]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/fs-writeback.c
floppy: refactor open() flags handling
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
f0054bb1 181 spin_lock_bh(&wb->work_lock);
8a1270cd 182 if (!test_bit(WB_registered, &wb->state))
5acda9d1 183 goto out_unlock;
cc395d7f
TH
184 if (work->done)
185 atomic_inc(&work->done->cnt);
f0054bb1
TH
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 188out_unlock:
f0054bb1 189 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
190}
191
cc395d7f
TH
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
703c2708
TH
210#ifdef CONFIG_CGROUP_WRITEBACK
211
2a814908
TH
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
21c6321f
TH
226void __inode_attach_wb(struct inode *inode, struct page *page)
227{
228 struct backing_dev_info *bdi = inode_to_bdi(inode);
229 struct bdi_writeback *wb = NULL;
230
231 if (inode_cgwb_enabled(inode)) {
232 struct cgroup_subsys_state *memcg_css;
233
234 if (page) {
235 memcg_css = mem_cgroup_css_from_page(page);
236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 } else {
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css = task_get_css(current, memory_cgrp_id);
240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 css_put(memcg_css);
242 }
243 }
244
245 if (!wb)
246 wb = &bdi->wb;
247
248 /*
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
251 */
252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 wb_put(wb);
254}
255
87e1d789
TH
256/**
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
259 *
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
263 */
264static struct bdi_writeback *
265locked_inode_to_wb_and_lock_list(struct inode *inode)
266 __releases(&inode->i_lock)
267 __acquires(&wb->list_lock)
268{
269 while (true) {
270 struct bdi_writeback *wb = inode_to_wb(inode);
271
272 /*
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
277 */
278 wb_get(wb);
279 spin_unlock(&inode->i_lock);
280 spin_lock(&wb->list_lock);
281 wb_put(wb); /* not gonna deref it anymore */
282
aaa2cacf
TH
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb == inode->i_wb))
87e1d789
TH
285 return wb; /* @inode already has ref */
286
287 spin_unlock(&wb->list_lock);
288 cpu_relax();
289 spin_lock(&inode->i_lock);
290 }
291}
292
293/**
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
296 *
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298 * on entry.
299 */
300static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 __acquires(&wb->list_lock)
302{
303 spin_lock(&inode->i_lock);
304 return locked_inode_to_wb_and_lock_list(inode);
305}
306
682aa8e1
TH
307struct inode_switch_wbs_context {
308 struct inode *inode;
309 struct bdi_writeback *new_wb;
310
311 struct rcu_head rcu_head;
312 struct work_struct work;
313};
314
315static void inode_switch_wbs_work_fn(struct work_struct *work)
316{
317 struct inode_switch_wbs_context *isw =
318 container_of(work, struct inode_switch_wbs_context, work);
319 struct inode *inode = isw->inode;
d10c8095
TH
320 struct address_space *mapping = inode->i_mapping;
321 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 322 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
323 struct radix_tree_iter iter;
324 bool switched = false;
325 void **slot;
682aa8e1
TH
326
327 /*
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
d10c8095
TH
332 *
333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 * gives us exclusion against all wb related operations on @inode
335 * including IO list manipulations and stat updates.
682aa8e1 336 */
d10c8095
TH
337 if (old_wb < new_wb) {
338 spin_lock(&old_wb->list_lock);
339 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
340 } else {
341 spin_lock(&new_wb->list_lock);
342 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
343 }
682aa8e1 344 spin_lock(&inode->i_lock);
d10c8095
TH
345 spin_lock_irq(&mapping->tree_lock);
346
347 /*
348 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 349 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
350 */
351 if (unlikely(inode->i_state & I_FREEING))
352 goto skip_switch;
353
354 /*
355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 * pages actually under underwriteback.
358 */
359 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
360 PAGECACHE_TAG_DIRTY) {
361 struct page *page = radix_tree_deref_slot_protected(slot,
362 &mapping->tree_lock);
363 if (likely(page) && PageDirty(page)) {
364 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
365 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
366 }
367 }
368
369 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
370 PAGECACHE_TAG_WRITEBACK) {
371 struct page *page = radix_tree_deref_slot_protected(slot,
372 &mapping->tree_lock);
373 if (likely(page)) {
374 WARN_ON_ONCE(!PageWriteback(page));
375 __dec_wb_stat(old_wb, WB_WRITEBACK);
376 __inc_wb_stat(new_wb, WB_WRITEBACK);
377 }
378 }
379
380 wb_get(new_wb);
381
382 /*
383 * Transfer to @new_wb's IO list if necessary. The specific list
384 * @inode was on is ignored and the inode is put on ->b_dirty which
385 * is always correct including from ->b_dirty_time. The transfer
386 * preserves @inode->dirtied_when ordering.
387 */
c7f54084 388 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
389 struct inode *pos;
390
c7f54084 391 inode_io_list_del_locked(inode, old_wb);
d10c8095 392 inode->i_wb = new_wb;
c7f54084 393 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
394 if (time_after_eq(inode->dirtied_when,
395 pos->dirtied_when))
396 break;
c7f54084 397 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
398 } else {
399 inode->i_wb = new_wb;
400 }
682aa8e1 401
d10c8095 402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
403 inode->i_wb_frn_winner = 0;
404 inode->i_wb_frn_avg_time = 0;
405 inode->i_wb_frn_history = 0;
d10c8095
TH
406 switched = true;
407skip_switch:
682aa8e1
TH
408 /*
409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 * ensures that the new wb is visible if they see !I_WB_SWITCH.
411 */
412 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
413
d10c8095 414 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 415 spin_unlock(&inode->i_lock);
d10c8095
TH
416 spin_unlock(&new_wb->list_lock);
417 spin_unlock(&old_wb->list_lock);
682aa8e1 418
d10c8095
TH
419 if (switched) {
420 wb_wakeup(new_wb);
421 wb_put(old_wb);
422 }
682aa8e1 423 wb_put(new_wb);
d10c8095
TH
424
425 iput(inode);
682aa8e1
TH
426 kfree(isw);
427}
428
429static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
430{
431 struct inode_switch_wbs_context *isw = container_of(rcu_head,
432 struct inode_switch_wbs_context, rcu_head);
433
434 /* needs to grab bh-unsafe locks, bounce to work item */
435 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
436 schedule_work(&isw->work);
437}
438
439/**
440 * inode_switch_wbs - change the wb association of an inode
441 * @inode: target inode
442 * @new_wb_id: ID of the new wb
443 *
444 * Switch @inode's wb association to the wb identified by @new_wb_id. The
445 * switching is performed asynchronously and may fail silently.
446 */
447static void inode_switch_wbs(struct inode *inode, int new_wb_id)
448{
449 struct backing_dev_info *bdi = inode_to_bdi(inode);
450 struct cgroup_subsys_state *memcg_css;
451 struct inode_switch_wbs_context *isw;
452
453 /* noop if seems to be already in progress */
454 if (inode->i_state & I_WB_SWITCH)
455 return;
456
457 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
458 if (!isw)
459 return;
460
461 /* find and pin the new wb */
462 rcu_read_lock();
463 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
464 if (memcg_css)
465 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
466 rcu_read_unlock();
467 if (!isw->new_wb)
468 goto out_free;
469
470 /* while holding I_WB_SWITCH, no one else can update the association */
471 spin_lock(&inode->i_lock);
472 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
473 inode_to_wb(inode) == isw->new_wb) {
474 spin_unlock(&inode->i_lock);
475 goto out_free;
476 }
477 inode->i_state |= I_WB_SWITCH;
478 spin_unlock(&inode->i_lock);
479
480 ihold(inode);
481 isw->inode = inode;
482
483 /*
484 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 * the RCU protected stat update paths to grab the mapping's
486 * tree_lock so that stat transfer can synchronize against them.
487 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
488 */
489 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
490 return;
491
492out_free:
493 if (isw->new_wb)
494 wb_put(isw->new_wb);
495 kfree(isw);
496}
497
b16b1deb
TH
498/**
499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500 * @wbc: writeback_control of interest
501 * @inode: target inode
502 *
503 * @inode is locked and about to be written back under the control of @wbc.
504 * Record @inode's writeback context into @wbc and unlock the i_lock. On
505 * writeback completion, wbc_detach_inode() should be called. This is used
506 * to track the cgroup writeback context.
507 */
508void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
509 struct inode *inode)
510{
dd73e4b7
TH
511 if (!inode_cgwb_enabled(inode)) {
512 spin_unlock(&inode->i_lock);
513 return;
514 }
515
b16b1deb 516 wbc->wb = inode_to_wb(inode);
2a814908
TH
517 wbc->inode = inode;
518
519 wbc->wb_id = wbc->wb->memcg_css->id;
520 wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 wbc->wb_tcand_id = 0;
522 wbc->wb_bytes = 0;
523 wbc->wb_lcand_bytes = 0;
524 wbc->wb_tcand_bytes = 0;
525
b16b1deb
TH
526 wb_get(wbc->wb);
527 spin_unlock(&inode->i_lock);
e8a7abf5
TH
528
529 /*
530 * A dying wb indicates that the memcg-blkcg mapping has changed
531 * and a new wb is already serving the memcg. Switch immediately.
