]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/f2fs/data.c
f2fs: enable inline data by default
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
a27bb332 15#include <linux/aio.h>
eb47b800
JK
16#include <linux/writeback.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
690e4a3e 20#include <linux/prefetch.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
216a620a 203void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
216a620a 232 set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
a2e7d1bf
CY
254static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256{
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
3402e87c 260 clear_buffer_new(bh_result);
a2e7d1bf
CY
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
0c872e2d 276 read_lock(&fi->ext_lock);
eb47b800 277 if (fi->ext.len == 0) {
0c872e2d 278 read_unlock(&fi->ext_lock);
7e4dde79 279 return false;
eb47b800
JK
280 }
281
dcdfff65
JK
282 stat_inc_total_hit(inode->i_sb);
283
eb47b800
JK
284 start_fofs = fi->ext.fofs;
285 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 286 start_blkaddr = fi->ext.blk;
eb47b800
JK
287
288 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 289 *ei = fi->ext;
dcdfff65 290 stat_inc_read_hit(inode->i_sb);
0c872e2d 291 read_unlock(&fi->ext_lock);
7e4dde79 292 return true;
eb47b800 293 }
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return false;
eb47b800
JK
296}
297
7e4dde79
CY
298static bool update_extent_info(struct inode *inode, pgoff_t fofs,
299 block_t blkaddr)
eb47b800 300{
7e4dde79
CY
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 pgoff_t start_fofs, end_fofs;
eb47b800 303 block_t start_blkaddr, end_blkaddr;
c11abd1a 304 int need_update = true;
eb47b800 305
0c872e2d 306 write_lock(&fi->ext_lock);
eb47b800
JK
307
308 start_fofs = fi->ext.fofs;
309 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
310 start_blkaddr = fi->ext.blk;
311 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
312
313 /* Drop and initialize the matched extent */
314 if (fi->ext.len == 1 && fofs == start_fofs)
315 fi->ext.len = 0;
316
317 /* Initial extent */
318 if (fi->ext.len == 0) {
7e4dde79 319 if (blkaddr != NULL_ADDR) {
eb47b800 320 fi->ext.fofs = fofs;
7e4dde79 321 fi->ext.blk = blkaddr;
eb47b800
JK
322 fi->ext.len = 1;
323 }
324 goto end_update;
325 }
326
6224da87 327 /* Front merge */
7e4dde79 328 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 329 fi->ext.fofs--;
4d0b0bd4 330 fi->ext.blk--;
eb47b800
JK
331 fi->ext.len++;
332 goto end_update;
333 }
334
335 /* Back merge */
7e4dde79 336 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Split the existing extent */
342 if (fi->ext.len > 1 &&
343 fofs >= start_fofs && fofs <= end_fofs) {
344 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
345 fi->ext.len = fofs - start_fofs;
346 } else {
347 fi->ext.fofs = fofs + 1;
4d0b0bd4 348 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
349 fi->ext.len -= fofs - start_fofs + 1;
350 }
c11abd1a
JK
351 } else {
352 need_update = false;
eb47b800 353 }
eb47b800 354
c11abd1a
JK
355 /* Finally, if the extent is very fragmented, let's drop the cache. */
356 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
357 fi->ext.len = 0;
358 set_inode_flag(fi, FI_NO_EXTENT);
359 need_update = true;
360 }
eb47b800 361end_update:
0c872e2d 362 write_unlock(&fi->ext_lock);
7e4dde79
CY
363 return need_update;
364}
365
429511cd
CY
366static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
367 struct extent_tree *et, struct extent_info *ei,
368 struct rb_node *parent, struct rb_node **p)
369{
370 struct extent_node *en;
371
372 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
373 if (!en)
374 return NULL;
375
376 en->ei = *ei;
377 INIT_LIST_HEAD(&en->list);
378
379 rb_link_node(&en->rb_node, parent, p);
380 rb_insert_color(&en->rb_node, &et->root);
381 et->count++;
382 atomic_inc(&sbi->total_ext_node);
383 return en;
384}
385
386static void __detach_extent_node(struct f2fs_sb_info *sbi,
387 struct extent_tree *et, struct extent_node *en)
388{
389 rb_erase(&en->rb_node, &et->root);
390 et->count--;
391 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
392
393 if (et->cached_en == en)
394 et->cached_en = NULL;
429511cd
CY
395}
396
93dfc526
CY
397static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
398 nid_t ino)
399{
400 struct extent_tree *et;
401
402 down_read(&sbi->extent_tree_lock);
403 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
404 if (!et) {
405 up_read(&sbi->extent_tree_lock);
406 return NULL;
407 }
408 atomic_inc(&et->refcount);
409 up_read(&sbi->extent_tree_lock);
410
411 return et;
412}
413
414static struct extent_tree *__grab_extent_tree(struct inode *inode)
415{
416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
417 struct extent_tree *et;
418 nid_t ino = inode->i_ino;
419
420 down_write(&sbi->extent_tree_lock);
421 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
422 if (!et) {
423 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
424 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
425 memset(et, 0, sizeof(struct extent_tree));
426 et->ino = ino;
427 et->root = RB_ROOT;
428 et->cached_en = NULL;
429 rwlock_init(&et->lock);
430 atomic_set(&et->refcount, 0);
431 et->count = 0;
432 sbi->total_ext_tree++;
433 }
434 atomic_inc(&et->refcount);
435 up_write(&sbi->extent_tree_lock);
436
437 return et;
438}
439
429511cd
CY
440static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
441 unsigned int fofs)
442{
443 struct rb_node *node = et->root.rb_node;
444 struct extent_node *en;
445
62c8af65
CY
446 if (et->cached_en) {
447 struct extent_info *cei = &et->cached_en->ei;
448
449 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
450 return et->cached_en;
451 }
452
429511cd
CY
453 while (node) {
454 en = rb_entry(node, struct extent_node, rb_node);
455
62c8af65 456 if (fofs < en->ei.fofs) {
429511cd 457 node = node->rb_left;
62c8af65 458 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 459 node = node->rb_right;
62c8af65
CY
460 } else {
461 et->cached_en = en;
429511cd 462 return en;
62c8af65 463 }
429511cd
CY
464 }
465 return NULL;
466}
467
468static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
469 struct extent_tree *et, struct extent_node *en)
470{
471 struct extent_node *prev;
472 struct rb_node *node;
