]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/fs-writeback.c
btrfs: don't print information about space cache or tree every remount
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
c4a77a6c
JA
39/*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
83ba7b07 42struct wb_writeback_work {
c4a77a6c
JA
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
6e6938b6 46 unsigned int tagged_writepages:1;
52957fe1
HS
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
7747bd4b 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 51 unsigned int auto_free:1; /* free on completion */
0e175a18 52 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 53
8010c3b6 54 struct list_head list; /* pending work list */
cc395d7f 55 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
56};
57
a2f48706
TT
58/*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
7ccf19a8
NP
70static inline struct inode *wb_inode(struct list_head *head)
71{
c7f54084 72 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
73}
74
15eb77a0
WF
75/*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80#define CREATE_TRACE_POINTS
81#include <trace/events/writeback.h>
82
774016b2
SW
83EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
d6c10f1f
TH
85static bool wb_io_lists_populated(struct bdi_writeback *wb)
86{
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
94 return true;
95 }
96}
97
98static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99{
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 102 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 105 }
d6c10f1f
TH
106}
107
108/**
c7f54084 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
bbbc3c1c 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 113 *
c7f54084 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
c7f54084 118static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
119 struct bdi_writeback *wb,
120 struct list_head *head)
121{
122 assert_spin_locked(&wb->list_lock);
201851f1 123 assert_spin_locked(&inode->i_lock);
d6c10f1f 124
c7f54084 125 list_move(&inode->i_io_list, head);
d6c10f1f
TH
126
127 /* dirty_time doesn't count as dirty_io until expiration */
128 if (head != &wb->b_dirty_time)
129 return wb_io_lists_populated(wb);
130
131 wb_io_lists_depopulated(wb);
132 return false;
133}
134
f0054bb1 135static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 136{
e26081c7 137 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
138 if (test_bit(WB_registered, &wb->state))
139 mod_delayed_work(bdi_wq, &wb->dwork, 0);
e26081c7 140 spin_unlock_irq(&wb->work_lock);
5acda9d1
JK
141}
142
4a3a485b
TE
143static void finish_writeback_work(struct bdi_writeback *wb,
144 struct wb_writeback_work *work)
145{
146 struct wb_completion *done = work->done;
147
148 if (work->auto_free)
149 kfree(work);
8e00c4e9
TH
150 if (done) {
151 wait_queue_head_t *waitq = done->waitq;
152
153 /* @done can't be accessed after the following dec */
154 if (atomic_dec_and_test(&done->cnt))
155 wake_up_all(waitq);
156 }
4a3a485b
TE
157}
158
f0054bb1
TH
159static void wb_queue_work(struct bdi_writeback *wb,
160 struct wb_writeback_work *work)
6585027a 161{
5634cc2a 162 trace_writeback_queue(wb, work);
6585027a 163
cc395d7f
TH
164 if (work->done)
165 atomic_inc(&work->done->cnt);
4a3a485b 166
e26081c7 167 spin_lock_irq(&wb->work_lock);
4a3a485b
TE
168
169 if (test_bit(WB_registered, &wb->state)) {
170 list_add_tail(&work->list, &wb->work_list);
171 mod_delayed_work(bdi_wq, &wb->dwork, 0);
172 } else
173 finish_writeback_work(wb, work);
174
e26081c7 175 spin_unlock_irq(&wb->work_lock);
1da177e4
LT
176}
177
cc395d7f
TH
178/**
179 * wb_wait_for_completion - wait for completion of bdi_writeback_works
cc395d7f
TH
180 * @done: target wb_completion
181 *
182 * Wait for one or more work items issued to @bdi with their ->done field
5b9cce4c
TH
183 * set to @done, which should have been initialized with
184 * DEFINE_WB_COMPLETION(). This function returns after all such work items
185 * are completed. Work items which are waited upon aren't freed
cc395d7f
TH
186 * automatically on completion.
187 */
5b9cce4c 188void wb_wait_for_completion(struct wb_completion *done)
cc395d7f
TH
189{
190 atomic_dec(&done->cnt); /* put down the initial count */
5b9cce4c 191 wait_event(*done->waitq, !atomic_read(&done->cnt));
cc395d7f
TH
192}
193
703c2708
TH
194#ifdef CONFIG_CGROUP_WRITEBACK
195
55a694df
TH
196/*
197 * Parameters for foreign inode detection, see wbc_detach_inode() to see
198 * how they're used.
199 *
200 * These paramters are inherently heuristical as the detection target
201 * itself is fuzzy. All we want to do is detaching an inode from the
202 * current owner if it's being written to by some other cgroups too much.
203 *
204 * The current cgroup writeback is built on the assumption that multiple
205 * cgroups writing to the same inode concurrently is very rare and a mode
206 * of operation which isn't well supported. As such, the goal is not
207 * taking too long when a different cgroup takes over an inode while
208 * avoiding too aggressive flip-flops from occasional foreign writes.
209 *
210 * We record, very roughly, 2s worth of IO time history and if more than
211 * half of that is foreign, trigger the switch. The recording is quantized
212 * to 16 slots. To avoid tiny writes from swinging the decision too much,
213 * writes smaller than 1/8 of avg size are ignored.
214 */
2a814908
TH
215#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
216#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
55a694df 217#define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
2a814908
TH
218#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
219
220#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
221#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
222 /* each slot's duration is 2s / 16 */
223#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
224 /* if foreign slots >= 8, switch */
225#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
226 /* one round can affect upto 5 slots */
6444f47e 227#define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
2a814908 228
c22d70a1
RG
229/*
230 * Maximum inodes per isw. A specific value has been chosen to make
231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
232 */
233#define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
234 / sizeof(struct inode *))
235
a1a0e23e
TH
236static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
237static struct workqueue_struct *isw_wq;
238
21c6321f
TH
239void __inode_attach_wb(struct inode *inode, struct page *page)
240{
241 struct backing_dev_info *bdi = inode_to_bdi(inode);
242 struct bdi_writeback *wb = NULL;
243
244 if (inode_cgwb_enabled(inode)) {
245 struct cgroup_subsys_state *memcg_css;
246
247 if (page) {
248 memcg_css = mem_cgroup_css_from_page(page);
249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
250 } else {
251 /* must pin memcg_css, see wb_get_create() */
252 memcg_css = task_get_css(current, memory_cgrp_id);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 css_put(memcg_css);
255 }
256 }
257
258 if (!wb)
259 wb = &bdi->wb;
260
261 /*
262 * There may be multiple instances of this function racing to
263 * update the same inode. Use cmpxchg() to tell the winner.
264 */
265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
266 wb_put(wb);
267}
9b0eb69b 268EXPORT_SYMBOL_GPL(__inode_attach_wb);
21c6321f 269
f3b6a6df
RG
270/**
271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
272 * @inode: inode of interest with i_lock held
273 * @wb: target bdi_writeback
274 *
275 * Remove the inode from wb's io lists and if necessarily put onto b_attached
276 * list. Only inodes attached to cgwb's are kept on this list.
277 */
278static void inode_cgwb_move_to_attached(struct inode *inode,
279 struct bdi_writeback *wb)
280{
281 assert_spin_locked(&wb->list_lock);
282 assert_spin_locked(&inode->i_lock);
283
284 inode->i_state &= ~I_SYNC_QUEUED;
285 if (wb != &wb->bdi->wb)
286 list_move(&inode->i_io_list, &wb->b_attached);
287 else
288 list_del_init(&inode->i_io_list);
289 wb_io_lists_depopulated(wb);
290}
291
87e1d789
TH
292/**
293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
294 * @inode: inode of interest with i_lock held
295 *
296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
297 * held on entry and is released on return. The returned wb is guaranteed
298 * to stay @inode's associated wb until its list_lock is released.
299 */
300static struct bdi_writeback *
301locked_inode_to_wb_and_lock_list(struct inode *inode)
302 __releases(&inode->i_lock)
303 __acquires(&wb->list_lock)
304{
305 while (true) {
306 struct bdi_writeback *wb = inode_to_wb(inode);
307
308 /*
309 * inode_to_wb() association is protected by both
310 * @inode->i_lock and @wb->list_lock but list_lock nests
311 * outside i_lock. Drop i_lock and verify that the
312 * association hasn't changed after acquiring list_lock.
313 */
314 wb_get(wb);
315 spin_unlock(&inode->i_lock);
316 spin_lock(&wb->list_lock);
87e1d789 317
aaa2cacf 318 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
319 if (likely(wb == inode->i_wb)) {
320 wb_put(wb); /* @inode already has ref */
321 return wb;
322 }
87e1d789
TH
323
324 spin_unlock(&wb->list_lock);
614a4e37 325 wb_put(wb);
87e1d789
TH
326 cpu_relax();
327 spin_lock(&inode->i_lock);
328 }
329}
330
331/**
332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
333 * @inode: inode of interest
334 *
335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
336 * on entry.
337 */
338static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
339 __acquires(&wb->list_lock)
340{
341 spin_lock(&inode->i_lock);
342 return locked_inode_to_wb_and_lock_list(inode);
343}
344
682aa8e1 345struct inode_switch_wbs_context {
29264d92 346 struct rcu_work work;
f5fbe6b7
RG
347
348 /*
349 * Multiple inodes can be switched at once. The switching procedure
350 * consists of two parts, separated by a RCU grace period. To make
351 * sure that the second part is executed for each inode gone through
352 * the first part, all inode pointers are placed into a NULL-terminated
353 * array embedded into struct inode_switch_wbs_context. Otherwise
354 * an inode could be left in a non-consistent state.
355 */
356 struct bdi_writeback *new_wb;
357 struct inode *inodes[];
682aa8e1
TH
358};
359
7fc5854f
TH
360static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
361{
362 down_write(&bdi->wb_switch_rwsem);
363}
364
365static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
366{
367 up_write(&bdi->wb_switch_rwsem);
368}
369
f5fbe6b7
RG
370static bool inode_do_switch_wbs(struct inode *inode,
371 struct bdi_writeback *old_wb,
72d4512e 372 struct bdi_writeback *new_wb)
682aa8e1 373{
d10c8095 374 struct address_space *mapping = inode->i_mapping;
04edf02c
MW
375 XA_STATE(xas, &mapping->i_pages, 0);
376 struct page *page;
d10c8095 377 bool switched = false;
682aa8e1 378
682aa8e1 379 spin_lock(&inode->i_lock);
b93b0163 380 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
381
382 /*
4ade5867
RG
383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
384 * path owns the inode and we shouldn't modify ->i_io_list.
d10c8095 385 */
4ade5867 386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
d10c8095
TH
387 goto skip_switch;
388
3a8e9ac8
TH
389 trace_inode_switch_wbs(inode, old_wb, new_wb);
390
d10c8095
TH
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 394 * pages actually under writeback.
d10c8095 395 */
04edf02c
MW
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
3e8f399d
NB
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
400 }
401 }
402
04edf02c
MW
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
408 }
409
633a2abb
JK
410 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
411 atomic_dec(&old_wb->writeback_inodes);
412 atomic_inc(&new_wb->writeback_inodes);
413 }
414
d10c8095
TH
415 wb_get(new_wb);
416
417 /*
f3b6a6df
RG
418 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
419 * the specific list @inode was on is ignored and the @inode is put on
420 * ->b_dirty which is always correct including from ->b_dirty_time.
421 * The transfer preserves @inode->dirtied_when ordering. If the @inode
422 * was clean, it means it was on the b_attached list, so move it onto
423 * the b_attached list of @new_wb.
d10c8095 424 */
c7f54084 425 if (!list_empty(&inode->i_io_list)) {
d10c8095 426 inode->i_wb = new_wb;
f3b6a6df
RG
427
428 if (inode->i_state & I_DIRTY_ALL) {
429 struct inode *pos;
430
431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 if (time_after_eq(inode->dirtied_when,
433 pos->dirtied_when))
434 break;
435 inode_io_list_move_locked(inode, new_wb,
436 pos->i_io_list.prev);
437 } else {
438 inode_cgwb_move_to_attached(inode, new_wb);
439 }
d10c8095
TH
440 } else {
441 inode->i_wb = new_wb;
442 }
682aa8e1 443
d10c8095 444 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
445 inode->i_wb_frn_winner = 0;
446 inode->i_wb_frn_avg_time = 0;
447 inode->i_wb_frn_history = 0;
d10c8095
TH
448 switched = true;
449skip_switch:
682aa8e1
TH
450 /*
451 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
452 * ensures that the new wb is visible if they see !I_WB_SWITCH.
