]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/f2fs/segment.h
f2fs: adjust kernel coding style
[mirror_ubuntu-jammy-kernel.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* constant macro */
12#define NULL_SEGNO ((unsigned int)(~0))
13
14/* V: Logical segment # in volume, R: Relative segment # in main area */
15#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
16#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
17
18#define IS_DATASEG(t) \
19 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \
20 (t == CURSEG_WARM_DATA))
21
22#define IS_NODESEG(t) \
23 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \
24 (t == CURSEG_WARM_NODE))
25
26#define IS_CURSEG(sbi, segno) \
27 ((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34#define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48#define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51#define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60#define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64#define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69#define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
71
72#define GET_SUM_TYPE(footer) ((footer)->entry_type)
73#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75#define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77#define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79#define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81#define f2fs_bitmap_size(nr) \
82 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
83#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
84
85/* during checkpoint, bio_private is used to synchronize the last bio */
86struct bio_private {
87 struct f2fs_sb_info *sbi;
88 bool is_sync;
89 void *wait;
90};
91
92/*
93 * indicate a block allocation direction: RIGHT and LEFT.
94 * RIGHT means allocating new sections towards the end of volume.
95 * LEFT means the opposite direction.
96 */
97enum {
98 ALLOC_RIGHT = 0,
99 ALLOC_LEFT
100};
101
102/*
103 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
104 * LFS writes data sequentially with cleaning operations.
105 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
106 */
107enum {
108 LFS = 0,
109 SSR
110};
111
112/*
113 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
114 * GC_CB is based on cost-benefit algorithm.
115 * GC_GREEDY is based on greedy algorithm.
116 */
117enum {
118 GC_CB = 0,
119 GC_GREEDY
120};
121
122/*
123 * BG_GC means the background cleaning job.
124 * FG_GC means the on-demand cleaning job.
125 */
126enum {
127 BG_GC = 0,
128 FG_GC
129};
130
131/* for a function parameter to select a victim segment */
132struct victim_sel_policy {
133 int alloc_mode; /* LFS or SSR */
134 int gc_mode; /* GC_CB or GC_GREEDY */
135 unsigned long *dirty_segmap; /* dirty segment bitmap */
136 unsigned int offset; /* last scanned bitmap offset */
137 unsigned int ofs_unit; /* bitmap search unit */
138 unsigned int min_cost; /* minimum cost */
139 unsigned int min_segno; /* segment # having min. cost */
140};
141
142struct seg_entry {
143 unsigned short valid_blocks; /* # of valid blocks */
144 unsigned char *cur_valid_map; /* validity bitmap of blocks */
145 /*
146 * # of valid blocks and the validity bitmap stored in the the last
147 * checkpoint pack. This information is used by the SSR mode.
148 */
149 unsigned short ckpt_valid_blocks;
150 unsigned char *ckpt_valid_map;
151 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
152 unsigned long long mtime; /* modification time of the segment */
153};
154
155struct sec_entry {
156 unsigned int valid_blocks; /* # of valid blocks in a section */
157};
158
159struct segment_allocation {
160 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
161};
162
163struct sit_info {
164 const struct segment_allocation *s_ops;
165
166 block_t sit_base_addr; /* start block address of SIT area */
167 block_t sit_blocks; /* # of blocks used by SIT area */
168 block_t written_valid_blocks; /* # of valid blocks in main area */
169 char *sit_bitmap; /* SIT bitmap pointer */
170 unsigned int bitmap_size; /* SIT bitmap size */
171
172 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
173 unsigned int dirty_sentries; /* # of dirty sentries */
174 unsigned int sents_per_block; /* # of SIT entries per block */
175 struct mutex sentry_lock; /* to protect SIT cache */
176 struct seg_entry *sentries; /* SIT segment-level cache */
177 struct sec_entry *sec_entries; /* SIT section-level cache */
178
179 /* for cost-benefit algorithm in cleaning procedure */
180 unsigned long long elapsed_time; /* elapsed time after mount */