473
474 node = rb_prev(&en->rb_node);
475 if (!node)
476 return NULL;
477
478 prev = rb_entry(node, struct extent_node, rb_node);
479 if (__is_back_mergeable(&en->ei, &prev->ei)) {
480 en->ei.fofs = prev->ei.fofs;
481 en->ei.blk = prev->ei.blk;
482 en->ei.len += prev->ei.len;
483 __detach_extent_node(sbi, et, prev);
484 return prev;
485 }
486 return NULL;
487}
488
489static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
490 struct extent_tree *et, struct extent_node *en)
491{
492 struct extent_node *next;
493 struct rb_node *node;
494
495 node = rb_next(&en->rb_node);
496 if (!node)
497 return NULL;
498
499 next = rb_entry(node, struct extent_node, rb_node);
500 if (__is_front_mergeable(&en->ei, &next->ei)) {
501 en->ei.len += next->ei.len;
502 __detach_extent_node(sbi, et, next);
503 return next;
504 }
505 return NULL;
506}
507
508static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
509 struct extent_tree *et, struct extent_info *ei,
510 struct extent_node **den)
511{
512 struct rb_node **p = &et->root.rb_node;
513 struct rb_node *parent = NULL;
514 struct extent_node *en;
515
516 while (*p) {
517 parent = *p;
518 en = rb_entry(parent, struct extent_node, rb_node);
519
520 if (ei->fofs < en->ei.fofs) {
521 if (__is_front_mergeable(ei, &en->ei)) {
522 f2fs_bug_on(sbi, !den);
523 en->ei.fofs = ei->fofs;
524 en->ei.blk = ei->blk;
525 en->ei.len += ei->len;
526 *den = __try_back_merge(sbi, et, en);
527 return en;
528 }
529 p = &(*p)->rb_left;
530 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
531 if (__is_back_mergeable(ei, &en->ei)) {
532 f2fs_bug_on(sbi, !den);
533 en->ei.len += ei->len;
534 *den = __try_front_merge(sbi, et, en);
535 return en;
536 }
537 p = &(*p)->rb_right;
538 } else {
539 f2fs_bug_on(sbi, 1);
540 }
541 }
542
543 return __attach_extent_node(sbi, et, ei, parent, p);
544}
545
546static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
547 struct extent_tree *et, bool free_all)
548{
549 struct rb_node *node, *next;
550 struct extent_node *en;
551 unsigned int count = et->count;
552
553 node = rb_first(&et->root);
554 while (node) {
555 next = rb_next(node);
556 en = rb_entry(node, struct extent_node, rb_node);
557
558 if (free_all) {
559 spin_lock(&sbi->extent_lock);
560 if (!list_empty(&en->list))
561 list_del_init(&en->list);
562 spin_unlock(&sbi->extent_lock);
563 }
564
565 if (free_all || list_empty(&en->list)) {
566 __detach_extent_node(sbi, et, en);
567 kmem_cache_free(extent_node_slab, en);
568 }
569 node = next;
570 }
571
572 return count - et->count;
573}
574
028a41e8
CY
575static void f2fs_init_extent_tree(struct inode *inode,
576 struct f2fs_extent *i_ext)
577{
578 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
579 struct extent_tree *et;
580 struct extent_node *en;
581 struct extent_info ei;
582
583 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
584 return;
585
586 et = __grab_extent_tree(inode);
587
588 write_lock(&et->lock);
589 if (et->count)
590 goto out;
591
592 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
593 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
594
595 en = __insert_extent_tree(sbi, et, &ei, NULL);
596 if (en) {
597 et->cached_en = en;
598
599 spin_lock(&sbi->extent_lock);
600 list_add_tail(&en->list, &sbi->extent_list);
601 spin_unlock(&sbi->extent_lock);
602 }
603out:
604 write_unlock(&et->lock);
605 atomic_dec(&et->refcount);
606}
607
429511cd
CY
608static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
609 struct extent_info *ei)
610{
611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
612 struct extent_tree *et;
613 struct extent_node *en;
614
1ec4610c
CY
615 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
616
93dfc526
CY
617 et = __find_extent_tree(sbi, inode->i_ino);
618 if (!et)
429511cd 619 return false;
429511cd
CY
620
621 read_lock(&et->lock);
622 en = __lookup_extent_tree(et, pgofs);
623 if (en) {
624 *ei = en->ei;
625 spin_lock(&sbi->extent_lock);
626 if (!list_empty(&en->list))
627 list_move_tail(&en->list, &sbi->extent_list);
628 spin_unlock(&sbi->extent_lock);
629 stat_inc_read_hit(sbi->sb);
630 }
631 stat_inc_total_hit(sbi->sb);
632 read_unlock(&et->lock);
633
1ec4610c
CY
634 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
635
429511cd
CY
636 atomic_dec(&et->refcount);
637 return en ? true : false;
638}
639
640static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
641 block_t blkaddr)
642{
643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
644 struct extent_tree *et;
645 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
646 struct extent_node *den = NULL;
647 struct extent_info ei, dei;
648 unsigned int endofs;
649
1ec4610c
CY
650 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
651
93dfc526 652 et = __grab_extent_tree(inode);
429511cd
CY
653
654 write_lock(&et->lock);
655
656 /* 1. lookup and remove existing extent info in cache */
657 en = __lookup_extent_tree(et, fofs);
658 if (!en)
659 goto update_extent;
660
661 dei = en->ei;
662 __detach_extent_node(sbi, et, en);
663
664 /* 2. if extent can be split more, split and insert the left part */
665 if (dei.len > 1) {
666 /* insert left part of split extent into cache */
667 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
668 set_extent_info(&ei, dei.fofs, dei.blk,
669 fofs - dei.fofs);
670 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
671 }
672
673 /* insert right part of split extent into cache */
674 endofs = dei.fofs + dei.len - 1;
675 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
676 set_extent_info(&ei, fofs + 1,
677 fofs - dei.fofs + dei.blk, endofs - fofs);
678 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
679 }
680 }
681
682update_extent:
683 /* 3. update extent in extent cache */
684 if (blkaddr) {
685 set_extent_info(&ei, fofs, blkaddr, 1);
686 en3 = __insert_extent_tree(sbi, et, &ei, &den);
687 }
688
689 /* 4. update in global extent list */
690 spin_lock(&sbi->extent_lock);
691 if (en && !list_empty(&en->list))
692 list_del(&en->list);
693 /*
694 * en1 and en2 split from en, they will become more and more smaller
695 * fragments after splitting several times. So if the length is smaller
696 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
697 */
698 if (en1)
699 list_add_tail(&en1->list, &sbi->extent_list);
700 if (en2)
