]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/f2fs/segment.c
f2fs: use missing the use of f2fs_kunmap_page
[mirror_ubuntu-zesty-kernel.git] / fs / f2fs / segment.c
CommitLineData
0a8165d7 1/*
351df4b2
JK
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
690e4a3e 15#include <linux/prefetch.h>
6b4afdd7 16#include <linux/kthread.h>
351df4b2 17#include <linux/vmalloc.h>
74de593a 18#include <linux/swap.h>
351df4b2
JK
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
6ec178da 23#include <trace/events/f2fs.h>
351df4b2 24
9a7f143a
CL
25#define __reverse_ffz(x) __reverse_ffs(~(x))
26
7fd9e544 27static struct kmem_cache *discard_entry_slab;
184a5cd2 28static struct kmem_cache *sit_entry_set_slab;
88b88a66 29static struct kmem_cache *inmem_entry_slab;
7fd9e544 30
9a7f143a
CL
31/*
32 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
33 * MSB and LSB are reversed in a byte by f2fs_set_bit.
34 */
35static inline unsigned long __reverse_ffs(unsigned long word)
36{
37 int num = 0;
38
39#if BITS_PER_LONG == 64
40 if ((word & 0xffffffff) == 0) {
41 num += 32;
42 word >>= 32;
43 }
44#endif
45 if ((word & 0xffff) == 0) {
46 num += 16;
47 word >>= 16;
48 }
49 if ((word & 0xff) == 0) {
50 num += 8;
51 word >>= 8;
52 }
53 if ((word & 0xf0) == 0)
54 num += 4;
55 else
56 word >>= 4;
57 if ((word & 0xc) == 0)
58 num += 2;
59 else
60 word >>= 2;
61 if ((word & 0x2) == 0)
62 num += 1;
63 return num;
64}
65
66/*
e1c42045 67 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
9a7f143a
CL
68 * f2fs_set_bit makes MSB and LSB reversed in a byte.
69 * Example:
70 * LSB <--> MSB
71 * f2fs_set_bit(0, bitmap) => 0000 0001
72 * f2fs_set_bit(7, bitmap) => 1000 0000
73 */
74static unsigned long __find_rev_next_bit(const unsigned long *addr,
75 unsigned long size, unsigned long offset)
76{
77 const unsigned long *p = addr + BIT_WORD(offset);
78 unsigned long result = offset & ~(BITS_PER_LONG - 1);
79 unsigned long tmp;
80 unsigned long mask, submask;
81 unsigned long quot, rest;
82
83 if (offset >= size)
84 return size;
85
86 size -= result;
87 offset %= BITS_PER_LONG;
88 if (!offset)
89 goto aligned;
90
91 tmp = *(p++);
92 quot = (offset >> 3) << 3;
93 rest = offset & 0x7;
94 mask = ~0UL << quot;
95 submask = (unsigned char)(0xff << rest) >> rest;
96 submask <<= quot;
97 mask &= submask;
98 tmp &= mask;
99 if (size < BITS_PER_LONG)
100 goto found_first;
101 if (tmp)
102 goto found_middle;
103
104 size -= BITS_PER_LONG;
105 result += BITS_PER_LONG;
106aligned:
107 while (size & ~(BITS_PER_LONG-1)) {
108 tmp = *(p++);
109 if (tmp)
110 goto found_middle;
111 result += BITS_PER_LONG;
112 size -= BITS_PER_LONG;
113 }
114 if (!size)
115 return result;
116 tmp = *p;
117found_first:
118 tmp &= (~0UL >> (BITS_PER_LONG - size));
119 if (tmp == 0UL) /* Are any bits set? */
120 return result + size; /* Nope. */
121found_middle:
122 return result + __reverse_ffs(tmp);
123}
124
125static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
126 unsigned long size, unsigned long offset)
127{
128 const unsigned long *p = addr + BIT_WORD(offset);
129 unsigned long result = offset & ~(BITS_PER_LONG - 1);
130 unsigned long tmp;
131 unsigned long mask, submask;
132 unsigned long quot, rest;
133
134 if (offset >= size)
135 return size;
136
137 size -= result;
138 offset %= BITS_PER_LONG;
139 if (!offset)
140 goto aligned;
141
142 tmp = *(p++);
143 quot = (offset >> 3) << 3;
144 rest = offset & 0x7;
145 mask = ~(~0UL << quot);
146 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
147 submask <<= quot;
148 mask += submask;
149 tmp |= mask;
150 if (size < BITS_PER_LONG)
151 goto found_first;
152 if (~tmp)
153 goto found_middle;
154
155 size -= BITS_PER_LONG;
156 result += BITS_PER_LONG;
157aligned:
158 while (size & ~(BITS_PER_LONG - 1)) {
159 tmp = *(p++);
160 if (~tmp)
161 goto found_middle;
162 result += BITS_PER_LONG;
163 size -= BITS_PER_LONG;
164 }
165 if (!size)
166 return result;
167 tmp = *p;
168
169found_first:
170 tmp |= ~0UL << size;
171 if (tmp == ~0UL) /* Are any bits zero? */
172 return result + size; /* Nope. */
173found_middle:
174 return result + __reverse_ffz(tmp);
175}
176
88b88a66
JK
177void register_inmem_page(struct inode *inode, struct page *page)
178{
179 struct f2fs_inode_info *fi = F2FS_I(inode);
180 struct inmem_pages *new;
34ba94ba 181 int err;
9be32d72 182
0722b101
JK
183 SetPagePrivate(page);
184
88b88a66
JK
185 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
186
187 /* add atomic page indices to the list */
188 new->page = page;
189 INIT_LIST_HEAD(&new->list);
9be32d72 190retry:
88b88a66
JK
191 /* increase reference count with clean state */
192 mutex_lock(&fi->inmem_lock);
34ba94ba
JK
193 err = radix_tree_insert(&fi->inmem_root, page->index, new);
194 if (err == -EEXIST) {
195 mutex_unlock(&fi->inmem_lock);
196 kmem_cache_free(inmem_entry_slab, new);
197 return;
198 } else if (err) {
199 mutex_unlock(&fi->inmem_lock);
34ba94ba
JK
200 goto retry;
201 }
88b88a66
JK
202 get_page(page);
203 list_add_tail(&new->list, &fi->inmem_pages);
8dcf2ff7 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
88b88a66
JK
205 mutex_unlock(&fi->inmem_lock);
206}
207
208void commit_inmem_pages(struct inode *inode, bool abort)
209{
210 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
211 struct f2fs_inode_info *fi = F2FS_I(inode);
212 struct inmem_pages *cur, *tmp;
213 bool submit_bio = false;
214 struct f2fs_io_info fio = {
215 .type = DATA,
1e84371f 216 .rw = WRITE_SYNC | REQ_PRIO,
88b88a66
JK
217 };
218
0341845e
JK
219 /*
220 * The abort is true only when f2fs_evict_inode is called.
221 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
222 * that we don't need to call f2fs_balance_fs.
223 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
224 * inode becomes free by iget_locked in f2fs_iget.
225 */
70c640b1 226 if (!abort) {
0341845e 227 f2fs_balance_fs(sbi);
70c640b1
JK
228 f2fs_lock_op(sbi);
229 }
88b88a66
JK
230
231 mutex_lock(&fi->inmem_lock);
232 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
70c640b1
JK
233 if (!abort) {
234 lock_page(cur->page);
235 if (cur->page->mapping == inode->i_mapping) {
236 f2fs_wait_on_page_writeback(cur->page, DATA);
237 if (clear_page_dirty_for_io(cur->page))
238 inode_dec_dirty_pages(inode);
239 do_write_data_page(cur->page, &fio);
240 submit_bio = true;
241 }
242 f2fs_put_page(cur->page, 1);
243 } else {
244 put_page(cur->page);
88b88a66 245 }
34ba94ba 246 radix_tree_delete(&fi->inmem_root, cur->page->index);
88b88a66
JK
247 list_del(&cur->list);
248 kmem_cache_free(inmem_entry_slab, cur);
8dcf2ff7 249 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
88b88a66 250 }
88b88a66
JK
251 mutex_unlock(&fi->inmem_lock);
252
70c640b1
JK
253 if (!abort) {
254 f2fs_unlock_op(sbi);
255 if (submit_bio)
256 f2fs_submit_merged_bio(sbi, DATA, WRITE);
257 }
88b88a66
JK
258}
259
0a8165d7 260/*
351df4b2
JK
261 * This function balances dirty node and dentry pages.
262 * In addition, it controls garbage collection.
263 */
264void f2fs_balance_fs(struct f2fs_sb_info *sbi)
265{
351df4b2 266 /*
029cd28c
JK
267 * We should do GC or end up with checkpoint, if there are so many dirty
268 * dir/node pages without enough free segments.