181 unsigned long long mounted_time; /* mount time */
182 unsigned long long min_mtime; /* min. modification time */
183 unsigned long long max_mtime; /* max. modification time */
184};
185
186struct free_segmap_info {
187 unsigned int start_segno; /* start segment number logically */
188 unsigned int free_segments; /* # of free segments */
189 unsigned int free_sections; /* # of free sections */
190 rwlock_t segmap_lock; /* free segmap lock */
191 unsigned long *free_segmap; /* free segment bitmap */
192 unsigned long *free_secmap; /* free section bitmap */
193};
194
195/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
196enum dirty_type {
197 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
198 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
199 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
200 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
201 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
202 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
203 DIRTY, /* to count # of dirty segments */
204 PRE, /* to count # of entirely obsolete segments */
205 NR_DIRTY_TYPE
206};
207
208struct dirty_seglist_info {
209 const struct victim_selection *v_ops; /* victim selction operation */
210 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
211 struct mutex seglist_lock; /* lock for segment bitmaps */
212 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
213 unsigned long *victim_segmap[2]; /* BG_GC, FG_GC */
214};
215
216/* victim selection function for cleaning and SSR */
217struct victim_selection {
218 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
219 int, int, char);
220};
221
222/* for active log information */
223struct curseg_info {
224 struct mutex curseg_mutex; /* lock for consistency */
225 struct f2fs_summary_block *sum_blk; /* cached summary block */
226 unsigned char alloc_type; /* current allocation type */
227 unsigned int segno; /* current segment number */
228 unsigned short next_blkoff; /* next block offset to write */
229 unsigned int zone; /* current zone number */
230 unsigned int next_segno; /* preallocated segment */
231};
232
233/*
234 * inline functions
235 */
236static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
237{
238 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
239}
240
241static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
242 unsigned int segno)
243{
244 struct sit_info *sit_i = SIT_I(sbi);
245 return &sit_i->sentries[segno];
246}
247
248static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
249 unsigned int segno)
250{
251 struct sit_info *sit_i = SIT_I(sbi);
252 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
253}
254
255static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
256 unsigned int segno, int section)
257{
258 /*
259 * In order to get # of valid blocks in a section instantly from many
260 * segments, f2fs manages two counting structures separately.
261 */
262 if (section > 1)
263 return get_sec_entry(sbi, segno)->valid_blocks;
264 else
265 return get_seg_entry(sbi, segno)->valid_blocks;
266}
267
268static inline void seg_info_from_raw_sit(struct seg_entry *se,
269 struct f2fs_sit_entry *rs)
270{
271 se->valid_blocks = GET_SIT_VBLOCKS(rs);
272 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
273 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
274 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
275 se->type = GET_SIT_TYPE(rs);
276 se->mtime = le64_to_cpu(rs->mtime);
277}
278
279static inline void seg_info_to_raw_sit(struct seg_entry *se,
280 struct f2fs_sit_entry *rs)
281{
282 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
283 se->valid_blocks;
284 rs->vblocks = cpu_to_le16(raw_vblocks);
285 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
286 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
287 se->ckpt_valid_blocks = se->valid_blocks;
288 rs->mtime = cpu_to_le64(se->mtime);
289}
290
291static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
292 unsigned int max, unsigned int segno)
293{
294 unsigned int ret;
295 read_lock(&free_i->segmap_lock);
296 ret = find_next_bit(free_i->free_segmap, max, segno);
297 read_unlock(&free_i->segmap_lock);
298 return ret;
299}
300
301static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
302{
303 struct free_segmap_info *free_i = FREE_I(sbi);
304 unsigned int secno = segno / sbi->segs_per_sec;
305 unsigned int start_segno = secno * sbi->segs_per_sec;
306 unsigned int next;
307
308 write_lock(&free_i->segmap_lock);
309 clear_bit(segno, free_i->free_segmap);
310 free_i->free_segments++;
311