701 list_add_tail(&en2->list, &sbi->extent_list);
702 if (en3) {
703 if (list_empty(&en3->list))
704 list_add_tail(&en3->list, &sbi->extent_list);
705 else
706 list_move_tail(&en3->list, &sbi->extent_list);
707 }
708 if (den && !list_empty(&den->list))
709 list_del(&den->list);
710 spin_unlock(&sbi->extent_lock);
711
712 /* 5. release extent node */
713 if (en)
714 kmem_cache_free(extent_node_slab, en);
715 if (den)
716 kmem_cache_free(extent_node_slab, den);
717
718 write_unlock(&et->lock);
719 atomic_dec(&et->refcount);
720}
721
0bdee482
CY
722void f2fs_preserve_extent_tree(struct inode *inode)
723{
724 struct extent_tree *et;
725 struct extent_info *ext = &F2FS_I(inode)->ext;
726 bool sync = false;
727
728 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
729 return;
730
731 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
732 if (!et) {
733 if (ext->len) {
734 ext->len = 0;
735 update_inode_page(inode);
736 }
737 return;
738 }
739
740 read_lock(&et->lock);
741 if (et->count) {
742 struct extent_node *en;
743
744 if (et->cached_en) {
745 en = et->cached_en;
746 } else {
747 struct rb_node *node = rb_first(&et->root);
748
749 if (!node)
750 node = rb_last(&et->root);
751 en = rb_entry(node, struct extent_node, rb_node);
752 }
753
754 if (__is_extent_same(ext, &en->ei))
755 goto out;
756
757 *ext = en->ei;
758 sync = true;
759 } else if (ext->len) {
760 ext->len = 0;
761 sync = true;
762 }
763out:
764 read_unlock(&et->lock);
765 atomic_dec(&et->refcount);
766
767 if (sync)
768 update_inode_page(inode);
769}
770
429511cd
CY
771void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
772{
773 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
774 struct extent_node *en, *tmp;
775 unsigned long ino = F2FS_ROOT_INO(sbi);
776 struct radix_tree_iter iter;
777 void **slot;
778 unsigned int found;
1ec4610c 779 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 780
1dcc336b
CY
781 if (!test_opt(sbi, EXTENT_CACHE))
782 return;
783
429511cd
CY
784 if (available_free_memory(sbi, EXTENT_CACHE))
785 return;
786
787 spin_lock(&sbi->extent_lock);
788 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
789 if (!nr_shrink--)
790 break;
791 list_del_init(&en->list);
792 }
793 spin_unlock(&sbi->extent_lock);
794
795 down_read(&sbi->extent_tree_lock);
796 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
797 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
798 unsigned i;
799
800 ino = treevec[found - 1]->ino + 1;
801 for (i = 0; i < found; i++) {
802 struct extent_tree *et = treevec[i];
803
804 atomic_inc(&et->refcount);
805 write_lock(&et->lock);
1ec4610c 806 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
807 write_unlock(&et->lock);
808 atomic_dec(&et->refcount);
809 }
810 }
811 up_read(&sbi->extent_tree_lock);
812
813 down_write(&sbi->extent_tree_lock);
814 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
815 F2FS_ROOT_INO(sbi)) {
816 struct extent_tree *et = (struct extent_tree *)*slot;
817
818 if (!atomic_read(&et->refcount) && !et->count) {
819 radix_tree_delete(&sbi->extent_tree_root, et->ino);
820 kmem_cache_free(extent_tree_slab, et);
821 sbi->total_ext_tree--;
1ec4610c 822 tree_cnt++;
429511cd
CY
823 }
824 }
825 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
826
827 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
828}
829
830void f2fs_destroy_extent_tree(struct inode *inode)
831{
832 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
833 struct extent_tree *et;
1ec4610c 834 unsigned int node_cnt = 0;
429511cd 835
1dcc336b
CY
836 if (!test_opt(sbi, EXTENT_CACHE))
837 return;
838
93dfc526
CY
839 et = __find_extent_tree(sbi, inode->i_ino);
840 if (!et)
429511cd 841 goto out;
429511cd
CY
842
843 /* free all extent info belong to this extent tree */
844 write_lock(&et->lock);
1ec4610c 845 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
846 write_unlock(&et->lock);
847
848 atomic_dec(&et->refcount);
849
850 /* try to find and delete extent tree entry in radix tree */
851 down_write(&sbi->extent_tree_lock);
852 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
853 if (!et) {
854 up_write(&sbi->extent_tree_lock);
855 goto out;
856 }
857 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
858 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
859 kmem_cache_free(extent_tree_slab, et);
860 sbi->total_ext_tree--;
861 up_write(&sbi->extent_tree_lock);
862out:
1ec4610c 863 trace_f2fs_destroy_extent_tree(inode, node_cnt);
429511cd
CY
864 return;
865}
866
028a41e8
CY
867void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
868{
869 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
870 f2fs_init_extent_tree(inode, i_ext);
871
872 write_lock(&F2FS_I(inode)->ext_lock);
873 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
874 write_unlock(&F2FS_I(inode)->ext_lock);
875}
876
7e4dde79
CY
877static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
878 struct extent_info *ei)
879{
91c5d9bc
CY
880 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
881 return false;
882
1dcc336b
CY
883 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
884 return f2fs_lookup_extent_tree(inode, pgofs, ei);
885
7e4dde79
CY
886 return lookup_extent_info(inode, pgofs, ei);
887}
888
889void f2fs_update_extent_cache(struct dnode_of_data *dn)
890{
891 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
892 pgoff_t fofs;
893
894 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
895
91c5d9bc
CY
896 if (is_inode_flag_set(fi, FI_NO_EXTENT))
897 return;
898
7e4dde79
CY
899 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
900 dn->ofs_in_node;
901
1dcc336b
CY
902 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
903 return f2fs_update_extent_tree(dn->inode, fofs,
904 dn->data_blkaddr);
905
7e4dde79 906 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 907 sync_inode_page(dn);
eb47b800
JK
908}
909
c718379b 910struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 911{
eb47b800
JK
912 struct address_space *mapping = inode->i_mapping;
913 struct dnode_of_data dn;
914 struct page *page;
cb3bc9ee 915 struct extent_info ei;
eb47b800 916 int err;
cf04e8eb
JK
917 struct f2fs_io_info fio = {
918 .type = DATA,
919 .rw = sync ? READ_SYNC : READA,
920 };
eb47b800 921
b7f204cc
JK
922 /*
923 * If sync is false, it needs to check its block allocation.