351df4b2 269 */
43727527 270 if (has_not_enough_free_secs(sbi, 0)) {
351df4b2 271 mutex_lock(&sbi->gc_mutex);
408e9375 272 f2fs_gc(sbi);
351df4b2
JK
273 }
274}
275
4660f9c0
JK
276void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
277{
278 /* check the # of cached NAT entries and prefree segments */
279 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
e5e7ea3c 280 excess_prefree_segs(sbi) ||
88a70a69 281 !available_free_memory(sbi, INO_ENTRIES))
4660f9c0
JK
282 f2fs_sync_fs(sbi->sb, true);
283}
284
2163d198 285static int issue_flush_thread(void *data)
6b4afdd7
JK
286{
287 struct f2fs_sb_info *sbi = data;
a688b9d9
GZ
288 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
289 wait_queue_head_t *q = &fcc->flush_wait_queue;
6b4afdd7
JK
290repeat:
291 if (kthread_should_stop())
292 return 0;
293
721bd4d5 294 if (!llist_empty(&fcc->issue_list)) {
6b4afdd7
JK
295 struct bio *bio = bio_alloc(GFP_NOIO, 0);
296 struct flush_cmd *cmd, *next;
297 int ret;
298
721bd4d5
GZ
299 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
300 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
301
6b4afdd7
JK
302 bio->bi_bdev = sbi->sb->s_bdev;
303 ret = submit_bio_wait(WRITE_FLUSH, bio);
304
721bd4d5
GZ
305 llist_for_each_entry_safe(cmd, next,
306 fcc->dispatch_list, llnode) {
6b4afdd7 307 cmd->ret = ret;
6b4afdd7
JK
308 complete(&cmd->wait);
309 }
a4ed23f2 310 bio_put(bio);
a688b9d9 311 fcc->dispatch_list = NULL;
6b4afdd7
JK
312 }
313
a688b9d9 314 wait_event_interruptible(*q,
721bd4d5 315 kthread_should_stop() || !llist_empty(&fcc->issue_list));
6b4afdd7
JK
316 goto repeat;
317}
318
319int f2fs_issue_flush(struct f2fs_sb_info *sbi)
320{
a688b9d9 321 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
adf8d90b 322 struct flush_cmd cmd;
6b4afdd7 323
24a9ee0f
JK
324 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
325 test_opt(sbi, FLUSH_MERGE));
326
0f7b2abd
JK
327 if (test_opt(sbi, NOBARRIER))
328 return 0;
329
6b4afdd7
JK
330 if (!test_opt(sbi, FLUSH_MERGE))
331 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
332
adf8d90b 333 init_completion(&cmd.wait);
6b4afdd7 334
721bd4d5 335 llist_add(&cmd.llnode, &fcc->issue_list);
6b4afdd7 336
a688b9d9
GZ
337 if (!fcc->dispatch_list)
338 wake_up(&fcc->flush_wait_queue);
6b4afdd7 339
adf8d90b
CY
340 wait_for_completion(&cmd.wait);
341
342 return cmd.ret;
6b4afdd7
JK
343}
344
2163d198
GZ
345int create_flush_cmd_control(struct f2fs_sb_info *sbi)
346{
347 dev_t dev = sbi->sb->s_bdev->bd_dev;
348 struct flush_cmd_control *fcc;
349 int err = 0;
350
351 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
352 if (!fcc)
353 return -ENOMEM;
2163d198 354 init_waitqueue_head(&fcc->flush_wait_queue);
721bd4d5 355 init_llist_head(&fcc->issue_list);
6b2920a5 356 SM_I(sbi)->cmd_control_info = fcc;
2163d198
GZ
357 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
358 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
359 if (IS_ERR(fcc->f2fs_issue_flush)) {
360 err = PTR_ERR(fcc->f2fs_issue_flush);
361 kfree(fcc);
6b2920a5 362 SM_I(sbi)->cmd_control_info = NULL;
2163d198
GZ
363 return err;
364 }
2163d198
GZ
365
366 return err;
367}
368
369void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
370{
6b2920a5 371 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
2163d198
GZ
372
373 if (fcc && fcc->f2fs_issue_flush)
374 kthread_stop(fcc->f2fs_issue_flush);
375 kfree(fcc);
6b2920a5 376 SM_I(sbi)->cmd_control_info = NULL;
2163d198
GZ
377}
378
351df4b2
JK
379static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
380 enum dirty_type dirty_type)
381{
382 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
383
384 /* need not be added */
385 if (IS_CURSEG(sbi, segno))
386 return;
387
388 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
389 dirty_i->nr_dirty[dirty_type]++;
390
391 if (dirty_type == DIRTY) {
392 struct seg_entry *sentry = get_seg_entry(sbi, segno);
4625d6aa 393 enum dirty_type t = sentry->type;
b2f2c390 394
ec325b52
JK
395 if (unlikely(t >= DIRTY)) {
396 f2fs_bug_on(sbi, 1);
397 return;
398 }
4625d6aa
CL
399 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
400 dirty_i->nr_dirty[t]++;
351df4b2
JK
401 }
402}
403
404static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
405 enum dirty_type dirty_type)
406{
407 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
408
409 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
410 dirty_i->nr_dirty[dirty_type]--;
411
412 if (dirty_type == DIRTY) {
4625d6aa
CL
413 struct seg_entry *sentry = get_seg_entry(sbi, segno);
414 enum dirty_type t = sentry->type;
415
416 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
417 dirty_i->nr_dirty[t]--;
b2f2c390 418
5ec4e49f
JK
419 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
420 clear_bit(GET_SECNO(sbi, segno),
421 dirty_i->victim_secmap);
351df4b2
JK
422 }
423}
424
0a8165d7 425/*
351df4b2
JK
426 * Should not occur error such as -ENOMEM.
427 * Adding dirty entry into seglist is not critical operation.
428 * If a given segment is one of current working segments, it won't be added.
429 */
8d8451af 430static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
351df4b2
JK
431{
432 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
433 unsigned short valid_blocks;
434
435 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
436 return;
437
438 mutex_lock(&dirty_i->seglist_lock);
439
440 valid_blocks = get_valid_blocks(sbi, segno, 0);
441
442 if (valid_blocks == 0) {
443 __locate_dirty_segment(sbi, segno, PRE);
444 __remove_dirty_segment(sbi, segno, DIRTY);
445 } else if (valid_blocks < sbi->blocks_per_seg) {
446 __locate_dirty_segment(sbi, segno, DIRTY);
447 } else {
448 /* Recovery routine with SSR needs this */
449 __remove_dirty_segment(sbi, segno, DIRTY);
450 }
451
452 mutex_unlock(&dirty_i->seglist_lock);
351df4b2
JK
453}
454
1e87a78d 455static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
37208879
JK
456 block_t blkstart, block_t blklen)
457{
55cf9cb6
CY
458 sector_t start = SECTOR_FROM_BLOCK(blkstart);
459 sector_t len = SECTOR_FROM_BLOCK(blklen);
1661d07c 460 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
1e87a78d
JK
461 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
462}
463
cf2271e7 464void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
1e87a78d 465{
1e87a78d
JK
466 if (f2fs_issue_discard(sbi, blkaddr, 1)) {
467 struct page *page = grab_meta_page(sbi, blkaddr);
468 /* zero-filled page */
469 set_page_dirty(page);
470 f2fs_put_page(page, 1);
471 }
37208879
JK
472}
473
adf4983b
JK
474static void __add_discard_entry(struct f2fs_sb_info *sbi,
475 struct cp_control *cpc, unsigned int start, unsigned int end)
b2955550
JK
476{
477 struct list_head *head = &SM_I(sbi)->discard_list;
adf4983b
JK
478 struct discard_entry *new, *last;
479
480 if (!list_empty(head)) {
481 last = list_last_entry(head, struct discard_entry, list);
482 if (START_BLOCK(sbi, cpc->trim_start) + start ==
483 last->blkaddr + last->len) {
484 last->len += end - start;
485 goto done;
486 }
487 }
488
489 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
490 INIT_LIST_HEAD(&new->list);
491 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
492 new->len = end - start;
493 list_add_tail(&new->list, head);
494done:
495 SM_I(sbi)->nr_discards += end - start;
496 cpc->trimmed += end - start;
497}
498
499static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
500{
b2955550
JK
501 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
502 int max_blocks = sbi->blocks_per_seg;
4b2fecc8 503 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
b2955550
JK
504 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
505 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
506 unsigned long dmap[entries];
507 unsigned int start = 0, end = -1;
4b2fecc8 508 bool force = (cpc->reason == CP_DISCARD);
b2955550
JK
509 int i;
510
d7bc2484
JK
511 if (!force && (!test_opt(sbi, DISCARD) ||
512 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards))
b2955550
JK
513 return;
514
4b2fecc8
JK
515 if (force && !se->valid_blocks) {
516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517 /*
518 * if this segment is registered in the prefree list, then
519 * we should skip adding a discard candidate, and let the
520 * checkpoint do that later.
521 */
522 mutex_lock(&dirty_i->seglist_lock);
523 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) {
524 mutex_unlock(&dirty_i->seglist_lock);
525 cpc->trimmed += sbi->blocks_per_seg;
526 return;
527 }
528 mutex_unlock(&dirty_i->seglist_lock);
529
adf4983b 530 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg);
4b2fecc8
JK
531 return;
532 }
533
b2955550
JK
534 /* zero block will be discarded through the prefree list */
535 if (!se->valid_blocks || se->valid_blocks == max_blocks)
536 return;
537
538 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
539 for (i = 0; i < entries; i++)
d7bc2484
JK
540 dmap[i] = force ? ~ckpt_map[i] :
541 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
b2955550 542
4b2fecc8 543 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
b2955550
JK
544 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
545 if (start >= max_blocks)
546 break;
547
548 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
549
4b2fecc8
JK
550 if (end - start < cpc->trim_minlen)
551 continue;
552
adf4983b 553 __add_discard_entry(sbi, cpc, start, end);
b2955550
JK
554 }
555}
556
4b2fecc8
JK
557void release_discard_addrs(struct f2fs_sb_info *sbi)
558{
559 struct list_head *head = &(SM_I(sbi)->discard_list);
560 struct discard_entry *entry, *this;
561
562 /* drop caches */
563 list_for_each_entry_safe(entry, this, head, list) {
564 list_del(&entry->list);
565 kmem_cache_free(discard_entry_slab, entry);
566 }
567}
568
0a8165d7 569/*
351df4b2
JK
570 * Should call clear_prefree_segments after checkpoint is done.