453 */
454 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
455
b93b0163 456 xa_unlock_irq(&mapping->i_pages);
682aa8e1 457 spin_unlock(&inode->i_lock);
7fc5854f 458
f5fbe6b7 459 return switched;
72d4512e 460}
d10c8095 461
72d4512e
RG
462static void inode_switch_wbs_work_fn(struct work_struct *work)
463{
464 struct inode_switch_wbs_context *isw =
465 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
f5fbe6b7
RG
466 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
467 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
468 struct bdi_writeback *new_wb = isw->new_wb;
469 unsigned long nr_switched = 0;
470 struct inode **inodep;
471
472 /*
473 * If @inode switches cgwb membership while sync_inodes_sb() is
474 * being issued, sync_inodes_sb() might miss it. Synchronize.
475 */
476 down_read(&bdi->wb_switch_rwsem);
477
478 /*
479 * By the time control reaches here, RCU grace period has passed
480 * since I_WB_SWITCH assertion and all wb stat update transactions
481 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
482 * synchronizing against the i_pages lock.
483 *
484 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
485 * gives us exclusion against all wb related operations on @inode
486 * including IO list manipulations and stat updates.
487 */
488 if (old_wb < new_wb) {
489 spin_lock(&old_wb->list_lock);
490 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
491 } else {
492 spin_lock(&new_wb->list_lock);
493 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
494 }
495
496 for (inodep = isw->inodes; *inodep; inodep++) {
497 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
498 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
499 nr_switched++;
500 }
501
502 spin_unlock(&new_wb->list_lock);
503 spin_unlock(&old_wb->list_lock);
504
505 up_read(&bdi->wb_switch_rwsem);
506
507 if (nr_switched) {
508 wb_wakeup(new_wb);
509 wb_put_many(old_wb, nr_switched);
510 }
a1a0e23e 511
f5fbe6b7
RG
512 for (inodep = isw->inodes; *inodep; inodep++)
513 iput(*inodep);
514 wb_put(new_wb);
72d4512e 515 kfree(isw);
a1a0e23e 516 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
517}
518
c22d70a1
RG
519static bool inode_prepare_wbs_switch(struct inode *inode,
520 struct bdi_writeback *new_wb)
521{
522 /*
523 * Paired with smp_mb() in cgroup_writeback_umount().
524 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
525 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
526 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
527 */
528 smp_mb();
529
593311e8
RG
530 if (IS_DAX(inode))
531 return false;
532
c22d70a1
RG
533 /* while holding I_WB_SWITCH, no one else can update the association */
534 spin_lock(&inode->i_lock);
535 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
536 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
537 inode_to_wb(inode) == new_wb) {
538 spin_unlock(&inode->i_lock);
539 return false;
540 }
541 inode->i_state |= I_WB_SWITCH;
542 __iget(inode);
543 spin_unlock(&inode->i_lock);
544
545 return true;
546}
547
682aa8e1
TH
548/**
549 * inode_switch_wbs - change the wb association of an inode
550 * @inode: target inode
551 * @new_wb_id: ID of the new wb
552 *
553 * Switch @inode's wb association to the wb identified by @new_wb_id. The
554 * switching is performed asynchronously and may fail silently.
555 */
556static void inode_switch_wbs(struct inode *inode, int new_wb_id)
557{
558 struct backing_dev_info *bdi = inode_to_bdi(inode);
559 struct cgroup_subsys_state *memcg_css;
560 struct inode_switch_wbs_context *isw;
561
562 /* noop if seems to be already in progress */
563 if (inode->i_state & I_WB_SWITCH)
564 return;
565
6444f47e
TH
566 /* avoid queueing a new switch if too many are already in flight */
567 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
7fc5854f
TH
568 return;
569
f5fbe6b7 570 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
682aa8e1 571 if (!isw)
6444f47e 572 return;
682aa8e1 573
8826ee4f
RG
574 atomic_inc(&isw_nr_in_flight);
575
682aa8e1
TH
576 /* find and pin the new wb */
577 rcu_read_lock();
578 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
8b0ed844
MS
579 if (memcg_css && !css_tryget(memcg_css))
580 memcg_css = NULL;
682aa8e1 581 rcu_read_unlock();
8b0ed844
MS
582 if (!memcg_css)
583 goto out_free;
584
585 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
586 css_put(memcg_css);
682aa8e1
TH
587 if (!isw->new_wb)
588 goto out_free;
589
c22d70a1 590 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
a1a0e23e 591 goto out_free;
682aa8e1 592
f5fbe6b7 593 isw->inodes[0] = inode;
682aa8e1
TH
594
595 /*
596 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
597 * the RCU protected stat update paths to grab the i_page
598 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
599 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
600 */
29264d92
RG
601 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
602 queue_rcu_work(isw_wq, &isw->work);
6444f47e 603 return;
682aa8e1
TH
604
605out_free:
8826ee4f 606 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
607 if (isw->new_wb)
608 wb_put(isw->new_wb);
609 kfree(isw);
610}
611
c22d70a1
RG
612/**
613 * cleanup_offline_cgwb - detach associated inodes
614 * @wb: target wb
615 *
616 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
617 * to eventually release the dying @wb. Returns %true if not all inodes were
618 * switched and the function has to be restarted.
619 */
620bool cleanup_offline_cgwb(struct bdi_writeback *wb)
621{
622 struct cgroup_subsys_state *memcg_css;
623 struct inode_switch_wbs_context *isw;
624 struct inode *inode;
625 int nr;
626 bool restart = false;
627
628 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
629 sizeof(struct inode *), GFP_KERNEL);
630 if (!isw)
631 return restart;
632
633 atomic_inc(&isw_nr_in_flight);
634
635 for (memcg_css = wb->memcg_css->parent; memcg_css;
636 memcg_css = memcg_css->parent) {
637 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
638 if (isw->new_wb)
639 break;
640 }
641 if (unlikely(!isw->new_wb))
642 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
643
644 nr = 0;
645 spin_lock(&wb->list_lock);
646 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
647 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
648 continue;
649
650 isw->inodes[nr++] = inode;
651
652 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
653 restart = true;
654 break;
655 }
656 }
657 spin_unlock(&wb->list_lock);
658
659 /* no attached inodes? bail out */
660 if (nr == 0) {
661 atomic_dec(&isw_nr_in_flight);
662 wb_put(isw->new_wb);
663 kfree(isw);
664 return restart;
665 }
666
667 /*
668 * In addition to synchronizing among switchers, I_WB_SWITCH tells
669 * the RCU protected stat update paths to grab the i_page
670 * lock so that stat transfer can synchronize against them.
671 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
672 */
673 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
674 queue_rcu_work(isw_wq, &isw->work);
675
676 return restart;
677}
678
b16b1deb
TH
679/**
680 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
681 * @wbc: writeback_control of interest
682 * @inode: target inode
683 *
684 * @inode is locked and about to be written back under the control of @wbc.
685 * Record @inode's writeback context into @wbc and unlock the i_lock. On
686 * writeback completion, wbc_detach_inode() should be called. This is used
687 * to track the cgroup writeback context.
688 */
689void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
690 struct inode *inode)
691{
dd73e4b7
TH
692 if (!inode_cgwb_enabled(inode)) {
693 spin_unlock(&inode->i_lock);
694 return;
695 }
696
b16b1deb 697 wbc->wb = inode_to_wb(inode);
2a814908
TH
698 wbc->inode = inode;
699
700 wbc->wb_id = wbc->wb->memcg_css->id;
701 wbc->wb_lcand_id = inode->i_wb_frn_winner;
702 wbc->wb_tcand_id = 0;
703 wbc->wb_bytes = 0;
704 wbc->wb_lcand_bytes = 0;
705 wbc->wb_tcand_bytes = 0;
706
b16b1deb
TH
707 wb_get(wbc->wb);
708 spin_unlock(&inode->i_lock);
e8a7abf5
TH
709
710 /*
65de03e2
TH
711 * A dying wb indicates that either the blkcg associated with the
712 * memcg changed or the associated memcg is dying. In the first
713 * case, a replacement wb should already be available and we should
714 * refresh the wb immediately. In the second case, trying to
715 * refresh will keep failing.
e8a7abf5 716 */
65de03e2 717 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
e8a7abf5 718 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb 719}
9b0eb69b 720EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
b16b1deb
TH
721
722/**
2a814908
TH
723 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
724 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
725 *
726 * To be called after a writeback attempt of an inode finishes and undoes
727 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
728 *
729 * As concurrent write sharing of an inode is expected to be very rare and
730 * memcg only tracks page ownership on first-use basis severely confining
731 * the usefulness of such sharing, cgroup writeback tracks ownership
732 * per-inode. While the support for concurrent write sharing of an inode
733 * is deemed unnecessary, an inode being written to by different cgroups at
734 * different points in time is a lot more common, and, more importantly,
735 * charging only by first-use can too readily lead to grossly incorrect
736 * behaviors (single foreign page can lead to gigabytes of writeback to be
737 * incorrectly attributed).
738 *
739 * To resolve this issue, cgroup writeback detects the majority dirtier of
740 * an inode and transfers the ownership to it. To avoid unnnecessary
741 * oscillation, the detection mechanism keeps track of history and gives
742 * out the switch verdict only if the foreign usage pattern is stable over
743 * a certain amount of time and/or writeback attempts.
744 *
745 * On each writeback attempt, @wbc tries to detect the majority writer
746 * using Boyer-Moore majority vote algorithm. In addition to the byte
747 * count from the majority voting, it also counts the bytes written for the
748 * current wb and the last round's winner wb (max of last round's current
749 * wb, the winner from two rounds ago, and the last round's majority
750 * candidate). Keeping track of the historical winner helps the algorithm
751 * to semi-reliably detect the most active writer even when it's not the
752 * absolute majority.
753 *
754 * Once the winner of the round is determined, whether the winner is
755 * foreign or not and how much IO time the round consumed is recorded in
756 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
757 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
758 */
759void wbc_detach_inode(struct writeback_control *wbc)
760{
2a814908
TH
761 struct bdi_writeback *wb = wbc->wb;
762 struct inode *inode = wbc->inode;
dd73e4b7
TH
763 unsigned long avg_time, max_bytes, max_time;
764 u16 history;
2a814908
TH
765 int max_id;
766
dd73e4b7
TH
767 if (!wb)
768 return;
769
770 history = inode->i_wb_frn_history;
771 avg_time = inode->i_wb_frn_avg_time;
772
2a814908
TH
773 /* pick the winner of this round */
774 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
775 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
776 max_id = wbc->wb_id;
777 max_bytes = wbc->wb_bytes;
778 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
779 max_id = wbc->wb_lcand_id;
780 max_bytes = wbc->wb_lcand_bytes;
781 } else {
782 max_id = wbc->wb_tcand_id;
783 max_bytes = wbc->wb_tcand_bytes;
784 }
785
786 /*
787 * Calculate the amount of IO time the winner consumed and fold it
788 * into the running average kept per inode. If the consumed IO
789 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
790 * deciding whether to switch or not. This is to prevent one-off
791 * small dirtiers from skewing the verdict.
792 */
793 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
794 wb->avg_write_bandwidth);
795 if (avg_time)
796 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
797 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
798 else
799 avg_time = max_time; /* immediate catch up on first run */
800
801 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
802 int slots;
803
804 /*
805 * The switch verdict is reached if foreign wb's consume
806 * more than a certain proportion of IO time in a
807 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
808 * history mask where each bit represents one sixteenth of
809 * the period. Determine the number of slots to shift into
810 * history from @max_time.
