_HUGE_FILE_FL;
4982 /* i_block is stored in file system block size */
4983 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4984 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4985 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4986 }
f287a1a5 4987 return 0;
0fc1b451
AK
4988}
4989
ac27a0ec
DK
4990/*
4991 * Post the struct inode info into an on-disk inode location in the
4992 * buffer-cache. This gobbles the caller's reference to the
4993 * buffer_head in the inode location struct.
4994 *
4995 * The caller must have write access to iloc->bh.
4996 */
617ba13b 4997static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4998 struct inode *inode,
830156c7 4999 struct ext4_iloc *iloc)
ac27a0ec 5000{
617ba13b
MC
5001 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5002 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5003 struct buffer_head *bh = iloc->bh;
5004 int err = 0, rc, block;
5005
5006 /* For fields not not tracking in the in-memory inode,
5007 * initialise them to zero for new inodes. */
617ba13b
MC
5008 if (ei->i_state & EXT4_STATE_NEW)
5009 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5010
ff9ddf7e 5011 ext4_get_inode_flags(ei);
ac27a0ec 5012 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5013 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5014 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5015 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5016/*
5017 * Fix up interoperability with old kernels. Otherwise, old inodes get
5018 * re-used with the upper 16 bits of the uid/gid intact
5019 */
af5bc92d 5020 if (!ei->i_dtime) {
ac27a0ec
DK
5021 raw_inode->i_uid_high =
5022 cpu_to_le16(high_16_bits(inode->i_uid));
5023 raw_inode->i_gid_high =
5024 cpu_to_le16(high_16_bits(inode->i_gid));
5025 } else {
5026 raw_inode->i_uid_high = 0;
5027 raw_inode->i_gid_high = 0;
5028 }
5029 } else {
5030 raw_inode->i_uid_low =
5031 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5032 raw_inode->i_gid_low =
5033 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5034 raw_inode->i_uid_high = 0;
5035 raw_inode->i_gid_high = 0;
5036 }
5037 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5038
5039 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5040 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5041 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5042 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5043
0fc1b451
AK
5044 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5045 goto out_brelse;
ac27a0ec 5046 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5047 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5048 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5049 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5050 raw_inode->i_file_acl_high =
5051 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5052 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5053 ext4_isize_set(raw_inode, ei->i_disksize);
5054 if (ei->i_disksize > 0x7fffffffULL) {
5055 struct super_block *sb = inode->i_sb;
5056 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5057 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5058 EXT4_SB(sb)->s_es->s_rev_level ==
5059 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5060 /* If this is the first large file
5061 * created, add a flag to the superblock.
5062 */
5063 err = ext4_journal_get_write_access(handle,
5064 EXT4_SB(sb)->s_sbh);
5065 if (err)
5066 goto out_brelse;
5067 ext4_update_dynamic_rev(sb);
5068 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5069 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5070 sb->s_dirt = 1;
0390131b
FM
5071 ext4_handle_sync(handle);
5072 err = ext4_handle_dirty_metadata(handle, inode,
a48380f7 5073 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5074 }
5075 }
5076 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5077 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5078 if (old_valid_dev(inode->i_rdev)) {
5079 raw_inode->i_block[0] =
5080 cpu_to_le32(old_encode_dev(inode->i_rdev));
5081 raw_inode->i_block[1] = 0;
5082 } else {
5083 raw_inode->i_block[0] = 0;
5084 raw_inode->i_block[1] =
5085 cpu_to_le32(new_encode_dev(inode->i_rdev));
5086 raw_inode->i_block[2] = 0;
5087 }
de9a55b8
TT
5088 } else
5089 for (block = 0; block < EXT4_N_BLOCKS; block++)
5090 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5091
25ec56b5
JNC
5092 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5093 if (ei->i_extra_isize) {
5094 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5095 raw_inode->i_version_hi =
5096 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5097 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5098 }
5099
830156c7
FM
5100 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5101 rc = ext4_handle_dirty_metadata(handle, inode, bh);
5102 if (!err)
5103 err = rc;
617ba13b 5104 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
5105
5106out_brelse:
af5bc92d 5107 brelse(bh);
617ba13b 5108 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5109 return err;
5110}
5111
5112/*
617ba13b 5113 * ext4_write_inode()
ac27a0ec
DK
5114 *
5115 * We are called from a few places:
5116 *
5117 * - Within generic_file_write() for O_SYNC files.