571 */
572static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
573{
574 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
b65ee148 575 unsigned int segno;
351df4b2
JK
576
577 mutex_lock(&dirty_i->seglist_lock);
7cd8558b 578 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
351df4b2 579 __set_test_and_free(sbi, segno);
351df4b2
JK
580 mutex_unlock(&dirty_i->seglist_lock);
581}
582
583void clear_prefree_segments(struct f2fs_sb_info *sbi)
584{
b2955550 585 struct list_head *head = &(SM_I(sbi)->discard_list);
2d7b822a 586 struct discard_entry *entry, *this;
351df4b2 587 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
29e59c14 588 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
29e59c14 589 unsigned int start = 0, end = -1;
351df4b2
JK
590
591 mutex_lock(&dirty_i->seglist_lock);
29e59c14 592
351df4b2 593 while (1) {
29e59c14 594 int i;
7cd8558b
JK
595 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
596 if (start >= MAIN_SEGS(sbi))
351df4b2 597 break;
7cd8558b
JK
598 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
599 start + 1);
29e59c14
CL
600
601 for (i = start; i < end; i++)
602 clear_bit(i, prefree_map);
603
604 dirty_i->nr_dirty[PRE] -= end - start;
605
606 if (!test_opt(sbi, DISCARD))
607 continue;
351df4b2 608
37208879
JK
609 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
610 (end - start) << sbi->log_blocks_per_seg);
351df4b2
JK
611 }
612 mutex_unlock(&dirty_i->seglist_lock);
b2955550
JK
613
614 /* send small discards */
2d7b822a 615 list_for_each_entry_safe(entry, this, head, list) {
37208879 616 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
b2955550
JK
617 list_del(&entry->list);
618 SM_I(sbi)->nr_discards -= entry->len;
619 kmem_cache_free(discard_entry_slab, entry);
620 }
351df4b2
JK
621}
622
184a5cd2 623static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
351df4b2
JK
624{
625 struct sit_info *sit_i = SIT_I(sbi);
184a5cd2
CY
626
627 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
351df4b2 628 sit_i->dirty_sentries++;
184a5cd2
CY
629 return false;
630 }
631
632 return true;
351df4b2
JK
633}
634
635static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
636 unsigned int segno, int modified)
637{
638 struct seg_entry *se = get_seg_entry(sbi, segno);
639 se->type = type;
640 if (modified)
641 __mark_sit_entry_dirty(sbi, segno);
642}
643
644static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
645{
646 struct seg_entry *se;
647 unsigned int segno, offset;
648 long int new_vblocks;
649
650 segno = GET_SEGNO(sbi, blkaddr);
651
652 se = get_seg_entry(sbi, segno);
653 new_vblocks = se->valid_blocks + del;
491c0854 654 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
351df4b2 655
9850cf4a 656 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
351df4b2
JK
657 (new_vblocks > sbi->blocks_per_seg)));
658
659 se->valid_blocks = new_vblocks;
660 se->mtime = get_mtime(sbi);
661 SIT_I(sbi)->max_mtime = se->mtime;
662
663 /* Update valid block bitmap */
664 if (del > 0) {
52aca074 665 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
05796763 666 f2fs_bug_on(sbi, 1);
351df4b2 667 } else {
52aca074 668 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
05796763 669 f2fs_bug_on(sbi, 1);
351df4b2
JK
670 }
671 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
672 se->ckpt_valid_blocks += del;
673
674 __mark_sit_entry_dirty(sbi, segno);
675
676 /* update total number of valid blocks to be written in ckpt area */
677 SIT_I(sbi)->written_valid_blocks += del;
678
679 if (sbi->segs_per_sec > 1)
680 get_sec_entry(sbi, segno)->valid_blocks += del;
681}
682
5e443818 683void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
351df4b2 684{
5e443818
JK
685 update_sit_entry(sbi, new, 1);
686 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
687 update_sit_entry(sbi, old, -1);
688
689 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
690 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
351df4b2
JK
691}
692
693void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
694{
695 unsigned int segno = GET_SEGNO(sbi, addr);
696 struct sit_info *sit_i = SIT_I(sbi);
697
9850cf4a 698 f2fs_bug_on(sbi, addr == NULL_ADDR);
351df4b2
JK
699 if (addr == NEW_ADDR)
700 return;
701
702 /* add it into sit main buffer */
703 mutex_lock(&sit_i->sentry_lock);
704
705 update_sit_entry(sbi, addr, -1);
706
707 /* add it into dirty seglist */
708 locate_dirty_segment(sbi, segno);
709
710 mutex_unlock(&sit_i->sentry_lock);
711}
712
0a8165d7 713/*
351df4b2
JK
714 * This function should be resided under the curseg_mutex lock
715 */
716static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
e79efe3b 717 struct f2fs_summary *sum)
351df4b2
JK
718{
719 struct curseg_info *curseg = CURSEG_I(sbi, type);
720 void *addr = curseg->sum_blk;
e79efe3b 721 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
351df4b2 722 memcpy(addr, sum, sizeof(struct f2fs_summary));
351df4b2
JK
723}
724
0a8165d7 725/*
351df4b2
JK
726 * Calculate the number of current summary pages for writing
727 */
728int npages_for_summary_flush(struct f2fs_sb_info *sbi)
729{
351df4b2 730 int valid_sum_count = 0;
9a47938b 731 int i, sum_in_page;
351df4b2
JK
732
733 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
734 if (sbi->ckpt->alloc_type[i] == SSR)
735 valid_sum_count += sbi->blocks_per_seg;
736 else
737 valid_sum_count += curseg_blkoff(sbi, i);
738 }
739
9a47938b
FL
740 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
741 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
742 if (valid_sum_count <= sum_in_page)
351df4b2 743 return 1;
9a47938b
FL
744 else if ((valid_sum_count - sum_in_page) <=
745 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
351df4b2
JK
746 return 2;
747 return 3;
748}
749
0a8165d7 750/*
351df4b2
JK
751 * Caller should put this summary page
752 */
753struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
754{
755 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
756}
757
758static void write_sum_page(struct f2fs_sb_info *sbi,
759 struct f2fs_summary_block *sum_blk, block_t blk_addr)
760{
761 struct page *page = grab_meta_page(sbi, blk_addr);
762 void *kaddr = page_address(page);
763 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
764 set_page_dirty(page);
765 f2fs_put_page(page, 1);
766}
767
60374688
JK
768static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
769{
770 struct curseg_info *curseg = CURSEG_I(sbi, type);
81fb5e87 771 unsigned int segno = curseg->segno + 1;
60374688
JK
772 struct free_segmap_info *free_i = FREE_I(sbi);
773
7cd8558b 774 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
81fb5e87 775 return !test_bit(segno, free_i->free_segmap);
60374688
JK
776 return 0;
777}
778
0a8165d7 779/*
351df4b2
JK
780 * Find a new segment from the free segments bitmap to right order
781 * This function should be returned with success, otherwise BUG
782 */
783static void get_new_segment(struct f2fs_sb_info *sbi,
784 unsigned int *newseg, bool new_sec, int dir)
785{
786 struct free_segmap_info *free_i = FREE_I(sbi);
351df4b2 787 unsigned int segno, secno, zoneno;
7cd8558b 788 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
351df4b2
JK
789 unsigned int hint = *newseg / sbi->segs_per_sec;
790 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
791 unsigned int left_start = hint;
792 bool init = true;
793 int go_left = 0;
794 int i;
795
796 write_lock(&free_i->segmap_lock);
797
798 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
799 segno = find_next_zero_bit(free_i->free_segmap,
7cd8558b 800 MAIN_SEGS(sbi), *newseg + 1);
33afa7fd
JK
801 if (segno - *newseg < sbi->segs_per_sec -
802 (*newseg % sbi->segs_per_sec))
351df4b2
JK
803 goto got_it;
804 }
805find_other_zone:
7cd8558b
JK
806 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
807 if (secno >= MAIN_SECS(sbi)) {
351df4b2
JK
808 if (dir == ALLOC_RIGHT) {
809 secno = find_next_zero_bit(free_i->free_secmap,
7cd8558b
JK
810 MAIN_SECS(sbi), 0);
811 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
351df4b2
JK
812 } else {
813 go_left = 1;
814 left_start = hint - 1;
815 }
816 }
817 if (go_left == 0)
818 goto skip_left;
819
820 while (test_bit(left_start, free_i->free_secmap)) {
821 if (left_start > 0) {
822 left_start--;
823 continue;
824 }
825 left_start = find_next_zero_bit(free_i->free_secmap,
7cd8558b
JK
826 MAIN_SECS(sbi), 0);
827 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
351df4b2
JK
828 break;
829 }
830 secno = left_start;
831skip_left:
832 hint = secno;
833 segno = secno * sbi->segs_per_sec;
834 zoneno = secno / sbi->secs_per_zone;
835
836 /* give up on finding another zone */
837 if (!init)
838 goto got_it;
839 if (sbi->secs_per_zone == 1)
840 goto got_it;
841 if (zoneno == old_zoneno)
842 goto got_it;
843 if (dir == ALLOC_LEFT) {
844 if (!go_left && zoneno + 1 >= total_zones)
845 goto got_it;
846 if (go_left && zoneno == 0)
847 goto got_it;
848 }
849 for (i = 0; i < NR_CURSEG_TYPE; i++)
850 if (CURSEG_I(sbi, i)->zone == zoneno)
851 break;
852
853 if (i < NR_CURSEG_TYPE) {
854 /* zone is in user, try another */
855 if (go_left)
856 hint = zoneno * sbi->secs_per_zone - 1;
857 else if (zoneno + 1 >= total_zones)
858 hint = 0;
859 else
860 hint = (zoneno + 1) * sbi->secs_per_zone;
861 init = false;
862 goto find_other_zone;
863 }
864got_it:
865 /* set it as dirty segment in free segmap */
9850cf4a 866 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
351df4b2
JK
867 __set_inuse(sbi, segno);
868 *newseg = segno;
869 write_unlock(&free_i->segmap_lock);
870}
871
872static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
873{
874 struct curseg_info *curseg = CURSEG_I(sbi, type);
875 struct summary_footer *sum_footer;
876
877 curseg->segno = curseg->next_segno;
878 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
879 curseg->next_blkoff = 0;
880 curseg->next_segno = NULL_SEGNO;
881
882 sum_footer = &(curseg->sum_blk->footer);
883 memset(sum_footer, 0, sizeof(struct summary_footer));
884 if (IS_DATASEG(type))
885 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
886 if (IS_NODESEG(type))
887 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
888 __set_sit_entry_type(sbi, type, curseg->segno, modified);
889}
890
0a8165d7 891/*
351df4b2
JK
892 * Allocate a current working segment.
