]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/f2fs/data.c
f2fs: switch to check FI_NO_EXTENT in f2fs_{lookup,update}_extent_cache
[mirror_ubuntu-bionic-kernel.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
a27bb332 15#include <linux/aio.h>
eb47b800
JK
16#include <linux/writeback.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
690e4a3e 20#include <linux/prefetch.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
e1509cf2 203static void __set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
e1509cf2 232 __set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
a2e7d1bf
CY
254static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256{
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
260 set_buffer_new(bh_result);
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
0c872e2d 276 read_lock(&fi->ext_lock);
eb47b800 277 if (fi->ext.len == 0) {
0c872e2d 278 read_unlock(&fi->ext_lock);
7e4dde79 279 return false;
eb47b800
JK
280 }
281
dcdfff65
JK
282 stat_inc_total_hit(inode->i_sb);
283
eb47b800
JK
284 start_fofs = fi->ext.fofs;
285 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 286 start_blkaddr = fi->ext.blk;
eb47b800
JK
287
288 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 289 *ei = fi->ext;
dcdfff65 290 stat_inc_read_hit(inode->i_sb);
0c872e2d 291 read_unlock(&fi->ext_lock);
7e4dde79 292 return true;
eb47b800 293 }
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return false;
eb47b800
JK
296}
297
7e4dde79
CY
298static bool update_extent_info(struct inode *inode, pgoff_t fofs,
299 block_t blkaddr)
eb47b800 300{
7e4dde79
CY
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 pgoff_t start_fofs, end_fofs;
eb47b800 303 block_t start_blkaddr, end_blkaddr;
c11abd1a 304 int need_update = true;
eb47b800 305
0c872e2d 306 write_lock(&fi->ext_lock);
eb47b800
JK
307
308 start_fofs = fi->ext.fofs;
309 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
310 start_blkaddr = fi->ext.blk;
311 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
312
313 /* Drop and initialize the matched extent */
314 if (fi->ext.len == 1 && fofs == start_fofs)
315 fi->ext.len = 0;
316
317 /* Initial extent */
318 if (fi->ext.len == 0) {
7e4dde79 319 if (blkaddr != NULL_ADDR) {
eb47b800 320 fi->ext.fofs = fofs;
7e4dde79 321 fi->ext.blk = blkaddr;
eb47b800
JK
322 fi->ext.len = 1;
323 }
324 goto end_update;
325 }
326
6224da87 327 /* Front merge */
7e4dde79 328 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 329 fi->ext.fofs--;
4d0b0bd4 330 fi->ext.blk--;
eb47b800
JK
331 fi->ext.len++;
332 goto end_update;
333 }
334
335 /* Back merge */
7e4dde79 336 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Split the existing extent */
342 if (fi->ext.len > 1 &&
343 fofs >= start_fofs && fofs <= end_fofs) {
344 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
345 fi->ext.len = fofs - start_fofs;
346 } else {
347 fi->ext.fofs = fofs + 1;
4d0b0bd4 348 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
349 fi->ext.len -= fofs - start_fofs + 1;
350 }
c11abd1a
JK
351 } else {
352 need_update = false;
eb47b800 353 }
eb47b800 354
c11abd1a
JK
355 /* Finally, if the extent is very fragmented, let's drop the cache. */
356 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
357 fi->ext.len = 0;
358 set_inode_flag(fi, FI_NO_EXTENT);
359 need_update = true;
360 }
eb47b800 361end_update:
0c872e2d 362 write_unlock(&fi->ext_lock);
7e4dde79
CY
363 return need_update;
364}
365
429511cd
CY
366static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
367 struct extent_tree *et, struct extent_info *ei,
368 struct rb_node *parent, struct rb_node **p)
369{
370 struct extent_node *en;
371
372 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
373 if (!en)
374 return NULL;
375
376 en->ei = *ei;
377 INIT_LIST_HEAD(&en->list);
378
379 rb_link_node(&en->rb_node, parent, p);
380 rb_insert_color(&en->rb_node, &et->root);
381 et->count++;
382 atomic_inc(&sbi->total_ext_node);
383 return en;
384}
385
386static void __detach_extent_node(struct f2fs_sb_info *sbi,
387 struct extent_tree *et, struct extent_node *en)
388{
389 rb_erase(&en->rb_node, &et->root);
390 et->count--;
391 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
392
393 if (et->cached_en == en)
394 et->cached_en = NULL;
429511cd
CY
395}
396
397static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
398 unsigned int fofs)
399{
400 struct rb_node *node = et->root.rb_node;
401 struct extent_node *en;
402
62c8af65
CY
403 if (et->cached_en) {
404 struct extent_info *cei = &et->cached_en->ei;
405
406 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
407 return et->cached_en;
408 }
409
429511cd
CY
410 while (node) {
411 en = rb_entry(node, struct extent_node, rb_node);
412
62c8af65 413 if (fofs < en->ei.fofs) {
429511cd 414 node = node->rb_left;
62c8af65 415 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 416 node = node->rb_right;
62c8af65
CY
417 } else {
418 et->cached_en = en;
429511cd 419 return en;
62c8af65 420 }
429511cd
CY
421 }
422 return NULL;
423}
424
425static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
426 struct extent_tree *et, struct extent_node *en)
427{
428 struct extent_node *prev;
429 struct rb_node *node;
430
431 node = rb_prev(&en->rb_node);
432 if (!node)
433 return NULL;
434
435 prev = rb_entry(node, struct extent_node, rb_node);
436 if (__is_back_mergeable(&en->ei, &prev->ei)) {
437 en->ei.fofs = prev->ei.fofs;
438 en->ei.blk = prev->ei.blk;
439 en->ei.len += prev->ei.len;
440 __detach_extent_node(sbi, et, prev);
441 return prev;
442 }
443 return NULL;
444}
445
446static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
447 struct extent_tree *et, struct extent_node *en)
448{
449 struct extent_node *next;
450 struct rb_node *node;
451
452 node = rb_next(&en->rb_node);
453 if (!node)
454 return NULL;
455
456 next = rb_entry(node, struct extent_node, rb_node);
