]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/ext4/inode.c
UBUNTU: Ubuntu-5.15.0-39.42
[mirror_ubuntu-jammy-kernel.git] / fs / ext4 / inode.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
ac27a0ec 2/*
617ba13b 3 * linux/fs/ext4/inode.c
ac27a0ec
DK
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
ac27a0ec
DK
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
617ba13b 19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
20 */
21
ac27a0ec 22#include <linux/fs.h>
14f3db55 23#include <linux/mount.h>
ac27a0ec 24#include <linux/time.h>
ac27a0ec
DK
25#include <linux/highuid.h>
26#include <linux/pagemap.h>
c94c2acf 27#include <linux/dax.h>
ac27a0ec
DK
28#include <linux/quotaops.h>
29#include <linux/string.h>
30#include <linux/buffer_head.h>
31#include <linux/writeback.h>
64769240 32#include <linux/pagevec.h>
ac27a0ec 33#include <linux/mpage.h>
e83c1397 34#include <linux/namei.h>
ac27a0ec
DK
35#include <linux/uio.h>
36#include <linux/bio.h>
4c0425ff 37#include <linux/workqueue.h>
744692dc 38#include <linux/kernel.h>
6db26ffc 39#include <linux/printk.h>
5a0e3ad6 40#include <linux/slab.h>
00a1a053 41#include <linux/bitops.h>
364443cb 42#include <linux/iomap.h>
ae5e165d 43#include <linux/iversion.h>
9bffad1e 44
3dcf5451 45#include "ext4_jbd2.h"
ac27a0ec
DK
46#include "xattr.h"
47#include "acl.h"
9f125d64 48#include "truncate.h"
ac27a0ec 49
9bffad1e
TT
50#include <trace/events/ext4.h>
51
814525f4
DW
52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
53 struct ext4_inode_info *ei)
54{
55 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
814525f4 56 __u32 csum;
b47820ed
DJ
57 __u16 dummy_csum = 0;
58 int offset = offsetof(struct ext4_inode, i_checksum_lo);
59 unsigned int csum_size = sizeof(dummy_csum);
814525f4 60
b47820ed
DJ
61 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
62 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
63 offset += csum_size;
64 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
65 EXT4_GOOD_OLD_INODE_SIZE - offset);
814525f4 66
b47820ed
DJ
67 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
68 offset = offsetof(struct ext4_inode, i_checksum_hi);
69 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
70 EXT4_GOOD_OLD_INODE_SIZE,
71 offset - EXT4_GOOD_OLD_INODE_SIZE);
72 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
73 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
74 csum_size);
75 offset += csum_size;
b47820ed 76 }
05ac5aa1
DJ
77 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
78 EXT4_INODE_SIZE(inode->i_sb) - offset);
814525f4
DW
79 }
80
814525f4
DW
81 return csum;
82}
83
84static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
85 struct ext4_inode_info *ei)
86{
87 __u32 provided, calculated;
88
89 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
90 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 91 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
92 return 1;
93
94 provided = le16_to_cpu(raw->i_checksum_lo);
95 calculated = ext4_inode_csum(inode, raw, ei);
96 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
97 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
98 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
99 else
100 calculated &= 0xFFFF;
101
102 return provided == calculated;
103}
104
8016e29f
HS
105void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
106 struct ext4_inode_info *ei)
814525f4
DW
107{
108 __u32 csum;
109
110 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
111 cpu_to_le32(EXT4_OS_LINUX) ||
9aa5d32b 112 !ext4_has_metadata_csum(inode->i_sb))
814525f4
DW
113 return;
114
115 csum = ext4_inode_csum(inode, raw, ei);
116 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
117 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
118 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
119 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
120}
121
678aaf48
JK
122static inline int ext4_begin_ordered_truncate(struct inode *inode,
123 loff_t new_size)
124{
7ff9c073 125 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
126 /*
127 * If jinode is zero, then we never opened the file for
128 * writing, so there's no need to call
129 * jbd2_journal_begin_ordered_truncate() since there's no
130 * outstanding writes we need to flush.
131 */
132 if (!EXT4_I(inode)->jinode)
133 return 0;
134 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
135 EXT4_I(inode)->jinode,
136 new_size);
678aaf48
JK
137}
138
d47992f8
LC
139static void ext4_invalidatepage(struct page *page, unsigned int offset,
140 unsigned int length);
cb20d518 141static int __ext4_journalled_writepage(struct page *page, unsigned int len);
dec214d0
TE
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
407cd7fb 147 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
ac27a0ec 148 */
f348c252 149int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 150{
fc82228a
AK
151 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
152 int ea_blocks = EXT4_I(inode)->i_file_acl ?
153 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
154
155 if (ext4_has_inline_data(inode))
156 return 0;
157
158 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
159 }
407cd7fb
TE
160 return S_ISLNK(inode->i_mode) && inode->i_size &&
161 (inode->i_size < EXT4_N_BLOCKS * 4);
ac27a0ec
DK
162}
163
ac27a0ec
DK
164/*
165 * Called at the last iput() if i_nlink is zero.
166 */
0930fcc1 167void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
168{
169 handle_t *handle;
bc965ab3 170 int err;
65db869c
JK
171 /*
172 * Credits for final inode cleanup and freeing:
173 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
174 * (xattr block freeing), bitmap, group descriptor (inode freeing)
175 */
176 int extra_credits = 6;
0421a189 177 struct ext4_xattr_inode_array *ea_inode_array = NULL;
46e294ef 178 bool freeze_protected = false;
ac27a0ec 179
7ff9c073 180 trace_ext4_evict_inode(inode);
2581fdc8 181
0930fcc1 182 if (inode->i_nlink) {
2d859db3
JK
183 /*
184 * When journalling data dirty buffers are tracked only in the
185 * journal. So although mm thinks everything is clean and
186 * ready for reaping the inode might still have some pages to
187 * write in the running transaction or waiting to be
188 * checkpointed. Thus calling jbd2_journal_invalidatepage()
189 * (via truncate_inode_pages()) to discard these buffers can
190 * cause data loss. Also even if we did not discard these
191 * buffers, we would have no way to find them after the inode
192 * is reaped and thus user could see stale data if he tries to
193 * read them before the transaction is checkpointed. So be
194 * careful and force everything to disk here... We use
195 * ei->i_datasync_tid to store the newest transaction
196 * containing inode's data.
197 *
198 * Note that directories do not have this problem because they
199 * don't use page cache.
200 */
6a7fd522
VN
201 if (inode->i_ino != EXT4_JOURNAL_INO &&
202 ext4_should_journal_data(inode) &&
3abb1a0f
JK
203 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
204 inode->i_data.nrpages) {
2d859db3
JK
205 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
206 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
207
d76a3a77 208 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
209 filemap_write_and_wait(&inode->i_data);
210 }
91b0abe3 211 truncate_inode_pages_final(&inode->i_data);
5dc23bdd 212
0930fcc1
AV
213 goto no_delete;
214 }
215
e2bfb088
TT
216 if (is_bad_inode(inode))
217 goto no_delete;
218 dquot_initialize(inode);
907f4554 219
678aaf48
JK
220 if (ext4_should_order_data(inode))
221 ext4_begin_ordered_truncate(inode, 0);
91b0abe3 222 truncate_inode_pages_final(&inode->i_data);
ac27a0ec 223
ceff86fd
JK
224 /*
225 * For inodes with journalled data, transaction commit could have
226 * dirtied the inode. Flush worker is ignoring it because of I_FREEING
227 * flag but we still need to remove the inode from the writeback lists.
228 */
229 if (!list_empty_careful(&inode->i_io_list)) {
230 WARN_ON_ONCE(!ext4_should_journal_data(inode));
231 inode_io_list_del(inode);
232 }
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
46e294ef
JK
236 * protection against it. When we are in a running transaction though,
237 * we are already protected against freezing and we cannot grab further
238 * protection due to lock ordering constraints.
8e8ad8a5 239 */
46e294ef
JK
240 if (!ext4_journal_current_handle()) {
241 sb_start_intwrite(inode->i_sb);
242 freeze_protected = true;
243 }
e50e5129 244
30a7eb97
TE
245 if (!IS_NOQUOTA(inode))
246 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
247
65db869c
JK
248 /*
249 * Block bitmap, group descriptor, and inode are accounted in both
250 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
251 */
30a7eb97 252 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
65db869c 253 ext4_blocks_for_truncate(inode) + extra_credits - 3);
ac27a0ec 254 if (IS_ERR(handle)) {
bc965ab3 255 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
256 /*
257 * If we're going to skip the normal cleanup, we still need to
258 * make sure that the in-core orphan linked list is properly
259 * cleaned up.
260 */
617ba13b 261 ext4_orphan_del(NULL, inode);
46e294ef
JK
262 if (freeze_protected)
263 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
264 goto no_delete;
265 }
30a7eb97 266
ac27a0ec 267 if (IS_SYNC(inode))
0390131b 268 ext4_handle_sync(handle);
407cd7fb
TE
269
270 /*
271 * Set inode->i_size to 0 before calling ext4_truncate(). We need
272 * special handling of symlinks here because i_size is used to
273 * determine whether ext4_inode_info->i_data contains symlink data or
274 * block mappings. Setting i_size to 0 will remove its fast symlink
275 * status. Erase i_data so that it becomes a valid empty block map.
276 */
277 if (ext4_inode_is_fast_symlink(inode))
278 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
ac27a0ec 279 inode->i_size = 0;
bc965ab3
TT
280 err = ext4_mark_inode_dirty(handle, inode);
281 if (err) {
12062ddd 282 ext4_warning(inode->i_sb,
bc965ab3
TT
283 "couldn't mark inode dirty (err %d)", err);
284 goto stop_handle;
285 }
2c98eb5e
TT
286 if (inode->i_blocks) {
287 err = ext4_truncate(inode);
288 if (err) {
54d3adbc
TT
289 ext4_error_err(inode->i_sb, -err,
290 "couldn't truncate inode %lu (err %d)",
291 inode->i_ino, err);
2c98eb5e
TT
292 goto stop_handle;
293 }
294 }
bc965ab3 295
30a7eb97
TE
296 /* Remove xattr references. */
297 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
298 extra_credits);
299 if (err) {
300 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
301stop_handle:
302 ext4_journal_stop(handle);
303 ext4_orphan_del(NULL, inode);
46e294ef
JK
304 if (freeze_protected)
305 sb_end_intwrite(inode->i_sb);
30a7eb97
TE
306 ext4_xattr_inode_array_free(ea_inode_array);
307 goto no_delete;
bc965ab3
TT
308 }
309
ac27a0ec 310 /*
617ba13b 311 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 312 * AKPM: I think this can be inside the above `if'.
617ba13b 313 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 314 * deletion of a non-existent orphan - this is because we don't
617ba13b 315 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
316 * (Well, we could do this if we need to, but heck - it works)
317 */
617ba13b 318 ext4_orphan_del(handle, inode);
5ffff834 319 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
ac27a0ec
DK
320
321 /*
322 * One subtle ordering requirement: if anything has gone wrong
323 * (transaction abort, IO errors, whatever), then we can still
324 * do these next steps (the fs will already have been marked as
325 * having errors), but we can't free the inode if the mark_dirty
326 * fails.
327 */
617ba13b 328 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 329 /* If that failed, just do the required in-core inode clear. */
0930fcc1 330 ext4_clear_inode(inode);
ac27a0ec 331 else
617ba13b
MC
332 ext4_free_inode(handle, inode);
333 ext4_journal_stop(handle);
46e294ef
JK
334 if (freeze_protected)
335 sb_end_intwrite(inode->i_sb);
0421a189 336 ext4_xattr_inode_array_free(ea_inode_array);
ac27a0ec
DK
337 return;
338no_delete:
b21ebf14 339 if (!list_empty(&EXT4_I(inode)->i_fc_list))
e5aed39e 340 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
0930fcc1 341 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
342}
343
a9e7f447
DM
344#ifdef CONFIG_QUOTA
345qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 346{
a9e7f447 347 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 348}
a9e7f447 349#endif
9d0be502 350
0637c6f4
TT
351/*
352 * Called with i_data_sem down, which is important since we can call
353 * ext4_discard_preallocations() from here.
354 */
5f634d06
AK
355void ext4_da_update_reserve_space(struct inode *inode,
356 int used, int quota_claim)
12219aea
AK
357{
358 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 359 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
360
361 spin_lock(&ei->i_block_reservation_lock);
d8990240 362 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 363 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 364 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 365 "with only %d reserved data blocks",
0637c6f4
TT
366 __func__, inode->i_ino, used,
367 ei->i_reserved_data_blocks);
368 WARN_ON(1);
369 used = ei->i_reserved_data_blocks;
370 }
12219aea 371
0637c6f4
TT
372 /* Update per-inode reservations */
373 ei->i_reserved_data_blocks -= used;
71d4f7d0 374 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
6bc6e63f 375
f9505c72 376 spin_unlock(&ei->i_block_reservation_lock);
60e58e0f 377
72b8ab9d
ES
378 /* Update quota subsystem for data blocks */
379 if (quota_claim)
7b415bf6 380 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 381 else {
5f634d06
AK
382 /*
383 * We did fallocate with an offset that is already delayed
384 * allocated. So on delayed allocated writeback we should
72b8ab9d 385 * not re-claim the quota for fallocated blocks.
5f634d06 386 */
7b415bf6 387 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 388 }
d6014301
AK
389
390 /*
391 * If we have done all the pending block allocations and if
392 * there aren't any writers on the inode, we can discard the
393 * inode's preallocations.
394 */
0637c6f4 395 if ((ei->i_reserved_data_blocks == 0) &&
82dd124c 396 !inode_is_open_for_write(inode))
27bc446e 397 ext4_discard_preallocations(inode, 0);
12219aea
AK
398}
399
e29136f8 400static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
401 unsigned int line,
402 struct ext4_map_blocks *map)
6fd058f7 403{
345c0dbf
TT
404 if (ext4_has_feature_journal(inode->i_sb) &&
405 (inode->i_ino ==
406 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
407 return 0;
ce9f24cc 408 if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
c398eda0 409 ext4_error_inode(inode, func, line, map->m_pblk,
bdbd6ce0 410 "lblock %lu mapped to illegal pblock %llu "
c398eda0 411 "(length %d)", (unsigned long) map->m_lblk,
bdbd6ce0 412 map->m_pblk, map->m_len);
6a797d27 413 return -EFSCORRUPTED;
6fd058f7
TT
414 }
415 return 0;
416}
417
53085fac
JK
418int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
419 ext4_lblk_t len)
420{
421 int ret;
422
33b4cc25 423 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
a7550b30 424 return fscrypt_zeroout_range(inode, lblk, pblk, len);
53085fac
JK
425
426 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
427 if (ret > 0)
428 ret = 0;
429
430 return ret;
431}
432
e29136f8 433#define check_block_validity(inode, map) \
c398eda0 434 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 435
921f266b
DM
436#ifdef ES_AGGRESSIVE_TEST
437static void ext4_map_blocks_es_recheck(handle_t *handle,
438 struct inode *inode,
439 struct ext4_map_blocks *es_map,
440 struct ext4_map_blocks *map,
441 int flags)
442{
443 int retval;
444
445 map->m_flags = 0;
446 /*
447 * There is a race window that the result is not the same.
448 * e.g. xfstests #223 when dioread_nolock enables. The reason
449 * is that we lookup a block mapping in extent status tree with
450 * out taking i_data_sem. So at the time the unwritten extent
451 * could be converted.
452 */
2dcba478 453 down_read(&EXT4_I(inode)->i_data_sem);
921f266b 454 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 455 retval = ext4_ext_map_blocks(handle, inode, map, 0);
921f266b 456 } else {
9e52484c 457 retval = ext4_ind_map_blocks(handle, inode, map, 0);
921f266b 458 }
2dcba478 459 up_read((&EXT4_I(inode)->i_data_sem));
921f266b
DM
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
facab4d9
JK
491 * On success, it returns the number of blocks being mapped or allocated. if
492 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
493 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
f5ab0d1f
MC
494 *
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
facab4d9
JK
496 * that case, @map is returned as unmapped but we still do fill map->m_len to
497 * indicate the length of a hole starting at map->m_lblk.
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
b8a86845 506 int ret = 0;
921f266b
DM
507#ifdef ES_AGGRESSIVE_TEST
508 struct ext4_map_blocks orig_map;
509
510 memcpy(&orig_map, map, sizeof(*map));
511#endif
f5ab0d1f 512
e35fd660 513 map->m_flags = 0;
70aa1554
RH
514 ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
515 flags, map->m_len, (unsigned long) map->m_lblk);
d100eef2 516
e861b5e9
TT
517 /*
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 */
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
522
4adb6ab3
KM
523 /* We can handle the block number less than EXT_MAX_BLOCKS */
524 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
6a797d27 525 return -EFSCORRUPTED;
4adb6ab3 526
d100eef2 527 /* Lookup extent status tree firstly */
8016e29f
HS
528 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
529 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
d100eef2
ZL
530 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
531 map->m_pblk = ext4_es_pblock(&es) +
532 map->m_lblk - es.es_lblk;
533 map->m_flags |= ext4_es_is_written(&es) ?
534 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
535 retval = es.es_len - (map->m_lblk - es.es_lblk);
536 if (retval > map->m_len)
537 retval = map->m_len;
538 map->m_len = retval;
539 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
facab4d9
JK
540 map->m_pblk = 0;
541 retval = es.es_len - (map->m_lblk - es.es_lblk);
542 if (retval > map->m_len)
543 retval = map->m_len;
544 map->m_len = retval;
d100eef2
ZL
545 retval = 0;
546 } else {
1e83bc81 547 BUG();
d100eef2 548 }
921f266b
DM
549#ifdef ES_AGGRESSIVE_TEST
550 ext4_map_blocks_es_recheck(handle, inode, map,
551 &orig_map, flags);
552#endif
d100eef2
ZL
553 goto found;
554 }
555
4df3d265 556 /*
b920c755
TT
557 * Try to see if we can get the block without requesting a new
558 * file system block.
4df3d265 559 */
2dcba478 560 down_read(&EXT4_I(inode)->i_data_sem);
12e9b892 561 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
9e52484c 562 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 563 } else {
9e52484c 564 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 565 }
f7fec032 566 if (retval > 0) {
3be78c73 567 unsigned int status;
f7fec032 568
44fb851d
ZL
569 if (unlikely(retval != map->m_len)) {
570 ext4_warning(inode->i_sb,
571 "ES len assertion failed for inode "
572 "%lu: retval %d != map->m_len %d",
573 inode->i_ino, retval, map->m_len);
574 WARN_ON(1);
921f266b 575 }
921f266b 576
f7fec032
ZL
577 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
578 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
579 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 580 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
581 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
582 map->m_lblk + map->m_len - 1))
f7fec032
ZL
583 status |= EXTENT_STATUS_DELAYED;
584 ret = ext4_es_insert_extent(inode, map->m_lblk,
585 map->m_len, map->m_pblk, status);
586 if (ret < 0)
587 retval = ret;
588 }
2dcba478 589 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 590
d100eef2 591found:
e35fd660 592 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 593 ret = check_block_validity(inode, map);
6fd058f7
TT
594 if (ret != 0)
595 return ret;
596 }
597
f5ab0d1f 598 /* If it is only a block(s) look up */
c2177057 599 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
600 return retval;
601
602 /*
603 * Returns if the blocks have already allocated
604 *
605 * Note that if blocks have been preallocated
df3ab170 606 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
607 * with buffer head unmapped.
608 */
e35fd660 609 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
b8a86845
LC
610 /*
611 * If we need to convert extent to unwritten
612 * we continue and do the actual work in
613 * ext4_ext_map_blocks()
614 */
615 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
616 return retval;
4df3d265 617
2a8964d6 618 /*
a25a4e1a
ZL
619 * Here we clear m_flags because after allocating an new extent,
620 * it will be set again.
2a8964d6 621 */
a25a4e1a 622 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 623
4df3d265 624 /*
556615dc 625 * New blocks allocate and/or writing to unwritten extent
f5ab0d1f 626 * will possibly result in updating i_data, so we take
d91bd2c1 627 * the write lock of i_data_sem, and call get_block()
f5ab0d1f 628 * with create == 1 flag.
4df3d265 629 */
c8b459f4 630 down_write(&EXT4_I(inode)->i_data_sem);
d2a17637 631
4df3d265
AK
632 /*
633 * We need to check for EXT4 here because migrate
634 * could have changed the inode type in between
635 */
12e9b892 636 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 637 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 638 } else {
e35fd660 639 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 640
e35fd660 641 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
642 /*
643 * We allocated new blocks which will result in
644 * i_data's format changing. Force the migrate
645 * to fail by clearing migrate flags
646 */
19f5fb7a 647 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 648 }
d2a17637 649
5f634d06
AK
650 /*
651 * Update reserved blocks/metadata blocks after successful
652 * block allocation which had been deferred till now. We don't
653 * support fallocate for non extent files. So we can update
654 * reserve space here.
655 */
656 if ((retval > 0) &&
1296cc85 657 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
658 ext4_da_update_reserve_space(inode, retval, 1);
659 }
2ac3b6e0 660
f7fec032 661 if (retval > 0) {
3be78c73 662 unsigned int status;
f7fec032 663
44fb851d
ZL
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
669 WARN_ON(1);
921f266b 670 }
921f266b 671
c86d8db3
JK
672 /*
673 * We have to zeroout blocks before inserting them into extent
674 * status tree. Otherwise someone could look them up there and
9b623df6
JK
675 * use them before they are really zeroed. We also have to
676 * unmap metadata before zeroing as otherwise writeback can
677 * overwrite zeros with stale data from block device.
c86d8db3
JK
678 */
679 if (flags & EXT4_GET_BLOCKS_ZERO &&
680 map->m_flags & EXT4_MAP_MAPPED &&
681 map->m_flags & EXT4_MAP_NEW) {
682 ret = ext4_issue_zeroout(inode, map->m_lblk,
683 map->m_pblk, map->m_len);
684 if (ret) {
685 retval = ret;
686 goto out_sem;
687 }
688 }
689
adb23551
ZL
690 /*
691 * If the extent has been zeroed out, we don't need to update
692 * extent status tree.
693 */
694 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
bb5835ed 695 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
adb23551 696 if (ext4_es_is_written(&es))
c86d8db3 697 goto out_sem;
adb23551 698 }
f7fec032
ZL
699 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
700 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
701 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
d2dc317d 702 !(status & EXTENT_STATUS_WRITTEN) &&
ad431025
EW
703 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
704 map->m_lblk + map->m_len - 1))
f7fec032
ZL
705 status |= EXTENT_STATUS_DELAYED;
706 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
707 map->m_pblk, status);
c86d8db3 708 if (ret < 0) {
f7fec032 709 retval = ret;
c86d8db3
JK
710 goto out_sem;
711 }
5356f261
AK
712 }
713
c86d8db3 714out_sem:
4df3d265 715 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 716 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
b8a86845 717 ret = check_block_validity(inode, map);
6fd058f7
TT
718 if (ret != 0)
719 return ret;
06bd3c36
JK
720
721 /*
722 * Inodes with freshly allocated blocks where contents will be
723 * visible after transaction commit must be on transaction's
724 * ordered data list.
725 */
726 if (map->m_flags & EXT4_MAP_NEW &&
727 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
728 !(flags & EXT4_GET_BLOCKS_ZERO) &&
02749a4c 729 !ext4_is_quota_file(inode) &&
06bd3c36 730 ext4_should_order_data(inode)) {
73131fbb
RZ
731 loff_t start_byte =
732 (loff_t)map->m_lblk << inode->i_blkbits;
733 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
734
ee0876bc 735 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
73131fbb
RZ
736 ret = ext4_jbd2_inode_add_wait(handle, inode,
737 start_byte, length);
ee0876bc 738 else
73131fbb
RZ
739 ret = ext4_jbd2_inode_add_write(handle, inode,
740 start_byte, length);
06bd3c36
JK
741 if (ret)
742 return ret;
743 }
6fd058f7 744 }
f7914e07
XY
745 if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
746 map->m_flags & EXT4_MAP_MAPPED))
747 ext4_fc_track_range(handle, inode, map->m_lblk,
748 map->m_lblk + map->m_len - 1);
ec8c60be 749 if (retval < 0)
70aa1554 750 ext_debug(inode, "failed with err %d\n", retval);
0e855ac8
AK
751 return retval;
752}
753
ed8ad838
JK
754/*
755 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
756 * we have to be careful as someone else may be manipulating b_state as well.
757 */
758static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
759{
760 unsigned long old_state;
761 unsigned long new_state;
762
763 flags &= EXT4_MAP_FLAGS;
764
765 /* Dummy buffer_head? Set non-atomically. */
766 if (!bh->b_page) {
767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
768 return;
769 }
770 /*
771 * Someone else may be modifying b_state. Be careful! This is ugly but
772 * once we get rid of using bh as a container for mapping information
773 * to pass to / from get_block functions, this can go away.
774 */
775 do {
776 old_state = READ_ONCE(bh->b_state);
777 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
778 } while (unlikely(
779 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
780}
781
2ed88685
TT
782static int _ext4_get_block(struct inode *inode, sector_t iblock,
783 struct buffer_head *bh, int flags)
ac27a0ec 784{
2ed88685 785 struct ext4_map_blocks map;
efe70c29 786 int ret = 0;
ac27a0ec 787
46c7f254
TM
788 if (ext4_has_inline_data(inode))
789 return -ERANGE;
790
2ed88685
TT
791 map.m_lblk = iblock;
792 map.m_len = bh->b_size >> inode->i_blkbits;
793
efe70c29
JK
794 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
795 flags);
7fb5409d 796 if (ret > 0) {
2ed88685 797 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 798 ext4_update_bh_state(bh, map.m_flags);
2ed88685 799 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 800 ret = 0;
547edce3
RZ
801 } else if (ret == 0) {
802 /* hole case, need to fill in bh->b_size */
803 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ac27a0ec
DK
804 }
805 return ret;
806}
807
2ed88685
TT
808int ext4_get_block(struct inode *inode, sector_t iblock,
809 struct buffer_head *bh, int create)
810{
811 return _ext4_get_block(inode, iblock, bh,
812 create ? EXT4_GET_BLOCKS_CREATE : 0);
813}
814
705965bd
JK
815/*
816 * Get block function used when preparing for buffered write if we require
817 * creating an unwritten extent if blocks haven't been allocated. The extent
818 * will be converted to written after the IO is complete.
819 */
820int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
821 struct buffer_head *bh_result, int create)
822{
823 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
824 inode->i_ino, create);
825 return _ext4_get_block(inode, iblock, bh_result,
826 EXT4_GET_BLOCKS_IO_CREATE_EXT);
827}
828
efe70c29
JK
829/* Maximum number of blocks we map for direct IO at once. */
830#define DIO_MAX_BLOCKS 4096
831
ac27a0ec
DK
832/*
833 * `handle' can be NULL if create is zero
834 */
617ba13b 835struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
c5e298ae 836 ext4_lblk_t block, int map_flags)
ac27a0ec 837{
2ed88685
TT
838 struct ext4_map_blocks map;
839 struct buffer_head *bh;
c5e298ae 840 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
10560082 841 int err;
ac27a0ec 842
837c23fb
CX
843 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
844 || handle != NULL || create == 0);
ac27a0ec 845
2ed88685
TT
846 map.m_lblk = block;
847 map.m_len = 1;
c5e298ae 848 err = ext4_map_blocks(handle, inode, &map, map_flags);
ac27a0ec 849
10560082
TT
850 if (err == 0)
851 return create ? ERR_PTR(-ENOSPC) : NULL;
2ed88685 852 if (err < 0)
10560082 853 return ERR_PTR(err);
2ed88685
TT
854
855 bh = sb_getblk(inode->i_sb, map.m_pblk);
10560082
TT
856 if (unlikely(!bh))
857 return ERR_PTR(-ENOMEM);
2ed88685 858 if (map.m_flags & EXT4_MAP_NEW) {
837c23fb
CX
859 ASSERT(create != 0);
860 ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
861 || (handle != NULL));
ac27a0ec 862
2ed88685
TT
863 /*
864 * Now that we do not always journal data, we should
865 * keep in mind whether this should always journal the
866 * new buffer as metadata. For now, regular file
867 * writes use ext4_get_block instead, so it's not a
868 * problem.