893 * This function always allocates a free segment in LFS manner.
894 */
895static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
896{
897 struct curseg_info *curseg = CURSEG_I(sbi, type);
898 unsigned int segno = curseg->segno;
899 int dir = ALLOC_LEFT;
900
901 write_sum_page(sbi, curseg->sum_blk,
81fb5e87 902 GET_SUM_BLOCK(sbi, segno));
351df4b2
JK
903 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
904 dir = ALLOC_RIGHT;
905
906 if (test_opt(sbi, NOHEAP))
907 dir = ALLOC_RIGHT;
908
909 get_new_segment(sbi, &segno, new_sec, dir);
910 curseg->next_segno = segno;
911 reset_curseg(sbi, type, 1);
912 curseg->alloc_type = LFS;
913}
914
915static void __next_free_blkoff(struct f2fs_sb_info *sbi,
916 struct curseg_info *seg, block_t start)
917{
918 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
e81c93cf
CL
919 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
920 unsigned long target_map[entries];
921 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
922 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
923 int i, pos;
924
925 for (i = 0; i < entries; i++)
926 target_map[i] = ckpt_map[i] | cur_map[i];
927
928 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
929
930 seg->next_blkoff = pos;
351df4b2
JK
931}
932
0a8165d7 933/*
351df4b2
JK
934 * If a segment is written by LFS manner, next block offset is just obtained
935 * by increasing the current block offset. However, if a segment is written by
936 * SSR manner, next block offset obtained by calling __next_free_blkoff
937 */
938static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
939 struct curseg_info *seg)
940{
941 if (seg->alloc_type == SSR)
942 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
943 else
944 seg->next_blkoff++;
945}
946
0a8165d7 947/*
e1c42045 948 * This function always allocates a used segment(from dirty seglist) by SSR
351df4b2
JK
949 * manner, so it should recover the existing segment information of valid blocks
950 */
951static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
952{
953 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
954 struct curseg_info *curseg = CURSEG_I(sbi, type);
955 unsigned int new_segno = curseg->next_segno;
956 struct f2fs_summary_block *sum_node;
957 struct page *sum_page;
958
959 write_sum_page(sbi, curseg->sum_blk,
960 GET_SUM_BLOCK(sbi, curseg->segno));
961 __set_test_and_inuse(sbi, new_segno);
962
963 mutex_lock(&dirty_i->seglist_lock);
964 __remove_dirty_segment(sbi, new_segno, PRE);
965 __remove_dirty_segment(sbi, new_segno, DIRTY);
966 mutex_unlock(&dirty_i->seglist_lock);
967
968 reset_curseg(sbi, type, 1);
969 curseg->alloc_type = SSR;
970 __next_free_blkoff(sbi, curseg, 0);
971
972 if (reuse) {
973 sum_page = get_sum_page(sbi, new_segno);
974 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
975 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
976 f2fs_put_page(sum_page, 1);
977 }
978}
979
43727527
JK
980static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
981{
982 struct curseg_info *curseg = CURSEG_I(sbi, type);
983 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
984
985 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
986 return v_ops->get_victim(sbi,
987 &(curseg)->next_segno, BG_GC, type, SSR);
988
989 /* For data segments, let's do SSR more intensively */
990 for (; type >= CURSEG_HOT_DATA; type--)
991 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
992 BG_GC, type, SSR))
993 return 1;
994 return 0;
995}
996
351df4b2
JK
997/*
998 * flush out current segment and replace it with new segment
999 * This function should be returned with success, otherwise BUG
1000 */
1001static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1002 int type, bool force)
1003{
1004 struct curseg_info *curseg = CURSEG_I(sbi, type);
351df4b2 1005
7b405275 1006 if (force)
351df4b2 1007 new_curseg(sbi, type, true);
7b405275 1008 else if (type == CURSEG_WARM_NODE)
351df4b2 1009 new_curseg(sbi, type, false);
60374688
JK
1010 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1011 new_curseg(sbi, type, false);
351df4b2
JK
1012 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1013 change_curseg(sbi, type, true);
1014 else
1015 new_curseg(sbi, type, false);
dcdfff65
JK
1016
1017 stat_inc_seg_type(sbi, curseg);
351df4b2
JK
1018}
1019
1020void allocate_new_segments(struct f2fs_sb_info *sbi)
1021{
1022 struct curseg_info *curseg;
1023 unsigned int old_curseg;
1024 int i;
1025
1026 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1027 curseg = CURSEG_I(sbi, i);
1028 old_curseg = curseg->segno;
1029 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1030 locate_dirty_segment(sbi, old_curseg);
1031 }
1032}
1033
1034static const struct segment_allocation default_salloc_ops = {
1035 .allocate_segment = allocate_segment_by_default,
1036};
1037
4b2fecc8
JK
1038int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1039{
4b2fecc8
JK
1040 __u64 start = range->start >> sbi->log_blocksize;
1041 __u64 end = start + (range->len >> sbi->log_blocksize) - 1;
4b2fecc8
JK
1042 unsigned int start_segno, end_segno;
1043 struct cp_control cpc;
1044
7cd8558b
JK
1045 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) ||
1046 range->len < sbi->blocksize)
4b2fecc8
JK
1047 return -EINVAL;
1048
9bd27ae4 1049 cpc.trimmed = 0;
7cd8558b 1050 if (end <= MAIN_BLKADDR(sbi))
4b2fecc8
JK
1051 goto out;
1052
1053 /* start/end segment number in main_area */
7cd8558b
JK
1054 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1055 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1056 GET_SEGNO(sbi, end);
4b2fecc8
JK
1057 cpc.reason = CP_DISCARD;
1058 cpc.trim_start = start_segno;
1059 cpc.trim_end = end_segno;
1060 cpc.trim_minlen = range->minlen >> sbi->log_blocksize;
4b2fecc8
JK
1061
1062 /* do checkpoint to issue discard commands safely */
ca4b02ee 1063 mutex_lock(&sbi->gc_mutex);
4b2fecc8 1064 write_checkpoint(sbi, &cpc);
ca4b02ee 1065 mutex_unlock(&sbi->gc_mutex);
4b2fecc8
JK
1066out:
1067 range->len = cpc.trimmed << sbi->log_blocksize;
1068 return 0;
1069}
1070
351df4b2
JK
1071static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1072{
1073 struct curseg_info *curseg = CURSEG_I(sbi, type);
1074 if (curseg->next_blkoff < sbi->blocks_per_seg)
1075 return true;
1076 return false;
1077}
1078
1079static int __get_segment_type_2(struct page *page, enum page_type p_type)
1080{
1081 if (p_type == DATA)
1082 return CURSEG_HOT_DATA;
1083 else
1084 return CURSEG_HOT_NODE;
1085}
1086
1087static int __get_segment_type_4(struct page *page, enum page_type p_type)
1088{
1089 if (p_type == DATA) {
1090 struct inode *inode = page->mapping->host;
1091
1092 if (S_ISDIR(inode->i_mode))
1093 return CURSEG_HOT_DATA;
1094 else
1095 return CURSEG_COLD_DATA;
1096 } else {
a344b9fd
JK
1097 if (IS_DNODE(page) && is_cold_node(page))
1098 return CURSEG_WARM_NODE;
351df4b2
JK
1099 else
1100 return CURSEG_COLD_NODE;
1101 }
1102}
1103
1104static int __get_segment_type_6(struct page *page, enum page_type p_type)
1105{
1106 if (p_type == DATA) {
1107 struct inode *inode = page->mapping->host;
1108
1109 if (S_ISDIR(inode->i_mode))
1110 return CURSEG_HOT_DATA;
354a3399 1111 else if (is_cold_data(page) || file_is_cold(inode))
351df4b2
JK
1112 return CURSEG_COLD_DATA;
1113 else
1114 return CURSEG_WARM_DATA;
1115 } else {
1116 if (IS_DNODE(page))
1117 return is_cold_node(page) ? CURSEG_WARM_NODE :
1118 CURSEG_HOT_NODE;
1119 else
1120 return CURSEG_COLD_NODE;
1121 }
1122}
1123
1124static int __get_segment_type(struct page *page, enum page_type p_type)
1125{
4081363f 1126 switch (F2FS_P_SB(page)->active_logs) {
351df4b2
JK
1127 case 2:
1128 return __get_segment_type_2(page, p_type);
1129 case 4:
1130 return __get_segment_type_4(page, p_type);
351df4b2 1131 }
12a67146 1132 /* NR_CURSEG_TYPE(6) logs by default */
9850cf4a
JK
1133 f2fs_bug_on(F2FS_P_SB(page),
1134 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
12a67146 1135 return __get_segment_type_6(page, p_type);
351df4b2
JK
1136}
1137
bfad7c2d
JK
1138void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1139 block_t old_blkaddr, block_t *new_blkaddr,
1140 struct f2fs_summary *sum, int type)
351df4b2
JK
1141{
1142 struct sit_info *sit_i = SIT_I(sbi);
1143 struct curseg_info *curseg;
351df4b2 1144
351df4b2
JK
1145 curseg = CURSEG_I(sbi, type);
1146
1147 mutex_lock(&curseg->curseg_mutex);
1148
1149 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
351df4b2
JK
1150
1151 /*
1152 * __add_sum_entry should be resided under the curseg_mutex
1153 * because, this function updates a summary entry in the
1154 * current summary block.