532 */
533 if (unlikely(wb_dying(wbc->wb)))
534 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
535}
536
537/**
2a814908
TH
538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
540 *
541 * To be called after a writeback attempt of an inode finishes and undoes
542 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
543 *
544 * As concurrent write sharing of an inode is expected to be very rare and
545 * memcg only tracks page ownership on first-use basis severely confining
546 * the usefulness of such sharing, cgroup writeback tracks ownership
547 * per-inode. While the support for concurrent write sharing of an inode
548 * is deemed unnecessary, an inode being written to by different cgroups at
549 * different points in time is a lot more common, and, more importantly,
550 * charging only by first-use can too readily lead to grossly incorrect
551 * behaviors (single foreign page can lead to gigabytes of writeback to be
552 * incorrectly attributed).
553 *
554 * To resolve this issue, cgroup writeback detects the majority dirtier of
555 * an inode and transfers the ownership to it. To avoid unnnecessary
556 * oscillation, the detection mechanism keeps track of history and gives
557 * out the switch verdict only if the foreign usage pattern is stable over
558 * a certain amount of time and/or writeback attempts.
559 *
560 * On each writeback attempt, @wbc tries to detect the majority writer
561 * using Boyer-Moore majority vote algorithm. In addition to the byte
562 * count from the majority voting, it also counts the bytes written for the
563 * current wb and the last round's winner wb (max of last round's current
564 * wb, the winner from two rounds ago, and the last round's majority
565 * candidate). Keeping track of the historical winner helps the algorithm
566 * to semi-reliably detect the most active writer even when it's not the
567 * absolute majority.
568 *
569 * Once the winner of the round is determined, whether the winner is
570 * foreign or not and how much IO time the round consumed is recorded in
571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
572 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
573 */
574void wbc_detach_inode(struct writeback_control *wbc)
575{
2a814908
TH
576 struct bdi_writeback *wb = wbc->wb;
577 struct inode *inode = wbc->inode;
dd73e4b7
TH
578 unsigned long avg_time, max_bytes, max_time;
579 u16 history;
2a814908
TH
580 int max_id;
581
dd73e4b7
TH
582 if (!wb)
583 return;
584
585 history = inode->i_wb_frn_history;
586 avg_time = inode->i_wb_frn_avg_time;
587
2a814908
TH
588 /* pick the winner of this round */
589 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
590 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
591 max_id = wbc->wb_id;
592 max_bytes = wbc->wb_bytes;
593 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
594 max_id = wbc->wb_lcand_id;
595 max_bytes = wbc->wb_lcand_bytes;
596 } else {
597 max_id = wbc->wb_tcand_id;
598 max_bytes = wbc->wb_tcand_bytes;
599 }
600
601 /*
602 * Calculate the amount of IO time the winner consumed and fold it
603 * into the running average kept per inode. If the consumed IO
604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 * deciding whether to switch or not. This is to prevent one-off
606 * small dirtiers from skewing the verdict.
607 */
608 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
609 wb->avg_write_bandwidth);
610 if (avg_time)
611 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
612 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
613 else
614 avg_time = max_time; /* immediate catch up on first run */
615
616 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
617 int slots;
618
619 /*
620 * The switch verdict is reached if foreign wb's consume
621 * more than a certain proportion of IO time in a
622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
623 * history mask where each bit represents one sixteenth of
624 * the period. Determine the number of slots to shift into
625 * history from @max_time.
626 */
627 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
628 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
629 history <<= slots;
630 if (wbc->wb_id != max_id)
631 history |= (1U << slots) - 1;
632
633 /*
634 * Switch if the current wb isn't the consistent winner.
635 * If there are multiple closely competing dirtiers, the
636 * inode may switch across them repeatedly over time, which
637 * is okay. The main goal is avoiding keeping an inode on
638 * the wrong wb for an extended period of time.
639 */
682aa8e1
TH
640 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
641 inode_switch_wbs(inode, max_id);
2a814908
TH
642 }
643
644 /*
645 * Multiple instances of this function may race to update the
646 * following fields but we don't mind occassional inaccuracies.
647 */
648 inode->i_wb_frn_winner = max_id;
649 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
650 inode->i_wb_frn_history = history;
651
b16b1deb
TH
652 wb_put(wbc->wb);
653 wbc->wb = NULL;
654}
655
2a814908
TH
656/**
657 * wbc_account_io - account IO issued during writeback
658 * @wbc: writeback_control of the writeback in progress
659 * @page: page being written out
660 * @bytes: number of bytes being written out
661 *
662 * @bytes from @page are about to written out during the writeback
663 * controlled by @wbc. Keep the book for foreign inode detection. See
664 * wbc_detach_inode().
665 */
666void wbc_account_io(struct writeback_control *wbc, struct page *page,
667 size_t bytes)
668{
669 int id;
670
671 /*
672 * pageout() path doesn't attach @wbc to the inode being written
673 * out. This is intentional as we don't want the function to block
674 * behind a slow cgroup. Ultimately, we want pageout() to kick off
675 * regular writeback instead of writing things out itself.
676 */
677 if (!wbc->wb)
678 return;
679
2a814908 680 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
681
682 if (id == wbc->wb_id) {
683 wbc->wb_bytes += bytes;
684 return;
685 }
686
687 if (id == wbc->wb_lcand_id)
688 wbc->wb_lcand_bytes += bytes;
689
690 /* Boyer-Moore majority vote algorithm */
691 if (!wbc->wb_tcand_bytes)
692 wbc->wb_tcand_id = id;
693 if (id == wbc->wb_tcand_id)
694 wbc->wb_tcand_bytes += bytes;
695 else
696 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
697}
5aa2a96b 698EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 699
703c2708
TH
700/**
701 * inode_congested - test whether an inode is congested
60292bcc 702 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
703 * @cong_bits: mask of WB_[a]sync_congested bits to test
704 *
705 * Tests whether @inode is congested. @cong_bits is the mask of congestion
706 * bits to test and the return value is the mask of set bits.
707 *
708 * If cgroup writeback is enabled for @inode, the congestion state is
709 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
710 * associated with @inode is congested; otherwise, the root wb's congestion
711 * state is used.
60292bcc
TH
712 *
713 * @inode is allowed to be NULL as this function is often called on
714 * mapping->host which is NULL for the swapper space.
703c2708
TH
715 */
716int inode_congested(struct inode *inode, int cong_bits)
717{
5cb8b824
TH
718 /*
719 * Once set, ->i_wb never becomes NULL while the inode is alive.
720 * Start transaction iff ->i_wb is visible.
721 */
aaa2cacf 722 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
723 struct bdi_writeback *wb;
724 bool locked, congested;
725
726 wb = unlocked_inode_to_wb_begin(inode, &locked);
727 congested = wb_congested(wb, cong_bits);
728 unlocked_inode_to_wb_end(inode, locked);
729 return congested;
703c2708
TH
730 }
731
732 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
733}
734EXPORT_SYMBOL_GPL(inode_congested);
735
f2b65121
TH
736/**
737 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
738 * @wb: target bdi_writeback to split @nr_pages to
739 * @nr_pages: number of pages to write for the whole bdi
740 *
741 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
742 * relation to the total write bandwidth of all wb's w/ dirty inodes on
743 * @wb->bdi.
744 */
745static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
746{
747 unsigned long this_bw = wb->avg_write_bandwidth;
748 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
749
750 if (nr_pages == LONG_MAX)
751 return LONG_MAX;
752
753 /*
754 * This may be called on clean wb's and proportional distribution
755 * may not make sense, just use the original @nr_pages in those
756 * cases. In general, we wanna err on the side of writing more.
757 */
758 if (!tot_bw || this_bw >= tot_bw)
759 return nr_pages;
760 else
761 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
762}
763
db125360
TH
764/**
765 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
766 * @bdi: target backing_dev_info
767 * @base_work: wb_writeback_work to issue
768 * @skip_if_busy: skip wb's which already have writeback in progress
769 *
770 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
771 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
772 * distributed to the busy wbs according to each wb's proportion in the
773 * total active write bandwidth of @bdi.
774 */
775static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
776 struct wb_writeback_work *base_work,
777 bool skip_if_busy)
778{
b817525a 779 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
780 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
781 struct bdi_writeback, bdi_node);
db125360
TH
782
783 might_sleep();
db125360
TH
784restart:
785 rcu_read_lock();
b817525a 786 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
787 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
788 struct wb_writeback_work fallback_work;
789 struct wb_writeback_work *work;
790 long nr_pages;
791
b817525a
TH
792 if (last_wb) {
793 wb_put(last_wb);
794 last_wb = NULL;
795 }
796
006a0973
TH
797 /* SYNC_ALL writes out I_DIRTY_TIME too */
798 if (!wb_has_dirty_io(wb) &&
799 (base_work->sync_mode == WB_SYNC_NONE ||
800 list_empty(&wb->b_dirty_time)))
801 continue;
802 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
803 continue;
804
8a1270cd
TH
805 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
806
807 work = kmalloc(sizeof(*work), GFP_ATOMIC);
808 if (work) {
809 *work = *base_work;
810 work->nr_pages = nr_pages;
811 work->auto_free = 1;
812 wb_queue_work(wb, work);
813 continue;
db125360 814 }
8a1270cd
TH
815
816 /* alloc failed, execute synchronously using on-stack fallback */
817 work = &fallback_work;
818 *work = *base_work;
819 work->nr_pages = nr_pages;
820 work->auto_free = 0;
821 work->done = &fallback_work_done;
822
823 wb_queue_work(wb, work);
824
b817525a
TH
825 /*
826 * Pin @wb so that it stays on @bdi->wb_list. This allows
827 * continuing iteration from @wb after dropping and
828 * regrabbing rcu read lock.