869 */
870 lock_buffer(bh);
871 BUFFER_TRACE(bh, "call get_create_access");
188c299e
JK
872 err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
873 EXT4_JTR_NONE);
10560082
TT
874 if (unlikely(err)) {
875 unlock_buffer(bh);
876 goto errout;
877 }
878 if (!buffer_uptodate(bh)) {
2ed88685
TT
879 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
880 set_buffer_uptodate(bh);
ac27a0ec 881 }
2ed88685
TT
882 unlock_buffer(bh);
883 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
884 err = ext4_handle_dirty_metadata(handle, inode, bh);
10560082
TT
885 if (unlikely(err))
886 goto errout;
887 } else
2ed88685 888 BUFFER_TRACE(bh, "not a new buffer");
2ed88685 889 return bh;
10560082
TT
890errout:
891 brelse(bh);
892 return ERR_PTR(err);
ac27a0ec
DK
893}
894
617ba13b 895struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
c5e298ae 896 ext4_lblk_t block, int map_flags)
ac27a0ec 897{
af5bc92d 898 struct buffer_head *bh;
2d069c08 899 int ret;
ac27a0ec 900
c5e298ae 901 bh = ext4_getblk(handle, inode, block, map_flags);
1c215028 902 if (IS_ERR(bh))
ac27a0ec 903 return bh;
7963e5ac 904 if (!bh || ext4_buffer_uptodate(bh))
ac27a0ec 905 return bh;
2d069c08 906
907 ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
908 if (ret) {
909 put_bh(bh);
910 return ERR_PTR(ret);
911 }
912 return bh;
ac27a0ec
DK
913}
914
9699d4f9
TE
915/* Read a contiguous batch of blocks. */
916int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
917 bool wait, struct buffer_head **bhs)
918{
919 int i, err;
920
921 for (i = 0; i < bh_count; i++) {
922 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
923 if (IS_ERR(bhs[i])) {
924 err = PTR_ERR(bhs[i]);
925 bh_count = i;
926 goto out_brelse;
927 }
928 }
929
930 for (i = 0; i < bh_count; i++)
931 /* Note that NULL bhs[i] is valid because of holes. */
2d069c08 932 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
933 ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
9699d4f9
TE
934
935 if (!wait)
936 return 0;
937
938 for (i = 0; i < bh_count; i++)
939 if (bhs[i])
940 wait_on_buffer(bhs[i]);
941
942 for (i = 0; i < bh_count; i++) {
943 if (bhs[i] && !buffer_uptodate(bhs[i])) {
944 err = -EIO;
945 goto out_brelse;
946 }
947 }
948 return 0;
949
950out_brelse:
951 for (i = 0; i < bh_count; i++) {
952 brelse(bhs[i]);
953 bhs[i] = NULL;
954 }
955 return err;
956}
957
188c299e 958int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
f19d5870
TM
959 struct buffer_head *head,
960 unsigned from,
961 unsigned to,
962 int *partial,
188c299e 963 int (*fn)(handle_t *handle, struct inode *inode,
f19d5870 964 struct buffer_head *bh))
ac27a0ec
DK
965{
966 struct buffer_head *bh;
967 unsigned block_start, block_end;
968 unsigned blocksize = head->b_size;
969 int err, ret = 0;
970 struct buffer_head *next;
971
af5bc92d
TT
972 for (bh = head, block_start = 0;
973 ret == 0 && (bh != head || !block_start);
de9a55b8 974 block_start = block_end, bh = next) {
ac27a0ec
DK
975 next = bh->b_this_page;
976 block_end = block_start + blocksize;
977 if (block_end <= from || block_start >= to) {
978 if (partial && !buffer_uptodate(bh))
979 *partial = 1;
980 continue;
981 }
188c299e 982 err = (*fn)(handle, inode, bh);
ac27a0ec
DK
983 if (!ret)
984 ret = err;
985 }
986 return ret;
987}
988
989/*
990 * To preserve ordering, it is essential that the hole instantiation and
991 * the data write be encapsulated in a single transaction. We cannot
617ba13b 992 * close off a transaction and start a new one between the ext4_get_block()
dab291af 993 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
994 * prepare_write() is the right place.
995 *
36ade451
JK
996 * Also, this function can nest inside ext4_writepage(). In that case, we
997 * *know* that ext4_writepage() has generated enough buffer credits to do the
998 * whole page. So we won't block on the journal in that case, which is good,
999 * because the caller may be PF_MEMALLOC.
ac27a0ec 1000 *
617ba13b 1001 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1002 * quota file writes. If we were to commit the transaction while thus
1003 * reentered, there can be a deadlock - we would be holding a quota
1004 * lock, and the commit would never complete if another thread had a
1005 * transaction open and was blocking on the quota lock - a ranking
1006 * violation.
1007 *
dab291af 1008 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1009 * will _not_ run commit under these circumstances because handle->h_ref
1010 * is elevated. We'll still have enough credits for the tiny quotafile
1011 * write.
1012 */
188c299e 1013int do_journal_get_write_access(handle_t *handle, struct inode *inode,
f19d5870 1014 struct buffer_head *bh)
ac27a0ec 1015{
56d35a4c
JK
1016 int dirty = buffer_dirty(bh);
1017 int ret;
1018
ac27a0ec
DK
1019 if (!buffer_mapped(bh) || buffer_freed(bh))
1020 return 0;
56d35a4c 1021 /*
ebdec241 1022 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
1023 * the dirty bit as jbd2_journal_get_write_access() could complain
1024 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 1025 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
1026 * the bit before releasing a page lock and thus writeback cannot
1027 * ever write the buffer.
1028 */
1029 if (dirty)
1030 clear_buffer_dirty(bh);
5d601255 1031 BUFFER_TRACE(bh, "get write access");
188c299e
JK
1032 ret = ext4_journal_get_write_access(handle, inode->i_sb, bh,
1033 EXT4_JTR_NONE);
56d35a4c
JK
1034 if (!ret && dirty)
1035 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1036 return ret;
ac27a0ec
DK
1037}
1038
643fa961 1039#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1040static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1041 get_block_t *get_block)
1042{
09cbfeaf 1043 unsigned from = pos & (PAGE_SIZE - 1);
2058f83a
MH
1044 unsigned to = from + len;
1045 struct inode *inode = page->mapping->host;
1046 unsigned block_start, block_end;
1047 sector_t block;
1048 int err = 0;
1049 unsigned blocksize = inode->i_sb->s_blocksize;
1050 unsigned bbits;
0b578f35
CR
1051 struct buffer_head *bh, *head, *wait[2];
1052 int nr_wait = 0;
1053 int i;
2058f83a
MH
1054
1055 BUG_ON(!PageLocked(page));
09cbfeaf
KS
1056 BUG_ON(from > PAGE_SIZE);
1057 BUG_ON(to > PAGE_SIZE);
2058f83a
MH
1058 BUG_ON(from > to);
1059
1060 if (!page_has_buffers(page))
1061 create_empty_buffers(page, blocksize, 0);
1062 head = page_buffers(page);
1063 bbits = ilog2(blocksize);
09cbfeaf 1064 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
2058f83a
MH
1065
1066 for (bh = head, block_start = 0; bh != head || !block_start;
1067 block++, block_start = block_end, bh = bh->b_this_page) {
1068 block_end = block_start + blocksize;
1069 if (block_end <= from || block_start >= to) {
1070 if (PageUptodate(page)) {
3cd46171 1071 set_buffer_uptodate(bh);
2058f83a
MH
1072 }
1073 continue;
1074 }
1075 if (buffer_new(bh))
1076 clear_buffer_new(bh);
1077 if (!buffer_mapped(bh)) {
1078 WARN_ON(bh->b_size != blocksize);
1079 err = get_block(inode, block, bh, 1);
1080 if (err)
1081 break;
1082 if (buffer_new(bh)) {
2058f83a
MH
1083 if (PageUptodate(page)) {
1084 clear_buffer_new(bh);
1085 set_buffer_uptodate(bh);
1086 mark_buffer_dirty(bh);
1087 continue;
1088 }
1089 if (block_end > to || block_start < from)
1090 zero_user_segments(page, to, block_end,
1091 block_start, from);
1092 continue;
1093 }
1094 }
1095 if (PageUptodate(page)) {
3cd46171 1096 set_buffer_uptodate(bh);
2058f83a
MH
1097 continue;
1098 }
1099 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1100 !buffer_unwritten(bh) &&
1101 (block_start < from || block_end > to)) {
2d069c08 1102 ext4_read_bh_lock(bh, 0, false);
0b578f35 1103 wait[nr_wait++] = bh;
2058f83a
MH
1104 }
1105 }
1106 /*
1107 * If we issued read requests, let them complete.
1108 */
0b578f35
CR
1109 for (i = 0; i < nr_wait; i++) {
1110 wait_on_buffer(wait[i]);
1111 if (!buffer_uptodate(wait[i]))
2058f83a
MH
1112 err = -EIO;
1113 }
7e0785fc 1114 if (unlikely(err)) {
2058f83a 1115 page_zero_new_buffers(page, from, to);
4f74d15f 1116 } else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
0b578f35
CR
1117 for (i = 0; i < nr_wait; i++) {
1118 int err2;
1119
1120 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1121 bh_offset(wait[i]));
1122 if (err2) {
1123 clear_buffer_uptodate(wait[i]);
1124 err = err2;
1125 }
1126 }
7e0785fc
CR
1127 }
1128
2058f83a
MH
1129 return err;
1130}
1131#endif
1132
bfc1af65 1133static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1134 loff_t pos, unsigned len, unsigned flags,
1135 struct page **pagep, void **fsdata)
ac27a0ec 1136{
af5bc92d 1137 struct inode *inode = mapping->host;
1938a150 1138 int ret, needed_blocks;
ac27a0ec
DK
1139 handle_t *handle;
1140 int retries = 0;
af5bc92d 1141 struct page *page;
de9a55b8 1142 pgoff_t index;
af5bc92d 1143 unsigned from, to;
bfc1af65 1144
0db1ff22
TT
1145 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1146 return -EIO;
1147
9bffad1e 1148 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1149 /*
1150 * Reserve one block more for addition to orphan list in case
1151 * we allocate blocks but write fails for some reason
1152 */
1153 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
09cbfeaf
KS
1154 index = pos >> PAGE_SHIFT;
1155 from = pos & (PAGE_SIZE - 1);
af5bc92d 1156 to = from + len;
ac27a0ec 1157
f19d5870
TM
1158 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1159 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1160 flags, pagep);
1161 if (ret < 0)
47564bfb
TT
1162 return ret;
1163 if (ret == 1)
1164 return 0;
f19d5870
TM
1165 }
1166
47564bfb
TT
1167 /*
1168 * grab_cache_page_write_begin() can take a long time if the
1169 * system is thrashing due to memory pressure, or if the page
1170 * is being written back. So grab it first before we start
1171 * the transaction handle. This also allows us to allocate
1172 * the page (if needed) without using GFP_NOFS.
1173 */
1174retry_grab:
1175 page = grab_cache_page_write_begin(mapping, index, flags);
1176 if (!page)
1177 return -ENOMEM;
1178 unlock_page(page);
1179
1180retry_journal:
9924a92a 1181 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1182 if (IS_ERR(handle)) {
09cbfeaf 1183 put_page(page);
47564bfb 1184 return PTR_ERR(handle);
7479d2b9 1185 }
ac27a0ec 1186
47564bfb
TT
1187 lock_page(page);
1188 if (page->mapping != mapping) {
1189 /* The page got truncated from under us */
1190 unlock_page(page);
09cbfeaf 1191 put_page(page);
cf108bca 1192 ext4_journal_stop(handle);
47564bfb 1193 goto retry_grab;
cf108bca 1194 }
7afe5aa5
DM
1195 /* In case writeback began while the page was unlocked */
1196 wait_for_stable_page(page);
cf108bca 1197
643fa961 1198#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
1199 if (ext4_should_dioread_nolock(inode))
1200 ret = ext4_block_write_begin(page, pos, len,
705965bd 1201 ext4_get_block_unwritten);
2058f83a
MH
1202 else
1203 ret = ext4_block_write_begin(page, pos, len,
1204 ext4_get_block);
1205#else
744692dc 1206 if (ext4_should_dioread_nolock(inode))
705965bd
JK
1207 ret = __block_write_begin(page, pos, len,
1208 ext4_get_block_unwritten);
744692dc 1209 else
6e1db88d 1210 ret = __block_write_begin(page, pos, len, ext4_get_block);
2058f83a 1211#endif
bfc1af65 1212 if (!ret && ext4_should_journal_data(inode)) {
188c299e
JK
1213 ret = ext4_walk_page_buffers(handle, inode,
1214 page_buffers(page), from, to, NULL,
f19d5870 1215 do_journal_get_write_access);
ac27a0ec 1216 }
bfc1af65
NP
1217
1218 if (ret) {
c93d8f88
EB
1219 bool extended = (pos + len > inode->i_size) &&
1220 !ext4_verity_in_progress(inode);
1221
af5bc92d 1222 unlock_page(page);
ae4d5372 1223 /*
6e1db88d 1224 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1225 * outside i_size. Trim these off again. Don't need
1226 * i_size_read because we hold i_mutex.
1938a150
AK
1227 *
1228 * Add inode to orphan list in case we crash before
1229 * truncate finishes
ae4d5372 1230 */
c93d8f88 1231 if (extended && ext4_can_truncate(inode))
1938a150
AK
1232 ext4_orphan_add(handle, inode);
1233
1234 ext4_journal_stop(handle);
c93d8f88 1235 if (extended) {
b9a4207d 1236 ext4_truncate_failed_write(inode);
de9a55b8 1237 /*
ffacfa7a 1238 * If truncate failed early the inode might
1938a150
AK
1239 * still be on the orphan list; we need to
1240 * make sure the inode is removed from the
1241 * orphan list in that case.
1242 */
1243 if (inode->i_nlink)
1244 ext4_orphan_del(NULL, inode);
1245 }
bfc1af65 1246
47564bfb
TT
1247 if (ret == -ENOSPC &&
1248 ext4_should_retry_alloc(inode->i_sb, &retries))
1249 goto retry_journal;
09cbfeaf 1250 put_page(page);
47564bfb
TT
1251 return ret;
1252 }
1253 *pagep = page;
ac27a0ec
DK
1254 return ret;
1255}
1256
bfc1af65 1257/* For write_end() in data=journal mode */
188c299e
JK
1258static int write_end_fn(handle_t *handle, struct inode *inode,
1259 struct buffer_head *bh)
ac27a0ec 1260{
13fca323 1261 int ret;
ac27a0ec
DK
1262 if (!buffer_mapped(bh) || buffer_freed(bh))
1263 return 0;
1264 set_buffer_uptodate(bh);
13fca323
TT
1265 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1266 clear_buffer_meta(bh);
1267 clear_buffer_prio(bh);
1268 return ret;
ac27a0ec
DK
1269}
1270
eed4333f
ZL
1271/*
1272 * We need to pick up the new inode size which generic_commit_write gave us
1273 * `file' can be NULL - eg, when called from page_symlink().
1274 *
1275 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1276 * buffers are managed internally.
1277 */
1278static int ext4_write_end(struct file *file,
1279 struct address_space *mapping,
1280 loff_t pos, unsigned len, unsigned copied,
1281 struct page *page, void *fsdata)
f8514083 1282{
f8514083 1283 handle_t *handle = ext4_journal_current_handle();
eed4333f 1284 struct inode *inode = mapping->host;
0572639f 1285 loff_t old_size = inode->i_size;
eed4333f
ZL
1286 int ret = 0, ret2;
1287 int i_size_changed = 0;
c93d8f88 1288 bool verity = ext4_verity_in_progress(inode);
eed4333f
ZL
1289
1290 trace_ext4_write_end(inode, pos, len, copied);
6984aef5
ZY
1291
1292 if (ext4_has_inline_data(inode))
1293 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1294
1295 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
f8514083 1296 /*
4631dbf6 1297 * it's important to update i_size while still holding page lock:
f8514083 1298 * page writeout could otherwise come in and zero beyond i_size.
c93d8f88
EB
1299 *
1300 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1301 * blocks are being written past EOF, so skip the i_size update.
f8514083 1302 */
c93d8f88
EB
1303 if (!verity)
1304 i_size_changed = ext4_update_inode_size(inode, pos + copied);
f8514083 1305 unlock_page(page);
09cbfeaf 1306 put_page(page);
f8514083 1307
c93d8f88 1308 if (old_size < pos && !verity)
0572639f 1309 pagecache_isize_extended(inode, old_size, pos);
f8514083
AK
1310 /*
1311 * Don't mark the inode dirty under page lock. First, it unnecessarily
1312 * makes the holding time of page lock longer. Second, it forces lock
1313 * ordering of page lock and transaction start for journaling
1314 * filesystems.
1315 */
6984aef5 1316 if (i_size_changed)
4209ae12 1317 ret = ext4_mark_inode_dirty(handle, inode);
f8514083 1318
c93d8f88 1319 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1320 /* if we have allocated more blocks and copied
1321 * less. We will have blocks allocated outside
1322 * inode->i_size. So truncate them
1323 */
1324 ext4_orphan_add(handle, inode);
55ce2f64 1325
617ba13b 1326 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1327 if (!ret)
1328 ret = ret2;
bfc1af65 1329
c93d8f88 1330 if (pos + len > inode->i_size && !verity) {
b9a4207d 1331 ext4_truncate_failed_write(inode);
de9a55b8 1332 /*
ffacfa7a 1333 * If truncate failed early the inode might still be
f8514083
AK
1334 * on the orphan list; we need to make sure the inode
1335 * is removed from the orphan list in that case.
1336 */
1337 if (inode->i_nlink)
1338 ext4_orphan_del(NULL, inode);
1339 }
1340
bfc1af65 1341 return ret ? ret : copied;
ac27a0ec
DK
1342}
1343
b90197b6
TT
1344/*
1345 * This is a private version of page_zero_new_buffers() which doesn't
1346 * set the buffer to be dirty, since in data=journalled mode we need
1347 * to call ext4_handle_dirty_metadata() instead.
1348 */
3b136499 1349static void ext4_journalled_zero_new_buffers(handle_t *handle,
188c299e 1350 struct inode *inode,
3b136499
JK
1351 struct page *page,
1352 unsigned from, unsigned to)
b90197b6
TT
1353{
1354 unsigned int block_start = 0, block_end;
1355 struct buffer_head *head, *bh;
1356
1357 bh = head = page_buffers(page);
1358 do {
1359 block_end = block_start + bh->b_size;
1360 if (buffer_new(bh)) {
1361 if (block_end > from && block_start < to) {
1362 if (!PageUptodate(page)) {
1363 unsigned start, size;
1364
1365 start = max(from, block_start);
1366 size = min(to, block_end) - start;
1367
1368 zero_user(page, start, size);
188c299e 1369 write_end_fn(handle, inode, bh);
b90197b6
TT
1370 }
1371 clear_buffer_new(bh);
1372 }
1373 }
1374 block_start = block_end;
1375 bh = bh->b_this_page;
1376 } while (bh != head);
1377}
1378
bfc1af65 1379static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1380 struct address_space *mapping,
1381 loff_t pos, unsigned len, unsigned copied,
1382 struct page *page, void *fsdata)
ac27a0ec 1383{
617ba13b 1384 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1385 struct inode *inode = mapping->host;
0572639f 1386 loff_t old_size = inode->i_size;
ac27a0ec
DK
1387 int ret = 0, ret2;
1388 int partial = 0;
bfc1af65 1389 unsigned from, to;
4631dbf6 1390 int size_changed = 0;
c93d8f88 1391 bool verity = ext4_verity_in_progress(inode);
ac27a0ec 1392
9bffad1e 1393 trace_ext4_journalled_write_end(inode, pos, len, copied);
09cbfeaf 1394 from = pos & (PAGE_SIZE - 1);
bfc1af65
NP
1395 to = from + len;
1396
441c8508
CW
1397 BUG_ON(!ext4_handle_valid(handle));
1398
6984aef5
ZY
1399 if (ext4_has_inline_data(inode))
1400 return ext4_write_inline_data_end(inode, pos, len, copied, page);
1401
1402 if (unlikely(copied < len) && !PageUptodate(page)) {
3b136499 1403 copied = 0;
188c299e 1404 ext4_journalled_zero_new_buffers(handle, inode, page, from, to);
3b136499
JK
1405 } else {
1406 if (unlikely(copied < len))
188c299e 1407 ext4_journalled_zero_new_buffers(handle, inode, page,
3b136499 1408 from + copied, to);
188c299e
JK
1409 ret = ext4_walk_page_buffers(handle, inode, page_buffers(page),
1410 from, from + copied, &partial,
3b136499 1411 write_end_fn);
3fdcfb66
TM
1412 if (!partial)
1413 SetPageUptodate(page);
1414 }
c93d8f88
EB
1415 if (!verity)
1416 size_changed = ext4_update_inode_size(inode, pos + copied);
19f5fb7a 1417 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1418 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
4631dbf6 1419 unlock_page(page);
09cbfeaf 1420 put_page(page);
4631dbf6 1421
c93d8f88 1422 if (old_size < pos && !verity)
0572639f
XW
1423 pagecache_isize_extended(inode, old_size, pos);
1424
6984aef5 1425 if (size_changed) {
617ba13b 1426 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1427 if (!ret)
1428 ret = ret2;
1429 }
bfc1af65 1430
c93d8f88 1431 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
f8514083
AK
1432 /* if we have allocated more blocks and copied
1433 * less. We will have blocks allocated outside
1434 * inode->i_size. So truncate them
1435 */
1436 ext4_orphan_add(handle, inode);
1437
617ba13b 1438 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1439 if (!ret)
1440 ret = ret2;
c93d8f88 1441 if (pos + len > inode->i_size && !verity) {
b9a4207d 1442 ext4_truncate_failed_write(inode);
de9a55b8 1443 /*
ffacfa7a 1444 * If truncate failed early the inode might still be
f8514083
AK
1445 * on the orphan list; we need to make sure the inode
1446 * is removed from the orphan list in that case.
1447 */
1448 if (inode->i_nlink)
1449 ext4_orphan_del(NULL, inode);
1450 }
bfc1af65
NP
1451
1452 return ret ? ret : copied;
ac27a0ec 1453}
d2a17637 1454
9d0be502 1455/*
c27e43a1 1456 * Reserve space for a single cluster
9d0be502 1457 */
c27e43a1 1458static int ext4_da_reserve_space(struct inode *inode)
d2a17637 1459{
60e58e0f 1460 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1461 struct ext4_inode_info *ei = EXT4_I(inode);
5dd4056d 1462 int ret;
03179fe9
TT
1463
1464 /*
1465 * We will charge metadata quota at writeout time; this saves
1466 * us from metadata over-estimation, though we may go over by
1467 * a small amount in the end. Here we just reserve for data.
1468 */
1469 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1470 if (ret)
1471 return ret;
d2a17637 1472
0637c6f4 1473 spin_lock(&ei->i_block_reservation_lock);
71d4f7d0 1474 if (ext4_claim_free_clusters(sbi, 1, 0)) {
03179fe9 1475 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1476 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1477 return -ENOSPC;
1478 }
9d0be502 1479 ei->i_reserved_data_blocks++;
c27e43a1 1480 trace_ext4_da_reserve_space(inode);
0637c6f4 1481 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1482
d2a17637
MC
1483 return 0; /* success */
1484}
1485
f456767d 1486void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1487{
1488 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1489 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1490
cd213226
MC
1491 if (!to_free)
1492 return; /* Nothing to release, exit */
1493
d2a17637 1494 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1495
5a58ec87 1496 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1497 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1498 /*
0637c6f4
TT
1499 * if there aren't enough reserved blocks, then the
1500 * counter is messed up somewhere. Since this
1501 * function is called from invalidate page, it's
1502 * harmless to return without any action.
cd213226 1503 */
8de5c325 1504 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1505 "ino %lu, to_free %d with only %d reserved "
1084f252 1506 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1507 ei->i_reserved_data_blocks);
1508 WARN_ON(1);
1509 to_free = ei->i_reserved_data_blocks;
cd213226 1510 }
0637c6f4 1511 ei->i_reserved_data_blocks -= to_free;
cd213226 1512
72b8ab9d 1513 /* update fs dirty data blocks counter */
57042651 1514 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1515
d2a17637 1516 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1517
7b415bf6 1518 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1519}
1520
64769240
AT
1521/*
1522 * Delayed allocation stuff
1523 */
1524
4e7ea81d
JK
1525struct mpage_da_data {
1526 struct inode *inode;
1527 struct writeback_control *wbc;
6b523df4 1528
4e7ea81d
JK
1529 pgoff_t first_page; /* The first page to write */
1530 pgoff_t next_page; /* Current page to examine */
1531 pgoff_t last_page; /* Last page to examine */
791b7f08 1532 /*
4e7ea81d
JK
1533 * Extent to map - this can be after first_page because that can be
1534 * fully mapped. We somewhat abuse m_flags to store whether the extent
1535 * is delalloc or unwritten.
791b7f08 1536 */
4e7ea81d
JK
1537 struct ext4_map_blocks map;
1538 struct ext4_io_submit io_submit; /* IO submission data */
dddbd6ac 1539 unsigned int do_map:1;
6b8ed620 1540 unsigned int scanned_until_end:1;
4e7ea81d 1541};
64769240 1542
4e7ea81d
JK
1543static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1544 bool invalidate)
c4a0c46e
AK
1545{
1546 int nr_pages, i;
1547 pgoff_t index, end;
1548 struct pagevec pvec;
1549 struct inode *inode = mpd->inode;
1550 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1551
1552 /* This is necessary when next_page == 0. */
1553 if (mpd->first_page >= mpd->next_page)
1554 return;
c4a0c46e 1555
6b8ed620 1556 mpd->scanned_until_end = 0;
c7f5938a
CW
1557 index = mpd->first_page;
1558 end = mpd->next_page - 1;
4e7ea81d
JK
1559 if (invalidate) {
1560 ext4_lblk_t start, last;
09cbfeaf
KS
1561 start = index << (PAGE_SHIFT - inode->i_blkbits);
1562 last = end << (PAGE_SHIFT - inode->i_blkbits);
4e7ea81d
JK
1563 ext4_es_remove_extent(inode, start, last - start + 1);
1564 }
51865fda 1565
86679820 1566 pagevec_init(&pvec);
c4a0c46e 1567 while (index <= end) {
397162ff 1568 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
c4a0c46e
AK
1569 if (nr_pages == 0)
1570 break;
1571 for (i = 0; i < nr_pages; i++) {
1572 struct page *page = pvec.pages[i];
2b85a617 1573
c4a0c46e
AK
1574 BUG_ON(!PageLocked(page));
1575 BUG_ON(PageWriteback(page));
4e7ea81d 1576 if (invalidate) {
4e800c03 1577 if (page_mapped(page))
1578 clear_page_dirty_for_io(page);
09cbfeaf 1579 block_invalidatepage(page, 0, PAGE_SIZE);
4e7ea81d
JK
1580 ClearPageUptodate(page);
1581 }
c4a0c46e
AK
1582 unlock_page(page);
1583 }
9b1d0998 1584 pagevec_release(&pvec);
c4a0c46e 1585 }
c4a0c46e
AK
1586}
1587
df22291f
AK
1588static void ext4_print_free_blocks(struct inode *inode)
1589{
1590 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1591 struct super_block *sb = inode->i_sb;
f78ee70d 1592 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1593
1594 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1595 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1596 ext4_count_free_clusters(sb)));
92b97816
TT
1597 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1598 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1599 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1600 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1601 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1602 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1603 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1604 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1605 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1606 ei->i_reserved_data_blocks);
df22291f
AK
1607 return;
1608}
1609
188c299e
JK
1610static int ext4_bh_delay_or_unwritten(handle_t *handle, struct inode *inode,
1611 struct buffer_head *bh)
29fa89d0 1612{
c364b22c 1613 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1614}
1615
0b02f4c0
EW
1616/*
1617 * ext4_insert_delayed_block - adds a delayed block to the extents status
1618 * tree, incrementing the reserved cluster/block
1619 * count or making a pending reservation
1620 * where needed
1621 *
1622 * @inode - file containing the newly added block
1623 * @lblk - logical block to be added
1624 *
1625 * Returns 0 on success, negative error code on failure.
1626 */
1627static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1628{
1629 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1630 int ret;
1631 bool allocated = false;
6fed8395 1632 bool reserved = false;
0b02f4c0
EW
1633
1634 /*
1635 * If the cluster containing lblk is shared with a delayed,
1636 * written, or unwritten extent in a bigalloc file system, it's
1637 * already been accounted for and does not need to be reserved.
1638 * A pending reservation must be made for the cluster if it's
1639 * shared with a written or unwritten extent and doesn't already
1640 * have one. Written and unwritten extents can be purged from the
1641 * extents status tree if the system is under memory pressure, so
1642 * it's necessary to examine the extent tree if a search of the
1643 * extents status tree doesn't get a match.