811 */
812 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
813 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
814 history <<= slots;
815 if (wbc->wb_id != max_id)
816 history |= (1U << slots) - 1;
817
3a8e9ac8
TH
818 if (history)
819 trace_inode_foreign_history(inode, wbc, history);
820
2a814908
TH
821 /*
822 * Switch if the current wb isn't the consistent winner.
823 * If there are multiple closely competing dirtiers, the
824 * inode may switch across them repeatedly over time, which
825 * is okay. The main goal is avoiding keeping an inode on
826 * the wrong wb for an extended period of time.
827 */
682aa8e1
TH
828 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
829 inode_switch_wbs(inode, max_id);
2a814908
TH
830 }
831
832 /*
833 * Multiple instances of this function may race to update the
834 * following fields but we don't mind occassional inaccuracies.
835 */
836 inode->i_wb_frn_winner = max_id;
837 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
838 inode->i_wb_frn_history = history;
839
b16b1deb
TH
840 wb_put(wbc->wb);
841 wbc->wb = NULL;
842}
9b0eb69b 843EXPORT_SYMBOL_GPL(wbc_detach_inode);
b16b1deb 844
2a814908 845/**
34e51a5e 846 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
2a814908
TH
847 * @wbc: writeback_control of the writeback in progress
848 * @page: page being written out
849 * @bytes: number of bytes being written out
850 *
851 * @bytes from @page are about to written out during the writeback
852 * controlled by @wbc. Keep the book for foreign inode detection. See
853 * wbc_detach_inode().
854 */
34e51a5e
TH
855void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
856 size_t bytes)
2a814908 857{
66311422 858 struct cgroup_subsys_state *css;
2a814908
TH
859 int id;
860
861 /*
862 * pageout() path doesn't attach @wbc to the inode being written
863 * out. This is intentional as we don't want the function to block
864 * behind a slow cgroup. Ultimately, we want pageout() to kick off
865 * regular writeback instead of writing things out itself.
866 */
27b36d8f 867 if (!wbc->wb || wbc->no_cgroup_owner)
2a814908
TH
868 return;
869
66311422
TH
870 css = mem_cgroup_css_from_page(page);
871 /* dead cgroups shouldn't contribute to inode ownership arbitration */
872 if (!(css->flags & CSS_ONLINE))
873 return;
874
875 id = css->id;
2a814908
TH
876
877 if (id == wbc->wb_id) {
878 wbc->wb_bytes += bytes;
879 return;
880 }
881
882 if (id == wbc->wb_lcand_id)
883 wbc->wb_lcand_bytes += bytes;
884
885 /* Boyer-Moore majority vote algorithm */
886 if (!wbc->wb_tcand_bytes)
887 wbc->wb_tcand_id = id;
888 if (id == wbc->wb_tcand_id)
889 wbc->wb_tcand_bytes += bytes;
890 else
891 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
892}
34e51a5e 893EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
2a814908 894
703c2708
TH
895/**
896 * inode_congested - test whether an inode is congested
60292bcc 897 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
898 * @cong_bits: mask of WB_[a]sync_congested bits to test
899 *
900 * Tests whether @inode is congested. @cong_bits is the mask of congestion
901 * bits to test and the return value is the mask of set bits.
902 *
903 * If cgroup writeback is enabled for @inode, the congestion state is
904 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
905 * associated with @inode is congested; otherwise, the root wb's congestion
906 * state is used.
60292bcc
TH
907 *
908 * @inode is allowed to be NULL as this function is often called on
909 * mapping->host which is NULL for the swapper space.
703c2708
TH
910 */
911int inode_congested(struct inode *inode, int cong_bits)
912{
5cb8b824
TH
913 /*
914 * Once set, ->i_wb never becomes NULL while the inode is alive.
915 * Start transaction iff ->i_wb is visible.
916 */
aaa2cacf 917 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 918 struct bdi_writeback *wb;
2e898e4c
GT
919 struct wb_lock_cookie lock_cookie = {};
920 bool congested;
5cb8b824 921
2e898e4c 922 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 923 congested = wb_congested(wb, cong_bits);
2e898e4c 924 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 925 return congested;
703c2708
TH
926 }
927
928 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
929}
930EXPORT_SYMBOL_GPL(inode_congested);
931
f2b65121
TH
932/**
933 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
934 * @wb: target bdi_writeback to split @nr_pages to
935 * @nr_pages: number of pages to write for the whole bdi
936 *
937 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
938 * relation to the total write bandwidth of all wb's w/ dirty inodes on
939 * @wb->bdi.
940 */
941static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
942{
943 unsigned long this_bw = wb->avg_write_bandwidth;
944 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
945
946 if (nr_pages == LONG_MAX)
947 return LONG_MAX;
948
949 /*
950 * This may be called on clean wb's and proportional distribution
951 * may not make sense, just use the original @nr_pages in those
952 * cases. In general, we wanna err on the side of writing more.
953 */
954 if (!tot_bw || this_bw >= tot_bw)
955 return nr_pages;
956 else
957 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
958}
959
db125360
TH
960/**
961 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
962 * @bdi: target backing_dev_info
963 * @base_work: wb_writeback_work to issue
964 * @skip_if_busy: skip wb's which already have writeback in progress
965 *
966 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
967 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
968 * distributed to the busy wbs according to each wb's proportion in the
969 * total active write bandwidth of @bdi.
970 */
971static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
972 struct wb_writeback_work *base_work,
973 bool skip_if_busy)
974{
b817525a 975 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
976 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
977 struct bdi_writeback, bdi_node);
db125360
TH
978
979 might_sleep();
db125360
TH
980restart:
981 rcu_read_lock();
b817525a 982 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
5b9cce4c 983 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
8a1270cd
TH
984 struct wb_writeback_work fallback_work;
985 struct wb_writeback_work *work;
986 long nr_pages;
987
b817525a
TH
988 if (last_wb) {
989 wb_put(last_wb);
990 last_wb = NULL;
991 }
992
006a0973
TH
993 /* SYNC_ALL writes out I_DIRTY_TIME too */
994 if (!wb_has_dirty_io(wb) &&
995 (base_work->sync_mode == WB_SYNC_NONE ||
996 list_empty(&wb->b_dirty_time)))
997 continue;
998 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
999 continue;
1000
8a1270cd
TH
1001 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1002
1003 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1004 if (work) {
1005 *work = *base_work;
1006 work->nr_pages = nr_pages;
1007 work->auto_free = 1;
1008 wb_queue_work(wb, work);
1009 continue;
db125360 1010 }
8a1270cd
TH
1011
1012 /* alloc failed, execute synchronously using on-stack fallback */
1013 work = &fallback_work;
1014 *work = *base_work;
1015 work->nr_pages = nr_pages;
1016 work->auto_free = 0;
1017 work->done = &fallback_work_done;
1018
1019 wb_queue_work(wb, work);
1020
b817525a
TH
1021 /*
1022 * Pin @wb so that it stays on @bdi->wb_list. This allows
1023 * continuing iteration from @wb after dropping and
1024 * regrabbing rcu read lock.
1025 */
1026 wb_get(wb);
1027 last_wb = wb;
1028
8a1270cd 1029 rcu_read_unlock();
5b9cce4c 1030 wb_wait_for_completion(&fallback_work_done);
8a1270cd 1031 goto restart;
db125360
TH
1032 }
1033 rcu_read_unlock();
b817525a
TH
1034
1035 if (last_wb)
1036 wb_put(last_wb);
db125360
TH
1037}
1038
d62241c7
TH
1039/**
1040 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1041 * @bdi_id: target bdi id
1042 * @memcg_id: target memcg css id
d62241c7
TH
1043 * @reason: reason why some writeback work initiated
1044 * @done: target wb_completion
1045 *
1046 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1047 * with the specified parameters.
1048 */
7490a2d2 1049int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
d62241c7
TH
1050 enum wb_reason reason, struct wb_completion *done)
1051{
1052 struct backing_dev_info *bdi;
1053 struct cgroup_subsys_state *memcg_css;
1054 struct bdi_writeback *wb;
1055 struct wb_writeback_work *work;
7490a2d2 1056 unsigned long dirty;
d62241c7
TH
1057 int ret;
1058
1059 /* lookup bdi and memcg */
1060 bdi = bdi_get_by_id(bdi_id);
1061 if (!bdi)
1062 return -ENOENT;
1063
1064 rcu_read_lock();
1065 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1066 if (memcg_css && !css_tryget(memcg_css))
1067 memcg_css = NULL;
1068 rcu_read_unlock();
1069 if (!memcg_css) {
1070 ret = -ENOENT;
1071 goto out_bdi_put;
1072 }
1073
1074 /*
1075 * And find the associated wb. If the wb isn't there already
1076 * there's nothing to flush, don't create one.
1077 */
1078 wb = wb_get_lookup(bdi, memcg_css);
1079 if (!wb) {
1080 ret = -ENOENT;
1081 goto out_css_put;
1082 }
1083
1084 /*
7490a2d2 1085 * The caller is attempting to write out most of
d62241c7
TH
1086 * the currently dirty pages. Let's take the current dirty page
1087 * count and inflate it by 25% which should be large enough to
1088 * flush out most dirty pages while avoiding getting livelocked by
1089 * concurrent dirtiers.
7490a2d2
SB
1090 *
1091 * BTW the memcg stats are flushed periodically and this is best-effort
1092 * estimation, so some potential error is ok.
d62241c7 1093 */
7490a2d2
SB
1094 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1095 dirty = dirty * 10 / 8;
d62241c7
TH
1096
1097 /* issue the writeback work */
1098 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1099 if (work) {
7490a2d2 1100 work->nr_pages = dirty;
d62241c7
TH
1101 work->sync_mode = WB_SYNC_NONE;
1102 work->range_cyclic = 1;
1103 work->reason = reason;
1104 work->done = done;
1105 work->auto_free = 1;
1106 wb_queue_work(wb, work);
1107 ret = 0;
1108 } else {
1109 ret = -ENOMEM;
1110 }
1111
1112 wb_put(wb);
1113out_css_put:
1114 css_put(memcg_css);
1115out_bdi_put:
1116 bdi_put(bdi);
1117 return ret;
1118}
1119
a1a0e23e
TH
1120/**
1121 * cgroup_writeback_umount - flush inode wb switches for umount
1122 *
1123 * This function is called when a super_block is about to be destroyed and
1124 * flushes in-flight inode wb switches. An inode wb switch goes through
1125 * RCU and then workqueue, so the two need to be flushed in order to ensure
1126 * that all previously scheduled switches are finished. As wb switches are
1127 * rare occurrences and synchronize_rcu() can take a while, perform
1128 * flushing iff wb switches are in flight.
1129 */
1130void cgroup_writeback_umount(void)
1131{
592fa002
RG
1132 /*
1133 * SB_ACTIVE should be reliably cleared before checking
1134 * isw_nr_in_flight, see generic_shutdown_super().
1135 */
1136 smp_mb();
1137
a1a0e23e 1138 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
1139 /*
1140 * Use rcu_barrier() to wait for all pending callbacks to
1141 * ensure that all in-flight wb switches are in the workqueue.