924 * This is need and triggered by two flows:
925 * gc and truncate_partial_data_page.
926 */
927 if (!sync)
928 goto search;
929
eb47b800
JK
930 page = find_get_page(mapping, index);
931 if (page && PageUptodate(page))
932 return page;
933 f2fs_put_page(page, 0);
b7f204cc 934search:
cb3bc9ee
CY
935 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
936 dn.data_blkaddr = ei.blk + index - ei.fofs;
937 goto got_it;
938 }
939
eb47b800 940 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 941 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
942 if (err)
943 return ERR_PTR(err);
944 f2fs_put_dnode(&dn);
945
946 if (dn.data_blkaddr == NULL_ADDR)
947 return ERR_PTR(-ENOENT);
948
949 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 950 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
951 return ERR_PTR(-EINVAL);
952
cb3bc9ee 953got_it:
9ac1349a 954 page = grab_cache_page(mapping, index);
eb47b800
JK
955 if (!page)
956 return ERR_PTR(-ENOMEM);
957
393ff91f
JK
958 if (PageUptodate(page)) {
959 unlock_page(page);
960 return page;
961 }
962
cf04e8eb
JK
963 fio.blk_addr = dn.data_blkaddr;
964 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
965 if (err)
966 return ERR_PTR(err);
967
c718379b
JK
968 if (sync) {
969 wait_on_page_locked(page);
6bacf52f 970 if (unlikely(!PageUptodate(page))) {
c718379b
JK
971 f2fs_put_page(page, 0);
972 return ERR_PTR(-EIO);
973 }
eb47b800 974 }
eb47b800
JK
975 return page;
976}
977
0a8165d7 978/*
eb47b800
JK
979 * If it tries to access a hole, return an error.
980 * Because, the callers, functions in dir.c and GC, should be able to know
981 * whether this page exists or not.
982 */
983struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
984{
eb47b800
JK
985 struct address_space *mapping = inode->i_mapping;
986 struct dnode_of_data dn;
987 struct page *page;
cb3bc9ee 988 struct extent_info ei;
eb47b800 989 int err;
cf04e8eb
JK
990 struct f2fs_io_info fio = {
991 .type = DATA,
992 .rw = READ_SYNC,
993 };
650495de 994repeat:
9ac1349a 995 page = grab_cache_page(mapping, index);
650495de
JK
996 if (!page)
997 return ERR_PTR(-ENOMEM);
998
cb3bc9ee
CY
999 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1000 dn.data_blkaddr = ei.blk + index - ei.fofs;
1001 goto got_it;
1002 }
1003
eb47b800 1004 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1005 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
1006 if (err) {
1007 f2fs_put_page(page, 1);
eb47b800 1008 return ERR_PTR(err);
650495de 1009 }
eb47b800
JK
1010 f2fs_put_dnode(&dn);
1011
6bacf52f 1012 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 1013 f2fs_put_page(page, 1);
eb47b800 1014 return ERR_PTR(-ENOENT);
650495de 1015 }
eb47b800 1016
cb3bc9ee 1017got_it:
eb47b800
JK
1018 if (PageUptodate(page))
1019 return page;
1020
d59ff4df
JK
1021 /*
1022 * A new dentry page is allocated but not able to be written, since its
1023 * new inode page couldn't be allocated due to -ENOSPC.
1024 * In such the case, its blkaddr can be remained as NEW_ADDR.
1025 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
1026 */
1027 if (dn.data_blkaddr == NEW_ADDR) {
1028 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1029 SetPageUptodate(page);
1030 return page;
1031 }
eb47b800 1032
cf04e8eb
JK
1033 fio.blk_addr = dn.data_blkaddr;
1034 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1035 if (err)
eb47b800 1036 return ERR_PTR(err);
393ff91f
JK
1037
1038 lock_page(page);
6bacf52f 1039 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1040 f2fs_put_page(page, 1);
1041 return ERR_PTR(-EIO);
eb47b800 1042 }
6bacf52f 1043 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1044 f2fs_put_page(page, 1);
1045 goto repeat;
eb47b800
JK
1046 }
1047 return page;
1048}
1049
0a8165d7 1050/*
eb47b800
JK
1051 * Caller ensures that this data page is never allocated.
1052 * A new zero-filled data page is allocated in the page cache.
39936837 1053 *
4f4124d0
CY
1054 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1055 * f2fs_unlock_op().
a8865372 1056 * Note that, ipage is set only by make_empty_dir.
