]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/fs-writeback.c
fs/fs-writeback.c: add a new writeback list for sync
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
09cbfeaf 36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
0e175a18 56 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 57
8010c3b6 58 struct list_head list; /* pending work list */
cc395d7f 59 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
60};
61
cc395d7f
TH
62/*
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
68 */
69#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
72 }
73
74
a2f48706
TT
75/*
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
84 */
85unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86
7ccf19a8
NP
87static inline struct inode *wb_inode(struct list_head *head)
88{
c7f54084 89 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
90}
91
15eb77a0
WF
92/*
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
96 */
97#define CREATE_TRACE_POINTS
98#include <trace/events/writeback.h>
99
774016b2
SW
100EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101
d6c10f1f
TH
102static bool wb_io_lists_populated(struct bdi_writeback *wb)
103{
104 if (wb_has_dirty_io(wb)) {
105 return false;
106 } else {
107 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 108 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
109 atomic_long_add(wb->avg_write_bandwidth,
110 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
111 return true;
112 }
113}
114
115static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116{
117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 119 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 122 }
d6c10f1f
TH
123}
124
125/**
c7f54084 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
130 *
c7f54084 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
134 */
c7f54084 135static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
136 struct bdi_writeback *wb,
137 struct list_head *head)
138{
139 assert_spin_locked(&wb->list_lock);
140
c7f54084 141 list_move(&inode->i_io_list, head);
d6c10f1f
TH
142
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head != &wb->b_dirty_time)
145 return wb_io_lists_populated(wb);
146
147 wb_io_lists_depopulated(wb);
148 return false;
149}
150
151/**
c7f54084 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
155 *
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
158 */
c7f54084 159static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
160 struct bdi_writeback *wb)
161{
162 assert_spin_locked(&wb->list_lock);
163
c7f54084 164 list_del_init(&inode->i_io_list);
d6c10f1f
TH
165 wb_io_lists_depopulated(wb);
166}
167
f0054bb1 168static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 169{
f0054bb1
TH
170 spin_lock_bh(&wb->work_lock);
171 if (test_bit(WB_registered, &wb->state))
172 mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
174}
175
f0054bb1
TH
176static void wb_queue_work(struct bdi_writeback *wb,
177 struct wb_writeback_work *work)
6585027a 178{
5634cc2a 179 trace_writeback_queue(wb, work);
6585027a 180
f0054bb1 181 spin_lock_bh(&wb->work_lock);
8a1270cd 182 if (!test_bit(WB_registered, &wb->state))
5acda9d1 183 goto out_unlock;
cc395d7f
TH
184 if (work->done)
185 atomic_inc(&work->done->cnt);
f0054bb1
TH
186 list_add_tail(&work->list, &wb->work_list);
187 mod_delayed_work(bdi_wq, &wb->dwork, 0);
5acda9d1 188out_unlock:
f0054bb1 189 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
190}
191
cc395d7f
TH
192/**
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
196 *
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
202 */
203static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 struct wb_completion *done)
205{
206 atomic_dec(&done->cnt); /* put down the initial count */
207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208}
209
703c2708
TH
210#ifdef CONFIG_CGROUP_WRITEBACK
211
2a814908
TH
212/* parameters for foreign inode detection, see wb_detach_inode() */
213#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
217
218#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
225
a1a0e23e
TH
226static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227static struct workqueue_struct *isw_wq;
228
21c6321f
TH
229void __inode_attach_wb(struct inode *inode, struct page *page)
230{
231 struct backing_dev_info *bdi = inode_to_bdi(inode);
232 struct bdi_writeback *wb = NULL;
233
234 if (inode_cgwb_enabled(inode)) {
235 struct cgroup_subsys_state *memcg_css;
236
237 if (page) {
238 memcg_css = mem_cgroup_css_from_page(page);
239 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 } else {
241 /* must pin memcg_css, see wb_get_create() */
242 memcg_css = task_get_css(current, memory_cgrp_id);
243 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 css_put(memcg_css);
245 }
246 }
247
248 if (!wb)
249 wb = &bdi->wb;
250
251 /*
252 * There may be multiple instances of this function racing to
253 * update the same inode. Use cmpxchg() to tell the winner.
254 */
255 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 wb_put(wb);
257}
258
87e1d789
TH
259/**
260 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261 * @inode: inode of interest with i_lock held
262 *
263 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
264 * held on entry and is released on return. The returned wb is guaranteed
265 * to stay @inode's associated wb until its list_lock is released.
266 */
267static struct bdi_writeback *
268locked_inode_to_wb_and_lock_list(struct inode *inode)
269 __releases(&inode->i_lock)
270 __acquires(&wb->list_lock)
271{
272 while (true) {
273 struct bdi_writeback *wb = inode_to_wb(inode);
274
275 /*
276 * inode_to_wb() association is protected by both
277 * @inode->i_lock and @wb->list_lock but list_lock nests
278 * outside i_lock. Drop i_lock and verify that the
279 * association hasn't changed after acquiring list_lock.
280 */
281 wb_get(wb);
282 spin_unlock(&inode->i_lock);
283 spin_lock(&wb->list_lock);
87e1d789 284
aaa2cacf 285 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
286 if (likely(wb == inode->i_wb)) {
287 wb_put(wb); /* @inode already has ref */
288 return wb;
289 }
87e1d789
TH
290
291 spin_unlock(&wb->list_lock);
614a4e37 292 wb_put(wb);
87e1d789
TH
293 cpu_relax();
294 spin_lock(&inode->i_lock);
295 }
296}
297
298/**
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
301 *
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303 * on entry.