1142 */
1143 rcu_barrier();
a1a0e23e
TH
1144 flush_workqueue(isw_wq);
1145 }
1146}
1147
1148static int __init cgroup_writeback_init(void)
1149{
1150 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1151 if (!isw_wq)
1152 return -ENOMEM;
1153 return 0;
1154}
1155fs_initcall(cgroup_writeback_init);
1156
f2b65121
TH
1157#else /* CONFIG_CGROUP_WRITEBACK */
1158
7fc5854f
TH
1159static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161
f3b6a6df
RG
1162static void inode_cgwb_move_to_attached(struct inode *inode,
1163 struct bdi_writeback *wb)
1164{
1165 assert_spin_locked(&wb->list_lock);
1166 assert_spin_locked(&inode->i_lock);
1167
1168 inode->i_state &= ~I_SYNC_QUEUED;
1169 list_del_init(&inode->i_io_list);
1170 wb_io_lists_depopulated(wb);
1171}
1172
87e1d789
TH
1173static struct bdi_writeback *
1174locked_inode_to_wb_and_lock_list(struct inode *inode)
1175 __releases(&inode->i_lock)
1176 __acquires(&wb->list_lock)
1177{
1178 struct bdi_writeback *wb = inode_to_wb(inode);
1179
1180 spin_unlock(&inode->i_lock);
1181 spin_lock(&wb->list_lock);
1182 return wb;
1183}
1184
1185static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1186 __acquires(&wb->list_lock)
1187{
1188 struct bdi_writeback *wb = inode_to_wb(inode);
1189
1190 spin_lock(&wb->list_lock);
1191 return wb;
1192}
1193
f2b65121
TH
1194static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1195{
1196 return nr_pages;
1197}
1198
db125360
TH
1199static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1200 struct wb_writeback_work *base_work,
1201 bool skip_if_busy)
1202{
1203 might_sleep();
1204
006a0973 1205 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 1206 base_work->auto_free = 0;
db125360
TH
1207 wb_queue_work(&bdi->wb, base_work);
1208 }
1209}
1210
703c2708
TH
1211#endif /* CONFIG_CGROUP_WRITEBACK */
1212
e8e8a0c6
JA
1213/*
1214 * Add in the number of potentially dirty inodes, because each inode
1215 * write can dirty pagecache in the underlying blockdev.
1216 */
1217static unsigned long get_nr_dirty_pages(void)
1218{
1219 return global_node_page_state(NR_FILE_DIRTY) +
e8e8a0c6
JA
1220 get_nr_dirty_inodes();
1221}
1222
1223static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 1224{
c00ddad3
TH
1225 if (!wb_has_dirty_io(wb))
1226 return;
1227
aac8d41c
JA
1228 /*
1229 * All callers of this function want to start writeback of all
1230 * dirty pages. Places like vmscan can call this at a very
1231 * high frequency, causing pointless allocations of tons of
1232 * work items and keeping the flusher threads busy retrieving
1233 * that work. Ensure that we only allow one of them pending and
85009b4f 1234 * inflight at the time.
aac8d41c 1235 */
85009b4f
JA
1236 if (test_bit(WB_start_all, &wb->state) ||
1237 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1238 return;
1239
85009b4f
JA
1240 wb->start_all_reason = reason;
1241 wb_wakeup(wb);
c5444198 1242}
d3ddec76 1243
c5444198 1244/**
9ecf4866
TH
1245 * wb_start_background_writeback - start background writeback
1246 * @wb: bdi_writback to write from
c5444198
CH
1247 *
1248 * Description:
6585027a 1249 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1250 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1251 * some IO is happening if we are over background dirty threshold.
1252 * Caller need not hold sb s_umount semaphore.
c5444198 1253 */
9ecf4866 1254void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1255{
6585027a
JK
1256 /*
1257 * We just wake up the flusher thread. It will perform background
1258 * writeback as soon as there is no other work to do.
1259 */
5634cc2a 1260 trace_writeback_wake_background(wb);
9ecf4866 1261 wb_wakeup(wb);
1da177e4
LT
1262}
1263
a66979ab
DC
1264/*
1265 * Remove the inode from the writeback list it is on.
1266 */
c7f54084 1267void inode_io_list_del(struct inode *inode)
a66979ab 1268{
87e1d789 1269 struct bdi_writeback *wb;
f758eeab 1270
87e1d789 1271 wb = inode_to_wb_and_lock_list(inode);
b35250c0 1272 spin_lock(&inode->i_lock);
f3b6a6df
RG
1273
1274 inode->i_state &= ~I_SYNC_QUEUED;
1275 list_del_init(&inode->i_io_list);
1276 wb_io_lists_depopulated(wb);
1277
b35250c0 1278 spin_unlock(&inode->i_lock);
52ebea74 1279 spin_unlock(&wb->list_lock);
a66979ab 1280}
4301efa4 1281EXPORT_SYMBOL(inode_io_list_del);
a66979ab 1282
6c60d2b5
DC
1283/*
1284 * mark an inode as under writeback on the sb
1285 */
1286void sb_mark_inode_writeback(struct inode *inode)
1287{
1288 struct super_block *sb = inode->i_sb;
1289 unsigned long flags;
1290
1291 if (list_empty(&inode->i_wb_list)) {
1292 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1293 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1294 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1295 trace_sb_mark_inode_writeback(inode);
1296 }
6c60d2b5
DC
1297 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1298 }
1299}
1300
1301/*
1302 * clear an inode as under writeback on the sb
1303 */
1304void sb_clear_inode_writeback(struct inode *inode)
1305{
1306 struct super_block *sb = inode->i_sb;
1307 unsigned long flags;
1308
1309 if (!list_empty(&inode->i_wb_list)) {
1310 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1311 if (!list_empty(&inode->i_wb_list)) {
1312 list_del_init(&inode->i_wb_list);
1313 trace_sb_clear_inode_writeback(inode);
1314 }
6c60d2b5
DC
1315 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1316 }
1317}
1318
6610a0bc
AM
1319/*
1320 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1321 * furthest end of its superblock's dirty-inode list.
1322 *
1323 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1324 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1325 * the case then the inode must have been redirtied while it was being written
1326 * out and we don't reset its dirtied_when.
1327 */
b35250c0 1328static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1329{
b35250c0
JK
1330 assert_spin_locked(&inode->i_lock);
1331
03ba3782 1332 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1333 struct inode *tail;
6610a0bc 1334
7ccf19a8 1335 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1336 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1337 inode->dirtied_when = jiffies;
1338 }
c7f54084 1339 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
5afced3b 1340 inode->i_state &= ~I_SYNC_QUEUED;
6610a0bc
AM
1341}
1342
b35250c0
JK
1343static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1344{
1345 spin_lock(&inode->i_lock);
1346 redirty_tail_locked(inode, wb);
1347 spin_unlock(&inode->i_lock);
1348}
1349
c986d1e2 1350/*
66f3b8e2 1351 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1352 */
f758eeab 1353static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1354{
c7f54084 1355 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1356}
1357
1c0eeaf5
JE
1358static void inode_sync_complete(struct inode *inode)
1359{
365b94ae 1360 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1361 /* If inode is clean an unused, put it into LRU now... */
1362 inode_add_lru(inode);
365b94ae 1363 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1364 smp_mb();
1365 wake_up_bit(&inode->i_state, __I_SYNC);
1366}
1367
d2caa3c5
JL
1368static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1369{
1370 bool ret = time_after(inode->dirtied_when, t);
1371#ifndef CONFIG_64BIT
1372 /*
1373 * For inodes being constantly redirtied, dirtied_when can get stuck.
1374 * It _appears_ to be in the future, but is actually in distant past.
1375 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1376 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1377 */
1378 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1379#endif
1380 return ret;
1381}
1382
0ae45f63
TT
1383#define EXPIRE_DIRTY_ATIME 0x0001
1384
2c136579 1385/*
f9cae926 1386 * Move expired (dirtied before dirtied_before) dirty inodes from
697e6fed 1387 * @delaying_queue to @dispatch_queue.
2c136579 1388 */
e84d0a4f 1389static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1390 struct list_head *dispatch_queue,
5fcd5750 1391 unsigned long dirtied_before)
2c136579 1392{
5c03449d
SL
1393 LIST_HEAD(tmp);
1394 struct list_head *pos, *node;
cf137307 1395 struct super_block *sb = NULL;
5c03449d 1396 struct inode *inode;
cf137307 1397 int do_sb_sort = 0;
e84d0a4f 1398 int moved = 0;
5c03449d 1399
2c136579 1400 while (!list_empty(delaying_queue)) {
7ccf19a8 1401 inode = wb_inode(delaying_queue->prev);
f9cae926 1402 if (inode_dirtied_after(inode, dirtied_before))
2c136579 1403 break;
201851f1 1404 spin_lock(&inode->i_lock);
c7f54084 1405 list_move(&inode->i_io_list, &tmp);
a8855990 1406 moved++;
5afced3b
JK
1407 inode->i_state |= I_SYNC_QUEUED;
1408 spin_unlock(&inode->i_lock);
a8855990
JK
1409 if (sb_is_blkdev_sb(inode->i_sb))
1410 continue;
cf137307
JA
1411 if (sb && sb != inode->i_sb)
1412 do_sb_sort = 1;
1413 sb = inode->i_sb;
5c03449d
SL
1414 }
1415
cf137307
JA
1416 /* just one sb in list, splice to dispatch_queue and we're done */
1417 if (!do_sb_sort) {
1418 list_splice(&tmp, dispatch_queue);
e84d0a4f 1419 goto out;
cf137307
JA
1420 }
1421
201851f1
JS
1422 /*
1423 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue',
1424 * we don't take inode->i_lock here because it is just a pointless overhead.
1425 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is
1426 * fully under our control.
1427 */
5c03449d 1428 while (!list_empty(&tmp)) {
7ccf19a8 1429 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1430 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1431 inode = wb_inode(pos);
5c03449d 1432 if (inode->i_sb == sb)
c7f54084 1433 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1434 }
2c136579 1435 }
e84d0a4f
WF
1436out:
1437 return moved;
2c136579
FW
1438}
1439
1440/*
1441 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1442 * Before
1443 * newly dirtied b_dirty b_io b_more_io
1444 * =============> gf edc BA
1445 * After
1446 * newly dirtied b_dirty b_io b_more_io
1447 * =============> g fBAedc
1448 * |
1449 * +--> dequeue for IO
2c136579 1450 */
f9cae926
JK
1451static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1452 unsigned long dirtied_before)
66f3b8e2 1453{
e84d0a4f 1454 int moved;
f9cae926 1455 unsigned long time_expire_jif = dirtied_before;
0ae45f63 1456
f758eeab 1457 assert_spin_locked(&wb->list_lock);
4ea879b9 1458 list_splice_init(&wb->b_more_io, &wb->b_io);
5fcd5750 1459 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
f9cae926
JK
1460 if (!work->for_sync)
1461 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
0ae45f63 1462 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
5fcd5750 1463 time_expire_jif);
d6c10f1f
TH
1464 if (moved)
1465 wb_io_lists_populated(wb);
f9cae926 1466 trace_writeback_queue_io(wb, work, dirtied_before, moved);
66f3b8e2
JA
1467}
1468
a9185b41 1469static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1470{
9fb0a7da
TH
1471 int ret;
1472
1473 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1474 trace_writeback_write_inode_start(inode, wbc);
1475 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1476 trace_writeback_write_inode(inode, wbc);
1477 return ret;
1478 }
03ba3782 1479 return 0;
08d8e974 1480}
08d8e974 1481
1da177e4 1482/*
169ebd90
JK
1483 * Wait for writeback on an inode to complete. Called with i_lock held.
1484 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1485 */
169ebd90
JK
1486static void __inode_wait_for_writeback(struct inode *inode)
1487 __releases(inode->i_lock)
1488 __acquires(inode->i_lock)
01c03194
CH
1489{
1490 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1491 wait_queue_head_t *wqh;
1492
1493 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1494 while (inode->i_state & I_SYNC) {
1495 spin_unlock(&inode->i_lock);
74316201
N
1496 __wait_on_bit(wqh, &wq, bit_wait,
1497 TASK_UNINTERRUPTIBLE);
250df6ed 1498 spin_lock(&inode->i_lock);
58a9d3d8 1499 }
01c03194
CH
1500}
1501
169ebd90
JK
1502/*
1503 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1504 */
1505void inode_wait_for_writeback(struct inode *inode)
1506{
1507 spin_lock(&inode->i_lock);
1508 __inode_wait_for_writeback(inode);
1509 spin_unlock(&inode->i_lock);
1510}
1511
1512/*
1513 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1514 * held and drops it. It is aimed for callers not holding any inode reference
1515 * so once i_lock is dropped, inode can go away.