5118 * Here, there will be no transaction running. We wait for any running
5119 * trasnaction to commit.
5120 *
5121 * - Within sys_sync(), kupdate and such.
5122 * We wait on commit, if tol to.
5123 *
5124 * - Within prune_icache() (PF_MEMALLOC == true)
5125 * Here we simply return. We can't afford to block kswapd on the
5126 * journal commit.
5127 *
5128 * In all cases it is actually safe for us to return without doing anything,
5129 * because the inode has been copied into a raw inode buffer in
617ba13b 5130 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5131 * knfsd.
5132 *
5133 * Note that we are absolutely dependent upon all inode dirtiers doing the
5134 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5135 * which we are interested.
5136 *
5137 * It would be a bug for them to not do this. The code:
5138 *
5139 * mark_inode_dirty(inode)
5140 * stuff();
5141 * inode->i_size = expr;
5142 *
5143 * is in error because a kswapd-driven write_inode() could occur while
5144 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5145 * will no longer be on the superblock's dirty inode list.
5146 */
617ba13b 5147int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec 5148{
91ac6f43
FM
5149 int err;
5150
ac27a0ec
DK
5151 if (current->flags & PF_MEMALLOC)
5152 return 0;
5153
91ac6f43
FM
5154 if (EXT4_SB(inode->i_sb)->s_journal) {
5155 if (ext4_journal_current_handle()) {
5156 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5157 dump_stack();
5158 return -EIO;
5159 }
ac27a0ec 5160
91ac6f43
FM
5161 if (!wait)
5162 return 0;
5163
5164 err = ext4_force_commit(inode->i_sb);
5165 } else {
5166 struct ext4_iloc iloc;
ac27a0ec 5167
91ac6f43
FM
5168 err = ext4_get_inode_loc(inode, &iloc);
5169 if (err)
5170 return err;
830156c7
FM
5171 if (wait)
5172 sync_dirty_buffer(iloc.bh);
5173 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5174 ext4_error(inode->i_sb, __func__,
5175 "IO error syncing inode, "
5176 "inode=%lu, block=%llu",
5177 inode->i_ino,
5178 (unsigned long long)iloc.bh->b_blocknr);
5179 err = -EIO;
5180 }
91ac6f43
FM
5181 }
5182 return err;
ac27a0ec
DK
5183}
5184
5185/*
617ba13b 5186 * ext4_setattr()
ac27a0ec
DK
5187 *
5188 * Called from notify_change.
5189 *
5190 * We want to trap VFS attempts to truncate the file as soon as
5191 * possible. In particular, we want to make sure that when the VFS
5192 * shrinks i_size, we put the inode on the orphan list and modify
5193 * i_disksize immediately, so that during the subsequent flushing of
5194 * dirty pages and freeing of disk blocks, we can guarantee that any
5195 * commit will leave the blocks being flushed in an unused state on
5196 * disk. (On recovery, the inode will get truncated and the blocks will
5197 * be freed, so we have a strong guarantee that no future commit will
5198 * leave these blocks visible to the user.)
5199 *
678aaf48
JK
5200 * Another thing we have to assure is that if we are in ordered mode
5201 * and inode is still attached to the committing transaction, we must
5202 * we start writeout of all the dirty pages which are being truncated.
5203 * This way we are sure that all the data written in the previous
5204 * transaction are already on disk (truncate waits for pages under
5205 * writeback).
5206 *
5207 * Called with inode->i_mutex down.