304 */
305static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 __acquires(&wb->list_lock)
307{
308 spin_lock(&inode->i_lock);
309 return locked_inode_to_wb_and_lock_list(inode);
310}
311
682aa8e1
TH
312struct inode_switch_wbs_context {
313 struct inode *inode;
314 struct bdi_writeback *new_wb;
315
316 struct rcu_head rcu_head;
317 struct work_struct work;
318};
319
320static void inode_switch_wbs_work_fn(struct work_struct *work)
321{
322 struct inode_switch_wbs_context *isw =
323 container_of(work, struct inode_switch_wbs_context, work);
324 struct inode *inode = isw->inode;
d10c8095
TH
325 struct address_space *mapping = inode->i_mapping;
326 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 327 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
328 struct radix_tree_iter iter;
329 bool switched = false;
330 void **slot;
682aa8e1
TH
331
332 /*
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
d10c8095
TH
337 *
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
682aa8e1 341 */
d10c8095
TH
342 if (old_wb < new_wb) {
343 spin_lock(&old_wb->list_lock);
344 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 } else {
346 spin_lock(&new_wb->list_lock);
347 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 }
682aa8e1 349 spin_lock(&inode->i_lock);
d10c8095
TH
350 spin_lock_irq(&mapping->tree_lock);
351
352 /*
353 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 354 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
355 */
356 if (unlikely(inode->i_state & I_FREEING))
357 goto skip_switch;
358
359 /*
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
363 */
364 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 PAGECACHE_TAG_DIRTY) {
366 struct page *page = radix_tree_deref_slot_protected(slot,
367 &mapping->tree_lock);
368 if (likely(page) && PageDirty(page)) {
369 __dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 __inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 }
372 }
373
374 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 PAGECACHE_TAG_WRITEBACK) {
376 struct page *page = radix_tree_deref_slot_protected(slot,
377 &mapping->tree_lock);
378 if (likely(page)) {
379 WARN_ON_ONCE(!PageWriteback(page));
380 __dec_wb_stat(old_wb, WB_WRITEBACK);
381 __inc_wb_stat(new_wb, WB_WRITEBACK);
382 }
383 }
384
385 wb_get(new_wb);
386
387 /*
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
392 */
c7f54084 393 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
394 struct inode *pos;
395
c7f54084 396 inode_io_list_del_locked(inode, old_wb);
d10c8095 397 inode->i_wb = new_wb;
c7f54084 398 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
399 if (time_after_eq(inode->dirtied_when,
400 pos->dirtied_when))
401 break;
c7f54084 402 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
403 } else {
404 inode->i_wb = new_wb;
405 }
682aa8e1 406
d10c8095 407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
408 inode->i_wb_frn_winner = 0;
409 inode->i_wb_frn_avg_time = 0;
410 inode->i_wb_frn_history = 0;
d10c8095
TH
411 switched = true;
412skip_switch:
682aa8e1
TH
413 /*
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 */
417 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418
d10c8095 419 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 420 spin_unlock(&inode->i_lock);
d10c8095
TH
421 spin_unlock(&new_wb->list_lock);
422 spin_unlock(&old_wb->list_lock);
682aa8e1 423
d10c8095
TH
424 if (switched) {
425 wb_wakeup(new_wb);
426 wb_put(old_wb);
427 }
682aa8e1 428 wb_put(new_wb);
d10c8095
TH
429
430 iput(inode);
682aa8e1 431 kfree(isw);
a1a0e23e
TH
432
433 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
434}
435
436static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437{
438 struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 struct inode_switch_wbs_context, rcu_head);
440
441 /* needs to grab bh-unsafe locks, bounce to work item */
442 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 443 queue_work(isw_wq, &isw->work);
682aa8e1
TH
444}
445
446/**
447 * inode_switch_wbs - change the wb association of an inode
448 * @inode: target inode
449 * @new_wb_id: ID of the new wb
450 *
451 * Switch @inode's wb association to the wb identified by @new_wb_id. The
452 * switching is performed asynchronously and may fail silently.
453 */
454static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455{
456 struct backing_dev_info *bdi = inode_to_bdi(inode);
457 struct cgroup_subsys_state *memcg_css;
458 struct inode_switch_wbs_context *isw;
459
460 /* noop if seems to be already in progress */
461 if (inode->i_state & I_WB_SWITCH)
462 return;
463
464 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 if (!isw)
466 return;
467
468 /* find and pin the new wb */
469 rcu_read_lock();
470 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 if (memcg_css)
472 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 rcu_read_unlock();
474 if (!isw->new_wb)
475 goto out_free;
476
477 /* while holding I_WB_SWITCH, no one else can update the association */
478 spin_lock(&inode->i_lock);
a1a0e23e
TH
479 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 inode_to_wb(inode) == isw->new_wb) {
482 spin_unlock(&inode->i_lock);
483 goto out_free;
484 }
682aa8e1 485 inode->i_state |= I_WB_SWITCH;
74524955 486 __iget(inode);
682aa8e1
TH
487 spin_unlock(&inode->i_lock);
488
682aa8e1
TH
489 isw->inode = inode;
490
a1a0e23e
TH
491 atomic_inc(&isw_nr_in_flight);
492
682aa8e1
TH
493 /*
494 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 * the RCU protected stat update paths to grab the mapping's
496 * tree_lock so that stat transfer can synchronize against them.
