]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/fs-writeback.c
Merge tag 'kconfig-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy...
[mirror_ubuntu-hirsute-kernel.git] / fs / fs-writeback.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
e1f8e874 12 * 10Apr2002 Andrew Morton
1da177e4
LT
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17#include <linux/kernel.h>
630d9c47 18#include <linux/export.h>
1da177e4 19#include <linux/spinlock.h>
5a0e3ad6 20#include <linux/slab.h>
1da177e4
LT
21#include <linux/sched.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
bc31b86a 24#include <linux/pagemap.h>
03ba3782 25#include <linux/kthread.h>
1da177e4
LT
26#include <linux/writeback.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
455b2864 29#include <linux/tracepoint.h>
719ea2fb 30#include <linux/device.h>
21c6321f 31#include <linux/memcontrol.h>
07f3f05c 32#include "internal.h"
1da177e4 33
bc31b86a
WF
34/*
35 * 4MB minimal write chunk size
36 */
09cbfeaf 37#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 38
cc395d7f
TH
39struct wb_completion {
40 atomic_t cnt;
41};
42
c4a77a6c
JA
43/*
44 * Passed into wb_writeback(), essentially a subset of writeback_control
45 */
83ba7b07 46struct wb_writeback_work {
c4a77a6c
JA
47 long nr_pages;
48 struct super_block *sb;
0dc83bd3 49 unsigned long *older_than_this;
c4a77a6c 50 enum writeback_sync_modes sync_mode;
6e6938b6 51 unsigned int tagged_writepages:1;
52957fe1
HS
52 unsigned int for_kupdate:1;
53 unsigned int range_cyclic:1;
54 unsigned int for_background:1;
7747bd4b 55 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 56 unsigned int auto_free:1; /* free on completion */
0e175a18 57 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 58
8010c3b6 59 struct list_head list; /* pending work list */
cc395d7f 60 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
61};
62
cc395d7f
TH
63/*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
a2f48706
TT
76/*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
7ccf19a8
NP
88static inline struct inode *wb_inode(struct list_head *head)
89{
c7f54084 90 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
91}
92
15eb77a0
WF
93/*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98#define CREATE_TRACE_POINTS
99#include <trace/events/writeback.h>
100
774016b2
SW
101EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
d6c10f1f
TH
103static bool wb_io_lists_populated(struct bdi_writeback *wb)
104{
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
112 return true;
113 }
114}
115
116static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117{
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 120 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 123 }
d6c10f1f
TH
124}
125
126/**
c7f54084 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
bbbc3c1c 130 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
d6c10f1f 131 *
c7f54084 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
c7f54084 136static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
137 struct bdi_writeback *wb,
138 struct list_head *head)
139{
140 assert_spin_locked(&wb->list_lock);
141
c7f54084 142 list_move(&inode->i_io_list, head);
d6c10f1f
TH
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150}
151
152/**
c7f54084 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
c7f54084 160static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
161 struct bdi_writeback *wb)
162{
163 assert_spin_locked(&wb->list_lock);
164
c7f54084 165 list_del_init(&inode->i_io_list);
d6c10f1f
TH
166 wb_io_lists_depopulated(wb);
167}
168
f0054bb1 169static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 170{
f0054bb1
TH
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
175}
176
4a3a485b
TE
177static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179{
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186}
187
f0054bb1
TH
188static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
6585027a 190{
5634cc2a 191 trace_writeback_queue(wb, work);
6585027a 192
cc395d7f
TH
193 if (work->done)
194 atomic_inc(&work->done->cnt);
4a3a485b
TE
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
f0054bb1 204 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
205}
206
cc395d7f
TH
207/**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220{
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223}
224
703c2708
TH
225#ifdef CONFIG_CGROUP_WRITEBACK
226
2a814908
TH
227/* parameters for foreign inode detection, see wb_detach_inode() */
228#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
a1a0e23e
TH
241static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242static struct workqueue_struct *isw_wq;
243
21c6321f
TH
244void __inode_attach_wb(struct inode *inode, struct page *page)
245{
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272}
273
87e1d789
TH
274/**
275 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276 * @inode: inode of interest with i_lock held
277 *
278 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
279 * held on entry and is released on return. The returned wb is guaranteed
280 * to stay @inode's associated wb until its list_lock is released.
281 */
282static struct bdi_writeback *
283locked_inode_to_wb_and_lock_list(struct inode *inode)
284 __releases(&inode->i_lock)
285 __acquires(&wb->list_lock)
286{
287 while (true) {
288 struct bdi_writeback *wb = inode_to_wb(inode);
289
290 /*
291 * inode_to_wb() association is protected by both
292 * @inode->i_lock and @wb->list_lock but list_lock nests
293 * outside i_lock. Drop i_lock and verify that the
294 * association hasn't changed after acquiring list_lock.
295 */
296 wb_get(wb);
297 spin_unlock(&inode->i_lock);
298 spin_lock(&wb->list_lock);
87e1d789 299
aaa2cacf 300 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
301 if (likely(wb == inode->i_wb)) {
302 wb_put(wb); /* @inode already has ref */
303 return wb;
304 }
87e1d789
TH
305
306 spin_unlock(&wb->list_lock);
614a4e37 307 wb_put(wb);
87e1d789
TH
308 cpu_relax();
309 spin_lock(&inode->i_lock);
310 }
311}
312
313/**
314 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315 * @inode: inode of interest
316 *
317 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318 * on entry.
319 */
320static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 __acquires(&wb->list_lock)
322{
323 spin_lock(&inode->i_lock);
324 return locked_inode_to_wb_and_lock_list(inode);
325}
326
682aa8e1
TH
327struct inode_switch_wbs_context {
328 struct inode *inode;
329 struct bdi_writeback *new_wb;
330
331 struct rcu_head rcu_head;
332 struct work_struct work;
333};
334
7fc5854f
TH
335static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336{
337 down_write(&bdi->wb_switch_rwsem);
338}
339
340static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341{
342 up_write(&bdi->wb_switch_rwsem);
343}
344
682aa8e1
TH
345static void inode_switch_wbs_work_fn(struct work_struct *work)
346{
347 struct inode_switch_wbs_context *isw =
348 container_of(work, struct inode_switch_wbs_context, work);
349 struct inode *inode = isw->inode;
7fc5854f 350 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
351 struct address_space *mapping = inode->i_mapping;
352 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 353 struct bdi_writeback *new_wb = isw->new_wb;
04edf02c
MW
354 XA_STATE(xas, &mapping->i_pages, 0);
355 struct page *page;
d10c8095 356 bool switched = false;
682aa8e1 357
7fc5854f
TH
358 /*
359 * If @inode switches cgwb membership while sync_inodes_sb() is
360 * being issued, sync_inodes_sb() might miss it. Synchronize.
361 */
362 down_read(&bdi->wb_switch_rwsem);
363
682aa8e1
TH
364 /*
365 * By the time control reaches here, RCU grace period has passed
366 * since I_WB_SWITCH assertion and all wb stat update transactions
367 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
b93b0163 368 * synchronizing against the i_pages lock.
d10c8095 369 *
b93b0163 370 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
d10c8095
TH
371 * gives us exclusion against all wb related operations on @inode
372 * including IO list manipulations and stat updates.
682aa8e1 373 */
d10c8095
TH
374 if (old_wb < new_wb) {
375 spin_lock(&old_wb->list_lock);
376 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377 } else {
378 spin_lock(&new_wb->list_lock);
379 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380 }
682aa8e1 381 spin_lock(&inode->i_lock);
b93b0163 382 xa_lock_irq(&mapping->i_pages);
d10c8095
TH
383
384 /*
385 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 386 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
387 */
388 if (unlikely(inode->i_state & I_FREEING))
389 goto skip_switch;
390
391 /*
392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
393 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
b93b0163 394 * pages actually under writeback.
d10c8095 395 */
04edf02c
MW
396 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 if (PageDirty(page)) {
3e8f399d
NB
398 dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
400 }
401 }
402
04edf02c
MW
403 xas_set(&xas, 0);
404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 WARN_ON_ONCE(!PageWriteback(page));
406 dec_wb_stat(old_wb, WB_WRITEBACK);
407 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
408 }
409
410 wb_get(new_wb);
411
412 /*
413 * Transfer to @new_wb's IO list if necessary. The specific list
414 * @inode was on is ignored and the inode is put on ->b_dirty which
415 * is always correct including from ->b_dirty_time. The transfer
416 * preserves @inode->dirtied_when ordering.
417 */
c7f54084 418 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
419 struct inode *pos;
420
c7f54084 421 inode_io_list_del_locked(inode, old_wb);
d10c8095 422 inode->i_wb = new_wb;
c7f54084 423 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
424 if (time_after_eq(inode->dirtied_when,
425 pos->dirtied_when))
426 break;
c7f54084 427 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
428 } else {
429 inode->i_wb = new_wb;
430 }
682aa8e1 431
d10c8095 432 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
433 inode->i_wb_frn_winner = 0;
434 inode->i_wb_frn_avg_time = 0;
435 inode->i_wb_frn_history = 0;
d10c8095
TH
436 switched = true;
437skip_switch:
682aa8e1
TH
438 /*
439 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440 * ensures that the new wb is visible if they see !I_WB_SWITCH.
441 */
442 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443
b93b0163 444 xa_unlock_irq(&mapping->i_pages);
682aa8e1 445 spin_unlock(&inode->i_lock);
d10c8095
TH
446 spin_unlock(&new_wb->list_lock);
447 spin_unlock(&old_wb->list_lock);
682aa8e1 448
7fc5854f
TH
449 up_read(&bdi->wb_switch_rwsem);
450
d10c8095
TH
451 if (switched) {
452 wb_wakeup(new_wb);
453 wb_put(old_wb);
454 }
682aa8e1 455 wb_put(new_wb);
d10c8095
TH
456
457 iput(inode);
682aa8e1 458 kfree(isw);
a1a0e23e
TH
459
460 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
461}
462
463static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464{
465 struct inode_switch_wbs_context *isw = container_of(rcu_head,
466 struct inode_switch_wbs_context, rcu_head);
467
468 /* needs to grab bh-unsafe locks, bounce to work item */
469 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 470 queue_work(isw_wq, &isw->work);
682aa8e1
TH
471}
472
473/**
474 * inode_switch_wbs - change the wb association of an inode
475 * @inode: target inode
476 * @new_wb_id: ID of the new wb
477 *
478 * Switch @inode's wb association to the wb identified by @new_wb_id. The
479 * switching is performed asynchronously and may fail silently.