ac27a0ec 5208 */
617ba13b 5209int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5210{
5211 struct inode *inode = dentry->d_inode;
5212 int error, rc = 0;
5213 const unsigned int ia_valid = attr->ia_valid;
5214
5215 error = inode_change_ok(inode, attr);
5216 if (error)
5217 return error;
5218
5219 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5220 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5221 handle_t *handle;
5222
5223 /* (user+group)*(old+new) structure, inode write (sb,
5224 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
5225 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
5226 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5227 if (IS_ERR(handle)) {
5228 error = PTR_ERR(handle);
5229 goto err_out;
5230 }
a269eb18 5231 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
ac27a0ec 5232 if (error) {
617ba13b 5233 ext4_journal_stop(handle);
ac27a0ec
DK
5234 return error;
5235 }
5236 /* Update corresponding info in inode so that everything is in
5237 * one transaction */
5238 if (attr->ia_valid & ATTR_UID)
5239 inode->i_uid = attr->ia_uid;
5240 if (attr->ia_valid & ATTR_GID)
5241 inode->i_gid = attr->ia_gid;
617ba13b
MC
5242 error = ext4_mark_inode_dirty(handle, inode);
5243 ext4_journal_stop(handle);
ac27a0ec
DK
5244 }
5245
e2b46574
ES
5246 if (attr->ia_valid & ATTR_SIZE) {
5247 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5249
5250 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5251 error = -EFBIG;
5252 goto err_out;
5253 }
5254 }
5255 }
5256
ac27a0ec
DK
5257 if (S_ISREG(inode->i_mode) &&
5258 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
5259 handle_t *handle;
5260
617ba13b 5261 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5262 if (IS_ERR(handle)) {
5263 error = PTR_ERR(handle);
5264 goto err_out;
5265 }
5266
617ba13b
MC
5267 error = ext4_orphan_add(handle, inode);
5268 EXT4_I(inode)->i_disksize = attr->ia_size;
5269 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5270 if (!error)
5271 error = rc;
617ba13b 5272 ext4_journal_stop(handle);
678aaf48
JK
5273
5274 if (ext4_should_order_data(inode)) {
5275 error = ext4_begin_ordered_truncate(inode,
5276 attr->ia_size);
5277 if (error) {
5278 /* Do as much error cleanup as possible */
5279 handle = ext4_journal_start(inode, 3);
5280 if (IS_ERR(handle)) {
5281 ext4_orphan_del(NULL, inode);
5282 goto err_out;
5283 }
5284 ext4_orphan_del(handle, inode);
5285 ext4_journal_stop(handle);
5286 goto err_out;
5287 }
5288 }
ac27a0ec
DK
5289 }
5290
5291 rc = inode_setattr(inode, attr);
5292
617ba13b 5293 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5294 * transaction handle at all, we need to clean up the in-core
5295 * orphan list manually. */
5296 if (inode->i_nlink)
617ba13b 5297 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5298
5299 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5300 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5301
5302err_out:
617ba13b 5303 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5304 if (!error)
5305 error = rc;
5306 return error;
5307}
5308
3e3398a0
MC
5309int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5310 struct kstat *stat)
5311{
5312 struct inode *inode;
5313 unsigned long delalloc_blocks;
5314
5315 inode = dentry->d_inode;
5316 generic_fillattr(inode, stat);
5317
5318 /*
5319 * We can't update i_blocks if the block allocation is delayed
5320 * otherwise in the case of system crash before the real block
5321 * allocation is done, we will have i_blocks inconsistent with
5322 * on-disk file blocks.
5323 * We always keep i_blocks updated together with real
5324 * allocation. But to not confuse with user, stat
5325 * will return the blocks that include the delayed allocation
5326 * blocks for this file.
5327 */
5328 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5329 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5330 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5331
5332 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5333 return 0;
5334}
ac27a0ec 5335
a02908f1
MC
5336static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5337 int chunk)
5338{
5339 int indirects;
5340
5341 /* if nrblocks are contiguous */
5342 if (chunk) {
5343 /*
5344 * With N contiguous data blocks, it need at most
5345 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5346 * 2 dindirect blocks
5347 * 1 tindirect block
5348 */
5349 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5350 return indirects + 3;
5351 }
5352 /*
5353 * if nrblocks are not contiguous, worse case, each block touch
5354 * a indirect block, and each indirect block touch a double indirect
5355 * block, plus a triple indirect block
5356 */
5357 indirects = nrblocks * 2 + 1;
5358 return indirects;
5359}
5360
5361static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5362{
5363 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5364 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5365 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5366}
ac51d837 5367
ac27a0ec 5368/*
a02908f1
MC
5369 * Account for index blocks, block groups bitmaps and block group
5370 * descriptor blocks if modify datablocks and index blocks
5371 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5372 *
a02908f1
MC
5373 * If datablocks are discontiguous, they are possible to spread over
5374 * different block groups too. If they are contiugous, with flexbg,
5375 * they could still across block group boundary.
ac27a0ec 5376 *
a02908f1
MC
5377 * Also account for superblock, inode, quota and xattr blocks
5378 */
5379int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5380{
8df9675f
TT
5381 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5382 int gdpblocks;
a02908f1
MC
5383 int idxblocks;
5384 int ret = 0;
5385
5386 /*
5387 * How many index blocks need to touch to modify nrblocks?