497 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 */
499 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 return;
501
502out_free:
503 if (isw->new_wb)
504 wb_put(isw->new_wb);
505 kfree(isw);
506}
507
b16b1deb
TH
508/**
509 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510 * @wbc: writeback_control of interest
511 * @inode: target inode
512 *
513 * @inode is locked and about to be written back under the control of @wbc.
514 * Record @inode's writeback context into @wbc and unlock the i_lock. On
515 * writeback completion, wbc_detach_inode() should be called. This is used
516 * to track the cgroup writeback context.
517 */
518void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 struct inode *inode)
520{
dd73e4b7
TH
521 if (!inode_cgwb_enabled(inode)) {
522 spin_unlock(&inode->i_lock);
523 return;
524 }
525
b16b1deb 526 wbc->wb = inode_to_wb(inode);
2a814908
TH
527 wbc->inode = inode;
528
529 wbc->wb_id = wbc->wb->memcg_css->id;
530 wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 wbc->wb_tcand_id = 0;
532 wbc->wb_bytes = 0;
533 wbc->wb_lcand_bytes = 0;
534 wbc->wb_tcand_bytes = 0;
535
b16b1deb
TH
536 wb_get(wbc->wb);
537 spin_unlock(&inode->i_lock);
e8a7abf5
TH
538
539 /*
540 * A dying wb indicates that the memcg-blkcg mapping has changed
541 * and a new wb is already serving the memcg. Switch immediately.
542 */
543 if (unlikely(wb_dying(wbc->wb)))
544 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
545}
546
547/**
2a814908
TH
548 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
550 *
551 * To be called after a writeback attempt of an inode finishes and undoes
552 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
553 *
554 * As concurrent write sharing of an inode is expected to be very rare and
555 * memcg only tracks page ownership on first-use basis severely confining
556 * the usefulness of such sharing, cgroup writeback tracks ownership
557 * per-inode. While the support for concurrent write sharing of an inode
558 * is deemed unnecessary, an inode being written to by different cgroups at
559 * different points in time is a lot more common, and, more importantly,
560 * charging only by first-use can too readily lead to grossly incorrect
561 * behaviors (single foreign page can lead to gigabytes of writeback to be
562 * incorrectly attributed).
563 *
564 * To resolve this issue, cgroup writeback detects the majority dirtier of
565 * an inode and transfers the ownership to it. To avoid unnnecessary
566 * oscillation, the detection mechanism keeps track of history and gives
567 * out the switch verdict only if the foreign usage pattern is stable over
568 * a certain amount of time and/or writeback attempts.
569 *
570 * On each writeback attempt, @wbc tries to detect the majority writer
571 * using Boyer-Moore majority vote algorithm. In addition to the byte
572 * count from the majority voting, it also counts the bytes written for the
573 * current wb and the last round's winner wb (max of last round's current
574 * wb, the winner from two rounds ago, and the last round's majority
575 * candidate). Keeping track of the historical winner helps the algorithm
576 * to semi-reliably detect the most active writer even when it's not the
577 * absolute majority.
578 *
579 * Once the winner of the round is determined, whether the winner is
580 * foreign or not and how much IO time the round consumed is recorded in
581 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
582 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
583 */
584void wbc_detach_inode(struct writeback_control *wbc)
585{
2a814908
TH
586 struct bdi_writeback *wb = wbc->wb;
587 struct inode *inode = wbc->inode;
dd73e4b7
TH
588 unsigned long avg_time, max_bytes, max_time;
589 u16 history;
2a814908
TH
590 int max_id;
591
dd73e4b7
TH
592 if (!wb)
593 return;
594
595 history = inode->i_wb_frn_history;
596 avg_time = inode->i_wb_frn_avg_time;
597
2a814908
TH
598 /* pick the winner of this round */
599 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 max_id = wbc->wb_id;
602 max_bytes = wbc->wb_bytes;
603 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 max_id = wbc->wb_lcand_id;
605 max_bytes = wbc->wb_lcand_bytes;
606 } else {
607 max_id = wbc->wb_tcand_id;
608 max_bytes = wbc->wb_tcand_bytes;
609 }
610
611 /*
612 * Calculate the amount of IO time the winner consumed and fold it
613 * into the running average kept per inode. If the consumed IO
614 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 * deciding whether to switch or not. This is to prevent one-off
616 * small dirtiers from skewing the verdict.
617 */
618 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 wb->avg_write_bandwidth);
620 if (avg_time)
621 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 else
624 avg_time = max_time; /* immediate catch up on first run */
625
626 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 int slots;
628
629 /*
630 * The switch verdict is reached if foreign wb's consume
631 * more than a certain proportion of IO time in a
632 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
633 * history mask where each bit represents one sixteenth of
634 * the period. Determine the number of slots to shift into
635 * history from @max_time.
636 */
637 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 history <<= slots;
640 if (wbc->wb_id != max_id)
641 history |= (1U << slots) - 1;
642
643 /*
644 * Switch if the current wb isn't the consistent winner.