480 */
481static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482{
483 struct backing_dev_info *bdi = inode_to_bdi(inode);
484 struct cgroup_subsys_state *memcg_css;
485 struct inode_switch_wbs_context *isw;
486
487 /* noop if seems to be already in progress */
488 if (inode->i_state & I_WB_SWITCH)
489 return;
490
7fc5854f
TH
491 /*
492 * Avoid starting new switches while sync_inodes_sb() is in
493 * progress. Otherwise, if the down_write protected issue path
494 * blocks heavily, we might end up starting a large number of
495 * switches which will block on the rwsem.
496 */
497 if (!down_read_trylock(&bdi->wb_switch_rwsem))
498 return;
499
682aa8e1
TH
500 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501 if (!isw)
7fc5854f 502 goto out_unlock;
682aa8e1
TH
503
504 /* find and pin the new wb */
505 rcu_read_lock();
506 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507 if (memcg_css)
508 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509 rcu_read_unlock();
510 if (!isw->new_wb)
511 goto out_free;
512
513 /* while holding I_WB_SWITCH, no one else can update the association */
514 spin_lock(&inode->i_lock);
1751e8a6 515 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
516 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517 inode_to_wb(inode) == isw->new_wb) {
518 spin_unlock(&inode->i_lock);
519 goto out_free;
520 }
682aa8e1 521 inode->i_state |= I_WB_SWITCH;
74524955 522 __iget(inode);
682aa8e1
TH
523 spin_unlock(&inode->i_lock);
524
682aa8e1
TH
525 isw->inode = inode;
526
527 /*
528 * In addition to synchronizing among switchers, I_WB_SWITCH tells
b93b0163
MW
529 * the RCU protected stat update paths to grab the i_page
530 * lock so that stat transfer can synchronize against them.
682aa8e1
TH
531 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532 */
533 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
ec084de9
JX
534
535 atomic_inc(&isw_nr_in_flight);
536
7fc5854f 537 goto out_unlock;
682aa8e1
TH
538
539out_free:
540 if (isw->new_wb)
541 wb_put(isw->new_wb);
542 kfree(isw);
7fc5854f
TH
543out_unlock:
544 up_read(&bdi->wb_switch_rwsem);
682aa8e1
TH
545}
546
b16b1deb
TH
547/**
548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549 * @wbc: writeback_control of interest
550 * @inode: target inode
551 *
552 * @inode is locked and about to be written back under the control of @wbc.
553 * Record @inode's writeback context into @wbc and unlock the i_lock. On
554 * writeback completion, wbc_detach_inode() should be called. This is used
555 * to track the cgroup writeback context.
556 */
557void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 struct inode *inode)
559{
dd73e4b7
TH
560 if (!inode_cgwb_enabled(inode)) {
561 spin_unlock(&inode->i_lock);
562 return;
563 }
564
b16b1deb 565 wbc->wb = inode_to_wb(inode);
2a814908
TH
566 wbc->inode = inode;
567
568 wbc->wb_id = wbc->wb->memcg_css->id;
569 wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 wbc->wb_tcand_id = 0;
571 wbc->wb_bytes = 0;
572 wbc->wb_lcand_bytes = 0;
573 wbc->wb_tcand_bytes = 0;
574
b16b1deb
TH
575 wb_get(wbc->wb);
576 spin_unlock(&inode->i_lock);
e8a7abf5
TH
577
578 /*
579 * A dying wb indicates that the memcg-blkcg mapping has changed
580 * and a new wb is already serving the memcg. Switch immediately.
581 */
582 if (unlikely(wb_dying(wbc->wb)))
583 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
584}
585
586/**
2a814908
TH
587 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
589 *
590 * To be called after a writeback attempt of an inode finishes and undoes
591 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
592 *
593 * As concurrent write sharing of an inode is expected to be very rare and
594 * memcg only tracks page ownership on first-use basis severely confining
595 * the usefulness of such sharing, cgroup writeback tracks ownership
596 * per-inode. While the support for concurrent write sharing of an inode
597 * is deemed unnecessary, an inode being written to by different cgroups at
598 * different points in time is a lot more common, and, more importantly,
599 * charging only by first-use can too readily lead to grossly incorrect
600 * behaviors (single foreign page can lead to gigabytes of writeback to be
601 * incorrectly attributed).
602 *
603 * To resolve this issue, cgroup writeback detects the majority dirtier of
604 * an inode and transfers the ownership to it. To avoid unnnecessary
605 * oscillation, the detection mechanism keeps track of history and gives
606 * out the switch verdict only if the foreign usage pattern is stable over
607 * a certain amount of time and/or writeback attempts.
608 *
609 * On each writeback attempt, @wbc tries to detect the majority writer
610 * using Boyer-Moore majority vote algorithm. In addition to the byte
611 * count from the majority voting, it also counts the bytes written for the
612 * current wb and the last round's winner wb (max of last round's current
613 * wb, the winner from two rounds ago, and the last round's majority
614 * candidate). Keeping track of the historical winner helps the algorithm
615 * to semi-reliably detect the most active writer even when it's not the
616 * absolute majority.
617 *
618 * Once the winner of the round is determined, whether the winner is
619 * foreign or not and how much IO time the round consumed is recorded in
620 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
621 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
622 */
623void wbc_detach_inode(struct writeback_control *wbc)
624{
2a814908
TH
625 struct bdi_writeback *wb = wbc->wb;
626 struct inode *inode = wbc->inode;
dd73e4b7
TH
627 unsigned long avg_time, max_bytes, max_time;
628 u16 history;
2a814908
TH
629 int max_id;
630
dd73e4b7
TH
631 if (!wb)
632 return;
633
634 history = inode->i_wb_frn_history;
635 avg_time = inode->i_wb_frn_avg_time;
636
2a814908
TH
637 /* pick the winner of this round */
638 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640 max_id = wbc->wb_id;
641 max_bytes = wbc->wb_bytes;
642 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643 max_id = wbc->wb_lcand_id;
644 max_bytes = wbc->wb_lcand_bytes;
645 } else {
646 max_id = wbc->wb_tcand_id;
647 max_bytes = wbc->wb_tcand_bytes;
648 }
649
650 /*
651 * Calculate the amount of IO time the winner consumed and fold it
652 * into the running average kept per inode. If the consumed IO
653 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654 * deciding whether to switch or not. This is to prevent one-off
655 * small dirtiers from skewing the verdict.
656 */
657 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658 wb->avg_write_bandwidth);
659 if (avg_time)
660 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662 else
663 avg_time = max_time; /* immediate catch up on first run */
664
665 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666 int slots;
667
668 /*
669 * The switch verdict is reached if foreign wb's consume
670 * more than a certain proportion of IO time in a
671 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
672 * history mask where each bit represents one sixteenth of
673 * the period. Determine the number of slots to shift into
674 * history from @max_time.
675 */
676 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678 history <<= slots;
679 if (wbc->wb_id != max_id)
680 history |= (1U << slots) - 1;
681
682 /*
683 * Switch if the current wb isn't the consistent winner.
684 * If there are multiple closely competing dirtiers, the
685 * inode may switch across them repeatedly over time, which
686 * is okay. The main goal is avoiding keeping an inode on
687 * the wrong wb for an extended period of time.
688 */
682aa8e1
TH
689 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690 inode_switch_wbs(inode, max_id);
2a814908
TH
691 }
692
693 /*
694 * Multiple instances of this function may race to update the
695 * following fields but we don't mind occassional inaccuracies.
696 */
697 inode->i_wb_frn_winner = max_id;
698 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699 inode->i_wb_frn_history = history;
700
b16b1deb
TH
701 wb_put(wbc->wb);
702 wbc->wb = NULL;
703}
704
2a814908
TH
705/**
706 * wbc_account_io - account IO issued during writeback
707 * @wbc: writeback_control of the writeback in progress
708 * @page: page being written out
709 * @bytes: number of bytes being written out
710 *
711 * @bytes from @page are about to written out during the writeback
712 * controlled by @wbc. Keep the book for foreign inode detection. See
713 * wbc_detach_inode().
714 */
715void wbc_account_io(struct writeback_control *wbc, struct page *page,
716 size_t bytes)
717{
66311422 718 struct cgroup_subsys_state *css;
2a814908
TH
719 int id;
720
721 /*
722 * pageout() path doesn't attach @wbc to the inode being written
723 * out. This is intentional as we don't want the function to block
724 * behind a slow cgroup. Ultimately, we want pageout() to kick off
725 * regular writeback instead of writing things out itself.
726 */
727 if (!wbc->wb)
728 return;
729
66311422
TH
730 css = mem_cgroup_css_from_page(page);
731 /* dead cgroups shouldn't contribute to inode ownership arbitration */
732 if (!(css->flags & CSS_ONLINE))
733 return;
734
735 id = css->id;
2a814908
TH
736
737 if (id == wbc->wb_id) {
738 wbc->wb_bytes += bytes;
739 return;
740 }
741
742 if (id == wbc->wb_lcand_id)
743 wbc->wb_lcand_bytes += bytes;
744
745 /* Boyer-Moore majority vote algorithm */
746 if (!wbc->wb_tcand_bytes)
747 wbc->wb_tcand_id = id;
748 if (id == wbc->wb_tcand_id)
749 wbc->wb_tcand_bytes += bytes;
750 else
751 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752}
5aa2a96b 753EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 754
703c2708
TH
755/**
756 * inode_congested - test whether an inode is congested
60292bcc 757 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
758 * @cong_bits: mask of WB_[a]sync_congested bits to test
759 *
760 * Tests whether @inode is congested. @cong_bits is the mask of congestion
761 * bits to test and the return value is the mask of set bits.
762 *
763 * If cgroup writeback is enabled for @inode, the congestion state is
764 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765 * associated with @inode is congested; otherwise, the root wb's congestion
766 * state is used.