457 if (__is_front_mergeable(&en->ei, &next->ei)) {
458 en->ei.len += next->ei.len;
459 __detach_extent_node(sbi, et, next);
460 return next;
461 }
462 return NULL;
463}
464
465static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
466 struct extent_tree *et, struct extent_info *ei,
467 struct extent_node **den)
468{
469 struct rb_node **p = &et->root.rb_node;
470 struct rb_node *parent = NULL;
471 struct extent_node *en;
472
473 while (*p) {
474 parent = *p;
475 en = rb_entry(parent, struct extent_node, rb_node);
476
477 if (ei->fofs < en->ei.fofs) {
478 if (__is_front_mergeable(ei, &en->ei)) {
479 f2fs_bug_on(sbi, !den);
480 en->ei.fofs = ei->fofs;
481 en->ei.blk = ei->blk;
482 en->ei.len += ei->len;
483 *den = __try_back_merge(sbi, et, en);
484 return en;
485 }
486 p = &(*p)->rb_left;
487 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
488 if (__is_back_mergeable(ei, &en->ei)) {
489 f2fs_bug_on(sbi, !den);
490 en->ei.len += ei->len;
491 *den = __try_front_merge(sbi, et, en);
492 return en;
493 }
494 p = &(*p)->rb_right;
495 } else {
496 f2fs_bug_on(sbi, 1);
497 }
498 }
499
500 return __attach_extent_node(sbi, et, ei, parent, p);
501}
502
503static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
504 struct extent_tree *et, bool free_all)
505{
506 struct rb_node *node, *next;
507 struct extent_node *en;
508 unsigned int count = et->count;
509
510 node = rb_first(&et->root);
511 while (node) {
512 next = rb_next(node);
513 en = rb_entry(node, struct extent_node, rb_node);
514
515 if (free_all) {
516 spin_lock(&sbi->extent_lock);
517 if (!list_empty(&en->list))
518 list_del_init(&en->list);
519 spin_unlock(&sbi->extent_lock);
520 }
521
522 if (free_all || list_empty(&en->list)) {
523 __detach_extent_node(sbi, et, en);
524 kmem_cache_free(extent_node_slab, en);
525 }
526 node = next;
527 }
528
529 return count - et->count;
530}
531
532static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
533 struct extent_info *ei)
534{
535 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
536 struct extent_tree *et;
537 struct extent_node *en;
538
1ec4610c
CY
539 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
540
429511cd
CY
541 down_read(&sbi->extent_tree_lock);
542 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
543 if (!et) {
544 up_read(&sbi->extent_tree_lock);
545 return false;
546 }
547 atomic_inc(&et->refcount);
548 up_read(&sbi->extent_tree_lock);
549
550 read_lock(&et->lock);
551 en = __lookup_extent_tree(et, pgofs);
552 if (en) {
553 *ei = en->ei;
554 spin_lock(&sbi->extent_lock);
555 if (!list_empty(&en->list))
556 list_move_tail(&en->list, &sbi->extent_list);
557 spin_unlock(&sbi->extent_lock);
558 stat_inc_read_hit(sbi->sb);
559 }
560 stat_inc_total_hit(sbi->sb);
561 read_unlock(&et->lock);
562
1ec4610c
CY
563 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
564
429511cd
CY
565 atomic_dec(&et->refcount);
566 return en ? true : false;
567}
568
569static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
570 block_t blkaddr)
571{
572 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
573 nid_t ino = inode->i_ino;
574 struct extent_tree *et;
575 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
576 struct extent_node *den = NULL;
577 struct extent_info ei, dei;
578 unsigned int endofs;
579
1ec4610c
CY
580 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
581
429511cd
CY
582 down_write(&sbi->extent_tree_lock);
583 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
584 if (!et) {
585 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
586 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
587 memset(et, 0, sizeof(struct extent_tree));
588 et->ino = ino;
589 et->root = RB_ROOT;
62c8af65 590 et->cached_en = NULL;
429511cd
CY
591 rwlock_init(&et->lock);
592 atomic_set(&et->refcount, 0);
593 et->count = 0;
594 sbi->total_ext_tree++;
595 }
596 atomic_inc(&et->refcount);
597 up_write(&sbi->extent_tree_lock);
598
599 write_lock(&et->lock);
600
601 /* 1. lookup and remove existing extent info in cache */
602 en = __lookup_extent_tree(et, fofs);
603 if (!en)
604 goto update_extent;
605
606 dei = en->ei;
607 __detach_extent_node(sbi, et, en);
608
609 /* 2. if extent can be split more, split and insert the left part */
610 if (dei.len > 1) {
611 /* insert left part of split extent into cache */
612 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
613 set_extent_info(&ei, dei.fofs, dei.blk,
614 fofs - dei.fofs);
615 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
616 }
617
618 /* insert right part of split extent into cache */
619 endofs = dei.fofs + dei.len - 1;
620 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
621 set_extent_info(&ei, fofs + 1,
622 fofs - dei.fofs + dei.blk, endofs - fofs);
623 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
624 }
625 }
626
627update_extent:
628 /* 3. update extent in extent cache */
629 if (blkaddr) {
630 set_extent_info(&ei, fofs, blkaddr, 1);
631 en3 = __insert_extent_tree(sbi, et, &ei, &den);
632 }
633
634 /* 4. update in global extent list */
635 spin_lock(&sbi->extent_lock);
636 if (en && !list_empty(&en->list))
637 list_del(&en->list);
638 /*
639 * en1 and en2 split from en, they will become more and more smaller
640 * fragments after splitting several times. So if the length is smaller
641 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
642 */
643 if (en1)
644 list_add_tail(&en1->list, &sbi->extent_list);
645 if (en2)
646 list_add_tail(&en2->list, &sbi->extent_list);
647 if (en3) {
648 if (list_empty(&en3->list))
649 list_add_tail(&en3->list, &sbi->extent_list);
650 else
651 list_move_tail(&en3->list, &sbi->extent_list);
652 }
653 if (den && !list_empty(&den->list))
654 list_del(&den->list);
655 spin_unlock(&sbi->extent_lock);
656
657 /* 5. release extent node */
658 if (en)
659 kmem_cache_free(extent_node_slab, en);