1516 */
1517static void inode_sleep_on_writeback(struct inode *inode)
1518 __releases(inode->i_lock)
1519{
1520 DEFINE_WAIT(wait);
1521 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1522 int sleep;
1523
1524 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1525 sleep = inode->i_state & I_SYNC;
1526 spin_unlock(&inode->i_lock);
1527 if (sleep)
1528 schedule();
1529 finish_wait(wqh, &wait);
1530}
1531
ccb26b5a
JK
1532/*
1533 * Find proper writeback list for the inode depending on its current state and
1534 * possibly also change of its state while we were doing writeback. Here we
1535 * handle things such as livelock prevention or fairness of writeback among
1536 * inodes. This function can be called only by flusher thread - noone else
1537 * processes all inodes in writeback lists and requeueing inodes behind flusher
1538 * thread's back can have unexpected consequences.
1539 */
1540static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1541 struct writeback_control *wbc)
1542{
1543 if (inode->i_state & I_FREEING)
1544 return;
1545
1546 /*
1547 * Sync livelock prevention. Each inode is tagged and synced in one
1548 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1549 * the dirty time to prevent enqueue and sync it again.
1550 */
1551 if ((inode->i_state & I_DIRTY) &&
1552 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1553 inode->dirtied_when = jiffies;
1554
4f8ad655
JK
1555 if (wbc->pages_skipped) {
1556 /*
1557 * writeback is not making progress due to locked
1558 * buffers. Skip this inode for now.
1559 */
b35250c0 1560 redirty_tail_locked(inode, wb);
4f8ad655
JK
1561 return;
1562 }
1563
ccb26b5a
JK
1564 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1565 /*
1566 * We didn't write back all the pages. nfs_writepages()
1567 * sometimes bales out without doing anything.
1568 */
1569 if (wbc->nr_to_write <= 0) {
1570 /* Slice used up. Queue for next turn. */
1571 requeue_io(inode, wb);
1572 } else {
1573 /*
1574 * Writeback blocked by something other than
1575 * congestion. Delay the inode for some time to
1576 * avoid spinning on the CPU (100% iowait)
1577 * retrying writeback of the dirty page/inode
1578 * that cannot be performed immediately.
1579 */
b35250c0 1580 redirty_tail_locked(inode, wb);
ccb26b5a
JK
1581 }
1582 } else if (inode->i_state & I_DIRTY) {
1583 /*
1584 * Filesystems can dirty the inode during writeback operations,
1585 * such as delayed allocation during submission or metadata
1586 * updates after data IO completion.
1587 */
b35250c0 1588 redirty_tail_locked(inode, wb);
0ae45f63 1589 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1590 inode->dirtied_when = jiffies;
c7f54084 1591 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
5afced3b 1592 inode->i_state &= ~I_SYNC_QUEUED;
ccb26b5a
JK
1593 } else {
1594 /* The inode is clean. Remove from writeback lists. */
f3b6a6df 1595 inode_cgwb_move_to_attached(inode, wb);
ccb26b5a
JK
1596 }
1597}
1598
01c03194 1599/*
da0c4c60
EB
1600 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1601 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1602 *
1603 * This doesn't remove the inode from the writeback list it is on, except
1604 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1605 * expiration. The caller is otherwise responsible for writeback list handling.
1606 *
1607 * The caller is also responsible for setting the I_SYNC flag beforehand and
1608 * calling inode_sync_complete() to clear it afterwards.
1da177e4
LT
1609 */
1610static int
cd8ed2a4 1611__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1612{
1da177e4 1613 struct address_space *mapping = inode->i_mapping;
251d6a47 1614 long nr_to_write = wbc->nr_to_write;
01c03194 1615 unsigned dirty;
1da177e4
LT
1616 int ret;
1617
4f8ad655 1618 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1619
9fb0a7da
TH
1620 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1621
1da177e4
LT
1622 ret = do_writepages(mapping, wbc);
1623
26821ed4
CH
1624 /*
1625 * Make sure to wait on the data before writing out the metadata.
1626 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1627 * I/O completion. We don't do it for sync(2) writeback because it has a
1628 * separate, external IO completion path and ->sync_fs for guaranteeing
1629 * inode metadata is written back correctly.
26821ed4 1630 */
7747bd4b 1631 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1632 int err = filemap_fdatawait(mapping);
1da177e4
LT
1633 if (ret == 0)
1634 ret = err;
1635 }
1636
5547e8aa 1637 /*
1e249cb5
EB
1638 * If the inode has dirty timestamps and we need to write them, call
1639 * mark_inode_dirty_sync() to notify the filesystem about it and to
1640 * change I_DIRTY_TIME into I_DIRTY_SYNC.
5547e8aa 1641 */
5fcd5750 1642 if ((inode->i_state & I_DIRTY_TIME) &&
83dc881d 1643 (wbc->sync_mode == WB_SYNC_ALL ||
5fcd5750
JK
1644 time_after(jiffies, inode->dirtied_time_when +
1645 dirtytime_expire_interval * HZ))) {
5fcd5750 1646 trace_writeback_lazytime(inode);
1e249cb5 1647 mark_inode_dirty_sync(inode);
5fcd5750 1648 }
1e249cb5
EB
1649
1650 /*
da0c4c60
EB
1651 * Get and clear the dirty flags from i_state. This needs to be done
1652 * after calling writepages because some filesystems may redirty the
1653 * inode during writepages due to delalloc. It also needs to be done
1654 * after handling timestamp expiration, as that may dirty the inode too.
1e249cb5
EB
1655 */
1656 spin_lock(&inode->i_lock);
1657 dirty = inode->i_state & I_DIRTY;
0ae45f63 1658 inode->i_state &= ~dirty;
9c6ac78e
TH
1659
1660 /*
1661 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1662 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1663 * either they see the I_DIRTY bits cleared or we see the dirtied
1664 * inode.
1665 *
1666 * I_DIRTY_PAGES is always cleared together above even if @mapping
1667 * still has dirty pages. The flag is reinstated after smp_mb() if
1668 * necessary. This guarantees that either __mark_inode_dirty()
1669 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1670 */
1671 smp_mb();
1672
1673 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1674 inode->i_state |= I_DIRTY_PAGES;
1675
250df6ed 1676 spin_unlock(&inode->i_lock);
9c6ac78e 1677
26821ed4 1678 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1679 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1680 int err = write_inode(inode, wbc);
1da177e4
LT
1681 if (ret == 0)
1682 ret = err;
1683 }
4f8ad655
JK
1684 trace_writeback_single_inode(inode, wbc, nr_to_write);
1685 return ret;
1686}
1687
1688/*
da0c4c60
EB
1689 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1690 * the regular batched writeback done by the flusher threads in
1691 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1692 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
4f8ad655 1693 *
da0c4c60
EB
1694 * To prevent the inode from going away, either the caller must have a reference
1695 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
4f8ad655 1696 */
aaf25593
TH
1697static int writeback_single_inode(struct inode *inode,
1698 struct writeback_control *wbc)
4f8ad655 1699{
aaf25593 1700 struct bdi_writeback *wb;
4f8ad655
JK
1701 int ret = 0;
1702
1703 spin_lock(&inode->i_lock);
1704 if (!atomic_read(&inode->i_count))
1705 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1706 else
1707 WARN_ON(inode->i_state & I_WILL_FREE);
1708
1709 if (inode->i_state & I_SYNC) {
4f8ad655 1710 /*
da0c4c60
EB
1711 * Writeback is already running on the inode. For WB_SYNC_NONE,
1712 * that's enough and we can just return. For WB_SYNC_ALL, we
1713 * must wait for the existing writeback to complete, then do
1714 * writeback again if there's anything left.
4f8ad655 1715 */
da0c4c60
EB
1716 if (wbc->sync_mode != WB_SYNC_ALL)
1717 goto out;
169ebd90 1718 __inode_wait_for_writeback(inode);
4f8ad655
JK
1719 }
1720 WARN_ON(inode->i_state & I_SYNC);
1721 /*
da0c4c60
EB
1722 * If the inode is already fully clean, then there's nothing to do.
1723 *
1724 * For data-integrity syncs we also need to check whether any pages are
1725 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1726 * there are any such pages, we'll need to wait for them.
4f8ad655 1727 */
0ae45f63 1728 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1729 (wbc->sync_mode != WB_SYNC_ALL ||
1730 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1731 goto out;
1732 inode->i_state |= I_SYNC;
b16b1deb 1733 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1734
cd8ed2a4 1735 ret = __writeback_single_inode(inode, wbc);
1da177e4 1736
b16b1deb 1737 wbc_detach_inode(wbc);
aaf25593
TH
1738
1739 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1740 spin_lock(&inode->i_lock);
4f8ad655 1741 /*
da0c4c60
EB
1742 * If the inode is now fully clean, then it can be safely removed from
1743 * its writeback list (if any). Otherwise the flusher threads are
1744 * responsible for the writeback lists.
4f8ad655 1745 */
0ae45f63 1746 if (!(inode->i_state & I_DIRTY_ALL))
f3b6a6df 1747 inode_cgwb_move_to_attached(inode, wb);
fc34f8ba
LC
1748 else if (!(inode->i_state & I_SYNC_QUEUED)) {
1749 if ((inode->i_state & I_DIRTY))
1750 redirty_tail_locked(inode, wb);
1751 else if (inode->i_state & I_DIRTY_TIME) {
1752 inode->dirtied_when = jiffies;
1753 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1754 }
1755 }
8b4bae14 1756
4f8ad655 1757 spin_unlock(&wb->list_lock);
1c0eeaf5 1758 inode_sync_complete(inode);
4f8ad655
JK
1759out:
1760 spin_unlock(&inode->i_lock);
1da177e4
LT
1761 return ret;
1762}
1763
a88a341a 1764static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1765 struct wb_writeback_work *work)
d46db3d5
WF
1766{
1767 long pages;
1768
1769 /*
1770 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1771 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1772 * here avoids calling into writeback_inodes_wb() more than once.
1773 *
1774 * The intended call sequence for WB_SYNC_ALL writeback is:
1775 *
1776 * wb_writeback()
1777 * writeback_sb_inodes() <== called only once
1778 * write_cache_pages() <== called once for each inode
1779 * (quickly) tag currently dirty pages
1780 * (maybe slowly) sync all tagged pages
1781 */
1782 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1783 pages = LONG_MAX;
1a12d8bd 1784 else {
a88a341a 1785 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1786 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1787 pages = min(pages, work->nr_pages);
1788 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1789 MIN_WRITEBACK_PAGES);
1790 }
d46db3d5
WF
1791
1792 return pages;
1793}
1794
f11c9c5c
ES
1795/*
1796 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1797 *
d46db3d5 1798 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1799 *
1800 * NOTE! This is called with wb->list_lock held, and will
1801 * unlock and relock that for each inode it ends up doing
1802 * IO for.
f11c9c5c 1803 */
d46db3d5
WF
1804static long writeback_sb_inodes(struct super_block *sb,
1805 struct bdi_writeback *wb,
1806 struct wb_writeback_work *work)
1da177e4 1807{
d46db3d5
WF
1808 struct writeback_control wbc = {
1809 .sync_mode = work->sync_mode,
1810 .tagged_writepages = work->tagged_writepages,
1811 .for_kupdate = work->for_kupdate,
1812 .for_background = work->for_background,
7747bd4b 1813 .for_sync = work->for_sync,
d46db3d5
WF
1814 .range_cyclic = work->range_cyclic,
1815 .range_start = 0,
1816 .range_end = LLONG_MAX,
1817 };
1818 unsigned long start_time = jiffies;
1819 long write_chunk;
4f941049 1820 long total_wrote = 0; /* count both pages and inodes */
d46db3d5 1821
03ba3782 1822 while (!list_empty(&wb->b_io)) {
7ccf19a8 1823 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1824 struct bdi_writeback *tmp_wb;
4f941049 1825 long wrote;
edadfb10
CH
1826
1827 if (inode->i_sb != sb) {
d46db3d5 1828 if (work->sb) {
edadfb10
CH
1829 /*
1830 * We only want to write back data for this
1831 * superblock, move all inodes not belonging
1832 * to it back onto the dirty list.