312 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
313 if (next >= start_segno + sbi->segs_per_sec) {
314 clear_bit(secno, free_i->free_secmap);
315 free_i->free_sections++;
316 }
317 write_unlock(&free_i->segmap_lock);
318}
319
320static inline void __set_inuse(struct f2fs_sb_info *sbi,
321 unsigned int segno)
322{
323 struct free_segmap_info *free_i = FREE_I(sbi);
324 unsigned int secno = segno / sbi->segs_per_sec;
325 set_bit(segno, free_i->free_segmap);
326 free_i->free_segments--;
327 if (!test_and_set_bit(secno, free_i->free_secmap))
328 free_i->free_sections--;
329}
330
331static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
332 unsigned int segno)
333{
334 struct free_segmap_info *free_i = FREE_I(sbi);
335 unsigned int secno = segno / sbi->segs_per_sec;
336 unsigned int start_segno = secno * sbi->segs_per_sec;
337 unsigned int next;
338
339 write_lock(&free_i->segmap_lock);
340 if (test_and_clear_bit(segno, free_i->free_segmap)) {
341 free_i->free_segments++;
342
343 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
344 start_segno);
345 if (next >= start_segno + sbi->segs_per_sec) {
346 if (test_and_clear_bit(secno, free_i->free_secmap))
347 free_i->free_sections++;
348 }
349 }
350 write_unlock(&free_i->segmap_lock);
351}
352
353static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
354 unsigned int segno)
355{
356 struct free_segmap_info *free_i = FREE_I(sbi);
357 unsigned int secno = segno / sbi->segs_per_sec;
358 write_lock(&free_i->segmap_lock);
359 if (!test_and_set_bit(segno, free_i->free_segmap)) {
360 free_i->free_segments--;
361 if (!test_and_set_bit(secno, free_i->free_secmap))
362 free_i->free_sections--;
363 }
364 write_unlock(&free_i->segmap_lock);
365}
366
367static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
368 void *dst_addr)
369{
370 struct sit_info *sit_i = SIT_I(sbi);
371 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
372}
373
374static inline block_t written_block_count(struct f2fs_sb_info *sbi)
375{
376 struct sit_info *sit_i = SIT_I(sbi);
377 block_t vblocks;
378
379 mutex_lock(&sit_i->sentry_lock);
380 vblocks = sit_i->written_valid_blocks;
381 mutex_unlock(&sit_i->sentry_lock);
382
383 return vblocks;
384}
385
386static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387{
388 struct free_segmap_info *free_i = FREE_I(sbi);
389 unsigned int free_segs;
390
391 read_lock(&free_i->segmap_lock);
392 free_segs = free_i->free_segments;
393 read_unlock(&free_i->segmap_lock);
394
395 return free_segs;
396}
397
398static inline int reserved_segments(struct f2fs_sb_info *sbi)
399{
400 return SM_I(sbi)->reserved_segments;
401}
402
403static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
404{
405 struct free_segmap_info *free_i = FREE_I(sbi);
406 unsigned int free_secs;
407
408 read_lock(&free_i->segmap_lock);
409 free_secs = free_i->free_sections;
410 read_unlock(&free_i->segmap_lock);
411
412 return free_secs;
413}
414
415static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
416{
417 return DIRTY_I(sbi)->nr_dirty[PRE];
418}
419
420static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
421{
422 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
423 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
424 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
425 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
426 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
427 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
428}
429
430static inline int overprovision_segments(struct f2fs_sb_info *sbi)
431{
432 return SM_I(sbi)->ovp_segments;
433}
434
435static inline int overprovision_sections(struct f2fs_sb_info *sbi)
436{
437 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
438}
439
440static inline int reserved_sections(struct f2fs_sb_info *sbi)
441{
442 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
443}
444
445static inline bool need_SSR(struct f2fs_sb_info *sbi)
446{
447 return (free_sections(sbi) < overprovision_sections(sbi));
448}
449
450static inline int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
451{
452 struct curseg_info *curseg = CURSEG_I(sbi, type);
453 return DIRTY_I(sbi)->v_ops->get_victim(sbi,
454 &(curseg)->next_segno, BG_GC, type, SSR);
455}
456
457static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi)
458{
459 return free_sections(sbi) <= reserved_sections(sbi);
460}
461
462static inline int utilization(struct f2fs_sb_info *sbi)
463{
464 return (long int)valid_user_blocks(sbi) * 100 /
465 (long int)sbi->user_block_count;
466}
467
468/*
469 * Sometimes f2fs may be better to drop out-of-place update policy.