829 */
830 wb_get(wb);
831 last_wb = wb;
832
8a1270cd
TH
833 rcu_read_unlock();
834 wb_wait_for_completion(bdi, &fallback_work_done);
835 goto restart;
db125360
TH
836 }
837 rcu_read_unlock();
b817525a
TH
838
839 if (last_wb)
840 wb_put(last_wb);
db125360
TH
841}
842
f2b65121
TH
843#else /* CONFIG_CGROUP_WRITEBACK */
844
87e1d789
TH
845static struct bdi_writeback *
846locked_inode_to_wb_and_lock_list(struct inode *inode)
847 __releases(&inode->i_lock)
848 __acquires(&wb->list_lock)
849{
850 struct bdi_writeback *wb = inode_to_wb(inode);
851
852 spin_unlock(&inode->i_lock);
853 spin_lock(&wb->list_lock);
854 return wb;
855}
856
857static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
858 __acquires(&wb->list_lock)
859{
860 struct bdi_writeback *wb = inode_to_wb(inode);
861
862 spin_lock(&wb->list_lock);
863 return wb;
864}
865
f2b65121
TH
866static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
867{
868 return nr_pages;
869}
870
db125360
TH
871static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
872 struct wb_writeback_work *base_work,
873 bool skip_if_busy)
874{
875 might_sleep();
876
006a0973 877 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 878 base_work->auto_free = 0;
db125360
TH
879 wb_queue_work(&bdi->wb, base_work);
880 }
881}
882
703c2708
TH
883#endif /* CONFIG_CGROUP_WRITEBACK */
884
c00ddad3
TH
885void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
886 bool range_cyclic, enum wb_reason reason)
b6e51316 887{
c00ddad3
TH
888 struct wb_writeback_work *work;
889
890 if (!wb_has_dirty_io(wb))
891 return;
892
893 /*
894 * This is WB_SYNC_NONE writeback, so if allocation fails just
895 * wakeup the thread for old dirty data writeback
896 */
897 work = kzalloc(sizeof(*work), GFP_ATOMIC);
898 if (!work) {
5634cc2a 899 trace_writeback_nowork(wb);
c00ddad3
TH
900 wb_wakeup(wb);
901 return;
902 }
903
904 work->sync_mode = WB_SYNC_NONE;
905 work->nr_pages = nr_pages;
906 work->range_cyclic = range_cyclic;
907 work->reason = reason;
ac7b19a3 908 work->auto_free = 1;
c00ddad3
TH
909
910 wb_queue_work(wb, work);
c5444198 911}
d3ddec76 912
c5444198 913/**
9ecf4866
TH
914 * wb_start_background_writeback - start background writeback
915 * @wb: bdi_writback to write from
c5444198
CH
916 *
917 * Description:
6585027a 918 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 919 * this function returns, it is only guaranteed that for given wb
6585027a
JK
920 * some IO is happening if we are over background dirty threshold.
921 * Caller need not hold sb s_umount semaphore.
c5444198 922 */
9ecf4866 923void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 924{
6585027a
JK
925 /*
926 * We just wake up the flusher thread. It will perform background
927 * writeback as soon as there is no other work to do.
928 */
5634cc2a 929 trace_writeback_wake_background(wb);
9ecf4866 930 wb_wakeup(wb);
1da177e4
LT
931}
932
a66979ab
DC
933/*
934 * Remove the inode from the writeback list it is on.
935 */
c7f54084 936void inode_io_list_del(struct inode *inode)
a66979ab 937{
87e1d789 938 struct bdi_writeback *wb;
f758eeab 939
87e1d789 940 wb = inode_to_wb_and_lock_list(inode);
c7f54084 941 inode_io_list_del_locked(inode, wb);
52ebea74 942 spin_unlock(&wb->list_lock);
a66979ab
DC
943}
944
6610a0bc
AM
945/*
946 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
947 * furthest end of its superblock's dirty-inode list.
948 *
949 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 950 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
951 * the case then the inode must have been redirtied while it was being written
952 * out and we don't reset its dirtied_when.
953 */
f758eeab 954static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 955{
03ba3782 956 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 957 struct inode *tail;
6610a0bc 958
7ccf19a8 959 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 960 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
961 inode->dirtied_when = jiffies;
962 }
c7f54084 963 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
964}
965
c986d1e2 966/*
66f3b8e2 967 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 968 */
f758eeab 969static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 970{
c7f54084 971 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
972}
973
1c0eeaf5
JE
974static void inode_sync_complete(struct inode *inode)
975{
365b94ae 976 inode->i_state &= ~I_SYNC;
4eff96dd
JK
977 /* If inode is clean an unused, put it into LRU now... */
978 inode_add_lru(inode);
365b94ae 979 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
980 smp_mb();
981 wake_up_bit(&inode->i_state, __I_SYNC);
982}
983
d2caa3c5
JL
984static bool inode_dirtied_after(struct inode *inode, unsigned long t)
985{
986 bool ret = time_after(inode->dirtied_when, t);
987#ifndef CONFIG_64BIT
988 /*
989 * For inodes being constantly redirtied, dirtied_when can get stuck.
990 * It _appears_ to be in the future, but is actually in distant past.
991 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 992 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
993 */
994 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
995#endif
996 return ret;
997}
998
0ae45f63
TT
999#define EXPIRE_DIRTY_ATIME 0x0001
1000
2c136579 1001/*
0e2f2b23 1002 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1003 * @delaying_queue to @dispatch_queue.
2c136579 1004 */
e84d0a4f 1005static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1006 struct list_head *dispatch_queue,
0ae45f63 1007 int flags,
ad4e38dd 1008 struct wb_writeback_work *work)
2c136579 1009{
0ae45f63
TT
1010 unsigned long *older_than_this = NULL;
1011 unsigned long expire_time;
5c03449d
SL
1012 LIST_HEAD(tmp);
1013 struct list_head *pos, *node;
cf137307 1014 struct super_block *sb = NULL;
5c03449d 1015 struct inode *inode;
cf137307 1016 int do_sb_sort = 0;
e84d0a4f 1017 int moved = 0;
5c03449d 1018
0ae45f63
TT
1019 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1020 older_than_this = work->older_than_this;
a2f48706
TT
1021 else if (!work->for_sync) {
1022 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1023 older_than_this = &expire_time;
1024 }
2c136579 1025 while (!list_empty(delaying_queue)) {
7ccf19a8 1026 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1027 if (older_than_this &&
1028 inode_dirtied_after(inode, *older_than_this))
2c136579 1029 break;
c7f54084 1030 list_move(&inode->i_io_list, &tmp);
a8855990 1031 moved++;
0ae45f63
TT
1032 if (flags & EXPIRE_DIRTY_ATIME)
1033 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1034 if (sb_is_blkdev_sb(inode->i_sb))
1035 continue;
cf137307
JA
1036 if (sb && sb != inode->i_sb)
1037 do_sb_sort = 1;
1038 sb = inode->i_sb;
5c03449d
SL
1039 }
1040
cf137307
JA
1041 /* just one sb in list, splice to dispatch_queue and we're done */
1042 if (!do_sb_sort) {
1043 list_splice(&tmp, dispatch_queue);
e84d0a4f 1044 goto out;
cf137307
JA
1045 }
1046
5c03449d
SL
1047 /* Move inodes from one superblock together */
1048 while (!list_empty(&tmp)) {
7ccf19a8 1049 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1050 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1051 inode = wb_inode(pos);
5c03449d 1052 if (inode->i_sb == sb)
c7f54084 1053 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1054 }
2c136579 1055 }
e84d0a4f
WF
1056out:
1057 return moved;
2c136579
FW
1058}
1059
1060/*
1061 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1062 * Before
1063 * newly dirtied b_dirty b_io b_more_io
1064 * =============> gf edc BA
1065 * After
1066 * newly dirtied b_dirty b_io b_more_io
1067 * =============> g fBAedc
1068 * |
1069 * +--> dequeue for IO
2c136579 1070 */
ad4e38dd 1071static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1072{
e84d0a4f 1073 int moved;
0ae45f63 1074
f758eeab 1075 assert_spin_locked(&wb->list_lock);
4ea879b9 1076 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1077 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1078 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1079 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1080 if (moved)
1081 wb_io_lists_populated(wb);
ad4e38dd 1082 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1083}
1084
a9185b41 1085static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1086{
9fb0a7da
TH
1087 int ret;
1088
1089 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1090 trace_writeback_write_inode_start(inode, wbc);
1091 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1092 trace_writeback_write_inode(inode, wbc);
1093 return ret;
1094 }
03ba3782 1095 return 0;
08d8e974 1096}
08d8e974 1097
1da177e4 1098/*
169ebd90
JK
1099 * Wait for writeback on an inode to complete. Called with i_lock held.
