]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/fs-writeback.c
writeback: synchronize sync(2) against cgroup writeback membership switches
[mirror_ubuntu-bionic-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
09cbfeaf 36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
4a3a485b
TE
176static void finish_writeback_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
178{
179 struct wb_completion *done = work->done;
180
181 if (work->auto_free)
182 kfree(work);
183 if (done && atomic_dec_and_test(&done->cnt))
184 wake_up_all(&wb->bdi->wb_waitq);
185}
186
f0054bb1
TH
187static void wb_queue_work(struct bdi_writeback *wb,
188 struct wb_writeback_work *work)
6585027a 189{
5634cc2a 190 trace_writeback_queue(wb, work);
6585027a 191
cc395d7f
TH
192 if (work->done)
193 atomic_inc(&work->done->cnt);
4a3a485b
TE
194
195 spin_lock_bh(&wb->work_lock);
196
197 if (test_bit(WB_registered, &wb->state)) {
198 list_add_tail(&work->list, &wb->work_list);
199 mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 } else
201 finish_writeback_work(wb, work);
202
f0054bb1 203 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
204}
205
cc395d7f
TH
206/**
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
210 *
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
216 */
217static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 struct wb_completion *done)
219{
220 atomic_dec(&done->cnt); /* put down the initial count */
221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222}
223
703c2708
TH
224#ifdef CONFIG_CGROUP_WRITEBACK
225
2a814908
TH
226/* parameters for foreign inode detection, see wb_detach_inode() */
227#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
231
232#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
239
a1a0e23e
TH
240static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241static struct workqueue_struct *isw_wq;
242
21c6321f
TH
243void __inode_attach_wb(struct inode *inode, struct page *page)
244{
245 struct backing_dev_info *bdi = inode_to_bdi(inode);
246 struct bdi_writeback *wb = NULL;
247
248 if (inode_cgwb_enabled(inode)) {
249 struct cgroup_subsys_state *memcg_css;
250
251 if (page) {
252 memcg_css = mem_cgroup_css_from_page(page);
253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 } else {
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css = task_get_css(current, memory_cgrp_id);
257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 css_put(memcg_css);
259 }
260 }
261
262 if (!wb)
263 wb = &bdi->wb;
264
265 /*
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
268 */
269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 wb_put(wb);
271}
272
87e1d789
TH
273/**
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
276 *
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
280 */
281static struct bdi_writeback *
282locked_inode_to_wb_and_lock_list(struct inode *inode)
283 __releases(&inode->i_lock)
284 __acquires(&wb->list_lock)
285{
286 while (true) {
287 struct bdi_writeback *wb = inode_to_wb(inode);
288
289 /*
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
294 */
295 wb_get(wb);
296 spin_unlock(&inode->i_lock);
297 spin_lock(&wb->list_lock);
87e1d789 298
aaa2cacf 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
300 if (likely(wb == inode->i_wb)) {
301 wb_put(wb); /* @inode already has ref */
302 return wb;
303 }
87e1d789
TH
304
305 spin_unlock(&wb->list_lock);
614a4e37 306 wb_put(wb);
87e1d789
TH
307 cpu_relax();
308 spin_lock(&inode->i_lock);
309 }
310}
311
312/**
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
315 *
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317 * on entry.
318 */
319static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 __acquires(&wb->list_lock)
321{
322 spin_lock(&inode->i_lock);
323 return locked_inode_to_wb_and_lock_list(inode);
324}
325
682aa8e1
TH
326struct inode_switch_wbs_context {
327 struct inode *inode;
328 struct bdi_writeback *new_wb;
329
330 struct rcu_head rcu_head;
331 struct work_struct work;
332};
333
6a83923f
TH
334static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335{
336 down_write(&bdi->wb_switch_rwsem);
337}
338
339static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340{
341 up_write(&bdi->wb_switch_rwsem);
342}
343
682aa8e1
TH
344static void inode_switch_wbs_work_fn(struct work_struct *work)
345{
346 struct inode_switch_wbs_context *isw =
347 container_of(work, struct inode_switch_wbs_context, work);
348 struct inode *inode = isw->inode;
6a83923f 349 struct backing_dev_info *bdi = inode_to_bdi(inode);
d10c8095
TH
350 struct address_space *mapping = inode->i_mapping;
351 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 352 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
353 struct radix_tree_iter iter;
354 bool switched = false;
355 void **slot;
682aa8e1 356
6a83923f
TH
357 /*
358 * If @inode switches cgwb membership while sync_inodes_sb() is
359 * being issued, sync_inodes_sb() might miss it. Synchronize.
360 */
361 down_read(&bdi->wb_switch_rwsem);
362
682aa8e1
TH
363 /*
364 * By the time control reaches here, RCU grace period has passed
365 * since I_WB_SWITCH assertion and all wb stat update transactions
366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 * synchronizing against mapping->tree_lock.
d10c8095
TH
368 *
369 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
370 * gives us exclusion against all wb related operations on @inode
371 * including IO list manipulations and stat updates.
682aa8e1 372 */
d10c8095
TH
373 if (old_wb < new_wb) {
374 spin_lock(&old_wb->list_lock);
375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 } else {
377 spin_lock(&new_wb->list_lock);
378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 }
682aa8e1 380 spin_lock(&inode->i_lock);
d10c8095
TH
381 spin_lock_irq(&mapping->tree_lock);
382
383 /*
384 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 385 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
386 */
387 if (unlikely(inode->i_state & I_FREEING))
388 goto skip_switch;
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under underwriteback.
394 */
395 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
396 PAGECACHE_TAG_DIRTY) {
397 struct page *page = radix_tree_deref_slot_protected(slot,
398 &mapping->tree_lock);
399 if (likely(page) && PageDirty(page)) {
3e8f399d
NB
400 dec_wb_stat(old_wb, WB_RECLAIMABLE);
401 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
402 }
403 }
404
405 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
406 PAGECACHE_TAG_WRITEBACK) {
407 struct page *page = radix_tree_deref_slot_protected(slot,
408 &mapping->tree_lock);
409 if (likely(page)) {
410 WARN_ON_ONCE(!PageWriteback(page));
3e8f399d
NB
411 dec_wb_stat(old_wb, WB_WRITEBACK);
412 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
413 }
414 }
415
416 wb_get(new_wb);
417
418 /*
419 * Transfer to @new_wb's IO list if necessary. The specific list
420 * @inode was on is ignored and the inode is put on ->b_dirty which
421 * is always correct including from ->b_dirty_time. The transfer
422 * preserves @inode->dirtied_when ordering.
423 */
c7f54084 424 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
425 struct inode *pos;
426
c7f54084 427 inode_io_list_del_locked(inode, old_wb);
d10c8095 428 inode->i_wb = new_wb;
c7f54084 429 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
430 if (time_after_eq(inode->dirtied_when,
431 pos->dirtied_when))
432 break;
c7f54084 433 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
434 } else {
435 inode->i_wb = new_wb;
436 }
682aa8e1 437
d10c8095 438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
439 inode->i_wb_frn_winner = 0;
440 inode->i_wb_frn_avg_time = 0;
441 inode->i_wb_frn_history = 0;
d10c8095
TH
442 switched = true;
443skip_switch:
682aa8e1
TH
444 /*
445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 */
448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449
d10c8095 450 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 451 spin_unlock(&inode->i_lock);
d10c8095
TH
452 spin_unlock(&new_wb->list_lock);
453 spin_unlock(&old_wb->list_lock);
682aa8e1 454
6a83923f
TH
455 up_read(&bdi->wb_switch_rwsem);
456
d10c8095
TH
457 if (switched) {
458 wb_wakeup(new_wb);
459 wb_put(old_wb);
460 }
682aa8e1 461 wb_put(new_wb);
d10c8095
TH
462
463 iput(inode);
682aa8e1 464 kfree(isw);
a1a0e23e
TH
465
466 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
467}
468
469static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
470{
471 struct inode_switch_wbs_context *isw = container_of(rcu_head,
472 struct inode_switch_wbs_context, rcu_head);
473
474 /* needs to grab bh-unsafe locks, bounce to work item */
475 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 476 queue_work(isw_wq, &isw->work);
682aa8e1
TH
477}
478
479/**
480 * inode_switch_wbs - change the wb association of an inode
481 * @inode: target inode
482 * @new_wb_id: ID of the new wb
483 *
484 * Switch @inode's wb association to the wb identified by @new_wb_id. The
485 * switching is performed asynchronously and may fail silently.
486 */
487static void inode_switch_wbs(struct inode *inode, int new_wb_id)
488{
489 struct backing_dev_info *bdi = inode_to_bdi(inode);
490 struct cgroup_subsys_state *memcg_css;
491 struct inode_switch_wbs_context *isw;
492
493 /* noop if seems to be already in progress */
494 if (inode->i_state & I_WB_SWITCH)
495 return;
496
6a83923f
TH
497 /*
498 * Avoid starting new switches while sync_inodes_sb() is in
499 * progress. Otherwise, if the down_write protected issue path
500 * blocks heavily, we might end up starting a large number of
501 * switches which will block on the rwsem.
502 */
503 if (!down_read_trylock(&bdi->wb_switch_rwsem))
504 return;
505
682aa8e1
TH
506 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
507 if (!isw)
6a83923f 508 goto out_unlock;
682aa8e1
TH
509
510 /* find and pin the new wb */
511 rcu_read_lock();
512 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
513 if (memcg_css)
514 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
515 rcu_read_unlock();
516 if (!isw->new_wb)
517 goto out_free;
518
519 /* while holding I_WB_SWITCH, no one else can update the association */
520 spin_lock(&inode->i_lock);
1751e8a6 521 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
a1a0e23e
TH
522 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
523 inode_to_wb(inode) == isw->new_wb) {
524 spin_unlock(&inode->i_lock);
525 goto out_free;
526 }
682aa8e1 527 inode->i_state |= I_WB_SWITCH;
74524955 528 __iget(inode);
682aa8e1
TH
529 spin_unlock(&inode->i_lock);
530
682aa8e1
TH
531 isw->inode = inode;
532
a1a0e23e
TH
533 atomic_inc(&isw_nr_in_flight);
534
682aa8e1
TH
535 /*
536 * In addition to synchronizing among switchers, I_WB_SWITCH tells
537 * the RCU protected stat update paths to grab the mapping's
538 * tree_lock so that stat transfer can synchronize against them.
