]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/fs-writeback.c
writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
[mirror_ubuntu-artful-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
98754bf7
TH
56 unsigned int single_wait:1;
57 unsigned int single_done:1;
0e175a18 58 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 59
8010c3b6 60 struct list_head list; /* pending work list */
cc395d7f 61 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
62};
63
cc395d7f
TH
64/*
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
70 */
71#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
74 }
75
76
a2f48706
TT
77/*
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
86 */
87unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88
7ccf19a8
NP
89static inline struct inode *wb_inode(struct list_head *head)
90{
91 return list_entry(head, struct inode, i_wb_list);
92}
93
15eb77a0
WF
94/*
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
98 */
99#define CREATE_TRACE_POINTS
100#include <trace/events/writeback.h>
101
774016b2
SW
102EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103
d6c10f1f
TH
104static bool wb_io_lists_populated(struct bdi_writeback *wb)
105{
106 if (wb_has_dirty_io(wb)) {
107 return false;
108 } else {
109 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 110 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
111 atomic_long_add(wb->avg_write_bandwidth,
112 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
113 return true;
114 }
115}
116
117static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118{
119 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 120 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 121 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
122 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 124 }
d6c10f1f
TH
125}
126
127/**
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
132 *
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
136 */
137static bool inode_wb_list_move_locked(struct inode *inode,
138 struct bdi_writeback *wb,
139 struct list_head *head)
140{
141 assert_spin_locked(&wb->list_lock);
142
143 list_move(&inode->i_wb_list, head);
144
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head != &wb->b_dirty_time)
147 return wb_io_lists_populated(wb);
148
149 wb_io_lists_depopulated(wb);
150 return false;
151}
152
153/**
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
157 *
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
160 */
161static void inode_wb_list_del_locked(struct inode *inode,
162 struct bdi_writeback *wb)
163{
164 assert_spin_locked(&wb->list_lock);
165
166 list_del_init(&inode->i_wb_list);
167 wb_io_lists_depopulated(wb);
168}
169
f0054bb1 170static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 171{
f0054bb1
TH
172 spin_lock_bh(&wb->work_lock);
173 if (test_bit(WB_registered, &wb->state))
174 mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
176}
177
f0054bb1
TH
178static void wb_queue_work(struct bdi_writeback *wb,
179 struct wb_writeback_work *work)
6585027a 180{
f0054bb1 181 trace_writeback_queue(wb->bdi, work);
6585027a 182
f0054bb1 183 spin_lock_bh(&wb->work_lock);
98754bf7
TH
184 if (!test_bit(WB_registered, &wb->state)) {
185 if (work->single_wait)
186 work->single_done = 1;
5acda9d1 187 goto out_unlock;
98754bf7 188 }
cc395d7f
TH
189 if (work->done)
190 atomic_inc(&work->done->cnt);
f0054bb1
TH
191 list_add_tail(&work->list, &wb->work_list);
192 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 193out_unlock:
f0054bb1 194 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
195}
196
cc395d7f
TH
197/**
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
201 *
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
207 */
208static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 struct wb_completion *done)
210{
211 atomic_dec(&done->cnt); /* put down the initial count */
212 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213}
214
703c2708
TH
215#ifdef CONFIG_CGROUP_WRITEBACK
216
2a814908
TH
217/* parameters for foreign inode detection, see wb_detach_inode() */
218#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
222
223#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
230
21c6321f
TH
231void __inode_attach_wb(struct inode *inode, struct page *page)
232{
233 struct backing_dev_info *bdi = inode_to_bdi(inode);
234 struct bdi_writeback *wb = NULL;
235
236 if (inode_cgwb_enabled(inode)) {
237 struct cgroup_subsys_state *memcg_css;
238
239 if (page) {
240 memcg_css = mem_cgroup_css_from_page(page);
241 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 } else {
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css = task_get_css(current, memory_cgrp_id);
245 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 css_put(memcg_css);
247 }
248 }
249
250 if (!wb)
251 wb = &bdi->wb;
252
253 /*
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
256 */
257 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 wb_put(wb);
259}
260
87e1d789
TH
261/**
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
264 *
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
268 */
269static struct bdi_writeback *
270locked_inode_to_wb_and_lock_list(struct inode *inode)
271 __releases(&inode->i_lock)
272 __acquires(&wb->list_lock)
273{
274 while (true) {
275 struct bdi_writeback *wb = inode_to_wb(inode);
276
277 /*
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
282 */
283 wb_get(wb);
284 spin_unlock(&inode->i_lock);
285 spin_lock(&wb->list_lock);
286 wb_put(wb); /* not gonna deref it anymore */
287
288 if (likely(wb == inode_to_wb(inode)))
289 return wb; /* @inode already has ref */
290
291 spin_unlock(&wb->list_lock);
292 cpu_relax();
293 spin_lock(&inode->i_lock);
294 }
295}
296
297/**
298 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
299 * @inode: inode of interest
300 *
301 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
302 * on entry.
303 */
304static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
305 __acquires(&wb->list_lock)
306{
307 spin_lock(&inode->i_lock);
308 return locked_inode_to_wb_and_lock_list(inode);
309}
310
682aa8e1
TH
311struct inode_switch_wbs_context {
312 struct inode *inode;
313 struct bdi_writeback *new_wb;
314
315 struct rcu_head rcu_head;
316 struct work_struct work;
317};
318
319static void inode_switch_wbs_work_fn(struct work_struct *work)
320{
321 struct inode_switch_wbs_context *isw =
322 container_of(work, struct inode_switch_wbs_context, work);
323 struct inode *inode = isw->inode;
324 struct bdi_writeback *new_wb = isw->new_wb;
325
326 /*
327 * By the time control reaches here, RCU grace period has passed
328 * since I_WB_SWITCH assertion and all wb stat update transactions
329 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
330 * synchronizing against mapping->tree_lock.
331 */
332 spin_lock(&inode->i_lock);
333
334 inode->i_wb_frn_winner = 0;
335 inode->i_wb_frn_avg_time = 0;
336 inode->i_wb_frn_history = 0;
337
338 /*
339 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
340 * ensures that the new wb is visible if they see !I_WB_SWITCH.
341 */
342 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
343
344 spin_unlock(&inode->i_lock);
345
346 iput(inode);
347 wb_put(new_wb);
348 kfree(isw);
349}
350
351static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
352{
353 struct inode_switch_wbs_context *isw = container_of(rcu_head,
354 struct inode_switch_wbs_context, rcu_head);
355
356 /* needs to grab bh-unsafe locks, bounce to work item */
357 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
358 schedule_work(&isw->work);
359}
360
361/**
362 * inode_switch_wbs - change the wb association of an inode
363 * @inode: target inode
364 * @new_wb_id: ID of the new wb
365 *
366 * Switch @inode's wb association to the wb identified by @new_wb_id. The
367 * switching is performed asynchronously and may fail silently.
368 */
369static void inode_switch_wbs(struct inode *inode, int new_wb_id)
370{
371 struct backing_dev_info *bdi = inode_to_bdi(inode);
372 struct cgroup_subsys_state *memcg_css;
373 struct inode_switch_wbs_context *isw;
374
375 /* noop if seems to be already in progress */
376 if (inode->i_state & I_WB_SWITCH)
377 return;
378
379 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
380 if (!isw)
381 return;
382
383 /* find and pin the new wb */
384 rcu_read_lock();
385 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
386 if (memcg_css)
387 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
388 rcu_read_unlock();
389 if (!isw->new_wb)
390 goto out_free;
391
392 /* while holding I_WB_SWITCH, no one else can update the association */
393 spin_lock(&inode->i_lock);
394 if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
395 inode_to_wb(inode) == isw->new_wb) {
396 spin_unlock(&inode->i_lock);
397 goto out_free;
398 }
399 inode->i_state |= I_WB_SWITCH;
400 spin_unlock(&inode->i_lock);
401
402 ihold(inode);
403 isw->inode = inode;
404
405 /*
406 * In addition to synchronizing among switchers, I_WB_SWITCH tells
407 * the RCU protected stat update paths to grab the mapping's
408 * tree_lock so that stat transfer can synchronize against them.
409 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
410 */
411 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
412 return;
413
414out_free:
415 if (isw->new_wb)
416 wb_put(isw->new_wb);
417 kfree(isw);
418}
419
b16b1deb
TH
420/**
421 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
422 * @wbc: writeback_control of interest
423 * @inode: target inode
424 *
425 * @inode is locked and about to be written back under the control of @wbc.
426 * Record @inode's writeback context into @wbc and unlock the i_lock. On
427 * writeback completion, wbc_detach_inode() should be called. This is used
428 * to track the cgroup writeback context.