1644 */
1645 if (sbi->s_cluster_ratio == 1) {
1646 ret = ext4_da_reserve_space(inode);
1647 if (ret != 0) /* ENOSPC */
1648 goto errout;
6fed8395 1649 reserved = true;
0b02f4c0
EW
1650 } else { /* bigalloc */
1651 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1652 if (!ext4_es_scan_clu(inode,
1653 &ext4_es_is_mapped, lblk)) {
1654 ret = ext4_clu_mapped(inode,
1655 EXT4_B2C(sbi, lblk));
1656 if (ret < 0)
1657 goto errout;
1658 if (ret == 0) {
1659 ret = ext4_da_reserve_space(inode);
1660 if (ret != 0) /* ENOSPC */
1661 goto errout;
6fed8395 1662 reserved = true;
0b02f4c0
EW
1663 } else {
1664 allocated = true;
1665 }
1666 } else {
1667 allocated = true;
1668 }
1669 }
1670 }
1671
1672 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
6fed8395
JX
1673 if (ret && reserved)
1674 ext4_da_release_space(inode, 1);
0b02f4c0
EW
1675
1676errout:
1677 return ret;
1678}
1679
5356f261
AK
1680/*
1681 * This function is grabs code from the very beginning of
1682 * ext4_map_blocks, but assumes that the caller is from delayed write
1683 * time. This function looks up the requested blocks and sets the
1684 * buffer delay bit under the protection of i_data_sem.
1685 */
1686static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1687 struct ext4_map_blocks *map,
1688 struct buffer_head *bh)
1689{
d100eef2 1690 struct extent_status es;
5356f261
AK
1691 int retval;
1692 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1693#ifdef ES_AGGRESSIVE_TEST
1694 struct ext4_map_blocks orig_map;
1695
1696 memcpy(&orig_map, map, sizeof(*map));
1697#endif
5356f261
AK
1698
1699 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1700 invalid_block = ~0;
1701
1702 map->m_flags = 0;
70aa1554 1703 ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
5356f261 1704 (unsigned long) map->m_lblk);
d100eef2
ZL
1705
1706 /* Lookup extent status tree firstly */
bb5835ed 1707 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
d100eef2
ZL
1708 if (ext4_es_is_hole(&es)) {
1709 retval = 0;
c8b459f4 1710 down_read(&EXT4_I(inode)->i_data_sem);
d100eef2
ZL
1711 goto add_delayed;
1712 }
1713
1714 /*
713f1d3b
EW
1715 * Delayed extent could be allocated by fallocate.
1716 * So we need to check it.
d100eef2 1717 */
713f1d3b
EW
1718 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1719 map_bh(bh, inode->i_sb, invalid_block);
1720 set_buffer_new(bh);
1721 set_buffer_delay(bh);
d100eef2
ZL
1722 return 0;
1723 }
1724
1725 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1726 retval = es.es_len - (iblock - es.es_lblk);
1727 if (retval > map->m_len)
1728 retval = map->m_len;
1729 map->m_len = retval;
1730 if (ext4_es_is_written(&es))
1731 map->m_flags |= EXT4_MAP_MAPPED;
1732 else if (ext4_es_is_unwritten(&es))
1733 map->m_flags |= EXT4_MAP_UNWRITTEN;
1734 else
1e83bc81 1735 BUG();
d100eef2 1736
921f266b
DM
1737#ifdef ES_AGGRESSIVE_TEST
1738 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1739#endif
d100eef2
ZL
1740 return retval;
1741 }
1742
5356f261
AK
1743 /*
1744 * Try to see if we can get the block without requesting a new
1745 * file system block.
1746 */
c8b459f4 1747 down_read(&EXT4_I(inode)->i_data_sem);
cbd7584e 1748 if (ext4_has_inline_data(inode))
9c3569b5 1749 retval = 0;
cbd7584e 1750 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
2f8e0a7c 1751 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
5356f261 1752 else
2f8e0a7c 1753 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
5356f261 1754
d100eef2 1755add_delayed:
5356f261 1756 if (retval == 0) {
f7fec032 1757 int ret;
ad431025 1758
5356f261
AK
1759 /*
1760 * XXX: __block_prepare_write() unmaps passed block,
1761 * is it OK?
1762 */
5356f261 1763
0b02f4c0
EW
1764 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1765 if (ret != 0) {
f7fec032 1766 retval = ret;
51865fda 1767 goto out_unlock;
f7fec032 1768 }
51865fda 1769
5356f261
AK
1770 map_bh(bh, inode->i_sb, invalid_block);
1771 set_buffer_new(bh);
1772 set_buffer_delay(bh);
f7fec032
ZL
1773 } else if (retval > 0) {
1774 int ret;
3be78c73 1775 unsigned int status;
f7fec032 1776
44fb851d
ZL
1777 if (unlikely(retval != map->m_len)) {
1778 ext4_warning(inode->i_sb,
1779 "ES len assertion failed for inode "
1780 "%lu: retval %d != map->m_len %d",
1781 inode->i_ino, retval, map->m_len);
1782 WARN_ON(1);
921f266b 1783 }
921f266b 1784
f7fec032
ZL
1785 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1786 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1787 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1788 map->m_pblk, status);
1789 if (ret != 0)
1790 retval = ret;
5356f261
AK
1791 }
1792
1793out_unlock:
1794 up_read((&EXT4_I(inode)->i_data_sem));
1795
1796 return retval;
1797}
1798
64769240 1799/*
d91bd2c1 1800 * This is a special get_block_t callback which is used by
b920c755
TT
1801 * ext4_da_write_begin(). It will either return mapped block or
1802 * reserve space for a single block.
29fa89d0
AK
1803 *
1804 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1805 * We also have b_blocknr = -1 and b_bdev initialized properly
1806 *
1807 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1808 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1809 * initialized properly.
64769240 1810 */
9c3569b5
TM
1811int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1812 struct buffer_head *bh, int create)
64769240 1813{
2ed88685 1814 struct ext4_map_blocks map;
64769240
AT
1815 int ret = 0;
1816
1817 BUG_ON(create == 0);
2ed88685
TT
1818 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1819
1820 map.m_lblk = iblock;
1821 map.m_len = 1;
64769240
AT
1822
1823 /*
1824 * first, we need to know whether the block is allocated already
1825 * preallocated blocks are unmapped but should treated
1826 * the same as allocated blocks.
1827 */
5356f261
AK
1828 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1829 if (ret <= 0)
2ed88685 1830 return ret;
64769240 1831
2ed88685 1832 map_bh(bh, inode->i_sb, map.m_pblk);
ed8ad838 1833 ext4_update_bh_state(bh, map.m_flags);
2ed88685
TT
1834
1835 if (buffer_unwritten(bh)) {
1836 /* A delayed write to unwritten bh should be marked
1837 * new and mapped. Mapped ensures that we don't do
1838 * get_block multiple times when we write to the same
1839 * offset and new ensures that we do proper zero out
1840 * for partial write.
1841 */
1842 set_buffer_new(bh);
c8205636 1843 set_buffer_mapped(bh);
2ed88685
TT
1844 }
1845 return 0;
64769240 1846}
61628a3f 1847
62e086be 1848static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1849 unsigned int len)
1850{
1851 struct address_space *mapping = page->mapping;
1852 struct inode *inode = mapping->host;
62e086be 1853 handle_t *handle = NULL;
3fdcfb66
TM
1854 int ret = 0, err = 0;
1855 int inline_data = ext4_has_inline_data(inode);
1856 struct buffer_head *inode_bh = NULL;
5ceaebae 1857 loff_t size;
62e086be 1858
cb20d518 1859 ClearPageChecked(page);
3fdcfb66
TM
1860
1861 if (inline_data) {
1862 BUG_ON(page->index != 0);
1863 BUG_ON(len > ext4_get_max_inline_size(inode));
1864 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1865 if (inode_bh == NULL)
1866 goto out;
3fdcfb66 1867 }
bdf96838
TT
1868 /*
1869 * We need to release the page lock before we start the
1870 * journal, so grab a reference so the page won't disappear
1871 * out from under us.
1872 */
1873 get_page(page);
62e086be
AK
1874 unlock_page(page);
1875
9924a92a
TT
1876 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1877 ext4_writepage_trans_blocks(inode));
62e086be
AK
1878 if (IS_ERR(handle)) {
1879 ret = PTR_ERR(handle);
bdf96838
TT
1880 put_page(page);
1881 goto out_no_pagelock;
62e086be 1882 }
441c8508
CW
1883 BUG_ON(!ext4_handle_valid(handle));
1884
bdf96838
TT
1885 lock_page(page);
1886 put_page(page);
5ceaebae
ZY
1887 size = i_size_read(inode);
1888 if (page->mapping != mapping || page_offset(page) > size) {
bdf96838
TT
1889 /* The page got truncated from under us */
1890 ext4_journal_stop(handle);
1891 ret = 0;
1892 goto out;
1893 }
1894
3fdcfb66 1895 if (inline_data) {
362eca70 1896 ret = ext4_mark_inode_dirty(handle, inode);
3fdcfb66 1897 } else {
5ceaebae
ZY
1898 struct buffer_head *page_bufs = page_buffers(page);
1899
1900 if (page->index == size >> PAGE_SHIFT)
1901 len = size & ~PAGE_MASK;
1902 else
1903 len = PAGE_SIZE;
1904
188c299e
JK
1905 ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1906 NULL, do_journal_get_write_access);
3fdcfb66 1907
188c299e
JK
1908 err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
1909 NULL, write_end_fn);
3fdcfb66 1910 }
afb585a9
MFO
1911 if (ret == 0)
1912 ret = err;
b5b18160 1913 err = ext4_jbd2_inode_add_write(handle, inode, page_offset(page), len);
62e086be
AK
1914 if (ret == 0)
1915 ret = err;
2d859db3 1916 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1917 err = ext4_journal_stop(handle);
1918 if (!ret)
1919 ret = err;
1920
19f5fb7a 1921 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1922out:
bdf96838
TT
1923 unlock_page(page);
1924out_no_pagelock:
3fdcfb66 1925 brelse(inode_bh);
62e086be
AK
1926 return ret;
1927}
1928
61628a3f 1929/*
43ce1d23
AK
1930 * Note that we don't need to start a transaction unless we're journaling data
1931 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1932 * need to file the inode to the transaction's list in ordered mode because if
1933 * we are writing back data added by write(), the inode is already there and if
25985edc 1934 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1935 * transaction the data will hit the disk. In case we are journaling data, we
1936 * cannot start transaction directly because transaction start ranks above page
1937 * lock so we have to do some magic.
1938 *
b920c755 1939 * This function can get called via...
20970ba6 1940 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1941 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1942 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1943 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1944 *
1945 * We don't do any block allocation in this function. If we have page with
1946 * multiple blocks we need to write those buffer_heads that are mapped. This
1947 * is important for mmaped based write. So if we do with blocksize 1K
1948 * truncate(f, 1024);
1949 * a = mmap(f, 0, 4096);
1950 * a[0] = 'a';
1951 * truncate(f, 4096);
1952 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1953 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1954 * do_wp_page). So writepage should write the first block. If we modify
1955 * the mmap area beyond 1024 we will again get a page_fault and the
1956 * page_mkwrite callback will do the block allocation and mark the
1957 * buffer_heads mapped.
1958 *
1959 * We redirty the page if we have any buffer_heads that is either delay or
1960 * unwritten in the page.
1961 *
1962 * We can get recursively called as show below.
1963 *
1964 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1965 * ext4_writepage()
1966 *
1967 * But since we don't do any block allocation we should not deadlock.
1968 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1969 */
43ce1d23 1970static int ext4_writepage(struct page *page,
62e086be 1971 struct writeback_control *wbc)
64769240 1972{
f8bec370 1973 int ret = 0;
61628a3f 1974 loff_t size;
498e5f24 1975 unsigned int len;
744692dc 1976 struct buffer_head *page_bufs = NULL;
61628a3f 1977 struct inode *inode = page->mapping->host;
36ade451 1978 struct ext4_io_submit io_submit;
1c8349a1 1979 bool keep_towrite = false;
61628a3f 1980
0db1ff22 1981 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
c2a559bc 1982 inode->i_mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
0db1ff22
TT
1983 unlock_page(page);
1984 return -EIO;
1985 }
1986
a9c667f8 1987 trace_ext4_writepage(page);
f0e6c985 1988 size = i_size_read(inode);
c93d8f88
EB
1989 if (page->index == size >> PAGE_SHIFT &&
1990 !ext4_verity_in_progress(inode))
09cbfeaf 1991 len = size & ~PAGE_MASK;
f0e6c985 1992 else
09cbfeaf 1993 len = PAGE_SIZE;
64769240 1994
be7cb076
TT
1995 /* Should never happen but for bugs in other kernel subsystems */
1996 if (!page_has_buffers(page)) {
1997 ext4_warning_inode(inode,
1998 "page %lu does not have buffers attached", page->index);
1999 ClearPageDirty(page);
2000 unlock_page(page);
2001 return 0;
2002 }
2003
a42afc5f 2004 page_bufs = page_buffers(page);
a42afc5f 2005 /*
fe386132
JK
2006 * We cannot do block allocation or other extent handling in this
2007 * function. If there are buffers needing that, we have to redirty
2008 * the page. But we may reach here when we do a journal commit via
2009 * journal_submit_inode_data_buffers() and in that case we must write
2010 * allocated buffers to achieve data=ordered mode guarantees.
cccd147a
TT
2011 *
2012 * Also, if there is only one buffer per page (the fs block
2013 * size == the page size), if one buffer needs block
2014 * allocation or needs to modify the extent tree to clear the
2015 * unwritten flag, we know that the page can't be written at
2016 * all, so we might as well refuse the write immediately.
2017 * Unfortunately if the block size != page size, we can't as
2018 * easily detect this case using ext4_walk_page_buffers(), but
2019 * for the extremely common case, this is an optimization that
2020 * skips a useless round trip through ext4_bio_write_page().
a42afc5f 2021 */
188c299e 2022 if (ext4_walk_page_buffers(NULL, inode, page_bufs, 0, len, NULL,
f19d5870 2023 ext4_bh_delay_or_unwritten)) {
f8bec370 2024 redirty_page_for_writepage(wbc, page);
cccd147a 2025 if ((current->flags & PF_MEMALLOC) ||
09cbfeaf 2026 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
fe386132
JK
2027 /*
2028 * For memory cleaning there's no point in writing only
2029 * some buffers. So just bail out. Warn if we came here
2030 * from direct reclaim.
2031 */
2032 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2033 == PF_MEMALLOC);
f0e6c985
AK
2034 unlock_page(page);
2035 return 0;
2036 }
1c8349a1 2037 keep_towrite = true;
a42afc5f 2038 }
64769240 2039
cb20d518 2040 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2041 /*
2042 * It's mmapped pagecache. Add buffers and journal it. There
2043 * doesn't seem much point in redirtying the page here.
2044 */
3f0ca309 2045 return __ext4_journalled_writepage(page, len);
43ce1d23 2046
97a851ed
JK
2047 ext4_io_submit_init(&io_submit, wbc);
2048 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2049 if (!io_submit.io_end) {
2050 redirty_page_for_writepage(wbc, page);
2051 unlock_page(page);
2052 return -ENOMEM;
2053 }
be993933 2054 ret = ext4_bio_write_page(&io_submit, page, len, keep_towrite);
36ade451 2055 ext4_io_submit(&io_submit);
97a851ed
JK
2056 /* Drop io_end reference we got from init */
2057 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2058 return ret;
2059}
2060
5f1132b2
JK
2061static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2062{
2063 int len;
a056bdaa 2064 loff_t size;
5f1132b2
JK
2065 int err;
2066
2067 BUG_ON(page->index != mpd->first_page);
a056bdaa
JK
2068 clear_page_dirty_for_io(page);
2069 /*
2070 * We have to be very careful here! Nothing protects writeback path
2071 * against i_size changes and the page can be writeably mapped into
2072 * page tables. So an application can be growing i_size and writing
2073 * data through mmap while writeback runs. clear_page_dirty_for_io()
2074 * write-protects our page in page tables and the page cannot get
2075 * written to again until we release page lock. So only after
2076 * clear_page_dirty_for_io() we are safe to sample i_size for
2077 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2078 * on the barrier provided by TestClearPageDirty in
2079 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2080 * after page tables are updated.
2081 */
2082 size = i_size_read(mpd->inode);
c93d8f88
EB
2083 if (page->index == size >> PAGE_SHIFT &&
2084 !ext4_verity_in_progress(mpd->inode))
09cbfeaf 2085 len = size & ~PAGE_MASK;
5f1132b2 2086 else
09cbfeaf 2087 len = PAGE_SIZE;
be993933 2088 err = ext4_bio_write_page(&mpd->io_submit, page, len, false);
5f1132b2
JK
2089 if (!err)
2090 mpd->wbc->nr_to_write--;
2091 mpd->first_page++;
2092
2093 return err;
2094}
2095
6db07461 2096#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
4e7ea81d 2097
61628a3f 2098/*
fffb2739
JK
2099 * mballoc gives us at most this number of blocks...
2100 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 2101 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 2102 */
fffb2739 2103#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2104
4e7ea81d
JK
2105/*
2106 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2107 *
2108 * @mpd - extent of blocks
2109 * @lblk - logical number of the block in the file
09930042 2110 * @bh - buffer head we want to add to the extent
4e7ea81d 2111 *
09930042
JK
2112 * The function is used to collect contig. blocks in the same state. If the
2113 * buffer doesn't require mapping for writeback and we haven't started the
2114 * extent of buffers to map yet, the function returns 'true' immediately - the
2115 * caller can write the buffer right away. Otherwise the function returns true
2116 * if the block has been added to the extent, false if the block couldn't be
2117 * added.
4e7ea81d 2118 */
09930042
JK
2119static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2120 struct buffer_head *bh)
4e7ea81d
JK
2121{
2122 struct ext4_map_blocks *map = &mpd->map;
2123
09930042
JK
2124 /* Buffer that doesn't need mapping for writeback? */
2125 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2126 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2127 /* So far no extent to map => we write the buffer right away */
2128 if (map->m_len == 0)
2129 return true;
2130 return false;
2131 }
4e7ea81d
JK
2132
2133 /* First block in the extent? */
2134 if (map->m_len == 0) {
dddbd6ac
JK
2135 /* We cannot map unless handle is started... */
2136 if (!mpd->do_map)
2137 return false;
4e7ea81d
JK
2138 map->m_lblk = lblk;
2139 map->m_len = 1;
09930042
JK
2140 map->m_flags = bh->b_state & BH_FLAGS;
2141 return true;
4e7ea81d
JK
2142 }
2143
09930042
JK
2144 /* Don't go larger than mballoc is willing to allocate */
2145 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2146 return false;
2147
4e7ea81d
JK
2148 /* Can we merge the block to our big extent? */
2149 if (lblk == map->m_lblk + map->m_len &&
09930042 2150 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 2151 map->m_len++;
09930042 2152 return true;
4e7ea81d 2153 }
09930042 2154 return false;
4e7ea81d
JK
2155}
2156
5f1132b2
JK
2157/*
2158 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2159 *
2160 * @mpd - extent of blocks for mapping
2161 * @head - the first buffer in the page
2162 * @bh - buffer we should start processing from
2163 * @lblk - logical number of the block in the file corresponding to @bh
2164 *
2165 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2166 * the page for IO if all buffers in this page were mapped and there's no
2167 * accumulated extent of buffers to map or add buffers in the page to the
2168 * extent of buffers to map. The function returns 1 if the caller can continue
2169 * by processing the next page, 0 if it should stop adding buffers to the
2170 * extent to map because we cannot extend it anymore. It can also return value
2171 * < 0 in case of error during IO submission.
2172 */
2173static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2174 struct buffer_head *head,
2175 struct buffer_head *bh,
2176 ext4_lblk_t lblk)
4e7ea81d
JK
2177{
2178 struct inode *inode = mpd->inode;
5f1132b2 2179 int err;
93407472 2180 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
4e7ea81d
JK
2181 >> inode->i_blkbits;
2182
c93d8f88
EB
2183 if (ext4_verity_in_progress(inode))
2184 blocks = EXT_MAX_BLOCKS;
2185
4e7ea81d
JK
2186 do {
2187 BUG_ON(buffer_locked(bh));
2188
09930042 2189 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2190 /* Found extent to map? */
2191 if (mpd->map.m_len)
5f1132b2 2192 return 0;
dddbd6ac
JK
2193 /* Buffer needs mapping and handle is not started? */
2194 if (!mpd->do_map)
2195 return 0;
09930042 2196 /* Everything mapped so far and we hit EOF */
5f1132b2 2197 break;
4e7ea81d 2198 }
4e7ea81d 2199 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2200 /* So far everything mapped? Submit the page for IO. */
2201 if (mpd->map.m_len == 0) {
2202 err = mpage_submit_page(mpd, head->b_page);
2203 if (err < 0)
2204 return err;
2205 }
6b8ed620
JK
2206 if (lblk >= blocks) {
2207 mpd->scanned_until_end = 1;
2208 return 0;
2209 }
2210 return 1;
4e7ea81d
JK
2211}
2212
2943fdbc
RH
2213/*
2214 * mpage_process_page - update page buffers corresponding to changed extent and
2215 * may submit fully mapped page for IO
2216 *
2217 * @mpd - description of extent to map, on return next extent to map
2218 * @m_lblk - logical block mapping.
2219 * @m_pblk - corresponding physical mapping.
2220 * @map_bh - determines on return whether this page requires any further
2221 * mapping or not.
2222 * Scan given page buffers corresponding to changed extent and update buffer
2223 * state according to new extent state.
2224 * We map delalloc buffers to their physical location, clear unwritten bits.
2225 * If the given page is not fully mapped, we update @map to the next extent in
2226 * the given page that needs mapping & return @map_bh as true.
2227 */
2228static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2229 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2230 bool *map_bh)
2231{
2232 struct buffer_head *head, *bh;
2233 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2234 ext4_lblk_t lblk = *m_lblk;
2235 ext4_fsblk_t pblock = *m_pblk;
2236 int err = 0;
c8cc8816
RH
2237 int blkbits = mpd->inode->i_blkbits;
2238 ssize_t io_end_size = 0;
2239 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2943fdbc
RH
2240
2241 bh = head = page_buffers(page);
2242 do {
2243 if (lblk < mpd->map.m_lblk)
2244 continue;
2245 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2246 /*
2247 * Buffer after end of mapped extent.
2248 * Find next buffer in the page to map.
2249 */
2250 mpd->map.m_len = 0;
2251 mpd->map.m_flags = 0;
c8cc8816
RH
2252 io_end_vec->size += io_end_size;
2253 io_end_size = 0;
2943fdbc 2254
2943fdbc
RH
2255 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2256 if (err > 0)
2257 err = 0;
c8cc8816
RH
2258 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2259 io_end_vec = ext4_alloc_io_end_vec(io_end);
4d06bfb9
RH
2260 if (IS_ERR(io_end_vec)) {
2261 err = PTR_ERR(io_end_vec);
2262 goto out;
2263 }
d1e18b88 2264 io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
c8cc8816 2265 }
2943fdbc
RH
2266 *map_bh = true;
2267 goto out;
2268 }
2269 if (buffer_delay(bh)) {
2270 clear_buffer_delay(bh);
2271 bh->b_blocknr = pblock++;
2272 }
2273 clear_buffer_unwritten(bh);
c8cc8816 2274 io_end_size += (1 << blkbits);
2943fdbc 2275 } while (lblk++, (bh = bh->b_this_page) != head);
c8cc8816
RH
2276
2277 io_end_vec->size += io_end_size;
2278 io_end_size = 0;
2943fdbc
RH
2279 *map_bh = false;
2280out:
2281 *m_lblk = lblk;
2282 *m_pblk = pblock;
2283 return err;
2284}
2285
4e7ea81d
JK
2286/*
2287 * mpage_map_buffers - update buffers corresponding to changed extent and
2288 * submit fully mapped pages for IO
2289 *
2290 * @mpd - description of extent to map, on return next extent to map
2291 *
2292 * Scan buffers corresponding to changed extent (we expect corresponding pages
2293 * to be already locked) and update buffer state according to new extent state.
2294 * We map delalloc buffers to their physical location, clear unwritten bits,
556615dc 2295 * and mark buffers as uninit when we perform writes to unwritten extents
4e7ea81d
JK
2296 * and do extent conversion after IO is finished. If the last page is not fully
2297 * mapped, we update @map to the next extent in the last page that needs
2298 * mapping. Otherwise we submit the page for IO.
2299 */
2300static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2301{
2302 struct pagevec pvec;
2303 int nr_pages, i;
2304 struct inode *inode = mpd->inode;
09cbfeaf 2305 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2306 pgoff_t start, end;
2307 ext4_lblk_t lblk;
2943fdbc 2308 ext4_fsblk_t pblock;
4e7ea81d 2309 int err;
2943fdbc 2310 bool map_bh = false;
4e7ea81d
JK
2311
2312 start = mpd->map.m_lblk >> bpp_bits;
2313 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2314 lblk = start << bpp_bits;
2315 pblock = mpd->map.m_pblk;
2316
86679820 2317 pagevec_init(&pvec);
4e7ea81d 2318 while (start <= end) {
2b85a617 2319 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
397162ff 2320 &start, end);
4e7ea81d
JK
2321 if (nr_pages == 0)
2322 break;
2323 for (i = 0; i < nr_pages; i++) {
2324 struct page *page = pvec.pages[i];
2325
2943fdbc
RH
2326 err = mpage_process_page(mpd, page, &lblk, &pblock,
2327 &map_bh);
4e7ea81d 2328 /*
2943fdbc
RH
2329 * If map_bh is true, means page may require further bh
2330 * mapping, or maybe the page was submitted for IO.
2331 * So we return to call further extent mapping.
4e7ea81d 2332 */
39c0ae16 2333 if (err < 0 || map_bh)
2943fdbc 2334 goto out;
4e7ea81d
JK
2335 /* Page fully mapped - let IO run! */
2336 err = mpage_submit_page(mpd, page);
2943fdbc
RH
2337 if (err < 0)
2338 goto out;
4e7ea81d
JK
2339 }
2340 pagevec_release(&pvec);
2341 }
2342 /* Extent fully mapped and matches with page boundary. We are done. */
2343 mpd->map.m_len = 0;
2344 mpd->map.m_flags = 0;
2345 return 0;
2943fdbc
RH
2346out:
2347 pagevec_release(&pvec);
2348 return err;
4e7ea81d
JK
2349}
2350
2351static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2352{
2353 struct inode *inode = mpd->inode;
2354 struct ext4_map_blocks *map = &mpd->map;
2355 int get_blocks_flags;
090f32ee 2356 int err, dioread_nolock;
4e7ea81d
JK
2357
2358 trace_ext4_da_write_pages_extent(inode, map);
2359 /*
2360 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
556615dc 2361 * to convert an unwritten extent to be initialized (in the case
4e7ea81d
JK
2362 * where we have written into one or more preallocated blocks). It is
2363 * possible that we're going to need more metadata blocks than
2364 * previously reserved. However we must not fail because we're in
2365 * writeback and there is nothing we can do about it so it might result
2366 * in data loss. So use reserved blocks to allocate metadata if
2367 * possible.
2368 *
754cfed6
TT
2369 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2370 * the blocks in question are delalloc blocks. This indicates
2371 * that the blocks and quotas has already been checked when
2372 * the data was copied into the page cache.
4e7ea81d
JK
2373 */
2374 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
ee0876bc
JK
2375 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2376 EXT4_GET_BLOCKS_IO_SUBMIT;
090f32ee
LC
2377 dioread_nolock = ext4_should_dioread_nolock(inode);
2378 if (dioread_nolock)
4e7ea81d 2379 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
6db07461 2380 if (map->m_flags & BIT(BH_Delay))
4e7ea81d
JK
2381 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2382
2383 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2384 if (err < 0)
2385 return err;
090f32ee 2386 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
6b523df4
JK
2387 if (!mpd->io_submit.io_end->handle &&
2388 ext4_handle_valid(handle)) {
2389 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2390 handle->h_rsv_handle = NULL;
2391 }
3613d228 2392 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2393 }
4e7ea81d
JK
2394
2395 BUG_ON(map->m_len == 0);
4e7ea81d
JK
2396 return 0;
2397}
2398
2399/*
2400 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2401 * mpd->len and submit pages underlying it for IO
2402 *
2403 * @handle - handle for journal operations
2404 * @mpd - extent to map
7534e854
JK
2405 * @give_up_on_write - we set this to true iff there is a fatal error and there
2406 * is no hope of writing the data. The caller should discard
2407 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2408 *
2409 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2410 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2411 * them to initialized or split the described range from larger unwritten
2412 * extent. Note that we need not map all the described range since allocation
2413 * can return less blocks or the range is covered by more unwritten extents. We
2414 * cannot map more because we are limited by reserved transaction credits. On
2415 * the other hand we always make sure that the last touched page is fully
2416 * mapped so that it can be written out (and thus forward progress is
2417 * guaranteed). After mapping we submit all mapped pages for IO.