1100 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1101 */
169ebd90
JK
1102static void __inode_wait_for_writeback(struct inode *inode)
1103 __releases(inode->i_lock)
1104 __acquires(inode->i_lock)
01c03194
CH
1105{
1106 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1107 wait_queue_head_t *wqh;
1108
1109 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1110 while (inode->i_state & I_SYNC) {
1111 spin_unlock(&inode->i_lock);
74316201
N
1112 __wait_on_bit(wqh, &wq, bit_wait,
1113 TASK_UNINTERRUPTIBLE);
250df6ed 1114 spin_lock(&inode->i_lock);
58a9d3d8 1115 }
01c03194
CH
1116}
1117
169ebd90
JK
1118/*
1119 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1120 */
1121void inode_wait_for_writeback(struct inode *inode)
1122{
1123 spin_lock(&inode->i_lock);
1124 __inode_wait_for_writeback(inode);
1125 spin_unlock(&inode->i_lock);
1126}
1127
1128/*
1129 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1130 * held and drops it. It is aimed for callers not holding any inode reference
1131 * so once i_lock is dropped, inode can go away.
1132 */
1133static void inode_sleep_on_writeback(struct inode *inode)
1134 __releases(inode->i_lock)
1135{
1136 DEFINE_WAIT(wait);
1137 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1138 int sleep;
1139
1140 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1141 sleep = inode->i_state & I_SYNC;
1142 spin_unlock(&inode->i_lock);
1143 if (sleep)
1144 schedule();
1145 finish_wait(wqh, &wait);
1146}
1147
ccb26b5a
JK
1148/*
1149 * Find proper writeback list for the inode depending on its current state and
1150 * possibly also change of its state while we were doing writeback. Here we
1151 * handle things such as livelock prevention or fairness of writeback among
1152 * inodes. This function can be called only by flusher thread - noone else
1153 * processes all inodes in writeback lists and requeueing inodes behind flusher
1154 * thread's back can have unexpected consequences.
1155 */
1156static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1157 struct writeback_control *wbc)
1158{
1159 if (inode->i_state & I_FREEING)
1160 return;
1161
1162 /*
1163 * Sync livelock prevention. Each inode is tagged and synced in one
1164 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1165 * the dirty time to prevent enqueue and sync it again.
1166 */
1167 if ((inode->i_state & I_DIRTY) &&
1168 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1169 inode->dirtied_when = jiffies;
1170
4f8ad655
JK
1171 if (wbc->pages_skipped) {
1172 /*
1173 * writeback is not making progress due to locked
1174 * buffers. Skip this inode for now.
1175 */
1176 redirty_tail(inode, wb);
1177 return;
1178 }
1179
ccb26b5a
JK
1180 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1181 /*
1182 * We didn't write back all the pages. nfs_writepages()
1183 * sometimes bales out without doing anything.
1184 */
1185 if (wbc->nr_to_write <= 0) {
1186 /* Slice used up. Queue for next turn. */
1187 requeue_io(inode, wb);
1188 } else {
1189 /*
1190 * Writeback blocked by something other than
1191 * congestion. Delay the inode for some time to
1192 * avoid spinning on the CPU (100% iowait)
1193 * retrying writeback of the dirty page/inode
1194 * that cannot be performed immediately.
1195 */
1196 redirty_tail(inode, wb);
1197 }
1198 } else if (inode->i_state & I_DIRTY) {
1199 /*
1200 * Filesystems can dirty the inode during writeback operations,
1201 * such as delayed allocation during submission or metadata
1202 * updates after data IO completion.
1203 */
1204 redirty_tail(inode, wb);
0ae45f63 1205 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1206 inode->dirtied_when = jiffies;
c7f54084 1207 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1208 } else {
1209 /* The inode is clean. Remove from writeback lists. */
c7f54084 1210 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1211 }
1212}
1213
01c03194 1214/*
4f8ad655
JK
1215 * Write out an inode and its dirty pages. Do not update the writeback list
1216 * linkage. That is left to the caller. The caller is also responsible for
1217 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1218 */
1219static int
cd8ed2a4 1220__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1221{
1da177e4 1222 struct address_space *mapping = inode->i_mapping;
251d6a47 1223 long nr_to_write = wbc->nr_to_write;
01c03194 1224 unsigned dirty;
1da177e4
LT
1225 int ret;
1226
4f8ad655 1227 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1228
9fb0a7da
TH
1229 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1230
1da177e4
LT
1231 ret = do_writepages(mapping, wbc);
1232
26821ed4
CH
1233 /*
1234 * Make sure to wait on the data before writing out the metadata.
1235 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1236 * I/O completion. We don't do it for sync(2) writeback because it has a
1237 * separate, external IO completion path and ->sync_fs for guaranteeing
1238 * inode metadata is written back correctly.
26821ed4 1239 */
7747bd4b 1240 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1241 int err = filemap_fdatawait(mapping);
1da177e4
LT
1242 if (ret == 0)
1243 ret = err;
1244 }
1245
5547e8aa
DM
1246 /*
1247 * Some filesystems may redirty the inode during the writeback
1248 * due to delalloc, clear dirty metadata flags right before
1249 * write_inode()
1250 */
250df6ed 1251 spin_lock(&inode->i_lock);
9c6ac78e 1252
5547e8aa 1253 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1254 if (inode->i_state & I_DIRTY_TIME) {
1255 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1256 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1257 unlikely(time_after(jiffies,
1258 (inode->dirtied_time_when +
1259 dirtytime_expire_interval * HZ)))) {
1260 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1261 trace_writeback_lazytime(inode);
1262 }
1263 } else
1264 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1265 inode->i_state &= ~dirty;
9c6ac78e
TH
1266
1267 /*
1268 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1269 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1270 * either they see the I_DIRTY bits cleared or we see the dirtied
1271 * inode.
1272 *
1273 * I_DIRTY_PAGES is always cleared together above even if @mapping
1274 * still has dirty pages. The flag is reinstated after smp_mb() if
1275 * necessary. This guarantees that either __mark_inode_dirty()
1276 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1277 */
1278 smp_mb();
1279
1280 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1281 inode->i_state |= I_DIRTY_PAGES;
1282
250df6ed 1283 spin_unlock(&inode->i_lock);
9c6ac78e 1284
0ae45f63
TT
1285 if (dirty & I_DIRTY_TIME)
1286 mark_inode_dirty_sync(inode);
26821ed4 1287 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1288 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1289 int err = write_inode(inode, wbc);
1da177e4
LT
1290 if (ret == 0)
1291 ret = err;
1292 }
4f8ad655
JK
1293 trace_writeback_single_inode(inode, wbc, nr_to_write);
1294 return ret;
1295}
1296
1297/*
1298 * Write out an inode's dirty pages. Either the caller has an active reference
1299 * on the inode or the inode has I_WILL_FREE set.
1300 *
1301 * This function is designed to be called for writing back one inode which
1302 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1303 * and does more profound writeback list handling in writeback_sb_inodes().
1304 */
1305static int
1306writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1307 struct writeback_control *wbc)
1308{
1309 int ret = 0;
1310
1311 spin_lock(&inode->i_lock);
1312 if (!atomic_read(&inode->i_count))
1313 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1314 else
1315 WARN_ON(inode->i_state & I_WILL_FREE);
1316
1317 if (inode->i_state & I_SYNC) {
1318 if (wbc->sync_mode != WB_SYNC_ALL)
1319 goto out;
1320 /*
169ebd90
JK
1321 * It's a data-integrity sync. We must wait. Since callers hold
1322 * inode reference or inode has I_WILL_FREE set, it cannot go
1323 * away under us.
4f8ad655 1324 */
169ebd90 1325 __inode_wait_for_writeback(inode);
4f8ad655
JK
1326 }
1327 WARN_ON(inode->i_state & I_SYNC);
1328 /*
f9b0e058
JK
1329 * Skip inode if it is clean and we have no outstanding writeback in
1330 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1331 * function since flusher thread may be doing for example sync in
1332 * parallel and if we move the inode, it could get skipped. So here we
1333 * make sure inode is on some writeback list and leave it there unless
1334 * we have completely cleaned the inode.
4f8ad655 1335 */
0ae45f63 1336 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1337 (wbc->sync_mode != WB_SYNC_ALL ||
1338 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1339 goto out;
1340 inode->i_state |= I_SYNC;
b16b1deb 1341 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1342
cd8ed2a4 1343 ret = __writeback_single_inode(inode, wbc);
1da177e4 1344
b16b1deb 1345 wbc_detach_inode(wbc);
f758eeab 1346 spin_lock(&wb->list_lock);
250df6ed 1347 spin_lock(&inode->i_lock);
4f8ad655
JK
1348 /*
1349 * If inode is clean, remove it from writeback lists. Otherwise don't
1350 * touch it. See comment above for explanation.