5388 * The "Chunk" flag indicating whether the nrblocks is
5389 * physically contiguous on disk
5390 *
5391 * For Direct IO and fallocate, they calls get_block to allocate
5392 * one single extent at a time, so they could set the "Chunk" flag
5393 */
5394 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5395
5396 ret = idxblocks;
5397
5398 /*
5399 * Now let's see how many group bitmaps and group descriptors need
5400 * to account
5401 */
5402 groups = idxblocks;
5403 if (chunk)
5404 groups += 1;
5405 else
5406 groups += nrblocks;
5407
5408 gdpblocks = groups;
8df9675f
TT
5409 if (groups > ngroups)
5410 groups = ngroups;
a02908f1
MC
5411 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5412 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5413
5414 /* bitmaps and block group descriptor blocks */
5415 ret += groups + gdpblocks;
5416
5417 /* Blocks for super block, inode, quota and xattr blocks */
5418 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5419
5420 return ret;
5421}
5422
5423/*
5424 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5425 * the modification of a single pages into a single transaction,
5426 * which may include multiple chunks of block allocations.
ac27a0ec 5427 *
525f4ed8 5428 * This could be called via ext4_write_begin()
ac27a0ec 5429 *
525f4ed8 5430 * We need to consider the worse case, when
a02908f1 5431 * one new block per extent.
ac27a0ec 5432 */
a86c6181 5433int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5434{
617ba13b 5435 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5436 int ret;
5437
a02908f1 5438 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5439
a02908f1 5440 /* Account for data blocks for journalled mode */
617ba13b 5441 if (ext4_should_journal_data(inode))
a02908f1 5442 ret += bpp;
ac27a0ec
DK
5443 return ret;
5444}
f3bd1f3f
MC
5445
5446/*
5447 * Calculate the journal credits for a chunk of data modification.
5448 *
5449 * This is called from DIO, fallocate or whoever calling
12b7ac17 5450 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
f3bd1f3f
MC
5451 *
5452 * journal buffers for data blocks are not included here, as DIO
5453 * and fallocate do no need to journal data buffers.
5454 */
5455int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5456{
5457 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5458}
5459
ac27a0ec 5460/*
617ba13b 5461 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5462 * Give this, we know that the caller already has write access to iloc->bh.
5463 */
617ba13b 5464int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5465 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5466{
5467 int err = 0;
5468
25ec56b5
JNC
5469 if (test_opt(inode->i_sb, I_VERSION))
5470 inode_inc_iversion(inode);
5471
ac27a0ec
DK
5472 /* the do_update_inode consumes one bh->b_count */
5473 get_bh(iloc->bh);
5474
dab291af 5475 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5476 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5477 put_bh(iloc->bh);
5478 return err;
5479}
5480
5481/*
5482 * On success, We end up with an outstanding reference count against
5483 * iloc->bh. This _must_ be cleaned up later.
5484 */
5485
5486int
617ba13b
MC
5487ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5488 struct ext4_iloc *iloc)
ac27a0ec 5489{
0390131b
FM
5490 int err;
5491
5492 err = ext4_get_inode_loc(inode, iloc);
5493 if (!err) {
5494 BUFFER_TRACE(iloc->bh, "get_write_access");
5495 err = ext4_journal_get_write_access(handle, iloc->bh);
5496 if (err) {
5497 brelse(iloc->bh);
5498 iloc->bh = NULL;
ac27a0ec
DK
5499 }
5500 }
617ba13b 5501 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5502 return err;
5503}
5504
6dd4ee7c
KS
5505/*
5506 * Expand an inode by new_extra_isize bytes.
5507 * Returns 0 on success or negative error number on failure.
5508 */
1d03ec98
AK
5509static int ext4_expand_extra_isize(struct inode *inode,
5510 unsigned int new_extra_isize,
5511 struct ext4_iloc iloc,
5512 handle_t *handle)
6dd4ee7c
KS
5513{
5514 struct ext4_inode *raw_inode;
5515 struct ext4_xattr_ibody_header *header;
5516 struct ext4_xattr_entry *entry;
5517
5518 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5519 return 0;
5520
5521 raw_inode = ext4_raw_inode(&iloc);
5522
5523 header = IHDR(inode, raw_inode);
5524 entry = IFIRST(header);
5525
5526 /* No extended attributes present */
5527 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5528 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5529 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5530 new_extra_isize);
5531 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5532 return 0;
5533 }
5534
5535 /* try to expand with EAs present */
5536 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5537 raw_inode, handle);
5538}
5539
ac27a0ec
DK
5540/*
5541 * What we do here is to mark the in-core inode as clean with respect to inode
5542 * dirtiness (it may still be data-dirty).