2418 */
2419static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2420 struct mpage_da_data *mpd,
2421 bool *give_up_on_write)
4e7ea81d
JK
2422{
2423 struct inode *inode = mpd->inode;
2424 struct ext4_map_blocks *map = &mpd->map;
2425 int err;
2426 loff_t disksize;
6603120e 2427 int progress = 0;
c8cc8816 2428 ext4_io_end_t *io_end = mpd->io_submit.io_end;
4d06bfb9 2429 struct ext4_io_end_vec *io_end_vec;
4e7ea81d 2430
4d06bfb9
RH
2431 io_end_vec = ext4_alloc_io_end_vec(io_end);
2432 if (IS_ERR(io_end_vec))
2433 return PTR_ERR(io_end_vec);
c8cc8816 2434 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2435 do {
4e7ea81d
JK
2436 err = mpage_map_one_extent(handle, mpd);
2437 if (err < 0) {
2438 struct super_block *sb = inode->i_sb;
2439
0db1ff22 2440 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
9b5f6c9b 2441 ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
cb530541 2442 goto invalidate_dirty_pages;
4e7ea81d 2443 /*
cb530541
TT
2444 * Let the uper layers retry transient errors.
2445 * In the case of ENOSPC, if ext4_count_free_blocks()
2446 * is non-zero, a commit should free up blocks.
4e7ea81d 2447 */
cb530541 2448 if ((err == -ENOMEM) ||
6603120e
DM
2449 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2450 if (progress)
2451 goto update_disksize;
cb530541 2452 return err;
6603120e 2453 }
cb530541
TT
2454 ext4_msg(sb, KERN_CRIT,
2455 "Delayed block allocation failed for "
2456 "inode %lu at logical offset %llu with"
2457 " max blocks %u with error %d",
2458 inode->i_ino,
2459 (unsigned long long)map->m_lblk,
2460 (unsigned)map->m_len, -err);
2461 ext4_msg(sb, KERN_CRIT,
2462 "This should not happen!! Data will "
2463 "be lost\n");
2464 if (err == -ENOSPC)
2465 ext4_print_free_blocks(inode);
2466 invalidate_dirty_pages:
2467 *give_up_on_write = true;
4e7ea81d
JK
2468 return err;
2469 }
6603120e 2470 progress = 1;
4e7ea81d
JK
2471 /*
2472 * Update buffer state, submit mapped pages, and get us new
2473 * extent to map
2474 */
2475 err = mpage_map_and_submit_buffers(mpd);
2476 if (err < 0)
6603120e 2477 goto update_disksize;
27d7c4ed 2478 } while (map->m_len);
4e7ea81d 2479
6603120e 2480update_disksize:
622cad13
TT
2481 /*
2482 * Update on-disk size after IO is submitted. Races with
2483 * truncate are avoided by checking i_size under i_data_sem.
2484 */
09cbfeaf 2485 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
35df4299 2486 if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
4e7ea81d 2487 int err2;
622cad13
TT
2488 loff_t i_size;
2489
2490 down_write(&EXT4_I(inode)->i_data_sem);
2491 i_size = i_size_read(inode);
2492 if (disksize > i_size)
2493 disksize = i_size;
2494 if (disksize > EXT4_I(inode)->i_disksize)
2495 EXT4_I(inode)->i_disksize = disksize;
622cad13 2496 up_write(&EXT4_I(inode)->i_data_sem);
b907f2d5 2497 err2 = ext4_mark_inode_dirty(handle, inode);
878520ac 2498 if (err2) {
54d3adbc
TT
2499 ext4_error_err(inode->i_sb, -err2,
2500 "Failed to mark inode %lu dirty",
2501 inode->i_ino);
878520ac 2502 }
4e7ea81d
JK
2503 if (!err)
2504 err = err2;
2505 }
2506 return err;
2507}
2508
fffb2739
JK
2509/*
2510 * Calculate the total number of credits to reserve for one writepages
20970ba6 2511 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2512 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2513 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2514 * bpp - 1 blocks in bpp different extents.
2515 */
525f4ed8
MC
2516static int ext4_da_writepages_trans_blocks(struct inode *inode)
2517{
fffb2739 2518 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2519
fffb2739
JK
2520 return ext4_meta_trans_blocks(inode,
2521 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2522}
61628a3f 2523
8e48dcfb 2524/*
4e7ea81d
JK
2525 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2526 * and underlying extent to map
2527 *
2528 * @mpd - where to look for pages
2529 *
2530 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2531 * IO immediately. When we find a page which isn't mapped we start accumulating
2532 * extent of buffers underlying these pages that needs mapping (formed by
2533 * either delayed or unwritten buffers). We also lock the pages containing
2534 * these buffers. The extent found is returned in @mpd structure (starting at
2535 * mpd->lblk with length mpd->len blocks).
2536 *
2537 * Note that this function can attach bios to one io_end structure which are
2538 * neither logically nor physically contiguous. Although it may seem as an
2539 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2540 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2541 */
4e7ea81d 2542static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2543{
4e7ea81d
JK
2544 struct address_space *mapping = mpd->inode->i_mapping;
2545 struct pagevec pvec;
2546 unsigned int nr_pages;
aeac589a 2547 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2548 pgoff_t index = mpd->first_page;
2549 pgoff_t end = mpd->last_page;
10bbd235 2550 xa_mark_t tag;
4e7ea81d
JK
2551 int i, err = 0;
2552 int blkbits = mpd->inode->i_blkbits;
2553 ext4_lblk_t lblk;
2554 struct buffer_head *head;
8e48dcfb 2555
4e7ea81d 2556 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2557 tag = PAGECACHE_TAG_TOWRITE;
2558 else
2559 tag = PAGECACHE_TAG_DIRTY;
2560
86679820 2561 pagevec_init(&pvec);
4e7ea81d
JK
2562 mpd->map.m_len = 0;
2563 mpd->next_page = index;
4f01b02c 2564 while (index <= end) {
dc7f3e86 2565 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2566 tag);
8e48dcfb 2567 if (nr_pages == 0)
6b8ed620 2568 break;
8e48dcfb
TT
2569
2570 for (i = 0; i < nr_pages; i++) {
2571 struct page *page = pvec.pages[i];
2572
aeac589a
ML
2573 /*
2574 * Accumulated enough dirty pages? This doesn't apply
2575 * to WB_SYNC_ALL mode. For integrity sync we have to
2576 * keep going because someone may be concurrently
2577 * dirtying pages, and we might have synced a lot of
2578 * newly appeared dirty pages, but have not synced all
2579 * of the old dirty pages.
2580 */
2581 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2582 goto out;
2583
4e7ea81d
JK
2584 /* If we can't merge this page, we are done. */
2585 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2586 goto out;
78aaced3 2587
8e48dcfb 2588 lock_page(page);
8e48dcfb 2589 /*
4e7ea81d
JK
2590 * If the page is no longer dirty, or its mapping no
2591 * longer corresponds to inode we are writing (which
2592 * means it has been truncated or invalidated), or the
2593 * page is already under writeback and we are not doing
2594 * a data integrity writeback, skip the page
8e48dcfb 2595 */
4f01b02c
TT
2596 if (!PageDirty(page) ||
2597 (PageWriteback(page) &&
4e7ea81d 2598 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2599 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2600 unlock_page(page);
2601 continue;
2602 }
2603
7cb1a535 2604 wait_on_page_writeback(page);
8e48dcfb 2605 BUG_ON(PageWriteback(page));
8e48dcfb 2606
be7cb076
TT
2607 /*
2608 * Should never happen but for buggy code in
2609 * other subsystems that call
2610 * set_page_dirty() without properly warning
2611 * the file system first. See [1] for more
2612 * information.
2613 *
2614 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2615 */
2616 if (!page_has_buffers(page)) {
2617 ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", page->index);
2618 ClearPageDirty(page);
2619 unlock_page(page);
2620 continue;
2621 }
2622
4e7ea81d 2623 if (mpd->map.m_len == 0)
8eb9e5ce 2624 mpd->first_page = page->index;
8eb9e5ce 2625 mpd->next_page = page->index + 1;
f8bec370 2626 /* Add all dirty buffers to mpd */
4e7ea81d 2627 lblk = ((ext4_lblk_t)page->index) <<
09cbfeaf 2628 (PAGE_SHIFT - blkbits);
f8bec370 2629 head = page_buffers(page);
5f1132b2
JK
2630 err = mpage_process_page_bufs(mpd, head, head, lblk);
2631 if (err <= 0)
4e7ea81d 2632 goto out;
5f1132b2 2633 err = 0;
aeac589a 2634 left--;
8e48dcfb
TT
2635 }
2636 pagevec_release(&pvec);
2637 cond_resched();
2638 }
6b8ed620 2639 mpd->scanned_until_end = 1;
4f01b02c 2640 return 0;
8eb9e5ce
TT
2641out:
2642 pagevec_release(&pvec);
4e7ea81d 2643 return err;
8e48dcfb
TT
2644}
2645
20970ba6
TT
2646static int ext4_writepages(struct address_space *mapping,
2647 struct writeback_control *wbc)
64769240 2648{
4e7ea81d
JK
2649 pgoff_t writeback_index = 0;
2650 long nr_to_write = wbc->nr_to_write;
22208ded 2651 int range_whole = 0;
4e7ea81d 2652 int cycled = 1;
61628a3f 2653 handle_t *handle = NULL;
df22291f 2654 struct mpage_da_data mpd;
5e745b04 2655 struct inode *inode = mapping->host;
6b523df4 2656 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2657 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
1bce63d1 2658 struct blk_plug plug;
cb530541 2659 bool give_up_on_write = false;
61628a3f 2660
0db1ff22
TT
2661 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2662 return -EIO;
2663
bbd55937 2664 percpu_down_read(&sbi->s_writepages_rwsem);
20970ba6 2665 trace_ext4_writepages(inode, wbc);
ba80b101 2666
61628a3f
MC
2667 /*
2668 * No pages to write? This is mainly a kludge to avoid starting
2669 * a transaction for special inodes like journal inode on last iput()
2670 * because that could violate lock ordering on umount
2671 */
a1d6cc56 2672 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2673 goto out_writepages;
2a21e37e 2674
20970ba6 2675 if (ext4_should_journal_data(inode)) {
043d20d1 2676 ret = generic_writepages(mapping, wbc);
bbf023c7 2677 goto out_writepages;
20970ba6
TT
2678 }
2679
2a21e37e
TT
2680 /*
2681 * If the filesystem has aborted, it is read-only, so return
2682 * right away instead of dumping stack traces later on that
2683 * will obscure the real source of the problem. We test
1751e8a6 2684 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2a21e37e 2685 * the latter could be true if the filesystem is mounted
20970ba6 2686 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2687 * *never* be called, so if that ever happens, we would want
2688 * the stack trace.
2689 */
0db1ff22 2690 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
9b5f6c9b 2691 ext4_test_mount_flag(inode->i_sb, EXT4_MF_FS_ABORTED))) {
bbf023c7
ML
2692 ret = -EROFS;
2693 goto out_writepages;
2694 }
2a21e37e 2695
4e7ea81d
JK
2696 /*
2697 * If we have inline data and arrive here, it means that
2698 * we will soon create the block for the 1st page, so
2699 * we'd better clear the inline data here.
2700 */
2701 if (ext4_has_inline_data(inode)) {
2702 /* Just inode will be modified... */
2703 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704 if (IS_ERR(handle)) {
2705 ret = PTR_ERR(handle);
2706 goto out_writepages;
2707 }
2708 BUG_ON(ext4_test_inode_state(inode,
2709 EXT4_STATE_MAY_INLINE_DATA));
2710 ext4_destroy_inline_data(handle, inode);
2711 ext4_journal_stop(handle);
2712 }
2713
4e343231 2714 if (ext4_should_dioread_nolock(inode)) {
2715 /*
2716 * We may need to convert up to one extent per block in
2717 * the page and we may dirty the inode.
2718 */
2719 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2720 PAGE_SIZE >> inode->i_blkbits);
2721 }
2722
22208ded
AK
2723 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2724 range_whole = 1;
61628a3f 2725
2acf2c26 2726 if (wbc->range_cyclic) {
4e7ea81d
JK
2727 writeback_index = mapping->writeback_index;
2728 if (writeback_index)
2acf2c26 2729 cycled = 0;
4e7ea81d
JK
2730 mpd.first_page = writeback_index;
2731 mpd.last_page = -1;
5b41d924 2732 } else {
09cbfeaf
KS
2733 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2734 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
5b41d924 2735 }
a1d6cc56 2736
4e7ea81d
JK
2737 mpd.inode = inode;
2738 mpd.wbc = wbc;
2739 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2740retry:
6e6938b6 2741 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d 2742 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
1bce63d1 2743 blk_start_plug(&plug);
dddbd6ac
JK
2744
2745 /*
2746 * First writeback pages that don't need mapping - we can avoid
2747 * starting a transaction unnecessarily and also avoid being blocked
2748 * in the block layer on device congestion while having transaction
2749 * started.
2750 */
2751 mpd.do_map = 0;
6b8ed620 2752 mpd.scanned_until_end = 0;
dddbd6ac
JK
2753 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2754 if (!mpd.io_submit.io_end) {
2755 ret = -ENOMEM;
2756 goto unplug;
2757 }
2758 ret = mpage_prepare_extent_to_map(&mpd);
a297b2fc
XW
2759 /* Unlock pages we didn't use */
2760 mpage_release_unused_pages(&mpd, false);
dddbd6ac
JK
2761 /* Submit prepared bio */
2762 ext4_io_submit(&mpd.io_submit);
2763 ext4_put_io_end_defer(mpd.io_submit.io_end);
2764 mpd.io_submit.io_end = NULL;
dddbd6ac
JK
2765 if (ret < 0)
2766 goto unplug;
2767
6b8ed620 2768 while (!mpd.scanned_until_end && wbc->nr_to_write > 0) {
4e7ea81d
JK
2769 /* For each extent of pages we use new io_end */
2770 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2771 if (!mpd.io_submit.io_end) {
2772 ret = -ENOMEM;
2773 break;
2774 }
a1d6cc56
AK
2775
2776 /*
4e7ea81d
JK
2777 * We have two constraints: We find one extent to map and we
2778 * must always write out whole page (makes a difference when
2779 * blocksize < pagesize) so that we don't block on IO when we
2780 * try to write out the rest of the page. Journalled mode is
2781 * not supported by delalloc.
a1d6cc56
AK
2782 */
2783 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2784 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2785
4e7ea81d 2786 /* start a new transaction */
6b523df4
JK
2787 handle = ext4_journal_start_with_reserve(inode,
2788 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2789 if (IS_ERR(handle)) {
2790 ret = PTR_ERR(handle);
1693918e 2791 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2792 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2793 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2794 /* Release allocated io_end */
2795 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2796 mpd.io_submit.io_end = NULL;
4e7ea81d 2797 break;
61628a3f 2798 }
dddbd6ac 2799 mpd.do_map = 1;
f63e6005 2800
4e7ea81d
JK
2801 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2802 ret = mpage_prepare_extent_to_map(&mpd);
6b8ed620
JK
2803 if (!ret && mpd.map.m_len)
2804 ret = mpage_map_and_submit_extent(handle, &mpd,
cb530541 2805 &give_up_on_write);
646caa9c
JK
2806 /*
2807 * Caution: If the handle is synchronous,
2808 * ext4_journal_stop() can wait for transaction commit
2809 * to finish which may depend on writeback of pages to
2810 * complete or on page lock to be released. In that
b483bb77 2811 * case, we have to wait until after we have
646caa9c
JK
2812 * submitted all the IO, released page locks we hold,
2813 * and dropped io_end reference (for extent conversion
2814 * to be able to complete) before stopping the handle.
2815 */
2816 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2817 ext4_journal_stop(handle);
2818 handle = NULL;
dddbd6ac 2819 mpd.do_map = 0;
646caa9c 2820 }
4e7ea81d 2821 /* Unlock pages we didn't use */
cb530541 2822 mpage_release_unused_pages(&mpd, give_up_on_write);
a297b2fc
XW
2823 /* Submit prepared bio */
2824 ext4_io_submit(&mpd.io_submit);
2825
646caa9c
JK
2826 /*
2827 * Drop our io_end reference we got from init. We have
2828 * to be careful and use deferred io_end finishing if
2829 * we are still holding the transaction as we can
2830 * release the last reference to io_end which may end
2831 * up doing unwritten extent conversion.
2832 */
2833 if (handle) {
2834 ext4_put_io_end_defer(mpd.io_submit.io_end);
2835 ext4_journal_stop(handle);
2836 } else
2837 ext4_put_io_end(mpd.io_submit.io_end);
dddbd6ac 2838 mpd.io_submit.io_end = NULL;
4e7ea81d
JK
2839
2840 if (ret == -ENOSPC && sbi->s_journal) {
2841 /*
2842 * Commit the transaction which would
22208ded
AK
2843 * free blocks released in the transaction
2844 * and try again
2845 */
df22291f 2846 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2847 ret = 0;
4e7ea81d
JK
2848 continue;
2849 }
2850 /* Fatal error - ENOMEM, EIO... */
2851 if (ret)
61628a3f 2852 break;
a1d6cc56 2853 }
dddbd6ac 2854unplug:
1bce63d1 2855 blk_finish_plug(&plug);
9c12a831 2856 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2857 cycled = 1;
4e7ea81d
JK
2858 mpd.last_page = writeback_index - 1;
2859 mpd.first_page = 0;
2acf2c26
AK
2860 goto retry;
2861 }
22208ded
AK
2862
2863 /* Update index */
22208ded
AK
2864 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2865 /*
4e7ea81d 2866 * Set the writeback_index so that range_cyclic
22208ded
AK
2867 * mode will write it back later
2868 */
4e7ea81d 2869 mapping->writeback_index = mpd.first_page;
a1d6cc56 2870
61628a3f 2871out_writepages:
20970ba6
TT
2872 trace_ext4_writepages_result(inode, wbc, ret,
2873 nr_to_write - wbc->nr_to_write);
bbd55937 2874 percpu_up_read(&sbi->s_writepages_rwsem);
61628a3f 2875 return ret;
64769240
AT
2876}
2877
5f0663bb
DW
2878static int ext4_dax_writepages(struct address_space *mapping,
2879 struct writeback_control *wbc)
2880{
2881 int ret;
2882 long nr_to_write = wbc->nr_to_write;
2883 struct inode *inode = mapping->host;
2884 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2885
2886 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2887 return -EIO;
2888
bbd55937 2889 percpu_down_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2890 trace_ext4_writepages(inode, wbc);
2891
3f666c56 2892 ret = dax_writeback_mapping_range(mapping, sbi->s_daxdev, wbc);
5f0663bb
DW
2893 trace_ext4_writepages_result(inode, wbc, ret,
2894 nr_to_write - wbc->nr_to_write);
bbd55937 2895 percpu_up_read(&sbi->s_writepages_rwsem);
5f0663bb
DW
2896 return ret;
2897}
2898
79f0be8d
AK
2899static int ext4_nonda_switch(struct super_block *sb)
2900{
5c1ff336 2901 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2902 struct ext4_sb_info *sbi = EXT4_SB(sb);
2903
2904 /*
2905 * switch to non delalloc mode if we are running low
2906 * on free block. The free block accounting via percpu
179f7ebf 2907 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2908 * accumulated on each CPU without updating global counters
2909 * Delalloc need an accurate free block accounting. So switch
2910 * to non delalloc when we are near to error range.
2911 */
5c1ff336
EW
2912 free_clusters =
2913 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2914 dirty_clusters =
2915 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2916 /*
2917 * Start pushing delalloc when 1/2 of free blocks are dirty.
2918 */
5c1ff336 2919 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2920 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2921
5c1ff336
EW
2922 if (2 * free_clusters < 3 * dirty_clusters ||
2923 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2924 /*
c8afb446
ES
2925 * free block count is less than 150% of dirty blocks
2926 * or free blocks is less than watermark
79f0be8d
AK
2927 */
2928 return 1;
2929 }
2930 return 0;
2931}
2932
64769240 2933static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2934 loff_t pos, unsigned len, unsigned flags,
2935 struct page **pagep, void **fsdata)
64769240 2936{
72b8ab9d 2937 int ret, retries = 0;
64769240
AT
2938 struct page *page;
2939 pgoff_t index;
64769240 2940 struct inode *inode = mapping->host;
64769240 2941
0db1ff22
TT
2942 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2943 return -EIO;
2944
09cbfeaf 2945 index = pos >> PAGE_SHIFT;
79f0be8d 2946
c93d8f88
EB
2947 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2948 ext4_verity_in_progress(inode)) {
79f0be8d
AK
2949 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2950 return ext4_write_begin(file, mapping, pos,
2951 len, flags, pagep, fsdata);
2952 }
2953 *fsdata = (void *)0;
9bffad1e 2954 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2955
2956 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2957 ret = ext4_da_write_inline_data_begin(mapping, inode,
2958 pos, len, flags,
2959 pagep, fsdata);
2960 if (ret < 0)
47564bfb
TT
2961 return ret;
2962 if (ret == 1)
2963 return 0;
9c3569b5
TM
2964 }
2965
cc883236 2966retry:
47564bfb
TT
2967 page = grab_cache_page_write_begin(mapping, index, flags);
2968 if (!page)
2969 return -ENOMEM;
47564bfb 2970
47564bfb 2971 /* In case writeback began while the page was unlocked */
7afe5aa5 2972 wait_for_stable_page(page);
64769240 2973
643fa961 2974#ifdef CONFIG_FS_ENCRYPTION
2058f83a
MH
2975 ret = ext4_block_write_begin(page, pos, len,
2976 ext4_da_get_block_prep);
2977#else
6e1db88d 2978 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2058f83a 2979#endif
64769240
AT
2980 if (ret < 0) {
2981 unlock_page(page);
cc883236 2982 put_page(page);
ae4d5372
AK
2983 /*
2984 * block_write_begin may have instantiated a few blocks
2985 * outside i_size. Trim these off again. Don't need
cc883236 2986 * i_size_read because we hold inode lock.
ae4d5372
AK
2987 */
2988 if (pos + len > inode->i_size)
b9a4207d 2989 ext4_truncate_failed_write(inode);
47564bfb
TT
2990
2991 if (ret == -ENOSPC &&
2992 ext4_should_retry_alloc(inode->i_sb, &retries))
cc883236 2993 goto retry;
47564bfb 2994 return ret;
64769240
AT
2995 }
2996
47564bfb 2997 *pagep = page;
64769240
AT
2998 return ret;
2999}
3000
632eaeab
MC
3001/*
3002 * Check if we should update i_disksize
3003 * when write to the end of file but not require block allocation
3004 */
3005static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3006 unsigned long offset)
632eaeab
MC
3007{
3008 struct buffer_head *bh;
3009 struct inode *inode = page->mapping->host;
3010 unsigned int idx;
3011 int i;
3012
3013 bh = page_buffers(page);
3014 idx = offset >> inode->i_blkbits;
3015
af5bc92d 3016 for (i = 0; i < idx; i++)
632eaeab
MC
3017 bh = bh->b_this_page;
3018
29fa89d0 3019 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3020 return 0;
3021 return 1;
3022}
3023
64769240 3024static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3025 struct address_space *mapping,
3026 loff_t pos, unsigned len, unsigned copied,
3027 struct page *page, void *fsdata)
64769240
AT
3028{
3029 struct inode *inode = mapping->host;
64769240 3030 loff_t new_i_size;
632eaeab 3031 unsigned long start, end;
79f0be8d
AK
3032 int write_mode = (int)(unsigned long)fsdata;
3033
74d553aa
TT
3034 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3035 return ext4_write_end(file, mapping, pos,
3036 len, copied, page, fsdata);
632eaeab 3037
9bffad1e 3038 trace_ext4_da_write_end(inode, pos, len, copied);
6984aef5
ZY
3039
3040 if (write_mode != CONVERT_INLINE_DATA &&
3041 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3042 ext4_has_inline_data(inode))
3043 return ext4_write_inline_data_end(inode, pos, len, copied, page);
3044
09cbfeaf 3045 start = pos & (PAGE_SIZE - 1);
af5bc92d 3046 end = start + copied - 1;
64769240
AT
3047
3048 /*
4df031ff
ZY
3049 * Since we are holding inode lock, we are sure i_disksize <=
3050 * i_size. We also know that if i_disksize < i_size, there are
3051 * delalloc writes pending in the range upto i_size. If the end of
3052 * the current write is <= i_size, there's no need to touch
3053 * i_disksize since writeback will push i_disksize upto i_size
3054 * eventually. If the end of the current write is > i_size and
3055 * inside an allocated block (ext4_da_should_update_i_disksize()
3056 * check), we need to update i_disksize here as neither
3057 * ext4_writepage() nor certain ext4_writepages() paths not
3058 * allocating blocks update i_disksize.
3059 *
3060 * Note that we defer inode dirtying to generic_write_end() /
3061 * ext4_da_write_inline_data_end().
64769240 3062 */
64769240 3063 new_i_size = pos + copied;
6984aef5
ZY
3064 if (copied && new_i_size > inode->i_size &&
3065 ext4_da_should_update_i_disksize(page, end))
3066 ext4_update_i_disksize(inode, new_i_size);
9c3569b5 3067
cc883236 3068 return generic_write_end(file, mapping, pos, len, copied, page, fsdata);
64769240
AT
3069}
3070
ccd2506b
TT
3071/*
3072 * Force all delayed allocation blocks to be allocated for a given inode.
3073 */
3074int ext4_alloc_da_blocks(struct inode *inode)
3075{
fb40ba0d
TT
3076 trace_ext4_alloc_da_blocks(inode);
3077
71d4f7d0 3078 if (!EXT4_I(inode)->i_reserved_data_blocks)
ccd2506b
TT
3079 return 0;
3080
3081 /*
3082 * We do something simple for now. The filemap_flush() will
3083 * also start triggering a write of the data blocks, which is
3084 * not strictly speaking necessary (and for users of
3085 * laptop_mode, not even desirable). However, to do otherwise
3086 * would require replicating code paths in:
de9a55b8 3087 *
20970ba6 3088 * ext4_writepages() ->
ccd2506b
TT
3089 * write_cache_pages() ---> (via passed in callback function)
3090 * __mpage_da_writepage() -->
3091 * mpage_add_bh_to_extent()
3092 * mpage_da_map_blocks()
3093 *
3094 * The problem is that write_cache_pages(), located in
3095 * mm/page-writeback.c, marks pages clean in preparation for
3096 * doing I/O, which is not desirable if we're not planning on
3097 * doing I/O at all.
3098 *
3099 * We could call write_cache_pages(), and then redirty all of
380cf090 3100 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
3101 * would be ugly in the extreme. So instead we would need to
3102 * replicate parts of the code in the above functions,
25985edc 3103 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
3104 * write out the pages, but rather only collect contiguous
3105 * logical block extents, call the multi-block allocator, and
3106 * then update the buffer heads with the block allocations.
de9a55b8 3107 *
ccd2506b
TT
3108 * For now, though, we'll cheat by calling filemap_flush(),
3109 * which will map the blocks, and start the I/O, but not
3110 * actually wait for the I/O to complete.
3111 */
3112 return filemap_flush(inode->i_mapping);
3113}
64769240 3114
ac27a0ec
DK
3115/*
3116 * bmap() is special. It gets used by applications such as lilo and by
3117 * the swapper to find the on-disk block of a specific piece of data.
3118 *
3119 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3120 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3121 * filesystem and enables swap, then they may get a nasty shock when the
3122 * data getting swapped to that swapfile suddenly gets overwritten by
3123 * the original zero's written out previously to the journal and
3124 * awaiting writeback in the kernel's buffer cache.
3125 *
3126 * So, if we see any bmap calls here on a modified, data-journaled file,
3127 * take extra steps to flush any blocks which might be in the cache.
3128 */
617ba13b 3129static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3130{
3131 struct inode *inode = mapping->host;
3132 journal_t *journal;
3133 int err;
3134
46c7f254
TM
3135 /*
3136 * We can get here for an inline file via the FIBMAP ioctl
3137 */
3138 if (ext4_has_inline_data(inode))
3139 return 0;
3140
64769240
AT
3141 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3142 test_opt(inode->i_sb, DELALLOC)) {
3143 /*
3144 * With delalloc we want to sync the file
3145 * so that we can make sure we allocate
3146 * blocks for file
3147 */
3148 filemap_write_and_wait(mapping);
3149 }
3150
19f5fb7a
TT
3151 if (EXT4_JOURNAL(inode) &&
3152 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3153 /*
3154 * This is a REALLY heavyweight approach, but the use of
3155 * bmap on dirty files is expected to be extremely rare:
3156 * only if we run lilo or swapon on a freshly made file
3157 * do we expect this to happen.
3158 *
3159 * (bmap requires CAP_SYS_RAWIO so this does not
3160 * represent an unprivileged user DOS attack --- we'd be
3161 * in trouble if mortal users could trigger this path at
3162 * will.)