eb47b800 1057 */
64aa7ed9 1058struct page *get_new_data_page(struct inode *inode,
a8865372 1059 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1060{
eb47b800
JK
1061 struct address_space *mapping = inode->i_mapping;
1062 struct page *page;
1063 struct dnode_of_data dn;
1064 int err;
1065
a8865372 1066 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1067 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
1068 if (err)
1069 return ERR_PTR(err);
afcb7ca0 1070repeat:
eb47b800 1071 page = grab_cache_page(mapping, index);
a8865372
JK
1072 if (!page) {
1073 err = -ENOMEM;
1074 goto put_err;
1075 }
eb47b800
JK
1076
1077 if (PageUptodate(page))
1078 return page;
1079
1080 if (dn.data_blkaddr == NEW_ADDR) {
1081 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1082 SetPageUptodate(page);
eb47b800 1083 } else {
cf04e8eb
JK
1084 struct f2fs_io_info fio = {
1085 .type = DATA,
1086 .rw = READ_SYNC,
1087 .blk_addr = dn.data_blkaddr,
1088 };
1089 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1090 if (err)
a8865372
JK
1091 goto put_err;
1092
393ff91f 1093 lock_page(page);
6bacf52f 1094 if (unlikely(!PageUptodate(page))) {
393ff91f 1095 f2fs_put_page(page, 1);
a8865372
JK
1096 err = -EIO;
1097 goto put_err;
eb47b800 1098 }
6bacf52f 1099 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1100 f2fs_put_page(page, 1);
1101 goto repeat;
eb47b800
JK
1102 }
1103 }
eb47b800
JK
1104
1105 if (new_i_size &&
1106 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1107 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1108 /* Only the directory inode sets new_i_size */
1109 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1110 }
1111 return page;
a8865372
JK
1112
1113put_err:
1114 f2fs_put_dnode(&dn);
1115 return ERR_PTR(err);
eb47b800
JK
1116}
1117
bfad7c2d
JK
1118static int __allocate_data_block(struct dnode_of_data *dn)
1119{
4081363f 1120 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1121 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1122 struct f2fs_summary sum;
bfad7c2d 1123 struct node_info ni;
38aa0889 1124 int seg = CURSEG_WARM_DATA;
976e4c50 1125 pgoff_t fofs;
bfad7c2d
JK
1126
1127 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1128 return -EPERM;
1129 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1130 return -ENOSPC;
1131
bfad7c2d
JK
1132 get_node_info(sbi, dn->nid, &ni);
1133 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1134
38aa0889
JK
1135 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1136 seg = CURSEG_DIRECT_IO;
1137
1138 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
bfad7c2d
JK
1139
1140 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1141 set_data_blkaddr(dn);
bfad7c2d 1142
976e4c50
JK
1143 /* update i_size */
1144 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1145 dn->ofs_in_node;
1146 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1147 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1148
bfad7c2d
JK
1149 return 0;
1150}
1151
59b802e5
JK
1152static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1153 size_t count)
1154{
1155 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1156 struct dnode_of_data dn;
1157 u64 start = F2FS_BYTES_TO_BLK(offset);
1158 u64 len = F2FS_BYTES_TO_BLK(count);
1159 bool allocated;
1160 u64 end_offset;
1161
1162 while (len) {
1163 f2fs_balance_fs(sbi);
1164 f2fs_lock_op(sbi);
1165
1166 /* When reading holes, we need its node page */
1167 set_new_dnode(&dn, inode, NULL, NULL, 0);
1168 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1169 goto out;
1170
1171 allocated = false;
1172 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1173
1174 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1175 block_t blkaddr;
1176
1177 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1178 if (blkaddr == NULL_ADDR) {
59b802e5
JK
1179 if (__allocate_data_block(&dn))
1180 goto sync_out;
1181 allocated = true;
1182 }
1183 len--;
1184 start++;
1185 dn.ofs_in_node++;
1186 }
1187
1188 if (allocated)
1189 sync_inode_page(&dn);
1190
1191 f2fs_put_dnode(&dn);
1192 f2fs_unlock_op(sbi);
1193 }
1194 return;
1195
1196sync_out:
1197 if (allocated)
1198 sync_inode_page(&dn);
1199 f2fs_put_dnode(&dn);
1200out:
1201 f2fs_unlock_op(sbi);
1202 return;
1203}
1204
0a8165d7 1205/*
4f4124d0
CY
1206 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1207 * If original data blocks are allocated, then give them to blockdev.
1208 * Otherwise,
1209 * a. preallocate requested block addresses
1210 * b. do not use extent cache for better performance
1211 * c. give the block addresses to blockdev
eb47b800 1212 */
ccfb3000
JK
1213static int __get_data_block(struct inode *inode, sector_t iblock,
1214 struct buffer_head *bh_result, int create, bool fiemap)
eb47b800
JK
1215{
1216 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1217 unsigned maxblocks = bh_result->b_size >> blkbits;
1218 struct dnode_of_data dn;
bfad7c2d
JK
1219 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1220 pgoff_t pgofs, end_offset;
1221 int err = 0, ofs = 1;
a2e7d1bf 1222 struct extent_info ei;
bfad7c2d 1223 bool allocated = false;
eb47b800
JK
1224
1225 /* Get the page offset from the block offset(iblock) */
1226 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1227
7e4dde79 1228 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
a2e7d1bf 1229 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
bfad7c2d 1230 goto out;
a2e7d1bf 1231 }
bfad7c2d 1232
59b802e5 1233 if (create)
4081363f 1234 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1235
1236 /* When reading holes, we need its node page */
1237 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1238 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1239 if (err) {
bfad7c2d
JK
1240 if (err == -ENOENT)
1241 err = 0;
1242 goto unlock_out;
848753aa 1243 }
ccfb3000 1244 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1245 goto put_out;
eb47b800 1246
bfad7c2d 1247 if (dn.data_blkaddr != NULL_ADDR) {
3402e87c 1248 clear_buffer_new(bh_result);
bfad7c2d
JK
1249 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1250 } else if (create) {
1251 err = __allocate_data_block(&dn);
1252 if (err)
1253 goto put_out;
1254 allocated = true;
da17eece 1255 set_buffer_new(bh_result);
bfad7c2d
JK