429 */
430void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
431 struct inode *inode)
432{
433 wbc->wb = inode_to_wb(inode);
2a814908
TH
434 wbc->inode = inode;
435
436 wbc->wb_id = wbc->wb->memcg_css->id;
437 wbc->wb_lcand_id = inode->i_wb_frn_winner;
438 wbc->wb_tcand_id = 0;
439 wbc->wb_bytes = 0;
440 wbc->wb_lcand_bytes = 0;
441 wbc->wb_tcand_bytes = 0;
442
b16b1deb
TH
443 wb_get(wbc->wb);
444 spin_unlock(&inode->i_lock);
445}
446
447/**
2a814908
TH
448 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
449 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
450 *
451 * To be called after a writeback attempt of an inode finishes and undoes
452 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
453 *
454 * As concurrent write sharing of an inode is expected to be very rare and
455 * memcg only tracks page ownership on first-use basis severely confining
456 * the usefulness of such sharing, cgroup writeback tracks ownership
457 * per-inode. While the support for concurrent write sharing of an inode
458 * is deemed unnecessary, an inode being written to by different cgroups at
459 * different points in time is a lot more common, and, more importantly,
460 * charging only by first-use can too readily lead to grossly incorrect
461 * behaviors (single foreign page can lead to gigabytes of writeback to be
462 * incorrectly attributed).
463 *
464 * To resolve this issue, cgroup writeback detects the majority dirtier of
465 * an inode and transfers the ownership to it. To avoid unnnecessary
466 * oscillation, the detection mechanism keeps track of history and gives
467 * out the switch verdict only if the foreign usage pattern is stable over
468 * a certain amount of time and/or writeback attempts.
469 *
470 * On each writeback attempt, @wbc tries to detect the majority writer
471 * using Boyer-Moore majority vote algorithm. In addition to the byte
472 * count from the majority voting, it also counts the bytes written for the
473 * current wb and the last round's winner wb (max of last round's current
474 * wb, the winner from two rounds ago, and the last round's majority
475 * candidate). Keeping track of the historical winner helps the algorithm
476 * to semi-reliably detect the most active writer even when it's not the
477 * absolute majority.
478 *
479 * Once the winner of the round is determined, whether the winner is
480 * foreign or not and how much IO time the round consumed is recorded in
481 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
482 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
483 */
484void wbc_detach_inode(struct writeback_control *wbc)
485{
2a814908
TH
486 struct bdi_writeback *wb = wbc->wb;
487 struct inode *inode = wbc->inode;
488 u16 history = inode->i_wb_frn_history;
489 unsigned long avg_time = inode->i_wb_frn_avg_time;
490 unsigned long max_bytes, max_time;
491 int max_id;
492
493 /* pick the winner of this round */
494 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
495 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
496 max_id = wbc->wb_id;
497 max_bytes = wbc->wb_bytes;
498 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
499 max_id = wbc->wb_lcand_id;
500 max_bytes = wbc->wb_lcand_bytes;
501 } else {
502 max_id = wbc->wb_tcand_id;
503 max_bytes = wbc->wb_tcand_bytes;
504 }
505
506 /*
507 * Calculate the amount of IO time the winner consumed and fold it
508 * into the running average kept per inode. If the consumed IO
509 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
510 * deciding whether to switch or not. This is to prevent one-off
511 * small dirtiers from skewing the verdict.
512 */
513 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
514 wb->avg_write_bandwidth);
515 if (avg_time)
516 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
517 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
518 else
519 avg_time = max_time; /* immediate catch up on first run */
520
521 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
522 int slots;
523
524 /*
525 * The switch verdict is reached if foreign wb's consume
526 * more than a certain proportion of IO time in a
527 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
528 * history mask where each bit represents one sixteenth of
529 * the period. Determine the number of slots to shift into
530 * history from @max_time.
531 */
532 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
533 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
534 history <<= slots;
535 if (wbc->wb_id != max_id)
536 history |= (1U << slots) - 1;
537
538 /*
539 * Switch if the current wb isn't the consistent winner.
540 * If there are multiple closely competing dirtiers, the
541 * inode may switch across them repeatedly over time, which
542 * is okay. The main goal is avoiding keeping an inode on
543 * the wrong wb for an extended period of time.
544 */
682aa8e1
TH
545 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
546 inode_switch_wbs(inode, max_id);
2a814908
TH
547 }
548
549 /*
550 * Multiple instances of this function may race to update the
551 * following fields but we don't mind occassional inaccuracies.
552 */
553 inode->i_wb_frn_winner = max_id;
554 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
555 inode->i_wb_frn_history = history;
556
b16b1deb
TH
557 wb_put(wbc->wb);
558 wbc->wb = NULL;
559}
560
2a814908
TH
561/**
562 * wbc_account_io - account IO issued during writeback
563 * @wbc: writeback_control of the writeback in progress
564 * @page: page being written out
565 * @bytes: number of bytes being written out
566 *
567 * @bytes from @page are about to written out during the writeback
568 * controlled by @wbc. Keep the book for foreign inode detection. See
569 * wbc_detach_inode().
570 */
571void wbc_account_io(struct writeback_control *wbc, struct page *page,
572 size_t bytes)
573{
574 int id;
575
576 /*
577 * pageout() path doesn't attach @wbc to the inode being written
578 * out. This is intentional as we don't want the function to block
579 * behind a slow cgroup. Ultimately, we want pageout() to kick off
580 * regular writeback instead of writing things out itself.
581 */
582 if (!wbc->wb)
583 return;
584
585 rcu_read_lock();
586 id = mem_cgroup_css_from_page(page)->id;
587 rcu_read_unlock();
588
589 if (id == wbc->wb_id) {
590 wbc->wb_bytes += bytes;
591 return;
592 }
593
594 if (id == wbc->wb_lcand_id)
595 wbc->wb_lcand_bytes += bytes;
596
597 /* Boyer-Moore majority vote algorithm */
598 if (!wbc->wb_tcand_bytes)
599 wbc->wb_tcand_id = id;
600 if (id == wbc->wb_tcand_id)
601 wbc->wb_tcand_bytes += bytes;
602 else
603 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
604}
605
703c2708
TH
606/**
607 * inode_congested - test whether an inode is congested
608 * @inode: inode to test for congestion
609 * @cong_bits: mask of WB_[a]sync_congested bits to test
610 *
611 * Tests whether @inode is congested. @cong_bits is the mask of congestion
612 * bits to test and the return value is the mask of set bits.
613 *
614 * If cgroup writeback is enabled for @inode, the congestion state is
615 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
616 * associated with @inode is congested; otherwise, the root wb's congestion
617 * state is used.
618 */
619int inode_congested(struct inode *inode, int cong_bits)
620{
621 if (inode) {
622 struct bdi_writeback *wb = inode_to_wb(inode);
623 if (wb)
624 return wb_congested(wb, cong_bits);
625 }
626
627 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
628}
629EXPORT_SYMBOL_GPL(inode_congested);
630
98754bf7
TH
631/**
632 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
633 * @bdi: bdi the work item was issued to
634 * @work: work item to wait for
635 *
636 * Wait for the completion of @work which was issued to one of @bdi's
637 * bdi_writeback's. The caller must have set @work->single_wait before
638 * issuing it. This wait operates independently fo
639 * wb_wait_for_completion() and also disables automatic freeing of @work.
640 */
641static void wb_wait_for_single_work(struct backing_dev_info *bdi,
642 struct wb_writeback_work *work)
643{
644 if (WARN_ON_ONCE(!work->single_wait))
645 return;
646
647 wait_event(bdi->wb_waitq, work->single_done);
648
649 /*
650 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
651 * modifications to @work prior to assertion of ->single_done is
652 * visible to the caller once this function returns.
653 */
654 smp_rmb();
655}
656
f2b65121
TH
657/**
658 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
659 * @wb: target bdi_writeback to split @nr_pages to
660 * @nr_pages: number of pages to write for the whole bdi
661 *
662 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
663 * relation to the total write bandwidth of all wb's w/ dirty inodes on
664 * @wb->bdi.
665 */
666static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
667{
668 unsigned long this_bw = wb->avg_write_bandwidth;
669 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
670
671 if (nr_pages == LONG_MAX)
672 return LONG_MAX;
673
674 /*
675 * This may be called on clean wb's and proportional distribution
676 * may not make sense, just use the original @nr_pages in those
677 * cases. In general, we wanna err on the side of writing more.
678 */
679 if (!tot_bw || this_bw >= tot_bw)
680 return nr_pages;
681 else
682 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
683}
684
db125360
TH
685/**
686 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
687 * @wb: target bdi_writeback
688 * @base_work: source wb_writeback_work
689 *
690 * Try to make a clone of @base_work and issue it to @wb. If cloning
691 * succeeds, %true is returned; otherwise, @base_work is issued directly
692 * and %false is returned. In the latter case, the caller is required to
693 * wait for @base_work's completion using wb_wait_for_single_work().
694 *
695 * A clone is auto-freed on completion. @base_work never is.
696 */
697static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
698 struct wb_writeback_work *base_work)
699{
700 struct wb_writeback_work *work;
701
702 work = kmalloc(sizeof(*work), GFP_ATOMIC);
703 if (work) {
704 *work = *base_work;
705 work->auto_free = 1;
706 work->single_wait = 0;
707 } else {
708 work = base_work;
709 work->auto_free = 0;
710 work->single_wait = 1;
711 }
712 work->single_done = 0;
713 wb_queue_work(wb, work);
714 return work != base_work;
715}
716
717/**
718 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
719 * @bdi: target backing_dev_info
720 * @base_work: wb_writeback_work to issue
721 * @skip_if_busy: skip wb's which already have writeback in progress
722 *
723 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
724 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
725 * distributed to the busy wbs according to each wb's proportion in the
726 * total active write bandwidth of @bdi.