645 * If there are multiple closely competing dirtiers, the
646 * inode may switch across them repeatedly over time, which
647 * is okay. The main goal is avoiding keeping an inode on
648 * the wrong wb for an extended period of time.
649 */
682aa8e1
TH
650 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 inode_switch_wbs(inode, max_id);
2a814908
TH
652 }
653
654 /*
655 * Multiple instances of this function may race to update the
656 * following fields but we don't mind occassional inaccuracies.
657 */
658 inode->i_wb_frn_winner = max_id;
659 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 inode->i_wb_frn_history = history;
661
b16b1deb
TH
662 wb_put(wbc->wb);
663 wbc->wb = NULL;
664}
665
2a814908
TH
666/**
667 * wbc_account_io - account IO issued during writeback
668 * @wbc: writeback_control of the writeback in progress
669 * @page: page being written out
670 * @bytes: number of bytes being written out
671 *
672 * @bytes from @page are about to written out during the writeback
673 * controlled by @wbc. Keep the book for foreign inode detection. See
674 * wbc_detach_inode().
675 */
676void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 size_t bytes)
678{
679 int id;
680
681 /*
682 * pageout() path doesn't attach @wbc to the inode being written
683 * out. This is intentional as we don't want the function to block
684 * behind a slow cgroup. Ultimately, we want pageout() to kick off
685 * regular writeback instead of writing things out itself.
686 */
687 if (!wbc->wb)
688 return;
689
2a814908 690 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
691
692 if (id == wbc->wb_id) {
693 wbc->wb_bytes += bytes;
694 return;
695 }
696
697 if (id == wbc->wb_lcand_id)
698 wbc->wb_lcand_bytes += bytes;
699
700 /* Boyer-Moore majority vote algorithm */
701 if (!wbc->wb_tcand_bytes)
702 wbc->wb_tcand_id = id;
703 if (id == wbc->wb_tcand_id)
704 wbc->wb_tcand_bytes += bytes;
705 else
706 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707}
5aa2a96b 708EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 709
703c2708
TH
710/**
711 * inode_congested - test whether an inode is congested
60292bcc 712 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
713 * @cong_bits: mask of WB_[a]sync_congested bits to test
714 *
715 * Tests whether @inode is congested. @cong_bits is the mask of congestion
716 * bits to test and the return value is the mask of set bits.
717 *
718 * If cgroup writeback is enabled for @inode, the congestion state is
719 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720 * associated with @inode is congested; otherwise, the root wb's congestion
721 * state is used.
60292bcc
TH
722 *
723 * @inode is allowed to be NULL as this function is often called on
724 * mapping->host which is NULL for the swapper space.
703c2708
TH
725 */
726int inode_congested(struct inode *inode, int cong_bits)
727{
5cb8b824
TH
728 /*
729 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 * Start transaction iff ->i_wb is visible.
731 */
aaa2cacf 732 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
733 struct bdi_writeback *wb;
734 bool locked, congested;
735
736 wb = unlocked_inode_to_wb_begin(inode, &locked);
737 congested = wb_congested(wb, cong_bits);
738 unlocked_inode_to_wb_end(inode, locked);
739 return congested;
703c2708
TH
740 }
741
742 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743}
744EXPORT_SYMBOL_GPL(inode_congested);
745
f2b65121
TH
746/**
747 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748 * @wb: target bdi_writeback to split @nr_pages to
749 * @nr_pages: number of pages to write for the whole bdi
750 *
751 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752 * relation to the total write bandwidth of all wb's w/ dirty inodes on
753 * @wb->bdi.
754 */
755static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756{
757 unsigned long this_bw = wb->avg_write_bandwidth;
758 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759
760 if (nr_pages == LONG_MAX)
761 return LONG_MAX;
762
763 /*
764 * This may be called on clean wb's and proportional distribution
765 * may not make sense, just use the original @nr_pages in those
766 * cases. In general, we wanna err on the side of writing more.
767 */
768 if (!tot_bw || this_bw >= tot_bw)
769 return nr_pages;
770 else
771 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772}
773
db125360
TH
774/**
775 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776 * @bdi: target backing_dev_info
777 * @base_work: wb_writeback_work to issue
778 * @skip_if_busy: skip wb's which already have writeback in progress
779 *
780 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
782 * distributed to the busy wbs according to each wb's proportion in the
783 * total active write bandwidth of @bdi.
784 */
785static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 struct wb_writeback_work *base_work,
787 bool skip_if_busy)
788{
b817525a 789 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
790 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 struct bdi_writeback, bdi_node);
db125360
TH
792
793 might_sleep();
db125360
TH
794restart:
795 rcu_read_lock();
b817525a 796 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
797 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 struct wb_writeback_work fallback_work;
799 struct wb_writeback_work *work;
800 long nr_pages;
801
b817525a
TH
802 if (last_wb) {
803 wb_put(last_wb);
804 last_wb = NULL;
805 }
806
006a0973
TH
807 /* SYNC_ALL writes out I_DIRTY_TIME too */
808 if (!wb_has_dirty_io(wb) &&
809 (base_work->sync_mode == WB_SYNC_NONE ||
810 list_empty(&wb->b_dirty_time)))
811 continue;
812 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
813 continue;
814
8a1270cd
TH
815 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816
817 work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 if (work) {
819 *work = *base_work;
820 work->nr_pages = nr_pages;
821 work->auto_free = 1;
822 wb_queue_work(wb, work);
823 continue;
db125360 824 }
8a1270cd
TH
825
826 /* alloc failed, execute synchronously using on-stack fallback */
827 work = &fallback_work;
828 *work = *base_work;
829 work->nr_pages = nr_pages;
830 work->auto_free = 0;
831 work->done = &fallback_work_done;
832
833 wb_queue_work(wb, work);
834
b817525a
TH
835 /*
836 * Pin @wb so that it stays on @bdi->wb_list. This allows
837 * continuing iteration from @wb after dropping and
838 * regrabbing rcu read lock.