539 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
540 */
541 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
6a83923f 542 goto out_unlock;
682aa8e1
TH
543
544out_free:
545 if (isw->new_wb)
546 wb_put(isw->new_wb);
547 kfree(isw);
6a83923f
TH
548out_unlock:
549 up_read(&bdi->wb_switch_rwsem);
682aa8e1
TH
550}
551
b16b1deb
TH
552/**
553 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
554 * @wbc: writeback_control of interest
555 * @inode: target inode
556 *
557 * @inode is locked and about to be written back under the control of @wbc.
558 * Record @inode's writeback context into @wbc and unlock the i_lock. On
559 * writeback completion, wbc_detach_inode() should be called. This is used
560 * to track the cgroup writeback context.
561 */
562void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
563 struct inode *inode)
564{
dd73e4b7
TH
565 if (!inode_cgwb_enabled(inode)) {
566 spin_unlock(&inode->i_lock);
567 return;
568 }
569
b16b1deb 570 wbc->wb = inode_to_wb(inode);
2a814908
TH
571 wbc->inode = inode;
572
573 wbc->wb_id = wbc->wb->memcg_css->id;
574 wbc->wb_lcand_id = inode->i_wb_frn_winner;
575 wbc->wb_tcand_id = 0;
576 wbc->wb_bytes = 0;
577 wbc->wb_lcand_bytes = 0;
578 wbc->wb_tcand_bytes = 0;
579
b16b1deb
TH
580 wb_get(wbc->wb);
581 spin_unlock(&inode->i_lock);
e8a7abf5
TH
582
583 /*
584 * A dying wb indicates that the memcg-blkcg mapping has changed
585 * and a new wb is already serving the memcg. Switch immediately.
586 */
587 if (unlikely(wb_dying(wbc->wb)))
588 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
589}
590
591/**
2a814908
TH
592 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
594 *
595 * To be called after a writeback attempt of an inode finishes and undoes
596 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
597 *
598 * As concurrent write sharing of an inode is expected to be very rare and
599 * memcg only tracks page ownership on first-use basis severely confining
600 * the usefulness of such sharing, cgroup writeback tracks ownership
601 * per-inode. While the support for concurrent write sharing of an inode
602 * is deemed unnecessary, an inode being written to by different cgroups at
603 * different points in time is a lot more common, and, more importantly,
604 * charging only by first-use can too readily lead to grossly incorrect
605 * behaviors (single foreign page can lead to gigabytes of writeback to be
606 * incorrectly attributed).
607 *
608 * To resolve this issue, cgroup writeback detects the majority dirtier of
609 * an inode and transfers the ownership to it. To avoid unnnecessary
610 * oscillation, the detection mechanism keeps track of history and gives
611 * out the switch verdict only if the foreign usage pattern is stable over
612 * a certain amount of time and/or writeback attempts.
613 *
614 * On each writeback attempt, @wbc tries to detect the majority writer
615 * using Boyer-Moore majority vote algorithm. In addition to the byte
616 * count from the majority voting, it also counts the bytes written for the
617 * current wb and the last round's winner wb (max of last round's current
618 * wb, the winner from two rounds ago, and the last round's majority
619 * candidate). Keeping track of the historical winner helps the algorithm
620 * to semi-reliably detect the most active writer even when it's not the
621 * absolute majority.
622 *
623 * Once the winner of the round is determined, whether the winner is
624 * foreign or not and how much IO time the round consumed is recorded in
625 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
626 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
627 */
628void wbc_detach_inode(struct writeback_control *wbc)
629{
2a814908
TH
630 struct bdi_writeback *wb = wbc->wb;
631 struct inode *inode = wbc->inode;
dd73e4b7
TH
632 unsigned long avg_time, max_bytes, max_time;
633 u16 history;
2a814908
TH
634 int max_id;
635
dd73e4b7
TH
636 if (!wb)
637 return;
638
639 history = inode->i_wb_frn_history;
640 avg_time = inode->i_wb_frn_avg_time;
641
2a814908
TH
642 /* pick the winner of this round */
643 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
645 max_id = wbc->wb_id;
646 max_bytes = wbc->wb_bytes;
647 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648 max_id = wbc->wb_lcand_id;
649 max_bytes = wbc->wb_lcand_bytes;
650 } else {
651 max_id = wbc->wb_tcand_id;
652 max_bytes = wbc->wb_tcand_bytes;
653 }
654
655 /*
656 * Calculate the amount of IO time the winner consumed and fold it
657 * into the running average kept per inode. If the consumed IO
658 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659 * deciding whether to switch or not. This is to prevent one-off
660 * small dirtiers from skewing the verdict.
661 */
662 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663 wb->avg_write_bandwidth);
664 if (avg_time)
665 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
667 else
668 avg_time = max_time; /* immediate catch up on first run */
669
670 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
671 int slots;
672
673 /*
674 * The switch verdict is reached if foreign wb's consume
675 * more than a certain proportion of IO time in a
676 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
677 * history mask where each bit represents one sixteenth of
678 * the period. Determine the number of slots to shift into
679 * history from @max_time.
680 */
681 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
683 history <<= slots;
684 if (wbc->wb_id != max_id)
685 history |= (1U << slots) - 1;
686
687 /*
688 * Switch if the current wb isn't the consistent winner.
689 * If there are multiple closely competing dirtiers, the
690 * inode may switch across them repeatedly over time, which
691 * is okay. The main goal is avoiding keeping an inode on
692 * the wrong wb for an extended period of time.
693 */
682aa8e1
TH
694 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
695 inode_switch_wbs(inode, max_id);
2a814908
TH
696 }
697
698 /*
699 * Multiple instances of this function may race to update the
700 * following fields but we don't mind occassional inaccuracies.
701 */
702 inode->i_wb_frn_winner = max_id;
703 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
704 inode->i_wb_frn_history = history;
705
b16b1deb
TH
706 wb_put(wbc->wb);
707 wbc->wb = NULL;
708}
709
2a814908
TH
710/**
711 * wbc_account_io - account IO issued during writeback
712 * @wbc: writeback_control of the writeback in progress
713 * @page: page being written out
714 * @bytes: number of bytes being written out
715 *
716 * @bytes from @page are about to written out during the writeback
717 * controlled by @wbc. Keep the book for foreign inode detection. See
718 * wbc_detach_inode().
719 */
720void wbc_account_io(struct writeback_control *wbc, struct page *page,
721 size_t bytes)
722{
723 int id;
724
725 /*
726 * pageout() path doesn't attach @wbc to the inode being written
727 * out. This is intentional as we don't want the function to block
728 * behind a slow cgroup. Ultimately, we want pageout() to kick off
729 * regular writeback instead of writing things out itself.
730 */
731 if (!wbc->wb)
732 return;
733
2a814908 734 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
735
736 if (id == wbc->wb_id) {
737 wbc->wb_bytes += bytes;
738 return;
739 }
740
741 if (id == wbc->wb_lcand_id)
742 wbc->wb_lcand_bytes += bytes;
743
744 /* Boyer-Moore majority vote algorithm */
745 if (!wbc->wb_tcand_bytes)
746 wbc->wb_tcand_id = id;
747 if (id == wbc->wb_tcand_id)
748 wbc->wb_tcand_bytes += bytes;
749 else
750 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
751}
5aa2a96b 752EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 753
703c2708
TH
754/**
755 * inode_congested - test whether an inode is congested
60292bcc 756 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
757 * @cong_bits: mask of WB_[a]sync_congested bits to test
758 *
759 * Tests whether @inode is congested. @cong_bits is the mask of congestion
760 * bits to test and the return value is the mask of set bits.
761 *
762 * If cgroup writeback is enabled for @inode, the congestion state is
763 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
764 * associated with @inode is congested; otherwise, the root wb's congestion
765 * state is used.
60292bcc
TH
766 *
767 * @inode is allowed to be NULL as this function is often called on
768 * mapping->host which is NULL for the swapper space.
703c2708
TH
769 */
770int inode_congested(struct inode *inode, int cong_bits)
771{
5cb8b824
TH
772 /*
773 * Once set, ->i_wb never becomes NULL while the inode is alive.
774 * Start transaction iff ->i_wb is visible.
775 */
aaa2cacf 776 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824 777 struct bdi_writeback *wb;
7cb41dc8
GT
778 struct wb_lock_cookie lock_cookie = {};
779 bool congested;
5cb8b824 780
7cb41dc8 781 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
5cb8b824 782 congested = wb_congested(wb, cong_bits);
7cb41dc8 783 unlocked_inode_to_wb_end(inode, &lock_cookie);
5cb8b824 784 return congested;
703c2708
TH
785 }
786
787 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
788}
789EXPORT_SYMBOL_GPL(inode_congested);
790
f2b65121
TH
791/**
792 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
793 * @wb: target bdi_writeback to split @nr_pages to
794 * @nr_pages: number of pages to write for the whole bdi
795 *
796 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
797 * relation to the total write bandwidth of all wb's w/ dirty inodes on
798 * @wb->bdi.
799 */
800static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
801{
802 unsigned long this_bw = wb->avg_write_bandwidth;
803 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
804
805 if (nr_pages == LONG_MAX)
806 return LONG_MAX;
807
808 /*
809 * This may be called on clean wb's and proportional distribution
810 * may not make sense, just use the original @nr_pages in those
811 * cases. In general, we wanna err on the side of writing more.