1833 */
f758eeab 1834 redirty_tail(inode, wb);
edadfb10
CH
1835 continue;
1836 }
1837
1838 /*
1839 * The inode belongs to a different superblock.
1840 * Bounce back to the caller to unpin this and
1841 * pin the next superblock.
1842 */
d46db3d5 1843 break;
edadfb10
CH
1844 }
1845
9843b76a 1846 /*
331cbdee
WL
1847 * Don't bother with new inodes or inodes being freed, first
1848 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1849 * kind writeout is handled by the freer.
1850 */
250df6ed 1851 spin_lock(&inode->i_lock);
9843b76a 1852 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
b35250c0 1853 redirty_tail_locked(inode, wb);
250df6ed 1854 spin_unlock(&inode->i_lock);
7ef0d737
NP
1855 continue;
1856 }
cc1676d9
JK
1857 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1858 /*
1859 * If this inode is locked for writeback and we are not
1860 * doing writeback-for-data-integrity, move it to
1861 * b_more_io so that writeback can proceed with the
1862 * other inodes on s_io.
1863 *
1864 * We'll have another go at writing back this inode
1865 * when we completed a full scan of b_io.
1866 */
cc1676d9 1867 requeue_io(inode, wb);
201851f1 1868 spin_unlock(&inode->i_lock);
cc1676d9
JK
1869 trace_writeback_sb_inodes_requeue(inode);
1870 continue;
1871 }
f0d07b7f
JK
1872 spin_unlock(&wb->list_lock);
1873
4f8ad655
JK
1874 /*
1875 * We already requeued the inode if it had I_SYNC set and we
1876 * are doing WB_SYNC_NONE writeback. So this catches only the
1877 * WB_SYNC_ALL case.
1878 */
169ebd90
JK
1879 if (inode->i_state & I_SYNC) {
1880 /* Wait for I_SYNC. This function drops i_lock... */
1881 inode_sleep_on_writeback(inode);
1882 /* Inode may be gone, start again */
ead188f9 1883 spin_lock(&wb->list_lock);
169ebd90
JK
1884 continue;
1885 }
4f8ad655 1886 inode->i_state |= I_SYNC;
b16b1deb 1887 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1888
a88a341a 1889 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1890 wbc.nr_to_write = write_chunk;
1891 wbc.pages_skipped = 0;
250df6ed 1892
169ebd90
JK
1893 /*
1894 * We use I_SYNC to pin the inode in memory. While it is set
1895 * evict_inode() will wait so the inode cannot be freed.
1896 */
cd8ed2a4 1897 __writeback_single_inode(inode, &wbc);
250df6ed 1898
b16b1deb 1899 wbc_detach_inode(&wbc);
d46db3d5 1900 work->nr_pages -= write_chunk - wbc.nr_to_write;
4f941049
ZC
1901 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1902 wrote = wrote < 0 ? 0 : wrote;
1903 total_wrote += wrote;
590dca3a
CM
1904
1905 if (need_resched()) {
1906 /*
1907 * We're trying to balance between building up a nice
1908 * long list of IOs to improve our merge rate, and
1909 * getting those IOs out quickly for anyone throttling
1910 * in balance_dirty_pages(). cond_resched() doesn't
1911 * unplug, so get our IOs out the door before we
1912 * give up the CPU.
1913 */
1914 blk_flush_plug(current);
1915 cond_resched();
1916 }
1917
aaf25593
TH
1918 /*
1919 * Requeue @inode if still dirty. Be careful as @inode may
1920 * have been switched to another wb in the meantime.
1921 */
1922 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1923 spin_lock(&inode->i_lock);
0ae45f63 1924 if (!(inode->i_state & I_DIRTY_ALL))
4f941049 1925 total_wrote++;
aaf25593 1926 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1927 inode_sync_complete(inode);
0f1b1fd8 1928 spin_unlock(&inode->i_lock);
590dca3a 1929
aaf25593
TH
1930 if (unlikely(tmp_wb != wb)) {
1931 spin_unlock(&tmp_wb->list_lock);
1932 spin_lock(&wb->list_lock);
1933 }
1934
d46db3d5
WF
1935 /*
1936 * bail out to wb_writeback() often enough to check
1937 * background threshold and other termination conditions.
1938 */
4f941049 1939 if (total_wrote) {
d46db3d5
WF
1940 if (time_is_before_jiffies(start_time + HZ / 10UL))
1941 break;
1942 if (work->nr_pages <= 0)
1943 break;
8bc3be27 1944 }
1da177e4 1945 }
4f941049 1946 return total_wrote;
f11c9c5c
ES
1947}
1948
d46db3d5
WF
1949static long __writeback_inodes_wb(struct bdi_writeback *wb,
1950 struct wb_writeback_work *work)
f11c9c5c 1951{
d46db3d5
WF
1952 unsigned long start_time = jiffies;
1953 long wrote = 0;
38f21977 1954
f11c9c5c 1955 while (!list_empty(&wb->b_io)) {
7ccf19a8 1956 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1957 struct super_block *sb = inode->i_sb;
9ecc2738 1958
eb6ef3df 1959 if (!trylock_super(sb)) {
0e995816 1960 /*
eb6ef3df 1961 * trylock_super() may fail consistently due to
0e995816
WF
1962 * s_umount being grabbed by someone else. Don't use
1963 * requeue_io() to avoid busy retrying the inode/sb.
1964 */
1965 redirty_tail(inode, wb);
edadfb10 1966 continue;
f11c9c5c 1967 }
d46db3d5 1968 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1969 up_read(&sb->s_umount);
f11c9c5c 1970
d46db3d5
WF
1971 /* refer to the same tests at the end of writeback_sb_inodes */
1972 if (wrote) {
1973 if (time_is_before_jiffies(start_time + HZ / 10UL))
1974 break;
1975 if (work->nr_pages <= 0)
1976 break;
1977 }
f11c9c5c 1978 }
66f3b8e2 1979 /* Leave any unwritten inodes on b_io */
d46db3d5 1980 return wrote;
66f3b8e2
JA
1981}
1982
7d9f073b 1983static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1984 enum wb_reason reason)
edadfb10 1985{
d46db3d5
WF
1986 struct wb_writeback_work work = {
1987 .nr_pages = nr_pages,
1988 .sync_mode = WB_SYNC_NONE,
1989 .range_cyclic = 1,
0e175a18 1990 .reason = reason,
d46db3d5 1991 };
505a666e 1992 struct blk_plug plug;
edadfb10 1993
505a666e 1994 blk_start_plug(&plug);
f758eeab 1995 spin_lock(&wb->list_lock);
424b351f 1996 if (list_empty(&wb->b_io))
f9cae926 1997 queue_io(wb, &work, jiffies);
d46db3d5 1998 __writeback_inodes_wb(wb, &work);
f758eeab 1999 spin_unlock(&wb->list_lock);
505a666e 2000 blk_finish_plug(&plug);
edadfb10 2001
d46db3d5
WF
2002 return nr_pages - work.nr_pages;
2003}
03ba3782 2004
03ba3782
JA
2005/*
2006 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 2007 *
03ba3782
JA
2008 * Define "old": the first time one of an inode's pages is dirtied, we mark the
2009 * dirtying-time in the inode's address_space. So this periodic writeback code
2010 * just walks the superblock inode list, writing back any inodes which are
2011 * older than a specific point in time.
66f3b8e2 2012 *
03ba3782
JA
2013 * Try to run once per dirty_writeback_interval. But if a writeback event
2014 * takes longer than a dirty_writeback_interval interval, then leave a
2015 * one-second gap.
66f3b8e2 2016 *
f9cae926 2017 * dirtied_before takes precedence over nr_to_write. So we'll only write back
03ba3782 2018 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 2019 */
c4a77a6c 2020static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 2021 struct wb_writeback_work *work)
66f3b8e2 2022{
d46db3d5 2023 long nr_pages = work->nr_pages;
f9cae926 2024 unsigned long dirtied_before = jiffies;
a5989bdc 2025 struct inode *inode;
d46db3d5 2026 long progress;
505a666e 2027 struct blk_plug plug;
66f3b8e2 2028
505a666e 2029 blk_start_plug(&plug);
e8dfc305 2030 spin_lock(&wb->list_lock);
03ba3782
JA
2031 for (;;) {
2032 /*
d3ddec76 2033 * Stop writeback when nr_pages has been consumed
03ba3782 2034 */
83ba7b07 2035 if (work->nr_pages <= 0)
03ba3782 2036 break;
66f3b8e2 2037
aa373cf5
JK
2038 /*
2039 * Background writeout and kupdate-style writeback may
2040 * run forever. Stop them if there is other work to do
2041 * so that e.g. sync can proceed. They'll be restarted
2042 * after the other works are all done.
2043 */
2044 if ((work->for_background || work->for_kupdate) &&
f0054bb1 2045 !list_empty(&wb->work_list))
aa373cf5
JK
2046 break;
2047
38f21977 2048 /*
d3ddec76
WF
2049 * For background writeout, stop when we are below the
2050 * background dirty threshold
38f21977 2051 */
aa661bbe 2052 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 2053 break;
38f21977 2054
1bc36b64
JK
2055 /*
2056 * Kupdate and background works are special and we want to
2057 * include all inodes that need writing. Livelock avoidance is
2058 * handled by these works yielding to any other work so we are
2059 * safe.
2060 */
ba9aa839 2061 if (work->for_kupdate) {
f9cae926 2062 dirtied_before = jiffies -
ba9aa839 2063 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 2064 } else if (work->for_background)
f9cae926 2065 dirtied_before = jiffies;
028c2dd1 2066
5634cc2a 2067 trace_writeback_start(wb, work);
e8dfc305 2068 if (list_empty(&wb->b_io))
f9cae926 2069 queue_io(wb, work, dirtied_before);
83ba7b07 2070 if (work->sb)
d46db3d5 2071 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 2072 else
d46db3d5 2073 progress = __writeback_inodes_wb(wb, work);
5634cc2a 2074 trace_writeback_written(wb, work);
028c2dd1 2075
03ba3782 2076 /*
e6fb6da2
WF
2077 * Did we write something? Try for more
2078 *
2079 * Dirty inodes are moved to b_io for writeback in batches.
2080 * The completion of the current batch does not necessarily
2081 * mean the overall work is done. So we keep looping as long
2082 * as made some progress on cleaning pages or inodes.
03ba3782 2083 */
d46db3d5 2084 if (progress)
71fd05a8
JA
2085 continue;
2086 /*
e6fb6da2 2087 * No more inodes for IO, bail
71fd05a8 2088 */
b7a2441f 2089 if (list_empty(&wb->b_more_io))
03ba3782 2090 break;
71fd05a8
JA
2091 /*
2092 * Nothing written. Wait for some inode to
2093 * become available for writeback. Otherwise
2094 * we'll just busyloop.