727 */
728static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
729 struct wb_writeback_work *base_work,
730 bool skip_if_busy)
731{
732 long nr_pages = base_work->nr_pages;
733 int next_blkcg_id = 0;
734 struct bdi_writeback *wb;
735 struct wb_iter iter;
736
737 might_sleep();
738
739 if (!bdi_has_dirty_io(bdi))
740 return;
741restart:
742 rcu_read_lock();
743 bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
744 if (!wb_has_dirty_io(wb) ||
745 (skip_if_busy && writeback_in_progress(wb)))
746 continue;
747
748 base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
749 if (!wb_clone_and_queue_work(wb, base_work)) {
750 next_blkcg_id = wb->blkcg_css->id + 1;
751 rcu_read_unlock();
752 wb_wait_for_single_work(bdi, base_work);
753 goto restart;
754 }
755 }
756 rcu_read_unlock();
757}
758
f2b65121
TH
759#else /* CONFIG_CGROUP_WRITEBACK */
760
87e1d789
TH
761static struct bdi_writeback *
762locked_inode_to_wb_and_lock_list(struct inode *inode)
763 __releases(&inode->i_lock)
764 __acquires(&wb->list_lock)
765{
766 struct bdi_writeback *wb = inode_to_wb(inode);
767
768 spin_unlock(&inode->i_lock);
769 spin_lock(&wb->list_lock);
770 return wb;
771}
772
773static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
774 __acquires(&wb->list_lock)
775{
776 struct bdi_writeback *wb = inode_to_wb(inode);
777
778 spin_lock(&wb->list_lock);
779 return wb;
780}
781
f2b65121
TH
782static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
783{
784 return nr_pages;
785}
786
db125360
TH
787static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
788 struct wb_writeback_work *base_work,
789 bool skip_if_busy)
790{
791 might_sleep();
792
793 if (bdi_has_dirty_io(bdi) &&
794 (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
795 base_work->auto_free = 0;
796 base_work->single_wait = 0;
797 base_work->single_done = 0;
798 wb_queue_work(&bdi->wb, base_work);
799 }
800}
801
703c2708
TH
802#endif /* CONFIG_CGROUP_WRITEBACK */
803
c00ddad3
TH
804void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
805 bool range_cyclic, enum wb_reason reason)
b6e51316 806{
c00ddad3
TH
807 struct wb_writeback_work *work;
808
809 if (!wb_has_dirty_io(wb))
810 return;
811
812 /*
813 * This is WB_SYNC_NONE writeback, so if allocation fails just
814 * wakeup the thread for old dirty data writeback
815 */
816 work = kzalloc(sizeof(*work), GFP_ATOMIC);
817 if (!work) {
818 trace_writeback_nowork(wb->bdi);
819 wb_wakeup(wb);
820 return;
821 }
822
823 work->sync_mode = WB_SYNC_NONE;
824 work->nr_pages = nr_pages;
825 work->range_cyclic = range_cyclic;
826 work->reason = reason;
ac7b19a3 827 work->auto_free = 1;
c00ddad3
TH
828
829 wb_queue_work(wb, work);
c5444198 830}
d3ddec76 831
c5444198 832/**
9ecf4866
TH
833 * wb_start_background_writeback - start background writeback
834 * @wb: bdi_writback to write from
c5444198
CH
835 *
836 * Description:
6585027a 837 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 838 * this function returns, it is only guaranteed that for given wb
6585027a
JK
839 * some IO is happening if we are over background dirty threshold.
840 * Caller need not hold sb s_umount semaphore.
c5444198 841 */
9ecf4866 842void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 843{
6585027a
JK
844 /*
845 * We just wake up the flusher thread. It will perform background
846 * writeback as soon as there is no other work to do.
847 */
9ecf4866
TH
848 trace_writeback_wake_background(wb->bdi);
849 wb_wakeup(wb);
1da177e4
LT
850}
851
a66979ab
DC
852/*
853 * Remove the inode from the writeback list it is on.
854 */
855void inode_wb_list_del(struct inode *inode)
856{
87e1d789 857 struct bdi_writeback *wb;
f758eeab 858
87e1d789 859 wb = inode_to_wb_and_lock_list(inode);
d6c10f1f 860 inode_wb_list_del_locked(inode, wb);
52ebea74 861 spin_unlock(&wb->list_lock);
a66979ab
DC
862}
863
6610a0bc
AM
864/*
865 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
866 * furthest end of its superblock's dirty-inode list.
867 *
868 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 869 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
870 * the case then the inode must have been redirtied while it was being written
871 * out and we don't reset its dirtied_when.
872 */
f758eeab 873static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 874{
03ba3782 875 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 876 struct inode *tail;
6610a0bc 877
7ccf19a8 878 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 879 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
880 inode->dirtied_when = jiffies;
881 }
d6c10f1f 882 inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
883}
884
c986d1e2 885/*
66f3b8e2 886 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 887 */
f758eeab 888static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 889{
d6c10f1f 890 inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
891}
892
1c0eeaf5
JE
893static void inode_sync_complete(struct inode *inode)
894{
365b94ae 895 inode->i_state &= ~I_SYNC;
4eff96dd
JK
896 /* If inode is clean an unused, put it into LRU now... */
897 inode_add_lru(inode);
365b94ae 898 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
899 smp_mb();
900 wake_up_bit(&inode->i_state, __I_SYNC);
901}
902
d2caa3c5
JL
903static bool inode_dirtied_after(struct inode *inode, unsigned long t)
904{
905 bool ret = time_after(inode->dirtied_when, t);
906#ifndef CONFIG_64BIT
907 /*
908 * For inodes being constantly redirtied, dirtied_when can get stuck.
909 * It _appears_ to be in the future, but is actually in distant past.
910 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 911 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
912 */
913 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
914#endif
915 return ret;
916}
917
0ae45f63
TT
918#define EXPIRE_DIRTY_ATIME 0x0001
919
2c136579 920/*
0e2f2b23 921 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 922 * @delaying_queue to @dispatch_queue.
2c136579 923 */
e84d0a4f 924static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 925 struct list_head *dispatch_queue,
0ae45f63 926 int flags,
ad4e38dd 927 struct wb_writeback_work *work)
2c136579 928{
0ae45f63
TT
929 unsigned long *older_than_this = NULL;
930 unsigned long expire_time;
5c03449d
SL
931 LIST_HEAD(tmp);
932 struct list_head *pos, *node;
cf137307 933 struct super_block *sb = NULL;
5c03449d 934 struct inode *inode;
cf137307 935 int do_sb_sort = 0;
e84d0a4f 936 int moved = 0;
5c03449d 937
0ae45f63
TT
938 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
939 older_than_this = work->older_than_this;
a2f48706
TT
940 else if (!work->for_sync) {
941 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
942 older_than_this = &expire_time;
943 }
2c136579 944 while (!list_empty(delaying_queue)) {
7ccf19a8 945 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
946 if (older_than_this &&
947 inode_dirtied_after(inode, *older_than_this))
2c136579 948 break;
a8855990
JK
949 list_move(&inode->i_wb_list, &tmp);
950 moved++;
0ae45f63
TT
951 if (flags & EXPIRE_DIRTY_ATIME)
952 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
953 if (sb_is_blkdev_sb(inode->i_sb))
954 continue;
cf137307
JA
955 if (sb && sb != inode->i_sb)
956 do_sb_sort = 1;
957 sb = inode->i_sb;
5c03449d
SL
958 }
959
cf137307
JA
960 /* just one sb in list, splice to dispatch_queue and we're done */
961 if (!do_sb_sort) {
962 list_splice(&tmp, dispatch_queue);
e84d0a4f 963 goto out;
cf137307
JA
964 }
965
5c03449d
SL
966 /* Move inodes from one superblock together */
967 while (!list_empty(&tmp)) {
7ccf19a8 968 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 969 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 970 inode = wb_inode(pos);
5c03449d 971 if (inode->i_sb == sb)
7ccf19a8 972 list_move(&inode->i_wb_list, dispatch_queue);
5c03449d 973 }
2c136579 974 }
e84d0a4f
WF
975out:
976 return moved;
2c136579
FW
977}
978
979/*
980 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
981 * Before
982 * newly dirtied b_dirty b_io b_more_io
983 * =============> gf edc BA
984 * After
985 * newly dirtied b_dirty b_io b_more_io
986 * =============> g fBAedc
987 * |
988 * +--> dequeue for IO
2c136579 989 */
ad4e38dd 990static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 991{
e84d0a4f 992 int moved;
0ae45f63 993
f758eeab 994 assert_spin_locked(&wb->list_lock);
4ea879b9 995 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
996 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
997 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
998 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
999 if (moved)
1000 wb_io_lists_populated(wb);
ad4e38dd 1001 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1002}
1003
a9185b41 1004static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1005{
9fb0a7da
TH
1006 int ret;
1007
1008 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1009 trace_writeback_write_inode_start(inode, wbc);
1010 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1011 trace_writeback_write_inode(inode, wbc);
1012 return ret;
1013 }
03ba3782 1014 return 0;
08d8e974 1015}
08d8e974 1016
1da177e4 1017/*
169ebd90
JK
1018 * Wait for writeback on an inode to complete. Called with i_lock held.