812 */
813 if (!tot_bw || this_bw >= tot_bw)
814 return nr_pages;
815 else
816 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
817}
818
db125360
TH
819/**
820 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
821 * @bdi: target backing_dev_info
822 * @base_work: wb_writeback_work to issue
823 * @skip_if_busy: skip wb's which already have writeback in progress
824 *
825 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
826 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
827 * distributed to the busy wbs according to each wb's proportion in the
828 * total active write bandwidth of @bdi.
829 */
830static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
831 struct wb_writeback_work *base_work,
832 bool skip_if_busy)
833{
b817525a 834 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
835 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
836 struct bdi_writeback, bdi_node);
db125360
TH
837
838 might_sleep();
db125360
TH
839restart:
840 rcu_read_lock();
b817525a 841 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
842 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
843 struct wb_writeback_work fallback_work;
844 struct wb_writeback_work *work;
845 long nr_pages;
846
b817525a
TH
847 if (last_wb) {
848 wb_put(last_wb);
849 last_wb = NULL;
850 }
851
006a0973
TH
852 /* SYNC_ALL writes out I_DIRTY_TIME too */
853 if (!wb_has_dirty_io(wb) &&
854 (base_work->sync_mode == WB_SYNC_NONE ||
855 list_empty(&wb->b_dirty_time)))
856 continue;
857 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
858 continue;
859
8a1270cd
TH
860 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
861
862 work = kmalloc(sizeof(*work), GFP_ATOMIC);
863 if (work) {
864 *work = *base_work;
865 work->nr_pages = nr_pages;
866 work->auto_free = 1;
867 wb_queue_work(wb, work);
868 continue;
db125360 869 }
8a1270cd
TH
870
871 /* alloc failed, execute synchronously using on-stack fallback */
872 work = &fallback_work;
873 *work = *base_work;
874 work->nr_pages = nr_pages;
875 work->auto_free = 0;
876 work->done = &fallback_work_done;
877
878 wb_queue_work(wb, work);
879
b817525a
TH
880 /*
881 * Pin @wb so that it stays on @bdi->wb_list. This allows
882 * continuing iteration from @wb after dropping and
883 * regrabbing rcu read lock.
884 */
885 wb_get(wb);
886 last_wb = wb;
887
8a1270cd
TH
888 rcu_read_unlock();
889 wb_wait_for_completion(bdi, &fallback_work_done);
890 goto restart;
db125360
TH
891 }
892 rcu_read_unlock();
b817525a
TH
893
894 if (last_wb)
895 wb_put(last_wb);
db125360
TH
896}
897
a1a0e23e
TH
898/**
899 * cgroup_writeback_umount - flush inode wb switches for umount
900 *
901 * This function is called when a super_block is about to be destroyed and
902 * flushes in-flight inode wb switches. An inode wb switch goes through
903 * RCU and then workqueue, so the two need to be flushed in order to ensure
904 * that all previously scheduled switches are finished. As wb switches are
905 * rare occurrences and synchronize_rcu() can take a while, perform
906 * flushing iff wb switches are in flight.
907 */
908void cgroup_writeback_umount(void)
909{
910 if (atomic_read(&isw_nr_in_flight)) {
911 synchronize_rcu();
912 flush_workqueue(isw_wq);
913 }
914}
915
916static int __init cgroup_writeback_init(void)
917{
918 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
919 if (!isw_wq)
920 return -ENOMEM;
921 return 0;
922}
923fs_initcall(cgroup_writeback_init);
924
f2b65121
TH
925#else /* CONFIG_CGROUP_WRITEBACK */
926
6a83923f
TH
927static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
928static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
929
87e1d789
TH
930static struct bdi_writeback *
931locked_inode_to_wb_and_lock_list(struct inode *inode)
932 __releases(&inode->i_lock)
933 __acquires(&wb->list_lock)
934{
935 struct bdi_writeback *wb = inode_to_wb(inode);
936
937 spin_unlock(&inode->i_lock);
938 spin_lock(&wb->list_lock);
939 return wb;
940}
941
942static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
943 __acquires(&wb->list_lock)
944{
945 struct bdi_writeback *wb = inode_to_wb(inode);
946
947 spin_lock(&wb->list_lock);
948 return wb;
949}
950
f2b65121
TH
951static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
952{
953 return nr_pages;
954}
955
db125360
TH
956static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
957 struct wb_writeback_work *base_work,
958 bool skip_if_busy)
959{
960 might_sleep();
961
006a0973 962 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 963 base_work->auto_free = 0;
db125360
TH
964 wb_queue_work(&bdi->wb, base_work);
965 }
966}
967
703c2708
TH
968#endif /* CONFIG_CGROUP_WRITEBACK */
969
e8e8a0c6
JA
970/*
971 * Add in the number of potentially dirty inodes, because each inode
972 * write can dirty pagecache in the underlying blockdev.
973 */
974static unsigned long get_nr_dirty_pages(void)
975{
976 return global_node_page_state(NR_FILE_DIRTY) +
977 global_node_page_state(NR_UNSTABLE_NFS) +
978 get_nr_dirty_inodes();
979}
980
981static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 982{
c00ddad3
TH
983 if (!wb_has_dirty_io(wb))
984 return;
985
aac8d41c
JA
986 /*
987 * All callers of this function want to start writeback of all
988 * dirty pages. Places like vmscan can call this at a very
989 * high frequency, causing pointless allocations of tons of
990 * work items and keeping the flusher threads busy retrieving
991 * that work. Ensure that we only allow one of them pending and
85009b4f 992 * inflight at the time.
aac8d41c 993 */
85009b4f
JA
994 if (test_bit(WB_start_all, &wb->state) ||
995 test_and_set_bit(WB_start_all, &wb->state))
aac8d41c
JA
996 return;
997
85009b4f
JA
998 wb->start_all_reason = reason;
999 wb_wakeup(wb);
c5444198 1000}
d3ddec76 1001
c5444198 1002/**
9ecf4866
TH
1003 * wb_start_background_writeback - start background writeback
1004 * @wb: bdi_writback to write from
c5444198
CH
1005 *
1006 * Description:
6585027a 1007 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 1008 * this function returns, it is only guaranteed that for given wb
6585027a
JK
1009 * some IO is happening if we are over background dirty threshold.
1010 * Caller need not hold sb s_umount semaphore.
c5444198 1011 */
9ecf4866 1012void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1013{
6585027a
JK
1014 /*
1015 * We just wake up the flusher thread. It will perform background
1016 * writeback as soon as there is no other work to do.
1017 */
5634cc2a 1018 trace_writeback_wake_background(wb);
9ecf4866 1019 wb_wakeup(wb);
1da177e4
LT
1020}
1021
a66979ab
DC
1022/*
1023 * Remove the inode from the writeback list it is on.
1024 */
c7f54084 1025void inode_io_list_del(struct inode *inode)
a66979ab 1026{
87e1d789 1027 struct bdi_writeback *wb;
f758eeab 1028
87e1d789 1029 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1030 inode_io_list_del_locked(inode, wb);
52ebea74 1031 spin_unlock(&wb->list_lock);
a66979ab
DC
1032}
1033
6c60d2b5
DC
1034/*
1035 * mark an inode as under writeback on the sb
1036 */
1037void sb_mark_inode_writeback(struct inode *inode)
1038{
1039 struct super_block *sb = inode->i_sb;
1040 unsigned long flags;
1041
1042 if (list_empty(&inode->i_wb_list)) {
1043 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1044 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1045 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1046 trace_sb_mark_inode_writeback(inode);
1047 }
6c60d2b5
DC
1048 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1049 }
1050}
1051
1052/*
1053 * clear an inode as under writeback on the sb
1054 */
1055void sb_clear_inode_writeback(struct inode *inode)
1056{
1057 struct super_block *sb = inode->i_sb;
1058 unsigned long flags;
1059
1060 if (!list_empty(&inode->i_wb_list)) {
1061 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1062 if (!list_empty(&inode->i_wb_list)) {
1063 list_del_init(&inode->i_wb_list);
1064 trace_sb_clear_inode_writeback(inode);
1065 }
6c60d2b5
DC
1066 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1067 }
1068}
1069
6610a0bc
AM
1070/*
1071 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1072 * furthest end of its superblock's dirty-inode list.
1073 *
1074 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1075 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1076 * the case then the inode must have been redirtied while it was being written
1077 * out and we don't reset its dirtied_when.
1078 */
f758eeab 1079static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1080{
03ba3782 1081 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1082 struct inode *tail;
6610a0bc 1083
7ccf19a8 1084 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1085 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1086 inode->dirtied_when = jiffies;
1087 }
c7f54084 1088 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1089}
1090
c986d1e2 1091/*
66f3b8e2 1092 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1093 */
f758eeab 1094static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1095{
c7f54084 1096 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1097}
1098
1c0eeaf5
JE
1099static void inode_sync_complete(struct inode *inode)
1100{
365b94ae 1101 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1102 /* If inode is clean an unused, put it into LRU now... */
1103 inode_add_lru(inode);
365b94ae 1104 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1105 smp_mb();
1106 wake_up_bit(&inode->i_state, __I_SYNC);
1107}
1108
d2caa3c5
JL
1109static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1110{
1111 bool ret = time_after(inode->dirtied_when, t);
1112#ifndef CONFIG_64BIT
1113 /*
1114 * For inodes being constantly redirtied, dirtied_when can get stuck.
1115 * It _appears_ to be in the future, but is actually in distant past.
1116 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1117 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1118 */
1119 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1120#endif
1121 return ret;
1122}
1123
0ae45f63
TT
1124#define EXPIRE_DIRTY_ATIME 0x0001
1125
2c136579 1126/*
0e2f2b23 1127 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1128 * @delaying_queue to @dispatch_queue.
