]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/f2fs/data.c
f2fs crypto: filename encryption facilities
[mirror_ubuntu-artful-kernel.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
f568849e 37 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
38 struct page *page = bvec->bv_page;
39
f568849e
LT
40 if (!err) {
41 SetPageUptodate(page);
42 } else {
93dfe2ac
JK
43 ClearPageUptodate(page);
44 SetPageError(page);
45 }
46 unlock_page(page);
f568849e 47 }
93dfe2ac
JK
48 bio_put(bio);
49}
50
f1e88660
JK
51/*
52 * I/O completion handler for multipage BIOs.
53 * copied from fs/mpage.c
54 */
55static void mpage_end_io(struct bio *bio, int err)
56{
57 struct bio_vec *bv;
58 int i;
59
60 bio_for_each_segment_all(bv, bio, i) {
61 struct page *page = bv->bv_page;
62
63 if (!err) {
64 SetPageUptodate(page);
65 } else {
66 ClearPageUptodate(page);
67 SetPageError(page);
68 }
69 unlock_page(page);
70 }
71
72 bio_put(bio);
73}
74
93dfe2ac
JK
75static void f2fs_write_end_io(struct bio *bio, int err)
76{
1b1f559f 77 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
78 struct bio_vec *bvec;
79 int i;
93dfe2ac 80
f568849e 81 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
82 struct page *page = bvec->bv_page;
83
f568849e 84 if (unlikely(err)) {
cf779cab 85 set_page_dirty(page);
93dfe2ac 86 set_bit(AS_EIO, &page->mapping->flags);
744602cf 87 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
88 }
89 end_page_writeback(page);
90 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 91 }
93dfe2ac 92
93dfe2ac
JK
93 if (!get_pages(sbi, F2FS_WRITEBACK) &&
94 !list_empty(&sbi->cp_wait.task_list))
95 wake_up(&sbi->cp_wait);
96
97 bio_put(bio);
98}
99
940a6d34
GZ
100/*
101 * Low-level block read/write IO operations.
102 */
103static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
104 int npages, bool is_read)
105{
106 struct bio *bio;
107
108 /* No failure on bio allocation */
109 bio = bio_alloc(GFP_NOIO, npages);
110
111 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 112 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 113 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 114 bio->bi_private = sbi;
940a6d34
GZ
115
116 return bio;
117}
118
458e6197 119static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 120{
458e6197 121 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
122
123 if (!io->bio)
124 return;
125
6a8f8ca5 126 if (is_read_io(fio->rw))
2ace38e0 127 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 128 else
2ace38e0 129 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 130
6a8f8ca5 131 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
132 io->bio = NULL;
133}
134
135void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 136 enum page_type type, int rw)
93dfe2ac
JK
137{
138 enum page_type btype = PAGE_TYPE_OF_BIO(type);
139 struct f2fs_bio_info *io;
140
141 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
142
df0f8dc0 143 down_write(&io->io_rwsem);
458e6197
JK
144
145 /* change META to META_FLUSH in the checkpoint procedure */
146 if (type >= META_FLUSH) {
147 io->fio.type = META_FLUSH;
0f7b2abd
JK
148 if (test_opt(sbi, NOBARRIER))
149 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
150 else
151 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
152 }
153 __submit_merged_bio(io);
df0f8dc0 154 up_write(&io->io_rwsem);
93dfe2ac
JK
155}
156
157/*
158 * Fill the locked page with data located in the block address.
159 * Return unlocked page.
160 */
05ca3632 161int f2fs_submit_page_bio(struct f2fs_io_info *fio)
93dfe2ac 162{
93dfe2ac 163 struct bio *bio;
05ca3632 164 struct page *page = fio->page;
93dfe2ac 165
2ace38e0 166 trace_f2fs_submit_page_bio(page, fio);
05ca3632 167 f2fs_trace_ios(fio, 0);
93dfe2ac
JK
168
169 /* Allocate a new bio */
05ca3632 170 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
171
172 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
173 bio_put(bio);
174 f2fs_put_page(page, 1);
175 return -EFAULT;
176 }
177
cf04e8eb 178 submit_bio(fio->rw, bio);
93dfe2ac
JK
179 return 0;
180}
181
05ca3632 182void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
93dfe2ac 183{
05ca3632 184 struct f2fs_sb_info *sbi = fio->sbi;
458e6197 185 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 186 struct f2fs_bio_info *io;
940a6d34 187 bool is_read = is_read_io(fio->rw);
93dfe2ac 188
940a6d34 189 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 190
cf04e8eb 191 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 192
df0f8dc0 193 down_write(&io->io_rwsem);
93dfe2ac 194
940a6d34 195 if (!is_read)
93dfe2ac
JK
196 inc_page_count(sbi, F2FS_WRITEBACK);
197
cf04e8eb 198 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
199 io->fio.rw != fio->rw))
200 __submit_merged_bio(io);
93dfe2ac
JK
201alloc_new:
202 if (io->bio == NULL) {
90a893c7 203 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 204
cf04e8eb 205 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 206 io->fio = *fio;
93dfe2ac
JK
207 }
208
05ca3632 209 if (bio_add_page(io->bio, fio->page, PAGE_CACHE_SIZE, 0) <
93dfe2ac 210 PAGE_CACHE_SIZE) {
458e6197 211 __submit_merged_bio(io);
93dfe2ac
JK
212 goto alloc_new;
213 }
214
cf04e8eb 215 io->last_block_in_bio = fio->blk_addr;
05ca3632 216 f2fs_trace_ios(fio, 0);
93dfe2ac 217
df0f8dc0 218 up_write(&io->io_rwsem);
05ca3632 219 trace_f2fs_submit_page_mbio(fio->page, fio);
93dfe2ac
JK
220}
221
0a8165d7 222/*
eb47b800
JK
223 * Lock ordering for the change of data block address:
224 * ->data_page
225 * ->node_page
226 * update block addresses in the node page
227 */
216a620a 228void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
229{
230 struct f2fs_node *rn;
231 __le32 *addr_array;
232 struct page *node_page = dn->node_page;
233 unsigned int ofs_in_node = dn->ofs_in_node;
234
5514f0aa 235 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 236
45590710 237 rn = F2FS_NODE(node_page);
eb47b800
JK
238
239 /* Get physical address of data block */
240 addr_array = blkaddr_in_node(rn);
e1509cf2 241 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
242 set_page_dirty(node_page);
243}
244
245int reserve_new_block(struct dnode_of_data *dn)
246{
4081363f 247 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 248
6bacf52f 249 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 250 return -EPERM;
cfb271d4 251 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
252 return -ENOSPC;
253
c01e2853
NJ
254 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
255
eb47b800 256 dn->data_blkaddr = NEW_ADDR;
216a620a 257 set_data_blkaddr(dn);
a18ff063 258 mark_inode_dirty(dn->inode);
eb47b800
JK
259 sync_inode_page(dn);
260 return 0;
261}
262
b600965c
HL
263int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
264{
265 bool need_put = dn->inode_page ? false : true;
266 int err;
267
268 err = get_dnode_of_data(dn, index, ALLOC_NODE);
269 if (err)
270 return err;
a8865372 271
b600965c
HL
272 if (dn->data_blkaddr == NULL_ADDR)
273 err = reserve_new_block(dn);
a8865372 274 if (err || need_put)
b600965c
HL
275 f2fs_put_dnode(dn);
276 return err;
277}
278
7e4dde79
CY
279static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
280 struct extent_info *ei)
eb47b800
JK
281{
282 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
283 pgoff_t start_fofs, end_fofs;
284 block_t start_blkaddr;
285
0c872e2d 286 read_lock(&fi->ext_lock);
eb47b800 287 if (fi->ext.len == 0) {
0c872e2d 288 read_unlock(&fi->ext_lock);
7e4dde79 289 return false;
eb47b800
JK
290 }
291
dcdfff65
JK
292 stat_inc_total_hit(inode->i_sb);
293
eb47b800
JK
294 start_fofs = fi->ext.fofs;
295 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 296 start_blkaddr = fi->ext.blk;
eb47b800
JK
297
298 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 299 *ei = fi->ext;
dcdfff65 300 stat_inc_read_hit(inode->i_sb);
0c872e2d 301 read_unlock(&fi->ext_lock);
7e4dde79 302 return true;
eb47b800 303 }
0c872e2d 304 read_unlock(&fi->ext_lock);
7e4dde79 305 return false;
eb47b800
JK
306}
307
7e4dde79
CY
308static bool update_extent_info(struct inode *inode, pgoff_t fofs,
309 block_t blkaddr)
eb47b800 310{
7e4dde79
CY
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 pgoff_t start_fofs, end_fofs;
eb47b800 313 block_t start_blkaddr, end_blkaddr;
c11abd1a 314 int need_update = true;
eb47b800 315
0c872e2d 316 write_lock(&fi->ext_lock);
eb47b800
JK
317