1351 */
0ae45f63 1352 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1353 inode_io_list_del_locked(inode, wb);
4f8ad655 1354 spin_unlock(&wb->list_lock);
1c0eeaf5 1355 inode_sync_complete(inode);
4f8ad655
JK
1356out:
1357 spin_unlock(&inode->i_lock);
1da177e4
LT
1358 return ret;
1359}
1360
a88a341a 1361static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1362 struct wb_writeback_work *work)
d46db3d5
WF
1363{
1364 long pages;
1365
1366 /*
1367 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1368 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1369 * here avoids calling into writeback_inodes_wb() more than once.
1370 *
1371 * The intended call sequence for WB_SYNC_ALL writeback is:
1372 *
1373 * wb_writeback()
1374 * writeback_sb_inodes() <== called only once
1375 * write_cache_pages() <== called once for each inode
1376 * (quickly) tag currently dirty pages
1377 * (maybe slowly) sync all tagged pages
1378 */
1379 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1380 pages = LONG_MAX;
1a12d8bd 1381 else {
a88a341a 1382 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1383 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1384 pages = min(pages, work->nr_pages);
1385 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1386 MIN_WRITEBACK_PAGES);
1387 }
d46db3d5
WF
1388
1389 return pages;
1390}
1391
f11c9c5c
ES
1392/*
1393 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1394 *
d46db3d5 1395 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1396 *
1397 * NOTE! This is called with wb->list_lock held, and will
1398 * unlock and relock that for each inode it ends up doing
1399 * IO for.
f11c9c5c 1400 */
d46db3d5
WF
1401static long writeback_sb_inodes(struct super_block *sb,
1402 struct bdi_writeback *wb,
1403 struct wb_writeback_work *work)
1da177e4 1404{
d46db3d5
WF
1405 struct writeback_control wbc = {
1406 .sync_mode = work->sync_mode,
1407 .tagged_writepages = work->tagged_writepages,
1408 .for_kupdate = work->for_kupdate,
1409 .for_background = work->for_background,
7747bd4b 1410 .for_sync = work->for_sync,
d46db3d5
WF
1411 .range_cyclic = work->range_cyclic,
1412 .range_start = 0,
1413 .range_end = LLONG_MAX,
1414 };
1415 unsigned long start_time = jiffies;
1416 long write_chunk;
1417 long wrote = 0; /* count both pages and inodes */
1418
03ba3782 1419 while (!list_empty(&wb->b_io)) {
7ccf19a8 1420 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1421
1422 if (inode->i_sb != sb) {
d46db3d5 1423 if (work->sb) {
edadfb10
CH
1424 /*
1425 * We only want to write back data for this
1426 * superblock, move all inodes not belonging
1427 * to it back onto the dirty list.
1428 */
f758eeab 1429 redirty_tail(inode, wb);
edadfb10
CH
1430 continue;
1431 }
1432
1433 /*
1434 * The inode belongs to a different superblock.
1435 * Bounce back to the caller to unpin this and
1436 * pin the next superblock.
1437 */
d46db3d5 1438 break;
edadfb10
CH
1439 }
1440
9843b76a 1441 /*
331cbdee
WL
1442 * Don't bother with new inodes or inodes being freed, first
1443 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1444 * kind writeout is handled by the freer.
1445 */
250df6ed 1446 spin_lock(&inode->i_lock);
9843b76a 1447 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1448 spin_unlock(&inode->i_lock);
fcc5c222 1449 redirty_tail(inode, wb);
7ef0d737
NP
1450 continue;
1451 }
cc1676d9
JK
1452 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1453 /*
1454 * If this inode is locked for writeback and we are not
1455 * doing writeback-for-data-integrity, move it to
1456 * b_more_io so that writeback can proceed with the
1457 * other inodes on s_io.
1458 *
1459 * We'll have another go at writing back this inode
1460 * when we completed a full scan of b_io.
1461 */
1462 spin_unlock(&inode->i_lock);
1463 requeue_io(inode, wb);
1464 trace_writeback_sb_inodes_requeue(inode);
1465 continue;
1466 }
f0d07b7f
JK
1467 spin_unlock(&wb->list_lock);
1468
4f8ad655
JK
1469 /*
1470 * We already requeued the inode if it had I_SYNC set and we
1471 * are doing WB_SYNC_NONE writeback. So this catches only the
1472 * WB_SYNC_ALL case.
1473 */
169ebd90
JK
1474 if (inode->i_state & I_SYNC) {
1475 /* Wait for I_SYNC. This function drops i_lock... */
1476 inode_sleep_on_writeback(inode);
1477 /* Inode may be gone, start again */
ead188f9 1478 spin_lock(&wb->list_lock);
169ebd90
JK
1479 continue;
1480 }
4f8ad655 1481 inode->i_state |= I_SYNC;
b16b1deb 1482 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1483
a88a341a 1484 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1485 wbc.nr_to_write = write_chunk;
1486 wbc.pages_skipped = 0;
250df6ed 1487
169ebd90
JK
1488 /*
1489 * We use I_SYNC to pin the inode in memory. While it is set
1490 * evict_inode() will wait so the inode cannot be freed.
1491 */
cd8ed2a4 1492 __writeback_single_inode(inode, &wbc);
250df6ed 1493
b16b1deb 1494 wbc_detach_inode(&wbc);
d46db3d5
WF
1495 work->nr_pages -= write_chunk - wbc.nr_to_write;
1496 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1497
1498 if (need_resched()) {
1499 /*
1500 * We're trying to balance between building up a nice
1501 * long list of IOs to improve our merge rate, and
1502 * getting those IOs out quickly for anyone throttling
1503 * in balance_dirty_pages(). cond_resched() doesn't
1504 * unplug, so get our IOs out the door before we
1505 * give up the CPU.
1506 */
1507 blk_flush_plug(current);
1508 cond_resched();
1509 }
1510
1511
4f8ad655
JK
1512 spin_lock(&wb->list_lock);
1513 spin_lock(&inode->i_lock);
0ae45f63 1514 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1515 wrote++;
4f8ad655
JK
1516 requeue_inode(inode, wb, &wbc);
1517 inode_sync_complete(inode);
0f1b1fd8 1518 spin_unlock(&inode->i_lock);
590dca3a 1519
d46db3d5
WF
1520 /*
1521 * bail out to wb_writeback() often enough to check
1522 * background threshold and other termination conditions.
1523 */
1524 if (wrote) {
1525 if (time_is_before_jiffies(start_time + HZ / 10UL))
1526 break;
1527 if (work->nr_pages <= 0)
1528 break;
8bc3be27 1529 }
1da177e4 1530 }
d46db3d5 1531 return wrote;
f11c9c5c
ES
1532}
1533
d46db3d5
WF
1534static long __writeback_inodes_wb(struct bdi_writeback *wb,
1535 struct wb_writeback_work *work)
f11c9c5c 1536{
d46db3d5
WF
1537 unsigned long start_time = jiffies;
1538 long wrote = 0;
38f21977 1539
f11c9c5c 1540 while (!list_empty(&wb->b_io)) {
7ccf19a8 1541 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1542 struct super_block *sb = inode->i_sb;
9ecc2738 1543
eb6ef3df 1544 if (!trylock_super(sb)) {
0e995816 1545 /*
eb6ef3df 1546 * trylock_super() may fail consistently due to
0e995816
WF
1547 * s_umount being grabbed by someone else. Don't use
1548 * requeue_io() to avoid busy retrying the inode/sb.
1549 */
1550 redirty_tail(inode, wb);
edadfb10 1551 continue;
f11c9c5c 1552 }
d46db3d5 1553 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1554 up_read(&sb->s_umount);
f11c9c5c 1555
d46db3d5
WF
1556 /* refer to the same tests at the end of writeback_sb_inodes */
1557 if (wrote) {
1558 if (time_is_before_jiffies(start_time + HZ / 10UL))
1559 break;
1560 if (work->nr_pages <= 0)
1561 break;
1562 }
f11c9c5c 1563 }
66f3b8e2 1564 /* Leave any unwritten inodes on b_io */
d46db3d5 1565 return wrote;
66f3b8e2
JA
1566}
1567
7d9f073b 1568static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1569 enum wb_reason reason)
edadfb10 1570{
d46db3d5
WF
1571 struct wb_writeback_work work = {
1572 .nr_pages = nr_pages,
1573 .sync_mode = WB_SYNC_NONE,
1574 .range_cyclic = 1,
0e175a18 1575 .reason = reason,
d46db3d5 1576 };
505a666e 1577 struct blk_plug plug;
edadfb10 1578
505a666e 1579 blk_start_plug(&plug);
f758eeab 1580 spin_lock(&wb->list_lock);
424b351f 1581 if (list_empty(&wb->b_io))
ad4e38dd 1582 queue_io(wb, &work);
d46db3d5 1583 __writeback_inodes_wb(wb, &work);
f758eeab 1584 spin_unlock(&wb->list_lock);
505a666e 1585 blk_finish_plug(&plug);
edadfb10 1586
d46db3d5
WF
1587 return nr_pages - work.nr_pages;
1588}
03ba3782 1589
03ba3782
JA
1590/*
1591 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1592 *
03ba3782
JA
1593 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1594 * dirtying-time in the inode's address_space. So this periodic writeback code
1595 * just walks the superblock inode list, writing back any inodes which are
1596 * older than a specific point in time.