2c136579 1129 */
e84d0a4f 1130static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1131 struct list_head *dispatch_queue,
0ae45f63 1132 int flags,
ad4e38dd 1133 struct wb_writeback_work *work)
2c136579 1134{
0ae45f63
TT
1135 unsigned long *older_than_this = NULL;
1136 unsigned long expire_time;
5c03449d
SL
1137 LIST_HEAD(tmp);
1138 struct list_head *pos, *node;
cf137307 1139 struct super_block *sb = NULL;
5c03449d 1140 struct inode *inode;
cf137307 1141 int do_sb_sort = 0;
e84d0a4f 1142 int moved = 0;
5c03449d 1143
0ae45f63
TT
1144 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1145 older_than_this = work->older_than_this;
a2f48706
TT
1146 else if (!work->for_sync) {
1147 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1148 older_than_this = &expire_time;
1149 }
2c136579 1150 while (!list_empty(delaying_queue)) {
7ccf19a8 1151 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1152 if (older_than_this &&
1153 inode_dirtied_after(inode, *older_than_this))
2c136579 1154 break;
c7f54084 1155 list_move(&inode->i_io_list, &tmp);
a8855990 1156 moved++;
0ae45f63
TT
1157 if (flags & EXPIRE_DIRTY_ATIME)
1158 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1159 if (sb_is_blkdev_sb(inode->i_sb))
1160 continue;
cf137307
JA
1161 if (sb && sb != inode->i_sb)
1162 do_sb_sort = 1;
1163 sb = inode->i_sb;
5c03449d
SL
1164 }
1165
cf137307
JA
1166 /* just one sb in list, splice to dispatch_queue and we're done */
1167 if (!do_sb_sort) {
1168 list_splice(&tmp, dispatch_queue);
e84d0a4f 1169 goto out;
cf137307
JA
1170 }
1171
5c03449d
SL
1172 /* Move inodes from one superblock together */
1173 while (!list_empty(&tmp)) {
7ccf19a8 1174 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1175 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1176 inode = wb_inode(pos);
5c03449d 1177 if (inode->i_sb == sb)
c7f54084 1178 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1179 }
2c136579 1180 }
e84d0a4f
WF
1181out:
1182 return moved;
2c136579
FW
1183}
1184
1185/*
1186 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1187 * Before
1188 * newly dirtied b_dirty b_io b_more_io
1189 * =============> gf edc BA
1190 * After
1191 * newly dirtied b_dirty b_io b_more_io
1192 * =============> g fBAedc
1193 * |
1194 * +--> dequeue for IO
2c136579 1195 */
ad4e38dd 1196static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1197{
e84d0a4f 1198 int moved;
0ae45f63 1199
f758eeab 1200 assert_spin_locked(&wb->list_lock);
4ea879b9 1201 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1202 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1203 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1204 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1205 if (moved)
1206 wb_io_lists_populated(wb);
ad4e38dd 1207 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1208}
1209
a9185b41 1210static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1211{
9fb0a7da
TH
1212 int ret;
1213
1214 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1215 trace_writeback_write_inode_start(inode, wbc);
1216 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1217 trace_writeback_write_inode(inode, wbc);
1218 return ret;
1219 }
03ba3782 1220 return 0;
08d8e974 1221}
08d8e974 1222
1da177e4 1223/*
169ebd90
JK
1224 * Wait for writeback on an inode to complete. Called with i_lock held.
1225 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1226 */
169ebd90
JK
1227static void __inode_wait_for_writeback(struct inode *inode)
1228 __releases(inode->i_lock)
1229 __acquires(inode->i_lock)
01c03194
CH
1230{
1231 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1232 wait_queue_head_t *wqh;
1233
1234 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1235 while (inode->i_state & I_SYNC) {
1236 spin_unlock(&inode->i_lock);
74316201
N
1237 __wait_on_bit(wqh, &wq, bit_wait,
1238 TASK_UNINTERRUPTIBLE);
250df6ed 1239 spin_lock(&inode->i_lock);
58a9d3d8 1240 }
01c03194
CH
1241}
1242
169ebd90
JK
1243/*
1244 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1245 */
1246void inode_wait_for_writeback(struct inode *inode)
1247{
1248 spin_lock(&inode->i_lock);
1249 __inode_wait_for_writeback(inode);
1250 spin_unlock(&inode->i_lock);
1251}
1252
1253/*
1254 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1255 * held and drops it. It is aimed for callers not holding any inode reference
1256 * so once i_lock is dropped, inode can go away.
1257 */
1258static void inode_sleep_on_writeback(struct inode *inode)
1259 __releases(inode->i_lock)
1260{
1261 DEFINE_WAIT(wait);
1262 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1263 int sleep;
1264
1265 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1266 sleep = inode->i_state & I_SYNC;
1267 spin_unlock(&inode->i_lock);
1268 if (sleep)
1269 schedule();
1270 finish_wait(wqh, &wait);
1271}
1272
ccb26b5a
JK
1273/*
1274 * Find proper writeback list for the inode depending on its current state and
1275 * possibly also change of its state while we were doing writeback. Here we
1276 * handle things such as livelock prevention or fairness of writeback among
1277 * inodes. This function can be called only by flusher thread - noone else
1278 * processes all inodes in writeback lists and requeueing inodes behind flusher
1279 * thread's back can have unexpected consequences.
1280 */
1281static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1282 struct writeback_control *wbc)
1283{
1284 if (inode->i_state & I_FREEING)
1285 return;
1286
1287 /*
1288 * Sync livelock prevention. Each inode is tagged and synced in one
1289 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1290 * the dirty time to prevent enqueue and sync it again.
1291 */
1292 if ((inode->i_state & I_DIRTY) &&
1293 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1294 inode->dirtied_when = jiffies;
1295
4f8ad655
JK
1296 if (wbc->pages_skipped) {
1297 /*
1298 * writeback is not making progress due to locked
1299 * buffers. Skip this inode for now.
1300 */
1301 redirty_tail(inode, wb);
1302 return;
1303 }
1304
ccb26b5a
JK
1305 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1306 /*
1307 * We didn't write back all the pages. nfs_writepages()
1308 * sometimes bales out without doing anything.
1309 */
1310 if (wbc->nr_to_write <= 0) {
1311 /* Slice used up. Queue for next turn. */
1312 requeue_io(inode, wb);
1313 } else {
1314 /*
1315 * Writeback blocked by something other than
1316 * congestion. Delay the inode for some time to
1317 * avoid spinning on the CPU (100% iowait)
1318 * retrying writeback of the dirty page/inode
1319 * that cannot be performed immediately.
1320 */
1321 redirty_tail(inode, wb);
1322 }
1323 } else if (inode->i_state & I_DIRTY) {
1324 /*
1325 * Filesystems can dirty the inode during writeback operations,
1326 * such as delayed allocation during submission or metadata
1327 * updates after data IO completion.
1328 */
1329 redirty_tail(inode, wb);
0ae45f63 1330 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1331 inode->dirtied_when = jiffies;
c7f54084 1332 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1333 } else {
1334 /* The inode is clean. Remove from writeback lists. */
c7f54084 1335 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1336 }
1337}
1338
01c03194 1339/*
4f8ad655
JK
1340 * Write out an inode and its dirty pages. Do not update the writeback list
1341 * linkage. That is left to the caller. The caller is also responsible for
1342 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1343 */
1344static int
cd8ed2a4 1345__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1346{
1da177e4 1347 struct address_space *mapping = inode->i_mapping;
251d6a47 1348 long nr_to_write = wbc->nr_to_write;
01c03194 1349 unsigned dirty;
1da177e4
LT
1350 int ret;
1351
4f8ad655 1352 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1353
9fb0a7da
TH
1354 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1355
1da177e4
LT
1356 ret = do_writepages(mapping, wbc);
1357
26821ed4
CH
1358 /*
1359 * Make sure to wait on the data before writing out the metadata.
1360 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1361 * I/O completion. We don't do it for sync(2) writeback because it has a
1362 * separate, external IO completion path and ->sync_fs for guaranteeing
1363 * inode metadata is written back correctly.
26821ed4 1364 */
7747bd4b 1365 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1366 int err = filemap_fdatawait(mapping);
1da177e4
LT
1367 if (ret == 0)
1368 ret = err;
1369 }
1370
5547e8aa
DM
1371 /*
1372 * Some filesystems may redirty the inode during the writeback
1373 * due to delalloc, clear dirty metadata flags right before
1374 * write_inode()
1375 */
250df6ed 1376 spin_lock(&inode->i_lock);
9c6ac78e 1377
5547e8aa 1378 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1379 if (inode->i_state & I_DIRTY_TIME) {
1380 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
dc5ff2b1 1381 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1382 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1383 unlikely(time_after(jiffies,
1384 (inode->dirtied_time_when +
1385 dirtytime_expire_interval * HZ)))) {
1386 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1387 trace_writeback_lazytime(inode);
1388 }
1389 } else
1390 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1391 inode->i_state &= ~dirty;
9c6ac78e
TH
1392
1393 /*
1394 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1395 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1396 * either they see the I_DIRTY bits cleared or we see the dirtied
1397 * inode.
1398 *
1399 * I_DIRTY_PAGES is always cleared together above even if @mapping
1400 * still has dirty pages. The flag is reinstated after smp_mb() if
1401 * necessary. This guarantees that either __mark_inode_dirty()
1402 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1403 */
1404 smp_mb();
1405
1406 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1407 inode->i_state |= I_DIRTY_PAGES;
1408
250df6ed 1409 spin_unlock(&inode->i_lock);
9c6ac78e 1410
0ae45f63
TT
1411 if (dirty & I_DIRTY_TIME)
1412 mark_inode_dirty_sync(inode);
26821ed4 1413 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1414 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1415 int err = write_inode(inode, wbc);
1da177e4
LT
1416 if (ret == 0)
1417 ret = err;
1418 }
4f8ad655
JK
1419 trace_writeback_single_inode(inode, wbc, nr_to_write);
1420 return ret;
1421}
1422
1423/*
1424 * Write out an inode's dirty pages. Either the caller has an active reference
1425 * on the inode or the inode has I_WILL_FREE set.