1019 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1020 */
169ebd90
JK
1021static void __inode_wait_for_writeback(struct inode *inode)
1022 __releases(inode->i_lock)
1023 __acquires(inode->i_lock)
01c03194
CH
1024{
1025 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1026 wait_queue_head_t *wqh;
1027
1028 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1029 while (inode->i_state & I_SYNC) {
1030 spin_unlock(&inode->i_lock);
74316201
N
1031 __wait_on_bit(wqh, &wq, bit_wait,
1032 TASK_UNINTERRUPTIBLE);
250df6ed 1033 spin_lock(&inode->i_lock);
58a9d3d8 1034 }
01c03194
CH
1035}
1036
169ebd90
JK
1037/*
1038 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1039 */
1040void inode_wait_for_writeback(struct inode *inode)
1041{
1042 spin_lock(&inode->i_lock);
1043 __inode_wait_for_writeback(inode);
1044 spin_unlock(&inode->i_lock);
1045}
1046
1047/*
1048 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1049 * held and drops it. It is aimed for callers not holding any inode reference
1050 * so once i_lock is dropped, inode can go away.
1051 */
1052static void inode_sleep_on_writeback(struct inode *inode)
1053 __releases(inode->i_lock)
1054{
1055 DEFINE_WAIT(wait);
1056 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1057 int sleep;
1058
1059 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1060 sleep = inode->i_state & I_SYNC;
1061 spin_unlock(&inode->i_lock);
1062 if (sleep)
1063 schedule();
1064 finish_wait(wqh, &wait);
1065}
1066
ccb26b5a
JK
1067/*
1068 * Find proper writeback list for the inode depending on its current state and
1069 * possibly also change of its state while we were doing writeback. Here we
1070 * handle things such as livelock prevention or fairness of writeback among
1071 * inodes. This function can be called only by flusher thread - noone else
1072 * processes all inodes in writeback lists and requeueing inodes behind flusher
1073 * thread's back can have unexpected consequences.
1074 */
1075static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1076 struct writeback_control *wbc)
1077{
1078 if (inode->i_state & I_FREEING)
1079 return;
1080
1081 /*
1082 * Sync livelock prevention. Each inode is tagged and synced in one
1083 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1084 * the dirty time to prevent enqueue and sync it again.
1085 */
1086 if ((inode->i_state & I_DIRTY) &&
1087 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1088 inode->dirtied_when = jiffies;
1089
4f8ad655
JK
1090 if (wbc->pages_skipped) {
1091 /*
1092 * writeback is not making progress due to locked
1093 * buffers. Skip this inode for now.
1094 */
1095 redirty_tail(inode, wb);
1096 return;
1097 }
1098
ccb26b5a
JK
1099 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1100 /*
1101 * We didn't write back all the pages. nfs_writepages()
1102 * sometimes bales out without doing anything.
1103 */
1104 if (wbc->nr_to_write <= 0) {
1105 /* Slice used up. Queue for next turn. */
1106 requeue_io(inode, wb);
1107 } else {
1108 /*
1109 * Writeback blocked by something other than
1110 * congestion. Delay the inode for some time to
1111 * avoid spinning on the CPU (100% iowait)
1112 * retrying writeback of the dirty page/inode
1113 * that cannot be performed immediately.
1114 */
1115 redirty_tail(inode, wb);
1116 }
1117 } else if (inode->i_state & I_DIRTY) {
1118 /*
1119 * Filesystems can dirty the inode during writeback operations,
1120 * such as delayed allocation during submission or metadata
1121 * updates after data IO completion.
1122 */
1123 redirty_tail(inode, wb);
0ae45f63 1124 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1125 inode->dirtied_when = jiffies;
d6c10f1f 1126 inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1127 } else {
1128 /* The inode is clean. Remove from writeback lists. */
d6c10f1f 1129 inode_wb_list_del_locked(inode, wb);
ccb26b5a
JK
1130 }
1131}
1132
01c03194 1133/*
4f8ad655
JK
1134 * Write out an inode and its dirty pages. Do not update the writeback list
1135 * linkage. That is left to the caller. The caller is also responsible for
1136 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1137 */
1138static int
cd8ed2a4 1139__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1140{
1da177e4 1141 struct address_space *mapping = inode->i_mapping;
251d6a47 1142 long nr_to_write = wbc->nr_to_write;
01c03194 1143 unsigned dirty;
1da177e4
LT
1144 int ret;
1145
4f8ad655 1146 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1147
9fb0a7da
TH
1148 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1149
1da177e4
LT
1150 ret = do_writepages(mapping, wbc);
1151
26821ed4
CH
1152 /*
1153 * Make sure to wait on the data before writing out the metadata.
1154 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1155 * I/O completion. We don't do it for sync(2) writeback because it has a
1156 * separate, external IO completion path and ->sync_fs for guaranteeing
1157 * inode metadata is written back correctly.
26821ed4 1158 */
7747bd4b 1159 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1160 int err = filemap_fdatawait(mapping);
1da177e4
LT
1161 if (ret == 0)
1162 ret = err;
1163 }
1164
5547e8aa
DM
1165 /*
1166 * Some filesystems may redirty the inode during the writeback
1167 * due to delalloc, clear dirty metadata flags right before
1168 * write_inode()
1169 */
250df6ed 1170 spin_lock(&inode->i_lock);
9c6ac78e 1171
5547e8aa 1172 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1173 if (inode->i_state & I_DIRTY_TIME) {
1174 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1175 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1176 unlikely(time_after(jiffies,
1177 (inode->dirtied_time_when +
1178 dirtytime_expire_interval * HZ)))) {
1179 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1180 trace_writeback_lazytime(inode);
1181 }
1182 } else
1183 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1184 inode->i_state &= ~dirty;
9c6ac78e
TH
1185
1186 /*
1187 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1188 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1189 * either they see the I_DIRTY bits cleared or we see the dirtied
1190 * inode.
1191 *
1192 * I_DIRTY_PAGES is always cleared together above even if @mapping
1193 * still has dirty pages. The flag is reinstated after smp_mb() if
1194 * necessary. This guarantees that either __mark_inode_dirty()
1195 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1196 */
1197 smp_mb();
1198
1199 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1200 inode->i_state |= I_DIRTY_PAGES;
1201
250df6ed 1202 spin_unlock(&inode->i_lock);
9c6ac78e 1203
0ae45f63
TT
1204 if (dirty & I_DIRTY_TIME)
1205 mark_inode_dirty_sync(inode);
26821ed4 1206 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1207 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1208 int err = write_inode(inode, wbc);
1da177e4
LT
1209 if (ret == 0)
1210 ret = err;
1211 }
4f8ad655
JK
1212 trace_writeback_single_inode(inode, wbc, nr_to_write);
1213 return ret;
1214}
1215
1216/*
1217 * Write out an inode's dirty pages. Either the caller has an active reference
1218 * on the inode or the inode has I_WILL_FREE set.
1219 *
1220 * This function is designed to be called for writing back one inode which
1221 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1222 * and does more profound writeback list handling in writeback_sb_inodes().
1223 */
1224static int
1225writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1226 struct writeback_control *wbc)
1227{
1228 int ret = 0;
1229
1230 spin_lock(&inode->i_lock);
1231 if (!atomic_read(&inode->i_count))
1232 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1233 else
1234 WARN_ON(inode->i_state & I_WILL_FREE);
1235
1236 if (inode->i_state & I_SYNC) {
1237 if (wbc->sync_mode != WB_SYNC_ALL)
1238 goto out;
1239 /*
169ebd90
JK
1240 * It's a data-integrity sync. We must wait. Since callers hold
1241 * inode reference or inode has I_WILL_FREE set, it cannot go
1242 * away under us.
4f8ad655 1243 */
169ebd90 1244 __inode_wait_for_writeback(inode);
4f8ad655
JK
1245 }
1246 WARN_ON(inode->i_state & I_SYNC);
1247 /*
f9b0e058
JK
1248 * Skip inode if it is clean and we have no outstanding writeback in
1249 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1250 * function since flusher thread may be doing for example sync in
1251 * parallel and if we move the inode, it could get skipped. So here we
1252 * make sure inode is on some writeback list and leave it there unless
1253 * we have completely cleaned the inode.