3163 *
617ba13b 3164 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3165 * regular files. If somebody wants to bmap a directory
3166 * or symlink and gets confused because the buffer
3167 * hasn't yet been flushed to disk, they deserve
3168 * everything they get.
3169 */
3170
19f5fb7a 3171 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3172 journal = EXT4_JOURNAL(inode);
dab291af 3173 jbd2_journal_lock_updates(journal);
01d5d965 3174 err = jbd2_journal_flush(journal, 0);
dab291af 3175 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3176
3177 if (err)
3178 return 0;
3179 }
3180
ac58e4fb 3181 return iomap_bmap(mapping, block, &ext4_iomap_ops);
ac27a0ec
DK
3182}
3183
617ba13b 3184static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3185{
46c7f254
TM
3186 int ret = -EAGAIN;
3187 struct inode *inode = page->mapping->host;
3188
0562e0ba 3189 trace_ext4_readpage(page);
46c7f254
TM
3190
3191 if (ext4_has_inline_data(inode))
3192 ret = ext4_readpage_inline(inode, page);
3193
3194 if (ret == -EAGAIN)
a07f624b 3195 return ext4_mpage_readpages(inode, NULL, page);
46c7f254
TM
3196
3197 return ret;
ac27a0ec
DK
3198}
3199
6311f91f 3200static void ext4_readahead(struct readahead_control *rac)
ac27a0ec 3201{
6311f91f 3202 struct inode *inode = rac->mapping->host;
46c7f254 3203
6311f91f 3204 /* If the file has inline data, no need to do readahead. */
46c7f254 3205 if (ext4_has_inline_data(inode))
6311f91f 3206 return;
46c7f254 3207
a07f624b 3208 ext4_mpage_readpages(inode, rac, NULL);
ac27a0ec
DK
3209}
3210
d47992f8
LC
3211static void ext4_invalidatepage(struct page *page, unsigned int offset,
3212 unsigned int length)
ac27a0ec 3213{
ca99fdd2 3214 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 3215
4520fb3c
JK
3216 /* No journalling happens on data buffers when this function is used */
3217 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3218
ca99fdd2 3219 block_invalidatepage(page, offset, length);
4520fb3c
JK
3220}
3221
53e87268 3222static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
3223 unsigned int offset,
3224 unsigned int length)
4520fb3c
JK
3225{
3226 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3227
ca99fdd2 3228 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 3229
ac27a0ec
DK
3230 /*
3231 * If it's a full truncate we just forget about the pending dirtying
3232 */
09cbfeaf 3233 if (offset == 0 && length == PAGE_SIZE)
ac27a0ec
DK
3234 ClearPageChecked(page);
3235
ca99fdd2 3236 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
3237}
3238
3239/* Wrapper for aops... */
3240static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
3241 unsigned int offset,
3242 unsigned int length)
53e87268 3243{
ca99fdd2 3244 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
3245}
3246
617ba13b 3247static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3248{
617ba13b 3249 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3250
0562e0ba
JZ
3251 trace_ext4_releasepage(page);
3252
e1c36595
JK
3253 /* Page has dirty journalled data -> cannot release */
3254 if (PageChecked(page))
ac27a0ec 3255 return 0;
0390131b 3256 if (journal)
529a781e 3257 return jbd2_journal_try_to_free_buffers(journal, page);
0390131b
FM
3258 else
3259 return try_to_free_buffers(page);
ac27a0ec
DK
3260}
3261
b8a6176c
JK
3262static bool ext4_inode_datasync_dirty(struct inode *inode)
3263{
3264 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3265
aa75f4d3
HS
3266 if (journal) {
3267 if (jbd2_transaction_committed(journal,
d0520df7
AR
3268 EXT4_I(inode)->i_datasync_tid))
3269 return false;
3270 if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
1ceecb53 3271 return !list_empty(&EXT4_I(inode)->i_fc_list);
d0520df7 3272 return true;
aa75f4d3
HS
3273 }
3274
b8a6176c
JK
3275 /* Any metadata buffers to write? */
3276 if (!list_empty(&inode->i_mapping->private_list))
3277 return true;
3278 return inode->i_state & I_DIRTY_DATASYNC;
3279}
3280
c8fdfe29
MB
3281static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3282 struct ext4_map_blocks *map, loff_t offset,
3283 loff_t length)
364443cb 3284{
c8fdfe29 3285 u8 blkbits = inode->i_blkbits;
364443cb 3286
c8fdfe29
MB
3287 /*
3288 * Writes that span EOF might trigger an I/O size update on completion,
3289 * so consider them to be dirty for the purpose of O_DSYNC, even if
3290 * there is no other metadata changes being made or are pending.
3291 */
364443cb 3292 iomap->flags = 0;
c8fdfe29
MB
3293 if (ext4_inode_datasync_dirty(inode) ||
3294 offset + length > i_size_read(inode))
b8a6176c 3295 iomap->flags |= IOMAP_F_DIRTY;
c8fdfe29
MB
3296
3297 if (map->m_flags & EXT4_MAP_NEW)
3298 iomap->flags |= IOMAP_F_NEW;
3299
5e405595 3300 iomap->bdev = inode->i_sb->s_bdev;
c8fdfe29
MB
3301 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3302 iomap->offset = (u64) map->m_lblk << blkbits;
3303 iomap->length = (u64) map->m_len << blkbits;
364443cb 3304
6386722a
RH
3305 if ((map->m_flags & EXT4_MAP_MAPPED) &&
3306 !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3307 iomap->flags |= IOMAP_F_MERGED;
3308
c8fdfe29
MB
3309 /*
3310 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3311 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3312 * set. In order for any allocated unwritten extents to be converted
3313 * into written extents correctly within the ->end_io() handler, we
3314 * need to ensure that the iomap->type is set appropriately. Hence, the
3315 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3316 * been set first.
3317 */
3318 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3319 iomap->type = IOMAP_UNWRITTEN;
3320 iomap->addr = (u64) map->m_pblk << blkbits;
3321 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3322 iomap->type = IOMAP_MAPPED;
3323 iomap->addr = (u64) map->m_pblk << blkbits;
364443cb 3324 } else {
c8fdfe29
MB
3325 iomap->type = IOMAP_HOLE;
3326 iomap->addr = IOMAP_NULL_ADDR;
364443cb 3327 }
364443cb
JK
3328}
3329
f063db5e
MB
3330static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3331 unsigned int flags)
776722e8 3332{
776722e8 3333 handle_t *handle;
378f32ba
MB
3334 u8 blkbits = inode->i_blkbits;
3335 int ret, dio_credits, m_flags = 0, retries = 0;
776722e8 3336
776722e8 3337 /*
f063db5e
MB
3338 * Trim the mapping request to the maximum value that we can map at
3339 * once for direct I/O.
776722e8 3340 */
f063db5e
MB
3341 if (map->m_len > DIO_MAX_BLOCKS)
3342 map->m_len = DIO_MAX_BLOCKS;
3343 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
776722e8 3344
f063db5e 3345retry:
776722e8 3346 /*
f063db5e
MB
3347 * Either we allocate blocks and then don't get an unwritten extent, so
3348 * in that case we have reserved enough credits. Or, the blocks are
3349 * already allocated and unwritten. In that case, the extent conversion
3350 * fits into the credits as well.
776722e8 3351 */
f063db5e
MB
3352 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3353 if (IS_ERR(handle))
3354 return PTR_ERR(handle);
4c0425ff 3355
378f32ba
MB
3356 /*
3357 * DAX and direct I/O are the only two operations that are currently
3358 * supported with IOMAP_WRITE.
3359 */
3360 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3361 if (IS_DAX(inode))
3362 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3363 /*
3364 * We use i_size instead of i_disksize here because delalloc writeback
3365 * can complete at any point during the I/O and subsequently push the
3366 * i_disksize out to i_size. This could be beyond where direct I/O is
3367 * happening and thus expose allocated blocks to direct I/O reads.
3368 */
d0b040f5 3369 else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
378f32ba
MB
3370 m_flags = EXT4_GET_BLOCKS_CREATE;
3371 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3372 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4b70df18 3373
378f32ba 3374 ret = ext4_map_blocks(handle, inode, map, m_flags);
8d5d02e6 3375
74c66bcb 3376 /*
378f32ba
MB
3377 * We cannot fill holes in indirect tree based inodes as that could
3378 * expose stale data in the case of a crash. Use the magic error code
3379 * to fallback to buffered I/O.
74c66bcb 3380 */
378f32ba
MB
3381 if (!m_flags && !ret)
3382 ret = -ENOTBLK;
187372a3 3383
f063db5e
MB
3384 ext4_journal_stop(handle);
3385 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3386 goto retry;
3387
3388 return ret;
4c0425ff 3389}
c7064ef1 3390
f063db5e 3391
364443cb 3392static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
c039b997 3393 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3394{
364443cb 3395 int ret;
09edf4d3
MB
3396 struct ext4_map_blocks map;
3397 u8 blkbits = inode->i_blkbits;
729f52c6 3398
bcd8e91f
TT
3399 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3400 return -EINVAL;
4bd809db 3401
09edf4d3
MB
3402 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3403 return -ERANGE;
4bd809db 3404
e8340395 3405 /*
09edf4d3 3406 * Calculate the first and last logical blocks respectively.
e8340395 3407 */
09edf4d3
MB
3408 map.m_lblk = offset >> blkbits;
3409 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3410 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
e8340395 3411
9faac62d
RH
3412 if (flags & IOMAP_WRITE) {
3413 /*
3414 * We check here if the blocks are already allocated, then we
3415 * don't need to start a journal txn and we can directly return
3416 * the mapping information. This could boost performance
3417 * especially in multi-threaded overwrite requests.
3418 */
3419 if (offset + length <= i_size_read(inode)) {
3420 ret = ext4_map_blocks(NULL, inode, &map, 0);
3421 if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3422 goto out;
3423 }
f063db5e 3424 ret = ext4_iomap_alloc(inode, &map, flags);
9faac62d 3425 } else {
545052e9 3426 ret = ext4_map_blocks(NULL, inode, &map, 0);
9faac62d 3427 }
4bd809db 3428
f063db5e
MB
3429 if (ret < 0)
3430 return ret;
9faac62d 3431out:
c8fdfe29 3432 ext4_set_iomap(inode, iomap, &map, offset, length);
4bd809db 3433
364443cb
JK
3434 return 0;
3435}
8d5d02e6 3436
8cd115bd
JK
3437static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3438 loff_t length, unsigned flags, struct iomap *iomap,
3439 struct iomap *srcmap)
3440{
3441 int ret;
3442
3443 /*
3444 * Even for writes we don't need to allocate blocks, so just pretend
3445 * we are reading to save overhead of starting a transaction.
3446 */
3447 flags &= ~IOMAP_WRITE;
3448 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3449 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3450 return ret;
3451}
3452
776722e8
JK
3453static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3454 ssize_t written, unsigned flags, struct iomap *iomap)
3455{
69c499d1 3456 /*
378f32ba
MB
3457 * Check to see whether an error occurred while writing out the data to
3458 * the allocated blocks. If so, return the magic error code so that we
3459 * fallback to buffered I/O and attempt to complete the remainder of
3460 * the I/O. Any blocks that may have been allocated in preparation for
3461 * the direct I/O will be reused during buffered I/O.
69c499d1 3462 */
378f32ba
MB
3463 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3464 return -ENOTBLK;
69c499d1 3465
569342dc 3466 return 0;
776722e8 3467}
4bd809db 3468
8ff6daa1 3469const struct iomap_ops ext4_iomap_ops = {
364443cb 3470 .iomap_begin = ext4_iomap_begin,
776722e8 3471 .iomap_end = ext4_iomap_end,
364443cb 3472};
8d5d02e6 3473
8cd115bd
JK
3474const struct iomap_ops ext4_iomap_overwrite_ops = {
3475 .iomap_begin = ext4_iomap_overwrite_begin,
3476 .iomap_end = ext4_iomap_end,
3477};
3478
09edf4d3
MB
3479static bool ext4_iomap_is_delalloc(struct inode *inode,
3480 struct ext4_map_blocks *map)
3481{
3482 struct extent_status es;
3483 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
914f82a3 3484
09edf4d3
MB
3485 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3486 map->m_lblk, end, &es);
914f82a3 3487
09edf4d3
MB
3488 if (!es.es_len || es.es_lblk > end)
3489 return false;
914f82a3 3490
09edf4d3
MB
3491 if (es.es_lblk > map->m_lblk) {
3492 map->m_len = es.es_lblk - map->m_lblk;
3493 return false;
914f82a3 3494 }
914f82a3 3495
09edf4d3
MB
3496 offset = map->m_lblk - es.es_lblk;
3497 map->m_len = es.es_len - offset;
914f82a3 3498
09edf4d3 3499 return true;
4c0425ff
MC
3500}
3501
09edf4d3
MB
3502static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3503 loff_t length, unsigned int flags,
3504 struct iomap *iomap, struct iomap *srcmap)
4c0425ff 3505{
09edf4d3
MB
3506 int ret;
3507 bool delalloc = false;
3508 struct ext4_map_blocks map;
3509 u8 blkbits = inode->i_blkbits;
4c0425ff 3510
09edf4d3
MB
3511 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3512 return -EINVAL;
3513
3514 if (ext4_has_inline_data(inode)) {
3515 ret = ext4_inline_data_iomap(inode, iomap);
3516 if (ret != -EAGAIN) {
3517 if (ret == 0 && offset >= iomap->length)
3518 ret = -ENOENT;
3519 return ret;
3520 }
3521 }
2058f83a 3522
84ebd795 3523 /*
09edf4d3 3524 * Calculate the first and last logical block respectively.
84ebd795 3525 */
09edf4d3
MB
3526 map.m_lblk = offset >> blkbits;
3527 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3528 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
84ebd795 3529
b2c57642
RH
3530 /*
3531 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3532 * So handle it here itself instead of querying ext4_map_blocks().
3533 * Since ext4_map_blocks() will warn about it and will return
3534 * -EIO error.
3535 */
3536 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3537 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3538
3539 if (offset >= sbi->s_bitmap_maxbytes) {
3540 map.m_flags = 0;
3541 goto set_iomap;
3542 }
3543 }
3544
09edf4d3
MB
3545 ret = ext4_map_blocks(NULL, inode, &map, 0);
3546 if (ret < 0)
3547 return ret;
3548 if (ret == 0)
3549 delalloc = ext4_iomap_is_delalloc(inode, &map);
46c7f254 3550
b2c57642 3551set_iomap:
09edf4d3
MB
3552 ext4_set_iomap(inode, iomap, &map, offset, length);
3553 if (delalloc && iomap->type == IOMAP_HOLE)
3554 iomap->type = IOMAP_DELALLOC;
3555
3556 return 0;
4c0425ff
MC
3557}
3558
09edf4d3
MB
3559const struct iomap_ops ext4_iomap_report_ops = {
3560 .iomap_begin = ext4_iomap_begin_report,
3561};
3562
ac27a0ec 3563/*
617ba13b 3564 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3565 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3566 * much here because ->set_page_dirty is called under VFS locks. The page is
3567 * not necessarily locked.
3568 *
3569 * We cannot just dirty the page and leave attached buffers clean, because the
3570 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3571 * or jbddirty because all the journalling code will explode.
3572 *
3573 * So what we do is to mark the page "pending dirty" and next time writepage
3574 * is called, propagate that into the buffers appropriately.
3575 */
617ba13b 3576static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3577{
3578 SetPageChecked(page);
3579 return __set_page_dirty_nobuffers(page);
3580}
3581
6dcc693b
JK
3582static int ext4_set_page_dirty(struct page *page)
3583{
3584 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3585 WARN_ON_ONCE(!page_has_buffers(page));
3586 return __set_page_dirty_buffers(page);
3587}
3588
0e6895ba
RH
3589static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3590 struct file *file, sector_t *span)
3591{
3592 return iomap_swapfile_activate(sis, file, span,
3593 &ext4_iomap_report_ops);
3594}
3595
74d553aa 3596static const struct address_space_operations ext4_aops = {
8ab22b9a 3597 .readpage = ext4_readpage,
6311f91f 3598 .readahead = ext4_readahead,
43ce1d23 3599 .writepage = ext4_writepage,
20970ba6 3600 .writepages = ext4_writepages,
8ab22b9a 3601 .write_begin = ext4_write_begin,
74d553aa 3602 .write_end = ext4_write_end,
6dcc693b 3603 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a
HH
3604 .bmap = ext4_bmap,
3605 .invalidatepage = ext4_invalidatepage,
3606 .releasepage = ext4_releasepage,
378f32ba 3607 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3608 .migratepage = buffer_migrate_page,
3609 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3610 .error_remove_page = generic_error_remove_page,
0e6895ba 3611 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3612};
3613
617ba13b 3614static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a 3615 .readpage = ext4_readpage,
6311f91f 3616 .readahead = ext4_readahead,
43ce1d23 3617 .writepage = ext4_writepage,
20970ba6 3618 .writepages = ext4_writepages,
8ab22b9a
HH
3619 .write_begin = ext4_write_begin,
3620 .write_end = ext4_journalled_write_end,
3621 .set_page_dirty = ext4_journalled_set_page_dirty,
3622 .bmap = ext4_bmap,
4520fb3c 3623 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3624 .releasepage = ext4_releasepage,
378f32ba 3625 .direct_IO = noop_direct_IO,
8ab22b9a 3626 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3627 .error_remove_page = generic_error_remove_page,
0e6895ba 3628 .swap_activate = ext4_iomap_swap_activate,
ac27a0ec
DK
3629};
3630
64769240 3631static const struct address_space_operations ext4_da_aops = {
8ab22b9a 3632 .readpage = ext4_readpage,
6311f91f 3633 .readahead = ext4_readahead,
43ce1d23 3634 .writepage = ext4_writepage,
20970ba6 3635 .writepages = ext4_writepages,
8ab22b9a
HH
3636 .write_begin = ext4_da_write_begin,
3637 .write_end = ext4_da_write_end,
6dcc693b 3638 .set_page_dirty = ext4_set_page_dirty,
8ab22b9a 3639 .bmap = ext4_bmap,
8fcc3a58 3640 .invalidatepage = ext4_invalidatepage,
8ab22b9a 3641 .releasepage = ext4_releasepage,
378f32ba 3642 .direct_IO = noop_direct_IO,
8ab22b9a
HH
3643 .migratepage = buffer_migrate_page,
3644 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3645 .error_remove_page = generic_error_remove_page,
0e6895ba 3646 .swap_activate = ext4_iomap_swap_activate,
64769240
AT
3647};
3648
5f0663bb
DW
3649static const struct address_space_operations ext4_dax_aops = {
3650 .writepages = ext4_dax_writepages,
3651 .direct_IO = noop_direct_IO,
b82a96c9 3652 .set_page_dirty = __set_page_dirty_no_writeback,
94dbb631 3653 .bmap = ext4_bmap,
5f0663bb 3654 .invalidatepage = noop_invalidatepage,
0e6895ba 3655 .swap_activate = ext4_iomap_swap_activate,
5f0663bb
DW
3656};
3657
617ba13b 3658void ext4_set_aops(struct inode *inode)
ac27a0ec 3659{
3d2b1582
LC
3660 switch (ext4_inode_journal_mode(inode)) {
3661 case EXT4_INODE_ORDERED_DATA_MODE:
3d2b1582 3662 case EXT4_INODE_WRITEBACK_DATA_MODE:
3d2b1582
LC
3663 break;
3664 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3665 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3666 return;
3d2b1582
LC
3667 default:
3668 BUG();
3669 }
5f0663bb
DW
3670 if (IS_DAX(inode))
3671 inode->i_mapping->a_ops = &ext4_dax_aops;
3672 else if (test_opt(inode->i_sb, DELALLOC))
74d553aa
TT
3673 inode->i_mapping->a_ops = &ext4_da_aops;
3674 else
3675 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3676}
3677
923ae0ff 3678static int __ext4_block_zero_page_range(handle_t *handle,
d863dc36
LC
3679 struct address_space *mapping, loff_t from, loff_t length)
3680{
09cbfeaf
KS
3681 ext4_fsblk_t index = from >> PAGE_SHIFT;
3682 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff 3683 unsigned blocksize, pos;
d863dc36
LC
3684 ext4_lblk_t iblock;
3685 struct inode *inode = mapping->host;
3686 struct buffer_head *bh;
3687 struct page *page;
3688 int err = 0;
3689
09cbfeaf 3690 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
c62d2555 3691 mapping_gfp_constraint(mapping, ~__GFP_FS));
d863dc36
LC
3692 if (!page)
3693 return -ENOMEM;
3694
3695 blocksize = inode->i_sb->s_blocksize;
d863dc36 3696
09cbfeaf 3697 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
d863dc36
LC
3698
3699 if (!page_has_buffers(page))
3700 create_empty_buffers(page, blocksize, 0);
3701
3702 /* Find the buffer that contains "offset" */
3703 bh = page_buffers(page);
3704 pos = blocksize;
3705 while (offset >= pos) {
3706 bh = bh->b_this_page;
3707 iblock++;
3708 pos += blocksize;
3709 }
d863dc36
LC
3710 if (buffer_freed(bh)) {
3711 BUFFER_TRACE(bh, "freed: skip");
3712 goto unlock;
3713 }
d863dc36
LC
3714 if (!buffer_mapped(bh)) {
3715 BUFFER_TRACE(bh, "unmapped");
3716 ext4_get_block(inode, iblock, bh, 0);
3717 /* unmapped? It's a hole - nothing to do */
3718 if (!buffer_mapped(bh)) {
3719 BUFFER_TRACE(bh, "still unmapped");
3720 goto unlock;
3721 }
3722 }
3723
3724 /* Ok, it's mapped. Make sure it's up-to-date */
3725 if (PageUptodate(page))
3726 set_buffer_uptodate(bh);
3727
3728 if (!buffer_uptodate(bh)) {
2d069c08 3729 err = ext4_read_bh_lock(bh, 0, true);
3730 if (err)
d863dc36 3731 goto unlock;
4f74d15f 3732 if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
c9c7429c 3733 /* We expect the key to be set. */
a7550b30 3734 BUG_ON(!fscrypt_has_encryption_key(inode));
834f1565
EB
3735 err = fscrypt_decrypt_pagecache_blocks(page, blocksize,
3736 bh_offset(bh));
3737 if (err) {
3738 clear_buffer_uptodate(bh);
3739 goto unlock;
3740 }
c9c7429c 3741 }
d863dc36 3742 }
d863dc36
LC
3743 if (ext4_should_journal_data(inode)) {
3744 BUFFER_TRACE(bh, "get write access");
188c299e
JK
3745 err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3746 EXT4_JTR_NONE);
d863dc36
LC
3747 if (err)
3748 goto unlock;
3749 }
d863dc36 3750 zero_user(page, offset, length);
d863dc36
LC
3751 BUFFER_TRACE(bh, "zeroed end of block");
3752
d863dc36
LC
3753 if (ext4_should_journal_data(inode)) {
3754 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3755 } else {
353eefd3 3756 err = 0;
d863dc36 3757 mark_buffer_dirty(bh);
3957ef53 3758 if (ext4_should_order_data(inode))
73131fbb
RZ
3759 err = ext4_jbd2_inode_add_write(handle, inode, from,
3760 length);
0713ed0c 3761 }
d863dc36
LC
3762
3763unlock:
3764 unlock_page(page);
09cbfeaf 3765 put_page(page);
d863dc36
LC
3766 return err;
3767}
3768
923ae0ff
RZ
3769/*
3770 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3771 * starting from file offset 'from'. The range to be zero'd must
3772 * be contained with in one block. If the specified range exceeds
3773 * the end of the block it will be shortened to end of the block
3088e5a5 3774 * that corresponds to 'from'
923ae0ff
RZ
3775 */
3776static int ext4_block_zero_page_range(handle_t *handle,
3777 struct address_space *mapping, loff_t from, loff_t length)
3778{
3779 struct inode *inode = mapping->host;
09cbfeaf 3780 unsigned offset = from & (PAGE_SIZE-1);
923ae0ff
RZ
3781 unsigned blocksize = inode->i_sb->s_blocksize;
3782 unsigned max = blocksize - (offset & (blocksize - 1));
3783
3784 /*
3785 * correct length if it does not fall between
3786 * 'from' and the end of the block
3787 */
3788 if (length > max || length < 0)
3789 length = max;
3790
47e69351
JK
3791 if (IS_DAX(inode)) {
3792 return iomap_zero_range(inode, from, length, NULL,
3793 &ext4_iomap_ops);
3794 }
923ae0ff
RZ
3795 return __ext4_block_zero_page_range(handle, mapping, from, length);
3796}
3797
94350ab5
MW
3798/*
3799 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3800 * up to the end of the block which corresponds to `from'.
3801 * This required during truncate. We need to physically zero the tail end
3802 * of that block so it doesn't yield old data if the file is later grown.
3803 */
c197855e 3804static int ext4_block_truncate_page(handle_t *handle,
94350ab5
MW
3805 struct address_space *mapping, loff_t from)
3806{
09cbfeaf 3807 unsigned offset = from & (PAGE_SIZE-1);
94350ab5
MW
3808 unsigned length;
3809 unsigned blocksize;
3810 struct inode *inode = mapping->host;
3811
0d06863f 3812 /* If we are processing an encrypted inode during orphan list handling */
592ddec7 3813 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
0d06863f
TT
3814 return 0;
3815
94350ab5
MW
3816 blocksize = inode->i_sb->s_blocksize;
3817 length = blocksize - (offset & (blocksize - 1));
3818
3819 return ext4_block_zero_page_range(handle, mapping, from, length);
3820}
3821
a87dd18c
LC
3822int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3823 loff_t lstart, loff_t length)
3824{
3825 struct super_block *sb = inode->i_sb;
3826 struct address_space *mapping = inode->i_mapping;
e1be3a92 3827 unsigned partial_start, partial_end;
a87dd18c
LC
3828 ext4_fsblk_t start, end;
3829 loff_t byte_end = (lstart + length - 1);
3830 int err = 0;
3831
e1be3a92
LC
3832 partial_start = lstart & (sb->s_blocksize - 1);
3833 partial_end = byte_end & (sb->s_blocksize - 1);
3834
a87dd18c
LC
3835 start = lstart >> sb->s_blocksize_bits;
3836 end = byte_end >> sb->s_blocksize_bits;
3837
3838 /* Handle partial zero within the single block */
e1be3a92
LC
3839 if (start == end &&
3840 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3841 err = ext4_block_zero_page_range(handle, mapping,
3842 lstart, length);
3843 return err;
3844 }
3845 /* Handle partial zero out on the start of the range */
e1be3a92 3846 if (partial_start) {
a87dd18c
LC
3847 err = ext4_block_zero_page_range(handle, mapping,
3848 lstart, sb->s_blocksize);
3849 if (err)
3850 return err;
3851 }
3852 /* Handle partial zero out on the end of the range */
e1be3a92 3853 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3854 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3855 byte_end - partial_end,
3856 partial_end + 1);
a87dd18c
LC
3857 return err;
3858}
3859
91ef4caf
DG
3860int ext4_can_truncate(struct inode *inode)
3861{
91ef4caf
DG
3862 if (S_ISREG(inode->i_mode))
3863 return 1;
3864 if (S_ISDIR(inode->i_mode))
3865 return 1;
3866 if (S_ISLNK(inode->i_mode))
3867 return !ext4_inode_is_fast_symlink(inode);
3868 return 0;
3869}
3870
01127848
JK
3871/*
3872 * We have to make sure i_disksize gets properly updated before we truncate
3873 * page cache due to hole punching or zero range. Otherwise i_disksize update
3874 * can get lost as it may have been postponed to submission of writeback but
3875 * that will never happen after we truncate page cache.