660 if (den)
661 kmem_cache_free(extent_node_slab, den);
662
663 write_unlock(&et->lock);
664 atomic_dec(&et->refcount);
665}
666
667void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
668{
669 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
670 struct extent_node *en, *tmp;
671 unsigned long ino = F2FS_ROOT_INO(sbi);
672 struct radix_tree_iter iter;
673 void **slot;
674 unsigned int found;
1ec4610c 675 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 676
1dcc336b
CY
677 if (!test_opt(sbi, EXTENT_CACHE))
678 return;
679
429511cd
CY
680 if (available_free_memory(sbi, EXTENT_CACHE))
681 return;
682
683 spin_lock(&sbi->extent_lock);
684 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
685 if (!nr_shrink--)
686 break;
687 list_del_init(&en->list);
688 }
689 spin_unlock(&sbi->extent_lock);
690
691 down_read(&sbi->extent_tree_lock);
692 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
693 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
694 unsigned i;
695
696 ino = treevec[found - 1]->ino + 1;
697 for (i = 0; i < found; i++) {
698 struct extent_tree *et = treevec[i];
699
700 atomic_inc(&et->refcount);
701 write_lock(&et->lock);
1ec4610c 702 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
703 write_unlock(&et->lock);
704 atomic_dec(&et->refcount);
705 }
706 }
707 up_read(&sbi->extent_tree_lock);
708
709 down_write(&sbi->extent_tree_lock);
710 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
711 F2FS_ROOT_INO(sbi)) {
712 struct extent_tree *et = (struct extent_tree *)*slot;
713
714 if (!atomic_read(&et->refcount) && !et->count) {
715 radix_tree_delete(&sbi->extent_tree_root, et->ino);
716 kmem_cache_free(extent_tree_slab, et);
717 sbi->total_ext_tree--;
1ec4610c 718 tree_cnt++;
429511cd
CY
719 }
720 }
721 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
722
723 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
724}
725
726void f2fs_destroy_extent_tree(struct inode *inode)
727{
728 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
729 struct extent_tree *et;
1ec4610c 730 unsigned int node_cnt = 0;
429511cd 731
1dcc336b
CY
732 if (!test_opt(sbi, EXTENT_CACHE))
733 return;
734
429511cd
CY
735 down_read(&sbi->extent_tree_lock);
736 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
737 if (!et) {
738 up_read(&sbi->extent_tree_lock);
739 goto out;
740 }
741 atomic_inc(&et->refcount);
742 up_read(&sbi->extent_tree_lock);
743
744 /* free all extent info belong to this extent tree */
745 write_lock(&et->lock);
1ec4610c 746 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
747 write_unlock(&et->lock);
748
749 atomic_dec(&et->refcount);
750
751 /* try to find and delete extent tree entry in radix tree */
752 down_write(&sbi->extent_tree_lock);
753 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
754 if (!et) {
755 up_write(&sbi->extent_tree_lock);
756 goto out;
757 }
758 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
759 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
760 kmem_cache_free(extent_tree_slab, et);
761 sbi->total_ext_tree--;
762 up_write(&sbi->extent_tree_lock);
763out:
1ec4610c 764 trace_f2fs_destroy_extent_tree(inode, node_cnt);
429511cd
CY
765 return;
766}
767
7e4dde79
CY
768static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
769 struct extent_info *ei)
770{
91c5d9bc
CY
771 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
772 return false;
773
1dcc336b
CY
774 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
775 return f2fs_lookup_extent_tree(inode, pgofs, ei);
776
7e4dde79
CY
777 return lookup_extent_info(inode, pgofs, ei);
778}
779
780void f2fs_update_extent_cache(struct dnode_of_data *dn)
781{
782 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
783 pgoff_t fofs;
784
785 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
786
787 /* Update the page address in the parent node */
788 __set_data_blkaddr(dn);
789
91c5d9bc
CY
790 if (is_inode_flag_set(fi, FI_NO_EXTENT))
791 return;
792
7e4dde79
CY
793 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
794 dn->ofs_in_node;
795
1dcc336b
CY
796 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
797 return f2fs_update_extent_tree(dn->inode, fofs,
798 dn->data_blkaddr);
799
7e4dde79 800 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 801 sync_inode_page(dn);
eb47b800
JK
802}
803
c718379b 804struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 805{
eb47b800
JK
806 struct address_space *mapping = inode->i_mapping;
807 struct dnode_of_data dn;
808 struct page *page;
809 int err;
cf04e8eb
JK
810 struct f2fs_io_info fio = {
811 .type = DATA,
812 .rw = sync ? READ_SYNC : READA,
813 };
eb47b800
JK
814
815 page = find_get_page(mapping, index);
816 if (page && PageUptodate(page))
817 return page;
818 f2fs_put_page(page, 0);
819
820 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 821 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
822 if (err)
823 return ERR_PTR(err);
824 f2fs_put_dnode(&dn);
825
826 if (dn.data_blkaddr == NULL_ADDR)
827 return ERR_PTR(-ENOENT);
828
829 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 830 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
831 return ERR_PTR(-EINVAL);
832
9ac1349a 833 page = grab_cache_page(mapping, index);
eb47b800
JK
834 if (!page)
835 return ERR_PTR(-ENOMEM);
836
393ff91f
JK
837 if (PageUptodate(page)) {
838 unlock_page(page);
839 return page;
840 }
841
cf04e8eb
JK
842 fio.blk_addr = dn.data_blkaddr;
843 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
844 if (err)
845 return ERR_PTR(err);
846
c718379b
JK
847 if (sync) {
848 wait_on_page_locked(page);
6bacf52f 849 if (unlikely(!PageUptodate(page))) {
c718379b
JK
850 f2fs_put_page(page, 0);
851 return ERR_PTR(-EIO);
852 }
eb47b800 853 }
eb47b800
JK
854 return page;
855}
856
0a8165d7 857/*
eb47b800
JK
858 * If it tries to access a hole, return an error.