839 */
840 wb_get(wb);
841 last_wb = wb;
842
8a1270cd
TH
843 rcu_read_unlock();
844 wb_wait_for_completion(bdi, &fallback_work_done);
845 goto restart;
db125360
TH
846 }
847 rcu_read_unlock();
b817525a
TH
848
849 if (last_wb)
850 wb_put(last_wb);
db125360
TH
851}
852
a1a0e23e
TH
853/**
854 * cgroup_writeback_umount - flush inode wb switches for umount
855 *
856 * This function is called when a super_block is about to be destroyed and
857 * flushes in-flight inode wb switches. An inode wb switch goes through
858 * RCU and then workqueue, so the two need to be flushed in order to ensure
859 * that all previously scheduled switches are finished. As wb switches are
860 * rare occurrences and synchronize_rcu() can take a while, perform
861 * flushing iff wb switches are in flight.
862 */
863void cgroup_writeback_umount(void)
864{
865 if (atomic_read(&isw_nr_in_flight)) {
866 synchronize_rcu();
867 flush_workqueue(isw_wq);
868 }
869}
870
871static int __init cgroup_writeback_init(void)
872{
873 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 if (!isw_wq)
875 return -ENOMEM;
876 return 0;
877}
878fs_initcall(cgroup_writeback_init);
879
f2b65121
TH
880#else /* CONFIG_CGROUP_WRITEBACK */
881
87e1d789
TH
882static struct bdi_writeback *
883locked_inode_to_wb_and_lock_list(struct inode *inode)
884 __releases(&inode->i_lock)
885 __acquires(&wb->list_lock)
886{
887 struct bdi_writeback *wb = inode_to_wb(inode);
888
889 spin_unlock(&inode->i_lock);
890 spin_lock(&wb->list_lock);
891 return wb;
892}
893
894static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 __acquires(&wb->list_lock)
896{
897 struct bdi_writeback *wb = inode_to_wb(inode);
898
899 spin_lock(&wb->list_lock);
900 return wb;
901}
902
f2b65121
TH
903static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904{
905 return nr_pages;
906}
907
db125360
TH
908static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 struct wb_writeback_work *base_work,
910 bool skip_if_busy)
911{
912 might_sleep();
913
006a0973 914 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 915 base_work->auto_free = 0;
db125360
TH
916 wb_queue_work(&bdi->wb, base_work);
917 }
918}
919
703c2708
TH
920#endif /* CONFIG_CGROUP_WRITEBACK */
921
c00ddad3
TH
922void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 bool range_cyclic, enum wb_reason reason)
b6e51316 924{
c00ddad3
TH
925 struct wb_writeback_work *work;
926
927 if (!wb_has_dirty_io(wb))
928 return;
929
930 /*
931 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 * wakeup the thread for old dirty data writeback
933 */
78ebc2f7
TH
934 work = kzalloc(sizeof(*work),
935 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
c00ddad3 936 if (!work) {
5634cc2a 937 trace_writeback_nowork(wb);
c00ddad3
TH
938 wb_wakeup(wb);
939 return;
940 }
941
942 work->sync_mode = WB_SYNC_NONE;
943 work->nr_pages = nr_pages;
944 work->range_cyclic = range_cyclic;
945 work->reason = reason;
ac7b19a3 946 work->auto_free = 1;
c00ddad3
TH
947
948 wb_queue_work(wb, work);
c5444198 949}
d3ddec76 950
c5444198 951/**
9ecf4866
TH
952 * wb_start_background_writeback - start background writeback
953 * @wb: bdi_writback to write from
c5444198
CH
954 *
955 * Description:
6585027a 956 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 957 * this function returns, it is only guaranteed that for given wb
6585027a
JK
958 * some IO is happening if we are over background dirty threshold.
959 * Caller need not hold sb s_umount semaphore.
c5444198 960 */
9ecf4866 961void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 962{
6585027a
JK
963 /*
964 * We just wake up the flusher thread. It will perform background
965 * writeback as soon as there is no other work to do.
966 */
5634cc2a 967 trace_writeback_wake_background(wb);
9ecf4866 968 wb_wakeup(wb);
1da177e4
LT
969}
970
a66979ab
DC
971/*
972 * Remove the inode from the writeback list it is on.