318 start_fofs = fi->ext.fofs;
319 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
320 start_blkaddr = fi->ext.blk;
321 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
322
323 /* Drop and initialize the matched extent */
324 if (fi->ext.len == 1 && fofs == start_fofs)
325 fi->ext.len = 0;
326
327 /* Initial extent */
328 if (fi->ext.len == 0) {
7e4dde79 329 if (blkaddr != NULL_ADDR) {
eb47b800 330 fi->ext.fofs = fofs;
7e4dde79 331 fi->ext.blk = blkaddr;
eb47b800
JK
332 fi->ext.len = 1;
333 }
334 goto end_update;
335 }
336
6224da87 337 /* Front merge */
7e4dde79 338 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 339 fi->ext.fofs--;
4d0b0bd4 340 fi->ext.blk--;
eb47b800
JK
341 fi->ext.len++;
342 goto end_update;
343 }
344
345 /* Back merge */
7e4dde79 346 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
347 fi->ext.len++;
348 goto end_update;
349 }
350
351 /* Split the existing extent */
352 if (fi->ext.len > 1 &&
353 fofs >= start_fofs && fofs <= end_fofs) {
354 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
355 fi->ext.len = fofs - start_fofs;
356 } else {
357 fi->ext.fofs = fofs + 1;
4d0b0bd4 358 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
359 fi->ext.len -= fofs - start_fofs + 1;
360 }
c11abd1a
JK
361 } else {
362 need_update = false;
eb47b800 363 }
eb47b800 364
c11abd1a
JK
365 /* Finally, if the extent is very fragmented, let's drop the cache. */
366 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
367 fi->ext.len = 0;
368 set_inode_flag(fi, FI_NO_EXTENT);
369 need_update = true;
370 }
eb47b800 371end_update:
0c872e2d 372 write_unlock(&fi->ext_lock);
7e4dde79
CY
373 return need_update;
374}
375
429511cd
CY
376static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
377 struct extent_tree *et, struct extent_info *ei,
378 struct rb_node *parent, struct rb_node **p)
379{
380 struct extent_node *en;
381
382 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
383 if (!en)
384 return NULL;
385
386 en->ei = *ei;
387 INIT_LIST_HEAD(&en->list);
388
389 rb_link_node(&en->rb_node, parent, p);
390 rb_insert_color(&en->rb_node, &et->root);
391 et->count++;
392 atomic_inc(&sbi->total_ext_node);
393 return en;
394}
395
396static void __detach_extent_node(struct f2fs_sb_info *sbi,
397 struct extent_tree *et, struct extent_node *en)
398{
399 rb_erase(&en->rb_node, &et->root);
400 et->count--;
401 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
402
403 if (et->cached_en == en)
404 et->cached_en = NULL;
429511cd
CY
405}
406
93dfc526
CY
407static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
408 nid_t ino)
409{
410 struct extent_tree *et;
411
412 down_read(&sbi->extent_tree_lock);
413 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
414 if (!et) {
415 up_read(&sbi->extent_tree_lock);
416 return NULL;
417 }
418 atomic_inc(&et->refcount);
419 up_read(&sbi->extent_tree_lock);
420
421 return et;
422}
423
424static struct extent_tree *__grab_extent_tree(struct inode *inode)
425{
426 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
427 struct extent_tree *et;
428 nid_t ino = inode->i_ino;
429
430 down_write(&sbi->extent_tree_lock);
431 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
432 if (!et) {
433 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
434 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
435 memset(et, 0, sizeof(struct extent_tree));
436 et->ino = ino;
437 et->root = RB_ROOT;
438 et->cached_en = NULL;
439 rwlock_init(&et->lock);
440 atomic_set(&et->refcount, 0);
441 et->count = 0;
442 sbi->total_ext_tree++;
443 }
444 atomic_inc(&et->refcount);
445 up_write(&sbi->extent_tree_lock);
446
447 return et;
448}
449
429511cd
CY
450static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
451 unsigned int fofs)
452{
453 struct rb_node *node = et->root.rb_node;
454 struct extent_node *en;
455
62c8af65
CY
456 if (et->cached_en) {
457 struct extent_info *cei = &et->cached_en->ei;
458
459 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
460 return et->cached_en;
461 }
462
429511cd
CY
463 while (node) {
464 en = rb_entry(node, struct extent_node, rb_node);
465
62c8af65 466 if (fofs < en->ei.fofs) {
429511cd 467 node = node->rb_left;
62c8af65 468 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 469 node = node->rb_right;
62c8af65
CY
470 } else {
471 et->cached_en = en;
429511cd 472 return en;
62c8af65 473 }
429511cd
CY
474 }
475 return NULL;
476}
477
478static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
479 struct extent_tree *et, struct extent_node *en)
480{
481 struct extent_node *prev;
482 struct rb_node *node;
483
484 node = rb_prev(&en->rb_node);
485 if (!node)
486 return NULL;
487
488 prev = rb_entry(node, struct extent_node, rb_node);
489 if (__is_back_mergeable(&en->ei, &prev->ei)) {
490 en->ei.fofs = prev->ei.fofs;
491 en->ei.blk = prev->ei.blk;
492 en->ei.len += prev->ei.len;
493 __detach_extent_node(sbi, et, prev);
494 return prev;
495 }
496 return NULL;
497}
498
499static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
500 struct extent_tree *et, struct extent_node *en)
501{
502 struct extent_node *next;
503 struct rb_node *node;
504
505 node = rb_next(&en->rb_node);
506 if (!node)
507 return NULL;
508
509 next = rb_entry(node, struct extent_node, rb_node);
510 if (__is_front_mergeable(&en->ei, &next->ei)) {
511 en->ei.len += next->ei.len;
512 __detach_extent_node(sbi, et, next);
513 return next;
514 }
515 return NULL;
516}
517
518static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
519 struct extent_tree *et, struct extent_info *ei,
520 struct extent_node **den)
521{
522 struct rb_node **p = &et->root.rb_node;
523 struct rb_node *parent = NULL;
524 struct extent_node *en;
525
526 while (*p) {
527 parent = *p;
528 en = rb_entry(parent, struct extent_node, rb_node);
529
530 if (ei->fofs < en->ei.fofs) {
531 if (__is_front_mergeable(ei, &en->ei)) {
532 f2fs_bug_on(sbi, !den);
533 en->ei.fofs = ei->fofs;
534 en->ei.blk = ei->blk;
535 en->ei.len += ei->len;
536 *den = __try_back_merge(sbi, et, en);
537 return en;
538 }
539 p = &(*p)->rb_left;
540 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
541 if (__is_back_mergeable(ei, &en->ei)) {
542 f2fs_bug_on(sbi, !den);
543 en->ei.len += ei->len;
544 *den = __try_front_merge(sbi, et, en);
545 return en;
546 }
547 p = &(*p)->rb_right;
548 } else {
549 f2fs_bug_on(sbi, 1);
550 }
551 }
552
553 return __attach_extent_node(sbi, et, ei, parent, p);
554}
555
556static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
557 struct extent_tree *et, bool free_all)
558{
559 struct rb_node *node, *next;
560 struct extent_node *en;
561 unsigned int count = et->count;
562
563 node = rb_first(&et->root);
564 while (node) {
565 next = rb_next(node);
566 en = rb_entry(node, struct extent_node, rb_node);
567
568 if (free_all) {
569 spin_lock(&sbi->extent_lock);
570 if (!list_empty(&en->list))
571 list_del_init(&en->list);
572 spin_unlock(&sbi->extent_lock);
573 }
574
575 if (free_all || list_empty(&en->list)) {
576 __detach_extent_node(sbi, et, en);
577 kmem_cache_free(extent_node_slab, en);
578 }
579 node = next;
580 }
581
582 return count - et->count;
583}
584
028a41e8
CY
585static void f2fs_init_extent_tree(struct inode *inode,
586 struct f2fs_extent *i_ext)
587{
588 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
589 struct extent_tree *et;
590 struct extent_node *en;
591 struct extent_info ei;
592
593 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
594 return;
595
596 et = __grab_extent_tree(inode);
597
598 write_lock(&et->lock);
599 if (et->count)
600 goto out;
601
602 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
603 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
604
605 en = __insert_extent_tree(sbi, et, &ei, NULL);
606 if (en) {
607 et->cached_en = en;
608
609 spin_lock(&sbi->extent_lock);
610 list_add_tail(&en->list, &sbi->extent_list);
611 spin_unlock(&sbi->extent_lock);
612 }
613out:
614 write_unlock(&et->lock);
615 atomic_dec(&et->refcount);
616}
617
429511cd
CY
618static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
619 struct extent_info *ei)
620{
621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
622 struct extent_tree *et;
623 struct extent_node *en;
624
1ec4610c
CY
625 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
626
93dfc526
CY
627 et = __find_extent_tree(sbi, inode->i_ino);
628 if (!et)
429511cd 629 return false;