1426 *
1427 * This function is designed to be called for writing back one inode which
1428 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1429 * and does more profound writeback list handling in writeback_sb_inodes().
1430 */
aaf25593
TH
1431static int writeback_single_inode(struct inode *inode,
1432 struct writeback_control *wbc)
4f8ad655 1433{
aaf25593 1434 struct bdi_writeback *wb;
4f8ad655
JK
1435 int ret = 0;
1436
1437 spin_lock(&inode->i_lock);
1438 if (!atomic_read(&inode->i_count))
1439 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1440 else
1441 WARN_ON(inode->i_state & I_WILL_FREE);
1442
1443 if (inode->i_state & I_SYNC) {
1444 if (wbc->sync_mode != WB_SYNC_ALL)
1445 goto out;
1446 /*
169ebd90
JK
1447 * It's a data-integrity sync. We must wait. Since callers hold
1448 * inode reference or inode has I_WILL_FREE set, it cannot go
1449 * away under us.
4f8ad655 1450 */
169ebd90 1451 __inode_wait_for_writeback(inode);
4f8ad655
JK
1452 }
1453 WARN_ON(inode->i_state & I_SYNC);
1454 /*
f9b0e058
JK
1455 * Skip inode if it is clean and we have no outstanding writeback in
1456 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1457 * function since flusher thread may be doing for example sync in
1458 * parallel and if we move the inode, it could get skipped. So here we
1459 * make sure inode is on some writeback list and leave it there unless
1460 * we have completely cleaned the inode.
4f8ad655 1461 */
0ae45f63 1462 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1463 (wbc->sync_mode != WB_SYNC_ALL ||
1464 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1465 goto out;
1466 inode->i_state |= I_SYNC;
b16b1deb 1467 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1468
cd8ed2a4 1469 ret = __writeback_single_inode(inode, wbc);
1da177e4 1470
b16b1deb 1471 wbc_detach_inode(wbc);
aaf25593
TH
1472
1473 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1474 spin_lock(&inode->i_lock);
4f8ad655
JK
1475 /*
1476 * If inode is clean, remove it from writeback lists. Otherwise don't
1477 * touch it. See comment above for explanation.
1478 */
0ae45f63 1479 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1480 inode_io_list_del_locked(inode, wb);
4f8ad655 1481 spin_unlock(&wb->list_lock);
1c0eeaf5 1482 inode_sync_complete(inode);
4f8ad655
JK
1483out:
1484 spin_unlock(&inode->i_lock);
1da177e4
LT
1485 return ret;
1486}
1487
a88a341a 1488static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1489 struct wb_writeback_work *work)
d46db3d5
WF
1490{
1491 long pages;
1492
1493 /*
1494 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1495 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1496 * here avoids calling into writeback_inodes_wb() more than once.
1497 *
1498 * The intended call sequence for WB_SYNC_ALL writeback is:
1499 *
1500 * wb_writeback()
1501 * writeback_sb_inodes() <== called only once
1502 * write_cache_pages() <== called once for each inode
1503 * (quickly) tag currently dirty pages
1504 * (maybe slowly) sync all tagged pages
1505 */
1506 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1507 pages = LONG_MAX;
1a12d8bd 1508 else {
a88a341a 1509 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1510 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1511 pages = min(pages, work->nr_pages);
1512 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1513 MIN_WRITEBACK_PAGES);
1514 }
d46db3d5
WF
1515
1516 return pages;
1517}
1518
f11c9c5c
ES
1519/*
1520 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1521 *
d46db3d5 1522 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1523 *
1524 * NOTE! This is called with wb->list_lock held, and will
1525 * unlock and relock that for each inode it ends up doing
1526 * IO for.
f11c9c5c 1527 */
d46db3d5
WF
1528static long writeback_sb_inodes(struct super_block *sb,
1529 struct bdi_writeback *wb,
1530 struct wb_writeback_work *work)
1da177e4 1531{
d46db3d5
WF
1532 struct writeback_control wbc = {
1533 .sync_mode = work->sync_mode,
1534 .tagged_writepages = work->tagged_writepages,
1535 .for_kupdate = work->for_kupdate,
1536 .for_background = work->for_background,
7747bd4b 1537 .for_sync = work->for_sync,
d46db3d5
WF
1538 .range_cyclic = work->range_cyclic,
1539 .range_start = 0,
1540 .range_end = LLONG_MAX,
1541 };
1542 unsigned long start_time = jiffies;
1543 long write_chunk;
1544 long wrote = 0; /* count both pages and inodes */
1545
03ba3782 1546 while (!list_empty(&wb->b_io)) {
7ccf19a8 1547 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1548 struct bdi_writeback *tmp_wb;
edadfb10
CH
1549
1550 if (inode->i_sb != sb) {
d46db3d5 1551 if (work->sb) {
edadfb10
CH
1552 /*
1553 * We only want to write back data for this
1554 * superblock, move all inodes not belonging
1555 * to it back onto the dirty list.
1556 */
f758eeab 1557 redirty_tail(inode, wb);
edadfb10
CH
1558 continue;
1559 }
1560
1561 /*
1562 * The inode belongs to a different superblock.
1563 * Bounce back to the caller to unpin this and
1564 * pin the next superblock.
1565 */
d46db3d5 1566 break;
edadfb10
CH
1567 }
1568
9843b76a 1569 /*
331cbdee
WL
1570 * Don't bother with new inodes or inodes being freed, first
1571 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1572 * kind writeout is handled by the freer.
1573 */
250df6ed 1574 spin_lock(&inode->i_lock);
9843b76a 1575 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1576 spin_unlock(&inode->i_lock);
fcc5c222 1577 redirty_tail(inode, wb);
7ef0d737
NP
1578 continue;
1579 }
cc1676d9
JK
1580 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1581 /*
1582 * If this inode is locked for writeback and we are not
1583 * doing writeback-for-data-integrity, move it to
1584 * b_more_io so that writeback can proceed with the
1585 * other inodes on s_io.
1586 *
1587 * We'll have another go at writing back this inode
1588 * when we completed a full scan of b_io.
1589 */
1590 spin_unlock(&inode->i_lock);
1591 requeue_io(inode, wb);
1592 trace_writeback_sb_inodes_requeue(inode);
1593 continue;
1594 }
f0d07b7f
JK
1595 spin_unlock(&wb->list_lock);
1596
4f8ad655
JK
1597 /*
1598 * We already requeued the inode if it had I_SYNC set and we
1599 * are doing WB_SYNC_NONE writeback. So this catches only the
1600 * WB_SYNC_ALL case.
1601 */
169ebd90
JK
1602 if (inode->i_state & I_SYNC) {
1603 /* Wait for I_SYNC. This function drops i_lock... */
1604 inode_sleep_on_writeback(inode);
1605 /* Inode may be gone, start again */
ead188f9 1606 spin_lock(&wb->list_lock);
169ebd90
JK
1607 continue;
1608 }
4f8ad655 1609 inode->i_state |= I_SYNC;
b16b1deb 1610 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1611
a88a341a 1612 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1613 wbc.nr_to_write = write_chunk;
1614 wbc.pages_skipped = 0;
250df6ed 1615
169ebd90
JK
1616 /*
1617 * We use I_SYNC to pin the inode in memory. While it is set
1618 * evict_inode() will wait so the inode cannot be freed.
1619 */
cd8ed2a4 1620 __writeback_single_inode(inode, &wbc);
250df6ed 1621
b16b1deb 1622 wbc_detach_inode(&wbc);
d46db3d5
WF
1623 work->nr_pages -= write_chunk - wbc.nr_to_write;
1624 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1625
1626 if (need_resched()) {
1627 /*
1628 * We're trying to balance between building up a nice
1629 * long list of IOs to improve our merge rate, and
1630 * getting those IOs out quickly for anyone throttling
1631 * in balance_dirty_pages(). cond_resched() doesn't
1632 * unplug, so get our IOs out the door before we
1633 * give up the CPU.
1634 */
1635 blk_flush_plug(current);
1636 cond_resched();
1637 }
1638
aaf25593
TH
1639 /*
1640 * Requeue @inode if still dirty. Be careful as @inode may
1641 * have been switched to another wb in the meantime.
1642 */
1643 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1644 spin_lock(&inode->i_lock);
0ae45f63 1645 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1646 wrote++;
aaf25593 1647 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1648 inode_sync_complete(inode);
0f1b1fd8 1649 spin_unlock(&inode->i_lock);
590dca3a 1650
aaf25593
TH
1651 if (unlikely(tmp_wb != wb)) {
1652 spin_unlock(&tmp_wb->list_lock);
1653 spin_lock(&wb->list_lock);
1654 }
1655
d46db3d5
WF
1656 /*
1657 * bail out to wb_writeback() often enough to check
1658 * background threshold and other termination conditions.
1659 */
1660 if (wrote) {
1661 if (time_is_before_jiffies(start_time + HZ / 10UL))
1662 break;
1663 if (work->nr_pages <= 0)
1664 break;
8bc3be27 1665 }
1da177e4 1666 }
d46db3d5 1667 return wrote;
f11c9c5c
ES
1668}
1669
d46db3d5
WF
1670static long __writeback_inodes_wb(struct bdi_writeback *wb,
1671 struct wb_writeback_work *work)
f11c9c5c 1672{
d46db3d5
WF
1673 unsigned long start_time = jiffies;
1674 long wrote = 0;
38f21977 1675
f11c9c5c 1676 while (!list_empty(&wb->b_io)) {
7ccf19a8 1677 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1678 struct super_block *sb = inode->i_sb;
9ecc2738 1679
eb6ef3df 1680 if (!trylock_super(sb)) {
0e995816 1681 /*
eb6ef3df 1682 * trylock_super() may fail consistently due to
0e995816
WF
1683 * s_umount being grabbed by someone else. Don't use
1684 * requeue_io() to avoid busy retrying the inode/sb.
