]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/f2fs/node.h
f2fs: detect host-managed SMR by feature flag
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / node.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
ea1a29a0 17/* # of pages to perform synchronous readahead before building free nids */
39a53e0c
JK
18#define FREE_NID_PAGES 4
19
ea1a29a0
CY
20#define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
21
39a53e0c
JK
22/* maximum readahead size for node during getting data blocks */
23#define MAX_RA_NODE 128
24
cdfc41c1 25/* control the memory footprint threshold (10MB per 1GB ram) */
29710bcf 26#define DEF_RAM_THRESHOLD 1
cdfc41c1 27
7d768d2c
CY
28/* control dirty nats ratio threshold (default: 10% over max nid count) */
29#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
e589c2c4
JK
30/* control total # of nats */
31#define DEF_NAT_CACHE_THRESHOLD 100000
7d768d2c 32
39a53e0c
JK
33/* vector size for gang look-up from nat cache that consists of radix tree */
34#define NATVEC_SIZE 64
7aed0d45 35#define SETVEC_SIZE 32
39a53e0c 36
56ae674c
JK
37/* return value for read_node_page */
38#define LOCKED_PAGE 1
39
5c27f4ee
CY
40/* For flag in struct node_info */
41enum {
42 IS_CHECKPOINTED, /* is it checkpointed before? */
43 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
44 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
45 IS_DIRTY, /* this nat entry is dirty? */
46};
47
39a53e0c
JK
48/*
49 * For node information
50 */
51struct node_info {
52 nid_t nid; /* node id */
53 nid_t ino; /* inode number of the node's owner */
54 block_t blk_addr; /* block address of the node */
55 unsigned char version; /* version of the node */
5c27f4ee 56 unsigned char flag; /* for node information bits */
7ef35e3b
JK
57};
58
39a53e0c
JK
59struct nat_entry {
60 struct list_head list; /* for clean or dirty nat list */
39a53e0c
JK
61 struct node_info ni; /* in-memory node information */
62};
63
64#define nat_get_nid(nat) (nat->ni.nid)
65#define nat_set_nid(nat, n) (nat->ni.nid = n)
66#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
67#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
68#define nat_get_ino(nat) (nat->ni.ino)
69#define nat_set_ino(nat, i) (nat->ni.ino = i)
70#define nat_get_version(nat) (nat->ni.version)
71#define nat_set_version(nat, v) (nat->ni.version = v)
72
39a53e0c
JK
73#define inc_node_version(version) (++version)
74
5c27f4ee
CY
75static inline void copy_node_info(struct node_info *dst,
76 struct node_info *src)
77{
78 dst->nid = src->nid;
79 dst->ino = src->ino;
80 dst->blk_addr = src->blk_addr;
81 dst->version = src->version;
82 /* should not copy flag here */
83}
84
7ef35e3b
JK
85static inline void set_nat_flag(struct nat_entry *ne,
86 unsigned int type, bool set)
87{
88 unsigned char mask = 0x01 << type;
89 if (set)
5c27f4ee 90 ne->ni.flag |= mask;
7ef35e3b 91 else
5c27f4ee 92 ne->ni.flag &= ~mask;
7ef35e3b
JK
93}
94
95static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
96{
97 unsigned char mask = 0x01 << type;
5c27f4ee 98 return ne->ni.flag & mask;
7ef35e3b
JK
99}
100
88bd02c9
JK
101static inline void nat_reset_flag(struct nat_entry *ne)
102{
103 /* these states can be set only after checkpoint was done */
104 set_nat_flag(ne, IS_CHECKPOINTED, true);
105 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
106 set_nat_flag(ne, HAS_LAST_FSYNC, true);
107}
108
39a53e0c
JK
109static inline void node_info_from_raw_nat(struct node_info *ni,
110 struct f2fs_nat_entry *raw_ne)
111{
112 ni->ino = le32_to_cpu(raw_ne->ino);
113 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
114 ni->version = raw_ne->version;
115}
116
94dac22e
CY
117static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
118 struct node_info *ni)
119{
120 raw_ne->ino = cpu_to_le32(ni->ino);
121 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
122 raw_ne->version = ni->version;
123}
124
7d768d2c
CY
125static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
126{
127 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
2304cb0c 128 NM_I(sbi)->dirty_nats_ratio / 100;
7d768d2c
CY
129}
130
e589c2c4
JK
131static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
132{
133 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
134}
135
6fb03f3a 136enum mem_type {
cdfc41c1 137 FREE_NIDS, /* indicates the free nid list */
6fb03f3a 138 NAT_ENTRIES, /* indicates the cached nat entry */
a1257023 139 DIRTY_DENTS, /* indicates dirty dentry pages */
e5e7ea3c 140 INO_ENTRIES, /* indicates inode entries */
13054c54 141 EXTENT_CACHE, /* indicates extent cache */
1e84371f 142 BASE_CHECK, /* check kernel status */