60292bcc
TH
767 *
768 * @inode is allowed to be NULL as this function is often called on
769 * mapping->host which is NULL for the swapper space.
703c2708
TH
770 */
771int inode_congested(struct inode *inode, int cong_bits)
772{
5cb8b824
TH
773 /*
774 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 * Start transaction iff ->i_wb is visible.
776 */
aaa2cacf 777 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 778 struct bdi_writeback *wb;
2e898e4c
GT
779 struct wb_lock_cookie lock_cookie = {};
780 bool congested;
5cb8b824 781
2e898e4c 782 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 783 congested = wb_congested(wb, cong_bits);
2e898e4c 784 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 785 return congested;
703c2708
TH
786 }
787
788 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789}
790EXPORT_SYMBOL_GPL(inode_congested);
791
f2b65121
TH
792/**
793 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794 * @wb: target bdi_writeback to split @nr_pages to
795 * @nr_pages: number of pages to write for the whole bdi
796 *
797 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798 * relation to the total write bandwidth of all wb's w/ dirty inodes on
799 * @wb->bdi.
800 */
801static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802{
803 unsigned long this_bw = wb->avg_write_bandwidth;
804 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805
806 if (nr_pages == LONG_MAX)
807 return LONG_MAX;
808
809 /*
810 * This may be called on clean wb's and proportional distribution
811 * may not make sense, just use the original @nr_pages in those
812 * cases. In general, we wanna err on the side of writing more.
813 */
814 if (!tot_bw || this_bw >= tot_bw)
815 return nr_pages;
816 else
817 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818}
819
db125360
TH
820/**
821 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822 * @bdi: target backing_dev_info
823 * @base_work: wb_writeback_work to issue
824 * @skip_if_busy: skip wb's which already have writeback in progress
825 *
826 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
828 * distributed to the busy wbs according to each wb's proportion in the
829 * total active write bandwidth of @bdi.
830 */
831static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 struct wb_writeback_work *base_work,
833 bool skip_if_busy)
834{
b817525a 835 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
836 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 struct bdi_writeback, bdi_node);
db125360
TH
838
839 might_sleep();
db125360
TH
840restart:
841 rcu_read_lock();
b817525a 842 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
843 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
844 struct wb_writeback_work fallback_work;
845 struct wb_writeback_work *work;
846 long nr_pages;
847
b817525a
TH
848 if (last_wb) {
849 wb_put(last_wb);
850 last_wb = NULL;
851 }
852
006a0973
TH
853 /* SYNC_ALL writes out I_DIRTY_TIME too */
854 if (!wb_has_dirty_io(wb) &&
855 (base_work->sync_mode == WB_SYNC_NONE ||
856 list_empty(&wb->b_dirty_time)))
857 continue;
858 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
859 continue;
860
8a1270cd
TH
861 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862
863 work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 if (work) {
865 *work = *base_work;
866 work->nr_pages = nr_pages;
867 work->auto_free = 1;
868 wb_queue_work(wb, work);
869 continue;
db125360 870 }
8a1270cd
TH
871
872 /* alloc failed, execute synchronously using on-stack fallback */
873 work = &fallback_work;
874 *work = *base_work;
875 work->nr_pages = nr_pages;
876 work->auto_free = 0;
877 work->done = &fallback_work_done;
878
879 wb_queue_work(wb, work);
880
b817525a
TH
881 /*
882 * Pin @wb so that it stays on @bdi->wb_list. This allows
883 * continuing iteration from @wb after dropping and
884 * regrabbing rcu read lock.
885 */
886 wb_get(wb);
887 last_wb = wb;
888
8a1270cd
TH
889 rcu_read_unlock();
890 wb_wait_for_completion(bdi, &fallback_work_done);
891 goto restart;
db125360
TH
892 }
893 rcu_read_unlock();
b817525a
TH
894
895 if (last_wb)
896 wb_put(last_wb);
db125360
TH
897}
898
a1a0e23e
TH
899/**
900 * cgroup_writeback_umount - flush inode wb switches for umount
901 *
902 * This function is called when a super_block is about to be destroyed and
903 * flushes in-flight inode wb switches. An inode wb switch goes through
904 * RCU and then workqueue, so the two need to be flushed in order to ensure
905 * that all previously scheduled switches are finished. As wb switches are
906 * rare occurrences and synchronize_rcu() can take a while, perform
907 * flushing iff wb switches are in flight.
908 */
909void cgroup_writeback_umount(void)
910{
911 if (atomic_read(&isw_nr_in_flight)) {
ec084de9
JX
912 /*
913 * Use rcu_barrier() to wait for all pending callbacks to
914 * ensure that all in-flight wb switches are in the workqueue.
915 */
916 rcu_barrier();
a1a0e23e
TH
917 flush_workqueue(isw_wq);
918 }
919}
920
921static int __init cgroup_writeback_init(void)
922{
923 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
924 if (!isw_wq)
925 return -ENOMEM;
926 return 0;
927}
928fs_initcall(cgroup_writeback_init);
929
f2b65121
TH
930#else /* CONFIG_CGROUP_WRITEBACK */
931
7fc5854f
TH
932static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
933static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
934
87e1d789
TH
935static struct bdi_writeback *
936locked_inode_to_wb_and_lock_list(struct inode *inode)
937 __releases(&inode->i_lock)
938 __acquires(&wb->list_lock)
939{
940 struct bdi_writeback *wb = inode_to_wb(inode);
941
942 spin_unlock(&inode->i_lock);
943 spin_lock(&wb->list_lock);
944 return wb;
945}
946
947static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
948 __acquires(&wb->list_lock)
949{
950 struct bdi_writeback *wb = inode_to_wb(inode);
951
952 spin_lock(&wb->list_lock);
953 return wb;
954}
955
f2b65121
TH
956static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
957{
958 return nr_pages;
959}
960
db125360
TH
961static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
962 struct wb_writeback_work *base_work,
963 bool skip_if_busy)
964{
965 might_sleep();
966
006a0973 967 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 968 base_work->auto_free = 0;
db125360
TH
969 wb_queue_work(&bdi->wb, base_work);
970 }
971}
972
703c2708
TH
973#endif /* CONFIG_CGROUP_WRITEBACK */
974
e8e8a0c6
JA
975/*
976 * Add in the number of potentially dirty inodes, because each inode
977 * write can dirty pagecache in the underlying blockdev.
978 */
979static unsigned long get_nr_dirty_pages(void)
980{
981 return global_node_page_state(NR_FILE_DIRTY) +
982 global_node_page_state(NR_UNSTABLE_NFS) +
983 get_nr_dirty_inodes();
984}
985
986static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 987{
c00ddad3
TH
988 if (!wb_has_dirty_io(wb))
989 return;
990
aac8d41c
JA
991 /*
992 * All callers of this function want to start writeback of all
993 * dirty pages. Places like vmscan can call this at a very
994 * high frequency, causing pointless allocations of tons of
995 * work items and keeping the flusher threads busy retrieving
996 * that work. Ensure that we only allow one of them pending and
85009b4f 997 * inflight at the time.
aac8d41c 998 */
85009b4f
JA
999 if (test_bit(WB_start_all, &wb->state) ||
1000 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
1001 return;
1002
85009b4f
JA
1003 wb->start_all_reason = reason;
1004 wb_wakeup(wb);
c5444198 1005}
d3ddec76 1006
c5444198 1007/**
9ecf4866
TH
1008 * wb_start_background_writeback - start background writeback
1009 * @wb: bdi_writback to write from
c5444198
CH
1010 *
1011 * Description:
6585027a 1012 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1013 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1014 * some IO is happening if we are over background dirty threshold.
1015 * Caller need not hold sb s_umount semaphore.
c5444198 1016 */
9ecf4866 1017void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1018{
6585027a
JK
1019 /*
1020 * We just wake up the flusher thread. It will perform background
1021 * writeback as soon as there is no other work to do.
1022 */
5634cc2a 1023 trace_writeback_wake_background(wb);
9ecf4866 1024 wb_wakeup(wb);
1da177e4
LT
1025}
1026
a66979ab
DC
1027/*
1028 * Remove the inode from the writeback list it is on.
1029 */
c7f54084 1030void inode_io_list_del(struct inode *inode)
a66979ab 1031{
87e1d789 1032 struct bdi_writeback *wb;
f758eeab 1033
87e1d789 1034 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1035 inode_io_list_del_locked(inode, wb);
52ebea74 1036 spin_unlock(&wb->list_lock);
a66979ab
DC
1037}
1038
6c60d2b5
DC
1039/*
1040 * mark an inode as under writeback on the sb
1041 */
1042void sb_mark_inode_writeback(struct inode *inode)
1043{
1044 struct super_block *sb = inode->i_sb;
1045 unsigned long flags;
1046
1047 if (list_empty(&inode->i_wb_list)) {
1048 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1049 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1050 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1051 trace_sb_mark_inode_writeback(inode);
1052 }
6c60d2b5
DC
1053 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1054 }
1055}
1056
1057/*
1058 * clear an inode as under writeback on the sb
1059 */
1060void sb_clear_inode_writeback(struct inode *inode)
1061{
1062 struct super_block *sb = inode->i_sb;
1063 unsigned long flags;
1064
1065 if (!list_empty(&inode->i_wb_list)) {
1066 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1067 if (!list_empty(&inode->i_wb_list)) {
1068 list_del_init(&inode->i_wb_list);
1069 trace_sb_clear_inode_writeback(inode);
1070 }
6c60d2b5
DC
1071 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072 }
1073}
1074
6610a0bc
AM
1075/*
1076 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1077 * furthest end of its superblock's dirty-inode list.
1078 *
1079 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1080 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1081 * the case then the inode must have been redirtied while it was being written
1082 * out and we don't reset its dirtied_when.