4f8ad655 1254 */
0ae45f63 1255 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1256 (wbc->sync_mode != WB_SYNC_ALL ||
1257 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1258 goto out;
1259 inode->i_state |= I_SYNC;
b16b1deb 1260 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1261
cd8ed2a4 1262 ret = __writeback_single_inode(inode, wbc);
1da177e4 1263
b16b1deb 1264 wbc_detach_inode(wbc);
f758eeab 1265 spin_lock(&wb->list_lock);
250df6ed 1266 spin_lock(&inode->i_lock);
4f8ad655
JK
1267 /*
1268 * If inode is clean, remove it from writeback lists. Otherwise don't
1269 * touch it. See comment above for explanation.
1270 */
0ae45f63 1271 if (!(inode->i_state & I_DIRTY_ALL))
d6c10f1f 1272 inode_wb_list_del_locked(inode, wb);
4f8ad655 1273 spin_unlock(&wb->list_lock);
1c0eeaf5 1274 inode_sync_complete(inode);
4f8ad655
JK
1275out:
1276 spin_unlock(&inode->i_lock);
1da177e4
LT
1277 return ret;
1278}
1279
a88a341a 1280static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1281 struct wb_writeback_work *work)
d46db3d5
WF
1282{
1283 long pages;
1284
1285 /*
1286 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1287 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1288 * here avoids calling into writeback_inodes_wb() more than once.
1289 *
1290 * The intended call sequence for WB_SYNC_ALL writeback is:
1291 *
1292 * wb_writeback()
1293 * writeback_sb_inodes() <== called only once
1294 * write_cache_pages() <== called once for each inode
1295 * (quickly) tag currently dirty pages
1296 * (maybe slowly) sync all tagged pages
1297 */
1298 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1299 pages = LONG_MAX;
1a12d8bd 1300 else {
a88a341a 1301 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1302 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1303 pages = min(pages, work->nr_pages);
1304 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1305 MIN_WRITEBACK_PAGES);
1306 }
d46db3d5
WF
1307
1308 return pages;
1309}
1310
f11c9c5c
ES
1311/*
1312 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1313 *
d46db3d5 1314 * Return the number of pages and/or inodes written.
f11c9c5c 1315 */
d46db3d5
WF
1316static long writeback_sb_inodes(struct super_block *sb,
1317 struct bdi_writeback *wb,
1318 struct wb_writeback_work *work)
1da177e4 1319{
d46db3d5
WF
1320 struct writeback_control wbc = {
1321 .sync_mode = work->sync_mode,
1322 .tagged_writepages = work->tagged_writepages,
1323 .for_kupdate = work->for_kupdate,
1324 .for_background = work->for_background,
7747bd4b 1325 .for_sync = work->for_sync,
d46db3d5
WF
1326 .range_cyclic = work->range_cyclic,
1327 .range_start = 0,
1328 .range_end = LLONG_MAX,
1329 };
1330 unsigned long start_time = jiffies;
1331 long write_chunk;
1332 long wrote = 0; /* count both pages and inodes */
1333
03ba3782 1334 while (!list_empty(&wb->b_io)) {
7ccf19a8 1335 struct inode *inode = wb_inode(wb->b_io.prev);
edadfb10
CH
1336
1337 if (inode->i_sb != sb) {
d46db3d5 1338 if (work->sb) {
edadfb10
CH
1339 /*
1340 * We only want to write back data for this
1341 * superblock, move all inodes not belonging
1342 * to it back onto the dirty list.
1343 */
f758eeab 1344 redirty_tail(inode, wb);
edadfb10
CH
1345 continue;
1346 }
1347
1348 /*
1349 * The inode belongs to a different superblock.
1350 * Bounce back to the caller to unpin this and
1351 * pin the next superblock.
1352 */
d46db3d5 1353 break;
edadfb10
CH
1354 }
1355
9843b76a 1356 /*
331cbdee
WL
1357 * Don't bother with new inodes or inodes being freed, first
1358 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1359 * kind writeout is handled by the freer.
1360 */
250df6ed 1361 spin_lock(&inode->i_lock);
9843b76a 1362 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1363 spin_unlock(&inode->i_lock);
fcc5c222 1364 redirty_tail(inode, wb);
7ef0d737
NP
1365 continue;
1366 }
cc1676d9
JK
1367 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1368 /*
1369 * If this inode is locked for writeback and we are not
1370 * doing writeback-for-data-integrity, move it to
1371 * b_more_io so that writeback can proceed with the
1372 * other inodes on s_io.
1373 *
1374 * We'll have another go at writing back this inode
1375 * when we completed a full scan of b_io.
1376 */
1377 spin_unlock(&inode->i_lock);
1378 requeue_io(inode, wb);
1379 trace_writeback_sb_inodes_requeue(inode);
1380 continue;
1381 }
f0d07b7f
JK
1382 spin_unlock(&wb->list_lock);
1383
4f8ad655
JK
1384 /*
1385 * We already requeued the inode if it had I_SYNC set and we
1386 * are doing WB_SYNC_NONE writeback. So this catches only the
1387 * WB_SYNC_ALL case.
1388 */
169ebd90
JK
1389 if (inode->i_state & I_SYNC) {
1390 /* Wait for I_SYNC. This function drops i_lock... */
1391 inode_sleep_on_writeback(inode);
1392 /* Inode may be gone, start again */
ead188f9 1393 spin_lock(&wb->list_lock);
169ebd90
JK
1394 continue;
1395 }
4f8ad655 1396 inode->i_state |= I_SYNC;
b16b1deb 1397 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1398
a88a341a 1399 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1400 wbc.nr_to_write = write_chunk;
1401 wbc.pages_skipped = 0;
250df6ed 1402
169ebd90
JK
1403 /*
1404 * We use I_SYNC to pin the inode in memory. While it is set
1405 * evict_inode() will wait so the inode cannot be freed.
1406 */
cd8ed2a4 1407 __writeback_single_inode(inode, &wbc);
250df6ed 1408
b16b1deb 1409 wbc_detach_inode(&wbc);
d46db3d5
WF
1410 work->nr_pages -= write_chunk - wbc.nr_to_write;
1411 wrote += write_chunk - wbc.nr_to_write;
4f8ad655
JK
1412 spin_lock(&wb->list_lock);
1413 spin_lock(&inode->i_lock);
0ae45f63 1414 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1415 wrote++;
4f8ad655
JK
1416 requeue_inode(inode, wb, &wbc);
1417 inode_sync_complete(inode);
0f1b1fd8 1418 spin_unlock(&inode->i_lock);
169ebd90 1419 cond_resched_lock(&wb->list_lock);
d46db3d5
WF
1420 /*
1421 * bail out to wb_writeback() often enough to check
1422 * background threshold and other termination conditions.
1423 */
1424 if (wrote) {
1425 if (time_is_before_jiffies(start_time + HZ / 10UL))
1426 break;
1427 if (work->nr_pages <= 0)
1428 break;
8bc3be27 1429 }
1da177e4 1430 }
d46db3d5 1431 return wrote;
f11c9c5c
ES
1432}
1433
d46db3d5
WF
1434static long __writeback_inodes_wb(struct bdi_writeback *wb,
1435 struct wb_writeback_work *work)
f11c9c5c 1436{
d46db3d5
WF
1437 unsigned long start_time = jiffies;
1438 long wrote = 0;
38f21977 1439
f11c9c5c 1440 while (!list_empty(&wb->b_io)) {
7ccf19a8 1441 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1442 struct super_block *sb = inode->i_sb;
9ecc2738 1443
eb6ef3df 1444 if (!trylock_super(sb)) {
0e995816 1445 /*
eb6ef3df 1446 * trylock_super() may fail consistently due to
0e995816
WF
1447 * s_umount being grabbed by someone else. Don't use
1448 * requeue_io() to avoid busy retrying the inode/sb.
1449 */
1450 redirty_tail(inode, wb);
edadfb10 1451 continue;
f11c9c5c 1452 }
d46db3d5 1453 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1454 up_read(&sb->s_umount);
f11c9c5c 1455
d46db3d5
WF
1456 /* refer to the same tests at the end of writeback_sb_inodes */
1457 if (wrote) {
1458 if (time_is_before_jiffies(start_time + HZ / 10UL))
1459 break;
1460 if (work->nr_pages <= 0)
1461 break;
1462 }
f11c9c5c 1463 }
66f3b8e2 1464 /* Leave any unwritten inodes on b_io */
d46db3d5 1465 return wrote;
66f3b8e2
JA
1466}
1467
7d9f073b 1468static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1469 enum wb_reason reason)
edadfb10 1470{
d46db3d5
WF
1471 struct wb_writeback_work work = {
1472 .nr_pages = nr_pages,
1473 .sync_mode = WB_SYNC_NONE,
1474 .range_cyclic = 1,
0e175a18 1475 .reason = reason,
d46db3d5 1476 };
edadfb10 1477
f758eeab 1478 spin_lock(&wb->list_lock);
424b351f 1479 if (list_empty(&wb->b_io))
ad4e38dd 1480 queue_io(wb, &work);
d46db3d5 1481 __writeback_inodes_wb(wb, &work);
f758eeab 1482 spin_unlock(&wb->list_lock);
edadfb10 1483
d46db3d5
WF
1484 return nr_pages - work.nr_pages;
1485}
03ba3782 1486
03ba3782
JA
1487/*
1488 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1489 *
03ba3782
JA
1490 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1491 * dirtying-time in the inode's address_space. So this periodic writeback code
1492 * just walks the superblock inode list, writing back any inodes which are
1493 * older than a specific point in time.