973 */
c7f54084 974void inode_io_list_del(struct inode *inode)
a66979ab 975{
87e1d789 976 struct bdi_writeback *wb;
f758eeab 977
87e1d789 978 wb = inode_to_wb_and_lock_list(inode);
c7f54084 979 inode_io_list_del_locked(inode, wb);
52ebea74 980 spin_unlock(&wb->list_lock);
a66979ab
DC
981}
982
6c60d2b5
DC
983/*
984 * mark an inode as under writeback on the sb
985 */
986void sb_mark_inode_writeback(struct inode *inode)
987{
988 struct super_block *sb = inode->i_sb;
989 unsigned long flags;
990
991 if (list_empty(&inode->i_wb_list)) {
992 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
993 if (list_empty(&inode->i_wb_list))
994 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
995 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
996 }
997}
998
999/*
1000 * clear an inode as under writeback on the sb
1001 */
1002void sb_clear_inode_writeback(struct inode *inode)
1003{
1004 struct super_block *sb = inode->i_sb;
1005 unsigned long flags;
1006
1007 if (!list_empty(&inode->i_wb_list)) {
1008 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1009 list_del_init(&inode->i_wb_list);
1010 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1011 }
1012}
1013
6610a0bc
AM
1014/*
1015 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1016 * furthest end of its superblock's dirty-inode list.
1017 *
1018 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1019 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1020 * the case then the inode must have been redirtied while it was being written
1021 * out and we don't reset its dirtied_when.
1022 */
f758eeab 1023static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1024{
03ba3782 1025 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1026 struct inode *tail;
6610a0bc 1027
7ccf19a8 1028 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1029 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1030 inode->dirtied_when = jiffies;
1031 }
c7f54084 1032 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1033}
1034
c986d1e2 1035/*
66f3b8e2 1036 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1037 */
f758eeab 1038static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1039{
c7f54084 1040 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1041}
1042
1c0eeaf5
JE
1043static void inode_sync_complete(struct inode *inode)
1044{
365b94ae 1045 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1046 /* If inode is clean an unused, put it into LRU now... */
1047 inode_add_lru(inode);
365b94ae 1048 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1049 smp_mb();
1050 wake_up_bit(&inode->i_state, __I_SYNC);
1051}
1052
d2caa3c5
JL
1053static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1054{
1055 bool ret = time_after(inode->dirtied_when, t);
1056#ifndef CONFIG_64BIT
1057 /*
1058 * For inodes being constantly redirtied, dirtied_when can get stuck.
1059 * It _appears_ to be in the future, but is actually in distant past.
1060 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1061 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1062 */
1063 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1064#endif
1065 return ret;
1066}
1067
0ae45f63
TT
1068#define EXPIRE_DIRTY_ATIME 0x0001
1069
2c136579 1070/*
0e2f2b23 1071 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1072 * @delaying_queue to @dispatch_queue.
2c136579 1073 */
e84d0a4f 1074static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1075 struct list_head *dispatch_queue,
0ae45f63 1076 int flags,
ad4e38dd 1077 struct wb_writeback_work *work)
2c136579 1078{
0ae45f63
TT
1079 unsigned long *older_than_this = NULL;
1080 unsigned long expire_time;
5c03449d
SL
1081 LIST_HEAD(tmp);
1082 struct list_head *pos, *node;
cf137307 1083 struct super_block *sb = NULL;
5c03449d 1084 struct inode *inode;
cf137307 1085 int do_sb_sort = 0;
e84d0a4f 1086 int moved = 0;
5c03449d 1087
0ae45f63
TT
1088 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1089 older_than_this = work->older_than_this;
a2f48706
TT
1090 else if (!work->for_sync) {
1091 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1092 older_than_this = &expire_time;
1093 }
2c136579 1094 while (!list_empty(delaying_queue)) {
7ccf19a8 1095 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1096 if (older_than_this &&
1097 inode_dirtied_after(inode, *older_than_this))
2c136579 1098 break;
c7f54084 1099 list_move(&inode->i_io_list, &tmp);
a8855990 1100 moved++;
0ae45f63
TT
1101 if (flags & EXPIRE_DIRTY_ATIME)
1102 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1103 if (sb_is_blkdev_sb(inode->i_sb))
1104 continue;
cf137307
JA
1105 if (sb && sb != inode->i_sb)
1106 do_sb_sort = 1;
1107 sb = inode->i_sb;
5c03449d
SL
1108 }
1109
cf137307
JA
1110 /* just one sb in list, splice to dispatch_queue and we're done */
1111 if (!do_sb_sort) {
1112 list_splice(&tmp, dispatch_queue);
e84d0a4f 1113 goto out;
cf137307
JA
1114 }
1115
5c03449d
SL
1116 /* Move inodes from one superblock together */
1117 while (!list_empty(&tmp)) {
7ccf19a8 1118 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1119 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1120 inode = wb_inode(pos);
5c03449d 1121 if (inode->i_sb == sb)
c7f54084 1122 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1123 }
2c136579 1124 }
e84d0a4f
WF
1125out:
1126 return moved;
2c136579
FW
1127}
1128
1129/*
1130 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1131 * Before
1132 * newly dirtied b_dirty b_io b_more_io
1133 * =============> gf edc BA
1134 * After
1135 * newly dirtied b_dirty b_io b_more_io
1136 * =============> g fBAedc
1137 * |
1138 * +--> dequeue for IO
2c136579 1139 */
ad4e38dd 1140static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1141{
e84d0a4f 1142 int moved;
0ae45f63 1143
f758eeab 1144 assert_spin_locked(&wb->list_lock);
4ea879b9 1145 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1146 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1147 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1148 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1149 if (moved)
1150 wb_io_lists_populated(wb);
ad4e38dd 1151 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1152}
1153
a9185b41 1154static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1155{
9fb0a7da
TH
1156 int ret;
1157
1158 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1159 trace_writeback_write_inode_start(inode, wbc);
1160 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1161 trace_writeback_write_inode(inode, wbc);
1162 return ret;
1163 }
03ba3782 1164 return 0;
08d8e974 1165}
08d8e974 1166
1da177e4 1167/*
169ebd90
JK
1168 * Wait for writeback on an inode to complete. Called with i_lock held.