1083 */
f758eeab 1084static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1085{
03ba3782 1086 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1087 struct inode *tail;
6610a0bc 1088
7ccf19a8 1089 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1090 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1091 inode->dirtied_when = jiffies;
1092 }
c7f54084 1093 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1094}
1095
c986d1e2 1096/*
66f3b8e2 1097 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1098 */
f758eeab 1099static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1100{
c7f54084 1101 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1102}
1103
1c0eeaf5
JE
1104static void inode_sync_complete(struct inode *inode)
1105{
365b94ae 1106 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1107 /* If inode is clean an unused, put it into LRU now... */
1108 inode_add_lru(inode);
365b94ae 1109 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1110 smp_mb();
1111 wake_up_bit(&inode->i_state, __I_SYNC);
1112}
1113
d2caa3c5
JL
1114static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1115{
1116 bool ret = time_after(inode->dirtied_when, t);
1117#ifndef CONFIG_64BIT
1118 /*
1119 * For inodes being constantly redirtied, dirtied_when can get stuck.
1120 * It _appears_ to be in the future, but is actually in distant past.
1121 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1122 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1123 */
1124 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1125#endif
1126 return ret;
1127}
1128
0ae45f63
TT
1129#define EXPIRE_DIRTY_ATIME 0x0001
1130
2c136579 1131/*
0e2f2b23 1132 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1133 * @delaying_queue to @dispatch_queue.
2c136579 1134 */
e84d0a4f 1135static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1136 struct list_head *dispatch_queue,
0ae45f63 1137 int flags,
ad4e38dd 1138 struct wb_writeback_work *work)
2c136579 1139{
0ae45f63
TT
1140 unsigned long *older_than_this = NULL;
1141 unsigned long expire_time;
5c03449d
SL
1142 LIST_HEAD(tmp);
1143 struct list_head *pos, *node;
cf137307 1144 struct super_block *sb = NULL;
5c03449d 1145 struct inode *inode;
cf137307 1146 int do_sb_sort = 0;
e84d0a4f 1147 int moved = 0;
5c03449d 1148
0ae45f63
TT
1149 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1150 older_than_this = work->older_than_this;
a2f48706
TT
1151 else if (!work->for_sync) {
1152 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1153 older_than_this = &expire_time;
1154 }
2c136579 1155 while (!list_empty(delaying_queue)) {
7ccf19a8 1156 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1157 if (older_than_this &&
1158 inode_dirtied_after(inode, *older_than_this))
2c136579 1159 break;
c7f54084 1160 list_move(&inode->i_io_list, &tmp);
a8855990 1161 moved++;
0ae45f63
TT
1162 if (flags & EXPIRE_DIRTY_ATIME)
1163 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1164 if (sb_is_blkdev_sb(inode->i_sb))
1165 continue;
cf137307
JA
1166 if (sb && sb != inode->i_sb)
1167 do_sb_sort = 1;
1168 sb = inode->i_sb;
5c03449d
SL
1169 }
1170
cf137307
JA
1171 /* just one sb in list, splice to dispatch_queue and we're done */
1172 if (!do_sb_sort) {
1173 list_splice(&tmp, dispatch_queue);
e84d0a4f 1174 goto out;
cf137307
JA
1175 }
1176
5c03449d
SL
1177 /* Move inodes from one superblock together */
1178 while (!list_empty(&tmp)) {
7ccf19a8 1179 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1180 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1181 inode = wb_inode(pos);
5c03449d 1182 if (inode->i_sb == sb)
c7f54084 1183 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1184 }
2c136579 1185 }
e84d0a4f
WF
1186out:
1187 return moved;
2c136579
FW
1188}
1189
1190/*
1191 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1192 * Before
1193 * newly dirtied b_dirty b_io b_more_io
1194 * =============> gf edc BA
1195 * After
1196 * newly dirtied b_dirty b_io b_more_io
1197 * =============> g fBAedc
1198 * |
1199 * +--> dequeue for IO
2c136579 1200 */
ad4e38dd 1201static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1202{
e84d0a4f 1203 int moved;
0ae45f63 1204
f758eeab 1205 assert_spin_locked(&wb->list_lock);
4ea879b9 1206 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1207 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1208 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1209 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1210 if (moved)
1211 wb_io_lists_populated(wb);
ad4e38dd 1212 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1213}
1214
a9185b41 1215static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1216{
9fb0a7da
TH
1217 int ret;
1218
1219 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1220 trace_writeback_write_inode_start(inode, wbc);
1221 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1222 trace_writeback_write_inode(inode, wbc);
1223 return ret;
1224 }
03ba3782 1225 return 0;
08d8e974 1226}
08d8e974 1227
1da177e4 1228/*
169ebd90
JK
1229 * Wait for writeback on an inode to complete. Called with i_lock held.
1230 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1231 */
169ebd90
JK
1232static void __inode_wait_for_writeback(struct inode *inode)
1233 __releases(inode->i_lock)
1234 __acquires(inode->i_lock)
01c03194
CH
1235{
1236 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1237 wait_queue_head_t *wqh;
1238
1239 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1240 while (inode->i_state & I_SYNC) {
1241 spin_unlock(&inode->i_lock);
74316201
N
1242 __wait_on_bit(wqh, &wq, bit_wait,
1243 TASK_UNINTERRUPTIBLE);
250df6ed 1244 spin_lock(&inode->i_lock);
58a9d3d8 1245 }
01c03194
CH
1246}
1247
169ebd90
JK
1248/*
1249 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1250 */
1251void inode_wait_for_writeback(struct inode *inode)
1252{
1253 spin_lock(&inode->i_lock);
1254 __inode_wait_for_writeback(inode);
1255 spin_unlock(&inode->i_lock);
1256}
1257
1258/*
1259 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1260 * held and drops it. It is aimed for callers not holding any inode reference
1261 * so once i_lock is dropped, inode can go away.
1262 */
1263static void inode_sleep_on_writeback(struct inode *inode)
1264 __releases(inode->i_lock)
1265{
1266 DEFINE_WAIT(wait);
1267 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1268 int sleep;
1269
1270 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1271 sleep = inode->i_state & I_SYNC;
1272 spin_unlock(&inode->i_lock);
1273 if (sleep)
1274 schedule();
1275 finish_wait(wqh, &wait);
1276}
1277
ccb26b5a
JK
1278/*
1279 * Find proper writeback list for the inode depending on its current state and
1280 * possibly also change of its state while we were doing writeback. Here we
1281 * handle things such as livelock prevention or fairness of writeback among
1282 * inodes. This function can be called only by flusher thread - noone else
1283 * processes all inodes in writeback lists and requeueing inodes behind flusher
1284 * thread's back can have unexpected consequences.
1285 */
1286static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1287 struct writeback_control *wbc)
1288{
1289 if (inode->i_state & I_FREEING)
1290 return;
1291
1292 /*
1293 * Sync livelock prevention. Each inode is tagged and synced in one
1294 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1295 * the dirty time to prevent enqueue and sync it again.
1296 */
1297 if ((inode->i_state & I_DIRTY) &&
1298 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1299 inode->dirtied_when = jiffies;
1300
4f8ad655
JK
1301 if (wbc->pages_skipped) {
1302 /*
1303 * writeback is not making progress due to locked
1304 * buffers. Skip this inode for now.
1305 */
1306 redirty_tail(inode, wb);
1307 return;
1308 }
1309
ccb26b5a
JK
1310 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1311 /*
1312 * We didn't write back all the pages. nfs_writepages()
1313 * sometimes bales out without doing anything.
1314 */
1315 if (wbc->nr_to_write <= 0) {
1316 /* Slice used up. Queue for next turn. */
1317 requeue_io(inode, wb);
1318 } else {
1319 /*
1320 * Writeback blocked by something other than
1321 * congestion. Delay the inode for some time to
1322 * avoid spinning on the CPU (100% iowait)
1323 * retrying writeback of the dirty page/inode
1324 * that cannot be performed immediately.
1325 */
1326 redirty_tail(inode, wb);
1327 }
1328 } else if (inode->i_state & I_DIRTY) {
1329 /*
1330 * Filesystems can dirty the inode during writeback operations,
1331 * such as delayed allocation during submission or metadata
1332 * updates after data IO completion.
1333 */
1334 redirty_tail(inode, wb);
0ae45f63 1335 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1336 inode->dirtied_when = jiffies;
c7f54084 1337 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1338 } else {
1339 /* The inode is clean. Remove from writeback lists. */
c7f54084 1340 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1341 }
1342}
1343
01c03194 1344/*
4f8ad655
JK
1345 * Write out an inode and its dirty pages. Do not update the writeback list
1346 * linkage. That is left to the caller. The caller is also responsible for
1347 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1348 */
1349static int
cd8ed2a4 1350__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1351{
1da177e4 1352 struct address_space *mapping = inode->i_mapping;
251d6a47 1353 long nr_to_write = wbc->nr_to_write;
01c03194 1354 unsigned dirty;
1da177e4
LT
1355 int ret;
1356
4f8ad655 1357 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1358
9fb0a7da
TH
1359 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1360
1da177e4
LT
1361 ret = do_writepages(mapping, wbc);
1362
26821ed4
CH
1363 /*
1364 * Make sure to wait on the data before writing out the metadata.
1365 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1366 * I/O completion. We don't do it for sync(2) writeback because it has a
1367 * separate, external IO completion path and ->sync_fs for guaranteeing
1368 * inode metadata is written back correctly.
26821ed4 1369 */
7747bd4b 1370 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1371 int err = filemap_fdatawait(mapping);
1da177e4
LT
1372 if (ret == 0)
1373 ret = err;
1374 }
1375
5547e8aa
DM
1376 /*
1377 * Some filesystems may redirty the inode during the writeback
1378 * due to delalloc, clear dirty metadata flags right before
1379 * write_inode()
1380 */
250df6ed 1381 spin_lock(&inode->i_lock);
9c6ac78e 1382
5547e8aa 1383 dirty = inode->i_state & I_DIRTY;
a2f48706 1384 if (inode->i_state & I_DIRTY_TIME) {
0e11f644 1385 if ((dirty & I_DIRTY_INODE) ||
dc5ff2b1 1386 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1387 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1388 unlikely(time_after(jiffies,
1389 (inode->dirtied_time_when +
1390 dirtytime_expire_interval * HZ)))) {
1391 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1392 trace_writeback_lazytime(inode);
1393 }
1394 } else
1395 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1396 inode->i_state &= ~dirty;
9c6ac78e
TH
1397
1398 /*
1399 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1400 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1401 * either they see the I_DIRTY bits cleared or we see the dirtied
1402 * inode.