66f3b8e2 1597 *
03ba3782
JA
1598 * Try to run once per dirty_writeback_interval. But if a writeback event
1599 * takes longer than a dirty_writeback_interval interval, then leave a
1600 * one-second gap.
66f3b8e2 1601 *
03ba3782
JA
1602 * older_than_this takes precedence over nr_to_write. So we'll only write back
1603 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1604 */
c4a77a6c 1605static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1606 struct wb_writeback_work *work)
66f3b8e2 1607{
e98be2d5 1608 unsigned long wb_start = jiffies;
d46db3d5 1609 long nr_pages = work->nr_pages;
0dc83bd3 1610 unsigned long oldest_jif;
a5989bdc 1611 struct inode *inode;
d46db3d5 1612 long progress;
505a666e 1613 struct blk_plug plug;
66f3b8e2 1614
0dc83bd3
JK
1615 oldest_jif = jiffies;
1616 work->older_than_this = &oldest_jif;
38f21977 1617
505a666e 1618 blk_start_plug(&plug);
e8dfc305 1619 spin_lock(&wb->list_lock);
03ba3782
JA
1620 for (;;) {
1621 /*
d3ddec76 1622 * Stop writeback when nr_pages has been consumed
03ba3782 1623 */
83ba7b07 1624 if (work->nr_pages <= 0)
03ba3782 1625 break;
66f3b8e2 1626
aa373cf5
JK
1627 /*
1628 * Background writeout and kupdate-style writeback may
1629 * run forever. Stop them if there is other work to do
1630 * so that e.g. sync can proceed. They'll be restarted
1631 * after the other works are all done.
1632 */
1633 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1634 !list_empty(&wb->work_list))
aa373cf5
JK
1635 break;
1636
38f21977 1637 /*
d3ddec76
WF
1638 * For background writeout, stop when we are below the
1639 * background dirty threshold
38f21977 1640 */
aa661bbe 1641 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1642 break;
38f21977 1643
1bc36b64
JK
1644 /*
1645 * Kupdate and background works are special and we want to
1646 * include all inodes that need writing. Livelock avoidance is
1647 * handled by these works yielding to any other work so we are
1648 * safe.
1649 */
ba9aa839 1650 if (work->for_kupdate) {
0dc83bd3 1651 oldest_jif = jiffies -
ba9aa839 1652 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1653 } else if (work->for_background)
0dc83bd3 1654 oldest_jif = jiffies;
028c2dd1 1655
5634cc2a 1656 trace_writeback_start(wb, work);
e8dfc305 1657 if (list_empty(&wb->b_io))
ad4e38dd 1658 queue_io(wb, work);
83ba7b07 1659 if (work->sb)
d46db3d5 1660 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1661 else
d46db3d5 1662 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1663 trace_writeback_written(wb, work);
028c2dd1 1664
e98be2d5 1665 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1666
1667 /*
e6fb6da2
WF
1668 * Did we write something? Try for more
1669 *
1670 * Dirty inodes are moved to b_io for writeback in batches.
1671 * The completion of the current batch does not necessarily
1672 * mean the overall work is done. So we keep looping as long
1673 * as made some progress on cleaning pages or inodes.
03ba3782 1674 */
d46db3d5 1675 if (progress)
71fd05a8
JA
1676 continue;
1677 /*
e6fb6da2 1678 * No more inodes for IO, bail
71fd05a8 1679 */
b7a2441f 1680 if (list_empty(&wb->b_more_io))
03ba3782 1681 break;
71fd05a8
JA
1682 /*
1683 * Nothing written. Wait for some inode to
1684 * become available for writeback. Otherwise
1685 * we'll just busyloop.
1686 */
71fd05a8 1687 if (!list_empty(&wb->b_more_io)) {
5634cc2a 1688 trace_writeback_wait(wb, work);
7ccf19a8 1689 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1690 spin_lock(&inode->i_lock);
f0d07b7f 1691 spin_unlock(&wb->list_lock);
169ebd90
JK
1692 /* This function drops i_lock... */
1693 inode_sleep_on_writeback(inode);
f0d07b7f 1694 spin_lock(&wb->list_lock);
03ba3782
JA
1695 }
1696 }
e8dfc305 1697 spin_unlock(&wb->list_lock);
505a666e 1698 blk_finish_plug(&plug);
03ba3782 1699
d46db3d5 1700 return nr_pages - work->nr_pages;
03ba3782
JA
1701}
1702
1703/*
83ba7b07 1704 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1705 */
f0054bb1 1706static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1707{
83ba7b07 1708 struct wb_writeback_work *work = NULL;
03ba3782 1709
f0054bb1
TH
1710 spin_lock_bh(&wb->work_lock);
1711 if (!list_empty(&wb->work_list)) {
1712 work = list_entry(wb->work_list.next,
83ba7b07
CH
1713 struct wb_writeback_work, list);
1714 list_del_init(&work->list);
03ba3782 1715 }
f0054bb1 1716 spin_unlock_bh(&wb->work_lock);
83ba7b07 1717 return work;
03ba3782
JA
1718}
1719
cdf01dd5
LT
1720/*
1721 * Add in the number of potentially dirty inodes, because each inode
1722 * write can dirty pagecache in the underlying blockdev.
1723 */
1724static unsigned long get_nr_dirty_pages(void)
1725{
1726 return global_page_state(NR_FILE_DIRTY) +
1727 global_page_state(NR_UNSTABLE_NFS) +
1728 get_nr_dirty_inodes();
1729}
1730
6585027a
JK
1731static long wb_check_background_flush(struct bdi_writeback *wb)
1732{
aa661bbe 1733 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1734
1735 struct wb_writeback_work work = {
1736 .nr_pages = LONG_MAX,
1737 .sync_mode = WB_SYNC_NONE,
1738 .for_background = 1,
1739 .range_cyclic = 1,
0e175a18 1740 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1741 };
1742
1743 return wb_writeback(wb, &work);
1744 }
1745
1746 return 0;
1747}
1748
03ba3782
JA
1749static long wb_check_old_data_flush(struct bdi_writeback *wb)
1750{
1751 unsigned long expired;
1752 long nr_pages;
1753
69b62d01
JA
1754 /*
1755 * When set to zero, disable periodic writeback
1756 */
1757 if (!dirty_writeback_interval)
1758 return 0;
1759
03ba3782
JA
1760 expired = wb->last_old_flush +
1761 msecs_to_jiffies(dirty_writeback_interval * 10);
1762 if (time_before(jiffies, expired))
1763 return 0;
1764
1765 wb->last_old_flush = jiffies;
cdf01dd5 1766 nr_pages = get_nr_dirty_pages();
03ba3782 1767
c4a77a6c 1768 if (nr_pages) {
83ba7b07 1769 struct wb_writeback_work work = {
c4a77a6c
JA
1770 .nr_pages = nr_pages,
1771 .sync_mode = WB_SYNC_NONE,
1772 .for_kupdate = 1,
1773 .range_cyclic = 1,
0e175a18 1774 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1775 };
1776
83ba7b07 1777 return wb_writeback(wb, &work);
c4a77a6c 1778 }
03ba3782
JA
1779
1780 return 0;
1781}
1782
1783/*
1784 * Retrieve work items and do the writeback they describe
1785 */
25d130ba 1786static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1787{
83ba7b07 1788 struct wb_writeback_work *work;
c4a77a6c 1789 long wrote = 0;
03ba3782 1790
4452226e 1791 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1792 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1793 struct wb_completion *done = work->done;
03ba3782 1794
5634cc2a 1795 trace_writeback_exec(wb, work);
455b2864 1796
83ba7b07 1797 wrote += wb_writeback(wb, work);
03ba3782 1798
8a1270cd 1799 if (work->auto_free)
83ba7b07 1800 kfree(work);
cc395d7f
TH
1801 if (done && atomic_dec_and_test(&done->cnt))
1802 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1803 }
1804
1805 /*
1806 * Check for periodic writeback, kupdated() style
1807 */
1808 wrote += wb_check_old_data_flush(wb);
6585027a 1809 wrote += wb_check_background_flush(wb);
4452226e 1810 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1811
1812 return wrote;
1813}
1814
1815/*
1816 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1817 * reschedules periodically and does kupdated style flushing.
03ba3782 1818 */
f0054bb1 1819void wb_workfn(struct work_struct *work)
03ba3782 1820{
839a8e86
TH
1821 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1822 struct bdi_writeback, dwork);
03ba3782
JA
1823 long pages_written;
1824
f0054bb1 1825 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1826 current->flags |= PF_SWAPWRITE;
455b2864 1827
839a8e86 1828 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1829 !test_bit(WB_registered, &wb->state))) {
6467716a 1830 /*
f0054bb1 1831 * The normal path. Keep writing back @wb until its
839a8e86 1832 * work_list is empty. Note that this path is also taken
f0054bb1 1833 * if @wb is shutting down even when we're running off the
839a8e86 1834 * rescuer as work_list needs to be drained.