1685 */
1686 redirty_tail(inode, wb);
edadfb10 1687 continue;
f11c9c5c 1688 }
d46db3d5 1689 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1690 up_read(&sb->s_umount);
f11c9c5c 1691
d46db3d5
WF
1692 /* refer to the same tests at the end of writeback_sb_inodes */
1693 if (wrote) {
1694 if (time_is_before_jiffies(start_time + HZ / 10UL))
1695 break;
1696 if (work->nr_pages <= 0)
1697 break;
1698 }
f11c9c5c 1699 }
66f3b8e2 1700 /* Leave any unwritten inodes on b_io */
d46db3d5 1701 return wrote;
66f3b8e2
JA
1702}
1703
7d9f073b 1704static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1705 enum wb_reason reason)
edadfb10 1706{
d46db3d5
WF
1707 struct wb_writeback_work work = {
1708 .nr_pages = nr_pages,
1709 .sync_mode = WB_SYNC_NONE,
1710 .range_cyclic = 1,
0e175a18 1711 .reason = reason,
d46db3d5 1712 };
505a666e 1713 struct blk_plug plug;
edadfb10 1714
505a666e 1715 blk_start_plug(&plug);
f758eeab 1716 spin_lock(&wb->list_lock);
424b351f 1717 if (list_empty(&wb->b_io))
ad4e38dd 1718 queue_io(wb, &work);
d46db3d5 1719 __writeback_inodes_wb(wb, &work);
f758eeab 1720 spin_unlock(&wb->list_lock);
505a666e 1721 blk_finish_plug(&plug);
edadfb10 1722
d46db3d5
WF
1723 return nr_pages - work.nr_pages;
1724}
03ba3782 1725
03ba3782
JA
1726/*
1727 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1728 *
03ba3782
JA
1729 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1730 * dirtying-time in the inode's address_space. So this periodic writeback code
1731 * just walks the superblock inode list, writing back any inodes which are
1732 * older than a specific point in time.
66f3b8e2 1733 *
03ba3782
JA
1734 * Try to run once per dirty_writeback_interval. But if a writeback event
1735 * takes longer than a dirty_writeback_interval interval, then leave a
1736 * one-second gap.
66f3b8e2 1737 *
03ba3782
JA
1738 * older_than_this takes precedence over nr_to_write. So we'll only write back
1739 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1740 */
c4a77a6c 1741static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1742 struct wb_writeback_work *work)
66f3b8e2 1743{
e98be2d5 1744 unsigned long wb_start = jiffies;
d46db3d5 1745 long nr_pages = work->nr_pages;
0dc83bd3 1746 unsigned long oldest_jif;
a5989bdc 1747 struct inode *inode;
d46db3d5 1748 long progress;
505a666e 1749 struct blk_plug plug;
66f3b8e2 1750
0dc83bd3
JK
1751 oldest_jif = jiffies;
1752 work->older_than_this = &oldest_jif;
38f21977 1753
505a666e 1754 blk_start_plug(&plug);
e8dfc305 1755 spin_lock(&wb->list_lock);
03ba3782
JA
1756 for (;;) {
1757 /*
d3ddec76 1758 * Stop writeback when nr_pages has been consumed
03ba3782 1759 */
83ba7b07 1760 if (work->nr_pages <= 0)
03ba3782 1761 break;
66f3b8e2 1762
aa373cf5
JK
1763 /*
1764 * Background writeout and kupdate-style writeback may
1765 * run forever. Stop them if there is other work to do
1766 * so that e.g. sync can proceed. They'll be restarted
1767 * after the other works are all done.
1768 */
1769 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1770 !list_empty(&wb->work_list))
aa373cf5
JK
1771 break;
1772
38f21977 1773 /*
d3ddec76
WF
1774 * For background writeout, stop when we are below the
1775 * background dirty threshold
38f21977 1776 */
aa661bbe 1777 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1778 break;
38f21977 1779
1bc36b64
JK
1780 /*
1781 * Kupdate and background works are special and we want to
1782 * include all inodes that need writing. Livelock avoidance is
1783 * handled by these works yielding to any other work so we are
1784 * safe.
1785 */
ba9aa839 1786 if (work->for_kupdate) {
0dc83bd3 1787 oldest_jif = jiffies -
ba9aa839 1788 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1789 } else if (work->for_background)
0dc83bd3 1790 oldest_jif = jiffies;
028c2dd1 1791
5634cc2a 1792 trace_writeback_start(wb, work);
e8dfc305 1793 if (list_empty(&wb->b_io))
ad4e38dd 1794 queue_io(wb, work);
83ba7b07 1795 if (work->sb)
d46db3d5 1796 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1797 else
d46db3d5 1798 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1799 trace_writeback_written(wb, work);
028c2dd1 1800
e98be2d5 1801 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1802
1803 /*
e6fb6da2
WF
1804 * Did we write something? Try for more
1805 *
1806 * Dirty inodes are moved to b_io for writeback in batches.
1807 * The completion of the current batch does not necessarily
1808 * mean the overall work is done. So we keep looping as long
1809 * as made some progress on cleaning pages or inodes.
03ba3782 1810 */
d46db3d5 1811 if (progress)
71fd05a8
JA
1812 continue;
1813 /*
e6fb6da2 1814 * No more inodes for IO, bail
71fd05a8 1815 */
b7a2441f 1816 if (list_empty(&wb->b_more_io))
03ba3782 1817 break;
71fd05a8
JA
1818 /*
1819 * Nothing written. Wait for some inode to
1820 * become available for writeback. Otherwise
1821 * we'll just busyloop.
1822 */
bace9248
TE
1823 trace_writeback_wait(wb, work);
1824 inode = wb_inode(wb->b_more_io.prev);
1825 spin_lock(&inode->i_lock);
1826 spin_unlock(&wb->list_lock);
1827 /* This function drops i_lock... */
1828 inode_sleep_on_writeback(inode);
1829 spin_lock(&wb->list_lock);
03ba3782 1830 }
e8dfc305 1831 spin_unlock(&wb->list_lock);
505a666e 1832 blk_finish_plug(&plug);
03ba3782 1833
d46db3d5 1834 return nr_pages - work->nr_pages;
03ba3782
JA
1835}
1836
1837/*
83ba7b07 1838 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1839 */
f0054bb1 1840static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1841{
83ba7b07 1842 struct wb_writeback_work *work = NULL;
03ba3782 1843
f0054bb1
TH
1844 spin_lock_bh(&wb->work_lock);
1845 if (!list_empty(&wb->work_list)) {
1846 work = list_entry(wb->work_list.next,
83ba7b07
CH
1847 struct wb_writeback_work, list);
1848 list_del_init(&work->list);
03ba3782 1849 }
f0054bb1 1850 spin_unlock_bh(&wb->work_lock);
83ba7b07 1851 return work;
03ba3782
JA
1852}
1853
6585027a
JK
1854static long wb_check_background_flush(struct bdi_writeback *wb)
1855{
aa661bbe 1856 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1857
1858 struct wb_writeback_work work = {
1859 .nr_pages = LONG_MAX,
1860 .sync_mode = WB_SYNC_NONE,
1861 .for_background = 1,
1862 .range_cyclic = 1,
0e175a18 1863 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1864 };
1865
1866 return wb_writeback(wb, &work);
1867 }
1868
1869 return 0;
1870}
1871
03ba3782
JA
1872static long wb_check_old_data_flush(struct bdi_writeback *wb)
1873{
1874 unsigned long expired;
1875 long nr_pages;
1876
69b62d01
JA
1877 /*
1878 * When set to zero, disable periodic writeback
1879 */
1880 if (!dirty_writeback_interval)
1881 return 0;
1882
03ba3782
JA
1883 expired = wb->last_old_flush +
1884 msecs_to_jiffies(dirty_writeback_interval * 10);
1885 if (time_before(jiffies, expired))
1886 return 0;
1887
1888 wb->last_old_flush = jiffies;
cdf01dd5 1889 nr_pages = get_nr_dirty_pages();
03ba3782 1890
c4a77a6c 1891 if (nr_pages) {
83ba7b07 1892 struct wb_writeback_work work = {
c4a77a6c
JA
1893 .nr_pages = nr_pages,
1894 .sync_mode = WB_SYNC_NONE,
1895 .for_kupdate = 1,
1896 .range_cyclic = 1,
0e175a18 1897 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1898 };
1899
83ba7b07 1900 return wb_writeback(wb, &work);
c4a77a6c 1901 }
03ba3782
JA
1902
1903 return 0;
1904}
1905
85009b4f
JA
1906static long wb_check_start_all(struct bdi_writeback *wb)
1907{
1908 long nr_pages;
1909
1910 if (!test_bit(WB_start_all, &wb->state))
1911 return 0;
1912
1913 nr_pages = get_nr_dirty_pages();
1914 if (nr_pages) {
1915 struct wb_writeback_work work = {
1916 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
1917 .sync_mode = WB_SYNC_NONE,
1918 .range_cyclic = 1,
1919 .reason = wb->start_all_reason,
1920 };
1921
1922 nr_pages = wb_writeback(wb, &work);
1923 }
1924
1925 clear_bit(WB_start_all, &wb->state);
1926 return nr_pages;
1927}
1928
1929
03ba3782
JA
1930/*
1931 * Retrieve work items and do the writeback they describe
1932 */
25d130ba 1933static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1934{
83ba7b07 1935 struct wb_writeback_work *work;
c4a77a6c 1936 long wrote = 0;
03ba3782 1937
4452226e 1938 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1939 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1940 trace_writeback_exec(wb, work);
83ba7b07 1941 wrote += wb_writeback(wb, work);
4a3a485b 1942 finish_writeback_work(wb, work);
03ba3782
JA
1943 }
1944
85009b4f
JA
1945 /*
1946 * Check for a flush-everything request
1947 */
1948 wrote += wb_check_start_all(wb);
1949
03ba3782
JA
1950 /*
1951 * Check for periodic writeback, kupdated() style
1952 */
1953 wrote += wb_check_old_data_flush(wb);
6585027a 1954 wrote += wb_check_background_flush(wb);
4452226e 1955 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1956
1957 return wrote;
1958}
1959
1960/*
1961 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1962 * reschedules periodically and does kupdated style flushing.