1403 *
1404 * I_DIRTY_PAGES is always cleared together above even if @mapping
1405 * still has dirty pages. The flag is reinstated after smp_mb() if
1406 * necessary. This guarantees that either __mark_inode_dirty()
1407 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1408 */
1409 smp_mb();
1410
1411 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1412 inode->i_state |= I_DIRTY_PAGES;
1413
250df6ed 1414 spin_unlock(&inode->i_lock);
9c6ac78e 1415
0ae45f63
TT
1416 if (dirty & I_DIRTY_TIME)
1417 mark_inode_dirty_sync(inode);
26821ed4 1418 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1419 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1420 int err = write_inode(inode, wbc);
1da177e4
LT
1421 if (ret == 0)
1422 ret = err;
1423 }
4f8ad655
JK
1424 trace_writeback_single_inode(inode, wbc, nr_to_write);
1425 return ret;
1426}
1427
1428/*
1429 * Write out an inode's dirty pages. Either the caller has an active reference
1430 * on the inode or the inode has I_WILL_FREE set.
1431 *
1432 * This function is designed to be called for writing back one inode which
1433 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1434 * and does more profound writeback list handling in writeback_sb_inodes().
1435 */
aaf25593
TH
1436static int writeback_single_inode(struct inode *inode,
1437 struct writeback_control *wbc)
4f8ad655 1438{
aaf25593 1439 struct bdi_writeback *wb;
4f8ad655
JK
1440 int ret = 0;
1441
1442 spin_lock(&inode->i_lock);
1443 if (!atomic_read(&inode->i_count))
1444 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1445 else
1446 WARN_ON(inode->i_state & I_WILL_FREE);
1447
1448 if (inode->i_state & I_SYNC) {
1449 if (wbc->sync_mode != WB_SYNC_ALL)
1450 goto out;
1451 /*
169ebd90
JK
1452 * It's a data-integrity sync. We must wait. Since callers hold
1453 * inode reference or inode has I_WILL_FREE set, it cannot go
1454 * away under us.
4f8ad655 1455 */
169ebd90 1456 __inode_wait_for_writeback(inode);
4f8ad655
JK
1457 }
1458 WARN_ON(inode->i_state & I_SYNC);
1459 /*
f9b0e058
JK
1460 * Skip inode if it is clean and we have no outstanding writeback in
1461 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1462 * function since flusher thread may be doing for example sync in
1463 * parallel and if we move the inode, it could get skipped. So here we
1464 * make sure inode is on some writeback list and leave it there unless
1465 * we have completely cleaned the inode.
4f8ad655 1466 */
0ae45f63 1467 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1468 (wbc->sync_mode != WB_SYNC_ALL ||
1469 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1470 goto out;
1471 inode->i_state |= I_SYNC;
b16b1deb 1472 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1473
cd8ed2a4 1474 ret = __writeback_single_inode(inode, wbc);
1da177e4 1475
b16b1deb 1476 wbc_detach_inode(wbc);
aaf25593
TH
1477
1478 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1479 spin_lock(&inode->i_lock);
4f8ad655
JK
1480 /*
1481 * If inode is clean, remove it from writeback lists. Otherwise don't
1482 * touch it. See comment above for explanation.
1483 */
0ae45f63 1484 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1485 inode_io_list_del_locked(inode, wb);
4f8ad655 1486 spin_unlock(&wb->list_lock);
1c0eeaf5 1487 inode_sync_complete(inode);
4f8ad655
JK
1488out:
1489 spin_unlock(&inode->i_lock);
1da177e4
LT
1490 return ret;
1491}
1492
a88a341a 1493static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1494 struct wb_writeback_work *work)
d46db3d5
WF
1495{
1496 long pages;
1497
1498 /*
1499 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1500 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1501 * here avoids calling into writeback_inodes_wb() more than once.
1502 *
1503 * The intended call sequence for WB_SYNC_ALL writeback is:
1504 *
1505 * wb_writeback()
1506 * writeback_sb_inodes() <== called only once
1507 * write_cache_pages() <== called once for each inode
1508 * (quickly) tag currently dirty pages
1509 * (maybe slowly) sync all tagged pages
1510 */
1511 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1512 pages = LONG_MAX;
1a12d8bd 1513 else {
a88a341a 1514 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1515 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1516 pages = min(pages, work->nr_pages);
1517 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1518 MIN_WRITEBACK_PAGES);
1519 }
d46db3d5
WF
1520
1521 return pages;
1522}
1523
f11c9c5c
ES
1524/*
1525 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1526 *
d46db3d5 1527 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1528 *
1529 * NOTE! This is called with wb->list_lock held, and will
1530 * unlock and relock that for each inode it ends up doing
1531 * IO for.
f11c9c5c 1532 */
d46db3d5
WF
1533static long writeback_sb_inodes(struct super_block *sb,
1534 struct bdi_writeback *wb,
1535 struct wb_writeback_work *work)
1da177e4 1536{
d46db3d5
WF
1537 struct writeback_control wbc = {
1538 .sync_mode = work->sync_mode,
1539 .tagged_writepages = work->tagged_writepages,
1540 .for_kupdate = work->for_kupdate,
1541 .for_background = work->for_background,
7747bd4b 1542 .for_sync = work->for_sync,
d46db3d5
WF
1543 .range_cyclic = work->range_cyclic,
1544 .range_start = 0,
1545 .range_end = LLONG_MAX,
1546 };
1547 unsigned long start_time = jiffies;
1548 long write_chunk;
1549 long wrote = 0; /* count both pages and inodes */
1550
03ba3782 1551 while (!list_empty(&wb->b_io)) {
7ccf19a8 1552 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1553 struct bdi_writeback *tmp_wb;
edadfb10
CH
1554
1555 if (inode->i_sb != sb) {
d46db3d5 1556 if (work->sb) {
edadfb10
CH
1557 /*
1558 * We only want to write back data for this
1559 * superblock, move all inodes not belonging
1560 * to it back onto the dirty list.
1561 */
f758eeab 1562 redirty_tail(inode, wb);
edadfb10
CH
1563 continue;
1564 }
1565
1566 /*
1567 * The inode belongs to a different superblock.
1568 * Bounce back to the caller to unpin this and
1569 * pin the next superblock.
1570 */
d46db3d5 1571 break;
edadfb10
CH
1572 }
1573
9843b76a 1574 /*
331cbdee
WL
1575 * Don't bother with new inodes or inodes being freed, first
1576 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1577 * kind writeout is handled by the freer.
1578 */
250df6ed 1579 spin_lock(&inode->i_lock);
9843b76a 1580 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1581 spin_unlock(&inode->i_lock);
fcc5c222 1582 redirty_tail(inode, wb);
7ef0d737
NP
1583 continue;
1584 }
cc1676d9
JK
1585 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1586 /*
1587 * If this inode is locked for writeback and we are not
1588 * doing writeback-for-data-integrity, move it to
1589 * b_more_io so that writeback can proceed with the
1590 * other inodes on s_io.
1591 *
1592 * We'll have another go at writing back this inode
1593 * when we completed a full scan of b_io.
1594 */
1595 spin_unlock(&inode->i_lock);
1596 requeue_io(inode, wb);
1597 trace_writeback_sb_inodes_requeue(inode);
1598 continue;
1599 }
f0d07b7f
JK
1600 spin_unlock(&wb->list_lock);
1601
4f8ad655
JK
1602 /*
1603 * We already requeued the inode if it had I_SYNC set and we
1604 * are doing WB_SYNC_NONE writeback. So this catches only the
1605 * WB_SYNC_ALL case.
1606 */
169ebd90
JK
1607 if (inode->i_state & I_SYNC) {
1608 /* Wait for I_SYNC. This function drops i_lock... */
1609 inode_sleep_on_writeback(inode);
1610 /* Inode may be gone, start again */
ead188f9 1611 spin_lock(&wb->list_lock);
169ebd90
JK
1612 continue;
1613 }
4f8ad655 1614 inode->i_state |= I_SYNC;
b16b1deb 1615 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1616
a88a341a 1617 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1618 wbc.nr_to_write = write_chunk;
1619 wbc.pages_skipped = 0;
250df6ed 1620
169ebd90
JK
1621 /*
1622 * We use I_SYNC to pin the inode in memory. While it is set
1623 * evict_inode() will wait so the inode cannot be freed.
1624 */
cd8ed2a4 1625 __writeback_single_inode(inode, &wbc);
250df6ed 1626
b16b1deb 1627 wbc_detach_inode(&wbc);
d46db3d5
WF
1628 work->nr_pages -= write_chunk - wbc.nr_to_write;
1629 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1630
1631 if (need_resched()) {
1632 /*
1633 * We're trying to balance between building up a nice
1634 * long list of IOs to improve our merge rate, and
1635 * getting those IOs out quickly for anyone throttling
1636 * in balance_dirty_pages(). cond_resched() doesn't
1637 * unplug, so get our IOs out the door before we
1638 * give up the CPU.
1639 */
1640 blk_flush_plug(current);
1641 cond_resched();
1642 }
1643
aaf25593
TH
1644 /*
1645 * Requeue @inode if still dirty. Be careful as @inode may
1646 * have been switched to another wb in the meantime.
1647 */
1648 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1649 spin_lock(&inode->i_lock);
0ae45f63 1650 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1651 wrote++;
aaf25593 1652 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1653 inode_sync_complete(inode);
0f1b1fd8 1654 spin_unlock(&inode->i_lock);
590dca3a 1655
aaf25593
TH
1656 if (unlikely(tmp_wb != wb)) {
1657 spin_unlock(&tmp_wb->list_lock);
1658 spin_lock(&wb->list_lock);
1659 }
1660
d46db3d5
WF
1661 /*
1662 * bail out to wb_writeback() often enough to check
1663 * background threshold and other termination conditions.