66f3b8e2 1494 *
03ba3782
JA
1495 * Try to run once per dirty_writeback_interval. But if a writeback event
1496 * takes longer than a dirty_writeback_interval interval, then leave a
1497 * one-second gap.
66f3b8e2 1498 *
03ba3782
JA
1499 * older_than_this takes precedence over nr_to_write. So we'll only write back
1500 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1501 */
c4a77a6c 1502static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1503 struct wb_writeback_work *work)
66f3b8e2 1504{
e98be2d5 1505 unsigned long wb_start = jiffies;
d46db3d5 1506 long nr_pages = work->nr_pages;
0dc83bd3 1507 unsigned long oldest_jif;
a5989bdc 1508 struct inode *inode;
d46db3d5 1509 long progress;
66f3b8e2 1510
0dc83bd3
JK
1511 oldest_jif = jiffies;
1512 work->older_than_this = &oldest_jif;
38f21977 1513
e8dfc305 1514 spin_lock(&wb->list_lock);
03ba3782
JA
1515 for (;;) {
1516 /*
d3ddec76 1517 * Stop writeback when nr_pages has been consumed
03ba3782 1518 */
83ba7b07 1519 if (work->nr_pages <= 0)
03ba3782 1520 break;
66f3b8e2 1521
aa373cf5
JK
1522 /*
1523 * Background writeout and kupdate-style writeback may
1524 * run forever. Stop them if there is other work to do
1525 * so that e.g. sync can proceed. They'll be restarted
1526 * after the other works are all done.
1527 */
1528 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1529 !list_empty(&wb->work_list))
aa373cf5
JK
1530 break;
1531
38f21977 1532 /*
d3ddec76
WF
1533 * For background writeout, stop when we are below the
1534 * background dirty threshold
38f21977 1535 */
aa661bbe 1536 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1537 break;
38f21977 1538
1bc36b64
JK
1539 /*
1540 * Kupdate and background works are special and we want to
1541 * include all inodes that need writing. Livelock avoidance is
1542 * handled by these works yielding to any other work so we are
1543 * safe.
1544 */
ba9aa839 1545 if (work->for_kupdate) {
0dc83bd3 1546 oldest_jif = jiffies -
ba9aa839 1547 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1548 } else if (work->for_background)
0dc83bd3 1549 oldest_jif = jiffies;
028c2dd1 1550
d46db3d5 1551 trace_writeback_start(wb->bdi, work);
e8dfc305 1552 if (list_empty(&wb->b_io))
ad4e38dd 1553 queue_io(wb, work);
83ba7b07 1554 if (work->sb)
d46db3d5 1555 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1556 else
d46db3d5
WF
1557 progress = __writeback_inodes_wb(wb, work);
1558 trace_writeback_written(wb->bdi, work);
028c2dd1 1559
e98be2d5 1560 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1561
1562 /*
e6fb6da2
WF
1563 * Did we write something? Try for more
1564 *
1565 * Dirty inodes are moved to b_io for writeback in batches.
1566 * The completion of the current batch does not necessarily
1567 * mean the overall work is done. So we keep looping as long
1568 * as made some progress on cleaning pages or inodes.
03ba3782 1569 */
d46db3d5 1570 if (progress)
71fd05a8
JA
1571 continue;
1572 /*
e6fb6da2 1573 * No more inodes for IO, bail
71fd05a8 1574 */
b7a2441f 1575 if (list_empty(&wb->b_more_io))
03ba3782 1576 break;
71fd05a8
JA
1577 /*
1578 * Nothing written. Wait for some inode to
1579 * become available for writeback. Otherwise
1580 * we'll just busyloop.
1581 */
71fd05a8 1582 if (!list_empty(&wb->b_more_io)) {
d46db3d5 1583 trace_writeback_wait(wb->bdi, work);
7ccf19a8 1584 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1585 spin_lock(&inode->i_lock);
f0d07b7f 1586 spin_unlock(&wb->list_lock);
169ebd90
JK
1587 /* This function drops i_lock... */
1588 inode_sleep_on_writeback(inode);
f0d07b7f 1589 spin_lock(&wb->list_lock);
03ba3782
JA
1590 }
1591 }
e8dfc305 1592 spin_unlock(&wb->list_lock);
03ba3782 1593
d46db3d5 1594 return nr_pages - work->nr_pages;
03ba3782
JA
1595}
1596
1597/*
83ba7b07 1598 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1599 */
f0054bb1 1600static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1601{
83ba7b07 1602 struct wb_writeback_work *work = NULL;
03ba3782 1603
f0054bb1
TH
1604 spin_lock_bh(&wb->work_lock);
1605 if (!list_empty(&wb->work_list)) {
1606 work = list_entry(wb->work_list.next,
83ba7b07
CH
1607 struct wb_writeback_work, list);
1608 list_del_init(&work->list);
03ba3782 1609 }
f0054bb1 1610 spin_unlock_bh(&wb->work_lock);
83ba7b07 1611 return work;
03ba3782
JA
1612}
1613
cdf01dd5
LT
1614/*
1615 * Add in the number of potentially dirty inodes, because each inode
1616 * write can dirty pagecache in the underlying blockdev.
1617 */
1618static unsigned long get_nr_dirty_pages(void)
1619{
1620 return global_page_state(NR_FILE_DIRTY) +
1621 global_page_state(NR_UNSTABLE_NFS) +
1622 get_nr_dirty_inodes();
1623}
1624
6585027a
JK
1625static long wb_check_background_flush(struct bdi_writeback *wb)
1626{
aa661bbe 1627 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1628
1629 struct wb_writeback_work work = {
1630 .nr_pages = LONG_MAX,
1631 .sync_mode = WB_SYNC_NONE,
1632 .for_background = 1,
1633 .range_cyclic = 1,
0e175a18 1634 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1635 };
1636
1637 return wb_writeback(wb, &work);
1638 }
1639
1640 return 0;
1641}
1642
03ba3782
JA
1643static long wb_check_old_data_flush(struct bdi_writeback *wb)
1644{
1645 unsigned long expired;
1646 long nr_pages;
1647
69b62d01
JA
1648 /*
1649 * When set to zero, disable periodic writeback
1650 */
1651 if (!dirty_writeback_interval)
1652 return 0;
1653
03ba3782
JA
1654 expired = wb->last_old_flush +
1655 msecs_to_jiffies(dirty_writeback_interval * 10);
1656 if (time_before(jiffies, expired))
1657 return 0;
1658
1659 wb->last_old_flush = jiffies;
cdf01dd5 1660 nr_pages = get_nr_dirty_pages();
03ba3782 1661
c4a77a6c 1662 if (nr_pages) {
83ba7b07 1663 struct wb_writeback_work work = {
c4a77a6c
JA
1664 .nr_pages = nr_pages,
1665 .sync_mode = WB_SYNC_NONE,
1666 .for_kupdate = 1,
1667 .range_cyclic = 1,
0e175a18 1668 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1669 };
1670
83ba7b07 1671 return wb_writeback(wb, &work);
c4a77a6c 1672 }
03ba3782
JA
1673
1674 return 0;
1675}
1676
1677/*
1678 * Retrieve work items and do the writeback they describe
1679 */
25d130ba 1680static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1681{
83ba7b07 1682 struct wb_writeback_work *work;
c4a77a6c 1683 long wrote = 0;
03ba3782 1684
4452226e 1685 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1686 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1687 struct wb_completion *done = work->done;
98754bf7 1688 bool need_wake_up = false;
03ba3782 1689
f0054bb1 1690 trace_writeback_exec(wb->bdi, work);
455b2864 1691
83ba7b07 1692 wrote += wb_writeback(wb, work);
03ba3782 1693
98754bf7
TH
1694 if (work->single_wait) {
1695 WARN_ON_ONCE(work->auto_free);
1696 /* paired w/ rmb in wb_wait_for_single_work() */
1697 smp_wmb();
1698 work->single_done = 1;
1699 need_wake_up = true;
1700 } else if (work->auto_free) {
83ba7b07 1701 kfree(work);
98754bf7
TH
1702 }
1703
cc395d7f 1704 if (done && atomic_dec_and_test(&done->cnt))
98754bf7
TH
1705 need_wake_up = true;
1706
1707 if (need_wake_up)
cc395d7f 1708 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1709 }
1710
1711 /*
1712 * Check for periodic writeback, kupdated() style
1713 */
1714 wrote += wb_check_old_data_flush(wb);
6585027a 1715 wrote += wb_check_background_flush(wb);
4452226e 1716 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1717
1718 return wrote;
1719}
1720
1721/*
1722 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1723 * reschedules periodically and does kupdated style flushing.