5543 * This means that the in-core inode may be reaped by prune_icache
5544 * without having to perform any I/O. This is a very good thing,
5545 * because *any* task may call prune_icache - even ones which
5546 * have a transaction open against a different journal.
5547 *
5548 * Is this cheating? Not really. Sure, we haven't written the
5549 * inode out, but prune_icache isn't a user-visible syncing function.
5550 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5551 * we start and wait on commits.
5552 *
5553 * Is this efficient/effective? Well, we're being nice to the system
5554 * by cleaning up our inodes proactively so they can be reaped
5555 * without I/O. But we are potentially leaving up to five seconds'
5556 * worth of inodes floating about which prune_icache wants us to
5557 * write out. One way to fix that would be to get prune_icache()
5558 * to do a write_super() to free up some memory. It has the desired
5559 * effect.
5560 */
617ba13b 5561int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5562{
617ba13b 5563 struct ext4_iloc iloc;
6dd4ee7c
KS
5564 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5565 static unsigned int mnt_count;
5566 int err, ret;
ac27a0ec
DK
5567
5568 might_sleep();
617ba13b 5569 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5570 if (ext4_handle_valid(handle) &&
5571 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
6dd4ee7c
KS
5572 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5573 /*
5574 * We need extra buffer credits since we may write into EA block
5575 * with this same handle. If journal_extend fails, then it will
5576 * only result in a minor loss of functionality for that inode.
5577 * If this is felt to be critical, then e2fsck should be run to
5578 * force a large enough s_min_extra_isize.
5579 */
5580 if ((jbd2_journal_extend(handle,
5581 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5582 ret = ext4_expand_extra_isize(inode,
5583 sbi->s_want_extra_isize,
5584 iloc, handle);
5585 if (ret) {
5586 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
5587 if (mnt_count !=
5588 le16_to_cpu(sbi->s_es->s_mnt_count)) {
46e665e9 5589 ext4_warning(inode->i_sb, __func__,
6dd4ee7c
KS
5590 "Unable to expand inode %lu. Delete"
5591 " some EAs or run e2fsck.",
5592 inode->i_ino);
c1bddad9
AK
5593 mnt_count =
5594 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5595 }
5596 }
5597 }
5598 }
ac27a0ec 5599 if (!err)
617ba13b 5600 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5601 return err;
5602}
5603
5604/*
617ba13b 5605 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5606 *
5607 * We're really interested in the case where a file is being extended.
5608 * i_size has been changed by generic_commit_write() and we thus need
5609 * to include the updated inode in the current transaction.
5610 *
a269eb18 5611 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5612 * are allocated to the file.
5613 *
5614 * If the inode is marked synchronous, we don't honour that here - doing
5615 * so would cause a commit on atime updates, which we don't bother doing.
5616 * We handle synchronous inodes at the highest possible level.
5617 */
617ba13b 5618void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5619{
ac27a0ec
DK
5620 handle_t *handle;
5621
617ba13b 5622 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5623 if (IS_ERR(handle))
5624 goto out;
f3dc272f 5625
f3dc272f
CW
5626 ext4_mark_inode_dirty(handle, inode);
5627
617ba13b 5628 ext4_journal_stop(handle);
ac27a0ec
DK
5629out:
5630 return;
5631}
5632
5633#if 0
5634/*
5635 * Bind an inode's backing buffer_head into this transaction, to prevent
5636 * it from being flushed to disk early. Unlike
617ba13b 5637 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5638 * returns no iloc structure, so the caller needs to repeat the iloc
5639 * lookup to mark the inode dirty later.
5640 */
617ba13b 5641static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5642{
617ba13b 5643 struct ext4_iloc iloc;
ac27a0ec
DK
5644
5645 int err = 0;
5646 if (handle) {
617ba13b 5647 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5648 if (!err) {
5649 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5650 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5651 if (!err)
0390131b
FM
5652 err = ext4_handle_dirty_metadata(handle,
5653 inode,
5654 iloc.bh);
ac27a0ec
DK
5655 brelse(iloc.bh);
5656 }
5657 }
617ba13b 5658 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5659 return err;
5660}
5661#endif
5662
617ba13b 5663int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5664{
5665 journal_t *journal;
5666 handle_t *handle;
5667 int err;
5668
5669 /*
5670 * We have to be very careful here: changing a data block's
5671 * journaling status dynamically is dangerous. If we write a
5672 * data block to the journal, change the status and then delete
5673 * that block, we risk forgetting to revoke the old log record
5674 * from the journal and so a subsequent replay can corrupt data.