1155 */
e79efe3b 1156 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1157
1158 mutex_lock(&sit_i->sentry_lock);
1159 __refresh_next_blkoff(sbi, curseg);
dcdfff65
JK
1160
1161 stat_inc_block_count(sbi, curseg);
351df4b2 1162
5e443818
JK
1163 if (!__has_curseg_space(sbi, type))
1164 sit_i->s_ops->allocate_segment(sbi, type, false);
351df4b2
JK
1165 /*
1166 * SIT information should be updated before segment allocation,
1167 * since SSR needs latest valid block information.
1168 */
1169 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
5e443818 1170
351df4b2
JK
1171 mutex_unlock(&sit_i->sentry_lock);
1172
bfad7c2d 1173 if (page && IS_NODESEG(type))
351df4b2
JK
1174 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1175
bfad7c2d
JK
1176 mutex_unlock(&curseg->curseg_mutex);
1177}
1178
1179static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1180 block_t old_blkaddr, block_t *new_blkaddr,
1181 struct f2fs_summary *sum, struct f2fs_io_info *fio)
1182{
1183 int type = __get_segment_type(page, fio->type);
1184
1185 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1186
351df4b2 1187 /* writeout dirty page into bdev */
458e6197 1188 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
351df4b2
JK
1189}
1190
577e3495 1191void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
351df4b2 1192{
458e6197
JK
1193 struct f2fs_io_info fio = {
1194 .type = META,
7e8f2308 1195 .rw = WRITE_SYNC | REQ_META | REQ_PRIO
458e6197
JK
1196 };
1197
351df4b2 1198 set_page_writeback(page);
458e6197 1199 f2fs_submit_page_mbio(sbi, page, page->index, &fio);
351df4b2
JK
1200}
1201
1202void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
fb5566da 1203 struct f2fs_io_info *fio,
351df4b2
JK
1204 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1205{
1206 struct f2fs_summary sum;
1207 set_summary(&sum, nid, 0, 0);
fb5566da 1208 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
351df4b2
JK
1209}
1210
458e6197
JK
1211void write_data_page(struct page *page, struct dnode_of_data *dn,
1212 block_t *new_blkaddr, struct f2fs_io_info *fio)
351df4b2 1213{
4081363f 1214 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
351df4b2
JK
1215 struct f2fs_summary sum;
1216 struct node_info ni;
1217
9850cf4a 1218 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
351df4b2
JK
1219 get_node_info(sbi, dn->nid, &ni);
1220 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1221
458e6197 1222 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
351df4b2
JK
1223}
1224
6c311ec6
CF
1225void rewrite_data_page(struct page *page, block_t old_blkaddr,
1226 struct f2fs_io_info *fio)
351df4b2 1227{
4081363f 1228 f2fs_submit_page_mbio(F2FS_P_SB(page), page, old_blkaddr, fio);
351df4b2
JK
1229}
1230
1231void recover_data_page(struct f2fs_sb_info *sbi,
1232 struct page *page, struct f2fs_summary *sum,
1233 block_t old_blkaddr, block_t new_blkaddr)
1234{
1235 struct sit_info *sit_i = SIT_I(sbi);
1236 struct curseg_info *curseg;
1237 unsigned int segno, old_cursegno;
1238 struct seg_entry *se;
1239 int type;
1240
1241 segno = GET_SEGNO(sbi, new_blkaddr);
1242 se = get_seg_entry(sbi, segno);
1243 type = se->type;
1244
1245 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1246 if (old_blkaddr == NULL_ADDR)
1247 type = CURSEG_COLD_DATA;
1248 else
1249 type = CURSEG_WARM_DATA;
1250 }
1251 curseg = CURSEG_I(sbi, type);
1252
1253 mutex_lock(&curseg->curseg_mutex);
1254 mutex_lock(&sit_i->sentry_lock);
1255
1256 old_cursegno = curseg->segno;
1257
1258 /* change the current segment */
1259 if (segno != curseg->segno) {
1260 curseg->next_segno = segno;
1261 change_curseg(sbi, type, true);
1262 }
1263
491c0854 1264 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
e79efe3b 1265 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1266
1267 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
351df4b2 1268 locate_dirty_segment(sbi, old_cursegno);
351df4b2
JK
1269
1270 mutex_unlock(&sit_i->sentry_lock);
1271 mutex_unlock(&curseg->curseg_mutex);
1272}
1273
df0f8dc0
CY
1274static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1275 struct page *page, enum page_type type)
1276{
1277 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1278 struct f2fs_bio_info *io = &sbi->write_io[btype];
df0f8dc0
CY
1279 struct bio_vec *bvec;
1280 int i;
1281
1282 down_read(&io->io_rwsem);
ce23447f 1283 if (!io->bio)
df0f8dc0
CY
1284 goto out;
1285
ce23447f 1286 bio_for_each_segment_all(bvec, io->bio, i) {
df0f8dc0
CY
1287 if (page == bvec->bv_page) {
1288 up_read(&io->io_rwsem);
1289 return true;
1290 }
1291 }
1292
1293out:
1294 up_read(&io->io_rwsem);
1295 return false;
1296}
1297
93dfe2ac 1298void f2fs_wait_on_page_writeback(struct page *page,
5514f0aa 1299 enum page_type type)
93dfe2ac 1300{
93dfe2ac 1301 if (PageWriteback(page)) {
4081363f
JK
1302 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1303
df0f8dc0
CY
1304 if (is_merged_page(sbi, page, type))
1305 f2fs_submit_merged_bio(sbi, type, WRITE);
93dfe2ac
JK
1306 wait_on_page_writeback(page);
1307 }
1308}
1309
351df4b2
JK
1310static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1311{
1312 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1313 struct curseg_info *seg_i;
1314 unsigned char *kaddr;
1315 struct page *page;
1316 block_t start;
1317 int i, j, offset;
1318
1319 start = start_sum_block(sbi);
1320
1321 page = get_meta_page(sbi, start++);
1322 kaddr = (unsigned char *)page_address(page);
1323
1324 /* Step 1: restore nat cache */
1325 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1326 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1327
1328 /* Step 2: restore sit cache */
1329 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1330 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1331 SUM_JOURNAL_SIZE);
1332 offset = 2 * SUM_JOURNAL_SIZE;
1333
1334 /* Step 3: restore summary entries */
1335 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1336 unsigned short blk_off;
1337 unsigned int segno;
1338
1339 seg_i = CURSEG_I(sbi, i);
1340 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1341 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1342 seg_i->next_segno = segno;
1343 reset_curseg(sbi, i, 0);
1344 seg_i->alloc_type = ckpt->alloc_type[i];
1345 seg_i->next_blkoff = blk_off;
1346
1347 if (seg_i->alloc_type == SSR)
1348 blk_off = sbi->blocks_per_seg;
1349
1350 for (j = 0; j < blk_off; j++) {
1351 struct f2fs_summary *s;
1352 s = (struct f2fs_summary *)(kaddr + offset);
1353 seg_i->sum_blk->entries[j] = *s;
1354 offset += SUMMARY_SIZE;
1355 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1356 SUM_FOOTER_SIZE)
1357 continue;
1358
1359 f2fs_put_page(page, 1);
1360 page = NULL;
1361
1362 page = get_meta_page(sbi, start++);
1363 kaddr = (unsigned char *)page_address(page);
1364 offset = 0;
1365 }
1366 }
1367 f2fs_put_page(page, 1);
1368 return 0;
1369}
1370
1371static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1372{
1373 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1374 struct f2fs_summary_block *sum;
1375 struct curseg_info *curseg;
1376 struct page *new;
1377 unsigned short blk_off;
1378 unsigned int segno = 0;
1379 block_t blk_addr = 0;
1380
1381 /* get segment number and block addr */
1382 if (IS_DATASEG(type)) {
1383 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1384 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1385 CURSEG_HOT_DATA]);
25ca923b 1386 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1387 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1388 else
1389 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1390 } else {
1391 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1392 CURSEG_HOT_NODE]);
1393 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1394 CURSEG_HOT_NODE]);
25ca923b 1395 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1396 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1397 type - CURSEG_HOT_NODE);
1398 else
1399 blk_addr = GET_SUM_BLOCK(sbi, segno);
1400 }
1401
1402 new = get_meta_page(sbi, blk_addr);
1403 sum = (struct f2fs_summary_block *)page_address(new);
1404
1405 if (IS_NODESEG(type)) {
25ca923b 1406 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
351df4b2
JK
1407 struct f2fs_summary *ns = &sum->entries[0];
1408 int i;
1409 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1410 ns->version = 0;
1411 ns->ofs_in_node = 0;
1412 }
1413 } else {
d653788a
GZ
1414 int err;
1415
1416 err = restore_node_summary(sbi, segno, sum);
1417 if (err) {
351df4b2 1418 f2fs_put_page(new, 1);
d653788a 1419 return err;
351df4b2
JK
1420 }
1421 }
1422 }
1423
1424 /* set uncompleted segment to curseg */
1425 curseg = CURSEG_I(sbi, type);
1426 mutex_lock(&curseg->curseg_mutex);