429511cd
CY
630
631 read_lock(&et->lock);
632 en = __lookup_extent_tree(et, pgofs);
633 if (en) {
634 *ei = en->ei;
635 spin_lock(&sbi->extent_lock);
636 if (!list_empty(&en->list))
637 list_move_tail(&en->list, &sbi->extent_list);
638 spin_unlock(&sbi->extent_lock);
639 stat_inc_read_hit(sbi->sb);
640 }
641 stat_inc_total_hit(sbi->sb);
642 read_unlock(&et->lock);
643
1ec4610c
CY
644 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
645
429511cd
CY
646 atomic_dec(&et->refcount);
647 return en ? true : false;
648}
649
650static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
651 block_t blkaddr)
652{
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
654 struct extent_tree *et;
655 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
656 struct extent_node *den = NULL;
657 struct extent_info ei, dei;
658 unsigned int endofs;
659
1ec4610c
CY
660 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
661
93dfc526 662 et = __grab_extent_tree(inode);
429511cd
CY
663
664 write_lock(&et->lock);
665
666 /* 1. lookup and remove existing extent info in cache */
667 en = __lookup_extent_tree(et, fofs);
668 if (!en)
669 goto update_extent;
670
671 dei = en->ei;
672 __detach_extent_node(sbi, et, en);
673
674 /* 2. if extent can be split more, split and insert the left part */
675 if (dei.len > 1) {
676 /* insert left part of split extent into cache */
677 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
678 set_extent_info(&ei, dei.fofs, dei.blk,
679 fofs - dei.fofs);
680 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
681 }
682
683 /* insert right part of split extent into cache */
684 endofs = dei.fofs + dei.len - 1;
685 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
686 set_extent_info(&ei, fofs + 1,
687 fofs - dei.fofs + dei.blk, endofs - fofs);
688 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
689 }
690 }
691
692update_extent:
693 /* 3. update extent in extent cache */
694 if (blkaddr) {
695 set_extent_info(&ei, fofs, blkaddr, 1);
696 en3 = __insert_extent_tree(sbi, et, &ei, &den);
697 }
698
699 /* 4. update in global extent list */
700 spin_lock(&sbi->extent_lock);
701 if (en && !list_empty(&en->list))
702 list_del(&en->list);
703 /*
704 * en1 and en2 split from en, they will become more and more smaller
705 * fragments after splitting several times. So if the length is smaller
706 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
707 */
708 if (en1)
709 list_add_tail(&en1->list, &sbi->extent_list);
710 if (en2)
711 list_add_tail(&en2->list, &sbi->extent_list);
712 if (en3) {
713 if (list_empty(&en3->list))
714 list_add_tail(&en3->list, &sbi->extent_list);
715 else
716 list_move_tail(&en3->list, &sbi->extent_list);
717 }
718 if (den && !list_empty(&den->list))
719 list_del(&den->list);
720 spin_unlock(&sbi->extent_lock);
721
722 /* 5. release extent node */
723 if (en)
724 kmem_cache_free(extent_node_slab, en);
725 if (den)
726 kmem_cache_free(extent_node_slab, den);
727
728 write_unlock(&et->lock);
729 atomic_dec(&et->refcount);
730}
731
0bdee482
CY
732void f2fs_preserve_extent_tree(struct inode *inode)
733{
734 struct extent_tree *et;
735 struct extent_info *ext = &F2FS_I(inode)->ext;
736 bool sync = false;
737
738 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
739 return;
740
741 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
742 if (!et) {
743 if (ext->len) {
744 ext->len = 0;
745 update_inode_page(inode);
746 }
747 return;
748 }
749
750 read_lock(&et->lock);
751 if (et->count) {
752 struct extent_node *en;
753
754 if (et->cached_en) {
755 en = et->cached_en;
756 } else {
757 struct rb_node *node = rb_first(&et->root);
758
759 if (!node)
760 node = rb_last(&et->root);
761 en = rb_entry(node, struct extent_node, rb_node);
762 }
763
764 if (__is_extent_same(ext, &en->ei))
765 goto out;
766
767 *ext = en->ei;
768 sync = true;
769 } else if (ext->len) {
770 ext->len = 0;
771 sync = true;
772 }
773out:
774 read_unlock(&et->lock);
775 atomic_dec(&et->refcount);
776
777 if (sync)
778 update_inode_page(inode);
779}
780
429511cd
CY
781void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
782{
783 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
784 struct extent_node *en, *tmp;
785 unsigned long ino = F2FS_ROOT_INO(sbi);
786 struct radix_tree_iter iter;
787 void **slot;
788 unsigned int found;
1ec4610c 789 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 790
1dcc336b
CY
791 if (!test_opt(sbi, EXTENT_CACHE))
792 return;
793
429511cd
CY
794 if (available_free_memory(sbi, EXTENT_CACHE))
795 return;
796
797 spin_lock(&sbi->extent_lock);
798 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
799 if (!nr_shrink--)
800 break;
801 list_del_init(&en->list);
802 }
803 spin_unlock(&sbi->extent_lock);
804
805 down_read(&sbi->extent_tree_lock);
806 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
807 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
808 unsigned i;
809
810 ino = treevec[found - 1]->ino + 1;
811 for (i = 0; i < found; i++) {
812 struct extent_tree *et = treevec[i];
813
814 atomic_inc(&et->refcount);
815 write_lock(&et->lock);
1ec4610c 816 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
817 write_unlock(&et->lock);
818 atomic_dec(&et->refcount);
819 }
820 }
821 up_read(&sbi->extent_tree_lock);
822
823 down_write(&sbi->extent_tree_lock);
824 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
825 F2FS_ROOT_INO(sbi)) {
826 struct extent_tree *et = (struct extent_tree *)*slot;
827
828 if (!atomic_read(&et->refcount) && !et->count) {
829 radix_tree_delete(&sbi->extent_tree_root, et->ino);
830 kmem_cache_free(extent_tree_slab, et);
831 sbi->total_ext_tree--;
1ec4610c 832 tree_cnt++;
429511cd
CY
833 }
834 }
835 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
836
837 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
838}
839
840void f2fs_destroy_extent_tree(struct inode *inode)
841{
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 struct extent_tree *et;
1ec4610c 844 unsigned int node_cnt = 0;
429511cd 845
1dcc336b
CY
846 if (!test_opt(sbi, EXTENT_CACHE))
847 return;
848
93dfc526
CY
849 et = __find_extent_tree(sbi, inode->i_ino);
850 if (!et)
429511cd 851 goto out;
429511cd
CY
852
853 /* free all extent info belong to this extent tree */
854 write_lock(&et->lock);
1ec4610c 855 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
856 write_unlock(&et->lock);
857
858 atomic_dec(&et->refcount);
859
860 /* try to find and delete extent tree entry in radix tree */
861 down_write(&sbi->extent_tree_lock);
862 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
863 if (!et) {
864 up_write(&sbi->extent_tree_lock);
865 goto out;
866 }
867 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
868 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
869 kmem_cache_free(extent_tree_slab, et);
870 sbi->total_ext_tree--;
871 up_write(&sbi->extent_tree_lock);
872out:
1ec4610c 873 trace_f2fs_destroy_extent_tree(inode, node_cnt);
c11abd1a 874 return;
eb47b800
JK
875}
876
028a41e8
CY
877void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
878{
879 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
880 f2fs_init_extent_tree(inode, i_ext);
881
882 write_lock(&F2FS_I(inode)->ext_lock);
883 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
884 write_unlock(&F2FS_I(inode)->ext_lock);
885}
886
7e4dde79
CY
887static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
888 struct extent_info *ei)
889{
91c5d9bc
CY
890 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
891 return false;
892
1dcc336b
CY
893 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
894 return f2fs_lookup_extent_tree(inode, pgofs, ei);
895
7e4dde79
CY
896 return lookup_extent_info(inode, pgofs, ei);
897}
898
899void f2fs_update_extent_cache(struct dnode_of_data *dn)
900{
901 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
902 pgoff_t fofs;
903
904 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
905
91c5d9bc
CY
906 if (is_inode_flag_set(fi, FI_NO_EXTENT))
907 return;
908
7e4dde79
CY
909 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
910 dn->ofs_in_node;
911
1dcc336b
CY
912 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
913 return f2fs_update_extent_tree(dn->inode, fofs,
914 dn->data_blkaddr);
915
7e4dde79 916 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 917 sync_inode_page(dn);
eb47b800
JK
918}
919