3876 */
3877int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3878 loff_t len)
3879{
3880 handle_t *handle;
4209ae12
HS
3881 int ret;
3882
01127848
JK
3883 loff_t size = i_size_read(inode);
3884
5955102c 3885 WARN_ON(!inode_is_locked(inode));
01127848
JK
3886 if (offset > size || offset + len < size)
3887 return 0;
3888
3889 if (EXT4_I(inode)->i_disksize >= size)
3890 return 0;
3891
3892 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3893 if (IS_ERR(handle))
3894 return PTR_ERR(handle);
3895 ext4_update_i_disksize(inode, size);
4209ae12 3896 ret = ext4_mark_inode_dirty(handle, inode);
01127848
JK
3897 ext4_journal_stop(handle);
3898
4209ae12 3899 return ret;
01127848
JK
3900}
3901
d4f5258e 3902static void ext4_wait_dax_page(struct inode *inode)
430657b6 3903{
d4f5258e 3904 filemap_invalidate_unlock(inode->i_mapping);
430657b6 3905 schedule();
d4f5258e 3906 filemap_invalidate_lock(inode->i_mapping);
430657b6
RZ
3907}
3908
3909int ext4_break_layouts(struct inode *inode)
3910{
430657b6 3911 struct page *page;
430657b6
RZ
3912 int error;
3913
d4f5258e 3914 if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
430657b6
RZ
3915 return -EINVAL;
3916
3917 do {
430657b6
RZ
3918 page = dax_layout_busy_page(inode->i_mapping);
3919 if (!page)
3920 return 0;
3921
3922 error = ___wait_var_event(&page->_refcount,
3923 atomic_read(&page->_refcount) == 1,
3924 TASK_INTERRUPTIBLE, 0, 0,
d4f5258e 3925 ext4_wait_dax_page(inode));
b1f38217 3926 } while (error == 0);
430657b6
RZ
3927
3928 return error;
3929}
3930
a4bb6b64 3931/*
cca32b7e 3932 * ext4_punch_hole: punches a hole in a file by releasing the blocks
a4bb6b64
AH
3933 * associated with the given offset and length
3934 *
3935 * @inode: File inode
3936 * @offset: The offset where the hole will begin
3937 * @len: The length of the hole
3938 *
4907cb7b 3939 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3940 */
3941
aeb2817a 3942int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3943{
26a4c0c6
TT
3944 struct super_block *sb = inode->i_sb;
3945 ext4_lblk_t first_block, stop_block;
3946 struct address_space *mapping = inode->i_mapping;
5f430795
TS
3947 loff_t first_block_offset, last_block_offset, max_length;
3948 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
26a4c0c6
TT
3949 handle_t *handle;
3950 unsigned int credits;
4209ae12 3951 int ret = 0, ret2 = 0;
26a4c0c6 3952
b8a86845 3953 trace_ext4_punch_hole(inode, offset, length, 0);
aaddea81 3954
c1e8220b
TT
3955 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3956 if (ext4_has_inline_data(inode)) {
d4f5258e 3957 filemap_invalidate_lock(mapping);
c1e8220b 3958 ret = ext4_convert_inline_data(inode);
d4f5258e 3959 filemap_invalidate_unlock(mapping);
c1e8220b
TT
3960 if (ret)
3961 return ret;
3962 }
3963
26a4c0c6
TT
3964 /*
3965 * Write out all dirty pages to avoid race conditions
3966 * Then release them.
3967 */
cca32b7e 3968 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
26a4c0c6
TT
3969 ret = filemap_write_and_wait_range(mapping, offset,
3970 offset + length - 1);
3971 if (ret)
3972 return ret;
3973 }
3974
5955102c 3975 inode_lock(inode);
9ef06cec 3976
26a4c0c6
TT
3977 /* No need to punch hole beyond i_size */
3978 if (offset >= inode->i_size)
3979 goto out_mutex;
3980
3981 /*
3982 * If the hole extends beyond i_size, set the hole
3983 * to end after the page that contains i_size
3984 */
3985 if (offset + length > inode->i_size) {
3986 length = inode->i_size +
09cbfeaf 3987 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
26a4c0c6
TT
3988 offset;
3989 }
3990
5f430795
TS
3991 /*
3992 * For punch hole the length + offset needs to be within one block
3993 * before last range. Adjust the length if it goes beyond that limit.
3994 */
3995 max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3996 if (offset + length > max_length)
3997 length = max_length - offset;
3998
a361293f
JK
3999 if (offset & (sb->s_blocksize - 1) ||
4000 (offset + length) & (sb->s_blocksize - 1)) {
4001 /*
4002 * Attach jinode to inode for jbd2 if we do any zeroing of
4003 * partial block
4004 */
4005 ret = ext4_inode_attach_jinode(inode);
4006 if (ret < 0)
4007 goto out_mutex;
4008
4009 }
4010
ea3d7209 4011 /* Wait all existing dio workers, newcomers will block on i_mutex */
ea3d7209
JK
4012 inode_dio_wait(inode);
4013
4014 /*
4015 * Prevent page faults from reinstantiating pages we have released from
4016 * page cache.
4017 */
d4f5258e 4018 filemap_invalidate_lock(mapping);
430657b6
RZ
4019
4020 ret = ext4_break_layouts(inode);
4021 if (ret)
4022 goto out_dio;
4023
a87dd18c
LC
4024 first_block_offset = round_up(offset, sb->s_blocksize);
4025 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 4026
a87dd18c 4027 /* Now release the pages and zero block aligned part of pages*/
01127848
JK
4028 if (last_block_offset > first_block_offset) {
4029 ret = ext4_update_disksize_before_punch(inode, offset, length);
4030 if (ret)
4031 goto out_dio;
a87dd18c
LC
4032 truncate_pagecache_range(inode, first_block_offset,
4033 last_block_offset);
01127848 4034 }
26a4c0c6
TT
4035
4036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4037 credits = ext4_writepage_trans_blocks(inode);
4038 else
4039 credits = ext4_blocks_for_truncate(inode);
4040 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4041 if (IS_ERR(handle)) {
4042 ret = PTR_ERR(handle);
4043 ext4_std_error(sb, ret);
4044 goto out_dio;
4045 }
4046
a87dd18c
LC
4047 ret = ext4_zero_partial_blocks(handle, inode, offset,
4048 length);
4049 if (ret)
4050 goto out_stop;
26a4c0c6
TT
4051
4052 first_block = (offset + sb->s_blocksize - 1) >>
4053 EXT4_BLOCK_SIZE_BITS(sb);
4054 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4055
eee597ac
LC
4056 /* If there are blocks to remove, do it */
4057 if (stop_block > first_block) {
26a4c0c6 4058
eee597ac 4059 down_write(&EXT4_I(inode)->i_data_sem);
27bc446e 4060 ext4_discard_preallocations(inode, 0);
26a4c0c6 4061
eee597ac
LC
4062 ret = ext4_es_remove_extent(inode, first_block,
4063 stop_block - first_block);
4064 if (ret) {
4065 up_write(&EXT4_I(inode)->i_data_sem);
4066 goto out_stop;
4067 }
26a4c0c6 4068
eee597ac
LC
4069 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4070 ret = ext4_ext_remove_space(inode, first_block,
4071 stop_block - 1);
4072 else
4073 ret = ext4_ind_remove_space(handle, inode, first_block,
4074 stop_block);
26a4c0c6 4075
eee597ac
LC
4076 up_write(&EXT4_I(inode)->i_data_sem);
4077 }
a80f7fcf 4078 ext4_fc_track_range(handle, inode, first_block, stop_block);
26a4c0c6
TT
4079 if (IS_SYNC(inode))
4080 ext4_handle_sync(handle);
e251f9bc 4081
eeca7ea1 4082 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4083 ret2 = ext4_mark_inode_dirty(handle, inode);
4084 if (unlikely(ret2))
4085 ret = ret2;
67a7d5f5
JK
4086 if (ret >= 0)
4087 ext4_update_inode_fsync_trans(handle, inode, 1);
26a4c0c6
TT
4088out_stop:
4089 ext4_journal_stop(handle);
4090out_dio:
d4f5258e 4091 filemap_invalidate_unlock(mapping);
26a4c0c6 4092out_mutex:
5955102c 4093 inode_unlock(inode);
26a4c0c6 4094 return ret;
a4bb6b64
AH
4095}
4096
a361293f
JK
4097int ext4_inode_attach_jinode(struct inode *inode)
4098{
4099 struct ext4_inode_info *ei = EXT4_I(inode);
4100 struct jbd2_inode *jinode;
4101
4102 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4103 return 0;
4104
4105 jinode = jbd2_alloc_inode(GFP_KERNEL);
4106 spin_lock(&inode->i_lock);
4107 if (!ei->jinode) {
4108 if (!jinode) {
4109 spin_unlock(&inode->i_lock);
4110 return -ENOMEM;
4111 }
4112 ei->jinode = jinode;
4113 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4114 jinode = NULL;
4115 }
4116 spin_unlock(&inode->i_lock);
4117 if (unlikely(jinode != NULL))
4118 jbd2_free_inode(jinode);
4119 return 0;
4120}
4121
ac27a0ec 4122/*
617ba13b 4123 * ext4_truncate()
ac27a0ec 4124 *
617ba13b
MC
4125 * We block out ext4_get_block() block instantiations across the entire
4126 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4127 * simultaneously on behalf of the same inode.
4128 *
42b2aa86 4129 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
4130 * is one core, guiding principle: the file's tree must always be consistent on
4131 * disk. We must be able to restart the truncate after a crash.
4132 *
4133 * The file's tree may be transiently inconsistent in memory (although it
4134 * probably isn't), but whenever we close off and commit a journal transaction,
4135 * the contents of (the filesystem + the journal) must be consistent and
4136 * restartable. It's pretty simple, really: bottom up, right to left (although
4137 * left-to-right works OK too).
4138 *
4139 * Note that at recovery time, journal replay occurs *before* the restart of
4140 * truncate against the orphan inode list.
4141 *
4142 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4143 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4144 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4145 * ext4_truncate() to have another go. So there will be instantiated blocks
4146 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4147 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4148 * ext4_truncate() run will find them and release them.
ac27a0ec 4149 */
2c98eb5e 4150int ext4_truncate(struct inode *inode)
ac27a0ec 4151{
819c4920
TT
4152 struct ext4_inode_info *ei = EXT4_I(inode);
4153 unsigned int credits;
4209ae12 4154 int err = 0, err2;
819c4920
TT
4155 handle_t *handle;
4156 struct address_space *mapping = inode->i_mapping;
819c4920 4157
19b5ef61
TT
4158 /*
4159 * There is a possibility that we're either freeing the inode
e04027e8 4160 * or it's a completely new inode. In those cases we might not
19b5ef61
TT
4161 * have i_mutex locked because it's not necessary.
4162 */
4163 if (!(inode->i_state & (I_NEW|I_FREEING)))
5955102c 4164 WARN_ON(!inode_is_locked(inode));
0562e0ba
JZ
4165 trace_ext4_truncate_enter(inode);
4166
91ef4caf 4167 if (!ext4_can_truncate(inode))
9a5d265f 4168 goto out_trace;
ac27a0ec 4169
5534fb5b 4170 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4171 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4172
aef1c851
TM
4173 if (ext4_has_inline_data(inode)) {
4174 int has_inline = 1;
4175
01daf945 4176 err = ext4_inline_data_truncate(inode, &has_inline);
9a5d265f 4177 if (err || has_inline)
4178 goto out_trace;
aef1c851
TM
4179 }
4180
a361293f
JK
4181 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4182 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4183 if (ext4_inode_attach_jinode(inode) < 0)
9a5d265f 4184 goto out_trace;
a361293f
JK
4185 }
4186
819c4920
TT
4187 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4188 credits = ext4_writepage_trans_blocks(inode);
4189 else
4190 credits = ext4_blocks_for_truncate(inode);
4191
4192 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
9a5d265f 4193 if (IS_ERR(handle)) {
4194 err = PTR_ERR(handle);
4195 goto out_trace;
4196 }
819c4920 4197
eb3544c6
LC
4198 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4199 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
4200
4201 /*
4202 * We add the inode to the orphan list, so that if this
4203 * truncate spans multiple transactions, and we crash, we will
4204 * resume the truncate when the filesystem recovers. It also
4205 * marks the inode dirty, to catch the new size.
4206 *
4207 * Implication: the file must always be in a sane, consistent
4208 * truncatable state while each transaction commits.
4209 */
2c98eb5e
TT
4210 err = ext4_orphan_add(handle, inode);
4211 if (err)
819c4920
TT
4212 goto out_stop;
4213
4214 down_write(&EXT4_I(inode)->i_data_sem);
4215
27bc446e 4216 ext4_discard_preallocations(inode, 0);
819c4920 4217
ff9893dc 4218 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d0abb36d 4219 err = ext4_ext_truncate(handle, inode);
ff9893dc 4220 else
819c4920
TT
4221 ext4_ind_truncate(handle, inode);
4222
4223 up_write(&ei->i_data_sem);
d0abb36d
TT
4224 if (err)
4225 goto out_stop;
819c4920
TT
4226
4227 if (IS_SYNC(inode))
4228 ext4_handle_sync(handle);
4229
4230out_stop:
4231 /*
4232 * If this was a simple ftruncate() and the file will remain alive,
4233 * then we need to clear up the orphan record which we created above.
4234 * However, if this was a real unlink then we were called by
58d86a50 4235 * ext4_evict_inode(), and we allow that function to clean up the
819c4920
TT
4236 * orphan info for us.
4237 */
4238 if (inode->i_nlink)
4239 ext4_orphan_del(handle, inode);
4240
eeca7ea1 4241 inode->i_mtime = inode->i_ctime = current_time(inode);
4209ae12
HS
4242 err2 = ext4_mark_inode_dirty(handle, inode);
4243 if (unlikely(err2 && !err))
4244 err = err2;
819c4920 4245 ext4_journal_stop(handle);
ac27a0ec 4246
9a5d265f 4247out_trace:
0562e0ba 4248 trace_ext4_truncate_exit(inode);
2c98eb5e 4249 return err;
ac27a0ec
DK
4250}
4251
ac27a0ec 4252/*
617ba13b 4253 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4254 * underlying buffer_head on success. If 'in_mem' is true, we have all
4255 * data in memory that is needed to recreate the on-disk version of this
4256 * inode.
4257 */
8016e29f
HS
4258static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4259 struct ext4_iloc *iloc, int in_mem,
4260 ext4_fsblk_t *ret_block)
ac27a0ec 4261{
240799cd
TT
4262 struct ext4_group_desc *gdp;
4263 struct buffer_head *bh;
240799cd 4264 ext4_fsblk_t block;
02f03c42 4265 struct blk_plug plug;
240799cd
TT
4266 int inodes_per_block, inode_offset;
4267
3a06d778 4268 iloc->bh = NULL;
8016e29f
HS
4269 if (ino < EXT4_ROOT_INO ||
4270 ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
6a797d27 4271 return -EFSCORRUPTED;
ac27a0ec 4272
8016e29f 4273 iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
240799cd
TT
4274 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4275 if (!gdp)
ac27a0ec
DK
4276 return -EIO;
4277
240799cd
TT
4278 /*
4279 * Figure out the offset within the block group inode table
4280 */
00d09882 4281 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
8016e29f 4282 inode_offset = ((ino - 1) %
240799cd
TT
4283 EXT4_INODES_PER_GROUP(sb));
4284 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4285 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4286
4287 bh = sb_getblk(sb, block);
aebf0243 4288 if (unlikely(!bh))
860d21e2 4289 return -ENOMEM;
8e33fadf
ZY
4290 if (ext4_buffer_uptodate(bh))
4291 goto has_buffer;
9c83a923 4292
8e33fadf 4293 lock_buffer(bh);
f2c77973
ZY
4294 if (ext4_buffer_uptodate(bh)) {
4295 /* Someone brought it uptodate while we waited */
4296 unlock_buffer(bh);
4297 goto has_buffer;
4298 }
4299
8e33fadf
ZY
4300 /*
4301 * If we have all information of the inode in memory and this
4302 * is the only valid inode in the block, we need not read the
4303 * block.
4304 */
4305 if (in_mem) {
4306 struct buffer_head *bitmap_bh;
4307 int i, start;
ac27a0ec 4308
8e33fadf 4309 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4310
8e33fadf
ZY
4311 /* Is the inode bitmap in cache? */
4312 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4313 if (unlikely(!bitmap_bh))
4314 goto make_io;
ac27a0ec 4315
8e33fadf
ZY
4316 /*
4317 * If the inode bitmap isn't in cache then the
4318 * optimisation may end up performing two reads instead
4319 * of one, so skip it.
4320 */
4321 if (!buffer_uptodate(bitmap_bh)) {
ac27a0ec 4322 brelse(bitmap_bh);
8e33fadf 4323 goto make_io;
ac27a0ec 4324 }
8e33fadf
ZY
4325 for (i = start; i < start + inodes_per_block; i++) {
4326 if (i == inode_offset)
4327 continue;
4328 if (ext4_test_bit(i, bitmap_bh->b_data))
4329 break;
ac27a0ec 4330 }
8e33fadf
ZY
4331 brelse(bitmap_bh);
4332 if (i == start + inodes_per_block) {
4333 /* all other inodes are free, so skip I/O */
4334 memset(bh->b_data, 0, bh->b_size);
4335 set_buffer_uptodate(bh);
4336 unlock_buffer(bh);
4337 goto has_buffer;
4338 }
4339 }
ac27a0ec
DK
4340
4341make_io:
8e33fadf
ZY
4342 /*
4343 * If we need to do any I/O, try to pre-readahead extra
4344 * blocks from the inode table.
4345 */
4346 blk_start_plug(&plug);
4347 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4348 ext4_fsblk_t b, end, table;
4349 unsigned num;
4350 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4351
4352 table = ext4_inode_table(sb, gdp);
4353 /* s_inode_readahead_blks is always a power of 2 */
4354 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4355 if (table > b)
4356 b = table;
4357 end = b + ra_blks;
4358 num = EXT4_INODES_PER_GROUP(sb);
4359 if (ext4_has_group_desc_csum(sb))
4360 num -= ext4_itable_unused_count(sb, gdp);
4361 table += num / inodes_per_block;
4362 if (end > table)
4363 end = table;
4364 while (b <= end)
4365 ext4_sb_breadahead_unmovable(sb, b++);
4366 }
240799cd 4367
8e33fadf
ZY
4368 /*
4369 * There are other valid inodes in the buffer, this inode
4370 * has in-inode xattrs, or we don't have this inode in memory.
4371 * Read the block from disk.
4372 */
4373 trace_ext4_load_inode(sb, ino);
4374 ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL);
4375 blk_finish_plug(&plug);
4376 wait_on_buffer(bh);
4377 ext4_simulate_fail_bh(sb, bh, EXT4_SIM_INODE_EIO);
4378 if (!buffer_uptodate(bh)) {
4379 if (ret_block)
4380 *ret_block = block;
4381 brelse(bh);
4382 return -EIO;
ac27a0ec
DK
4383 }
4384has_buffer:
4385 iloc->bh = bh;
4386 return 0;
4387}
4388
8016e29f
HS
4389static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4390 struct ext4_iloc *iloc)
4391{
36108e9e 4392 ext4_fsblk_t err_blk = 0;
8016e29f
HS
4393 int ret;
4394
4395 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc, 0,
4396 &err_blk);
4397
4398 if (ret == -EIO)
4399 ext4_error_inode_block(inode, err_blk, EIO,
4400 "unable to read itable block");
4401
4402 return ret;
4403}
4404
617ba13b 4405int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec 4406{
36108e9e 4407 ext4_fsblk_t err_blk = 0;
8016e29f
HS
4408 int ret;
4409
ac27a0ec 4410 /* We have all inode data except xattrs in memory here. */
8016e29f
HS
4411 ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, iloc,
4412 !ext4_test_inode_state(inode, EXT4_STATE_XATTR), &err_blk);
4413
4414 if (ret == -EIO)
4415 ext4_error_inode_block(inode, err_blk, EIO,
4416 "unable to read itable block");
4417
4418 return ret;
4419}
4420
4421
4422int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4423 struct ext4_iloc *iloc)
4424{
4425 return __ext4_get_inode_loc(sb, ino, iloc, 0, NULL);
ac27a0ec
DK
4426}
4427
a8ab6d38 4428static bool ext4_should_enable_dax(struct inode *inode)
6642586b 4429{
a8ab6d38
IW
4430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4431
9cb20f94 4432 if (test_opt2(inode->i_sb, DAX_NEVER))
6642586b
RZ
4433 return false;
4434 if (!S_ISREG(inode->i_mode))
4435 return false;
4436 if (ext4_should_journal_data(inode))
4437 return false;
4438 if (ext4_has_inline_data(inode))
4439 return false;
592ddec7 4440 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
6642586b 4441 return false;
c93d8f88
EB
4442 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4443 return false;
a8ab6d38
IW
4444 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4445 return false;
4446 if (test_opt(inode->i_sb, DAX_ALWAYS))
4447 return true;
4448
b383a73f 4449 return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
6642586b
RZ
4450}
4451
043546e4 4452void ext4_set_inode_flags(struct inode *inode, bool init)
ac27a0ec 4453{
617ba13b 4454 unsigned int flags = EXT4_I(inode)->i_flags;
00a1a053 4455 unsigned int new_fl = 0;
ac27a0ec 4456
043546e4
IW
4457 WARN_ON_ONCE(IS_DAX(inode) && init);
4458
617ba13b 4459 if (flags & EXT4_SYNC_FL)
00a1a053 4460 new_fl |= S_SYNC;
617ba13b 4461 if (flags & EXT4_APPEND_FL)
00a1a053 4462 new_fl |= S_APPEND;
617ba13b 4463 if (flags & EXT4_IMMUTABLE_FL)
00a1a053 4464 new_fl |= S_IMMUTABLE;
617ba13b 4465 if (flags & EXT4_NOATIME_FL)
00a1a053 4466 new_fl |= S_NOATIME;
617ba13b 4467 if (flags & EXT4_DIRSYNC_FL)
00a1a053 4468 new_fl |= S_DIRSYNC;
043546e4
IW
4469
4470 /* Because of the way inode_set_flags() works we must preserve S_DAX
4471 * here if already set. */
4472 new_fl |= (inode->i_flags & S_DAX);
4473 if (init && ext4_should_enable_dax(inode))
923ae0ff 4474 new_fl |= S_DAX;
043546e4 4475
2ee6a576
EB
4476 if (flags & EXT4_ENCRYPT_FL)
4477 new_fl |= S_ENCRYPTED;
b886ee3e
GKB
4478 if (flags & EXT4_CASEFOLD_FL)
4479 new_fl |= S_CASEFOLD;
c93d8f88
EB
4480 if (flags & EXT4_VERITY_FL)
4481 new_fl |= S_VERITY;
5f16f322 4482 inode_set_flags(inode, new_fl,
2ee6a576 4483 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
c93d8f88 4484 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
ac27a0ec
DK
4485}
4486
0fc1b451 4487static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4488 struct ext4_inode_info *ei)
0fc1b451
AK
4489{
4490 blkcnt_t i_blocks ;
8180a562
AK
4491 struct inode *inode = &(ei->vfs_inode);
4492 struct super_block *sb = inode->i_sb;
0fc1b451 4493
e2b911c5 4494 if (ext4_has_feature_huge_file(sb)) {
0fc1b451
AK
4495 /* we are using combined 48 bit field */
4496 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4497 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4498 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4499 /* i_blocks represent file system block size */
4500 return i_blocks << (inode->i_blkbits - 9);
4501 } else {
4502 return i_blocks;
4503 }
0fc1b451
AK
4504 } else {
4505 return le32_to_cpu(raw_inode->i_blocks_lo);
4506 }
4507}
ff9ddf7e 4508
eb9b5f01 4509static inline int ext4_iget_extra_inode(struct inode *inode,
152a7b0a
TM
4510 struct ext4_inode *raw_inode,
4511 struct ext4_inode_info *ei)
4512{
4513 __le32 *magic = (void *)raw_inode +
4514 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
eb9b5f01 4515
290ab230
EB
4516 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4517 EXT4_INODE_SIZE(inode->i_sb) &&
4518 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4519 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
eb9b5f01 4520 return ext4_find_inline_data_nolock(inode);
f19d5870
TM
4521 } else
4522 EXT4_I(inode)->i_inline_off = 0;
eb9b5f01 4523 return 0;
152a7b0a
TM
4524}
4525
040cb378
LX
4526int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4527{
0b7b7779 4528 if (!ext4_has_feature_project(inode->i_sb))
040cb378
LX
4529 return -EOPNOTSUPP;
4530 *projid = EXT4_I(inode)->i_projid;
4531 return 0;
4532}
4533
e254d1af
EG
4534/*
4535 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4536 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4537 * set.
4538 */
4539static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4540{
4541 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4542 inode_set_iversion_raw(inode, val);
4543 else
4544 inode_set_iversion_queried(inode, val);
4545}
4546static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4547{
4548 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4549 return inode_peek_iversion_raw(inode);
4550 else
4551 return inode_peek_iversion(inode);
4552}
4553
8a363970
TT
4554struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4555 ext4_iget_flags flags, const char *function,
4556 unsigned int line)
ac27a0ec 4557{
617ba13b
MC
4558 struct ext4_iloc iloc;
4559 struct ext4_inode *raw_inode;
1d1fe1ee 4560 struct ext4_inode_info *ei;
bd2c38cf 4561 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1d1fe1ee 4562 struct inode *inode;
b436b9be 4563 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4564 long ret;
7e6e1ef4 4565 loff_t size;
ac27a0ec 4566 int block;
08cefc7a
EB
4567 uid_t i_uid;
4568 gid_t i_gid;
040cb378 4569 projid_t i_projid;
ac27a0ec 4570
191ce178 4571 if ((!(flags & EXT4_IGET_SPECIAL) &&
bd2c38cf
JK
4572 ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4573 ino == le32_to_cpu(es->s_usr_quota_inum) ||
4574 ino == le32_to_cpu(es->s_grp_quota_inum) ||
02f310fc
JK
4575 ino == le32_to_cpu(es->s_prj_quota_inum) ||
4576 ino == le32_to_cpu(es->s_orphan_file_inum))) ||
8a363970 4577 (ino < EXT4_ROOT_INO) ||
bd2c38cf 4578 (ino > le32_to_cpu(es->s_inodes_count))) {
8a363970
TT
4579 if (flags & EXT4_IGET_HANDLE)
4580 return ERR_PTR(-ESTALE);
014c9caa 4581 __ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
8a363970
TT
4582 "inode #%lu: comm %s: iget: illegal inode #",
4583 ino, current->comm);
4584 return ERR_PTR(-EFSCORRUPTED);
4585 }
4586
1d1fe1ee
DH
4587 inode = iget_locked(sb, ino);
4588 if (!inode)
4589 return ERR_PTR(-ENOMEM);
4590 if (!(inode->i_state & I_NEW))
4591 return inode;
4592
4593 ei = EXT4_I(inode);
7dc57615 4594 iloc.bh = NULL;
ac27a0ec 4595
8016e29f 4596 ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
1d1fe1ee 4597 if (ret < 0)
ac27a0ec 4598 goto bad_inode;
617ba13b 4599 raw_inode = ext4_raw_inode(&iloc);
814525f4 4600
8e4b5eae 4601 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
8a363970
TT
4602 ext4_error_inode(inode, function, line, 0,
4603 "iget: root inode unallocated");
8e4b5eae
TT
4604 ret = -EFSCORRUPTED;
4605 goto bad_inode;
4606 }
4607
8a363970
TT
4608 if ((flags & EXT4_IGET_HANDLE) &&
4609 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4610 ret = -ESTALE;
4611 goto bad_inode;
4612 }
4613
814525f4
DW
4614 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4615 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4616 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2dc8d9e1
EB
4617 EXT4_INODE_SIZE(inode->i_sb) ||
4618 (ei->i_extra_isize & 3)) {
8a363970
TT
4619 ext4_error_inode(inode, function, line, 0,
4620 "iget: bad extra_isize %u "
4621 "(inode size %u)",
2dc8d9e1
EB
4622 ei->i_extra_isize,
4623 EXT4_INODE_SIZE(inode->i_sb));
6a797d27 4624 ret = -EFSCORRUPTED;
814525f4
DW
4625 goto bad_inode;
4626 }
4627 } else
4628 ei->i_extra_isize = 0;
4629
4630 /* Precompute checksum seed for inode metadata */
9aa5d32b 4631 if (ext4_has_metadata_csum(sb)) {
814525f4
DW
4632 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4633 __u32 csum;
4634 __le32 inum = cpu_to_le32(inode->i_ino);
4635 __le32 gen = raw_inode->i_generation;
4636 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4637 sizeof(inum));
4638 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4639 sizeof(gen));
4640 }
4641
8016e29f
HS
4642 if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4643 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4644 (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4645 ext4_error_inode_err(inode, function, line, 0,
4646 EFSBADCRC, "iget: checksum invalid");
6a797d27 4647 ret = -EFSBADCRC;
814525f4
DW
4648 goto bad_inode;
4649 }
4650
ac27a0ec 4651 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4652 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4653 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
0b7b7779 4654 if (ext4_has_feature_project(sb) &&
040cb378
LX
4655 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4656 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4657 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4658 else
4659 i_projid = EXT4_DEF_PROJID;
4660
af5bc92d 4661 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4662 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4663 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4664 }
08cefc7a
EB
4665 i_uid_write(inode, i_uid);
4666 i_gid_write(inode, i_gid);
040cb378 4667 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
bfe86848 4668 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4669
353eb83c 4670 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4671 ei->i_inline_off = 0;
ac27a0ec
DK
4672 ei->i_dir_start_lookup = 0;
4673 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4674 /* We now have enough fields to check if the inode was active or not.