1169 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1170 */
169ebd90
JK
1171static void __inode_wait_for_writeback(struct inode *inode)
1172 __releases(inode->i_lock)
1173 __acquires(inode->i_lock)
01c03194
CH
1174{
1175 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1176 wait_queue_head_t *wqh;
1177
1178 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1179 while (inode->i_state & I_SYNC) {
1180 spin_unlock(&inode->i_lock);
74316201
N
1181 __wait_on_bit(wqh, &wq, bit_wait,
1182 TASK_UNINTERRUPTIBLE);
250df6ed 1183 spin_lock(&inode->i_lock);
58a9d3d8 1184 }
01c03194
CH
1185}
1186
169ebd90
JK
1187/*
1188 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1189 */
1190void inode_wait_for_writeback(struct inode *inode)
1191{
1192 spin_lock(&inode->i_lock);
1193 __inode_wait_for_writeback(inode);
1194 spin_unlock(&inode->i_lock);
1195}
1196
1197/*
1198 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1199 * held and drops it. It is aimed for callers not holding any inode reference
1200 * so once i_lock is dropped, inode can go away.
1201 */
1202static void inode_sleep_on_writeback(struct inode *inode)
1203 __releases(inode->i_lock)
1204{
1205 DEFINE_WAIT(wait);
1206 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1207 int sleep;
1208
1209 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1210 sleep = inode->i_state & I_SYNC;
1211 spin_unlock(&inode->i_lock);
1212 if (sleep)
1213 schedule();
1214 finish_wait(wqh, &wait);
1215}
1216
ccb26b5a
JK
1217/*
1218 * Find proper writeback list for the inode depending on its current state and
1219 * possibly also change of its state while we were doing writeback. Here we
1220 * handle things such as livelock prevention or fairness of writeback among
1221 * inodes. This function can be called only by flusher thread - noone else
1222 * processes all inodes in writeback lists and requeueing inodes behind flusher
1223 * thread's back can have unexpected consequences.
1224 */
1225static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1226 struct writeback_control *wbc)
1227{
1228 if (inode->i_state & I_FREEING)
1229 return;
1230
1231 /*
1232 * Sync livelock prevention. Each inode is tagged and synced in one
1233 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1234 * the dirty time to prevent enqueue and sync it again.
1235 */
1236 if ((inode->i_state & I_DIRTY) &&
1237 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1238 inode->dirtied_when = jiffies;
1239
4f8ad655
JK
1240 if (wbc->pages_skipped) {
1241 /*
1242 * writeback is not making progress due to locked
1243 * buffers. Skip this inode for now.
1244 */
1245 redirty_tail(inode, wb);
1246 return;
1247 }
1248
ccb26b5a
JK
1249 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1250 /*
1251 * We didn't write back all the pages. nfs_writepages()
1252 * sometimes bales out without doing anything.
1253 */
1254 if (wbc->nr_to_write <= 0) {
1255 /* Slice used up. Queue for next turn. */
1256 requeue_io(inode, wb);
1257 } else {
1258 /*
1259 * Writeback blocked by something other than
1260 * congestion. Delay the inode for some time to
1261 * avoid spinning on the CPU (100% iowait)
1262 * retrying writeback of the dirty page/inode
1263 * that cannot be performed immediately.
1264 */
1265 redirty_tail(inode, wb);
1266 }
1267 } else if (inode->i_state & I_DIRTY) {
1268 /*
1269 * Filesystems can dirty the inode during writeback operations,
1270 * such as delayed allocation during submission or metadata
1271 * updates after data IO completion.
1272 */
1273 redirty_tail(inode, wb);
0ae45f63 1274 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1275 inode->dirtied_when = jiffies;
c7f54084 1276 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1277 } else {
1278 /* The inode is clean. Remove from writeback lists. */
c7f54084 1279 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1280 }
1281}
1282
01c03194 1283/*
4f8ad655
JK
1284 * Write out an inode and its dirty pages. Do not update the writeback list
1285 * linkage. That is left to the caller. The caller is also responsible for
1286 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1287 */
1288static int
cd8ed2a4 1289__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1290{
1da177e4 1291 struct address_space *mapping = inode->i_mapping;
251d6a47 1292 long nr_to_write = wbc->nr_to_write;
01c03194 1293 unsigned dirty;
1da177e4
LT
1294 int ret;
1295
4f8ad655 1296 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1297
9fb0a7da
TH
1298 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1299
1da177e4
LT
1300 ret = do_writepages(mapping, wbc);
1301
26821ed4
CH
1302 /*
1303 * Make sure to wait on the data before writing out the metadata.
1304 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1305 * I/O completion. We don't do it for sync(2) writeback because it has a
1306 * separate, external IO completion path and ->sync_fs for guaranteeing
1307 * inode metadata is written back correctly.