cdfc41c1
JK
143};
144
aec71382 145struct nat_entry_set {
309cc2b6 146 struct list_head set_list; /* link with other nat sets */
aec71382 147 struct list_head entry_list; /* link with dirty nat entries */
309cc2b6 148 nid_t set; /* set number*/
aec71382
CY
149 unsigned int entry_cnt; /* the # of nat entries in set */
150};
151
39a53e0c
JK
152/*
153 * For free nid mangement
154 */
155enum nid_state {
156 NID_NEW, /* newly added to free nid list */
157 NID_ALLOC /* it is allocated */
158};
159
160struct free_nid {
161 struct list_head list; /* for free node id list */
162 nid_t nid; /* node id */
163 int state; /* in use or not: NID_NEW or NID_ALLOC */
164};
165
120c2cba 166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
39a53e0c
JK
167{
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
39a53e0c 171 spin_lock(&nm_i->free_nid_list_lock);
c6e48930
HY
172 if (nm_i->fcnt <= 0) {
173 spin_unlock(&nm_i->free_nid_list_lock);
120c2cba 174 return;
c6e48930 175 }
39a53e0c
JK
176 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->free_nid_list_lock);
39a53e0c
JK
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
188}
189
190static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
191{
192 struct f2fs_nm_info *nm_i = NM_I(sbi);
193 pgoff_t block_off;
194 pgoff_t block_addr;
195 int seg_off;
196
197 block_off = NAT_BLOCK_OFFSET(start);
198 seg_off = block_off >> sbi->log_blocks_per_seg;
199
200 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
201 (seg_off << sbi->log_blocks_per_seg << 1) +
3519e3f9 202 (block_off & (sbi->blocks_per_seg - 1)));
39a53e0c
JK
203
204 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
205 block_addr += sbi->blocks_per_seg;
206
207 return block_addr;
208}
209
210static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
211 pgoff_t block_addr)
212{
213 struct f2fs_nm_info *nm_i = NM_I(sbi);
214
215 block_addr -= nm_i->nat_blkaddr;
216 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
217 block_addr -= sbi->blocks_per_seg;
218 else
219 block_addr += sbi->blocks_per_seg;
220
221 return block_addr + nm_i->nat_blkaddr;
222}
223
224static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
225{
226 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
227
c6ac4c0e 228 f2fs_change_bit(block_off, nm_i->nat_bitmap);
39a53e0c
JK
229}
230
231static inline void fill_node_footer(struct page *page, nid_t nid,
232 nid_t ino, unsigned int ofs, bool reset)
233{
45590710 234 struct f2fs_node *rn = F2FS_NODE(page);
09eb483e
JK
235 unsigned int old_flag = 0;
236
39a53e0c
JK
237 if (reset)
238 memset(rn, 0, sizeof(*rn));
09eb483e
JK
239 else
240 old_flag = le32_to_cpu(rn->footer.flag);
241
39a53e0c
JK
242 rn->footer.nid = cpu_to_le32(nid);
243 rn->footer.ino = cpu_to_le32(ino);
09eb483e
JK
244
245 /* should remain old flag bits such as COLD_BIT_SHIFT */
246 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
247 (old_flag & OFFSET_BIT_MASK));
39a53e0c
JK
248}
249
250static inline void copy_node_footer(struct page *dst, struct page *src)
251{
45590710
GZ
252 struct f2fs_node *src_rn = F2FS_NODE(src);
253 struct f2fs_node *dst_rn = F2FS_NODE(dst);
39a53e0c
JK
254 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
255}
256
257static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
258{
4081363f 259 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
45590710
GZ
260 struct f2fs_node *rn = F2FS_NODE(page);
261
39a53e0c 262 rn->footer.cp_ver = ckpt->checkpoint_ver;
25ca923b 263 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
39a53e0c
JK
264}
265
266static inline nid_t ino_of_node(struct page *node_page)
267{
45590710 268 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
269 return le32_to_cpu(rn->footer.ino);
270}
271
272static inline nid_t nid_of_node(struct page *node_page)
273{
45590710 274 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
275 return le32_to_cpu(rn->footer.nid);
276}
277
278static inline unsigned int ofs_of_node(struct page *node_page)
279{
45590710 280 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
281 unsigned flag = le32_to_cpu(rn->footer.flag);
282 return flag >> OFFSET_BIT_SHIFT;
283}
284
285static inline unsigned long long cpver_of_node(struct page *node_page)
286{
45590710 287 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
288 return le64_to_cpu(rn->footer.cp_ver);
289}
290
291static inline block_t next_blkaddr_of_node(struct page *node_page)
292{
45590710 293 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
294 return le32_to_cpu(rn->footer.next_blkaddr);
295}
296
297/*
298 * f2fs assigns the following node offsets described as (num).