859 * Because, the callers, functions in dir.c and GC, should be able to know
860 * whether this page exists or not.
861 */
862struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
863{
eb47b800
JK
864 struct address_space *mapping = inode->i_mapping;
865 struct dnode_of_data dn;
866 struct page *page;
867 int err;
cf04e8eb
JK
868 struct f2fs_io_info fio = {
869 .type = DATA,
870 .rw = READ_SYNC,
871 };
650495de 872repeat:
9ac1349a 873 page = grab_cache_page(mapping, index);
650495de
JK
874 if (!page)
875 return ERR_PTR(-ENOMEM);
876
eb47b800 877 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 878 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
879 if (err) {
880 f2fs_put_page(page, 1);
eb47b800 881 return ERR_PTR(err);
650495de 882 }
eb47b800
JK
883 f2fs_put_dnode(&dn);
884
6bacf52f 885 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 886 f2fs_put_page(page, 1);
eb47b800 887 return ERR_PTR(-ENOENT);
650495de 888 }
eb47b800
JK
889
890 if (PageUptodate(page))
891 return page;
892
d59ff4df
JK
893 /*
894 * A new dentry page is allocated but not able to be written, since its
895 * new inode page couldn't be allocated due to -ENOSPC.
896 * In such the case, its blkaddr can be remained as NEW_ADDR.
897 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
898 */
899 if (dn.data_blkaddr == NEW_ADDR) {
900 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
901 SetPageUptodate(page);
902 return page;
903 }
eb47b800 904
cf04e8eb
JK
905 fio.blk_addr = dn.data_blkaddr;
906 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 907 if (err)
eb47b800 908 return ERR_PTR(err);
393ff91f
JK
909
910 lock_page(page);
6bacf52f 911 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
912 f2fs_put_page(page, 1);
913 return ERR_PTR(-EIO);
eb47b800 914 }
6bacf52f 915 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
916 f2fs_put_page(page, 1);
917 goto repeat;
eb47b800
JK
918 }
919 return page;
920}
921
0a8165d7 922/*
eb47b800
JK
923 * Caller ensures that this data page is never allocated.
924 * A new zero-filled data page is allocated in the page cache.
39936837 925 *
4f4124d0
CY
926 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
927 * f2fs_unlock_op().
a8865372 928 * Note that, ipage is set only by make_empty_dir.
eb47b800 929 */
64aa7ed9 930struct page *get_new_data_page(struct inode *inode,
a8865372 931 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 932{
eb47b800
JK
933 struct address_space *mapping = inode->i_mapping;
934 struct page *page;
935 struct dnode_of_data dn;
936 int err;
937
a8865372 938 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 939 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
940 if (err)
941 return ERR_PTR(err);
afcb7ca0 942repeat:
eb47b800 943 page = grab_cache_page(mapping, index);
a8865372
JK
944 if (!page) {
945 err = -ENOMEM;
946 goto put_err;
947 }
eb47b800
JK
948
949 if (PageUptodate(page))
950 return page;
951
952 if (dn.data_blkaddr == NEW_ADDR) {
953 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 954 SetPageUptodate(page);
eb47b800 955 } else {
cf04e8eb
JK
956 struct f2fs_io_info fio = {
957 .type = DATA,
958 .rw = READ_SYNC,
959 .blk_addr = dn.data_blkaddr,
960 };
961 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 962 if (err)
a8865372
JK
963 goto put_err;
964
393ff91f 965 lock_page(page);
6bacf52f 966 if (unlikely(!PageUptodate(page))) {
393ff91f 967 f2fs_put_page(page, 1);
a8865372
JK
968 err = -EIO;
969 goto put_err;
eb47b800 970 }
6bacf52f 971 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
972 f2fs_put_page(page, 1);
973 goto repeat;
eb47b800
JK
974 }
975 }
eb47b800
JK
976
977 if (new_i_size &&
978 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
979 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
980 /* Only the directory inode sets new_i_size */
981 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
982 }
983 return page;
a8865372
JK
984
985put_err:
986 f2fs_put_dnode(&dn);
987 return ERR_PTR(err);
eb47b800
JK
988}
989
bfad7c2d
JK
990static int __allocate_data_block(struct dnode_of_data *dn)
991{
4081363f 992 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 993 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 994 struct f2fs_summary sum;
bfad7c2d 995 struct node_info ni;
38aa0889 996 int seg = CURSEG_WARM_DATA;
976e4c50 997 pgoff_t fofs;
bfad7c2d
JK
998
999 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1000 return -EPERM;
1001 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1002 return -ENOSPC;
1003
bfad7c2d
JK
1004 get_node_info(sbi, dn->nid, &ni);
1005 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1006
38aa0889
JK
1007 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1008 seg = CURSEG_DIRECT_IO;
1009
1010 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
bfad7c2d
JK
1011
1012 /* direct IO doesn't use extent cache to maximize the performance */
41ef94b3 1013 __set_data_blkaddr(dn);
bfad7c2d 1014
976e4c50
JK
1015 /* update i_size */
1016 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1017 dn->ofs_in_node;
1018 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1019 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1020
bfad7c2d
JK
1021 return 0;
1022}
1023
59b802e5
JK
1024static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1025 size_t count)
1026{
1027 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1028 struct dnode_of_data dn;
1029 u64 start = F2FS_BYTES_TO_BLK(offset);
1030 u64 len = F2FS_BYTES_TO_BLK(count);
1031 bool allocated;
1032 u64 end_offset;
1033
1034 while (len) {
1035 f2fs_balance_fs(sbi);
1036 f2fs_lock_op(sbi);
1037
1038 /* When reading holes, we need its node page */
1039 set_new_dnode(&dn, inode, NULL, NULL, 0);
1040 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1041 goto out;
1042
1043 allocated = false;
1044 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1045
1046 while (dn.ofs_in_node < end_offset && len) {
1047 if (dn.data_blkaddr == NULL_ADDR) {
1048 if (__allocate_data_block(&dn))
1049 goto sync_out;
1050 allocated = true;
1051 }
1052 len--;
1053 start++;
1054 dn.ofs_in_node++;
1055 }
1056
1057 if (allocated)
1058 sync_inode_page(&dn);
1059
1060 f2fs_put_dnode(&dn);
1061 f2fs_unlock_op(sbi);
1062 }
1063 return;
1064
1065sync_out:
1066 if (allocated)
1067 sync_inode_page(&dn);
1068 f2fs_put_dnode(&dn);
1069out:
1070 f2fs_unlock_op(sbi);
1071 return;
1072}
1073
0a8165d7 1074/*
4f4124d0
CY
1075 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1076 * If original data blocks are allocated, then give them to blockdev.