4675 * This is needed because nfsd might try to access dead inodes
4676 * the test is that same one that e2fsck uses
4677 * NeilBrown 1999oct15
4678 */
4679 if (inode->i_nlink == 0) {
393d1d1d
DTB
4680 if ((inode->i_mode == 0 ||
4681 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4682 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4683 /* this inode is deleted */
1d1fe1ee 4684 ret = -ESTALE;
ac27a0ec
DK
4685 goto bad_inode;
4686 }
4687 /* The only unlinked inodes we let through here have
4688 * valid i_mode and are being read by the orphan
4689 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4690 * the process of deleting those.
4691 * OR it is the EXT4_BOOT_LOADER_INO which is
4692 * not initialized on a new filesystem. */
ac27a0ec 4693 }
ac27a0ec 4694 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
043546e4 4695 ext4_set_inode_flags(inode, true);
0fc1b451 4696 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4697 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
e2b911c5 4698 if (ext4_has_feature_64bit(sb))
a1ddeb7e
BP
4699 ei->i_file_acl |=
4700 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
e08ac99f 4701 inode->i_size = ext4_isize(sb, raw_inode);
7e6e1ef4 4702 if ((size = i_size_read(inode)) < 0) {
8a363970
TT
4703 ext4_error_inode(inode, function, line, 0,
4704 "iget: bad i_size value: %lld", size);
7e6e1ef4
DW
4705 ret = -EFSCORRUPTED;
4706 goto bad_inode;
4707 }
48a34311
JK
4708 /*
4709 * If dir_index is not enabled but there's dir with INDEX flag set,
4710 * we'd normally treat htree data as empty space. But with metadata
4711 * checksumming that corrupts checksums so forbid that.
4712 */
4713 if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4714 ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4715 ext4_error_inode(inode, function, line, 0,
4716 "iget: Dir with htree data on filesystem without dir_index feature.");
4717 ret = -EFSCORRUPTED;
4718 goto bad_inode;
4719 }
ac27a0ec 4720 ei->i_disksize = inode->i_size;
a9e7f447
DM
4721#ifdef CONFIG_QUOTA
4722 ei->i_reserved_quota = 0;
4723#endif
ac27a0ec
DK
4724 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4725 ei->i_block_group = iloc.block_group;
a4912123 4726 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4727 /*
4728 * NOTE! The in-memory inode i_data array is in little-endian order
4729 * even on big-endian machines: we do NOT byteswap the block numbers!
4730 */
617ba13b 4731 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4732 ei->i_data[block] = raw_inode->i_block[block];
4733 INIT_LIST_HEAD(&ei->i_orphan);
aa75f4d3 4734 ext4_fc_init_inode(&ei->vfs_inode);
ac27a0ec 4735
b436b9be
JK
4736 /*
4737 * Set transaction id's of transactions that have to be committed
4738 * to finish f[data]sync. We set them to currently running transaction
4739 * as we cannot be sure that the inode or some of its metadata isn't
4740 * part of the transaction - the inode could have been reclaimed and
4741 * now it is reread from disk.
4742 */
4743 if (journal) {
4744 transaction_t *transaction;
4745 tid_t tid;
4746
a931da6a 4747 read_lock(&journal->j_state_lock);
b436b9be
JK
4748 if (journal->j_running_transaction)
4749 transaction = journal->j_running_transaction;
4750 else
4751 transaction = journal->j_committing_transaction;
4752 if (transaction)
4753 tid = transaction->t_tid;
4754 else
4755 tid = journal->j_commit_sequence;
a931da6a 4756 read_unlock(&journal->j_state_lock);
b436b9be
JK
4757 ei->i_sync_tid = tid;
4758 ei->i_datasync_tid = tid;
4759 }
4760
0040d987 4761 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4762 if (ei->i_extra_isize == 0) {
4763 /* The extra space is currently unused. Use it. */
2dc8d9e1 4764 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
617ba13b
MC
4765 ei->i_extra_isize = sizeof(struct ext4_inode) -
4766 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4767 } else {
eb9b5f01
TT
4768 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4769 if (ret)
4770 goto bad_inode;
ac27a0ec 4771 }
814525f4 4772 }
ac27a0ec 4773
ef7f3835
KS
4774 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4775 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4776 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4777 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4778
ed3654eb 4779 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
ee73f9a5
JL
4780 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4781
c4f65706
TT
4782 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4783 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
ee73f9a5 4784 ivers |=
c4f65706
TT
4785 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4786 }
e254d1af 4787 ext4_inode_set_iversion_queried(inode, ivers);
25ec56b5
JNC
4788 }
4789
c4b5a614 4790 ret = 0;
485c26ec 4791 if (ei->i_file_acl &&
ce9f24cc 4792 !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
8a363970
TT
4793 ext4_error_inode(inode, function, line, 0,
4794 "iget: bad extended attribute block %llu",
24676da4 4795 ei->i_file_acl);
6a797d27 4796 ret = -EFSCORRUPTED;
485c26ec 4797 goto bad_inode;
f19d5870 4798 } else if (!ext4_has_inline_data(inode)) {
bc716523 4799 /* validate the block references in the inode */
8016e29f
HS
4800 if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4801 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4802 (S_ISLNK(inode->i_mode) &&
4803 !ext4_inode_is_fast_symlink(inode)))) {
bc716523 4804 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
f19d5870 4805 ret = ext4_ext_check_inode(inode);
bc716523
LS
4806 else
4807 ret = ext4_ind_check_inode(inode);
f19d5870 4808 }
fe2c8191 4809 }
567f3e9a 4810 if (ret)
de9a55b8 4811 goto bad_inode;
7a262f7c 4812
ac27a0ec 4813 if (S_ISREG(inode->i_mode)) {
617ba13b 4814 inode->i_op = &ext4_file_inode_operations;
be64f884 4815 inode->i_fop = &ext4_file_operations;
617ba13b 4816 ext4_set_aops(inode);
ac27a0ec 4817 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4818 inode->i_op = &ext4_dir_inode_operations;
4819 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4820 } else if (S_ISLNK(inode->i_mode)) {
6390d33b
LR
4821 /* VFS does not allow setting these so must be corruption */
4822 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
8a363970
TT
4823 ext4_error_inode(inode, function, line, 0,
4824 "iget: immutable or append flags "
4825 "not allowed on symlinks");
6390d33b
LR
4826 ret = -EFSCORRUPTED;
4827 goto bad_inode;
4828 }
592ddec7 4829 if (IS_ENCRYPTED(inode)) {
a7a67e8a
AV
4830 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4831 ext4_set_aops(inode);
4832 } else if (ext4_inode_is_fast_symlink(inode)) {
75e7566b 4833 inode->i_link = (char *)ei->i_data;
617ba13b 4834 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4835 nd_terminate_link(ei->i_data, inode->i_size,
4836 sizeof(ei->i_data) - 1);
4837 } else {
617ba13b
MC
4838 inode->i_op = &ext4_symlink_inode_operations;
4839 ext4_set_aops(inode);
ac27a0ec 4840 }
21fc61c7 4841 inode_nohighmem(inode);
563bdd61
TT
4842 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4843 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4844 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4845 if (raw_inode->i_block[0])
4846 init_special_inode(inode, inode->i_mode,
4847 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4848 else
4849 init_special_inode(inode, inode->i_mode,
4850 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4851 } else if (ino == EXT4_BOOT_LOADER_INO) {
4852 make_bad_inode(inode);
563bdd61 4853 } else {
6a797d27 4854 ret = -EFSCORRUPTED;
8a363970
TT
4855 ext4_error_inode(inode, function, line, 0,
4856 "iget: bogus i_mode (%o)", inode->i_mode);
563bdd61 4857 goto bad_inode;
ac27a0ec 4858 }
6456ca65
TT
4859 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4860 ext4_error_inode(inode, function, line, 0,
4861 "casefold flag without casefold feature");
af5bc92d 4862 brelse(iloc.bh);
dec214d0 4863
1d1fe1ee
DH
4864 unlock_new_inode(inode);
4865 return inode;
ac27a0ec
DK
4866
4867bad_inode:
567f3e9a 4868 brelse(iloc.bh);
1d1fe1ee
DH
4869 iget_failed(inode);
4870 return ERR_PTR(ret);
ac27a0ec
DK
4871}
4872
0fc1b451
AK
4873static int ext4_inode_blocks_set(handle_t *handle,
4874 struct ext4_inode *raw_inode,
4875 struct ext4_inode_info *ei)
4876{
4877 struct inode *inode = &(ei->vfs_inode);
28936b62 4878 u64 i_blocks = READ_ONCE(inode->i_blocks);
0fc1b451 4879 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4880
4881 if (i_blocks <= ~0U) {
4882 /*
4907cb7b 4883 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4884 * as multiple of 512 bytes
4885 */
8180a562 4886 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4887 raw_inode->i_blocks_high = 0;
84a8dce2 4888 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4889 return 0;
4890 }
baaae979
ZY
4891
4892 /*
4893 * This should never happen since sb->s_maxbytes should not have
4894 * allowed this, sb->s_maxbytes was set according to the huge_file
4895 * feature in ext4_fill_super().
4896 */
e2b911c5 4897 if (!ext4_has_feature_huge_file(sb))
baaae979 4898 return -EFSCORRUPTED;
f287a1a5
TT
4899
4900 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4901 /*
4902 * i_blocks can be represented in a 48 bit variable
4903 * as multiple of 512 bytes
4904 */
8180a562 4905 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4906 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4907 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4908 } else {
84a8dce2 4909 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4910 /* i_block is stored in file system block size */
4911 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4912 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4913 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4914 }
f287a1a5 4915 return 0;
0fc1b451
AK
4916}
4917
3f19b2ab
DH
4918static void __ext4_update_other_inode_time(struct super_block *sb,
4919 unsigned long orig_ino,
4920 unsigned long ino,
4921 struct ext4_inode *raw_inode)
a26f4992 4922{
3f19b2ab
DH
4923 struct inode *inode;
4924
4925 inode = find_inode_by_ino_rcu(sb, ino);
4926 if (!inode)
4927 return;
a26f4992 4928
ed296c6c 4929 if (!inode_is_dirtytime_only(inode))
3f19b2ab
DH
4930 return;
4931
a26f4992 4932 spin_lock(&inode->i_lock);
ed296c6c 4933 if (inode_is_dirtytime_only(inode)) {
a26f4992
TT
4934 struct ext4_inode_info *ei = EXT4_I(inode);
4935
5fcd5750 4936 inode->i_state &= ~I_DIRTY_TIME;
a26f4992
TT
4937 spin_unlock(&inode->i_lock);
4938
4939 spin_lock(&ei->i_raw_lock);
3f19b2ab
DH
4940 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4941 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4942 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4943 ext4_inode_csum_set(inode, raw_inode, ei);
a26f4992 4944 spin_unlock(&ei->i_raw_lock);
3f19b2ab
DH
4945 trace_ext4_other_inode_update_time(inode, orig_ino);
4946 return;
a26f4992
TT
4947 }
4948 spin_unlock(&inode->i_lock);
a26f4992
TT
4949}
4950
4951/*
4952 * Opportunistically update the other time fields for other inodes in
4953 * the same inode table block.
4954 */
4955static void ext4_update_other_inodes_time(struct super_block *sb,
4956 unsigned long orig_ino, char *buf)
4957{
a26f4992
TT
4958 unsigned long ino;
4959 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4960 int inode_size = EXT4_INODE_SIZE(sb);
4961
0f0ff9a9
TT
4962 /*
4963 * Calculate the first inode in the inode table block. Inode
4964 * numbers are one-based. That is, the first inode in a block
4965 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4966 */
4967 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
3f19b2ab 4968 rcu_read_lock();
a26f4992
TT
4969 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4970 if (ino == orig_ino)
4971 continue;
3f19b2ab
DH
4972 __ext4_update_other_inode_time(sb, orig_ino, ino,
4973 (struct ext4_inode *)buf);
a26f4992 4974 }
3f19b2ab 4975 rcu_read_unlock();
a26f4992
TT
4976}
4977
ac27a0ec
DK
4978/*
4979 * Post the struct inode info into an on-disk inode location in the
4980 * buffer-cache. This gobbles the caller's reference to the
4981 * buffer_head in the inode location struct.
4982 *
4983 * The caller must have write access to iloc->bh.
4984 */
617ba13b 4985static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4986 struct inode *inode,
830156c7 4987 struct ext4_iloc *iloc)
ac27a0ec 4988{
617ba13b
MC
4989 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4990 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4991 struct buffer_head *bh = iloc->bh;
202ee5df 4992 struct super_block *sb = inode->i_sb;
7d8bd3c7 4993 int err = 0, block;
202ee5df 4994 int need_datasync = 0, set_large_file = 0;
08cefc7a
EB
4995 uid_t i_uid;
4996 gid_t i_gid;
040cb378 4997 projid_t i_projid;
ac27a0ec 4998
202ee5df
TT
4999 spin_lock(&ei->i_raw_lock);
5000
baaae979
ZY
5001 /*
5002 * For fields not tracked in the in-memory inode, initialise them
5003 * to zero for new inodes.
5004 */
19f5fb7a 5005 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5006 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5007
13221811 5008 err = ext4_inode_blocks_set(handle, raw_inode, ei);
13221811 5009
ac27a0ec 5010 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
5011 i_uid = i_uid_read(inode);
5012 i_gid = i_gid_read(inode);
040cb378 5013 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
af5bc92d 5014 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
5015 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5016 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
baaae979
ZY
5017 /*
5018 * Fix up interoperability with old kernels. Otherwise,
5019 * old inodes get re-used with the upper 16 bits of the
5020 * uid/gid intact.
5021 */
93e3b4e6
DJ
5022 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5023 raw_inode->i_uid_high = 0;
5024 raw_inode->i_gid_high = 0;
5025 } else {
ac27a0ec 5026 raw_inode->i_uid_high =
08cefc7a 5027 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 5028 raw_inode->i_gid_high =
08cefc7a 5029 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
5030 }
5031 } else {
08cefc7a
EB
5032 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5033 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
5034 raw_inode->i_uid_high = 0;
5035 raw_inode->i_gid_high = 0;
5036 }
5037 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5038
5039 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5040 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5041 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5042 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5043
ac27a0ec 5044 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 5045 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
ed3654eb 5046 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
a1ddeb7e
BP
5047 raw_inode->i_file_acl_high =
5048 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5049 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
dce8e237 5050 if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode)) {
b71fc079
JK
5051 ext4_isize_set(raw_inode, ei->i_disksize);
5052 need_datasync = 1;
5053 }
a48380f7 5054 if (ei->i_disksize > 0x7fffffffULL) {
e2b911c5 5055 if (!ext4_has_feature_large_file(sb) ||
a48380f7 5056 EXT4_SB(sb)->s_es->s_rev_level ==
202ee5df
TT
5057 cpu_to_le32(EXT4_GOOD_OLD_REV))
5058 set_large_file = 1;
ac27a0ec
DK
5059 }
5060 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5061 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5062 if (old_valid_dev(inode->i_rdev)) {
5063 raw_inode->i_block[0] =
5064 cpu_to_le32(old_encode_dev(inode->i_rdev));
5065 raw_inode->i_block[1] = 0;
5066 } else {
5067 raw_inode->i_block[0] = 0;
5068 raw_inode->i_block[1] =
5069 cpu_to_le32(new_encode_dev(inode->i_rdev));
5070 raw_inode->i_block[2] = 0;
5071 }
f19d5870 5072 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
5073 for (block = 0; block < EXT4_N_BLOCKS; block++)
5074 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 5075 }
ac27a0ec 5076
ed3654eb 5077 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
e254d1af 5078 u64 ivers = ext4_inode_peek_iversion(inode);
ee73f9a5
JL
5079
5080 raw_inode->i_disk_version = cpu_to_le32(ivers);
c4f65706
TT
5081 if (ei->i_extra_isize) {
5082 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5083 raw_inode->i_version_hi =
ee73f9a5 5084 cpu_to_le32(ivers >> 32);
c4f65706
TT
5085 raw_inode->i_extra_isize =
5086 cpu_to_le16(ei->i_extra_isize);
5087 }
25ec56b5 5088 }
040cb378 5089
baaae979
ZY
5090 if (i_projid != EXT4_DEF_PROJID &&
5091 !ext4_has_feature_project(inode->i_sb))
5092 err = err ?: -EFSCORRUPTED;
040cb378
LX
5093
5094 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5095 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5096 raw_inode->i_projid = cpu_to_le32(i_projid);
5097
814525f4 5098 ext4_inode_csum_set(inode, raw_inode, ei);
202ee5df 5099 spin_unlock(&ei->i_raw_lock);
baaae979
ZY
5100 if (err) {
5101 EXT4_ERROR_INODE(inode, "corrupted inode contents");
5102 goto out_brelse;
5103 }
5104
1751e8a6 5105 if (inode->i_sb->s_flags & SB_LAZYTIME)
a26f4992
TT
5106 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5107 bh->b_data);
202ee5df 5108
830156c7 5109 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
7d8bd3c7
SL
5110 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5111 if (err)
baaae979 5112 goto out_error;
19f5fb7a 5113 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
202ee5df 5114 if (set_large_file) {
5d601255 5115 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
188c299e
JK
5116 err = ext4_journal_get_write_access(handle, sb,
5117 EXT4_SB(sb)->s_sbh,
5118 EXT4_JTR_NONE);
202ee5df 5119 if (err)
baaae979 5120 goto out_error;
05c2c00f 5121 lock_buffer(EXT4_SB(sb)->s_sbh);
e2b911c5 5122 ext4_set_feature_large_file(sb);
05c2c00f
JK
5123 ext4_superblock_csum_set(sb);
5124 unlock_buffer(EXT4_SB(sb)->s_sbh);
202ee5df 5125 ext4_handle_sync(handle);
a3f5cf14
JK
5126 err = ext4_handle_dirty_metadata(handle, NULL,
5127 EXT4_SB(sb)->s_sbh);
202ee5df 5128 }
b71fc079 5129 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
baaae979
ZY
5130out_error:
5131 ext4_std_error(inode->i_sb, err);
ac27a0ec 5132out_brelse:
af5bc92d 5133 brelse(bh);
ac27a0ec
DK
5134 return err;
5135}
5136
5137/*
617ba13b 5138 * ext4_write_inode()
ac27a0ec
DK
5139 *
5140 * We are called from a few places:
5141 *
87f7e416 5142 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
ac27a0ec 5143 * Here, there will be no transaction running. We wait for any running
4907cb7b 5144 * transaction to commit.
ac27a0ec 5145 *
87f7e416
TT
5146 * - Within flush work (sys_sync(), kupdate and such).
5147 * We wait on commit, if told to.
ac27a0ec 5148 *
87f7e416
TT
5149 * - Within iput_final() -> write_inode_now()
5150 * We wait on commit, if told to.
ac27a0ec
DK
5151 *
5152 * In all cases it is actually safe for us to return without doing anything,
5153 * because the inode has been copied into a raw inode buffer in
87f7e416
TT
5154 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5155 * writeback.
ac27a0ec
DK
5156 *
5157 * Note that we are absolutely dependent upon all inode dirtiers doing the
5158 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5159 * which we are interested.
5160 *
5161 * It would be a bug for them to not do this. The code:
5162 *
5163 * mark_inode_dirty(inode)
5164 * stuff();
5165 * inode->i_size = expr;
5166 *
87f7e416
TT
5167 * is in error because write_inode() could occur while `stuff()' is running,
5168 * and the new i_size will be lost. Plus the inode will no longer be on the
5169 * superblock's dirty inode list.
ac27a0ec 5170 */
a9185b41 5171int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5172{
91ac6f43
FM
5173 int err;
5174
18f2c4fc
TT
5175 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5176 sb_rdonly(inode->i_sb))
ac27a0ec
DK
5177 return 0;
5178
18f2c4fc
TT
5179 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5180 return -EIO;
5181
91ac6f43
FM
5182 if (EXT4_SB(inode->i_sb)->s_journal) {
5183 if (ext4_journal_current_handle()) {
5184 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5185 dump_stack();
5186 return -EIO;
5187 }
ac27a0ec 5188
10542c22
JK
5189 /*
5190 * No need to force transaction in WB_SYNC_NONE mode. Also
5191 * ext4_sync_fs() will force the commit after everything is
5192 * written.
5193 */
5194 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
91ac6f43
FM
5195 return 0;
5196
aa75f4d3 5197 err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
18f2c4fc 5198 EXT4_I(inode)->i_sync_tid);
91ac6f43
FM
5199 } else {
5200 struct ext4_iloc iloc;
ac27a0ec 5201
8016e29f 5202 err = __ext4_get_inode_loc_noinmem(inode, &iloc);
91ac6f43
FM
5203 if (err)
5204 return err;
10542c22
JK
5205 /*
5206 * sync(2) will flush the whole buffer cache. No need to do
5207 * it here separately for each inode.
5208 */
5209 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
830156c7
FM
5210 sync_dirty_buffer(iloc.bh);
5211 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
54d3adbc
TT
5212 ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5213 "IO error syncing inode");
830156c7
FM
5214 err = -EIO;
5215 }
fd2dd9fb 5216 brelse(iloc.bh);
91ac6f43
FM
5217 }
5218 return err;
ac27a0ec
DK
5219}
5220
53e87268
JK
5221/*
5222 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5223 * buffers that are attached to a page stradding i_size and are undergoing
5224 * commit. In that case we have to wait for commit to finish and try again.
5225 */
5226static void ext4_wait_for_tail_page_commit(struct inode *inode)
5227{
5228 struct page *page;
5229 unsigned offset;
5230 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5231 tid_t commit_tid = 0;
5232 int ret;
5233
09cbfeaf 5234 offset = inode->i_size & (PAGE_SIZE - 1);
53e87268 5235 /*
565333a1 5236 * If the page is fully truncated, we don't need to wait for any commit
5237 * (and we even should not as __ext4_journalled_invalidatepage() may
5238 * strip all buffers from the page but keep the page dirty which can then
5239 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5240 * buffers). Also we don't need to wait for any commit if all buffers in
5241 * the page remain valid. This is most beneficial for the common case of
5242 * blocksize == PAGESIZE.
53e87268 5243 */
565333a1 5244 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
53e87268
JK
5245 return;
5246 while (1) {
5247 page = find_lock_page(inode->i_mapping,
09cbfeaf 5248 inode->i_size >> PAGE_SHIFT);
53e87268
JK
5249 if (!page)
5250 return;
ca99fdd2 5251 ret = __ext4_journalled_invalidatepage(page, offset,
09cbfeaf 5252 PAGE_SIZE - offset);
53e87268 5253 unlock_page(page);
09cbfeaf 5254 put_page(page);
53e87268
JK
5255 if (ret != -EBUSY)
5256 return;
5257 commit_tid = 0;
5258 read_lock(&journal->j_state_lock);
5259 if (journal->j_committing_transaction)
5260 commit_tid = journal->j_committing_transaction->t_tid;
5261 read_unlock(&journal->j_state_lock);
5262 if (commit_tid)
5263 jbd2_log_wait_commit(journal, commit_tid);
5264 }
5265}
5266
ac27a0ec 5267/*
617ba13b 5268 * ext4_setattr()
ac27a0ec
DK
5269 *
5270 * Called from notify_change.
5271 *
5272 * We want to trap VFS attempts to truncate the file as soon as
5273 * possible. In particular, we want to make sure that when the VFS
5274 * shrinks i_size, we put the inode on the orphan list and modify
5275 * i_disksize immediately, so that during the subsequent flushing of
5276 * dirty pages and freeing of disk blocks, we can guarantee that any
5277 * commit will leave the blocks being flushed in an unused state on
5278 * disk. (On recovery, the inode will get truncated and the blocks will
5279 * be freed, so we have a strong guarantee that no future commit will
5280 * leave these blocks visible to the user.)
5281 *
678aaf48
JK
5282 * Another thing we have to assure is that if we are in ordered mode
5283 * and inode is still attached to the committing transaction, we must
5284 * we start writeout of all the dirty pages which are being truncated.
5285 * This way we are sure that all the data written in the previous
5286 * transaction are already on disk (truncate waits for pages under
5287 * writeback).
5288 *
5289 * Called with inode->i_mutex down.
ac27a0ec 5290 */
549c7297
CB
5291int ext4_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
5292 struct iattr *attr)
ac27a0ec 5293{
2b0143b5 5294 struct inode *inode = d_inode(dentry);
ac27a0ec 5295 int error, rc = 0;
3d287de3 5296 int orphan = 0;
ac27a0ec
DK
5297 const unsigned int ia_valid = attr->ia_valid;
5298
0db1ff22
TT
5299 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5300 return -EIO;
5301
02b016ca
TT
5302 if (unlikely(IS_IMMUTABLE(inode)))
5303 return -EPERM;
5304
5305 if (unlikely(IS_APPEND(inode) &&
5306 (ia_valid & (ATTR_MODE | ATTR_UID |
5307 ATTR_GID | ATTR_TIMES_SET))))
5308 return -EPERM;
5309
14f3db55 5310 error = setattr_prepare(mnt_userns, dentry, attr);
ac27a0ec
DK
5311 if (error)
5312 return error;
5313
3ce2b8dd
EB
5314 error = fscrypt_prepare_setattr(dentry, attr);
5315 if (error)
5316 return error;
5317
c93d8f88
EB
5318 error = fsverity_prepare_setattr(dentry, attr);
5319 if (error)
5320 return error;
5321
a7cdadee
JK
5322 if (is_quota_modification(inode, attr)) {
5323 error = dquot_initialize(inode);
5324 if (error)
5325 return error;
5326 }
aa75f4d3 5327 ext4_fc_start_update(inode);
08cefc7a
EB
5328 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5329 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
5330 handle_t *handle;
5331
5332 /* (user+group)*(old+new) structure, inode write (sb,
5333 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
5334 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5335 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5336 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
5337 if (IS_ERR(handle)) {
5338 error = PTR_ERR(handle);
5339 goto err_out;
5340 }
7a9ca53a
TE
5341
5342 /* dquot_transfer() calls back ext4_get_inode_usage() which
5343 * counts xattr inode references.
5344 */
5345 down_read(&EXT4_I(inode)->xattr_sem);
b43fa828 5346 error = dquot_transfer(inode, attr);
7a9ca53a
TE
5347 up_read(&EXT4_I(inode)->xattr_sem);
5348
ac27a0ec 5349 if (error) {
617ba13b 5350 ext4_journal_stop(handle);
aa75f4d3 5351 ext4_fc_stop_update(inode);
ac27a0ec
DK
5352 return error;
5353 }
5354 /* Update corresponding info in inode so that everything is in
5355 * one transaction */
5356 if (attr->ia_valid & ATTR_UID)
5357 inode->i_uid = attr->ia_uid;
5358 if (attr->ia_valid & ATTR_GID)
5359 inode->i_gid = attr->ia_gid;
617ba13b
MC
5360 error = ext4_mark_inode_dirty(handle, inode);
5361 ext4_journal_stop(handle);
512c15ef
PB
5362 if (unlikely(error)) {
5363 ext4_fc_stop_update(inode);
4209ae12 5364 return error;
512c15ef 5365 }
ac27a0ec
DK
5366 }
5367
3da40c7b 5368 if (attr->ia_valid & ATTR_SIZE) {
5208386c 5369 handle_t *handle;
3da40c7b 5370 loff_t oldsize = inode->i_size;
b9c1c267 5371 int shrink = (attr->ia_size < inode->i_size);
562c72aa 5372
12e9b892 5373 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5374 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5375
aa75f4d3
HS
5376 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5377 ext4_fc_stop_update(inode);
0c095c7f 5378 return -EFBIG;
aa75f4d3 5379 }
e2b46574 5380 }
aa75f4d3
HS
5381 if (!S_ISREG(inode->i_mode)) {
5382 ext4_fc_stop_update(inode);
3da40c7b 5383 return -EINVAL;
aa75f4d3 5384 }
dff6efc3
CH
5385
5386 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5387 inode_inc_iversion(inode);
5388
b9c1c267
JK
5389 if (shrink) {
5390 if (ext4_should_order_data(inode)) {
5391 error = ext4_begin_ordered_truncate(inode,
678aaf48 5392 attr->ia_size);
b9c1c267
JK
5393 if (error)
5394 goto err_out;
5395 }
5396 /*
5397 * Blocks are going to be removed from the inode. Wait
5398 * for dio in flight.