1427 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1428 curseg->next_segno = segno;
1429 reset_curseg(sbi, type, 0);
1430 curseg->alloc_type = ckpt->alloc_type[type];
1431 curseg->next_blkoff = blk_off;
1432 mutex_unlock(&curseg->curseg_mutex);
1433 f2fs_put_page(new, 1);
1434 return 0;
1435}
1436
1437static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1438{
1439 int type = CURSEG_HOT_DATA;
e4fc5fbf 1440 int err;
351df4b2 1441
25ca923b 1442 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
351df4b2
JK
1443 /* restore for compacted data summary */
1444 if (read_compacted_summaries(sbi))
1445 return -EINVAL;
1446 type = CURSEG_HOT_NODE;
1447 }
1448
e4fc5fbf
CY
1449 for (; type <= CURSEG_COLD_NODE; type++) {
1450 err = read_normal_summaries(sbi, type);
1451 if (err)
1452 return err;
1453 }
1454
351df4b2
JK
1455 return 0;
1456}
1457
1458static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1459{
1460 struct page *page;
1461 unsigned char *kaddr;
1462 struct f2fs_summary *summary;
1463 struct curseg_info *seg_i;
1464 int written_size = 0;
1465 int i, j;
1466
1467 page = grab_meta_page(sbi, blkaddr++);
1468 kaddr = (unsigned char *)page_address(page);
1469
1470 /* Step 1: write nat cache */
1471 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1472 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1473 written_size += SUM_JOURNAL_SIZE;
1474
1475 /* Step 2: write sit cache */
1476 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1477 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1478 SUM_JOURNAL_SIZE);
1479 written_size += SUM_JOURNAL_SIZE;
1480
351df4b2
JK
1481 /* Step 3: write summary entries */
1482 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1483 unsigned short blkoff;
1484 seg_i = CURSEG_I(sbi, i);
1485 if (sbi->ckpt->alloc_type[i] == SSR)
1486 blkoff = sbi->blocks_per_seg;
1487 else
1488 blkoff = curseg_blkoff(sbi, i);
1489
1490 for (j = 0; j < blkoff; j++) {
1491 if (!page) {
1492 page = grab_meta_page(sbi, blkaddr++);
1493 kaddr = (unsigned char *)page_address(page);
1494 written_size = 0;
1495 }
1496 summary = (struct f2fs_summary *)(kaddr + written_size);
1497 *summary = seg_i->sum_blk->entries[j];
1498 written_size += SUMMARY_SIZE;
351df4b2
JK
1499
1500 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1501 SUM_FOOTER_SIZE)
1502 continue;
1503
e8d61a74 1504 set_page_dirty(page);
351df4b2
JK
1505 f2fs_put_page(page, 1);
1506 page = NULL;
1507 }
1508 }
e8d61a74
CY
1509 if (page) {
1510 set_page_dirty(page);
351df4b2 1511 f2fs_put_page(page, 1);
e8d61a74 1512 }
351df4b2
JK
1513}
1514
1515static void write_normal_summaries(struct f2fs_sb_info *sbi,
1516 block_t blkaddr, int type)
1517{
1518 int i, end;
1519 if (IS_DATASEG(type))
1520 end = type + NR_CURSEG_DATA_TYPE;
1521 else
1522 end = type + NR_CURSEG_NODE_TYPE;
1523
1524 for (i = type; i < end; i++) {
1525 struct curseg_info *sum = CURSEG_I(sbi, i);
1526 mutex_lock(&sum->curseg_mutex);
1527 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1528 mutex_unlock(&sum->curseg_mutex);
1529 }
1530}
1531
1532void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1533{
25ca923b 1534 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
351df4b2
JK
1535 write_compacted_summaries(sbi, start_blk);
1536 else
1537 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1538}
1539
1540void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1541{
25ca923b 1542 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
351df4b2 1543 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
351df4b2
JK
1544}
1545
1546int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1547 unsigned int val, int alloc)
1548{
1549 int i;
1550
1551 if (type == NAT_JOURNAL) {
1552 for (i = 0; i < nats_in_cursum(sum); i++) {
1553 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1554 return i;
1555 }
1556 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1557 return update_nats_in_cursum(sum, 1);
1558 } else if (type == SIT_JOURNAL) {
1559 for (i = 0; i < sits_in_cursum(sum); i++)
1560 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1561 return i;
1562 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1563 return update_sits_in_cursum(sum, 1);
1564 }
1565 return -1;
1566}
1567
1568static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1569 unsigned int segno)
1570{
2cc22186 1571 return get_meta_page(sbi, current_sit_addr(sbi, segno));
351df4b2
JK
1572}
1573
1574static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1575 unsigned int start)
1576{
1577 struct sit_info *sit_i = SIT_I(sbi);
1578 struct page *src_page, *dst_page;
1579 pgoff_t src_off, dst_off;
1580 void *src_addr, *dst_addr;
1581
1582 src_off = current_sit_addr(sbi, start);
1583 dst_off = next_sit_addr(sbi, src_off);
1584
1585 /* get current sit block page without lock */
1586 src_page = get_meta_page(sbi, src_off);
1587 dst_page = grab_meta_page(sbi, dst_off);
9850cf4a 1588 f2fs_bug_on(sbi, PageDirty(src_page));
351df4b2
JK
1589
1590 src_addr = page_address(src_page);
1591 dst_addr = page_address(dst_page);
1592 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1593
1594 set_page_dirty(dst_page);
1595 f2fs_put_page(src_page, 1);
1596
1597 set_to_next_sit(sit_i, start);
1598
1599 return dst_page;
1600}
1601
184a5cd2
CY
1602static struct sit_entry_set *grab_sit_entry_set(void)
1603{
1604 struct sit_entry_set *ses =
1605 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1606
1607 ses->entry_cnt = 0;
1608 INIT_LIST_HEAD(&ses->set_list);
1609 return ses;
1610}
1611
1612static void release_sit_entry_set(struct sit_entry_set *ses)
1613{
1614 list_del(&ses->set_list);
1615 kmem_cache_free(sit_entry_set_slab, ses);
1616}
1617
1618static void adjust_sit_entry_set(struct sit_entry_set *ses,
1619 struct list_head *head)
1620{
1621 struct sit_entry_set *next = ses;
1622
1623 if (list_is_last(&ses->set_list, head))
1624 return;
1625
1626 list_for_each_entry_continue(next, head, set_list)
1627 if (ses->entry_cnt <= next->entry_cnt)
1628 break;
1629
1630 list_move_tail(&ses->set_list, &next->set_list);
1631}
1632
1633static void add_sit_entry(unsigned int segno, struct list_head *head)
1634{
1635 struct sit_entry_set *ses;
1636 unsigned int start_segno = START_SEGNO(segno);
1637
1638 list_for_each_entry(ses, head, set_list) {
1639 if (ses->start_segno == start_segno) {
1640 ses->entry_cnt++;
1641 adjust_sit_entry_set(ses, head);
1642 return;
1643 }
1644 }
1645
1646 ses = grab_sit_entry_set();
1647
1648 ses->start_segno = start_segno;
1649 ses->entry_cnt++;
1650 list_add(&ses->set_list, head);
1651}
1652
1653static void add_sits_in_set(struct f2fs_sb_info *sbi)
1654{
1655 struct f2fs_sm_info *sm_info = SM_I(sbi);
1656 struct list_head *set_list = &sm_info->sit_entry_set;
1657 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
184a5cd2
CY
1658 unsigned int segno;
1659
7cd8558b 1660 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
184a5cd2
CY
1661 add_sit_entry(segno, set_list);
1662}
1663
1664static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
351df4b2
JK
1665{
1666 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1667 struct f2fs_summary_block *sum = curseg->sum_blk;
1668 int i;
1669
184a5cd2
CY
1670 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1671 unsigned int segno;
1672 bool dirtied;
1673
1674 segno = le32_to_cpu(segno_in_journal(sum, i));
1675 dirtied = __mark_sit_entry_dirty(sbi, segno);
1676
1677 if (!dirtied)
1678 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
351df4b2 1679 }
184a5cd2 1680 update_sits_in_cursum(sum, -sits_in_cursum(sum));
351df4b2
JK
1681}
1682
0a8165d7 1683/*
351df4b2
JK
1684 * CP calls this function, which flushes SIT entries including sit_journal,
1685 * and moves prefree segs to free segs.
1686 */
4b2fecc8 1687void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
351df4b2
JK
1688{
1689 struct sit_info *sit_i = SIT_I(sbi);
1690 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1691 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1692 struct f2fs_summary_block *sum = curseg->sum_blk;
184a5cd2
CY
1693 struct sit_entry_set *ses, *tmp;
1694 struct list_head *head = &SM_I(sbi)->sit_entry_set;
184a5cd2 1695 bool to_journal = true;
4b2fecc8 1696 struct seg_entry *se;
351df4b2
JK
1697
1698 mutex_lock(&curseg->curseg_mutex);
1699 mutex_lock(&sit_i->sentry_lock);
1700
1701 /*
184a5cd2
CY
1702 * add and account sit entries of dirty bitmap in sit entry
1703 * set temporarily
351df4b2 1704 */
184a5cd2 1705 add_sits_in_set(sbi);
351df4b2 1706
184a5cd2
CY
1707 /*
1708 * if there are no enough space in journal to store dirty sit
1709 * entries, remove all entries from journal and add and account
1710 * them in sit entry set.