6467716a 1835 */
839a8e86 1836 do {
25d130ba 1837 pages_written = wb_do_writeback(wb);
839a8e86 1838 trace_writeback_pages_written(pages_written);
f0054bb1 1839 } while (!list_empty(&wb->work_list));
839a8e86
TH
1840 } else {
1841 /*
1842 * bdi_wq can't get enough workers and we're running off
1843 * the emergency worker. Don't hog it. Hopefully, 1024 is
1844 * enough for efficient IO.
1845 */
f0054bb1 1846 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1847 WB_REASON_FORKER_THREAD);
455b2864 1848 trace_writeback_pages_written(pages_written);
03ba3782
JA
1849 }
1850
f0054bb1 1851 if (!list_empty(&wb->work_list))
6ca738d6
DB
1852 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1853 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1854 wb_wakeup_delayed(wb);
455b2864 1855
839a8e86 1856 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1857}
1858
1859/*
b8c2f347
CH
1860 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1861 * the whole world.
03ba3782 1862 */
0e175a18 1863void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1864{
b8c2f347 1865 struct backing_dev_info *bdi;
03ba3782 1866
47df3dde
JK
1867 if (!nr_pages)
1868 nr_pages = get_nr_dirty_pages();
03ba3782 1869
b8c2f347 1870 rcu_read_lock();
f2b65121
TH
1871 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1872 struct bdi_writeback *wb;
f2b65121
TH
1873
1874 if (!bdi_has_dirty_io(bdi))
1875 continue;
1876
b817525a 1877 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
f2b65121
TH
1878 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1879 false, reason);
1880 }
cfc4ba53 1881 rcu_read_unlock();
1da177e4
LT
1882}
1883
a2f48706
TT
1884/*
1885 * Wake up bdi's periodically to make sure dirtytime inodes gets
1886 * written back periodically. We deliberately do *not* check the
1887 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1888 * kernel to be constantly waking up once there are any dirtytime
1889 * inodes on the system. So instead we define a separate delayed work
1890 * function which gets called much more rarely. (By default, only
1891 * once every 12 hours.)
1892 *
1893 * If there is any other write activity going on in the file system,
1894 * this function won't be necessary. But if the only thing that has
1895 * happened on the file system is a dirtytime inode caused by an atime
1896 * update, we need this infrastructure below to make sure that inode
1897 * eventually gets pushed out to disk.
1898 */
1899static void wakeup_dirtytime_writeback(struct work_struct *w);
1900static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1901
1902static void wakeup_dirtytime_writeback(struct work_struct *w)
1903{
1904 struct backing_dev_info *bdi;
1905
1906 rcu_read_lock();
1907 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 1908 struct bdi_writeback *wb;
001fe6f6 1909
b817525a 1910 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
1911 if (!list_empty(&wb->b_dirty_time))
1912 wb_wakeup(wb);
a2f48706
TT
1913 }
1914 rcu_read_unlock();
1915 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1916}
1917
1918static int __init start_dirtytime_writeback(void)
1919{
1920 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1921 return 0;
1922}
1923__initcall(start_dirtytime_writeback);
1924
1efff914
TT
1925int dirtytime_interval_handler(struct ctl_table *table, int write,
1926 void __user *buffer, size_t *lenp, loff_t *ppos)
1927{
1928 int ret;
1929
1930 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1931 if (ret == 0 && write)
1932 mod_delayed_work(system_wq, &dirtytime_work, 0);
1933 return ret;
1934}
1935
03ba3782
JA
1936static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1937{
1938 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1939 struct dentry *dentry;
1940 const char *name = "?";
1941
1942 dentry = d_find_alias(inode);
1943 if (dentry) {
1944 spin_lock(&dentry->d_lock);
1945 name = (const char *) dentry->d_name.name;
1946 }
1947 printk(KERN_DEBUG
1948 "%s(%d): dirtied inode %lu (%s) on %s\n",
1949 current->comm, task_pid_nr(current), inode->i_ino,
1950 name, inode->i_sb->s_id);
1951 if (dentry) {
1952 spin_unlock(&dentry->d_lock);
1953 dput(dentry);
1954 }
1955 }
1956}
1957
1958/**
1959 * __mark_inode_dirty - internal function
1960 * @inode: inode to mark
1961 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1962 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1963 * mark_inode_dirty_sync.
1da177e4 1964 *
03ba3782
JA
1965 * Put the inode on the super block's dirty list.
1966 *
1967 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1968 * dirty list only if it is hashed or if it refers to a blockdev.
1969 * If it was not hashed, it will never be added to the dirty list
1970 * even if it is later hashed, as it will have been marked dirty already.
1971 *
1972 * In short, make sure you hash any inodes _before_ you start marking
1973 * them dirty.
1da177e4 1974 *
03ba3782
JA
1975 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1976 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1977 * the kernel-internal blockdev inode represents the dirtying time of the
1978 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1979 * page->mapping->host, so the page-dirtying time is recorded in the internal
1980 * blockdev inode.
1da177e4 1981 */
03ba3782 1982void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1983{
dbce03b9 1984#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1985 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1986 int dirtytime;
1987
1988 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1989
03ba3782
JA
1990 /*
1991 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1992 * dirty the inode itself
1993 */
0ae45f63 1994 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1995 trace_writeback_dirty_inode_start(inode, flags);
1996
03ba3782 1997 if (sb->s_op->dirty_inode)
aa385729 1998 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1999
2000 trace_writeback_dirty_inode(inode, flags);
03ba3782 2001 }
0ae45f63
TT
2002 if (flags & I_DIRTY_INODE)
2003 flags &= ~I_DIRTY_TIME;
2004 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2005
2006 /*
9c6ac78e
TH
2007 * Paired with smp_mb() in __writeback_single_inode() for the
2008 * following lockless i_state test. See there for details.
03ba3782
JA
2009 */
2010 smp_mb();
2011
0ae45f63
TT
2012 if (((inode->i_state & flags) == flags) ||
2013 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2014 return;
2015
2016 if (unlikely(block_dump))
2017 block_dump___mark_inode_dirty(inode);
2018
250df6ed 2019 spin_lock(&inode->i_lock);
0ae45f63
TT
2020 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2021 goto out_unlock_inode;
03ba3782
JA
2022 if ((inode->i_state & flags) != flags) {
2023 const int was_dirty = inode->i_state & I_DIRTY;
2024
52ebea74
TH
2025 inode_attach_wb(inode, NULL);
2026
0ae45f63
TT
2027 if (flags & I_DIRTY_INODE)
2028 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2029 inode->i_state |= flags;
2030
2031 /*
2032 * If the inode is being synced, just update its dirty state.
2033 * The unlocker will place the inode on the appropriate
2034 * superblock list, based upon its state.
2035 */
2036 if (inode->i_state & I_SYNC)
250df6ed 2037 goto out_unlock_inode;
03ba3782
JA
2038
2039 /*
2040 * Only add valid (hashed) inodes to the superblock's
2041 * dirty list. Add blockdev inodes as well.
2042 */
2043 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2044 if (inode_unhashed(inode))
250df6ed 2045 goto out_unlock_inode;
03ba3782 2046 }
a4ffdde6 2047 if (inode->i_state & I_FREEING)
250df6ed 2048 goto out_unlock_inode;
03ba3782
JA
2049
2050 /*
2051 * If the inode was already on b_dirty/b_io/b_more_io, don't
2052 * reposition it (that would break b_dirty time-ordering).
2053 */
2054 if (!was_dirty) {
87e1d789 2055 struct bdi_writeback *wb;
d6c10f1f 2056 struct list_head *dirty_list;
a66979ab 2057 bool wakeup_bdi = false;
253c34e9 2058
87e1d789 2059 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2060
0747259d
TH
2061 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2062 !test_bit(WB_registered, &wb->state),
2063 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2064
2065 inode->dirtied_when = jiffies;
a2f48706
TT
2066 if (dirtytime)
2067 inode->dirtied_time_when = jiffies;
d6c10f1f 2068
a2f48706 2069 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2070 dirty_list = &wb->b_dirty;
a2f48706 2071 else
0747259d 2072 dirty_list = &wb->b_dirty_time;
d6c10f1f 2073
c7f54084 2074 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2075 dirty_list);
2076
0747259d 2077 spin_unlock(&wb->list_lock);
0ae45f63 2078 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2079
d6c10f1f
TH
2080 /*
2081 * If this is the first dirty inode for this bdi,
2082 * we have to wake-up the corresponding bdi thread
2083 * to make sure background write-back happens
2084 * later.