470 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
471 * data in the original place likewise other traditional file systems.
472 * But, currently set 100 in percentage, which means it is disabled.
473 * See below need_inplace_update().
474 */
475#define MIN_IPU_UTIL 100
476static inline bool need_inplace_update(struct inode *inode)
477{
478 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
479 if (S_ISDIR(inode->i_mode))
480 return false;
481 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
482 return true;
483 return false;
484}
485
486static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
487 int type)
488{
489 struct curseg_info *curseg = CURSEG_I(sbi, type);
490 return curseg->segno;
491}
492
493static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
494 int type)
495{
496 struct curseg_info *curseg = CURSEG_I(sbi, type);
497 return curseg->alloc_type;
498}
499
500static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
501{
502 struct curseg_info *curseg = CURSEG_I(sbi, type);
503 return curseg->next_blkoff;
504}
505
506static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
507{
508 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
509 BUG_ON(segno > end_segno);
510}
511
512/*
513 * This function is used for only debugging.
514 * NOTE: In future, we have to remove this function.
515 */
516static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
517{
518 struct f2fs_sm_info *sm_info = SM_I(sbi);
519 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
520 block_t start_addr = sm_info->seg0_blkaddr;
521 block_t end_addr = start_addr + total_blks - 1;
522 BUG_ON(blk_addr < start_addr);
523 BUG_ON(blk_addr > end_addr);
524}
525
526/*
527 * Summary block is always treated as invalid block
528 */
529static inline void check_block_count(struct f2fs_sb_info *sbi,
530 int segno, struct f2fs_sit_entry *raw_sit)
531{
532 struct f2fs_sm_info *sm_info = SM_I(sbi);
533 unsigned int end_segno = sm_info->segment_count - 1;
534 int valid_blocks = 0;
535 int i;
536
537 /* check segment usage */
538 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
539
540 /* check boundary of a given segment number */
541 BUG_ON(segno > end_segno);
542
543 /* check bitmap with valid block count */
544 for (i = 0; i < sbi->blocks_per_seg; i++)
545 if (f2fs_test_bit(i, raw_sit->valid_map))
546 valid_blocks++;
547 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
548}
549
550static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
551 unsigned int start)
552{
553 struct sit_info *sit_i = SIT_I(sbi);
554 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
555 block_t blk_addr = sit_i->sit_base_addr + offset;
556
557 check_seg_range(sbi, start);
558
559 /* calculate sit block address */
560 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
561 blk_addr += sit_i->sit_blocks;
562
563 return blk_addr;
564}
565
566static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
567 pgoff_t block_addr)
568{
569 struct sit_info *sit_i = SIT_I(sbi);
570 block_addr -= sit_i->sit_base_addr;
571 if (block_addr < sit_i->sit_blocks)
572 block_addr += sit_i->sit_blocks;
573 else
574 block_addr -= sit_i->sit_blocks;
575
576 return block_addr + sit_i->sit_base_addr;
577}
578
579static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
580{
581 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
582
583 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
584 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
585 else
586 f2fs_set_bit(block_off, sit_i->sit_bitmap);
587}
588
589static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
590{
591 struct sit_info *sit_i = SIT_I(sbi);
592 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
593 sit_i->mounted_time;
594}
595
596static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
597 unsigned int ofs_in_node, unsigned char version)
598{
599 sum->nid = cpu_to_le32(nid);
600 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
601 sum->version = version;
602}
603
604static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
605{
606 return __start_cp_addr(sbi) +
607 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
608}
609
610static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
611{
612 return __start_cp_addr(sbi) +
613 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
614 - (base + 1) + type;
615}