43f3eae1 920struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
eb47b800 921{
eb47b800
JK
922 struct address_space *mapping = inode->i_mapping;
923 struct dnode_of_data dn;
924 struct page *page;
cb3bc9ee 925 struct extent_info ei;
eb47b800 926 int err;
cf04e8eb 927 struct f2fs_io_info fio = {
05ca3632 928 .sbi = F2FS_I_SB(inode),
cf04e8eb 929 .type = DATA,
43f3eae1 930 .rw = rw,
cf04e8eb 931 };
eb47b800 932
9ac1349a 933 page = grab_cache_page(mapping, index);
650495de
JK
934 if (!page)
935 return ERR_PTR(-ENOMEM);
936
cb3bc9ee
CY
937 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
938 dn.data_blkaddr = ei.blk + index - ei.fofs;
939 goto got_it;
940 }
941
eb47b800 942 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 943 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
944 if (err) {
945 f2fs_put_page(page, 1);
eb47b800 946 return ERR_PTR(err);
650495de 947 }
eb47b800
JK
948 f2fs_put_dnode(&dn);
949
6bacf52f 950 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 951 f2fs_put_page(page, 1);
eb47b800 952 return ERR_PTR(-ENOENT);
650495de 953 }
cb3bc9ee 954got_it:
43f3eae1
JK
955 if (PageUptodate(page)) {
956 unlock_page(page);
eb47b800 957 return page;
43f3eae1 958 }
eb47b800 959
d59ff4df
JK
960 /*
961 * A new dentry page is allocated but not able to be written, since its
962 * new inode page couldn't be allocated due to -ENOSPC.
963 * In such the case, its blkaddr can be remained as NEW_ADDR.
964 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
965 */
966 if (dn.data_blkaddr == NEW_ADDR) {
967 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
968 SetPageUptodate(page);
43f3eae1 969 unlock_page(page);
d59ff4df
JK
970 return page;
971 }
eb47b800 972
cf04e8eb 973 fio.blk_addr = dn.data_blkaddr;
05ca3632
JK
974 fio.page = page;
975 err = f2fs_submit_page_bio(&fio);
393ff91f 976 if (err)
eb47b800 977 return ERR_PTR(err);
43f3eae1
JK
978 return page;
979}
980
981struct page *find_data_page(struct inode *inode, pgoff_t index)
982{
983 struct address_space *mapping = inode->i_mapping;
984 struct page *page;
985
986 page = find_get_page(mapping, index);
987 if (page && PageUptodate(page))
988 return page;
989 f2fs_put_page(page, 0);
990
991 page = get_read_data_page(inode, index, READ_SYNC);
992 if (IS_ERR(page))
993 return page;
994
995 if (PageUptodate(page))
996 return page;
997
998 wait_on_page_locked(page);
999 if (unlikely(!PageUptodate(page))) {
1000 f2fs_put_page(page, 0);
1001 return ERR_PTR(-EIO);
1002 }
1003 return page;
1004}
1005
1006/*
1007 * If it tries to access a hole, return an error.
1008 * Because, the callers, functions in dir.c and GC, should be able to know
1009 * whether this page exists or not.
1010 */
1011struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
1012{
1013 struct address_space *mapping = inode->i_mapping;
1014 struct page *page;
1015repeat:
1016 page = get_read_data_page(inode, index, READ_SYNC);
1017 if (IS_ERR(page))
1018 return page;
393ff91f 1019
43f3eae1 1020 /* wait for read completion */
393ff91f 1021 lock_page(page);
6bacf52f 1022 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1023 f2fs_put_page(page, 1);
1024 return ERR_PTR(-EIO);
eb47b800 1025 }
6bacf52f 1026 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1027 f2fs_put_page(page, 1);
1028 goto repeat;
eb47b800
JK
1029 }
1030 return page;
1031}
1032
0a8165d7 1033/*
eb47b800
JK
1034 * Caller ensures that this data page is never allocated.
1035 * A new zero-filled data page is allocated in the page cache.
39936837 1036 *
4f4124d0
CY
1037 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1038 * f2fs_unlock_op().
a8865372 1039 * Note that, ipage is set only by make_empty_dir.
eb47b800 1040 */
64aa7ed9 1041struct page *get_new_data_page(struct inode *inode,
a8865372 1042 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1043{
eb47b800
JK
1044 struct address_space *mapping = inode->i_mapping;
1045 struct page *page;
1046 struct dnode_of_data dn;
1047 int err;
01f28610
JK
1048repeat:
1049 page = grab_cache_page(mapping, index);
1050 if (!page)
1051 return ERR_PTR(-ENOMEM);
eb47b800 1052
a8865372 1053 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1054 err = f2fs_reserve_block(&dn, index);
01f28610
JK
1055 if (err) {
1056 f2fs_put_page(page, 1);
eb47b800 1057 return ERR_PTR(err);
a8865372 1058 }
01f28610
JK
1059 if (!ipage)
1060 f2fs_put_dnode(&dn);
eb47b800
JK
1061
1062 if (PageUptodate(page))
01f28610 1063 goto got_it;
eb47b800
JK
1064
1065 if (dn.data_blkaddr == NEW_ADDR) {
1066 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1067 SetPageUptodate(page);
eb47b800 1068 } else {
cf04e8eb 1069 struct f2fs_io_info fio = {
05ca3632 1070 .sbi = F2FS_I_SB(inode),
cf04e8eb
JK
1071 .type = DATA,
1072 .rw = READ_SYNC,
1073 .blk_addr = dn.data_blkaddr,
05ca3632 1074 .page = page,
cf04e8eb 1075 };
05ca3632 1076 err = f2fs_submit_page_bio(&fio);
393ff91f 1077 if (err)
01f28610 1078 return ERR_PTR(err);
a8865372 1079
393ff91f 1080 lock_page(page);
6bacf52f 1081 if (unlikely(!PageUptodate(page))) {
393ff91f 1082 f2fs_put_page(page, 1);
01f28610 1083 return ERR_PTR(-EIO);
eb47b800 1084 }
6bacf52f 1085 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1086 f2fs_put_page(page, 1);
1087 goto repeat;
eb47b800
JK
1088 }
1089 }
01f28610 1090got_it:
eb47b800
JK
1091 if (new_i_size &&
1092 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1093 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1094 /* Only the directory inode sets new_i_size */
1095 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1096 }
1097 return page;
1098}
1099
bfad7c2d
JK
1100static int __allocate_data_block(struct dnode_of_data *dn)
1101{
4081363f 1102 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1103 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1104 struct f2fs_summary sum;
bfad7c2d 1105 struct node_info ni;
38aa0889 1106 int seg = CURSEG_WARM_DATA;
976e4c50 1107 pgoff_t fofs;
bfad7c2d
JK
1108
1109 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1110 return -EPERM;
df6136ef
CY
1111
1112 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1113 if (dn->data_blkaddr == NEW_ADDR)
1114 goto alloc;
1115
bfad7c2d
JK
1116 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1117 return -ENOSPC;
1118
df6136ef 1119alloc:
bfad7c2d
JK
1120 get_node_info(sbi, dn->nid, &ni);
1121 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1122
38aa0889
JK
1123 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1124 seg = CURSEG_DIRECT_IO;
1125
df6136ef
CY
1126 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1127 &sum, seg);
bfad7c2d
JK
1128
1129 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1130 set_data_blkaddr(dn);
bfad7c2d 1131
976e4c50
JK
1132 /* update i_size */
1133 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1134 dn->ofs_in_node;
1135 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1136 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1137
bfad7c2d
JK
1138 return 0;
1139}
1140
59b802e5
JK
1141static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1142 size_t count)
1143{
1144 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1145 struct dnode_of_data dn;
1146 u64 start = F2FS_BYTES_TO_BLK(offset);
1147 u64 len = F2FS_BYTES_TO_BLK(count);
1148 bool allocated;
1149 u64 end_offset;
1150
1151 while (len) {
1152 f2fs_balance_fs(sbi);
1153 f2fs_lock_op(sbi);
1154
1155 /* When reading holes, we need its node page */
1156 set_new_dnode(&dn, inode, NULL, NULL, 0);
1157 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1158 goto out;
1159
1160 allocated = false;
1161 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1162
1163 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1164 block_t blkaddr;
1165
1166 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1167 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1168 if (__allocate_data_block(&dn))
1169 goto sync_out;
1170 allocated = true;
1171 }
1172 len--;
1173 start++;
1174 dn.ofs_in_node++;
1175 }
1176
1177 if (allocated)
1178 sync_inode_page(&dn);
1179
1180 f2fs_put_dnode(&dn);
1181 f2fs_unlock_op(sbi);
1182 }
1183 return;
1184
1185sync_out:
1186 if (allocated)
1187 sync_inode_page(&dn);
1188 f2fs_put_dnode(&dn);
1189out:
1190 f2fs_unlock_op(sbi);
1191 return;
1192}
1193
0a8165d7 1194/*
003a3e1d
JK
1195 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1196 * f2fs_map_blocks structure.