2085 */
0747259d
TH
2086 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2087 wb_wakeup_delayed(wb);
a66979ab 2088 return;
1da177e4 2089 }
1da177e4 2090 }
250df6ed
DC
2091out_unlock_inode:
2092 spin_unlock(&inode->i_lock);
253c34e9 2093
dbce03b9 2094#undef I_DIRTY_INODE
03ba3782
JA
2095}
2096EXPORT_SYMBOL(__mark_inode_dirty);
2097
e97fedb9
DC
2098/*
2099 * The @s_sync_lock is used to serialise concurrent sync operations
2100 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2101 * Concurrent callers will block on the s_sync_lock rather than doing contending
2102 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2103 * has been issued up to the time this function is enter is guaranteed to be
2104 * completed by the time we have gained the lock and waited for all IO that is
2105 * in progress regardless of the order callers are granted the lock.
2106 */
b6e51316 2107static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2108{
2109 struct inode *inode, *old_inode = NULL;
2110
2111 /*
2112 * We need to be protected against the filesystem going from
2113 * r/o to r/w or vice versa.
2114 */
b6e51316 2115 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2116
e97fedb9 2117 mutex_lock(&sb->s_sync_lock);
74278da9 2118 spin_lock(&sb->s_inode_list_lock);
03ba3782
JA
2119
2120 /*
2121 * Data integrity sync. Must wait for all pages under writeback,
2122 * because there may have been pages dirtied before our sync
2123 * call, but which had writeout started before we write it out.
2124 * In which case, the inode may not be on the dirty list, but
2125 * we still have to wait for that writeout.
2126 */
b6e51316 2127 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2128 struct address_space *mapping = inode->i_mapping;
03ba3782 2129
250df6ed
DC
2130 spin_lock(&inode->i_lock);
2131 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2132 (mapping->nrpages == 0)) {
2133 spin_unlock(&inode->i_lock);
03ba3782 2134 continue;
250df6ed 2135 }
03ba3782 2136 __iget(inode);
250df6ed 2137 spin_unlock(&inode->i_lock);
74278da9 2138 spin_unlock(&sb->s_inode_list_lock);
55fa6091 2139
03ba3782 2140 /*
55fa6091
DC
2141 * We hold a reference to 'inode' so it couldn't have been
2142 * removed from s_inodes list while we dropped the
74278da9 2143 * s_inode_list_lock. We cannot iput the inode now as we can
55fa6091 2144 * be holding the last reference and we cannot iput it under
74278da9 2145 * s_inode_list_lock. So we keep the reference and iput it
55fa6091 2146 * later.
03ba3782
JA
2147 */
2148 iput(old_inode);
2149 old_inode = inode;
2150
aa750fd7
JN
2151 /*
2152 * We keep the error status of individual mapping so that
2153 * applications can catch the writeback error using fsync(2).
2154 * See filemap_fdatawait_keep_errors() for details.
2155 */
2156 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2157
2158 cond_resched();
2159
74278da9 2160 spin_lock(&sb->s_inode_list_lock);
03ba3782 2161 }
74278da9 2162 spin_unlock(&sb->s_inode_list_lock);
03ba3782 2163 iput(old_inode);
e97fedb9 2164 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2165}
2166
f30a7d0c
TH
2167static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2168 enum wb_reason reason, bool skip_if_busy)
1da177e4 2169{
cc395d7f 2170 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2171 struct wb_writeback_work work = {
6e6938b6
WF
2172 .sb = sb,
2173 .sync_mode = WB_SYNC_NONE,
2174 .tagged_writepages = 1,
2175 .done = &done,
2176 .nr_pages = nr,
0e175a18 2177 .reason = reason,
3c4d7165 2178 };
e7972912 2179 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2180
e7972912 2181 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2182 return;
cf37e972 2183 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2184
db125360 2185 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2186 wb_wait_for_completion(bdi, &done);
e913fc82 2187}
f30a7d0c
TH
2188
2189/**
2190 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2191 * @sb: the superblock
2192 * @nr: the number of pages to write
2193 * @reason: reason why some writeback work initiated
2194 *
2195 * Start writeback on some inodes on this super_block. No guarantees are made
2196 * on how many (if any) will be written, and this function does not wait
2197 * for IO completion of submitted IO.
2198 */
2199void writeback_inodes_sb_nr(struct super_block *sb,
2200 unsigned long nr,
2201 enum wb_reason reason)
2202{
2203 __writeback_inodes_sb_nr(sb, nr, reason, false);
2204}
3259f8be
CM
2205EXPORT_SYMBOL(writeback_inodes_sb_nr);
2206
2207/**
2208 * writeback_inodes_sb - writeback dirty inodes from given super_block
2209 * @sb: the superblock
786228ab 2210 * @reason: reason why some writeback work was initiated
3259f8be
CM
2211 *
2212 * Start writeback on some inodes on this super_block. No guarantees are made
2213 * on how many (if any) will be written, and this function does not wait
2214 * for IO completion of submitted IO.
2215 */
0e175a18 2216void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2217{
0e175a18 2218 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2219}
0e3c9a22 2220EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2221
17bd55d0 2222/**
10ee27a0 2223 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2224 * @sb: the superblock
10ee27a0
MX
2225 * @nr: the number of pages to write
2226 * @reason: the reason of writeback
17bd55d0 2227 *
10ee27a0 2228 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2229 * Returns 1 if writeback was started, 0 if not.
2230 */
f30a7d0c
TH
2231bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2232 enum wb_reason reason)
17bd55d0 2233{
10ee27a0 2234 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2235 return false;
10ee27a0 2236
f30a7d0c 2237 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2238 up_read(&sb->s_umount);
f30a7d0c 2239 return true;
17bd55d0 2240}
10ee27a0 2241EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2242
3259f8be 2243/**
10ee27a0 2244 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2245 * @sb: the superblock
786228ab 2246 * @reason: reason why some writeback work was initiated
3259f8be 2247 *
10ee27a0 2248 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2249 * Returns 1 if writeback was started, 0 if not.
2250 */
f30a7d0c 2251bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2252{
10ee27a0 2253 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2254}
10ee27a0 2255EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2256
d8a8559c
JA
2257/**
2258 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2259 * @sb: the superblock
d8a8559c
JA
2260 *
2261 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2262 * super_block.
d8a8559c 2263 */
0dc83bd3 2264void sync_inodes_sb(struct super_block *sb)
d8a8559c 2265{
cc395d7f 2266 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2267 struct wb_writeback_work work = {
3c4d7165
CH
2268 .sb = sb,
2269 .sync_mode = WB_SYNC_ALL,
2270 .nr_pages = LONG_MAX,
2271 .range_cyclic = 0,
83ba7b07 2272 .done = &done,
0e175a18 2273 .reason = WB_REASON_SYNC,
7747bd4b 2274 .for_sync = 1,
3c4d7165 2275 };
e7972912 2276 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2277
006a0973
TH
2278 /*
2279 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2280 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2281 * bdi_has_dirty() need to be written out too.
2282 */
2283 if (bdi == &noop_backing_dev_info)
6eedc701 2284 return;
cf37e972
CH
2285 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2286
db125360 2287 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2288 wb_wait_for_completion(bdi, &done);
83ba7b07 2289
b6e51316 2290 wait_sb_inodes(sb);
1da177e4 2291}
d8a8559c 2292EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2293
1da177e4 2294/**
7f04c26d
AA
2295 * write_inode_now - write an inode to disk
2296 * @inode: inode to write to disk
2297 * @sync: whether the write should be synchronous or not
2298 *
2299 * This function commits an inode to disk immediately if it is dirty. This is
2300 * primarily needed by knfsd.
1da177e4 2301 *
7f04c26d 2302 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2303 */
1da177e4
LT
2304int write_inode_now(struct inode *inode, int sync)
2305{
f758eeab 2306 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2307 struct writeback_control wbc = {
2308 .nr_to_write = LONG_MAX,
18914b18 2309 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2310 .range_start = 0,
2311 .range_end = LLONG_MAX,
1da177e4
LT
2312 };
2313
2314 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2315 wbc.nr_to_write = 0;
1da177e4
LT
2316
2317 might_sleep();
4f8ad655 2318 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2319}
2320EXPORT_SYMBOL(write_inode_now);
2321
2322/**
2323 * sync_inode - write an inode and its pages to disk.
2324 * @inode: the inode to sync
2325 * @wbc: controls the writeback mode
2326 *
2327 * sync_inode() will write an inode and its pages to disk. It will also
2328 * correctly update the inode on its superblock's dirty inode lists and will
2329 * update inode->i_state.
2330 *
2331 * The caller must have a ref on the inode.
2332 */
2333int sync_inode(struct inode *inode, struct writeback_control *wbc)
2334{
4f8ad655 2335 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2336}
2337EXPORT_SYMBOL(sync_inode);
c3765016
CH
2338
2339/**
c691b9d9 2340 * sync_inode_metadata - write an inode to disk
c3765016
CH
2341 * @inode: the inode to sync
2342 * @wait: wait for I/O to complete.
2343 *
c691b9d9 2344 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2345 *
2346 * Note: only writes the actual inode, no associated data or other metadata.
2347 */
2348int sync_inode_metadata(struct inode *inode, int wait)
2349{
2350 struct writeback_control wbc = {
2351 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2352 .nr_to_write = 0, /* metadata-only */
2353 };
2354
2355 return sync_inode(inode, &wbc);
2356}
2357EXPORT_SYMBOL(sync_inode_metadata);