03ba3782 1963 */
f0054bb1 1964void wb_workfn(struct work_struct *work)
03ba3782 1965{
839a8e86
TH
1966 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1967 struct bdi_writeback, dwork);
03ba3782
JA
1968 long pages_written;
1969
f0054bb1 1970 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1971 current->flags |= PF_SWAPWRITE;
455b2864 1972
839a8e86 1973 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1974 !test_bit(WB_registered, &wb->state))) {
6467716a 1975 /*
f0054bb1 1976 * The normal path. Keep writing back @wb until its
839a8e86 1977 * work_list is empty. Note that this path is also taken
f0054bb1 1978 * if @wb is shutting down even when we're running off the
839a8e86 1979 * rescuer as work_list needs to be drained.
6467716a 1980 */
839a8e86 1981 do {
25d130ba 1982 pages_written = wb_do_writeback(wb);
839a8e86 1983 trace_writeback_pages_written(pages_written);
f0054bb1 1984 } while (!list_empty(&wb->work_list));
839a8e86
TH
1985 } else {
1986 /*
1987 * bdi_wq can't get enough workers and we're running off
1988 * the emergency worker. Don't hog it. Hopefully, 1024 is
1989 * enough for efficient IO.
1990 */
f0054bb1 1991 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1992 WB_REASON_FORKER_THREAD);
455b2864 1993 trace_writeback_pages_written(pages_written);
03ba3782
JA
1994 }
1995
f0054bb1 1996 if (!list_empty(&wb->work_list))
a9c9bc52 1997 wb_wakeup(wb);
6ca738d6 1998 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1999 wb_wakeup_delayed(wb);
455b2864 2000
839a8e86 2001 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
2002}
2003
595043e5
JA
2004/*
2005 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2006 * write back the whole world.
2007 */
2008static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 2009 enum wb_reason reason)
595043e5
JA
2010{
2011 struct bdi_writeback *wb;
2012
2013 if (!bdi_has_dirty_io(bdi))
2014 return;
2015
2016 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 2017 wb_start_writeback(wb, reason);
595043e5
JA
2018}
2019
2020void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2021 enum wb_reason reason)
2022{
595043e5 2023 rcu_read_lock();
e8e8a0c6 2024 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
2025 rcu_read_unlock();
2026}
2027
03ba3782 2028/*
9ba4b2df 2029 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 2030 */
9ba4b2df 2031void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2032{
b8c2f347 2033 struct backing_dev_info *bdi;
03ba3782 2034
51350ea0
KK
2035 /*
2036 * If we are expecting writeback progress we must submit plugged IO.
2037 */
2038 if (blk_needs_flush_plug(current))
2039 blk_schedule_flush_plug(current);
2040
b8c2f347 2041 rcu_read_lock();
595043e5 2042 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2043 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2044 rcu_read_unlock();
1da177e4
LT
2045}
2046
a2f48706
TT
2047/*
2048 * Wake up bdi's periodically to make sure dirtytime inodes gets
2049 * written back periodically. We deliberately do *not* check the
2050 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2051 * kernel to be constantly waking up once there are any dirtytime
2052 * inodes on the system. So instead we define a separate delayed work
2053 * function which gets called much more rarely. (By default, only
2054 * once every 12 hours.)
2055 *
2056 * If there is any other write activity going on in the file system,
2057 * this function won't be necessary. But if the only thing that has
2058 * happened on the file system is a dirtytime inode caused by an atime
2059 * update, we need this infrastructure below to make sure that inode
2060 * eventually gets pushed out to disk.
2061 */
2062static void wakeup_dirtytime_writeback(struct work_struct *w);
2063static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2064
2065static void wakeup_dirtytime_writeback(struct work_struct *w)
2066{
2067 struct backing_dev_info *bdi;
2068
2069 rcu_read_lock();
2070 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2071 struct bdi_writeback *wb;
001fe6f6 2072
b817525a 2073 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2074 if (!list_empty(&wb->b_dirty_time))
2075 wb_wakeup(wb);
a2f48706
TT
2076 }
2077 rcu_read_unlock();
2078 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2079}
2080
2081static int __init start_dirtytime_writeback(void)
2082{
2083 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2084 return 0;
2085}
2086__initcall(start_dirtytime_writeback);
2087
1efff914
TT
2088int dirtytime_interval_handler(struct ctl_table *table, int write,
2089 void __user *buffer, size_t *lenp, loff_t *ppos)
2090{
2091 int ret;
2092
2093 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2094 if (ret == 0 && write)
2095 mod_delayed_work(system_wq, &dirtytime_work, 0);
2096 return ret;
2097}
2098
03ba3782
JA
2099static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2100{
2101 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2102 struct dentry *dentry;
2103 const char *name = "?";
2104
2105 dentry = d_find_alias(inode);
2106 if (dentry) {
2107 spin_lock(&dentry->d_lock);
2108 name = (const char *) dentry->d_name.name;
2109 }
2110 printk(KERN_DEBUG
2111 "%s(%d): dirtied inode %lu (%s) on %s\n",
2112 current->comm, task_pid_nr(current), inode->i_ino,
2113 name, inode->i_sb->s_id);
2114 if (dentry) {
2115 spin_unlock(&dentry->d_lock);
2116 dput(dentry);
2117 }
2118 }
2119}
2120
2121/**
0117d427
MCC
2122 * __mark_inode_dirty - internal function
2123 *
2124 * @inode: inode to mark
2125 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2126 *
2127 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2128 * mark_inode_dirty_sync.
1da177e4 2129 *
03ba3782
JA
2130 * Put the inode on the super block's dirty list.
2131 *
2132 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2133 * dirty list only if it is hashed or if it refers to a blockdev.
2134 * If it was not hashed, it will never be added to the dirty list
2135 * even if it is later hashed, as it will have been marked dirty already.
2136 *
2137 * In short, make sure you hash any inodes _before_ you start marking
2138 * them dirty.
1da177e4 2139 *
03ba3782
JA
2140 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2141 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2142 * the kernel-internal blockdev inode represents the dirtying time of the
2143 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2144 * page->mapping->host, so the page-dirtying time is recorded in the internal
2145 * blockdev inode.
1da177e4 2146 */
03ba3782 2147void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2148{
dbce03b9 2149#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2150 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2151 int dirtytime;
2152
2153 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2154
03ba3782
JA
2155 /*
2156 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2157 * dirty the inode itself
2158 */
0ae45f63 2159 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2160 trace_writeback_dirty_inode_start(inode, flags);
2161
03ba3782 2162 if (sb->s_op->dirty_inode)
aa385729 2163 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2164
2165 trace_writeback_dirty_inode(inode, flags);
03ba3782 2166 }
0ae45f63
TT
2167 if (flags & I_DIRTY_INODE)
2168 flags &= ~I_DIRTY_TIME;
2169 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2170
2171 /*
9c6ac78e
TH
2172 * Paired with smp_mb() in __writeback_single_inode() for the
2173 * following lockless i_state test. See there for details.
03ba3782
JA
2174 */
2175 smp_mb();
2176
0ae45f63
TT
2177 if (((inode->i_state & flags) == flags) ||
2178 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2179 return;
2180
2181 if (unlikely(block_dump))
2182 block_dump___mark_inode_dirty(inode);
2183
250df6ed 2184 spin_lock(&inode->i_lock);
0ae45f63
TT
2185 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2186 goto out_unlock_inode;
03ba3782
JA
2187 if ((inode->i_state & flags) != flags) {
2188 const int was_dirty = inode->i_state & I_DIRTY;
2189
52ebea74
TH
2190 inode_attach_wb(inode, NULL);
2191
0ae45f63
TT
2192 if (flags & I_DIRTY_INODE)
2193 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2194 inode->i_state |= flags;
2195
2196 /*
2197 * If the inode is being synced, just update its dirty state.
2198 * The unlocker will place the inode on the appropriate
2199 * superblock list, based upon its state.
2200 */
2201 if (inode->i_state & I_SYNC)
250df6ed 2202 goto out_unlock_inode;
03ba3782
JA
2203
2204 /*
2205 * Only add valid (hashed) inodes to the superblock's
2206 * dirty list. Add blockdev inodes as well.
2207 */
2208 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2209 if (inode_unhashed(inode))
250df6ed 2210 goto out_unlock_inode;
03ba3782 2211 }
a4ffdde6 2212 if (inode->i_state & I_FREEING)
250df6ed 2213 goto out_unlock_inode;
03ba3782
JA
2214
2215 /*
2216 * If the inode was already on b_dirty/b_io/b_more_io, don't
2217 * reposition it (that would break b_dirty time-ordering).
2218 */
2219 if (!was_dirty) {
87e1d789 2220 struct bdi_writeback *wb;
d6c10f1f 2221 struct list_head *dirty_list;
a66979ab 2222 bool wakeup_bdi = false;
253c34e9 2223
87e1d789 2224 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2225
0747259d
TH
2226 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2227 !test_bit(WB_registered, &wb->state),
2228 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2229
2230 inode->dirtied_when = jiffies;
a2f48706
TT
2231 if (dirtytime)
2232 inode->dirtied_time_when = jiffies;
d6c10f1f 2233
a2f48706 2234 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2235 dirty_list = &wb->b_dirty;
a2f48706 2236 else
0747259d 2237 dirty_list = &wb->b_dirty_time;
d6c10f1f 2238
c7f54084 2239 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2240 dirty_list);
2241
0747259d 2242 spin_unlock(&wb->list_lock);
0ae45f63 2243 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2244
d6c10f1f
TH
2245 /*
2246 * If this is the first dirty inode for this bdi,
2247 * we have to wake-up the corresponding bdi thread
2248 * to make sure background write-back happens
2249 * later.