1664 */
1665 if (wrote) {
1666 if (time_is_before_jiffies(start_time + HZ / 10UL))
1667 break;
1668 if (work->nr_pages <= 0)
1669 break;
8bc3be27 1670 }
1da177e4 1671 }
d46db3d5 1672 return wrote;
f11c9c5c
ES
1673}
1674
d46db3d5
WF
1675static long __writeback_inodes_wb(struct bdi_writeback *wb,
1676 struct wb_writeback_work *work)
f11c9c5c 1677{
d46db3d5
WF
1678 unsigned long start_time = jiffies;
1679 long wrote = 0;
38f21977 1680
f11c9c5c 1681 while (!list_empty(&wb->b_io)) {
7ccf19a8 1682 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1683 struct super_block *sb = inode->i_sb;
9ecc2738 1684
eb6ef3df 1685 if (!trylock_super(sb)) {
0e995816 1686 /*
eb6ef3df 1687 * trylock_super() may fail consistently due to
0e995816
WF
1688 * s_umount being grabbed by someone else. Don't use
1689 * requeue_io() to avoid busy retrying the inode/sb.
1690 */
1691 redirty_tail(inode, wb);
edadfb10 1692 continue;
f11c9c5c 1693 }
d46db3d5 1694 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1695 up_read(&sb->s_umount);
f11c9c5c 1696
d46db3d5
WF
1697 /* refer to the same tests at the end of writeback_sb_inodes */
1698 if (wrote) {
1699 if (time_is_before_jiffies(start_time + HZ / 10UL))
1700 break;
1701 if (work->nr_pages <= 0)
1702 break;
1703 }
f11c9c5c 1704 }
66f3b8e2 1705 /* Leave any unwritten inodes on b_io */
d46db3d5 1706 return wrote;
66f3b8e2
JA
1707}
1708
7d9f073b 1709static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1710 enum wb_reason reason)
edadfb10 1711{
d46db3d5
WF
1712 struct wb_writeback_work work = {
1713 .nr_pages = nr_pages,
1714 .sync_mode = WB_SYNC_NONE,
1715 .range_cyclic = 1,
0e175a18 1716 .reason = reason,
d46db3d5 1717 };
505a666e 1718 struct blk_plug plug;
edadfb10 1719
505a666e 1720 blk_start_plug(&plug);
f758eeab 1721 spin_lock(&wb->list_lock);
424b351f 1722 if (list_empty(&wb->b_io))
ad4e38dd 1723 queue_io(wb, &work);
d46db3d5 1724 __writeback_inodes_wb(wb, &work);
f758eeab 1725 spin_unlock(&wb->list_lock);
505a666e 1726 blk_finish_plug(&plug);
edadfb10 1727
d46db3d5
WF
1728 return nr_pages - work.nr_pages;
1729}
03ba3782 1730
03ba3782
JA
1731/*
1732 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1733 *
03ba3782
JA
1734 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1735 * dirtying-time in the inode's address_space. So this periodic writeback code
1736 * just walks the superblock inode list, writing back any inodes which are
1737 * older than a specific point in time.
66f3b8e2 1738 *
03ba3782
JA
1739 * Try to run once per dirty_writeback_interval. But if a writeback event
1740 * takes longer than a dirty_writeback_interval interval, then leave a
1741 * one-second gap.
66f3b8e2 1742 *
03ba3782
JA
1743 * older_than_this takes precedence over nr_to_write. So we'll only write back
1744 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1745 */
c4a77a6c 1746static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1747 struct wb_writeback_work *work)
66f3b8e2 1748{
e98be2d5 1749 unsigned long wb_start = jiffies;
d46db3d5 1750 long nr_pages = work->nr_pages;
0dc83bd3 1751 unsigned long oldest_jif;
a5989bdc 1752 struct inode *inode;
d46db3d5 1753 long progress;
505a666e 1754 struct blk_plug plug;
66f3b8e2 1755
0dc83bd3
JK
1756 oldest_jif = jiffies;
1757 work->older_than_this = &oldest_jif;
38f21977 1758
505a666e 1759 blk_start_plug(&plug);
e8dfc305 1760 spin_lock(&wb->list_lock);
03ba3782
JA
1761 for (;;) {
1762 /*
d3ddec76 1763 * Stop writeback when nr_pages has been consumed
03ba3782 1764 */
83ba7b07 1765 if (work->nr_pages <= 0)
03ba3782 1766 break;
66f3b8e2 1767
aa373cf5
JK
1768 /*
1769 * Background writeout and kupdate-style writeback may
1770 * run forever. Stop them if there is other work to do
1771 * so that e.g. sync can proceed. They'll be restarted
1772 * after the other works are all done.
1773 */
1774 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1775 !list_empty(&wb->work_list))
aa373cf5
JK
1776 break;
1777
38f21977 1778 /*
d3ddec76
WF
1779 * For background writeout, stop when we are below the
1780 * background dirty threshold
38f21977 1781 */
aa661bbe 1782 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1783 break;
38f21977 1784
1bc36b64
JK
1785 /*
1786 * Kupdate and background works are special and we want to
1787 * include all inodes that need writing. Livelock avoidance is
1788 * handled by these works yielding to any other work so we are
1789 * safe.
1790 */
ba9aa839 1791 if (work->for_kupdate) {
0dc83bd3 1792 oldest_jif = jiffies -
ba9aa839 1793 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1794 } else if (work->for_background)
0dc83bd3 1795 oldest_jif = jiffies;
028c2dd1 1796
5634cc2a 1797 trace_writeback_start(wb, work);
e8dfc305 1798 if (list_empty(&wb->b_io))
ad4e38dd 1799 queue_io(wb, work);
83ba7b07 1800 if (work->sb)
d46db3d5 1801 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1802 else
d46db3d5 1803 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1804 trace_writeback_written(wb, work);
028c2dd1 1805
e98be2d5 1806 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1807
1808 /*
e6fb6da2
WF
1809 * Did we write something? Try for more
1810 *
1811 * Dirty inodes are moved to b_io for writeback in batches.
1812 * The completion of the current batch does not necessarily
1813 * mean the overall work is done. So we keep looping as long
1814 * as made some progress on cleaning pages or inodes.
03ba3782 1815 */
d46db3d5 1816 if (progress)
71fd05a8
JA
1817 continue;
1818 /*
e6fb6da2 1819 * No more inodes for IO, bail
71fd05a8 1820 */
b7a2441f 1821 if (list_empty(&wb->b_more_io))
03ba3782 1822 break;
71fd05a8
JA
1823 /*
1824 * Nothing written. Wait for some inode to
1825 * become available for writeback. Otherwise
1826 * we'll just busyloop.
1827 */
bace9248
TE
1828 trace_writeback_wait(wb, work);
1829 inode = wb_inode(wb->b_more_io.prev);
1830 spin_lock(&inode->i_lock);
1831 spin_unlock(&wb->list_lock);
1832 /* This function drops i_lock... */
1833 inode_sleep_on_writeback(inode);
1834 spin_lock(&wb->list_lock);
03ba3782 1835 }
e8dfc305 1836 spin_unlock(&wb->list_lock);
505a666e 1837 blk_finish_plug(&plug);
03ba3782 1838
d46db3d5 1839 return nr_pages - work->nr_pages;
03ba3782
JA
1840}
1841
1842/*
83ba7b07 1843 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1844 */
f0054bb1 1845static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1846{
83ba7b07 1847 struct wb_writeback_work *work = NULL;
03ba3782 1848
f0054bb1
TH
1849 spin_lock_bh(&wb->work_lock);
1850 if (!list_empty(&wb->work_list)) {
1851 work = list_entry(wb->work_list.next,
83ba7b07
CH
1852 struct wb_writeback_work, list);
1853 list_del_init(&work->list);
03ba3782 1854 }
f0054bb1 1855 spin_unlock_bh(&wb->work_lock);
83ba7b07 1856 return work;
03ba3782
JA
1857}
1858
6585027a
JK
1859static long wb_check_background_flush(struct bdi_writeback *wb)
1860{
aa661bbe 1861 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1862
1863 struct wb_writeback_work work = {
1864 .nr_pages = LONG_MAX,
1865 .sync_mode = WB_SYNC_NONE,
1866 .for_background = 1,
1867 .range_cyclic = 1,
0e175a18 1868 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1869 };
1870
1871 return wb_writeback(wb, &work);
1872 }
1873
1874 return 0;
1875}
1876
03ba3782
JA
1877static long wb_check_old_data_flush(struct bdi_writeback *wb)
1878{
1879 unsigned long expired;
1880 long nr_pages;
1881
69b62d01
JA
1882 /*
1883 * When set to zero, disable periodic writeback
1884 */
1885 if (!dirty_writeback_interval)
1886 return 0;
1887
03ba3782
JA
1888 expired = wb->last_old_flush +
1889 msecs_to_jiffies(dirty_writeback_interval * 10);
1890 if (time_before(jiffies, expired))
1891 return 0;
1892
1893 wb->last_old_flush = jiffies;
cdf01dd5 1894 nr_pages = get_nr_dirty_pages();
03ba3782 1895
c4a77a6c 1896 if (nr_pages) {
83ba7b07 1897 struct wb_writeback_work work = {
c4a77a6c
JA
1898 .nr_pages = nr_pages,
1899 .sync_mode = WB_SYNC_NONE,
1900 .for_kupdate = 1,
1901 .range_cyclic = 1,
0e175a18 1902 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1903 };
1904
83ba7b07 1905 return wb_writeback(wb, &work);
c4a77a6c 1906 }
03ba3782
JA
1907
1908 return 0;
1909}
1910
85009b4f
JA
1911static long wb_check_start_all(struct bdi_writeback *wb)
1912{
1913 long nr_pages;
1914
1915 if (!test_bit(WB_start_all, &wb->state))
1916 return 0;
1917
1918 nr_pages = get_nr_dirty_pages();
1919 if (nr_pages) {
1920 struct wb_writeback_work work = {
1921 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1922 .sync_mode = WB_SYNC_NONE,
1923 .range_cyclic = 1,
1924 .reason = wb->start_all_reason,
1925 };
1926
1927 nr_pages = wb_writeback(wb, &work);
1928 }
1929
1930 clear_bit(WB_start_all, &wb->state);
1931 return nr_pages;
1932}
1933
1934
03ba3782
JA
1935/*
1936 * Retrieve work items and do the writeback they describe
1937 */
25d130ba 1938static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1939{
83ba7b07 1940 struct wb_writeback_work *work;
c4a77a6c 1941 long wrote = 0;
03ba3782 1942
4452226e 1943 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1944 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1945 trace_writeback_exec(wb, work);
83ba7b07 1946 wrote += wb_writeback(wb, work);
4a3a485b 1947 finish_writeback_work(wb, work);
03ba3782
JA
1948 }
1949
85009b4f
JA
1950 /*
1951 * Check for a flush-everything request
1952 */
1953 wrote += wb_check_start_all(wb);
1954
03ba3782
JA
1955 /*
1956 * Check for periodic writeback, kupdated() style
1957 */
1958 wrote += wb_check_old_data_flush(wb);
6585027a 1959 wrote += wb_check_background_flush(wb);
4452226e 1960 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1961
1962 return wrote;
1963}
1964
1965/*
1966 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1967 * reschedules periodically and does kupdated style flushing.