03ba3782 1724 */
f0054bb1 1725void wb_workfn(struct work_struct *work)
03ba3782 1726{
839a8e86
TH
1727 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1728 struct bdi_writeback, dwork);
03ba3782
JA
1729 long pages_written;
1730
f0054bb1 1731 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1732 current->flags |= PF_SWAPWRITE;
455b2864 1733
839a8e86 1734 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1735 !test_bit(WB_registered, &wb->state))) {
6467716a 1736 /*
f0054bb1 1737 * The normal path. Keep writing back @wb until its
839a8e86 1738 * work_list is empty. Note that this path is also taken
f0054bb1 1739 * if @wb is shutting down even when we're running off the
839a8e86 1740 * rescuer as work_list needs to be drained.
6467716a 1741 */
839a8e86 1742 do {
25d130ba 1743 pages_written = wb_do_writeback(wb);
839a8e86 1744 trace_writeback_pages_written(pages_written);
f0054bb1 1745 } while (!list_empty(&wb->work_list));
839a8e86
TH
1746 } else {
1747 /*
1748 * bdi_wq can't get enough workers and we're running off
1749 * the emergency worker. Don't hog it. Hopefully, 1024 is
1750 * enough for efficient IO.
1751 */
f0054bb1 1752 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1753 WB_REASON_FORKER_THREAD);
455b2864 1754 trace_writeback_pages_written(pages_written);
03ba3782
JA
1755 }
1756
f0054bb1 1757 if (!list_empty(&wb->work_list))
6ca738d6
DB
1758 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1759 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1760 wb_wakeup_delayed(wb);
455b2864 1761
839a8e86 1762 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1763}
1764
1765/*
b8c2f347
CH
1766 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1767 * the whole world.
03ba3782 1768 */
0e175a18 1769void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1770{
b8c2f347 1771 struct backing_dev_info *bdi;
03ba3782 1772
47df3dde
JK
1773 if (!nr_pages)
1774 nr_pages = get_nr_dirty_pages();
03ba3782 1775
b8c2f347 1776 rcu_read_lock();
f2b65121
TH
1777 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1778 struct bdi_writeback *wb;
1779 struct wb_iter iter;
1780
1781 if (!bdi_has_dirty_io(bdi))
1782 continue;
1783
1784 bdi_for_each_wb(wb, bdi, &iter, 0)
1785 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1786 false, reason);
1787 }
cfc4ba53 1788 rcu_read_unlock();
1da177e4
LT
1789}
1790
a2f48706
TT
1791/*
1792 * Wake up bdi's periodically to make sure dirtytime inodes gets
1793 * written back periodically. We deliberately do *not* check the
1794 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1795 * kernel to be constantly waking up once there are any dirtytime
1796 * inodes on the system. So instead we define a separate delayed work
1797 * function which gets called much more rarely. (By default, only
1798 * once every 12 hours.)
1799 *
1800 * If there is any other write activity going on in the file system,
1801 * this function won't be necessary. But if the only thing that has
1802 * happened on the file system is a dirtytime inode caused by an atime
1803 * update, we need this infrastructure below to make sure that inode
1804 * eventually gets pushed out to disk.
1805 */
1806static void wakeup_dirtytime_writeback(struct work_struct *w);
1807static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1808
1809static void wakeup_dirtytime_writeback(struct work_struct *w)
1810{
1811 struct backing_dev_info *bdi;
1812
1813 rcu_read_lock();
1814 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6
TH
1815 struct bdi_writeback *wb;
1816 struct wb_iter iter;
1817
1818 bdi_for_each_wb(wb, bdi, &iter, 0)
1819 if (!list_empty(&bdi->wb.b_dirty_time))
1820 wb_wakeup(&bdi->wb);
a2f48706
TT
1821 }
1822 rcu_read_unlock();
1823 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1824}
1825
1826static int __init start_dirtytime_writeback(void)
1827{
1828 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1829 return 0;
1830}
1831__initcall(start_dirtytime_writeback);
1832
1efff914
TT
1833int dirtytime_interval_handler(struct ctl_table *table, int write,
1834 void __user *buffer, size_t *lenp, loff_t *ppos)
1835{
1836 int ret;
1837
1838 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1839 if (ret == 0 && write)
1840 mod_delayed_work(system_wq, &dirtytime_work, 0);
1841 return ret;
1842}
1843
03ba3782
JA
1844static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1845{
1846 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1847 struct dentry *dentry;
1848 const char *name = "?";
1849
1850 dentry = d_find_alias(inode);
1851 if (dentry) {
1852 spin_lock(&dentry->d_lock);
1853 name = (const char *) dentry->d_name.name;
1854 }
1855 printk(KERN_DEBUG
1856 "%s(%d): dirtied inode %lu (%s) on %s\n",
1857 current->comm, task_pid_nr(current), inode->i_ino,
1858 name, inode->i_sb->s_id);
1859 if (dentry) {
1860 spin_unlock(&dentry->d_lock);
1861 dput(dentry);
1862 }
1863 }
1864}
1865
1866/**
1867 * __mark_inode_dirty - internal function
1868 * @inode: inode to mark
1869 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1870 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1871 * mark_inode_dirty_sync.
1da177e4 1872 *
03ba3782
JA
1873 * Put the inode on the super block's dirty list.
1874 *
1875 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1876 * dirty list only if it is hashed or if it refers to a blockdev.
1877 * If it was not hashed, it will never be added to the dirty list
1878 * even if it is later hashed, as it will have been marked dirty already.
1879 *
1880 * In short, make sure you hash any inodes _before_ you start marking
1881 * them dirty.
1da177e4 1882 *
03ba3782
JA
1883 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1884 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1885 * the kernel-internal blockdev inode represents the dirtying time of the
1886 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1887 * page->mapping->host, so the page-dirtying time is recorded in the internal
1888 * blockdev inode.
1da177e4 1889 */
0ae45f63 1890#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 1891void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1892{
03ba3782 1893 struct super_block *sb = inode->i_sb;
0ae45f63
TT
1894 int dirtytime;
1895
1896 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 1897
03ba3782
JA
1898 /*
1899 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1900 * dirty the inode itself
1901 */
0ae45f63 1902 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
1903 trace_writeback_dirty_inode_start(inode, flags);
1904
03ba3782 1905 if (sb->s_op->dirty_inode)
aa385729 1906 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
1907
1908 trace_writeback_dirty_inode(inode, flags);
03ba3782 1909 }
0ae45f63
TT
1910 if (flags & I_DIRTY_INODE)
1911 flags &= ~I_DIRTY_TIME;
1912 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
1913
1914 /*
9c6ac78e
TH
1915 * Paired with smp_mb() in __writeback_single_inode() for the
1916 * following lockless i_state test. See there for details.
03ba3782
JA
1917 */
1918 smp_mb();
1919
0ae45f63
TT
1920 if (((inode->i_state & flags) == flags) ||
1921 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
1922 return;
1923
1924 if (unlikely(block_dump))
1925 block_dump___mark_inode_dirty(inode);
1926
250df6ed 1927 spin_lock(&inode->i_lock);
0ae45f63
TT
1928 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1929 goto out_unlock_inode;
03ba3782
JA
1930 if ((inode->i_state & flags) != flags) {
1931 const int was_dirty = inode->i_state & I_DIRTY;
1932
52ebea74
TH
1933 inode_attach_wb(inode, NULL);
1934
0ae45f63
TT
1935 if (flags & I_DIRTY_INODE)
1936 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
1937 inode->i_state |= flags;
1938
1939 /*
1940 * If the inode is being synced, just update its dirty state.
1941 * The unlocker will place the inode on the appropriate
1942 * superblock list, based upon its state.
1943 */
1944 if (inode->i_state & I_SYNC)
250df6ed 1945 goto out_unlock_inode;
03ba3782
JA
1946
1947 /*
1948 * Only add valid (hashed) inodes to the superblock's
1949 * dirty list. Add blockdev inodes as well.
1950 */
1951 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 1952 if (inode_unhashed(inode))
250df6ed 1953 goto out_unlock_inode;
03ba3782 1954 }
a4ffdde6 1955 if (inode->i_state & I_FREEING)
250df6ed 1956 goto out_unlock_inode;
03ba3782
JA
1957
1958 /*
1959 * If the inode was already on b_dirty/b_io/b_more_io, don't
1960 * reposition it (that would break b_dirty time-ordering).
1961 */
1962 if (!was_dirty) {
87e1d789 1963 struct bdi_writeback *wb;
d6c10f1f 1964 struct list_head *dirty_list;
a66979ab 1965 bool wakeup_bdi = false;
253c34e9 1966
87e1d789 1967 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 1968
0747259d
TH
1969 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
1970 !test_bit(WB_registered, &wb->state),
1971 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
1972
1973 inode->dirtied_when = jiffies;
a2f48706
TT
1974 if (dirtytime)
1975 inode->dirtied_time_when = jiffies;
d6c10f1f 1976
a2f48706 1977 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 1978 dirty_list = &wb->b_dirty;
a2f48706 1979 else
0747259d 1980 dirty_list = &wb->b_dirty_time;
d6c10f1f 1981
0747259d 1982 wakeup_bdi = inode_wb_list_move_locked(inode, wb,
d6c10f1f
TH
1983 dirty_list);
1984
0747259d 1985 spin_unlock(&wb->list_lock);
0ae45f63 1986 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 1987
d6c10f1f
TH
1988 /*
1989 * If this is the first dirty inode for this bdi,
1990 * we have to wake-up the corresponding bdi thread
1991 * to make sure background write-back happens
1992 * later.