2250 */
0747259d
TH
2251 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2252 wb_wakeup_delayed(wb);
a66979ab 2253 return;
1da177e4 2254 }
1da177e4 2255 }
250df6ed
DC
2256out_unlock_inode:
2257 spin_unlock(&inode->i_lock);
253c34e9 2258
dbce03b9 2259#undef I_DIRTY_INODE
03ba3782
JA
2260}
2261EXPORT_SYMBOL(__mark_inode_dirty);
2262
e97fedb9
DC
2263/*
2264 * The @s_sync_lock is used to serialise concurrent sync operations
2265 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2266 * Concurrent callers will block on the s_sync_lock rather than doing contending
2267 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2268 * has been issued up to the time this function is enter is guaranteed to be
2269 * completed by the time we have gained the lock and waited for all IO that is
2270 * in progress regardless of the order callers are granted the lock.
2271 */
b6e51316 2272static void wait_sb_inodes(struct super_block *sb)
03ba3782 2273{
6c60d2b5 2274 LIST_HEAD(sync_list);
03ba3782
JA
2275
2276 /*
2277 * We need to be protected against the filesystem going from
2278 * r/o to r/w or vice versa.
2279 */
b6e51316 2280 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2281
e97fedb9 2282 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2283
2284 /*
6c60d2b5
DC
2285 * Splice the writeback list onto a temporary list to avoid waiting on
2286 * inodes that have started writeback after this point.
2287 *
2288 * Use rcu_read_lock() to keep the inodes around until we have a
2289 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2290 * the local list because inodes can be dropped from either by writeback
2291 * completion.
2292 */
2293 rcu_read_lock();
2294 spin_lock_irq(&sb->s_inode_wblist_lock);
2295 list_splice_init(&sb->s_inodes_wb, &sync_list);
2296
2297 /*
2298 * Data integrity sync. Must wait for all pages under writeback, because
2299 * there may have been pages dirtied before our sync call, but which had
2300 * writeout started before we write it out. In which case, the inode
2301 * may not be on the dirty list, but we still have to wait for that
2302 * writeout.
03ba3782 2303 */
6c60d2b5
DC
2304 while (!list_empty(&sync_list)) {
2305 struct inode *inode = list_first_entry(&sync_list, struct inode,
2306 i_wb_list);
250df6ed 2307 struct address_space *mapping = inode->i_mapping;
03ba3782 2308
6c60d2b5
DC
2309 /*
2310 * Move each inode back to the wb list before we drop the lock
2311 * to preserve consistency between i_wb_list and the mapping
2312 * writeback tag. Writeback completion is responsible to remove
2313 * the inode from either list once the writeback tag is cleared.
2314 */
2315 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2316
2317 /*
2318 * The mapping can appear untagged while still on-list since we
2319 * do not have the mapping lock. Skip it here, wb completion
2320 * will remove it.
2321 */
2322 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2323 continue;
2324
2325 spin_unlock_irq(&sb->s_inode_wblist_lock);
2326
250df6ed 2327 spin_lock(&inode->i_lock);
6c60d2b5 2328 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2329 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2330
2331 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2332 continue;
250df6ed 2333 }
03ba3782 2334 __iget(inode);
250df6ed 2335 spin_unlock(&inode->i_lock);
6c60d2b5 2336 rcu_read_unlock();
03ba3782 2337
aa750fd7
JN
2338 /*
2339 * We keep the error status of individual mapping so that
2340 * applications can catch the writeback error using fsync(2).
2341 * See filemap_fdatawait_keep_errors() for details.
2342 */
2343 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2344
2345 cond_resched();
2346
6c60d2b5
DC
2347 iput(inode);
2348
2349 rcu_read_lock();
2350 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2351 }
6c60d2b5
DC
2352 spin_unlock_irq(&sb->s_inode_wblist_lock);
2353 rcu_read_unlock();
e97fedb9 2354 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2355}
2356
f30a7d0c
TH
2357static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2358 enum wb_reason reason, bool skip_if_busy)
1da177e4 2359{
cc395d7f 2360 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2361 struct wb_writeback_work work = {
6e6938b6
WF
2362 .sb = sb,
2363 .sync_mode = WB_SYNC_NONE,
2364 .tagged_writepages = 1,
2365 .done = &done,
2366 .nr_pages = nr,
0e175a18 2367 .reason = reason,
3c4d7165 2368 };
e7972912 2369 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2370
e7972912 2371 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2372 return;
cf37e972 2373 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2374
db125360 2375 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2376 wb_wait_for_completion(bdi, &done);
e913fc82 2377}
f30a7d0c
TH
2378
2379/**
2380 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2381 * @sb: the superblock
2382 * @nr: the number of pages to write
2383 * @reason: reason why some writeback work initiated
2384 *
2385 * Start writeback on some inodes on this super_block. No guarantees are made
2386 * on how many (if any) will be written, and this function does not wait
2387 * for IO completion of submitted IO.
2388 */
2389void writeback_inodes_sb_nr(struct super_block *sb,
2390 unsigned long nr,
2391 enum wb_reason reason)
2392{
2393 __writeback_inodes_sb_nr(sb, nr, reason, false);
2394}
3259f8be
CM
2395EXPORT_SYMBOL(writeback_inodes_sb_nr);
2396
2397/**
2398 * writeback_inodes_sb - writeback dirty inodes from given super_block
2399 * @sb: the superblock
786228ab 2400 * @reason: reason why some writeback work was initiated
3259f8be
CM
2401 *
2402 * Start writeback on some inodes on this super_block. No guarantees are made
2403 * on how many (if any) will be written, and this function does not wait
2404 * for IO completion of submitted IO.
2405 */
0e175a18 2406void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2407{
0e175a18 2408 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2409}
0e3c9a22 2410EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2411
17bd55d0 2412/**
8264c321 2413 * try_to_writeback_inodes_sb - try to start writeback if none underway
17bd55d0 2414 * @sb: the superblock
8264c321 2415 * @reason: reason why some writeback work was initiated
17bd55d0 2416 *
8264c321 2417 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0 2418 */
8264c321 2419void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
17bd55d0 2420{
10ee27a0 2421 if (!down_read_trylock(&sb->s_umount))
8264c321 2422 return;
10ee27a0 2423
8264c321 2424 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
10ee27a0 2425 up_read(&sb->s_umount);
3259f8be 2426}
10ee27a0 2427EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2428
d8a8559c
JA
2429/**
2430 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2431 * @sb: the superblock
d8a8559c
JA
2432 *
2433 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2434 * super_block.
d8a8559c 2435 */
0dc83bd3 2436void sync_inodes_sb(struct super_block *sb)
d8a8559c 2437{
cc395d7f 2438 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2439 struct wb_writeback_work work = {
3c4d7165
CH
2440 .sb = sb,
2441 .sync_mode = WB_SYNC_ALL,
2442 .nr_pages = LONG_MAX,
2443 .range_cyclic = 0,
83ba7b07 2444 .done = &done,
0e175a18 2445 .reason = WB_REASON_SYNC,
7747bd4b 2446 .for_sync = 1,
3c4d7165 2447 };
e7972912 2448 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2449
006a0973
TH
2450 /*
2451 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2452 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2453 * bdi_has_dirty() need to be written out too.
2454 */
2455 if (bdi == &noop_backing_dev_info)
6eedc701 2456 return;
cf37e972
CH
2457 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2458
6a83923f
TH
2459 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2460 bdi_down_write_wb_switch_rwsem(bdi);
db125360 2461 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2462 wb_wait_for_completion(bdi, &done);
6a83923f 2463 bdi_up_write_wb_switch_rwsem(bdi);
83ba7b07 2464
b6e51316 2465 wait_sb_inodes(sb);
1da177e4 2466}
d8a8559c 2467EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2468
1da177e4 2469/**
7f04c26d
AA
2470 * write_inode_now - write an inode to disk
2471 * @inode: inode to write to disk
2472 * @sync: whether the write should be synchronous or not
2473 *
2474 * This function commits an inode to disk immediately if it is dirty. This is
2475 * primarily needed by knfsd.
1da177e4 2476 *
7f04c26d 2477 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2478 */
1da177e4
LT
2479int write_inode_now(struct inode *inode, int sync)
2480{
1da177e4
LT
2481 struct writeback_control wbc = {
2482 .nr_to_write = LONG_MAX,
18914b18 2483 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2484 .range_start = 0,
2485 .range_end = LLONG_MAX,
1da177e4
LT
2486 };
2487
2488 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2489 wbc.nr_to_write = 0;
1da177e4
LT
2490
2491 might_sleep();
aaf25593 2492 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2493}
2494EXPORT_SYMBOL(write_inode_now);
2495
2496/**
2497 * sync_inode - write an inode and its pages to disk.
2498 * @inode: the inode to sync
2499 * @wbc: controls the writeback mode
2500 *
2501 * sync_inode() will write an inode and its pages to disk. It will also
2502 * correctly update the inode on its superblock's dirty inode lists and will
2503 * update inode->i_state.
2504 *
2505 * The caller must have a ref on the inode.
2506 */
2507int sync_inode(struct inode *inode, struct writeback_control *wbc)
2508{
aaf25593 2509 return writeback_single_inode(inode, wbc);
1da177e4
LT
2510}
2511EXPORT_SYMBOL(sync_inode);
c3765016
CH
2512
2513/**
c691b9d9 2514 * sync_inode_metadata - write an inode to disk
c3765016
CH
2515 * @inode: the inode to sync
2516 * @wait: wait for I/O to complete.
2517 *
c691b9d9 2518 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2519 *
2520 * Note: only writes the actual inode, no associated data or other metadata.
2521 */
2522int sync_inode_metadata(struct inode *inode, int wait)
2523{
2524 struct writeback_control wbc = {
2525 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2526 .nr_to_write = 0, /* metadata-only */
2527 };
2528
2529 return sync_inode(inode, &wbc);
2530}
2531EXPORT_SYMBOL(sync_inode_metadata);