4f4124d0
CY
1197 * If original data blocks are allocated, then give them to blockdev.
1198 * Otherwise,
1199 * a. preallocate requested block addresses
1200 * b. do not use extent cache for better performance
1201 * c. give the block addresses to blockdev
eb47b800 1202 */
003a3e1d
JK
1203static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1204 int create, bool fiemap)
eb47b800 1205{
003a3e1d 1206 unsigned int maxblocks = map->m_len;
eb47b800 1207 struct dnode_of_data dn;
bfad7c2d
JK
1208 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1209 pgoff_t pgofs, end_offset;
1210 int err = 0, ofs = 1;
a2e7d1bf 1211 struct extent_info ei;
bfad7c2d 1212 bool allocated = false;
eb47b800 1213
003a3e1d
JK
1214 map->m_len = 0;
1215 map->m_flags = 0;
1216
1217 /* it only supports block size == page size */
1218 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1219
7e4dde79 1220 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1221 map->m_pblk = ei.blk + pgofs - ei.fofs;
1222 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1223 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1224 goto out;
a2e7d1bf 1225 }
bfad7c2d 1226
59b802e5 1227 if (create)
4081363f 1228 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1229
1230 /* When reading holes, we need its node page */
1231 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1232 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1233 if (err) {
bfad7c2d
JK
1234 if (err == -ENOENT)
1235 err = 0;
1236 goto unlock_out;
848753aa 1237 }
ccfb3000 1238 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1239 goto put_out;
eb47b800 1240
bfad7c2d 1241 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1242 map->m_flags = F2FS_MAP_MAPPED;
1243 map->m_pblk = dn.data_blkaddr;
7f63eb77
JK
1244 if (dn.data_blkaddr == NEW_ADDR)
1245 map->m_flags |= F2FS_MAP_UNWRITTEN;
bfad7c2d
JK
1246 } else if (create) {
1247 err = __allocate_data_block(&dn);
1248 if (err)
1249 goto put_out;
1250 allocated = true;
003a3e1d
JK
1251 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1252 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1253 } else {
1254 goto put_out;
1255 }
1256
6403eb1f 1257 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1258 map->m_len = 1;
bfad7c2d
JK
1259 dn.ofs_in_node++;
1260 pgofs++;
1261
1262get_next:
1263 if (dn.ofs_in_node >= end_offset) {
1264 if (allocated)
1265 sync_inode_page(&dn);
1266 allocated = false;
1267 f2fs_put_dnode(&dn);
1268
1269 set_new_dnode(&dn, inode, NULL, NULL, 0);
1270 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1271 if (err) {
bfad7c2d
JK
1272 if (err == -ENOENT)
1273 err = 0;
1274 goto unlock_out;
1275 }
ccfb3000 1276 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1277 goto put_out;
1278
6403eb1f 1279 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1280 }
eb47b800 1281
003a3e1d 1282 if (maxblocks > map->m_len) {
bfad7c2d
JK
1283 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1284 if (blkaddr == NULL_ADDR && create) {
1285 err = __allocate_data_block(&dn);
1286 if (err)
1287 goto sync_out;
1288 allocated = true;
003a3e1d 1289 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1290 blkaddr = dn.data_blkaddr;
1291 }
e1c42045 1292 /* Give more consecutive addresses for the readahead */
7f63eb77
JK
1293 if ((map->m_pblk != NEW_ADDR &&
1294 blkaddr == (map->m_pblk + ofs)) ||
1295 (map->m_pblk == NEW_ADDR &&
1296 blkaddr == NEW_ADDR)) {
bfad7c2d
JK
1297 ofs++;
1298 dn.ofs_in_node++;
1299 pgofs++;
003a3e1d 1300 map->m_len++;
bfad7c2d
JK
1301 goto get_next;
1302 }
eb47b800 1303 }
bfad7c2d
JK
1304sync_out:
1305 if (allocated)
1306 sync_inode_page(&dn);
1307put_out:
eb47b800 1308 f2fs_put_dnode(&dn);
bfad7c2d
JK
1309unlock_out:
1310 if (create)
4081363f 1311 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1312out:
003a3e1d 1313 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1314 return err;
eb47b800
JK
1315}
1316
003a3e1d
JK
1317static int __get_data_block(struct inode *inode, sector_t iblock,
1318 struct buffer_head *bh, int create, bool fiemap)
1319{
1320 struct f2fs_map_blocks map;
1321 int ret;
1322
1323 map.m_lblk = iblock;
1324 map.m_len = bh->b_size >> inode->i_blkbits;
1325
1326 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1327 if (!ret) {
1328 map_bh(bh, inode->i_sb, map.m_pblk);
1329 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1330 bh->b_size = map.m_len << inode->i_blkbits;
1331 }
1332 return ret;
1333}
1334
ccfb3000
JK
1335static int get_data_block(struct inode *inode, sector_t iblock,
1336 struct buffer_head *bh_result, int create)
1337{
1338 return __get_data_block(inode, iblock, bh_result, create, false);
1339}
1340
1341static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1342 struct buffer_head *bh_result, int create)
1343{
1344 return __get_data_block(inode, iblock, bh_result, create, true);
1345}
1346
7f63eb77
JK
1347static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1348{
1349 return (offset >> inode->i_blkbits);
1350}
1351
1352static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1353{
1354 return (blk << inode->i_blkbits);
1355}
1356
9ab70134
JK
1357int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1358 u64 start, u64 len)
1359{
7f63eb77
JK
1360 struct buffer_head map_bh;
1361 sector_t start_blk, last_blk;
1362 loff_t isize = i_size_read(inode);
1363 u64 logical = 0, phys = 0, size = 0;
1364 u32 flags = 0;
1365 bool past_eof = false, whole_file = false;
1366 int ret = 0;
1367
1368 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1369 if (ret)
1370 return ret;
1371
1372 mutex_lock(&inode->i_mutex);
1373
1374 if (len >= isize) {
1375 whole_file = true;
1376 len = isize;
1377 }
1378
1379 if (logical_to_blk(inode, len) == 0)
1380 len = blk_to_logical(inode, 1);
1381
1382 start_blk = logical_to_blk(inode, start);
1383 last_blk = logical_to_blk(inode, start + len - 1);
1384next:
1385 memset(&map_bh, 0, sizeof(struct buffer_head));
1386 map_bh.b_size = len;
1387
1388 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1389 if (ret)
1390 goto out;
1391
1392 /* HOLE */
1393 if (!buffer_mapped(&map_bh)) {
1394 start_blk++;
1395
1396 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1397 past_eof = 1;
1398
1399 if (past_eof && size) {
1400 flags |= FIEMAP_EXTENT_LAST;
1401 ret = fiemap_fill_next_extent(fieinfo, logical,
1402 phys, size, flags);
1403 } else if (size) {
1404 ret = fiemap_fill_next_extent(fieinfo, logical,
1405 phys, size, flags);
1406 size = 0;
1407 }
1408
1409 /* if we have holes up to/past EOF then we're done */
1410 if (start_blk > last_blk || past_eof || ret)
1411 goto out;
1412 } else {
1413 if (start_blk > last_blk && !whole_file) {
1414 ret = fiemap_fill_next_extent(fieinfo, logical,
1415 phys, size, flags);
1416 goto out;
1417 }
1418
1419 /*
1420 * if size != 0 then we know we already have an extent
1421 * to add, so add it.