2095 */
bace9248
TE
2096 trace_writeback_wait(wb, work);
2097 inode = wb_inode(wb->b_more_io.prev);
2098 spin_lock(&inode->i_lock);
2099 spin_unlock(&wb->list_lock);
2100 /* This function drops i_lock... */
2101 inode_sleep_on_writeback(inode);
2102 spin_lock(&wb->list_lock);
03ba3782 2103 }
e8dfc305 2104 spin_unlock(&wb->list_lock);
505a666e 2105 blk_finish_plug(&plug);
03ba3782 2106
d46db3d5 2107 return nr_pages - work->nr_pages;
03ba3782
JA
2108}
2109
2110/*
83ba7b07 2111 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 2112 */
f0054bb1 2113static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 2114{
83ba7b07 2115 struct wb_writeback_work *work = NULL;
03ba3782 2116
e26081c7 2117 spin_lock_irq(&wb->work_lock);
f0054bb1
TH
2118 if (!list_empty(&wb->work_list)) {
2119 work = list_entry(wb->work_list.next,
83ba7b07
CH
2120 struct wb_writeback_work, list);
2121 list_del_init(&work->list);
03ba3782 2122 }
e26081c7 2123 spin_unlock_irq(&wb->work_lock);
83ba7b07 2124 return work;
03ba3782
JA
2125}
2126
6585027a
JK
2127static long wb_check_background_flush(struct bdi_writeback *wb)
2128{
aa661bbe 2129 if (wb_over_bg_thresh(wb)) {
6585027a
JK
2130
2131 struct wb_writeback_work work = {
2132 .nr_pages = LONG_MAX,
2133 .sync_mode = WB_SYNC_NONE,
2134 .for_background = 1,
2135 .range_cyclic = 1,
0e175a18 2136 .reason = WB_REASON_BACKGROUND,
6585027a
JK
2137 };
2138
2139 return wb_writeback(wb, &work);
2140 }
2141
2142 return 0;
2143}
2144
03ba3782
JA
2145static long wb_check_old_data_flush(struct bdi_writeback *wb)
2146{
2147 unsigned long expired;
2148 long nr_pages;
2149
69b62d01
JA
2150 /*
2151 * When set to zero, disable periodic writeback
2152 */
2153 if (!dirty_writeback_interval)
2154 return 0;
2155
03ba3782
JA
2156 expired = wb->last_old_flush +
2157 msecs_to_jiffies(dirty_writeback_interval * 10);
2158 if (time_before(jiffies, expired))
2159 return 0;
2160
2161 wb->last_old_flush = jiffies;
cdf01dd5 2162 nr_pages = get_nr_dirty_pages();
03ba3782 2163
c4a77a6c 2164 if (nr_pages) {
83ba7b07 2165 struct wb_writeback_work work = {
c4a77a6c
JA
2166 .nr_pages = nr_pages,
2167 .sync_mode = WB_SYNC_NONE,
2168 .for_kupdate = 1,
2169 .range_cyclic = 1,
0e175a18 2170 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
2171 };
2172
83ba7b07 2173 return wb_writeback(wb, &work);
c4a77a6c 2174 }
03ba3782
JA
2175
2176 return 0;
2177}
2178
85009b4f
JA
2179static long wb_check_start_all(struct bdi_writeback *wb)
2180{
2181 long nr_pages;
2182
2183 if (!test_bit(WB_start_all, &wb->state))
2184 return 0;
2185
2186 nr_pages = get_nr_dirty_pages();
2187 if (nr_pages) {
2188 struct wb_writeback_work work = {
2189 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2190 .sync_mode = WB_SYNC_NONE,
2191 .range_cyclic = 1,
2192 .reason = wb->start_all_reason,
2193 };
2194
2195 nr_pages = wb_writeback(wb, &work);
2196 }
2197
2198 clear_bit(WB_start_all, &wb->state);
2199 return nr_pages;
2200}
2201
2202
03ba3782
JA
2203/*
2204 * Retrieve work items and do the writeback they describe
2205 */
25d130ba 2206static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 2207{
83ba7b07 2208 struct wb_writeback_work *work;
c4a77a6c 2209 long wrote = 0;
03ba3782 2210
4452226e 2211 set_bit(WB_writeback_running, &wb->state);
f0054bb1 2212 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 2213 trace_writeback_exec(wb, work);
83ba7b07 2214 wrote += wb_writeback(wb, work);
4a3a485b 2215 finish_writeback_work(wb, work);
03ba3782
JA
2216 }
2217
85009b4f
JA
2218 /*
2219 * Check for a flush-everything request
2220 */
2221 wrote += wb_check_start_all(wb);
2222
03ba3782
JA
2223 /*
2224 * Check for periodic writeback, kupdated() style
2225 */
2226 wrote += wb_check_old_data_flush(wb);
6585027a 2227 wrote += wb_check_background_flush(wb);
4452226e 2228 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
2229
2230 return wrote;
2231}
2232
2233/*
2234 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 2235 * reschedules periodically and does kupdated style flushing.
03ba3782 2236 */
f0054bb1 2237void wb_workfn(struct work_struct *work)
03ba3782 2238{
839a8e86
TH
2239 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2240 struct bdi_writeback, dwork);
03ba3782
JA
2241 long pages_written;
2242
68f23b89 2243 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
766f9164 2244 current->flags |= PF_SWAPWRITE;
455b2864 2245
839a8e86 2246 if (likely(!current_is_workqueue_rescuer() ||
4452226e 2247 !test_bit(WB_registered, &wb->state))) {
6467716a 2248 /*
f0054bb1 2249 * The normal path. Keep writing back @wb until its
839a8e86 2250 * work_list is empty. Note that this path is also taken
f0054bb1 2251 * if @wb is shutting down even when we're running off the
839a8e86 2252 * rescuer as work_list needs to be drained.
6467716a 2253 */
839a8e86 2254 do {
25d130ba 2255 pages_written = wb_do_writeback(wb);
839a8e86 2256 trace_writeback_pages_written(pages_written);
f0054bb1 2257 } while (!list_empty(&wb->work_list));
839a8e86
TH
2258 } else {
2259 /*
2260 * bdi_wq can't get enough workers and we're running off
2261 * the emergency worker. Don't hog it. Hopefully, 1024 is
2262 * enough for efficient IO.
2263 */
f0054bb1 2264 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 2265 WB_REASON_FORKER_THREAD);
455b2864 2266 trace_writeback_pages_written(pages_written);
03ba3782
JA
2267 }
2268
f0054bb1 2269 if (!list_empty(&wb->work_list))
b8b78495 2270 wb_wakeup(wb);
6ca738d6 2271 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2272 wb_wakeup_delayed(wb);
455b2864 2273
839a8e86 2274 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2275}
2276
595043e5
JA
2277/*
2278 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2279 * write back the whole world.
2280 */
2281static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2282 enum wb_reason reason)
595043e5
JA
2283{
2284 struct bdi_writeback *wb;
2285
2286 if (!bdi_has_dirty_io(bdi))
2287 return;
2288
2289 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2290 wb_start_writeback(wb, reason);
595043e5
JA
2291}
2292
2293void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2294 enum wb_reason reason)
2295{
595043e5 2296 rcu_read_lock();
e8e8a0c6 2297 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2298 rcu_read_unlock();
2299}
2300
03ba3782 2301/*
9ba4b2df 2302 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2303 */
9ba4b2df 2304void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2305{
b8c2f347 2306 struct backing_dev_info *bdi;
03ba3782 2307
51350ea0
KK
2308 /*
2309 * If we are expecting writeback progress we must submit plugged IO.
2310 */
2311 if (blk_needs_flush_plug(current))
2312 blk_schedule_flush_plug(current);
2313
b8c2f347 2314 rcu_read_lock();
595043e5 2315 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2316 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2317 rcu_read_unlock();
1da177e4
LT
2318}
2319
a2f48706
TT
2320/*
2321 * Wake up bdi's periodically to make sure dirtytime inodes gets
2322 * written back periodically. We deliberately do *not* check the
2323 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2324 * kernel to be constantly waking up once there are any dirtytime
2325 * inodes on the system. So instead we define a separate delayed work
2326 * function which gets called much more rarely. (By default, only
2327 * once every 12 hours.)
2328 *
2329 * If there is any other write activity going on in the file system,
2330 * this function won't be necessary. But if the only thing that has
2331 * happened on the file system is a dirtytime inode caused by an atime
2332 * update, we need this infrastructure below to make sure that inode
2333 * eventually gets pushed out to disk.
2334 */
2335static void wakeup_dirtytime_writeback(struct work_struct *w);
2336static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2337
2338static void wakeup_dirtytime_writeback(struct work_struct *w)
2339{
2340 struct backing_dev_info *bdi;
2341
2342 rcu_read_lock();
2343 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2344 struct bdi_writeback *wb;
001fe6f6 2345
b817525a 2346 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2347 if (!list_empty(&wb->b_dirty_time))
2348 wb_wakeup(wb);
a2f48706
TT
2349 }
2350 rcu_read_unlock();
2351 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2352}
2353
2354static int __init start_dirtytime_writeback(void)
2355{
2356 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2357 return 0;
2358}
2359__initcall(start_dirtytime_writeback);
2360
1efff914 2361int dirtytime_interval_handler(struct ctl_table *table, int write,
9ca48e20 2362 void *buffer, size_t *lenp, loff_t *ppos)
1efff914
TT
2363{
2364 int ret;
2365
2366 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2367 if (ret == 0 && write)
2368 mod_delayed_work(system_wq, &dirtytime_work, 0);
2369 return ret;
2370}
2371
03ba3782 2372/**
35d14f27 2373 * __mark_inode_dirty - internal function to mark an inode dirty
0117d427
MCC
2374 *
2375 * @inode: inode to mark
35d14f27
EB
2376 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2377 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2378 * with I_DIRTY_PAGES.
0117d427 2379 *
35d14f27
EB
2380 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2381 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
1da177e4 2382 *
35d14f27
EB
2383 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2384 * instead of calling this directly.
03ba3782 2385 *
35d14f27
EB
2386 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2387 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2388 * even if they are later hashed, as they will have been marked dirty already.
03ba3782 2389 *
35d14f27 2390 * In short, ensure you hash any inodes _before_ you start marking them dirty.
1da177e4 2391 *
03ba3782
JA
2392 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2393 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2394 * the kernel-internal blockdev inode represents the dirtying time of the
2395 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2396 * page->mapping->host, so the page-dirtying time is recorded in the internal
2397 * blockdev inode.
1da177e4 2398 */
03ba3782 2399void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2400{
03ba3782 2401 struct super_block *sb = inode->i_sb;
35d14f27 2402 int dirtytime = 0;
201851f1 2403 struct bdi_writeback *wb = NULL;
0ae45f63
TT
2404
2405 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2406
e2728c56 2407 if (flags & I_DIRTY_INODE) {
fc34f8ba
LC
2408 /*
2409 * Inode timestamp update will piggback on this dirtying.
2410 * We tell ->dirty_inode callback that timestamps need to
2411 * be updated by setting I_DIRTY_TIME in flags.
2412 */
2413 if (inode->i_state & I_DIRTY_TIME) {
2414 spin_lock(&inode->i_lock);
2415 if (inode->i_state & I_DIRTY_TIME) {
2416 inode->i_state &= ~I_DIRTY_TIME;
2417 flags |= I_DIRTY_TIME;
2418 }
2419 spin_unlock(&inode->i_lock);
2420 }
2421
35d14f27
EB
2422 /*
2423 * Notify the filesystem about the inode being dirtied, so that
2424 * (if needed) it can update on-disk fields and journal the
2425 * inode. This is only needed when the inode itself is being
2426 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2427 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2428 */
9fb0a7da 2429 trace_writeback_dirty_inode_start(inode, flags);
03ba3782 2430 if (sb->s_op->dirty_inode)
fc34f8ba
LC
2431 sb->s_op->dirty_inode(inode,
2432 flags & (I_DIRTY_INODE | I_DIRTY_TIME));
9fb0a7da 2433 trace_writeback_dirty_inode(inode, flags);
e2728c56 2434
35d14f27 2435 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
0ae45f63 2436 flags &= ~I_DIRTY_TIME;
35d14f27
EB
2437 } else {
2438 /*
2439 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2440 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2441 * in one call to __mark_inode_dirty().)
2442 */
2443 dirtytime = flags & I_DIRTY_TIME;
2444 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
e2728c56 2445 }
03ba3782
JA
2446
2447 /*
9c6ac78e
TH
2448 * Paired with smp_mb() in __writeback_single_inode() for the
2449 * following lockless i_state test. See there for details.
03ba3782
JA
2450 */
2451 smp_mb();
2452
fc34f8ba 2453 if ((inode->i_state & flags) == flags)
03ba3782
JA
2454 return;
2455
250df6ed 2456 spin_lock(&inode->i_lock);
03ba3782
JA
2457 if ((inode->i_state & flags) != flags) {
2458 const int was_dirty = inode->i_state & I_DIRTY;
2459
52ebea74
TH
2460 inode_attach_wb(inode, NULL);
2461
03ba3782
JA
2462 inode->i_state |= flags;
2463
201851f1
JS
2464 /*
2465 * Grab inode's wb early because it requires dropping i_lock and we
2466 * need to make sure following checks happen atomically with dirty
2467 * list handling so that we don't move inodes under flush worker's
2468 * hands.