1077 * Otherwise,
1078 * a. preallocate requested block addresses
1079 * b. do not use extent cache for better performance
1080 * c. give the block addresses to blockdev
eb47b800 1081 */
ccfb3000
JK
1082static int __get_data_block(struct inode *inode, sector_t iblock,
1083 struct buffer_head *bh_result, int create, bool fiemap)
eb47b800
JK
1084{
1085 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1086 unsigned maxblocks = bh_result->b_size >> blkbits;
1087 struct dnode_of_data dn;
bfad7c2d
JK
1088 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1089 pgoff_t pgofs, end_offset;
1090 int err = 0, ofs = 1;
a2e7d1bf 1091 struct extent_info ei;
bfad7c2d 1092 bool allocated = false;
eb47b800
JK
1093
1094 /* Get the page offset from the block offset(iblock) */
1095 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1096
7e4dde79 1097 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
a2e7d1bf 1098 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
bfad7c2d 1099 goto out;
a2e7d1bf 1100 }
bfad7c2d 1101
59b802e5 1102 if (create)
4081363f 1103 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1104
1105 /* When reading holes, we need its node page */
1106 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1107 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1108 if (err) {
bfad7c2d
JK
1109 if (err == -ENOENT)
1110 err = 0;
1111 goto unlock_out;
848753aa 1112 }
ccfb3000 1113 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1114 goto put_out;
eb47b800 1115
bfad7c2d 1116 if (dn.data_blkaddr != NULL_ADDR) {
da17eece 1117 set_buffer_new(bh_result);
bfad7c2d
JK
1118 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1119 } else if (create) {
1120 err = __allocate_data_block(&dn);
1121 if (err)
1122 goto put_out;
1123 allocated = true;
da17eece 1124 set_buffer_new(bh_result);
bfad7c2d
JK
1125 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1126 } else {
1127 goto put_out;
1128 }
1129
6403eb1f 1130 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d
JK
1131 bh_result->b_size = (((size_t)1) << blkbits);
1132 dn.ofs_in_node++;
1133 pgofs++;
1134
1135get_next:
1136 if (dn.ofs_in_node >= end_offset) {
1137 if (allocated)
1138 sync_inode_page(&dn);
1139 allocated = false;
1140 f2fs_put_dnode(&dn);
1141
1142 set_new_dnode(&dn, inode, NULL, NULL, 0);
1143 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1144 if (err) {
bfad7c2d
JK
1145 if (err == -ENOENT)
1146 err = 0;
1147 goto unlock_out;
1148 }
ccfb3000 1149 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1150 goto put_out;
1151
6403eb1f 1152 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1153 }
eb47b800 1154
bfad7c2d
JK
1155 if (maxblocks > (bh_result->b_size >> blkbits)) {
1156 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1157 if (blkaddr == NULL_ADDR && create) {
1158 err = __allocate_data_block(&dn);
1159 if (err)
1160 goto sync_out;
1161 allocated = true;
1162 blkaddr = dn.data_blkaddr;
1163 }
e1c42045 1164 /* Give more consecutive addresses for the readahead */
bfad7c2d
JK
1165 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1166 ofs++;
1167 dn.ofs_in_node++;
1168 pgofs++;
1169 bh_result->b_size += (((size_t)1) << blkbits);
1170 goto get_next;
1171 }
eb47b800 1172 }
bfad7c2d
JK
1173sync_out:
1174 if (allocated)
1175 sync_inode_page(&dn);
1176put_out:
eb47b800 1177 f2fs_put_dnode(&dn);
bfad7c2d
JK
1178unlock_out:
1179 if (create)
4081363f 1180 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d
JK
1181out:
1182 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1183 return err;
eb47b800
JK
1184}
1185
ccfb3000
JK
1186static int get_data_block(struct inode *inode, sector_t iblock,
1187 struct buffer_head *bh_result, int create)
1188{
1189 return __get_data_block(inode, iblock, bh_result, create, false);
1190}
1191
1192static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1193 struct buffer_head *bh_result, int create)
1194{
1195 return __get_data_block(inode, iblock, bh_result, create, true);
1196}
1197
9ab70134
JK
1198int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1199 u64 start, u64 len)
1200{
ccfb3000
JK
1201 return generic_block_fiemap(inode, fieinfo,
1202 start, len, get_data_block_fiemap);
9ab70134
JK
1203}
1204
eb47b800
JK
1205static int f2fs_read_data_page(struct file *file, struct page *page)
1206{
9ffe0fb5 1207 struct inode *inode = page->mapping->host;
b3d208f9 1208 int ret = -EAGAIN;
9ffe0fb5 1209
c20e89cd
CY
1210 trace_f2fs_readpage(page, DATA);
1211
e1c42045 1212 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1213 if (f2fs_has_inline_data(inode))
1214 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1215 if (ret == -EAGAIN)
9ffe0fb5
HL
1216 ret = mpage_readpage(page, get_data_block);
1217
1218 return ret;
eb47b800
JK
1219}
1220
1221static int f2fs_read_data_pages(struct file *file,
1222 struct address_space *mapping,
1223 struct list_head *pages, unsigned nr_pages)
1224{
9ffe0fb5
HL
1225 struct inode *inode = file->f_mapping->host;
1226
1227 /* If the file has inline data, skip readpages */
1228 if (f2fs_has_inline_data(inode))
1229 return 0;
1230
bfad7c2d 1231 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1232}
1233
458e6197 1234int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1235{
1236 struct inode *inode = page->mapping->host;
eb47b800
JK
1237 struct dnode_of_data dn;
1238 int err = 0;
1239
1240 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1241 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1242 if (err)
1243 return err;
1244
cf04e8eb 1245 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1246
1247 /* This page is already truncated */
cf04e8eb 1248 if (fio->blk_addr == NULL_ADDR)
eb47b800
JK
1249 goto out_writepage;
1250
1251 set_page_writeback(page);
1252
1253 /*
1254 * If current allocation needs SSR,
1255 * it had better in-place writes for updated data.