5399 */
5400 inode_dio_wait(inode);
5401 }
5402
d4f5258e 5403 filemap_invalidate_lock(inode->i_mapping);
b9c1c267
JK
5404
5405 rc = ext4_break_layouts(inode);
5406 if (rc) {
d4f5258e 5407 filemap_invalidate_unlock(inode->i_mapping);
aa75f4d3 5408 goto err_out;
3da40c7b 5409 }
b9c1c267 5410
3da40c7b 5411 if (attr->ia_size != inode->i_size) {
5208386c
JK
5412 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5413 if (IS_ERR(handle)) {
5414 error = PTR_ERR(handle);
b9c1c267 5415 goto out_mmap_sem;
5208386c 5416 }
3da40c7b 5417 if (ext4_handle_valid(handle) && shrink) {
5208386c
JK
5418 error = ext4_orphan_add(handle, inode);
5419 orphan = 1;
5420 }
911af577
EG
5421 /*
5422 * Update c/mtime on truncate up, ext4_truncate() will
5423 * update c/mtime in shrink case below
5424 */
5425 if (!shrink) {
eeca7ea1 5426 inode->i_mtime = current_time(inode);
911af577
EG
5427 inode->i_ctime = inode->i_mtime;
5428 }
aa75f4d3
HS
5429
5430 if (shrink)
a80f7fcf 5431 ext4_fc_track_range(handle, inode,
aa75f4d3
HS
5432 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5433 inode->i_sb->s_blocksize_bits,
a6b43324 5434 EXT_MAX_BLOCKS - 1);
aa75f4d3
HS
5435 else
5436 ext4_fc_track_range(
a80f7fcf 5437 handle, inode,
aa75f4d3
HS
5438 (oldsize > 0 ? oldsize - 1 : oldsize) >>
5439 inode->i_sb->s_blocksize_bits,
5440 (attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5441 inode->i_sb->s_blocksize_bits);
5442
90e775b7 5443 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
5444 EXT4_I(inode)->i_disksize = attr->ia_size;
5445 rc = ext4_mark_inode_dirty(handle, inode);
5446 if (!error)
5447 error = rc;
90e775b7
JK
5448 /*
5449 * We have to update i_size under i_data_sem together
5450 * with i_disksize to avoid races with writeback code
5451 * running ext4_wb_update_i_disksize().
5452 */
5453 if (!error)
5454 i_size_write(inode, attr->ia_size);
5455 up_write(&EXT4_I(inode)->i_data_sem);
5208386c 5456 ext4_journal_stop(handle);
b9c1c267
JK
5457 if (error)
5458 goto out_mmap_sem;
5459 if (!shrink) {
5460 pagecache_isize_extended(inode, oldsize,
5461 inode->i_size);
5462 } else if (ext4_should_journal_data(inode)) {
5463 ext4_wait_for_tail_page_commit(inode);
678aaf48 5464 }
d6320cbf 5465 }
430657b6 5466
5208386c
JK
5467 /*
5468 * Truncate pagecache after we've waited for commit
5469 * in data=journal mode to make pages freeable.
5470 */
923ae0ff 5471 truncate_pagecache(inode, inode->i_size);
b9c1c267
JK
5472 /*
5473 * Call ext4_truncate() even if i_size didn't change to
5474 * truncate possible preallocated blocks.
5475 */
5476 if (attr->ia_size <= oldsize) {
2c98eb5e
TT
5477 rc = ext4_truncate(inode);
5478 if (rc)
5479 error = rc;
5480 }
b9c1c267 5481out_mmap_sem:
d4f5258e 5482 filemap_invalidate_unlock(inode->i_mapping);
072bd7ea 5483 }
ac27a0ec 5484
2c98eb5e 5485 if (!error) {
14f3db55 5486 setattr_copy(mnt_userns, inode, attr);
1025774c
CH
5487 mark_inode_dirty(inode);
5488 }
5489
5490 /*
5491 * If the call to ext4_truncate failed to get a transaction handle at
5492 * all, we need to clean up the in-core orphan list manually.
5493 */
3d287de3 5494 if (orphan && inode->i_nlink)
617ba13b 5495 ext4_orphan_del(NULL, inode);
ac27a0ec 5496
2c98eb5e 5497 if (!error && (ia_valid & ATTR_MODE))
14f3db55 5498 rc = posix_acl_chmod(mnt_userns, inode, inode->i_mode);
ac27a0ec
DK
5499
5500err_out:
aa75f4d3
HS
5501 if (error)
5502 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5503 if (!error)
5504 error = rc;
aa75f4d3 5505 ext4_fc_stop_update(inode);
ac27a0ec
DK
5506 return error;
5507}
5508
549c7297
CB
5509int ext4_getattr(struct user_namespace *mnt_userns, const struct path *path,
5510 struct kstat *stat, u32 request_mask, unsigned int query_flags)
3e3398a0 5511{
99652ea5
DH
5512 struct inode *inode = d_inode(path->dentry);
5513 struct ext4_inode *raw_inode;
5514 struct ext4_inode_info *ei = EXT4_I(inode);
5515 unsigned int flags;
5516
d4c5e960
TT
5517 if ((request_mask & STATX_BTIME) &&
5518 EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
99652ea5
DH
5519 stat->result_mask |= STATX_BTIME;
5520 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5521 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5522 }
5523
5524 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5525 if (flags & EXT4_APPEND_FL)
5526 stat->attributes |= STATX_ATTR_APPEND;
5527 if (flags & EXT4_COMPR_FL)
5528 stat->attributes |= STATX_ATTR_COMPRESSED;
5529 if (flags & EXT4_ENCRYPT_FL)
5530 stat->attributes |= STATX_ATTR_ENCRYPTED;
5531 if (flags & EXT4_IMMUTABLE_FL)
5532 stat->attributes |= STATX_ATTR_IMMUTABLE;
5533 if (flags & EXT4_NODUMP_FL)
5534 stat->attributes |= STATX_ATTR_NODUMP;
1f607195
EB
5535 if (flags & EXT4_VERITY_FL)
5536 stat->attributes |= STATX_ATTR_VERITY;
3e3398a0 5537
3209f68b
DH
5538 stat->attributes_mask |= (STATX_ATTR_APPEND |
5539 STATX_ATTR_COMPRESSED |
5540 STATX_ATTR_ENCRYPTED |
5541 STATX_ATTR_IMMUTABLE |
1f607195
EB
5542 STATX_ATTR_NODUMP |
5543 STATX_ATTR_VERITY);
3209f68b 5544
14f3db55 5545 generic_fillattr(mnt_userns, inode, stat);
99652ea5
DH
5546 return 0;
5547}
5548
549c7297
CB
5549int ext4_file_getattr(struct user_namespace *mnt_userns,
5550 const struct path *path, struct kstat *stat,
99652ea5
DH
5551 u32 request_mask, unsigned int query_flags)
5552{
5553 struct inode *inode = d_inode(path->dentry);
5554 u64 delalloc_blocks;
5555
14f3db55 5556 ext4_getattr(mnt_userns, path, stat, request_mask, query_flags);
3e3398a0 5557
9206c561
AD
5558 /*
5559 * If there is inline data in the inode, the inode will normally not
5560 * have data blocks allocated (it may have an external xattr block).
5561 * Report at least one sector for such files, so tools like tar, rsync,
d67d64f4 5562 * others don't incorrectly think the file is completely sparse.
9206c561
AD
5563 */
5564 if (unlikely(ext4_has_inline_data(inode)))
5565 stat->blocks += (stat->size + 511) >> 9;
5566
3e3398a0
MC
5567 /*
5568 * We can't update i_blocks if the block allocation is delayed
5569 * otherwise in the case of system crash before the real block
5570 * allocation is done, we will have i_blocks inconsistent with
5571 * on-disk file blocks.
5572 * We always keep i_blocks updated together with real
5573 * allocation. But to not confuse with user, stat
5574 * will return the blocks that include the delayed allocation
5575 * blocks for this file.
5576 */
96607551 5577 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
5578 EXT4_I(inode)->i_reserved_data_blocks);
5579 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
5580 return 0;
5581}
ac27a0ec 5582
fffb2739
JK
5583static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5584 int pextents)
a02908f1 5585{
12e9b892 5586 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
5587 return ext4_ind_trans_blocks(inode, lblocks);
5588 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 5589}
ac51d837 5590
ac27a0ec 5591/*
a02908f1
MC
5592 * Account for index blocks, block groups bitmaps and block group
5593 * descriptor blocks if modify datablocks and index blocks
5594 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5595 *
a02908f1 5596 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 5597 * different block groups too. If they are contiguous, with flexbg,
a02908f1 5598 * they could still across block group boundary.
ac27a0ec 5599 *
a02908f1
MC
5600 * Also account for superblock, inode, quota and xattr blocks
5601 */
dec214d0 5602static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
fffb2739 5603 int pextents)
a02908f1 5604{
8df9675f
TT
5605 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5606 int gdpblocks;
a02908f1
MC
5607 int idxblocks;
5608 int ret = 0;
5609
5610 /*
fffb2739
JK
5611 * How many index blocks need to touch to map @lblocks logical blocks
5612 * to @pextents physical extents?
a02908f1 5613 */
fffb2739 5614 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
5615
5616 ret = idxblocks;
5617
5618 /*
5619 * Now let's see how many group bitmaps and group descriptors need
5620 * to account
5621 */
fffb2739 5622 groups = idxblocks + pextents;
a02908f1 5623 gdpblocks = groups;
8df9675f
TT
5624 if (groups > ngroups)
5625 groups = ngroups;
a02908f1
MC
5626 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5627 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5628
5629 /* bitmaps and block group descriptor blocks */
5630 ret += groups + gdpblocks;
5631
5632 /* Blocks for super block, inode, quota and xattr blocks */
5633 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5634
5635 return ret;
5636}
5637
5638/*
25985edc 5639 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
5640 * the modification of a single pages into a single transaction,
5641 * which may include multiple chunks of block allocations.
ac27a0ec 5642 *
525f4ed8 5643 * This could be called via ext4_write_begin()
ac27a0ec 5644 *
525f4ed8 5645 * We need to consider the worse case, when
a02908f1 5646 * one new block per extent.
ac27a0ec 5647 */
a86c6181 5648int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5649{
617ba13b 5650 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5651 int ret;
5652
fffb2739 5653 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 5654
a02908f1 5655 /* Account for data blocks for journalled mode */
617ba13b 5656 if (ext4_should_journal_data(inode))
a02908f1 5657 ret += bpp;
ac27a0ec
DK
5658 return ret;
5659}
f3bd1f3f
MC
5660
5661/*
5662 * Calculate the journal credits for a chunk of data modification.
5663 *
5664 * This is called from DIO, fallocate or whoever calling
79e83036 5665 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5666 *
5667 * journal buffers for data blocks are not included here, as DIO
5668 * and fallocate do no need to journal data buffers.
5669 */
5670int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5671{
5672 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5673}
5674
ac27a0ec 5675/*
617ba13b 5676 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5677 * Give this, we know that the caller already has write access to iloc->bh.
5678 */
617ba13b 5679int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5680 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5681{
5682 int err = 0;
5683
a6758309
VA
5684 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5685 put_bh(iloc->bh);
0db1ff22 5686 return -EIO;
a6758309 5687 }
a80f7fcf 5688 ext4_fc_track_inode(handle, inode);
aa75f4d3 5689
c64db50e 5690 if (IS_I_VERSION(inode))
25ec56b5
JNC
5691 inode_inc_iversion(inode);
5692
ac27a0ec
DK
5693 /* the do_update_inode consumes one bh->b_count */
5694 get_bh(iloc->bh);
5695
dab291af 5696 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5697 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5698 put_bh(iloc->bh);
5699 return err;
5700}
5701
5702/*
5703 * On success, We end up with an outstanding reference count against
5704 * iloc->bh. This _must_ be cleaned up later.
5705 */
5706
5707int
617ba13b
MC
5708ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5709 struct ext4_iloc *iloc)
ac27a0ec 5710{
0390131b
FM
5711 int err;
5712
0db1ff22
TT
5713 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5714 return -EIO;
5715
0390131b
FM
5716 err = ext4_get_inode_loc(inode, iloc);
5717 if (!err) {
5718 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5719 err = ext4_journal_get_write_access(handle, inode->i_sb,
5720 iloc->bh, EXT4_JTR_NONE);
0390131b
FM
5721 if (err) {
5722 brelse(iloc->bh);
5723 iloc->bh = NULL;
ac27a0ec
DK
5724 }
5725 }
617ba13b 5726 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5727 return err;
5728}
5729
c03b45b8
MX
5730static int __ext4_expand_extra_isize(struct inode *inode,
5731 unsigned int new_extra_isize,
5732 struct ext4_iloc *iloc,
5733 handle_t *handle, int *no_expand)
5734{
5735 struct ext4_inode *raw_inode;
5736 struct ext4_xattr_ibody_header *header;
4ea99936
TT
5737 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5738 struct ext4_inode_info *ei = EXT4_I(inode);
c03b45b8
MX
5739 int error;
5740
4ea99936
TT
5741 /* this was checked at iget time, but double check for good measure */
5742 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5743 (ei->i_extra_isize & 3)) {
5744 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5745 ei->i_extra_isize,
5746 EXT4_INODE_SIZE(inode->i_sb));
5747 return -EFSCORRUPTED;
5748 }
5749 if ((new_extra_isize < ei->i_extra_isize) ||
5750 (new_extra_isize < 4) ||
5751 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5752 return -EINVAL; /* Should never happen */
5753
c03b45b8
MX
5754 raw_inode = ext4_raw_inode(iloc);
5755
5756 header = IHDR(inode, raw_inode);
5757
5758 /* No extended attributes present */
5759 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5760 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5761 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5762 EXT4_I(inode)->i_extra_isize, 0,
5763 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5764 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5765 return 0;
5766 }
5767
5768 /* try to expand with EAs present */
5769 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5770 raw_inode, handle);
5771 if (error) {
5772 /*
5773 * Inode size expansion failed; don't try again
5774 */
5775 *no_expand = 1;
5776 }
5777
5778 return error;
5779}
5780
6dd4ee7c
KS
5781/*
5782 * Expand an inode by new_extra_isize bytes.
5783 * Returns 0 on success or negative error number on failure.
5784 */
cf0a5e81
MX
5785static int ext4_try_to_expand_extra_isize(struct inode *inode,
5786 unsigned int new_extra_isize,
5787 struct ext4_iloc iloc,
5788 handle_t *handle)
6dd4ee7c 5789{
3b10fdc6
MX
5790 int no_expand;
5791 int error;
6dd4ee7c 5792
cf0a5e81
MX
5793 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5794 return -EOVERFLOW;
5795
5796 /*
5797 * In nojournal mode, we can immediately attempt to expand
5798 * the inode. When journaled, we first need to obtain extra
5799 * buffer credits since we may write into the EA block
5800 * with this same handle. If journal_extend fails, then it will
5801 * only result in a minor loss of functionality for that inode.
5802 * If this is felt to be critical, then e2fsck should be run to
5803 * force a large enough s_min_extra_isize.
5804 */
6cb367c2 5805 if (ext4_journal_extend(handle,
83448bdf 5806 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
cf0a5e81 5807 return -ENOSPC;
6dd4ee7c 5808
3b10fdc6 5809 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
cf0a5e81 5810 return -EBUSY;
3b10fdc6 5811
c03b45b8
MX
5812 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5813 handle, &no_expand);
5814 ext4_write_unlock_xattr(inode, &no_expand);
6dd4ee7c 5815
c03b45b8
MX
5816 return error;
5817}
6dd4ee7c 5818
c03b45b8
MX
5819int ext4_expand_extra_isize(struct inode *inode,
5820 unsigned int new_extra_isize,
5821 struct ext4_iloc *iloc)
5822{
5823 handle_t *handle;
5824 int no_expand;
5825 int error, rc;
5826
5827 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5828 brelse(iloc->bh);
5829 return -EOVERFLOW;
6dd4ee7c
KS
5830 }
5831
c03b45b8
MX
5832 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5833 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5834 if (IS_ERR(handle)) {
5835 error = PTR_ERR(handle);
5836 brelse(iloc->bh);
5837 return error;
5838 }
5839
5840 ext4_write_lock_xattr(inode, &no_expand);
5841
ddccb6db 5842 BUFFER_TRACE(iloc->bh, "get_write_access");
188c299e
JK
5843 error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5844 EXT4_JTR_NONE);
3b10fdc6 5845 if (error) {
c03b45b8 5846 brelse(iloc->bh);
7f420d64 5847 goto out_unlock;
3b10fdc6 5848 }
cf0a5e81 5849
c03b45b8
MX
5850 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5851 handle, &no_expand);
5852
5853 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5854 if (!error)
5855 error = rc;
5856
7f420d64 5857out_unlock:
c03b45b8 5858 ext4_write_unlock_xattr(inode, &no_expand);
c03b45b8 5859 ext4_journal_stop(handle);
3b10fdc6 5860 return error;
6dd4ee7c
KS
5861}
5862
ac27a0ec
DK
5863/*
5864 * What we do here is to mark the in-core inode as clean with respect to inode
5865 * dirtiness (it may still be data-dirty).
5866 * This means that the in-core inode may be reaped by prune_icache
5867 * without having to perform any I/O. This is a very good thing,
5868 * because *any* task may call prune_icache - even ones which
5869 * have a transaction open against a different journal.
5870 *
5871 * Is this cheating? Not really. Sure, we haven't written the
5872 * inode out, but prune_icache isn't a user-visible syncing function.
5873 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5874 * we start and wait on commits.
ac27a0ec 5875 */
4209ae12
HS
5876int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5877 const char *func, unsigned int line)
ac27a0ec 5878{
617ba13b 5879 struct ext4_iloc iloc;
6dd4ee7c 5880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
cf0a5e81 5881 int err;
ac27a0ec
DK
5882
5883 might_sleep();
7ff9c073 5884 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5885 err = ext4_reserve_inode_write(handle, inode, &iloc);
5e1021f2 5886 if (err)
4209ae12 5887 goto out;
cf0a5e81
MX
5888
5889 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5890 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5891 iloc, handle);
5892
4209ae12
HS
5893 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5894out:
5895 if (unlikely(err))
5896 ext4_error_inode_err(inode, func, line, 0, err,
5897 "mark_inode_dirty error");
5898 return err;
ac27a0ec
DK
5899}
5900
5901/*
617ba13b 5902 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5903 *
5904 * We're really interested in the case where a file is being extended.
5905 * i_size has been changed by generic_commit_write() and we thus need
5906 * to include the updated inode in the current transaction.
5907 *
5dd4056d 5908 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5909 * are allocated to the file.
5910 *
5911 * If the inode is marked synchronous, we don't honour that here - doing
5912 * so would cause a commit on atime updates, which we don't bother doing.
5913 * We handle synchronous inodes at the highest possible level.
5914 */
aa385729 5915void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5916{
ac27a0ec
DK
5917 handle_t *handle;
5918
9924a92a 5919 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec 5920 if (IS_ERR(handle))
e2728c56 5921 return;
f3dc272f 5922 ext4_mark_inode_dirty(handle, inode);
617ba13b 5923 ext4_journal_stop(handle);
ac27a0ec
DK
5924}
5925
617ba13b 5926int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5927{
5928 journal_t *journal;
5929 handle_t *handle;
5930 int err;
c8585c6f 5931 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ac27a0ec
DK
5932
5933 /*
5934 * We have to be very careful here: changing a data block's
5935 * journaling status dynamically is dangerous. If we write a
5936 * data block to the journal, change the status and then delete
5937 * that block, we risk forgetting to revoke the old log record
5938 * from the journal and so a subsequent replay can corrupt data.
5939 * So, first we make sure that the journal is empty and that
5940 * nobody is changing anything.
5941 */
5942
617ba13b 5943 journal = EXT4_JOURNAL(inode);
0390131b
FM
5944 if (!journal)
5945 return 0;
d699594d 5946 if (is_journal_aborted(journal))
ac27a0ec
DK
5947 return -EROFS;
5948
17335dcc 5949 /* Wait for all existing dio workers */
17335dcc
DM
5950 inode_dio_wait(inode);
5951
4c546592
DJ
5952 /*
5953 * Before flushing the journal and switching inode's aops, we have
5954 * to flush all dirty data the inode has. There can be outstanding
5955 * delayed allocations, there can be unwritten extents created by
5956 * fallocate or buffered writes in dioread_nolock mode covered by
5957 * dirty data which can be converted only after flushing the dirty
5958 * data (and journalled aops don't know how to handle these cases).
5959 */
5960 if (val) {
d4f5258e 5961 filemap_invalidate_lock(inode->i_mapping);
4c546592
DJ
5962 err = filemap_write_and_wait(inode->i_mapping);
5963 if (err < 0) {
d4f5258e 5964 filemap_invalidate_unlock(inode->i_mapping);
4c546592
DJ
5965 return err;
5966 }
5967 }
5968
bbd55937 5969 percpu_down_write(&sbi->s_writepages_rwsem);
dab291af 5970 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5971
5972 /*
5973 * OK, there are no updates running now, and all cached data is
5974 * synced to disk. We are now in a completely consistent state
5975 * which doesn't have anything in the journal, and we know that
5976 * no filesystem updates are running, so it is safe to modify
5977 * the inode's in-core data-journaling state flag now.
5978 */
5979
5980 if (val)
12e9b892 5981 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5982 else {
01d5d965 5983 err = jbd2_journal_flush(journal, 0);
4f879ca6
JK
5984 if (err < 0) {
5985 jbd2_journal_unlock_updates(journal);
bbd55937 5986 percpu_up_write(&sbi->s_writepages_rwsem);
4f879ca6
JK
5987 return err;
5988 }
12e9b892 5989 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5990 }
617ba13b 5991 ext4_set_aops(inode);
ac27a0ec 5992
dab291af 5993 jbd2_journal_unlock_updates(journal);
bbd55937 5994 percpu_up_write(&sbi->s_writepages_rwsem);
c8585c6f 5995
4c546592 5996 if (val)
d4f5258e 5997 filemap_invalidate_unlock(inode->i_mapping);
ac27a0ec
DK
5998
5999 /* Finally we can mark the inode as dirty. */
6000
9924a92a 6001 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
6002 if (IS_ERR(handle))
6003 return PTR_ERR(handle);
6004
aa75f4d3 6005 ext4_fc_mark_ineligible(inode->i_sb,
e5aed39e 6006 EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
617ba13b 6007 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6008 ext4_handle_sync(handle);
617ba13b
MC
6009 ext4_journal_stop(handle);
6010 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6011
6012 return err;
6013}
2e9ee850 6014
188c299e
JK
6015static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6016 struct buffer_head *bh)
2e9ee850
AK
6017{
6018 return !buffer_mapped(bh);
6019}
6020
401b25aa 6021vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
2e9ee850 6022{
11bac800 6023 struct vm_area_struct *vma = vmf->vma;
c2ec175c 6024 struct page *page = vmf->page;
2e9ee850
AK
6025 loff_t size;
6026 unsigned long len;
401b25aa
SJ
6027 int err;
6028 vm_fault_t ret;
2e9ee850 6029 struct file *file = vma->vm_file;
496ad9aa 6030 struct inode *inode = file_inode(file);
2e9ee850 6031 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
6032 handle_t *handle;
6033 get_block_t *get_block;
6034 int retries = 0;
2e9ee850 6035
02b016ca
TT
6036 if (unlikely(IS_IMMUTABLE(inode)))
6037 return VM_FAULT_SIGBUS;
6038
8e8ad8a5 6039 sb_start_pagefault(inode->i_sb);
041bbb6d 6040 file_update_time(vma->vm_file);
ea3d7209 6041
d4f5258e 6042 filemap_invalidate_lock_shared(mapping);
7b4cc978 6043
401b25aa
SJ
6044 err = ext4_convert_inline_data(inode);
6045 if (err)
7b4cc978
EB
6046 goto out_ret;
6047
64a9f144
MFO
6048 /*
6049 * On data journalling we skip straight to the transaction handle:
6050 * there's no delalloc; page truncated will be checked later; the
6051 * early return w/ all buffers mapped (calculates size/len) can't
6052 * be used; and there's no dioread_nolock, so only ext4_get_block.
6053 */
6054 if (ext4_should_journal_data(inode))
6055 goto retry_alloc;
6056
9ea7df53
JK
6057 /* Delalloc case is easy... */
6058 if (test_opt(inode->i_sb, DELALLOC) &&
9ea7df53
JK
6059 !ext4_nonda_switch(inode->i_sb)) {
6060 do {
401b25aa 6061 err = block_page_mkwrite(vma, vmf,
9ea7df53 6062 ext4_da_get_block_prep);
401b25aa 6063 } while (err == -ENOSPC &&
9ea7df53
JK
6064 ext4_should_retry_alloc(inode->i_sb, &retries));
6065 goto out_ret;
2e9ee850 6066 }
0e499890
DW
6067
6068 lock_page(page);
9ea7df53
JK
6069 size = i_size_read(inode);
6070 /* Page got truncated from under us? */
6071 if (page->mapping != mapping || page_offset(page) > size) {
6072 unlock_page(page);
6073 ret = VM_FAULT_NOPAGE;
6074 goto out;
0e499890 6075 }
2e9ee850 6076
09cbfeaf
KS
6077 if (page->index == size >> PAGE_SHIFT)
6078 len = size & ~PAGE_MASK;
2e9ee850 6079 else
09cbfeaf 6080 len = PAGE_SIZE;
a827eaff 6081 /*
9ea7df53
JK
6082 * Return if we have all the buffers mapped. This avoids the need to do
6083 * journal_start/journal_stop which can block and take a long time
64a9f144
MFO
6084 *
6085 * This cannot be done for data journalling, as we have to add the
6086 * inode to the transaction's list to writeprotect pages on commit.
a827eaff 6087 */
2e9ee850 6088 if (page_has_buffers(page)) {
188c299e 6089 if (!ext4_walk_page_buffers(NULL, inode, page_buffers(page),
f19d5870
TM
6090 0, len, NULL,
6091 ext4_bh_unmapped)) {
9ea7df53 6092 /* Wait so that we don't change page under IO */
1d1d1a76 6093 wait_for_stable_page(page);
9ea7df53
JK
6094 ret = VM_FAULT_LOCKED;
6095 goto out;
a827eaff 6096 }
2e9ee850 6097 }
a827eaff 6098 unlock_page(page);
9ea7df53
JK
6099 /* OK, we need to fill the hole... */
6100 if (ext4_should_dioread_nolock(inode))
705965bd 6101 get_block = ext4_get_block_unwritten;
9ea7df53
JK
6102 else
6103 get_block = ext4_get_block;
6104retry_alloc:
9924a92a
TT
6105 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6106 ext4_writepage_trans_blocks(inode));
9ea7df53 6107 if (IS_ERR(handle)) {
c2ec175c 6108 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
6109 goto out;
6110 }
64a9f144
MFO
6111 /*
6112 * Data journalling can't use block_page_mkwrite() because it
6113 * will set_buffer_dirty() before do_journal_get_write_access()
6114 * thus might hit warning messages for dirty metadata buffers.
6115 */
6116 if (!ext4_should_journal_data(inode)) {
6117 err = block_page_mkwrite(vma, vmf, get_block);
6118 } else {
6119 lock_page(page);
6120 size = i_size_read(inode);
6121 /* Page got truncated from under us? */
6122 if (page->mapping != mapping || page_offset(page) > size) {
64a9f144 6123 ret = VM_FAULT_NOPAGE;
afb585a9 6124 goto out_error;
9ea7df53 6125 }
64a9f144
MFO
6126
6127 if (page->index == size >> PAGE_SHIFT)
6128 len = size & ~PAGE_MASK;
6129 else
6130 len = PAGE_SIZE;
6131
6132 err = __block_write_begin(page, 0, len, ext4_get_block);
6133 if (!err) {
afb585a9 6134 ret = VM_FAULT_SIGBUS;
188c299e
JK
6135 if (ext4_walk_page_buffers(handle, inode,
6136 page_buffers(page), 0, len, NULL,
6137 do_journal_get_write_access))
afb585a9 6138 goto out_error;
188c299e
JK
6139 if (ext4_walk_page_buffers(handle, inode,
6140 page_buffers(page), 0, len, NULL,
6141 write_end_fn))
afb585a9 6142 goto out_error;
b5b18160
JK
6143 if (ext4_jbd2_inode_add_write(handle, inode,
6144 page_offset(page), len))
afb585a9 6145 goto out_error;
64a9f144
MFO
6146 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6147 } else {
6148 unlock_page(page);
6149 }
9ea7df53
JK
6150 }
6151 ext4_journal_stop(handle);
401b25aa 6152 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
9ea7df53
JK
6153 goto retry_alloc;
6154out_ret:
401b25aa 6155 ret = block_page_mkwrite_return(err);
9ea7df53 6156out:
d4f5258e 6157 filemap_invalidate_unlock_shared(mapping);
8e8ad8a5 6158 sb_end_pagefault(inode->i_sb);
2e9ee850 6159 return ret;
afb585a9
MFO
6160out_error:
6161 unlock_page(page);
6162 ext4_journal_stop(handle);
6163 goto out;
2e9ee850 6164}