2469 */
2470 if (!was_dirty) {
2471 wb = locked_inode_to_wb_and_lock_list(inode);
2472 spin_lock(&inode->i_lock);
2473 }
2474
03ba3782 2475 /*
5afced3b
JK
2476 * If the inode is queued for writeback by flush worker, just
2477 * update its dirty state. Once the flush worker is done with
2478 * the inode it will place it on the appropriate superblock
2479 * list, based upon its state.
03ba3782 2480 */
5afced3b 2481 if (inode->i_state & I_SYNC_QUEUED)
201851f1 2482 goto out_unlock;
03ba3782
JA
2483
2484 /*
2485 * Only add valid (hashed) inodes to the superblock's
2486 * dirty list. Add blockdev inodes as well.
2487 */
2488 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2489 if (inode_unhashed(inode))
201851f1 2490 goto out_unlock;
03ba3782 2491 }
a4ffdde6 2492 if (inode->i_state & I_FREEING)
201851f1 2493 goto out_unlock;
03ba3782
JA
2494
2495 /*
2496 * If the inode was already on b_dirty/b_io/b_more_io, don't
2497 * reposition it (that would break b_dirty time-ordering).
2498 */
2499 if (!was_dirty) {
d6c10f1f 2500 struct list_head *dirty_list;
a66979ab 2501 bool wakeup_bdi = false;
253c34e9 2502
03ba3782 2503 inode->dirtied_when = jiffies;
a2f48706
TT
2504 if (dirtytime)
2505 inode->dirtied_time_when = jiffies;
d6c10f1f 2506
0e11f644 2507 if (inode->i_state & I_DIRTY)
0747259d 2508 dirty_list = &wb->b_dirty;
a2f48706 2509 else
0747259d 2510 dirty_list = &wb->b_dirty_time;
d6c10f1f 2511
c7f54084 2512 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2513 dirty_list);
2514
0747259d 2515 spin_unlock(&wb->list_lock);
201851f1 2516 spin_unlock(&inode->i_lock);
0ae45f63 2517 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2518
d6c10f1f
TH
2519 /*
2520 * If this is the first dirty inode for this bdi,
2521 * we have to wake-up the corresponding bdi thread
2522 * to make sure background write-back happens
2523 * later.
2524 */
f56753ac
CH
2525 if (wakeup_bdi &&
2526 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
0747259d 2527 wb_wakeup_delayed(wb);
a66979ab 2528 return;
1da177e4 2529 }
1da177e4 2530 }
201851f1
JS
2531out_unlock:
2532 if (wb)
2533 spin_unlock(&wb->list_lock);
250df6ed 2534 spin_unlock(&inode->i_lock);
03ba3782
JA
2535}
2536EXPORT_SYMBOL(__mark_inode_dirty);
2537
e97fedb9
DC
2538/*
2539 * The @s_sync_lock is used to serialise concurrent sync operations
2540 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2541 * Concurrent callers will block on the s_sync_lock rather than doing contending
2542 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2543 * has been issued up to the time this function is enter is guaranteed to be
2544 * completed by the time we have gained the lock and waited for all IO that is
2545 * in progress regardless of the order callers are granted the lock.
2546 */
b6e51316 2547static void wait_sb_inodes(struct super_block *sb)
03ba3782 2548{
6c60d2b5 2549 LIST_HEAD(sync_list);
03ba3782
JA
2550
2551 /*
2552 * We need to be protected against the filesystem going from
2553 * r/o to r/w or vice versa.
2554 */
b6e51316 2555 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2556
e97fedb9 2557 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2558
2559 /*
6c60d2b5
DC
2560 * Splice the writeback list onto a temporary list to avoid waiting on
2561 * inodes that have started writeback after this point.
2562 *
2563 * Use rcu_read_lock() to keep the inodes around until we have a
2564 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2565 * the local list because inodes can be dropped from either by writeback
2566 * completion.
2567 */
2568 rcu_read_lock();
2569 spin_lock_irq(&sb->s_inode_wblist_lock);
2570 list_splice_init(&sb->s_inodes_wb, &sync_list);
2571
2572 /*
2573 * Data integrity sync. Must wait for all pages under writeback, because
2574 * there may have been pages dirtied before our sync call, but which had
2575 * writeout started before we write it out. In which case, the inode
2576 * may not be on the dirty list, but we still have to wait for that
2577 * writeout.
03ba3782 2578 */
6c60d2b5
DC
2579 while (!list_empty(&sync_list)) {
2580 struct inode *inode = list_first_entry(&sync_list, struct inode,
2581 i_wb_list);
250df6ed 2582 struct address_space *mapping = inode->i_mapping;
03ba3782 2583
6c60d2b5
DC
2584 /*
2585 * Move each inode back to the wb list before we drop the lock
2586 * to preserve consistency between i_wb_list and the mapping
2587 * writeback tag. Writeback completion is responsible to remove
2588 * the inode from either list once the writeback tag is cleared.
2589 */
2590 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2591
2592 /*
2593 * The mapping can appear untagged while still on-list since we
2594 * do not have the mapping lock. Skip it here, wb completion
2595 * will remove it.
2596 */
2597 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2598 continue;
2599
2600 spin_unlock_irq(&sb->s_inode_wblist_lock);
2601
250df6ed 2602 spin_lock(&inode->i_lock);
6c60d2b5 2603 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2604 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2605
2606 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2607 continue;
250df6ed 2608 }
03ba3782 2609 __iget(inode);
250df6ed 2610 spin_unlock(&inode->i_lock);
6c60d2b5 2611 rcu_read_unlock();
03ba3782 2612
aa750fd7
JN
2613 /*
2614 * We keep the error status of individual mapping so that
2615 * applications can catch the writeback error using fsync(2).
2616 * See filemap_fdatawait_keep_errors() for details.
2617 */
2618 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2619
2620 cond_resched();
2621
6c60d2b5
DC
2622 iput(inode);
2623
2624 rcu_read_lock();
2625 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2626 }
6c60d2b5
DC
2627 spin_unlock_irq(&sb->s_inode_wblist_lock);
2628 rcu_read_unlock();
e97fedb9 2629 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2630}
2631
f30a7d0c
TH
2632static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2633 enum wb_reason reason, bool skip_if_busy)
1da177e4 2634{
5b9cce4c
TH
2635 struct backing_dev_info *bdi = sb->s_bdi;
2636 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2637 struct wb_writeback_work work = {
6e6938b6
WF
2638 .sb = sb,
2639 .sync_mode = WB_SYNC_NONE,
2640 .tagged_writepages = 1,
2641 .done = &done,
2642 .nr_pages = nr,
0e175a18 2643 .reason = reason,
3c4d7165 2644 };
d8a8559c 2645
e7972912 2646 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2647 return;
cf37e972 2648 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2649
db125360 2650 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
5b9cce4c 2651 wb_wait_for_completion(&done);
e913fc82 2652}
f30a7d0c
TH
2653
2654/**
2655 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2656 * @sb: the superblock
2657 * @nr: the number of pages to write
2658 * @reason: reason why some writeback work initiated
2659 *
2660 * Start writeback on some inodes on this super_block. No guarantees are made
2661 * on how many (if any) will be written, and this function does not wait
2662 * for IO completion of submitted IO.
2663 */
2664void writeback_inodes_sb_nr(struct super_block *sb,
2665 unsigned long nr,
2666 enum wb_reason reason)
2667{
2668 __writeback_inodes_sb_nr(sb, nr, reason, false);
2669}
3259f8be
CM
2670EXPORT_SYMBOL(writeback_inodes_sb_nr);
2671
2672/**
2673 * writeback_inodes_sb - writeback dirty inodes from given super_block
2674 * @sb: the superblock
786228ab 2675 * @reason: reason why some writeback work was initiated
3259f8be
CM
2676 *
2677 * Start writeback on some inodes on this super_block. No guarantees are made
2678 * on how many (if any) will be written, and this function does not wait
2679 * for IO completion of submitted IO.
2680 */
0e175a18 2681void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2682{
0e175a18 2683 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2684}
0e3c9a22 2685EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2686
17bd55d0 2687/**
8264c321 2688 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2689 * @sb: the superblock
8264c321 2690 * @reason: reason why some writeback work was initiated
17bd55d0 2691 *
8264c321 2692 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2693 */
8264c321 2694void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2695{
10ee27a0 2696 if (!down_read_trylock(&sb->s_umount))
8264c321 2697 return;
10ee27a0 2698
8264c321 2699 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2700 up_read(&sb->s_umount);
3259f8be 2701}
10ee27a0 2702EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2703
d8a8559c
JA
2704/**
2705 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2706 * @sb: the superblock
d8a8559c
JA
2707 *
2708 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2709 * super_block.
d8a8559c 2710 */
0dc83bd3 2711void sync_inodes_sb(struct super_block *sb)
d8a8559c 2712{
5b9cce4c
TH
2713 struct backing_dev_info *bdi = sb->s_bdi;
2714 DEFINE_WB_COMPLETION(done, bdi);
83ba7b07 2715 struct wb_writeback_work work = {
3c4d7165
CH
2716 .sb = sb,
2717 .sync_mode = WB_SYNC_ALL,
2718 .nr_pages = LONG_MAX,
2719 .range_cyclic = 0,
83ba7b07 2720 .done = &done,
0e175a18 2721 .reason = WB_REASON_SYNC,
7747bd4b 2722 .for_sync = 1,
3c4d7165
CH
2723 };
2724
006a0973
TH
2725 /*
2726 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2727 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2728 * bdi_has_dirty() need to be written out too.
2729 */
2730 if (bdi == &noop_backing_dev_info)
6eedc701 2731 return;
cf37e972
CH
2732 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2733
7fc5854f
TH
2734 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2735 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2736 bdi_split_work_to_wbs(bdi, &work, false);
5b9cce4c 2737 wb_wait_for_completion(&done);
7fc5854f 2738 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2739
b6e51316 2740 wait_sb_inodes(sb);
1da177e4 2741}
d8a8559c 2742EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2743
1da177e4 2744/**
7f04c26d
AA
2745 * write_inode_now - write an inode to disk
2746 * @inode: inode to write to disk
2747 * @sync: whether the write should be synchronous or not
2748 *
2749 * This function commits an inode to disk immediately if it is dirty. This is
2750 * primarily needed by knfsd.
1da177e4 2751 *
7f04c26d 2752 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2753 */
1da177e4
LT
2754int write_inode_now(struct inode *inode, int sync)
2755{
1da177e4
LT
2756 struct writeback_control wbc = {
2757 .nr_to_write = LONG_MAX,
18914b18 2758 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2759 .range_start = 0,
2760 .range_end = LLONG_MAX,
1da177e4
LT
2761 };
2762
f56753ac 2763 if (!mapping_can_writeback(inode->i_mapping))
49364ce2 2764 wbc.nr_to_write = 0;
1da177e4
LT
2765
2766 might_sleep();
aaf25593 2767 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2768}
2769EXPORT_SYMBOL(write_inode_now);
2770
c3765016 2771/**
c691b9d9 2772 * sync_inode_metadata - write an inode to disk
c3765016
CH
2773 * @inode: the inode to sync
2774 * @wait: wait for I/O to complete.
2775 *
c691b9d9 2776 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2777 *
2778 * Note: only writes the actual inode, no associated data or other metadata.
2779 */
2780int sync_inode_metadata(struct inode *inode, int wait)
2781{
2782 struct writeback_control wbc = {
2783 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2784 .nr_to_write = 0, /* metadata-only */
2785 };
2786
5662c967 2787 return writeback_single_inode(inode, &wbc);
c3765016
CH
2788}
2789EXPORT_SYMBOL(sync_inode_metadata);