1256 */
cf04e8eb 1257 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1258 !is_cold_data(page) &&
1259 need_inplace_update(inode))) {
cf04e8eb 1260 rewrite_data_page(page, fio);
fff04f90 1261 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
eb47b800 1262 } else {
cf04e8eb 1263 write_data_page(page, &dn, fio);
7e4dde79 1264 f2fs_update_extent_cache(&dn);
fff04f90 1265 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
eb47b800
JK
1266 }
1267out_writepage:
1268 f2fs_put_dnode(&dn);
1269 return err;
1270}
1271
1272static int f2fs_write_data_page(struct page *page,
1273 struct writeback_control *wbc)
1274{
1275 struct inode *inode = page->mapping->host;
4081363f 1276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1277 loff_t i_size = i_size_read(inode);
1278 const pgoff_t end_index = ((unsigned long long) i_size)
1279 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1280 unsigned offset = 0;
39936837 1281 bool need_balance_fs = false;
eb47b800 1282 int err = 0;
458e6197
JK
1283 struct f2fs_io_info fio = {
1284 .type = DATA,
6c311ec6 1285 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1286 };
eb47b800 1287
ecda0de3
CY
1288 trace_f2fs_writepage(page, DATA);
1289
eb47b800 1290 if (page->index < end_index)
39936837 1291 goto write;
eb47b800
JK
1292
1293 /*
1294 * If the offset is out-of-range of file size,
1295 * this page does not have to be written to disk.
1296 */
1297 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1298 if ((page->index >= end_index + 1) || !offset)
39936837 1299 goto out;
eb47b800
JK
1300
1301 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1302write:
caf0047e 1303 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1304 goto redirty_out;
1e84371f
JK
1305 if (f2fs_is_drop_cache(inode))
1306 goto out;
1307 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1308 available_free_memory(sbi, BASE_CHECK))
1309 goto redirty_out;
eb47b800 1310
39936837 1311 /* Dentry blocks are controlled by checkpoint */
eb47b800 1312 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1313 if (unlikely(f2fs_cp_error(sbi)))
1314 goto redirty_out;
458e6197 1315 err = do_write_data_page(page, &fio);
8618b881
JK
1316 goto done;
1317 }
9ffe0fb5 1318
cf779cab
JK
1319 /* we should bypass data pages to proceed the kworkder jobs */
1320 if (unlikely(f2fs_cp_error(sbi))) {
1321 SetPageError(page);
a7ffdbe2 1322 goto out;
cf779cab
JK
1323 }
1324
8618b881 1325 if (!wbc->for_reclaim)
39936837 1326 need_balance_fs = true;
8618b881 1327 else if (has_not_enough_free_secs(sbi, 0))
39936837 1328 goto redirty_out;
eb47b800 1329
b3d208f9 1330 err = -EAGAIN;
8618b881 1331 f2fs_lock_op(sbi);
b3d208f9
JK
1332 if (f2fs_has_inline_data(inode))
1333 err = f2fs_write_inline_data(inode, page);
1334 if (err == -EAGAIN)
8618b881
JK
1335 err = do_write_data_page(page, &fio);
1336 f2fs_unlock_op(sbi);
1337done:
1338 if (err && err != -ENOENT)
1339 goto redirty_out;
eb47b800 1340
eb47b800 1341 clear_cold_data(page);
39936837 1342out:
a7ffdbe2 1343 inode_dec_dirty_pages(inode);
eb47b800 1344 unlock_page(page);
39936837 1345 if (need_balance_fs)
eb47b800 1346 f2fs_balance_fs(sbi);
2aea39ec
JK
1347 if (wbc->for_reclaim)
1348 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1349 return 0;
1350
eb47b800 1351redirty_out:
76f60268 1352 redirty_page_for_writepage(wbc, page);
8618b881 1353 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1354}
1355
fa9150a8
NJ
1356static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1357 void *data)
1358{
1359 struct address_space *mapping = data;
1360 int ret = mapping->a_ops->writepage(page, wbc);
1361 mapping_set_error(mapping, ret);
1362 return ret;
1363}
1364
25ca923b 1365static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1366 struct writeback_control *wbc)
1367{
1368 struct inode *inode = mapping->host;
4081363f 1369 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
531ad7d5 1370 bool locked = false;
eb47b800 1371 int ret;
50c8cdb3 1372 long diff;
eb47b800 1373
e5748434
CY
1374 trace_f2fs_writepages(mapping->host, wbc, DATA);
1375
cfb185a1 1376 /* deal with chardevs and other special file */
1377 if (!mapping->a_ops->writepage)
1378 return 0;
1379
87d6f890 1380 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1381 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1382 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1383 goto skip_write;
87d6f890 1384
50c8cdb3 1385 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1386
531ad7d5 1387 if (!S_ISDIR(inode->i_mode)) {
eb47b800 1388 mutex_lock(&sbi->writepages);
531ad7d5
JK
1389 locked = true;
1390 }
fa9150a8 1391 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
531ad7d5 1392 if (locked)
eb47b800 1393 mutex_unlock(&sbi->writepages);
458e6197
JK
1394
1395 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1396