1993 */
0747259d
TH
1994 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
1995 wb_wakeup_delayed(wb);
a66979ab 1996 return;
1da177e4 1997 }
1da177e4 1998 }
250df6ed
DC
1999out_unlock_inode:
2000 spin_unlock(&inode->i_lock);
253c34e9 2001
03ba3782
JA
2002}
2003EXPORT_SYMBOL(__mark_inode_dirty);
2004
b6e51316 2005static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
2006{
2007 struct inode *inode, *old_inode = NULL;
2008
2009 /*
2010 * We need to be protected against the filesystem going from
2011 * r/o to r/w or vice versa.
2012 */
b6e51316 2013 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2014
55fa6091 2015 spin_lock(&inode_sb_list_lock);
03ba3782
JA
2016
2017 /*
2018 * Data integrity sync. Must wait for all pages under writeback,
2019 * because there may have been pages dirtied before our sync
2020 * call, but which had writeout started before we write it out.
2021 * In which case, the inode may not be on the dirty list, but
2022 * we still have to wait for that writeout.
2023 */
b6e51316 2024 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
250df6ed 2025 struct address_space *mapping = inode->i_mapping;
03ba3782 2026
250df6ed
DC
2027 spin_lock(&inode->i_lock);
2028 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2029 (mapping->nrpages == 0)) {
2030 spin_unlock(&inode->i_lock);
03ba3782 2031 continue;
250df6ed 2032 }
03ba3782 2033 __iget(inode);
250df6ed 2034 spin_unlock(&inode->i_lock);
55fa6091
DC
2035 spin_unlock(&inode_sb_list_lock);
2036
03ba3782 2037 /*
55fa6091
DC
2038 * We hold a reference to 'inode' so it couldn't have been
2039 * removed from s_inodes list while we dropped the
2040 * inode_sb_list_lock. We cannot iput the inode now as we can
2041 * be holding the last reference and we cannot iput it under
2042 * inode_sb_list_lock. So we keep the reference and iput it
2043 * later.
03ba3782
JA
2044 */
2045 iput(old_inode);
2046 old_inode = inode;
2047
2048 filemap_fdatawait(mapping);
2049
2050 cond_resched();
2051
55fa6091 2052 spin_lock(&inode_sb_list_lock);
03ba3782 2053 }
55fa6091 2054 spin_unlock(&inode_sb_list_lock);
03ba3782 2055 iput(old_inode);
1da177e4
LT
2056}
2057
f30a7d0c
TH
2058static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2059 enum wb_reason reason, bool skip_if_busy)
1da177e4 2060{
cc395d7f 2061 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2062 struct wb_writeback_work work = {
6e6938b6
WF
2063 .sb = sb,
2064 .sync_mode = WB_SYNC_NONE,
2065 .tagged_writepages = 1,
2066 .done = &done,
2067 .nr_pages = nr,
0e175a18 2068 .reason = reason,
3c4d7165 2069 };
e7972912 2070 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2071
e7972912 2072 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2073 return;
cf37e972 2074 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2075
db125360 2076 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2077 wb_wait_for_completion(bdi, &done);
e913fc82 2078}
f30a7d0c
TH
2079
2080/**
2081 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2082 * @sb: the superblock
2083 * @nr: the number of pages to write
2084 * @reason: reason why some writeback work initiated
2085 *
2086 * Start writeback on some inodes on this super_block. No guarantees are made
2087 * on how many (if any) will be written, and this function does not wait
2088 * for IO completion of submitted IO.
2089 */
2090void writeback_inodes_sb_nr(struct super_block *sb,
2091 unsigned long nr,
2092 enum wb_reason reason)
2093{
2094 __writeback_inodes_sb_nr(sb, nr, reason, false);
2095}
3259f8be
CM
2096EXPORT_SYMBOL(writeback_inodes_sb_nr);
2097
2098/**
2099 * writeback_inodes_sb - writeback dirty inodes from given super_block
2100 * @sb: the superblock
786228ab 2101 * @reason: reason why some writeback work was initiated
3259f8be
CM
2102 *
2103 * Start writeback on some inodes on this super_block. No guarantees are made
2104 * on how many (if any) will be written, and this function does not wait
2105 * for IO completion of submitted IO.
2106 */
0e175a18 2107void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2108{
0e175a18 2109 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2110}
0e3c9a22 2111EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2112
17bd55d0 2113/**
10ee27a0 2114 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2115 * @sb: the superblock
10ee27a0
MX
2116 * @nr: the number of pages to write
2117 * @reason: the reason of writeback
17bd55d0 2118 *
10ee27a0 2119 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2120 * Returns 1 if writeback was started, 0 if not.
2121 */
f30a7d0c
TH
2122bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2123 enum wb_reason reason)
17bd55d0 2124{
10ee27a0 2125 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2126 return false;
10ee27a0 2127
f30a7d0c 2128 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2129 up_read(&sb->s_umount);
f30a7d0c 2130 return true;
17bd55d0 2131}
10ee27a0 2132EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2133
3259f8be 2134/**
10ee27a0 2135 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2136 * @sb: the superblock
786228ab 2137 * @reason: reason why some writeback work was initiated
3259f8be 2138 *
10ee27a0 2139 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2140 * Returns 1 if writeback was started, 0 if not.
2141 */
f30a7d0c 2142bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2143{
10ee27a0 2144 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2145}
10ee27a0 2146EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2147
d8a8559c
JA
2148/**
2149 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2150 * @sb: the superblock
d8a8559c
JA
2151 *
2152 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2153 * super_block.
d8a8559c 2154 */
0dc83bd3 2155void sync_inodes_sb(struct super_block *sb)
d8a8559c 2156{
cc395d7f 2157 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2158 struct wb_writeback_work work = {
3c4d7165
CH
2159 .sb = sb,
2160 .sync_mode = WB_SYNC_ALL,
2161 .nr_pages = LONG_MAX,
2162 .range_cyclic = 0,
83ba7b07 2163 .done = &done,
0e175a18 2164 .reason = WB_REASON_SYNC,
7747bd4b 2165 .for_sync = 1,
3c4d7165 2166 };
e7972912 2167 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2168
6eedc701 2169 /* Nothing to do? */
e7972912 2170 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2171 return;
cf37e972
CH
2172 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2173
db125360 2174 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2175 wb_wait_for_completion(bdi, &done);
83ba7b07 2176
b6e51316 2177 wait_sb_inodes(sb);
1da177e4 2178}
d8a8559c 2179EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2180
1da177e4 2181/**
7f04c26d
AA
2182 * write_inode_now - write an inode to disk
2183 * @inode: inode to write to disk
2184 * @sync: whether the write should be synchronous or not
2185 *
2186 * This function commits an inode to disk immediately if it is dirty. This is
2187 * primarily needed by knfsd.
1da177e4 2188 *
7f04c26d 2189 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2190 */
1da177e4
LT
2191int write_inode_now(struct inode *inode, int sync)
2192{
f758eeab 2193 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1da177e4
LT
2194 struct writeback_control wbc = {
2195 .nr_to_write = LONG_MAX,
18914b18 2196 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2197 .range_start = 0,
2198 .range_end = LLONG_MAX,
1da177e4
LT
2199 };
2200
2201 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2202 wbc.nr_to_write = 0;
1da177e4
LT
2203
2204 might_sleep();
4f8ad655 2205 return writeback_single_inode(inode, wb, &wbc);
1da177e4
LT
2206}
2207EXPORT_SYMBOL(write_inode_now);
2208
2209/**
2210 * sync_inode - write an inode and its pages to disk.
2211 * @inode: the inode to sync
2212 * @wbc: controls the writeback mode
2213 *
2214 * sync_inode() will write an inode and its pages to disk. It will also
2215 * correctly update the inode on its superblock's dirty inode lists and will
2216 * update inode->i_state.
2217 *
2218 * The caller must have a ref on the inode.
2219 */
2220int sync_inode(struct inode *inode, struct writeback_control *wbc)
2221{
4f8ad655 2222 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1da177e4
LT
2223}
2224EXPORT_SYMBOL(sync_inode);
c3765016
CH
2225
2226/**
c691b9d9 2227 * sync_inode_metadata - write an inode to disk
c3765016
CH
2228 * @inode: the inode to sync
2229 * @wait: wait for I/O to complete.
2230 *
c691b9d9 2231 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2232 *
2233 * Note: only writes the actual inode, no associated data or other metadata.
2234 */
2235int sync_inode_metadata(struct inode *inode, int wait)
2236{
2237 struct writeback_control wbc = {
2238 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2239 .nr_to_write = 0, /* metadata-only */
2240 };
2241
2242 return sync_inode(inode, &wbc);
2243}
2244EXPORT_SYMBOL(sync_inode_metadata);