5675 * So, first we make sure that the journal is empty and that
5676 * nobody is changing anything.
5677 */
5678
617ba13b 5679 journal = EXT4_JOURNAL(inode);
0390131b
FM
5680 if (!journal)
5681 return 0;
d699594d 5682 if (is_journal_aborted(journal))
ac27a0ec
DK
5683 return -EROFS;
5684
dab291af
MC
5685 jbd2_journal_lock_updates(journal);
5686 jbd2_journal_flush(journal);
ac27a0ec
DK
5687
5688 /*
5689 * OK, there are no updates running now, and all cached data is
5690 * synced to disk. We are now in a completely consistent state
5691 * which doesn't have anything in the journal, and we know that
5692 * no filesystem updates are running, so it is safe to modify
5693 * the inode's in-core data-journaling state flag now.
5694 */
5695
5696 if (val)
617ba13b 5697 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5698 else
617ba13b
MC
5699 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5700 ext4_set_aops(inode);
ac27a0ec 5701
dab291af 5702 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5703
5704 /* Finally we can mark the inode as dirty. */
5705
617ba13b 5706 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5707 if (IS_ERR(handle))
5708 return PTR_ERR(handle);
5709
617ba13b 5710 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5711 ext4_handle_sync(handle);
617ba13b
MC
5712 ext4_journal_stop(handle);
5713 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5714
5715 return err;
5716}
2e9ee850
AK
5717
5718static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5719{
5720 return !buffer_mapped(bh);
5721}
5722
c2ec175c 5723int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5724{
c2ec175c 5725 struct page *page = vmf->page;
2e9ee850
AK
5726 loff_t size;
5727 unsigned long len;
5728 int ret = -EINVAL;
79f0be8d 5729 void *fsdata;
2e9ee850
AK
5730 struct file *file = vma->vm_file;
5731 struct inode *inode = file->f_path.dentry->d_inode;
5732 struct address_space *mapping = inode->i_mapping;
5733
5734 /*
5735 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5736 * get i_mutex because we are already holding mmap_sem.
5737 */
5738 down_read(&inode->i_alloc_sem);
5739 size = i_size_read(inode);
5740 if (page->mapping != mapping || size <= page_offset(page)
5741 || !PageUptodate(page)) {
5742 /* page got truncated from under us? */
5743 goto out_unlock;
5744 }
5745 ret = 0;
5746 if (PageMappedToDisk(page))
5747 goto out_unlock;
5748
5749 if (page->index == size >> PAGE_CACHE_SHIFT)
5750 len = size & ~PAGE_CACHE_MASK;
5751 else
5752 len = PAGE_CACHE_SIZE;
5753
a827eaff
AK
5754 lock_page(page);
5755 /*
5756 * return if we have all the buffers mapped. This avoid
5757 * the need to call write_begin/write_end which does a
5758 * journal_start/journal_stop which can block and take
5759 * long time
5760 */
2e9ee850 5761 if (page_has_buffers(page)) {
2e9ee850 5762 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5763 ext4_bh_unmapped)) {
5764 unlock_page(page);
2e9ee850 5765 goto out_unlock;
a827eaff 5766 }
2e9ee850 5767 }
a827eaff 5768 unlock_page(page);
2e9ee850
AK
5769 /*
5770 * OK, we need to fill the hole... Do write_begin write_end
5771 * to do block allocation/reservation.We are not holding
5772 * inode.i__mutex here. That allow * parallel write_begin,
5773 * write_end call. lock_page prevent this from happening
5774 * on the same page though
5775 */
5776 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5777 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5778 if (ret < 0)
5779 goto out_unlock;
5780 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5781 len, len, page, fsdata);
2e9ee850
AK
5782 if (ret < 0)
5783 goto out_unlock;
5784 ret = 0;
5785out_unlock:
c2ec175c
NP
5786 if (ret)
5787 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5788 up_read(&inode->i_alloc_sem);
5789 return ret;
5790}