1397 remove_dirty_dir_inode(inode);
1398
50c8cdb3 1399 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1400 return ret;
d3baf95d
JK
1401
1402skip_write:
a7ffdbe2 1403 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1404 return 0;
eb47b800
JK
1405}
1406
3aab8f82
CY
1407static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1408{
1409 struct inode *inode = mapping->host;
1410
1411 if (to > inode->i_size) {
1412 truncate_pagecache(inode, inode->i_size);
764aa3e9 1413 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1414 }
1415}
1416
eb47b800
JK
1417static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1418 loff_t pos, unsigned len, unsigned flags,
1419 struct page **pagep, void **fsdata)
1420{
1421 struct inode *inode = mapping->host;
4081363f 1422 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1423 struct page *page, *ipage;
eb47b800
JK
1424 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1425 struct dnode_of_data dn;
1426 int err = 0;
1427
62aed044
CY
1428 trace_f2fs_write_begin(inode, pos, len, flags);
1429
eb47b800 1430 f2fs_balance_fs(sbi);
5f727395
JK
1431
1432 /*
1433 * We should check this at this moment to avoid deadlock on inode page
1434 * and #0 page. The locking rule for inline_data conversion should be:
1435 * lock_page(page #0) -> lock_page(inode_page)
1436 */
1437 if (index != 0) {
1438 err = f2fs_convert_inline_inode(inode);
1439 if (err)
1440 goto fail;
1441 }
afcb7ca0 1442repeat:
eb47b800 1443 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1444 if (!page) {
1445 err = -ENOMEM;
1446 goto fail;
1447 }
d5f66990 1448
eb47b800
JK
1449 *pagep = page;
1450
e479556b 1451 f2fs_lock_op(sbi);
9ba69cf9
JK
1452
1453 /* check inline_data */
1454 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1455 if (IS_ERR(ipage)) {
1456 err = PTR_ERR(ipage);
9ba69cf9 1457 goto unlock_fail;
cd34e296 1458 }
9ba69cf9 1459
b3d208f9
JK
1460 set_new_dnode(&dn, inode, ipage, ipage, 0);
1461
9ba69cf9 1462 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1463 if (pos + len <= MAX_INLINE_DATA) {
1464 read_inline_data(page, ipage);
1465 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1466 sync_inode_page(&dn);
1467 goto put_next;
b3d208f9 1468 }
5f727395
JK
1469 err = f2fs_convert_inline_page(&dn, page);
1470 if (err)
1471 goto put_fail;
b600965c 1472 }
9ba69cf9
JK
1473 err = f2fs_reserve_block(&dn, index);
1474 if (err)
8cdcb713 1475 goto put_fail;
b3d208f9 1476put_next:
9ba69cf9
JK
1477 f2fs_put_dnode(&dn);
1478 f2fs_unlock_op(sbi);
1479
eb47b800
JK
1480 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1481 return 0;
1482
b3d208f9
JK
1483 f2fs_wait_on_page_writeback(page, DATA);
1484
eb47b800
JK
1485 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1486 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1487 unsigned end = start + len;
1488
1489 /* Reading beyond i_size is simple: memset to zero */
1490 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1491 goto out;
eb47b800
JK
1492 }
1493
b3d208f9 1494 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1495 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1496 } else {
cf04e8eb
JK
1497 struct f2fs_io_info fio = {
1498 .type = DATA,
1499 .rw = READ_SYNC,
1500 .blk_addr = dn.data_blkaddr,
1501 };
1502 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1503 if (err)
1504 goto fail;
d54c795b 1505
393ff91f 1506 lock_page(page);
6bacf52f 1507 if (unlikely(!PageUptodate(page))) {
393ff91f 1508 f2fs_put_page(page, 1);
3aab8f82
CY
1509 err = -EIO;
1510 goto fail;
eb47b800 1511 }
6bacf52f 1512 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1513 f2fs_put_page(page, 1);
1514 goto repeat;
eb47b800
JK
1515 }
1516 }
393ff91f 1517out:
eb47b800
JK
1518 SetPageUptodate(page);
1519 clear_cold_data(page);
1520 return 0;
9ba69cf9 1521
8cdcb713
JK
1522put_fail:
1523 f2fs_put_dnode(&dn);
9ba69cf9
JK
1524unlock_fail:
1525 f2fs_unlock_op(sbi);
b3d208f9 1526 f2fs_put_page(page, 1);
3aab8f82
CY
1527fail:
1528 f2fs_write_failed(mapping, pos + len);
1529 return err;
eb47b800
JK
1530}
1531
a1dd3c13
JK
1532static int f2fs_write_end(struct file *file,
1533 struct address_space *mapping,
1534 loff_t pos, unsigned len, unsigned copied,
1535 struct page *page, void *fsdata)
1536{
1537 struct inode *inode = page->mapping->host;
1538
dfb2bf38
CY
1539 trace_f2fs_write_end(inode, pos, len, copied);
1540
34ba94ba 1541 set_page_dirty(page);
a1dd3c13
JK
1542
1543 if (pos + copied > i_size_read(inode)) {
1544 i_size_write(inode, pos + copied);
1545 mark_inode_dirty(inode);
1546 update_inode_page(inode);
1547 }
1548
75c3c8bc 1549 f2fs_put_page(page, 1);
a1dd3c13
JK
1550 return copied;
1551}
1552
944fcfc1 1553static int check_direct_IO(struct inode *inode, int rw,
5b46f25d 1554 struct iov_iter *iter, loff_t offset)
944fcfc1
JK
1555{
1556 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1