1422 */
1423 if (size) {
1424 ret = fiemap_fill_next_extent(fieinfo, logical,
1425 phys, size, flags);
1426 if (ret)
1427 goto out;
1428 }
1429
1430 logical = blk_to_logical(inode, start_blk);
1431 phys = blk_to_logical(inode, map_bh.b_blocknr);
1432 size = map_bh.b_size;
1433 flags = 0;
1434 if (buffer_unwritten(&map_bh))
1435 flags = FIEMAP_EXTENT_UNWRITTEN;
1436
1437 start_blk += logical_to_blk(inode, size);
1438
1439 /*
1440 * If we are past the EOF, then we need to make sure as
1441 * soon as we find a hole that the last extent we found
1442 * is marked with FIEMAP_EXTENT_LAST
1443 */
1444 if (!past_eof && logical + size >= isize)
1445 past_eof = true;
1446 }
1447 cond_resched();
1448 if (fatal_signal_pending(current))
1449 ret = -EINTR;
1450 else
1451 goto next;
1452out:
1453 if (ret == 1)
1454 ret = 0;
1455
1456 mutex_unlock(&inode->i_mutex);
1457 return ret;
9ab70134
JK
1458}
1459
f1e88660
JK
1460/*
1461 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1462 * Major change was from block_size == page_size in f2fs by default.
1463 */
1464static int f2fs_mpage_readpages(struct address_space *mapping,
1465 struct list_head *pages, struct page *page,
1466 unsigned nr_pages)
1467{
1468 struct bio *bio = NULL;
1469 unsigned page_idx;
1470 sector_t last_block_in_bio = 0;
1471 struct inode *inode = mapping->host;
1472 const unsigned blkbits = inode->i_blkbits;
1473 const unsigned blocksize = 1 << blkbits;
1474 sector_t block_in_file;
1475 sector_t last_block;
1476 sector_t last_block_in_file;
1477 sector_t block_nr;
1478 struct block_device *bdev = inode->i_sb->s_bdev;
1479 struct f2fs_map_blocks map;
1480
1481 map.m_pblk = 0;
1482 map.m_lblk = 0;
1483 map.m_len = 0;
1484 map.m_flags = 0;
1485
1486 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1487
1488 prefetchw(&page->flags);
1489 if (pages) {
1490 page = list_entry(pages->prev, struct page, lru);
1491 list_del(&page->lru);
1492 if (add_to_page_cache_lru(page, mapping,
1493 page->index, GFP_KERNEL))
1494 goto next_page;
1495 }
1496
1497 block_in_file = (sector_t)page->index;
1498 last_block = block_in_file + nr_pages;
1499 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1500 blkbits;
1501 if (last_block > last_block_in_file)
1502 last_block = last_block_in_file;
1503
1504 /*
1505 * Map blocks using the previous result first.
1506 */
1507 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1508 block_in_file > map.m_lblk &&
1509 block_in_file < (map.m_lblk + map.m_len))
1510 goto got_it;
1511
1512 /*
1513 * Then do more f2fs_map_blocks() calls until we are
1514 * done with this page.
1515 */
1516 map.m_flags = 0;
1517
1518 if (block_in_file < last_block) {
1519 map.m_lblk = block_in_file;
1520 map.m_len = last_block - block_in_file;
1521
1522 if (f2fs_map_blocks(inode, &map, 0, false))
1523 goto set_error_page;
1524 }
1525got_it:
1526 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1527 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1528 SetPageMappedToDisk(page);
1529
1530 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1531 SetPageUptodate(page);
1532 goto confused;
1533 }
1534 } else {
1535 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1536 SetPageUptodate(page);
1537 unlock_page(page);
1538 goto next_page;
1539 }
1540
1541 /*
1542 * This page will go to BIO. Do we need to send this
1543 * BIO off first?
1544 */
1545 if (bio && (last_block_in_bio != block_nr - 1)) {
1546submit_and_realloc:
1547 submit_bio(READ, bio);
1548 bio = NULL;
1549 }
1550 if (bio == NULL) {
1551 bio = bio_alloc(GFP_KERNEL,
1552 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
1553 if (!bio)
1554 goto set_error_page;
1555 bio->bi_bdev = bdev;
1556 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1557 bio->bi_end_io = mpage_end_io;
1558 bio->bi_private = NULL;
1559 }
1560
1561 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1562 goto submit_and_realloc;
1563
1564 last_block_in_bio = block_nr;
1565 goto next_page;
1566set_error_page:
1567 SetPageError(page);
1568 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1569 unlock_page(page);
1570 goto next_page;
1571confused:
1572 if (bio) {
1573 submit_bio(READ, bio);
1574 bio = NULL;
1575 }
1576 unlock_page(page);
1577next_page:
1578 if (pages)
1579 page_cache_release(page);
1580 }
1581 BUG_ON(pages && !list_empty(pages));
1582 if (bio)
1583 submit_bio(READ, bio);
1584 return 0;
1585}
1586
eb47b800
JK
1587static int f2fs_read_data_page(struct file *file, struct page *page)
1588{
9ffe0fb5 1589 struct inode *inode = page->mapping->host;
b3d208f9 1590 int ret = -EAGAIN;
9ffe0fb5 1591
c20e89cd
CY
1592 trace_f2fs_readpage(page, DATA);
1593
e1c42045 1594 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1595 if (f2fs_has_inline_data(inode))
1596 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1597 if (ret == -EAGAIN)
f1e88660 1598 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1599 return ret;
eb47b800
JK
1600}
1601
1602static int f2fs_read_data_pages(struct file *file,
1603 struct address_space *mapping,
1604 struct list_head *pages, unsigned nr_pages)
1605{
9ffe0fb5
HL
1606 struct inode *inode = file->f_mapping->host;
1607
1608 /* If the file has inline data, skip readpages */
1609 if (f2fs_has_inline_data(inode))
1610 return 0;
1611
f1e88660 1612 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1613}
1614
05ca3632 1615int do_write_data_page(struct f2fs_io_info *fio)
eb47b800 1616{
05ca3632 1617 struct page *page = fio->page;
eb47b800 1618 struct inode *inode = page->mapping->host;
eb47b800
JK
1619 struct dnode_of_data dn;
1620 int err = 0;
1621
1622 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1623 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1624 if (err)
1625 return err;
1626
cf04e8eb 1627 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1628
1629 /* This page is already truncated */
2bca1e23
JK
1630 if (fio->blk_addr == NULL_ADDR) {
1631 ClearPageUptodate(page);
eb47b800 1632 goto out_writepage;
2bca1e23 1633 }
eb47b800
JK
1634
1635 set_page_writeback(page);
1636
1637 /*
1638 * If current allocation needs SSR,
1639 * it had better in-place writes for updated data.