1711 */
1712 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1713 remove_sits_in_journal(sbi);
b2955550 1714
184a5cd2
CY
1715 if (!sit_i->dirty_sentries)
1716 goto out;
351df4b2 1717
184a5cd2
CY
1718 /*
1719 * there are two steps to flush sit entries:
1720 * #1, flush sit entries to journal in current cold data summary block.
1721 * #2, flush sit entries to sit page.
1722 */
1723 list_for_each_entry_safe(ses, tmp, head, set_list) {
4a257ed6 1724 struct page *page = NULL;
184a5cd2
CY
1725 struct f2fs_sit_block *raw_sit = NULL;
1726 unsigned int start_segno = ses->start_segno;
1727 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
7cd8558b 1728 (unsigned long)MAIN_SEGS(sbi));
184a5cd2
CY
1729 unsigned int segno = start_segno;
1730
1731 if (to_journal &&
1732 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1733 to_journal = false;
1734
1735 if (!to_journal) {
1736 page = get_next_sit_page(sbi, start_segno);
1737 raw_sit = page_address(page);
351df4b2 1738 }
351df4b2 1739
184a5cd2
CY
1740 /* flush dirty sit entries in region of current sit set */
1741 for_each_set_bit_from(segno, bitmap, end) {
1742 int offset, sit_offset;
4b2fecc8
JK
1743
1744 se = get_seg_entry(sbi, segno);
184a5cd2
CY
1745
1746 /* add discard candidates */
d7bc2484 1747 if (cpc->reason != CP_DISCARD) {
4b2fecc8
JK
1748 cpc->trim_start = segno;
1749 add_discard_addrs(sbi, cpc);
1750 }
184a5cd2
CY
1751
1752 if (to_journal) {
1753 offset = lookup_journal_in_cursum(sum,
1754 SIT_JOURNAL, segno, 1);
1755 f2fs_bug_on(sbi, offset < 0);
1756 segno_in_journal(sum, offset) =
1757 cpu_to_le32(segno);
1758 seg_info_to_raw_sit(se,
1759 &sit_in_journal(sum, offset));
1760 } else {
1761 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1762 seg_info_to_raw_sit(se,
1763 &raw_sit->entries[sit_offset]);
1764 }
351df4b2 1765
184a5cd2
CY
1766 __clear_bit(segno, bitmap);
1767 sit_i->dirty_sentries--;
1768 ses->entry_cnt--;
351df4b2
JK
1769 }
1770
184a5cd2
CY
1771 if (!to_journal)
1772 f2fs_put_page(page, 1);
1773
1774 f2fs_bug_on(sbi, ses->entry_cnt);
1775 release_sit_entry_set(ses);
351df4b2 1776 }
184a5cd2
CY
1777
1778 f2fs_bug_on(sbi, !list_empty(head));
1779 f2fs_bug_on(sbi, sit_i->dirty_sentries);
184a5cd2 1780out:
4b2fecc8
JK
1781 if (cpc->reason == CP_DISCARD) {
1782 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1783 add_discard_addrs(sbi, cpc);
1784 }
351df4b2
JK
1785 mutex_unlock(&sit_i->sentry_lock);
1786 mutex_unlock(&curseg->curseg_mutex);
1787
351df4b2
JK
1788 set_prefree_as_free_segments(sbi);
1789}
1790
1791static int build_sit_info(struct f2fs_sb_info *sbi)
1792{
1793 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1794 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1795 struct sit_info *sit_i;
1796 unsigned int sit_segs, start;
1797 char *src_bitmap, *dst_bitmap;
1798 unsigned int bitmap_size;
1799
1800 /* allocate memory for SIT information */
1801 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1802 if (!sit_i)
1803 return -ENOMEM;
1804
1805 SM_I(sbi)->sit_info = sit_i;
1806
7cd8558b 1807 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
351df4b2
JK
1808 if (!sit_i->sentries)
1809 return -ENOMEM;
1810
7cd8558b 1811 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
1812 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1813 if (!sit_i->dirty_sentries_bitmap)
1814 return -ENOMEM;
1815
7cd8558b 1816 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
1817 sit_i->sentries[start].cur_valid_map
1818 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1819 sit_i->sentries[start].ckpt_valid_map
1820 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1821 if (!sit_i->sentries[start].cur_valid_map
1822 || !sit_i->sentries[start].ckpt_valid_map)
1823 return -ENOMEM;
1824 }
1825
1826 if (sbi->segs_per_sec > 1) {
7cd8558b 1827 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
351df4b2
JK
1828 sizeof(struct sec_entry));
1829 if (!sit_i->sec_entries)
1830 return -ENOMEM;
1831 }
1832
1833 /* get information related with SIT */
1834 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1835
1836 /* setup SIT bitmap from ckeckpoint pack */
1837 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1838 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1839
79b5793b 1840 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
351df4b2
JK
1841 if (!dst_bitmap)
1842 return -ENOMEM;
351df4b2
JK
1843
1844 /* init SIT information */
1845 sit_i->s_ops = &default_salloc_ops;
1846
1847 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1848 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1849 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1850 sit_i->sit_bitmap = dst_bitmap;
1851 sit_i->bitmap_size = bitmap_size;
1852 sit_i->dirty_sentries = 0;
1853 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1854 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1855 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1856 mutex_init(&sit_i->sentry_lock);
1857 return 0;
1858}
1859
1860static int build_free_segmap(struct f2fs_sb_info *sbi)
1861{
351df4b2
JK
1862 struct free_segmap_info *free_i;
1863 unsigned int bitmap_size, sec_bitmap_size;
1864
1865 /* allocate memory for free segmap information */
1866 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1867 if (!free_i)
1868 return -ENOMEM;
1869
1870 SM_I(sbi)->free_info = free_i;
1871
7cd8558b 1872 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
1873 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1874 if (!free_i->free_segmap)
1875 return -ENOMEM;
1876
7cd8558b 1877 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
351df4b2
JK
1878 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1879 if (!free_i->free_secmap)
1880 return -ENOMEM;
1881
1882 /* set all segments as dirty temporarily */
1883 memset(free_i->free_segmap, 0xff, bitmap_size);
1884 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1885
1886 /* init free segmap information */
7cd8558b 1887 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
351df4b2
JK
1888 free_i->free_segments = 0;
1889 free_i->free_sections = 0;
1890 rwlock_init(&free_i->segmap_lock);
1891 return 0;
1892}
1893
1894static int build_curseg(struct f2fs_sb_info *sbi)
1895{
1042d60f 1896 struct curseg_info *array;
351df4b2
JK
1897 int i;
1898
b434babf 1899 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
351df4b2
JK
1900 if (!array)
1901 return -ENOMEM;
1902
1903 SM_I(sbi)->curseg_array = array;
1904
1905 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1906 mutex_init(&array[i].curseg_mutex);
1907 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1908 if (!array[i].sum_blk)
1909 return -ENOMEM;
1910 array[i].segno = NULL_SEGNO;
1911 array[i].next_blkoff = 0;
1912 }
1913 return restore_curseg_summaries(sbi);
1914}
1915
1916static void build_sit_entries(struct f2fs_sb_info *sbi)
1917{
1918 struct sit_info *sit_i = SIT_I(sbi);
1919 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1920 struct f2fs_summary_block *sum = curseg->sum_blk;
74de593a
CY
1921 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1922 unsigned int i, start, end;
1923 unsigned int readed, start_blk = 0;
90a893c7 1924 int nrpages = MAX_BIO_BLOCKS(sbi);
351df4b2 1925
74de593a 1926 do {
662befda 1927 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
74de593a
CY
1928
1929 start = start_blk * sit_i->sents_per_block;
1930 end = (start_blk + readed) * sit_i->sents_per_block;
1931
7cd8558b 1932 for (; start < end && start < MAIN_SEGS(sbi); start++) {
74de593a
CY
1933 struct seg_entry *se = &sit_i->sentries[start];
1934 struct f2fs_sit_block *sit_blk;
1935 struct f2fs_sit_entry sit;
1936 struct page *page;
1937
1938 mutex_lock(&curseg->curseg_mutex);
1939 for (i = 0; i < sits_in_cursum(sum); i++) {
6c311ec6
CF
1940 if (le32_to_cpu(segno_in_journal(sum, i))
1941 == start) {
74de593a
CY
1942 sit = sit_in_journal(sum, i);
1943 mutex_unlock(&curseg->curseg_mutex);
1944 goto got_it;
1945 }
351df4b2 1946 }
74de593a
CY
1947 mutex_unlock(&curseg->curseg_mutex);
1948
1949 page = get_current_sit_page(sbi, start);
1950 sit_blk = (struct f2fs_sit_block *)page_address(page);
1951 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1952 f2fs_put_page(page, 1);
351df4b2 1953got_it:
74de593a
CY
1954 check_block_count(sbi, start, &sit);
1955 seg_info_from_raw_sit(se, &sit);
1956 if (sbi->segs_per_sec > 1) {
1957 struct sec_entry *e = get_sec_entry(sbi, start);
1958 e->valid_blocks += se->valid_blocks;
1959 }
351df4b2 1960 }
74de593a
CY
1961 start_blk += readed;
1962 } while (start_blk < sit_blk_cnt);
351df4b2
JK
1963}
1964
1965static void init_free_segmap(struct f2fs_sb_info *sbi)
1966{
1967 unsigned int start;
1968 int type;
1969
7cd8558b 1970 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
1971 struct seg_entry *sentry = get_seg_entry(sbi, start);
1972 if (!sentry->valid_blocks)