1256 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1257 } else {
1258 goto put_out;
1259 }
1260
6403eb1f 1261 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d
JK
1262 bh_result->b_size = (((size_t)1) << blkbits);
1263 dn.ofs_in_node++;
1264 pgofs++;
1265
1266get_next:
1267 if (dn.ofs_in_node >= end_offset) {
1268 if (allocated)
1269 sync_inode_page(&dn);
1270 allocated = false;
1271 f2fs_put_dnode(&dn);
1272
1273 set_new_dnode(&dn, inode, NULL, NULL, 0);
1274 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1275 if (err) {
bfad7c2d
JK
1276 if (err == -ENOENT)
1277 err = 0;
1278 goto unlock_out;
1279 }
ccfb3000 1280 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1281 goto put_out;
1282
6403eb1f 1283 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1284 }
eb47b800 1285
bfad7c2d
JK
1286 if (maxblocks > (bh_result->b_size >> blkbits)) {
1287 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1288 if (blkaddr == NULL_ADDR && create) {
1289 err = __allocate_data_block(&dn);
1290 if (err)
1291 goto sync_out;
1292 allocated = true;
3402e87c 1293 set_buffer_new(bh_result);
bfad7c2d
JK
1294 blkaddr = dn.data_blkaddr;
1295 }
e1c42045 1296 /* Give more consecutive addresses for the readahead */
bfad7c2d
JK
1297 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1298 ofs++;
1299 dn.ofs_in_node++;
1300 pgofs++;
1301 bh_result->b_size += (((size_t)1) << blkbits);
1302 goto get_next;
1303 }
eb47b800 1304 }
bfad7c2d
JK
1305sync_out:
1306 if (allocated)
1307 sync_inode_page(&dn);
1308put_out:
eb47b800 1309 f2fs_put_dnode(&dn);
bfad7c2d
JK
1310unlock_out:
1311 if (create)
4081363f 1312 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d
JK
1313out:
1314 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1315 return err;
eb47b800
JK
1316}
1317
ccfb3000
JK
1318static int get_data_block(struct inode *inode, sector_t iblock,
1319 struct buffer_head *bh_result, int create)
1320{
1321 return __get_data_block(inode, iblock, bh_result, create, false);
1322}
1323
1324static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1325 struct buffer_head *bh_result, int create)
1326{
1327 return __get_data_block(inode, iblock, bh_result, create, true);
1328}
1329
9ab70134
JK
1330int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1331 u64 start, u64 len)
1332{
ccfb3000
JK
1333 return generic_block_fiemap(inode, fieinfo,
1334 start, len, get_data_block_fiemap);
9ab70134
JK
1335}
1336
eb47b800
JK
1337static int f2fs_read_data_page(struct file *file, struct page *page)
1338{
9ffe0fb5 1339 struct inode *inode = page->mapping->host;
b3d208f9 1340 int ret = -EAGAIN;
9ffe0fb5 1341
c20e89cd
CY
1342 trace_f2fs_readpage(page, DATA);
1343
e1c42045 1344 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1345 if (f2fs_has_inline_data(inode))
1346 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1347 if (ret == -EAGAIN)
9ffe0fb5
HL
1348 ret = mpage_readpage(page, get_data_block);
1349
1350 return ret;
eb47b800
JK
1351}
1352
1353static int f2fs_read_data_pages(struct file *file,
1354 struct address_space *mapping,
1355 struct list_head *pages, unsigned nr_pages)
1356{
9ffe0fb5
HL
1357 struct inode *inode = file->f_mapping->host;
1358
1359 /* If the file has inline data, skip readpages */
1360 if (f2fs_has_inline_data(inode))
1361 return 0;
1362
bfad7c2d 1363 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1364}
1365
458e6197 1366int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1367{
1368 struct inode *inode = page->mapping->host;
eb47b800
JK
1369 struct dnode_of_data dn;
1370 int err = 0;
1371
1372 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1373 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1374 if (err)
1375 return err;
1376
cf04e8eb 1377 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1378
1379 /* This page is already truncated */
2bca1e23
JK
1380 if (fio->blk_addr == NULL_ADDR) {
1381 ClearPageUptodate(page);
eb47b800 1382 goto out_writepage;
2bca1e23 1383 }
eb47b800
JK
1384
1385 set_page_writeback(page);
1386
1387 /*
1388 * If current allocation needs SSR,
1389 * it had better in-place writes for updated data.
1390 */
cf04e8eb 1391 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1392 !is_cold_data(page) &&
1393 need_inplace_update(inode))) {
cf04e8eb 1394 rewrite_data_page(page, fio);
fff04f90 1395 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1396 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1397 } else {
cf04e8eb 1398 write_data_page(page, &dn, fio);
216a620a 1399 set_data_blkaddr(&dn);
7e4dde79 1400 f2fs_update_extent_cache(&dn);
8ce67cb0 1401 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1402 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1403 if (page->index == 0)
1404 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1405 }
1406out_writepage:
1407 f2fs_put_dnode(&dn);
1408 return err;
1409}
1410
1411static int f2fs_write_data_page(struct page *page,
1412 struct writeback_control *wbc)
1413{
1414 struct inode *inode = page->mapping->host;
4081363f 1415 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1416 loff_t i_size = i_size_read(inode);
1417 const pgoff_t end_index = ((unsigned long long) i_size)
1418 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1419 unsigned offset = 0;
39936837 1420 bool need_balance_fs = false;
eb47b800 1421 int err = 0;
458e6197
JK
1422 struct f2fs_io_info fio = {
1423 .type = DATA,
6c311ec6 1424 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1425 };
eb47b800 1426
ecda0de3
CY
1427 trace_f2fs_writepage(page, DATA);
1428
eb47b800 1429 if (page->index < end_index)
39936837 1430 goto write;
eb47b800
JK
1431
1432 /*
1433 * If the offset is out-of-range of file size,
1434 * this page does not have to be written to disk.
1435 */
1436 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1437 if ((page->index >= end_index + 1) || !offset)
39936837 1438 goto out;
eb47b800
JK
1439
1440 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1441write:
caf0047e 1442 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1443 goto redirty_out;
1e84371f
JK
1444 if (f2fs_is_drop_cache(inode))
1445 goto out;
1446 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1447 available_free_memory(sbi, BASE_CHECK))
1448 goto redirty_out;
eb47b800 1449