1640 */
cf04e8eb 1641 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1642 !is_cold_data(page) &&
1643 need_inplace_update(inode))) {
05ca3632 1644 rewrite_data_page(fio);
fff04f90 1645 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1646 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1647 } else {
05ca3632 1648 write_data_page(&dn, fio);
216a620a 1649 set_data_blkaddr(&dn);
7e4dde79 1650 f2fs_update_extent_cache(&dn);
8ce67cb0 1651 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1652 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1653 if (page->index == 0)
1654 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1655 }
1656out_writepage:
1657 f2fs_put_dnode(&dn);
1658 return err;
1659}
1660
1661static int f2fs_write_data_page(struct page *page,
1662 struct writeback_control *wbc)
1663{
1664 struct inode *inode = page->mapping->host;
4081363f 1665 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1666 loff_t i_size = i_size_read(inode);
1667 const pgoff_t end_index = ((unsigned long long) i_size)
1668 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1669 unsigned offset = 0;
39936837 1670 bool need_balance_fs = false;
eb47b800 1671 int err = 0;
458e6197 1672 struct f2fs_io_info fio = {
05ca3632 1673 .sbi = sbi,
458e6197 1674 .type = DATA,
6c311ec6 1675 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
05ca3632 1676 .page = page,
458e6197 1677 };
eb47b800 1678
ecda0de3
CY
1679 trace_f2fs_writepage(page, DATA);
1680
eb47b800 1681 if (page->index < end_index)
39936837 1682 goto write;
eb47b800
JK
1683
1684 /*
1685 * If the offset is out-of-range of file size,
1686 * this page does not have to be written to disk.
1687 */
1688 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1689 if ((page->index >= end_index + 1) || !offset)
39936837 1690 goto out;
eb47b800
JK
1691
1692 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1693write:
caf0047e 1694 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1695 goto redirty_out;
1e84371f
JK
1696 if (f2fs_is_drop_cache(inode))
1697 goto out;
1698 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1699 available_free_memory(sbi, BASE_CHECK))
1700 goto redirty_out;
eb47b800 1701
39936837 1702 /* Dentry blocks are controlled by checkpoint */
eb47b800 1703 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1704 if (unlikely(f2fs_cp_error(sbi)))
1705 goto redirty_out;
05ca3632 1706 err = do_write_data_page(&fio);
8618b881
JK
1707 goto done;
1708 }
9ffe0fb5 1709
cf779cab
JK
1710 /* we should bypass data pages to proceed the kworkder jobs */
1711 if (unlikely(f2fs_cp_error(sbi))) {
1712 SetPageError(page);
a7ffdbe2 1713 goto out;
cf779cab
JK
1714 }
1715
8618b881 1716 if (!wbc->for_reclaim)
39936837 1717 need_balance_fs = true;
8618b881 1718 else if (has_not_enough_free_secs(sbi, 0))
39936837 1719 goto redirty_out;
eb47b800 1720
b3d208f9 1721 err = -EAGAIN;
8618b881 1722 f2fs_lock_op(sbi);
b3d208f9
JK
1723 if (f2fs_has_inline_data(inode))
1724 err = f2fs_write_inline_data(inode, page);
1725 if (err == -EAGAIN)
05ca3632 1726 err = do_write_data_page(&fio);
8618b881
JK
1727 f2fs_unlock_op(sbi);
1728done:
1729 if (err && err != -ENOENT)
1730 goto redirty_out;
eb47b800 1731
eb47b800 1732 clear_cold_data(page);
39936837 1733out:
a7ffdbe2 1734 inode_dec_dirty_pages(inode);
2bca1e23
JK
1735 if (err)
1736 ClearPageUptodate(page);
eb47b800 1737 unlock_page(page);
39936837 1738 if (need_balance_fs)
eb47b800 1739 f2fs_balance_fs(sbi);
2aea39ec
JK
1740 if (wbc->for_reclaim)
1741 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1742 return 0;
1743
eb47b800 1744redirty_out:
76f60268 1745 redirty_page_for_writepage(wbc, page);
8618b881 1746 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1747}
1748
fa9150a8
NJ
1749static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1750 void *data)
1751{
1752 struct address_space *mapping = data;
1753 int ret = mapping->a_ops->writepage(page, wbc);
1754 mapping_set_error(mapping, ret);
1755 return ret;
1756}
1757
25ca923b 1758static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1759 struct writeback_control *wbc)
1760{
1761 struct inode *inode = mapping->host;
4081363f 1762 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1763 bool locked = false;
eb47b800 1764 int ret;
50c8cdb3 1765 long diff;
eb47b800 1766
e5748434
CY
1767 trace_f2fs_writepages(mapping->host, wbc, DATA);
1768
cfb185a1 1769 /* deal with chardevs and other special file */
1770 if (!mapping->a_ops->writepage)
1771 return 0;
1772
87d6f890 1773 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1774 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1775 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1776 goto skip_write;
87d6f890 1777
d5669f7b
JK
1778 /* during POR, we don't need to trigger writepage at all. */
1779 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1780 goto skip_write;
1781
50c8cdb3 1782 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1783
5463e7c1
JK
1784 if (!S_ISDIR(inode->i_mode)) {
1785 mutex_lock(&sbi->writepages);
1786 locked = true;
1787 }
fa9150a8 1788 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1789 if (locked)
1790 mutex_unlock(&sbi->writepages);
458e6197
JK
1791
1792 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1793
1794 remove_dirty_dir_inode(inode);
1795
50c8cdb3 1796 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1797 return ret;
d3baf95d
JK
1798
1799skip_write:
a7ffdbe2 1800 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1801 return 0;
eb47b800
JK
1802}
1803
3aab8f82
CY
1804static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1805{
1806 struct inode *inode = mapping->host;
1807
1808 if (to > inode->i_size) {
1809 truncate_pagecache(inode, inode->i_size);
764aa3e9 1810 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1811 }
1812}
1813
eb47b800
JK
1814static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1815 loff_t pos, unsigned len, unsigned flags,
1816 struct page **pagep, void **fsdata)
1817{
1818 struct inode *inode = mapping->host;
4081363f 1819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1820 struct page *page, *ipage;
eb47b800
JK
1821 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1822 struct dnode_of_data dn;
1823 int err = 0;
1824
62aed044
CY
1825 trace_f2fs_write_begin(inode, pos, len, flags);
1826
eb47b800 1827 f2fs_balance_fs(sbi);
5f727395
JK
1828
1829 /*
1830 * We should check this at this moment to avoid deadlock on inode page
1831 * and #0 page. The locking rule for inline_data conversion should be:
1832 * lock_page(page #0) -> lock_page(inode_page)
1833 */
1834 if (index != 0) {
1835 err = f2fs_convert_inline_inode(inode);
1836 if (err)
1837 goto fail;
1838 }
afcb7ca0 1839repeat:
eb47b800 1840 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1841 if (!page) {
1842 err = -ENOMEM;
1843 goto fail;
1844 }
d5f66990 1845
eb47b800
JK
1846 *pagep = page;
1847
e479556b 1848 f2fs_lock_op(sbi);
9ba69cf9
JK
1849
1850 /* check inline_data */
1851 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1852 if (IS_ERR(ipage)) {
1853 err = PTR_ERR(ipage);
9ba69cf9 1854 goto unlock_fail;
cd34e296 1855 }
9ba69cf9 1856
b3d208f9
JK
1857 set_new_dnode(&dn, inode, ipage, ipage, 0);
1858
9ba69cf9 1859 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1860 if (pos + len <= MAX_INLINE_DATA) {
1861 read_inline_data(page, ipage);
1862 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1863 sync_inode_page(&dn);
1864 goto put_next;
b3d208f9 1865 }
5f727395
JK
1866 err = f2fs_convert_inline_page(&dn, page);