299 * N = NIDS_PER_BLOCK
300 *
301 * Inode block (0)
302 * |- direct node (1)
303 * |- direct node (2)
304 * |- indirect node (3)
305 * | `- direct node (4 => 4 + N - 1)
306 * |- indirect node (4 + N)
307 * | `- direct node (5 + N => 5 + 2N - 1)
308 * `- double indirect node (5 + 2N)
309 * `- indirect node (6 + 2N)
4f4124d0
CY
310 * `- direct node
311 * ......
312 * `- indirect node ((6 + 2N) + x(N + 1))
313 * `- direct node
314 * ......
315 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
316 * `- direct node
39a53e0c
JK
317 */
318static inline bool IS_DNODE(struct page *node_page)
319{
320 unsigned int ofs = ofs_of_node(node_page);
dbe6a5ff 321
4bc8e9bc 322 if (f2fs_has_xattr_block(ofs))
dbe6a5ff
JK
323 return false;
324
39a53e0c
JK
325 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
326 ofs == 5 + 2 * NIDS_PER_BLOCK)
327 return false;
328 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
329 ofs -= 6 + 2 * NIDS_PER_BLOCK;
3315101f 330 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
39a53e0c
JK
331 return false;
332 }
333 return true;
334}
335
12719ae1 336static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
39a53e0c 337{
45590710 338 struct f2fs_node *rn = F2FS_NODE(p);
39a53e0c 339
fec1d657 340 f2fs_wait_on_page_writeback(p, NODE, true);
39a53e0c
JK
341
342 if (i)
343 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
344 else
345 rn->in.nid[off] = cpu_to_le32(nid);
12719ae1 346 return set_page_dirty(p);
39a53e0c
JK
347}
348
349static inline nid_t get_nid(struct page *p, int off, bool i)
350{
45590710
GZ
351 struct f2fs_node *rn = F2FS_NODE(p);
352
39a53e0c
JK
353 if (i)
354 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
355 return le32_to_cpu(rn->in.nid[off]);
356}
357
358/*
359 * Coldness identification:
360 * - Mark cold files in f2fs_inode_info
361 * - Mark cold node blocks in their node footer
362 * - Mark cold data pages in page cache
363 */
39a53e0c
JK
364static inline int is_cold_data(struct page *page)
365{
366 return PageChecked(page);
367}
368
369static inline void set_cold_data(struct page *page)
370{
371 SetPageChecked(page);
372}
373
374static inline void clear_cold_data(struct page *page)
375{
376 ClearPageChecked(page);
377}
378
a06a2416 379static inline int is_node(struct page *page, int type)
39a53e0c 380{
45590710 381 struct f2fs_node *rn = F2FS_NODE(page);
a06a2416 382 return le32_to_cpu(rn->footer.flag) & (1 << type);
39a53e0c
JK
383}
384
a06a2416
NJ
385#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
386#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
387#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
39a53e0c 388
2049d4fc
JK
389static inline int is_inline_node(struct page *page)
390{
391 return PageChecked(page);
392}
393
394static inline void set_inline_node(struct page *page)
395{
396 SetPageChecked(page);
397}
398
399static inline void clear_inline_node(struct page *page)
400{
401 ClearPageChecked(page);
402}
403
39a53e0c
JK
404static inline void set_cold_node(struct inode *inode, struct page *page)
405{
45590710 406 struct f2fs_node *rn = F2FS_NODE(page);
39a53e0c
JK
407 unsigned int flag = le32_to_cpu(rn->footer.flag);
408
409 if (S_ISDIR(inode->i_mode))
410 flag &= ~(0x1 << COLD_BIT_SHIFT);
411 else
412 flag |= (0x1 << COLD_BIT_SHIFT);
413 rn->footer.flag = cpu_to_le32(flag);
414}
415
a06a2416 416static inline void set_mark(struct page *page, int mark, int type)
39a53e0c 417{
45590710 418 struct f2fs_node *rn = F2FS_NODE(page);
39a53e0c
JK
419 unsigned int flag = le32_to_cpu(rn->footer.flag);
420 if (mark)
a06a2416 421 flag |= (0x1 << type);
39a53e0c 422 else
a06a2416 423 flag &= ~(0x1 << type);
39a53e0c
JK
424 rn->footer.flag = cpu_to_le32(flag);
425}
a06a2416
NJ
426#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
427#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)