39936837 1450 /* Dentry blocks are controlled by checkpoint */
eb47b800 1451 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1452 if (unlikely(f2fs_cp_error(sbi)))
1453 goto redirty_out;
458e6197 1454 err = do_write_data_page(page, &fio);
8618b881
JK
1455 goto done;
1456 }
9ffe0fb5 1457
cf779cab
JK
1458 /* we should bypass data pages to proceed the kworkder jobs */
1459 if (unlikely(f2fs_cp_error(sbi))) {
1460 SetPageError(page);
a7ffdbe2 1461 goto out;
cf779cab
JK
1462 }
1463
8618b881 1464 if (!wbc->for_reclaim)
39936837 1465 need_balance_fs = true;
8618b881 1466 else if (has_not_enough_free_secs(sbi, 0))
39936837 1467 goto redirty_out;
eb47b800 1468
b3d208f9 1469 err = -EAGAIN;
8618b881 1470 f2fs_lock_op(sbi);
b3d208f9
JK
1471 if (f2fs_has_inline_data(inode))
1472 err = f2fs_write_inline_data(inode, page);
1473 if (err == -EAGAIN)
8618b881
JK
1474 err = do_write_data_page(page, &fio);
1475 f2fs_unlock_op(sbi);
1476done:
1477 if (err && err != -ENOENT)
1478 goto redirty_out;
eb47b800 1479
eb47b800 1480 clear_cold_data(page);
39936837 1481out:
a7ffdbe2 1482 inode_dec_dirty_pages(inode);
2bca1e23
JK
1483 if (err)
1484 ClearPageUptodate(page);
eb47b800 1485 unlock_page(page);
39936837 1486 if (need_balance_fs)
eb47b800 1487 f2fs_balance_fs(sbi);
2aea39ec
JK
1488 if (wbc->for_reclaim)
1489 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1490 return 0;
1491
eb47b800 1492redirty_out:
76f60268 1493 redirty_page_for_writepage(wbc, page);
8618b881 1494 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1495}
1496
fa9150a8
NJ
1497static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1498 void *data)
1499{
1500 struct address_space *mapping = data;
1501 int ret = mapping->a_ops->writepage(page, wbc);
1502 mapping_set_error(mapping, ret);
1503 return ret;
1504}
1505
25ca923b 1506static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1507 struct writeback_control *wbc)
1508{
1509 struct inode *inode = mapping->host;
4081363f 1510 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800 1511 int ret;
50c8cdb3 1512 long diff;
eb47b800 1513
e5748434
CY
1514 trace_f2fs_writepages(mapping->host, wbc, DATA);
1515
cfb185a1 1516 /* deal with chardevs and other special file */
1517 if (!mapping->a_ops->writepage)
1518 return 0;
1519
87d6f890 1520 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1521 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1522 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1523 goto skip_write;
87d6f890 1524
d5669f7b
JK
1525 /* during POR, we don't need to trigger writepage at all. */
1526 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1527 goto skip_write;
1528
50c8cdb3 1529 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1530
fa9150a8 1531 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
458e6197
JK
1532
1533 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1534
1535 remove_dirty_dir_inode(inode);
1536
50c8cdb3 1537 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1538 return ret;
d3baf95d
JK
1539
1540skip_write:
a7ffdbe2 1541 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1542 return 0;
eb47b800
JK
1543}
1544
3aab8f82
CY
1545static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1546{
1547 struct inode *inode = mapping->host;
1548
1549 if (to > inode->i_size) {
1550 truncate_pagecache(inode, inode->i_size);
764aa3e9 1551 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1552 }
1553}
1554
eb47b800
JK
1555static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1556 loff_t pos, unsigned len, unsigned flags,
1557 struct page **pagep, void **fsdata)
1558{
1559 struct inode *inode = mapping->host;
4081363f 1560 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1561 struct page *page, *ipage;
eb47b800
JK
1562 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1563 struct dnode_of_data dn;
1564 int err = 0;
1565
62aed044
CY
1566 trace_f2fs_write_begin(inode, pos, len, flags);
1567
eb47b800 1568 f2fs_balance_fs(sbi);
5f727395
JK
1569
1570 /*
1571 * We should check this at this moment to avoid deadlock on inode page
1572 * and #0 page. The locking rule for inline_data conversion should be:
1573 * lock_page(page #0) -> lock_page(inode_page)
1574 */
1575 if (index != 0) {
1576 err = f2fs_convert_inline_inode(inode);
1577 if (err)
1578 goto fail;
1579 }
afcb7ca0 1580repeat:
eb47b800 1581 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1582 if (!page) {
1583 err = -ENOMEM;
1584 goto fail;
1585 }
d5f66990 1586
eb47b800
JK
1587 *pagep = page;
1588
e479556b 1589 f2fs_lock_op(sbi);
9ba69cf9
JK
1590
1591 /* check inline_data */
1592 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1593 if (IS_ERR(ipage)) {
1594 err = PTR_ERR(ipage);
9ba69cf9 1595 goto unlock_fail;
cd34e296 1596 }
9ba69cf9 1597
b3d208f9
JK
1598 set_new_dnode(&dn, inode, ipage, ipage, 0);
1599
9ba69cf9 1600 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1601 if (pos + len <= MAX_INLINE_DATA) {
1602 read_inline_data(page, ipage);
1603 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1604 sync_inode_page(&dn);
1605 goto put_next;
b3d208f9 1606 }
5f727395
JK
1607 err = f2fs_convert_inline_page(&dn, page);
1608 if (err)
1609 goto put_fail;
b600965c 1610 }
9ba69cf9
JK
1611 err = f2fs_reserve_block(&dn, index);
1612 if (err)
8cdcb713 1613 goto put_fail;
b3d208f9 1614put_next:
9ba69cf9
JK
1615 f2fs_put_dnode(&dn);
1616 f2fs_unlock_op(sbi);
1617
eb47b800
JK
1618 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1619 return 0;
1620
b3d208f9
JK
1621 f2fs_wait_on_page_writeback(page, DATA);
1622
eb47b800
JK
1623 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1624 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1625 unsigned end = start + len;
1626
1627 /* Reading beyond i_size is simple: memset to zero */
1628 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1629 goto out;
eb47b800
JK
1630 }
1631
b3d208f9 1632 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1633 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1634 } else {
cf04e8eb
JK
1635 struct f2fs_io_info fio = {
1636 .type = DATA,
1637 .rw = READ_SYNC,
1638 .blk_addr = dn.data_blkaddr,
1639 };
1640 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1641 if (err)
1642 goto fail;
d54c795b 1643
393ff91f 1644 lock_page(page);