JK
1557
1558 if (rw == READ)
1559 return 0;
1560
1561 if (offset & blocksize_mask)
1562 return -EINVAL;
1563
5b46f25d
AV
1564 if (iov_iter_alignment(iter) & blocksize_mask)
1565 return -EINVAL;
1566
944fcfc1
JK
1567 return 0;
1568}
1569
eb47b800 1570static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 1571 struct iov_iter *iter, loff_t offset)
eb47b800
JK
1572{
1573 struct file *file = iocb->ki_filp;
3aab8f82
CY
1574 struct address_space *mapping = file->f_mapping;
1575 struct inode *inode = mapping->host;
1576 size_t count = iov_iter_count(iter);
1577 int err;
944fcfc1 1578
b3d208f9
JK
1579 /* we don't need to use inline_data strictly */
1580 if (f2fs_has_inline_data(inode)) {
1581 err = f2fs_convert_inline_inode(inode);
1582 if (err)
1583 return err;
1584 }
9ffe0fb5 1585
5b46f25d 1586 if (check_direct_IO(inode, rw, iter, offset))
944fcfc1
JK
1587 return 0;
1588
70407fad
CY
1589 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1590
59b802e5
JK
1591 if (rw & WRITE)
1592 __allocate_data_blocks(inode, offset, count);
1593
3aab8f82
CY
1594 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1595 if (err < 0 && (rw & WRITE))
1596 f2fs_write_failed(mapping, offset + count);
70407fad
CY
1597
1598 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1599
3aab8f82 1600 return err;
eb47b800
JK
1601}
1602
487261f3
CY
1603void f2fs_invalidate_page(struct page *page, unsigned int offset,
1604 unsigned int length)
eb47b800
JK
1605{
1606 struct inode *inode = page->mapping->host;
487261f3 1607 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1608
487261f3
CY
1609 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1610 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1611 return;
1612
487261f3
CY
1613 if (PageDirty(page)) {
1614 if (inode->i_ino == F2FS_META_INO(sbi))
1615 dec_page_count(sbi, F2FS_DIRTY_META);
1616 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1617 dec_page_count(sbi, F2FS_DIRTY_NODES);
1618 else
1619 inode_dec_dirty_pages(inode);
1620 }
eb47b800
JK
1621 ClearPagePrivate(page);
1622}
1623
487261f3 1624int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1625{
f68daeeb
JK
1626 /* If this is dirty page, keep PagePrivate */
1627 if (PageDirty(page))
1628 return 0;
1629
eb47b800 1630 ClearPagePrivate(page);
c3850aa1 1631 return 1;
eb47b800
JK
1632}
1633
1634static int f2fs_set_data_page_dirty(struct page *page)
1635{
1636 struct address_space *mapping = page->mapping;
1637 struct inode *inode = mapping->host;
1638
26c6b887
JK
1639 trace_f2fs_set_page_dirty(page, DATA);
1640
eb47b800 1641 SetPageUptodate(page);
34ba94ba 1642
1e84371f 1643 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1644 register_inmem_page(inode, page);
1645 return 1;
1646 }
1647
a18ff063
JK
1648 mark_inode_dirty(inode);
1649
eb47b800
JK
1650 if (!PageDirty(page)) {
1651 __set_page_dirty_nobuffers(page);
a7ffdbe2 1652 update_dirty_page(inode, page);
eb47b800
JK
1653 return 1;
1654 }
1655 return 0;
1656}
1657
c01e54b7
JK
1658static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1659{
454ae7e5
CY
1660 struct inode *inode = mapping->host;
1661
b3d208f9
JK
1662 /* we don't need to use inline_data strictly */
1663 if (f2fs_has_inline_data(inode)) {
1664 int err = f2fs_convert_inline_inode(inode);
1665 if (err)
1666 return err;
1667 }
bfad7c2d 1668 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1669}
1670
429511cd
CY
1671void init_extent_cache_info(struct f2fs_sb_info *sbi)
1672{
1673 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1674 init_rwsem(&sbi->extent_tree_lock);
1675 INIT_LIST_HEAD(&sbi->extent_list);
1676 spin_lock_init(&sbi->extent_lock);
1677 sbi->total_ext_tree = 0;
1678 atomic_set(&sbi->total_ext_node, 0);
1679}
1680
1681int __init create_extent_cache(void)
1682{
1683 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1684 sizeof(struct extent_tree));
1685 if (!extent_tree_slab)
1686 return -ENOMEM;
1687 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1688 sizeof(struct extent_node));
1689 if (!extent_node_slab) {
1690 kmem_cache_destroy(extent_tree_slab);
1691 return -ENOMEM;
1692 }
1693 return 0;
1694}
1695
1696void destroy_extent_cache(void)
1697{
1698 kmem_cache_destroy(extent_node_slab);
1699 kmem_cache_destroy(extent_tree_slab);
1700}
1701
eb47b800
JK
1702const struct address_space_operations f2fs_dblock_aops = {
1703 .readpage = f2fs_read_data_page,
1704 .readpages = f2fs_read_data_pages,
1705 .writepage = f2fs_write_data_page,
1706 .writepages = f2fs_write_data_pages,
1707 .write_begin = f2fs_write_begin,
a1dd3c13 1708 .write_end = f2fs_write_end,
eb47b800 1709 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1710 .invalidatepage = f2fs_invalidate_page,
1711 .releasepage = f2fs_release_page,
eb47b800 1712 .direct_IO = f2fs_direct_IO,
c01e54b7 1713 .bmap = f2fs_bmap,
eb47b800 1714};