03ba3782 1968 */
f0054bb1 1969void wb_workfn(struct work_struct *work)
03ba3782 1970{
839a8e86
TH
1971 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1972 struct bdi_writeback, dwork);
03ba3782
JA
1973 long pages_written;
1974
f0054bb1 1975 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1976 current->flags |= PF_SWAPWRITE;
455b2864 1977
839a8e86 1978 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1979 !test_bit(WB_registered, &wb->state))) {
6467716a 1980 /*
f0054bb1 1981 * The normal path. Keep writing back @wb until its
839a8e86 1982 * work_list is empty. Note that this path is also taken
f0054bb1 1983 * if @wb is shutting down even when we're running off the
839a8e86 1984 * rescuer as work_list needs to be drained.
6467716a 1985 */
839a8e86 1986 do {
25d130ba 1987 pages_written = wb_do_writeback(wb);
839a8e86 1988 trace_writeback_pages_written(pages_written);
f0054bb1 1989 } while (!list_empty(&wb->work_list));
839a8e86
TH
1990 } else {
1991 /*
1992 * bdi_wq can't get enough workers and we're running off
1993 * the emergency worker. Don't hog it. Hopefully, 1024 is
1994 * enough for efficient IO.
1995 */
f0054bb1 1996 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1997 WB_REASON_FORKER_THREAD);
455b2864 1998 trace_writeback_pages_written(pages_written);
03ba3782
JA
1999 }
2000
f0054bb1 2001 if (!list_empty(&wb->work_list))
b8b78495 2002 wb_wakeup(wb);
6ca738d6 2003 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 2004 wb_wakeup_delayed(wb);
455b2864 2005
839a8e86 2006 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2007}
2008
595043e5
JA
2009/*
2010 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2011 * write back the whole world.
2012 */
2013static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2014 enum wb_reason reason)
595043e5
JA
2015{
2016 struct bdi_writeback *wb;
2017
2018 if (!bdi_has_dirty_io(bdi))
2019 return;
2020
2021 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2022 wb_start_writeback(wb, reason);
595043e5
JA
2023}
2024
2025void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2026 enum wb_reason reason)
2027{
595043e5 2028 rcu_read_lock();
e8e8a0c6 2029 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2030 rcu_read_unlock();
2031}
2032
03ba3782 2033/*
9ba4b2df 2034 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2035 */
9ba4b2df 2036void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2037{
b8c2f347 2038 struct backing_dev_info *bdi;
03ba3782 2039
51350ea0
KK
2040 /*
2041 * If we are expecting writeback progress we must submit plugged IO.
2042 */
2043 if (blk_needs_flush_plug(current))
2044 blk_schedule_flush_plug(current);
2045
b8c2f347 2046 rcu_read_lock();
595043e5 2047 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2048 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2049 rcu_read_unlock();
1da177e4
LT
2050}
2051
a2f48706
TT
2052/*
2053 * Wake up bdi's periodically to make sure dirtytime inodes gets
2054 * written back periodically. We deliberately do *not* check the
2055 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2056 * kernel to be constantly waking up once there are any dirtytime
2057 * inodes on the system. So instead we define a separate delayed work
2058 * function which gets called much more rarely. (By default, only
2059 * once every 12 hours.)
2060 *
2061 * If there is any other write activity going on in the file system,
2062 * this function won't be necessary. But if the only thing that has
2063 * happened on the file system is a dirtytime inode caused by an atime
2064 * update, we need this infrastructure below to make sure that inode
2065 * eventually gets pushed out to disk.
2066 */
2067static void wakeup_dirtytime_writeback(struct work_struct *w);
2068static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2069
2070static void wakeup_dirtytime_writeback(struct work_struct *w)
2071{
2072 struct backing_dev_info *bdi;
2073
2074 rcu_read_lock();
2075 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2076 struct bdi_writeback *wb;
001fe6f6 2077
b817525a 2078 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2079 if (!list_empty(&wb->b_dirty_time))
2080 wb_wakeup(wb);
a2f48706
TT
2081 }
2082 rcu_read_unlock();
2083 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2084}
2085
2086static int __init start_dirtytime_writeback(void)
2087{
2088 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2089 return 0;
2090}
2091__initcall(start_dirtytime_writeback);
2092
1efff914
TT
2093int dirtytime_interval_handler(struct ctl_table *table, int write,
2094 void __user *buffer, size_t *lenp, loff_t *ppos)
2095{
2096 int ret;
2097
2098 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2099 if (ret == 0 && write)
2100 mod_delayed_work(system_wq, &dirtytime_work, 0);
2101 return ret;
2102}
2103
03ba3782
JA
2104static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2105{
2106 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2107 struct dentry *dentry;
2108 const char *name = "?";
2109
2110 dentry = d_find_alias(inode);
2111 if (dentry) {
2112 spin_lock(&dentry->d_lock);
2113 name = (const char *) dentry->d_name.name;
2114 }
2115 printk(KERN_DEBUG
2116 "%s(%d): dirtied inode %lu (%s) on %s\n",
2117 current->comm, task_pid_nr(current), inode->i_ino,
2118 name, inode->i_sb->s_id);
2119 if (dentry) {
2120 spin_unlock(&dentry->d_lock);
2121 dput(dentry);
2122 }
2123 }
2124}
2125
2126/**
0117d427
MCC
2127 * __mark_inode_dirty - internal function
2128 *
2129 * @inode: inode to mark
2130 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131 *
2132 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133 * mark_inode_dirty_sync.
1da177e4 2134 *
03ba3782
JA
2135 * Put the inode on the super block's dirty list.
2136 *
2137 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138 * dirty list only if it is hashed or if it refers to a blockdev.
2139 * If it was not hashed, it will never be added to the dirty list
2140 * even if it is later hashed, as it will have been marked dirty already.
2141 *
2142 * In short, make sure you hash any inodes _before_ you start marking
2143 * them dirty.
1da177e4 2144 *
03ba3782
JA
2145 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2147 * the kernel-internal blockdev inode represents the dirtying time of the
2148 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2149 * page->mapping->host, so the page-dirtying time is recorded in the internal
2150 * blockdev inode.
1da177e4 2151 */
03ba3782 2152void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2153{
03ba3782 2154 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2155 int dirtytime;
2156
2157 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2158
03ba3782
JA
2159 /*
2160 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161 * dirty the inode itself
2162 */
0e11f644 2163 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
9fb0a7da
TH
2164 trace_writeback_dirty_inode_start(inode, flags);
2165
03ba3782 2166 if (sb->s_op->dirty_inode)
aa385729 2167 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2168
2169 trace_writeback_dirty_inode(inode, flags);
03ba3782 2170 }
0ae45f63
TT
2171 if (flags & I_DIRTY_INODE)
2172 flags &= ~I_DIRTY_TIME;
2173 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2174
2175 /*
9c6ac78e
TH
2176 * Paired with smp_mb() in __writeback_single_inode() for the
2177 * following lockless i_state test. See there for details.
03ba3782
JA
2178 */
2179 smp_mb();
2180
0ae45f63
TT
2181 if (((inode->i_state & flags) == flags) ||
2182 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2183 return;
2184
2185 if (unlikely(block_dump))
2186 block_dump___mark_inode_dirty(inode);
2187
250df6ed 2188 spin_lock(&inode->i_lock);
0ae45f63
TT
2189 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2190 goto out_unlock_inode;
03ba3782
JA
2191 if ((inode->i_state & flags) != flags) {
2192 const int was_dirty = inode->i_state & I_DIRTY;
2193
52ebea74
TH
2194 inode_attach_wb(inode, NULL);
2195
0ae45f63
TT
2196 if (flags & I_DIRTY_INODE)
2197 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2198 inode->i_state |= flags;
2199
2200 /*
2201 * If the inode is being synced, just update its dirty state.
2202 * The unlocker will place the inode on the appropriate
2203 * superblock list, based upon its state.
2204 */
2205 if (inode->i_state & I_SYNC)
250df6ed 2206 goto out_unlock_inode;
03ba3782
JA
2207
2208 /*
2209 * Only add valid (hashed) inodes to the superblock's
2210 * dirty list. Add blockdev inodes as well.
2211 */
2212 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2213 if (inode_unhashed(inode))
250df6ed 2214 goto out_unlock_inode;
03ba3782 2215 }
a4ffdde6 2216 if (inode->i_state & I_FREEING)
250df6ed 2217 goto out_unlock_inode;
03ba3782
JA
2218
2219 /*
2220 * If the inode was already on b_dirty/b_io/b_more_io, don't
2221 * reposition it (that would break b_dirty time-ordering).
2222 */
2223 if (!was_dirty) {
87e1d789 2224 struct bdi_writeback *wb;
d6c10f1f 2225 struct list_head *dirty_list;
a66979ab 2226 bool wakeup_bdi = false;
253c34e9 2227
87e1d789 2228 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2229
0747259d
TH
2230 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2231 !test_bit(WB_registered, &wb->state),
2232 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2233
2234 inode->dirtied_when = jiffies;
a2f48706
TT
2235 if (dirtytime)
2236 inode->dirtied_time_when = jiffies;
d6c10f1f 2237
0e11f644 2238 if (inode->i_state & I_DIRTY)
0747259d 2239 dirty_list = &wb->b_dirty;
a2f48706 2240 else
0747259d 2241 dirty_list = &wb->b_dirty_time;
d6c10f1f 2242
c7f54084 2243 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2244 dirty_list);
2245
0747259d 2246 spin_unlock(&wb->list_lock);
0ae45f63 2247 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2248
d6c10f1f
TH
2249 /*
2250 * If this is the first dirty inode for this bdi,
2251 * we have to wake-up the corresponding bdi thread
2252 * to make sure background write-back happens
2253 * later.