1867 if (err)
1868 goto put_fail;
b600965c 1869 }
9ba69cf9
JK
1870 err = f2fs_reserve_block(&dn, index);
1871 if (err)
8cdcb713 1872 goto put_fail;
b3d208f9 1873put_next:
9ba69cf9
JK
1874 f2fs_put_dnode(&dn);
1875 f2fs_unlock_op(sbi);
1876
eb47b800
JK
1877 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1878 return 0;
1879
b3d208f9
JK
1880 f2fs_wait_on_page_writeback(page, DATA);
1881
eb47b800
JK
1882 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1883 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1884 unsigned end = start + len;
1885
1886 /* Reading beyond i_size is simple: memset to zero */
1887 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1888 goto out;
eb47b800
JK
1889 }
1890
b3d208f9 1891 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1892 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1893 } else {
cf04e8eb 1894 struct f2fs_io_info fio = {
05ca3632 1895 .sbi = sbi,
cf04e8eb
JK
1896 .type = DATA,
1897 .rw = READ_SYNC,
1898 .blk_addr = dn.data_blkaddr,
05ca3632 1899 .page = page,
cf04e8eb 1900 };
05ca3632 1901 err = f2fs_submit_page_bio(&fio);
9234f319
JK
1902 if (err)
1903 goto fail;
d54c795b 1904
393ff91f 1905 lock_page(page);
6bacf52f 1906 if (unlikely(!PageUptodate(page))) {
393ff91f 1907 f2fs_put_page(page, 1);
3aab8f82
CY
1908 err = -EIO;
1909 goto fail;
eb47b800 1910 }
6bacf52f 1911 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1912 f2fs_put_page(page, 1);
1913 goto repeat;
eb47b800
JK
1914 }
1915 }
393ff91f 1916out:
eb47b800
JK
1917 SetPageUptodate(page);
1918 clear_cold_data(page);
1919 return 0;
9ba69cf9 1920
8cdcb713
JK
1921put_fail:
1922 f2fs_put_dnode(&dn);
9ba69cf9
JK
1923unlock_fail:
1924 f2fs_unlock_op(sbi);
b3d208f9 1925 f2fs_put_page(page, 1);
3aab8f82
CY
1926fail:
1927 f2fs_write_failed(mapping, pos + len);
1928 return err;
eb47b800
JK
1929}
1930
a1dd3c13
JK
1931static int f2fs_write_end(struct file *file,
1932 struct address_space *mapping,
1933 loff_t pos, unsigned len, unsigned copied,
1934 struct page *page, void *fsdata)
1935{
1936 struct inode *inode = page->mapping->host;
1937
dfb2bf38
CY
1938 trace_f2fs_write_end(inode, pos, len, copied);
1939
34ba94ba 1940 set_page_dirty(page);
a1dd3c13
JK
1941
1942 if (pos + copied > i_size_read(inode)) {
1943 i_size_write(inode, pos + copied);
1944 mark_inode_dirty(inode);
1945 update_inode_page(inode);
1946 }
1947
75c3c8bc 1948 f2fs_put_page(page, 1);
a1dd3c13
JK
1949 return copied;
1950}
1951
6f673763
OS
1952static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1953 loff_t offset)
944fcfc1
JK
1954{
1955 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1956
6f673763 1957 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1958 return 0;
1959
1960 if (offset & blocksize_mask)
1961 return -EINVAL;
1962
5b46f25d
AV
1963 if (iov_iter_alignment(iter) & blocksize_mask)
1964 return -EINVAL;
1965
944fcfc1
JK
1966 return 0;
1967}
1968
22c6186e
OS
1969static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1970 loff_t offset)
eb47b800
JK
1971{
1972 struct file *file = iocb->ki_filp;
3aab8f82
CY
1973 struct address_space *mapping = file->f_mapping;
1974 struct inode *inode = mapping->host;
1975 size_t count = iov_iter_count(iter);
1976 int err;
944fcfc1 1977
b3d208f9
JK
1978 /* we don't need to use inline_data strictly */
1979 if (f2fs_has_inline_data(inode)) {
1980 err = f2fs_convert_inline_inode(inode);
1981 if (err)
1982 return err;
1983 }
9ffe0fb5 1984
6f673763 1985 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
1986 return 0;
1987
6f673763 1988 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 1989
6f673763 1990 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
1991 __allocate_data_blocks(inode, offset, count);
1992
17f8c842 1993 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 1994 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 1995 f2fs_write_failed(mapping, offset + count);
70407fad 1996
6f673763 1997 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 1998
3aab8f82 1999 return err;
eb47b800
JK
2000}
2001
487261f3
CY
2002void f2fs_invalidate_page(struct page *page, unsigned int offset,
2003 unsigned int length)
eb47b800
JK
2004{
2005 struct inode *inode = page->mapping->host;
487261f3 2006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 2007
487261f3
CY
2008 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2009 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
2010 return;
2011
487261f3
CY
2012 if (PageDirty(page)) {
2013 if (inode->i_ino == F2FS_META_INO(sbi))
2014 dec_page_count(sbi, F2FS_DIRTY_META);
2015 else if (inode->i_ino == F2FS_NODE_INO(sbi))
2016 dec_page_count(sbi, F2FS_DIRTY_NODES);
2017 else
2018 inode_dec_dirty_pages(inode);
2019 }
eb47b800
JK
2020 ClearPagePrivate(page);
2021}
2022
487261f3 2023int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 2024{
f68daeeb
JK
2025 /* If this is dirty page, keep PagePrivate */
2026 if (PageDirty(page))
2027 return 0;
2028
eb47b800 2029 ClearPagePrivate(page);
c3850aa1 2030 return 1;
eb47b800
JK
2031}
2032
2033static int f2fs_set_data_page_dirty(struct page *page)
2034{
2035 struct address_space *mapping = page->mapping;
2036 struct inode *inode = mapping->host;
2037
26c6b887
JK
2038 trace_f2fs_set_page_dirty(page, DATA);
2039
eb47b800 2040 SetPageUptodate(page);
34ba94ba 2041
1e84371f 2042 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
2043 register_inmem_page(inode, page);
2044 return 1;
2045 }
2046
a18ff063
JK
2047 mark_inode_dirty(inode);
2048
eb47b800
JK
2049 if (!PageDirty(page)) {
2050 __set_page_dirty_nobuffers(page);
a7ffdbe2 2051 update_dirty_page(inode, page);
eb47b800
JK
2052 return 1;
2053 }
2054 return 0;
2055}
2056
c01e54b7
JK
2057static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2058{
454ae7e5
CY
2059 struct inode *inode = mapping->host;
2060
b3d208f9
JK
2061 /* we don't need to use inline_data strictly */
2062 if (f2fs_has_inline_data(inode)) {
2063 int err = f2fs_convert_inline_inode(inode);
2064 if (err)
2065 return err;
2066 }
bfad7c2d 2067 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
2068}
2069
429511cd
CY
2070void init_extent_cache_info(struct f2fs_sb_info *sbi)
2071{
2072 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2073 init_rwsem(&sbi->extent_tree_lock);
2074 INIT_LIST_HEAD(&sbi->extent_list);
2075 spin_lock_init(&sbi->extent_lock);
2076 sbi->total_ext_tree = 0;
2077 atomic_set(&sbi->total_ext_node, 0);
2078}
2079
2080int __init create_extent_cache(void)
2081{
2082 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2083 sizeof(struct extent_tree));
2084 if (!extent_tree_slab)
2085 return -ENOMEM;
2086 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2087 sizeof(struct extent_node));
2088 if (!extent_node_slab) {
2089 kmem_cache_destroy(extent_tree_slab);
2090 return -ENOMEM;
2091 }
2092 return 0;
2093}
2094
2095void destroy_extent_cache(void)
2096{
2097 kmem_cache_destroy(extent_node_slab);
2098 kmem_cache_destroy(extent_tree_slab);
2099}
2100
eb47b800
JK
2101const struct address_space_operations f2fs_dblock_aops = {
2102 .readpage = f2fs_read_data_page,
2103 .readpages = f2fs_read_data_pages,
2104 .writepage = f2fs_write_data_page,
2105 .writepages = f2fs_write_data_pages,
2106 .write_begin = f2fs_write_begin,
a1dd3c13 2107 .write_end = f2fs_write_end,
eb47b800 2108 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
2109 .invalidatepage = f2fs_invalidate_page,
2110 .releasepage = f2fs_release_page,
eb47b800 2111 .direct_IO = f2fs_direct_IO,
c01e54b7 2112 .bmap = f2fs_bmap,
eb47b800 2113};