6bacf52f 1645 if (unlikely(!PageUptodate(page))) {
393ff91f 1646 f2fs_put_page(page, 1);
3aab8f82
CY
1647 err = -EIO;
1648 goto fail;
eb47b800 1649 }
6bacf52f 1650 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1651 f2fs_put_page(page, 1);
1652 goto repeat;
eb47b800
JK
1653 }
1654 }
393ff91f 1655out:
eb47b800
JK
1656 SetPageUptodate(page);
1657 clear_cold_data(page);
1658 return 0;
9ba69cf9 1659
8cdcb713
JK
1660put_fail:
1661 f2fs_put_dnode(&dn);
9ba69cf9
JK
1662unlock_fail:
1663 f2fs_unlock_op(sbi);
b3d208f9 1664 f2fs_put_page(page, 1);
3aab8f82
CY
1665fail:
1666 f2fs_write_failed(mapping, pos + len);
1667 return err;
eb47b800
JK
1668}
1669
a1dd3c13
JK
1670static int f2fs_write_end(struct file *file,
1671 struct address_space *mapping,
1672 loff_t pos, unsigned len, unsigned copied,
1673 struct page *page, void *fsdata)
1674{
1675 struct inode *inode = page->mapping->host;
1676
dfb2bf38
CY
1677 trace_f2fs_write_end(inode, pos, len, copied);
1678
34ba94ba 1679 set_page_dirty(page);
a1dd3c13
JK
1680
1681 if (pos + copied > i_size_read(inode)) {
1682 i_size_write(inode, pos + copied);
1683 mark_inode_dirty(inode);
1684 update_inode_page(inode);
1685 }
1686
75c3c8bc 1687 f2fs_put_page(page, 1);
a1dd3c13
JK
1688 return copied;
1689}
1690
944fcfc1 1691static int check_direct_IO(struct inode *inode, int rw,
5b46f25d 1692 struct iov_iter *iter, loff_t offset)
944fcfc1
JK
1693{
1694 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1
JK
1695
1696 if (rw == READ)
1697 return 0;
1698
1699 if (offset & blocksize_mask)
1700 return -EINVAL;
1701
5b46f25d
AV
1702 if (iov_iter_alignment(iter) & blocksize_mask)
1703 return -EINVAL;
1704
944fcfc1
JK
1705 return 0;
1706}
1707
eb47b800 1708static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 1709 struct iov_iter *iter, loff_t offset)
eb47b800
JK
1710{
1711 struct file *file = iocb->ki_filp;
3aab8f82
CY
1712 struct address_space *mapping = file->f_mapping;
1713 struct inode *inode = mapping->host;
1714 size_t count = iov_iter_count(iter);
1715 int err;
944fcfc1 1716
b3d208f9
JK
1717 /* we don't need to use inline_data strictly */
1718 if (f2fs_has_inline_data(inode)) {
1719 err = f2fs_convert_inline_inode(inode);
1720 if (err)
1721 return err;
1722 }
9ffe0fb5 1723
5b46f25d 1724 if (check_direct_IO(inode, rw, iter, offset))
944fcfc1
JK
1725 return 0;
1726
70407fad
CY
1727 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1728
59b802e5
JK
1729 if (rw & WRITE)
1730 __allocate_data_blocks(inode, offset, count);
1731
3aab8f82
CY
1732 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1733 if (err < 0 && (rw & WRITE))
1734 f2fs_write_failed(mapping, offset + count);
70407fad
CY
1735
1736 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1737
3aab8f82 1738 return err;
eb47b800
JK
1739}
1740
487261f3
CY
1741void f2fs_invalidate_page(struct page *page, unsigned int offset,
1742 unsigned int length)
eb47b800
JK
1743{
1744 struct inode *inode = page->mapping->host;
487261f3 1745 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1746
487261f3
CY
1747 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1748 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1749 return;
1750
487261f3
CY
1751 if (PageDirty(page)) {
1752 if (inode->i_ino == F2FS_META_INO(sbi))
1753 dec_page_count(sbi, F2FS_DIRTY_META);
1754 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1755 dec_page_count(sbi, F2FS_DIRTY_NODES);
1756 else
1757 inode_dec_dirty_pages(inode);
1758 }
eb47b800
JK
1759 ClearPagePrivate(page);
1760}
1761
487261f3 1762int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1763{
f68daeeb
JK
1764 /* If this is dirty page, keep PagePrivate */
1765 if (PageDirty(page))
1766 return 0;
1767
eb47b800 1768 ClearPagePrivate(page);
c3850aa1 1769 return 1;
eb47b800
JK
1770}
1771
1772static int f2fs_set_data_page_dirty(struct page *page)
1773{
1774 struct address_space *mapping = page->mapping;
1775 struct inode *inode = mapping->host;
1776
26c6b887
JK
1777 trace_f2fs_set_page_dirty(page, DATA);
1778
eb47b800 1779 SetPageUptodate(page);
34ba94ba 1780
1e84371f 1781 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1782 register_inmem_page(inode, page);
1783 return 1;
1784 }
1785
a18ff063
JK
1786 mark_inode_dirty(inode);
1787
eb47b800
JK
1788 if (!PageDirty(page)) {
1789 __set_page_dirty_nobuffers(page);
a7ffdbe2 1790 update_dirty_page(inode, page);
eb47b800
JK
1791 return 1;
1792 }
1793 return 0;
1794}
1795
c01e54b7
JK
1796static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1797{
454ae7e5
CY
1798 struct inode *inode = mapping->host;
1799
b3d208f9
JK
1800 /* we don't need to use inline_data strictly */
1801 if (f2fs_has_inline_data(inode)) {
1802 int err = f2fs_convert_inline_inode(inode);
1803 if (err)
1804 return err;
1805 }
bfad7c2d 1806 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1807}
1808
429511cd
CY
1809void init_extent_cache_info(struct f2fs_sb_info *sbi)
1810{
1811 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1812 init_rwsem(&sbi->extent_tree_lock);
1813 INIT_LIST_HEAD(&sbi->extent_list);
1814 spin_lock_init(&sbi->extent_lock);
1815 sbi->total_ext_tree = 0;
1816 atomic_set(&sbi->total_ext_node, 0);
1817}
1818
1819int __init create_extent_cache(void)
1820{
1821 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1822 sizeof(struct extent_tree));
1823 if (!extent_tree_slab)
1824 return -ENOMEM;
1825 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1826 sizeof(struct extent_node));
1827 if (!extent_node_slab) {
1828 kmem_cache_destroy(extent_tree_slab);
1829 return -ENOMEM;
1830 }
1831 return 0;
1832}
1833
1834void destroy_extent_cache(void)
1835{
1836 kmem_cache_destroy(extent_node_slab);
1837 kmem_cache_destroy(extent_tree_slab);
1838}
1839
eb47b800
JK
1840const struct address_space_operations f2fs_dblock_aops = {
1841 .readpage = f2fs_read_data_page,
1842 .readpages = f2fs_read_data_pages,
1843 .writepage = f2fs_write_data_page,
1844 .writepages = f2fs_write_data_pages,
1845 .write_begin = f2fs_write_begin,
a1dd3c13 1846 .write_end = f2fs_write_end,
eb47b800 1847 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1848 .invalidatepage = f2fs_invalidate_page,
1849 .releasepage = f2fs_release_page,
eb47b800 1850 .direct_IO = f2fs_direct_IO,
c01e54b7 1851 .bmap = f2fs_bmap,
eb47b800 1852};