2254 */
0747259d
TH
2255 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2256 wb_wakeup_delayed(wb);
a66979ab 2257 return;
1da177e4 2258 }
1da177e4 2259 }
250df6ed
DC
2260out_unlock_inode:
2261 spin_unlock(&inode->i_lock);
03ba3782
JA
2262}
2263EXPORT_SYMBOL(__mark_inode_dirty);
2264
e97fedb9
DC
2265/*
2266 * The @s_sync_lock is used to serialise concurrent sync operations
2267 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2268 * Concurrent callers will block on the s_sync_lock rather than doing contending
2269 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2270 * has been issued up to the time this function is enter is guaranteed to be
2271 * completed by the time we have gained the lock and waited for all IO that is
2272 * in progress regardless of the order callers are granted the lock.
2273 */
b6e51316 2274static void wait_sb_inodes(struct super_block *sb)
03ba3782 2275{
6c60d2b5 2276 LIST_HEAD(sync_list);
03ba3782
JA
2277
2278 /*
2279 * We need to be protected against the filesystem going from
2280 * r/o to r/w or vice versa.
2281 */
b6e51316 2282 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2283
e97fedb9 2284 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2285
2286 /*
6c60d2b5
DC
2287 * Splice the writeback list onto a temporary list to avoid waiting on
2288 * inodes that have started writeback after this point.
2289 *
2290 * Use rcu_read_lock() to keep the inodes around until we have a
2291 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2292 * the local list because inodes can be dropped from either by writeback
2293 * completion.
2294 */
2295 rcu_read_lock();
2296 spin_lock_irq(&sb->s_inode_wblist_lock);
2297 list_splice_init(&sb->s_inodes_wb, &sync_list);
2298
2299 /*
2300 * Data integrity sync. Must wait for all pages under writeback, because
2301 * there may have been pages dirtied before our sync call, but which had
2302 * writeout started before we write it out. In which case, the inode
2303 * may not be on the dirty list, but we still have to wait for that
2304 * writeout.
03ba3782 2305 */
6c60d2b5
DC
2306 while (!list_empty(&sync_list)) {
2307 struct inode *inode = list_first_entry(&sync_list, struct inode,
2308 i_wb_list);
250df6ed 2309 struct address_space *mapping = inode->i_mapping;
03ba3782 2310
6c60d2b5
DC
2311 /*
2312 * Move each inode back to the wb list before we drop the lock
2313 * to preserve consistency between i_wb_list and the mapping
2314 * writeback tag. Writeback completion is responsible to remove
2315 * the inode from either list once the writeback tag is cleared.
2316 */
2317 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2318
2319 /*
2320 * The mapping can appear untagged while still on-list since we
2321 * do not have the mapping lock. Skip it here, wb completion
2322 * will remove it.
2323 */
2324 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2325 continue;
2326
2327 spin_unlock_irq(&sb->s_inode_wblist_lock);
2328
250df6ed 2329 spin_lock(&inode->i_lock);
6c60d2b5 2330 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2331 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2332
2333 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2334 continue;
250df6ed 2335 }
03ba3782 2336 __iget(inode);
250df6ed 2337 spin_unlock(&inode->i_lock);
6c60d2b5 2338 rcu_read_unlock();
03ba3782 2339
aa750fd7
JN
2340 /*
2341 * We keep the error status of individual mapping so that
2342 * applications can catch the writeback error using fsync(2).
2343 * See filemap_fdatawait_keep_errors() for details.
2344 */
2345 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2346
2347 cond_resched();
2348
6c60d2b5
DC
2349 iput(inode);
2350
2351 rcu_read_lock();
2352 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2353 }
6c60d2b5
DC
2354 spin_unlock_irq(&sb->s_inode_wblist_lock);
2355 rcu_read_unlock();
e97fedb9 2356 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2357}
2358
f30a7d0c
TH
2359static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2360 enum wb_reason reason, bool skip_if_busy)
1da177e4 2361{
cc395d7f 2362 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2363 struct wb_writeback_work work = {
6e6938b6
WF
2364 .sb = sb,
2365 .sync_mode = WB_SYNC_NONE,
2366 .tagged_writepages = 1,
2367 .done = &done,
2368 .nr_pages = nr,
0e175a18 2369 .reason = reason,
3c4d7165 2370 };
e7972912 2371 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2372
e7972912 2373 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2374 return;
cf37e972 2375 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2376
db125360 2377 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2378 wb_wait_for_completion(bdi, &done);
e913fc82 2379}
f30a7d0c
TH
2380
2381/**
2382 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2383 * @sb: the superblock
2384 * @nr: the number of pages to write
2385 * @reason: reason why some writeback work initiated
2386 *
2387 * Start writeback on some inodes on this super_block. No guarantees are made
2388 * on how many (if any) will be written, and this function does not wait
2389 * for IO completion of submitted IO.
2390 */
2391void writeback_inodes_sb_nr(struct super_block *sb,
2392 unsigned long nr,
2393 enum wb_reason reason)
2394{
2395 __writeback_inodes_sb_nr(sb, nr, reason, false);
2396}
3259f8be
CM
2397EXPORT_SYMBOL(writeback_inodes_sb_nr);
2398
2399/**
2400 * writeback_inodes_sb - writeback dirty inodes from given super_block
2401 * @sb: the superblock
786228ab 2402 * @reason: reason why some writeback work was initiated
3259f8be
CM
2403 *
2404 * Start writeback on some inodes on this super_block. No guarantees are made
2405 * on how many (if any) will be written, and this function does not wait
2406 * for IO completion of submitted IO.
2407 */
0e175a18 2408void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2409{
0e175a18 2410 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2411}
0e3c9a22 2412EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2413
17bd55d0 2414/**
8264c321 2415 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2416 * @sb: the superblock
8264c321 2417 * @reason: reason why some writeback work was initiated
17bd55d0 2418 *
8264c321 2419 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2420 */
8264c321 2421void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2422{
10ee27a0 2423 if (!down_read_trylock(&sb->s_umount))
8264c321 2424 return;
10ee27a0 2425
8264c321 2426 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2427 up_read(&sb->s_umount);
3259f8be 2428}
10ee27a0 2429EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2430
d8a8559c
JA
2431/**
2432 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2433 * @sb: the superblock
d8a8559c
JA
2434 *
2435 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2436 * super_block.
d8a8559c 2437 */
0dc83bd3 2438void sync_inodes_sb(struct super_block *sb)
d8a8559c 2439{
cc395d7f 2440 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2441 struct wb_writeback_work work = {
3c4d7165
CH
2442 .sb = sb,
2443 .sync_mode = WB_SYNC_ALL,
2444 .nr_pages = LONG_MAX,
2445 .range_cyclic = 0,
83ba7b07 2446 .done = &done,
0e175a18 2447 .reason = WB_REASON_SYNC,
7747bd4b 2448 .for_sync = 1,
3c4d7165 2449 };
e7972912 2450 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2451
006a0973
TH
2452 /*
2453 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2454 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2455 * bdi_has_dirty() need to be written out too.
2456 */
2457 if (bdi == &noop_backing_dev_info)
6eedc701 2458 return;
cf37e972
CH
2459 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2460
7fc5854f
TH
2461 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2462 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2463 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2464 wb_wait_for_completion(bdi, &done);
7fc5854f 2465 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2466
b6e51316 2467 wait_sb_inodes(sb);
1da177e4 2468}
d8a8559c 2469EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2470
1da177e4 2471/**
7f04c26d
AA
2472 * write_inode_now - write an inode to disk
2473 * @inode: inode to write to disk
2474 * @sync: whether the write should be synchronous or not
2475 *
2476 * This function commits an inode to disk immediately if it is dirty. This is
2477 * primarily needed by knfsd.
1da177e4 2478 *
7f04c26d 2479 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2480 */
1da177e4
LT
2481int write_inode_now(struct inode *inode, int sync)
2482{
1da177e4
LT
2483 struct writeback_control wbc = {
2484 .nr_to_write = LONG_MAX,
18914b18 2485 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2486 .range_start = 0,
2487 .range_end = LLONG_MAX,
1da177e4
LT
2488 };
2489
2490 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2491 wbc.nr_to_write = 0;
1da177e4
LT
2492
2493 might_sleep();
aaf25593 2494 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2495}
2496EXPORT_SYMBOL(write_inode_now);
2497
2498/**
2499 * sync_inode - write an inode and its pages to disk.
2500 * @inode: the inode to sync
2501 * @wbc: controls the writeback mode
2502 *
2503 * sync_inode() will write an inode and its pages to disk. It will also
2504 * correctly update the inode on its superblock's dirty inode lists and will
2505 * update inode->i_state.
2506 *
2507 * The caller must have a ref on the inode.
2508 */
2509int sync_inode(struct inode *inode, struct writeback_control *wbc)
2510{
aaf25593 2511 return writeback_single_inode(inode, wbc);
1da177e4
LT
2512}
2513EXPORT_SYMBOL(sync_inode);
c3765016
CH
2514
2515/**
c691b9d9 2516 * sync_inode_metadata - write an inode to disk
c3765016
CH
2517 * @inode: the inode to sync
2518 * @wait: wait for I/O to complete.
2519 *
c691b9d9 2520 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2521 *
2522 * Note: only writes the actual inode, no associated data or other metadata.
2523 */
2524int sync_inode_metadata(struct inode *inode, int wait)
2525{
2526 struct writeback_control wbc = {
2527 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2528 .nr_to_write = 0, /* metadata-only */
2529 };
2530
2531 return sync_inode(inode, &wbc);
2532}
2533EXPORT_SYMBOL(sync_inode_metadata);