1973 __set_free(sbi, start);
1974 }
1975
1976 /* set use the current segments */
1977 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1978 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1979 __set_test_and_inuse(sbi, curseg_t->segno);
1980 }
1981}
1982
1983static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1984{
1985 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1986 struct free_segmap_info *free_i = FREE_I(sbi);
7cd8558b 1987 unsigned int segno = 0, offset = 0;
351df4b2
JK
1988 unsigned short valid_blocks;
1989
8736fbf0 1990 while (1) {
351df4b2 1991 /* find dirty segment based on free segmap */
7cd8558b
JK
1992 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
1993 if (segno >= MAIN_SEGS(sbi))
351df4b2
JK
1994 break;
1995 offset = segno + 1;
1996 valid_blocks = get_valid_blocks(sbi, segno, 0);
ec325b52 1997 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
351df4b2 1998 continue;
ec325b52
JK
1999 if (valid_blocks > sbi->blocks_per_seg) {
2000 f2fs_bug_on(sbi, 1);
2001 continue;
2002 }
351df4b2
JK
2003 mutex_lock(&dirty_i->seglist_lock);
2004 __locate_dirty_segment(sbi, segno, DIRTY);
2005 mutex_unlock(&dirty_i->seglist_lock);
2006 }
2007}
2008
5ec4e49f 2009static int init_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
2010{
2011 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
7cd8558b 2012 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
351df4b2 2013
5ec4e49f
JK
2014 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2015 if (!dirty_i->victim_secmap)
351df4b2
JK
2016 return -ENOMEM;
2017 return 0;
2018}
2019
2020static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2021{
2022 struct dirty_seglist_info *dirty_i;
2023 unsigned int bitmap_size, i;
2024
2025 /* allocate memory for dirty segments list information */
2026 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2027 if (!dirty_i)
2028 return -ENOMEM;
2029
2030 SM_I(sbi)->dirty_info = dirty_i;
2031 mutex_init(&dirty_i->seglist_lock);
2032
7cd8558b 2033 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
351df4b2
JK
2034
2035 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2036 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
351df4b2
JK
2037 if (!dirty_i->dirty_segmap[i])
2038 return -ENOMEM;
2039 }
2040
2041 init_dirty_segmap(sbi);
5ec4e49f 2042 return init_victim_secmap(sbi);
351df4b2
JK
2043}
2044
0a8165d7 2045/*
351df4b2
JK
2046 * Update min, max modified time for cost-benefit GC algorithm
2047 */
2048static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2049{
2050 struct sit_info *sit_i = SIT_I(sbi);
2051 unsigned int segno;
2052
2053 mutex_lock(&sit_i->sentry_lock);
2054
2055 sit_i->min_mtime = LLONG_MAX;
2056
7cd8558b 2057 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
351df4b2
JK
2058 unsigned int i;
2059 unsigned long long mtime = 0;
2060
2061 for (i = 0; i < sbi->segs_per_sec; i++)
2062 mtime += get_seg_entry(sbi, segno + i)->mtime;
2063
2064 mtime = div_u64(mtime, sbi->segs_per_sec);
2065
2066 if (sit_i->min_mtime > mtime)
2067 sit_i->min_mtime = mtime;
2068 }
2069 sit_i->max_mtime = get_mtime(sbi);
2070 mutex_unlock(&sit_i->sentry_lock);
2071}
2072
2073int build_segment_manager(struct f2fs_sb_info *sbi)
2074{
2075 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2076 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1042d60f 2077 struct f2fs_sm_info *sm_info;
351df4b2
JK
2078 int err;
2079
2080 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2081 if (!sm_info)
2082 return -ENOMEM;
2083
2084 /* init sm info */
2085 sbi->sm_info = sm_info;
351df4b2
JK
2086 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2087 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2088 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2089 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2090 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2091 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2092 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
58c41035
JK
2093 sm_info->rec_prefree_segments = sm_info->main_segments *
2094 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
9b5f136f 2095 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
216fbd64 2096 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
c1ce1b02 2097 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
351df4b2 2098
7fd9e544
JK
2099 INIT_LIST_HEAD(&sm_info->discard_list);
2100 sm_info->nr_discards = 0;
2101 sm_info->max_discards = 0;
2102
184a5cd2
CY
2103 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2104
b270ad6f 2105 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2163d198
GZ
2106 err = create_flush_cmd_control(sbi);
2107 if (err)
a688b9d9 2108 return err;
6b4afdd7
JK
2109 }
2110
351df4b2
JK
2111 err = build_sit_info(sbi);
2112 if (err)
2113 return err;
2114 err = build_free_segmap(sbi);
2115 if (err)
2116 return err;
2117 err = build_curseg(sbi);
2118 if (err)
2119 return err;
2120
2121 /* reinit free segmap based on SIT */
2122 build_sit_entries(sbi);
2123
2124 init_free_segmap(sbi);
2125 err = build_dirty_segmap(sbi);
2126 if (err)
2127 return err;
2128
2129 init_min_max_mtime(sbi);
2130 return 0;
2131}
2132
2133static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2134 enum dirty_type dirty_type)
2135{
2136 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2137
2138 mutex_lock(&dirty_i->seglist_lock);
2139 kfree(dirty_i->dirty_segmap[dirty_type]);
2140 dirty_i->nr_dirty[dirty_type] = 0;
2141 mutex_unlock(&dirty_i->seglist_lock);
2142}
2143
5ec4e49f 2144static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
2145{
2146 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5ec4e49f 2147 kfree(dirty_i->victim_secmap);
351df4b2
JK
2148}
2149
2150static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2151{
2152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2153 int i;
2154
2155 if (!dirty_i)
2156 return;
2157
2158 /* discard pre-free/dirty segments list */
2159 for (i = 0; i < NR_DIRTY_TYPE; i++)
2160 discard_dirty_segmap(sbi, i);
2161
5ec4e49f 2162 destroy_victim_secmap(sbi);
351df4b2
JK
2163 SM_I(sbi)->dirty_info = NULL;
2164 kfree(dirty_i);
2165}
2166
2167static void destroy_curseg(struct f2fs_sb_info *sbi)
2168{
2169 struct curseg_info *array = SM_I(sbi)->curseg_array;
2170 int i;
2171
2172 if (!array)
2173 return;
2174 SM_I(sbi)->curseg_array = NULL;
2175 for (i = 0; i < NR_CURSEG_TYPE; i++)
2176 kfree(array[i].sum_blk);
2177 kfree(array);
2178}
2179
2180static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2181{
2182 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2183 if (!free_i)
2184 return;
2185 SM_I(sbi)->free_info = NULL;
2186 kfree(free_i->free_segmap);
2187 kfree(free_i->free_secmap);
2188 kfree(free_i);
2189}
2190
2191static void destroy_sit_info(struct f2fs_sb_info *sbi)
2192{
2193 struct sit_info *sit_i = SIT_I(sbi);
2194 unsigned int start;
2195
2196 if (!sit_i)
2197 return;
2198
2199 if (sit_i->sentries) {
7cd8558b 2200 for (start = 0; start < MAIN_SEGS(sbi); start++) {
351df4b2
JK
2201 kfree(sit_i->sentries[start].cur_valid_map);
2202 kfree(sit_i->sentries[start].ckpt_valid_map);
2203 }
2204 }
2205 vfree(sit_i->sentries);
2206 vfree(sit_i->sec_entries);
2207 kfree(sit_i->dirty_sentries_bitmap);
2208
2209 SM_I(sbi)->sit_info = NULL;
2210 kfree(sit_i->sit_bitmap);
2211 kfree(sit_i);
2212}
2213
2214void destroy_segment_manager(struct f2fs_sb_info *sbi)
2215{
2216 struct f2fs_sm_info *sm_info = SM_I(sbi);
a688b9d9 2217
3b03f724
CY
2218 if (!sm_info)
2219 return;
2163d198 2220 destroy_flush_cmd_control(sbi);
351df4b2
JK
2221 destroy_dirty_segmap(sbi);
2222 destroy_curseg(sbi);
2223 destroy_free_segmap(sbi);
2224 destroy_sit_info(sbi);
2225 sbi->sm_info = NULL;
2226 kfree(sm_info);
2227}
7fd9e544
JK
2228
2229int __init create_segment_manager_caches(void)
2230{
2231 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
e8512d2e 2232 sizeof(struct discard_entry));
7fd9e544 2233 if (!discard_entry_slab)
184a5cd2
CY
2234 goto fail;
2235
2236 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
c9ee0085 2237 sizeof(struct sit_entry_set));
184a5cd2
CY
2238 if (!sit_entry_set_slab)
2239 goto destory_discard_entry;
88b88a66
JK
2240
2241 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2242 sizeof(struct inmem_pages));
2243 if (!inmem_entry_slab)
2244 goto destroy_sit_entry_set;
7fd9e544 2245 return 0;
184a5cd2 2246
88b88a66
JK
2247destroy_sit_entry_set:
2248 kmem_cache_destroy(sit_entry_set_slab);
184a5cd2
CY
2249destory_discard_entry:
2250 kmem_cache_destroy(discard_entry_slab);
2251fail:
2252 return -ENOMEM;
7fd9e544
JK
2253}
2254
2255void destroy_segment_manager_caches(void)
2256{
184a5cd2 2257 kmem_cache_destroy(sit_entry_set_slab);
7fd9e544 2258 kmem_cache_destroy(discard_entry_slab);
88b88a66 2259 kmem_cache_destroy(inmem_entry_slab);
7fd9e544 2260}