26821ed4 1308 */
7747bd4b 1309 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1310 int err = filemap_fdatawait(mapping);
1da177e4
LT
1311 if (ret == 0)
1312 ret = err;
1313 }
1314
5547e8aa
DM
1315 /*
1316 * Some filesystems may redirty the inode during the writeback
1317 * due to delalloc, clear dirty metadata flags right before
1318 * write_inode()
1319 */
250df6ed 1320 spin_lock(&inode->i_lock);
9c6ac78e 1321
5547e8aa 1322 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1323 if (inode->i_state & I_DIRTY_TIME) {
1324 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1325 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1326 unlikely(time_after(jiffies,
1327 (inode->dirtied_time_when +
1328 dirtytime_expire_interval * HZ)))) {
1329 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1330 trace_writeback_lazytime(inode);
1331 }
1332 } else
1333 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1334 inode->i_state &= ~dirty;
9c6ac78e
TH
1335
1336 /*
1337 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1338 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1339 * either they see the I_DIRTY bits cleared or we see the dirtied
1340 * inode.
1341 *
1342 * I_DIRTY_PAGES is always cleared together above even if @mapping
1343 * still has dirty pages. The flag is reinstated after smp_mb() if
1344 * necessary. This guarantees that either __mark_inode_dirty()
1345 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1346 */
1347 smp_mb();
1348
1349 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1350 inode->i_state |= I_DIRTY_PAGES;
1351
250df6ed 1352 spin_unlock(&inode->i_lock);
9c6ac78e 1353
0ae45f63
TT
1354 if (dirty & I_DIRTY_TIME)
1355 mark_inode_dirty_sync(inode);
26821ed4 1356 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1357 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1358 int err = write_inode(inode, wbc);
1da177e4
LT
1359 if (ret == 0)
1360 ret = err;
1361 }
4f8ad655
JK
1362 trace_writeback_single_inode(inode, wbc, nr_to_write);
1363 return ret;
1364}
1365
1366/*
1367 * Write out an inode's dirty pages. Either the caller has an active reference
1368 * on the inode or the inode has I_WILL_FREE set.
1369 *
1370 * This function is designed to be called for writing back one inode which
1371 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1372 * and does more profound writeback list handling in writeback_sb_inodes().
1373 */
aaf25593
TH
1374static int writeback_single_inode(struct inode *inode,
1375 struct writeback_control *wbc)
4f8ad655 1376{
aaf25593 1377 struct bdi_writeback *wb;
4f8ad655
JK
1378 int ret = 0;
1379
1380 spin_lock(&inode->i_lock);
1381 if (!atomic_read(&inode->i_count))
1382 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1383 else
1384 WARN_ON(inode->i_state & I_WILL_FREE);
1385
1386 if (inode->i_state & I_SYNC) {
1387 if (wbc->sync_mode != WB_SYNC_ALL)
1388 goto out;
1389 /*
169ebd90
JK
1390 * It's a data-integrity sync. We must wait. Since callers hold
1391 * inode reference or inode has I_WILL_FREE set, it cannot go
1392 * away under us.
4f8ad655 1393 */
169ebd90 1394 __inode_wait_for_writeback(inode);
4f8ad655
JK
1395 }
1396 WARN_ON(inode->i_state & I_SYNC);
1397 /*
f9b0e058
JK
1398 * Skip inode if it is clean and we have no outstanding writeback in
1399 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1400 * function since flusher thread may be doing for example sync in
1401 * parallel and if we move the inode, it could get skipped. So here we
1402 * make sure inode is on some writeback list and leave it there unless
1403 * we have completely cleaned the inode.
4f8ad655 1404 */
0ae45f63 1405 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1406 (wbc->sync_mode != WB_SYNC_ALL ||
1407 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1408 goto out;
1409 inode->i_state |= I_SYNC;
b16b1deb 1410 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1411
cd8ed2a4 1412 ret = __writeback_single_inode(inode, wbc);
1da177e4 1413
b16b1deb 1414 wbc_detach_inode(wbc);
aaf25593
TH
1415
1416 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1417 spin_lock(&inode->i_lock);
4f8ad655
JK
1418 /*
1419 * If inode is clean, remove it from writeback lists. Otherwise don't
1420 * touch it. See comment above for explanation.
1421 */
0ae45f63 1422 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1423 inode_io_list_del_locked(inode, wb);
4f8ad655 1424 spin_unlock(&wb->list_lock);
1c0eeaf5 1425 inode_sync_complete(inode);
4f8ad655
JK
1426out:
1427 spin_unlock(&inode->i_lock);
1da177e4
LT
1428 return ret;
1429}
1430
a88a341a 1431static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1432 struct wb_writeback_work *work)
d46db3d5
WF
1433{
1434 long pages;
1435
1436 /*
1437 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1438 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1439 * here avoids calling into writeback_inodes_wb() more than once.
1440 *
1441 * The intended call sequence for WB_SYNC_ALL writeback is:
1442 *
1443 * wb_writeback()
1444 * writeback_sb_inodes() <== called only once
1445 * write_cache_pages() <== called once for each inode
1446 * (quickly) tag currently dirty pages
1447 * (maybe slowly) sync all tagged pages
1448 */
1449 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1450 pages = LONG_MAX;
1a12d8bd 1451 else {
a88a341a 1452 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1453 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1454 pages = min(pages, work->nr_pages);
1455 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1456 MIN_WRITEBACK_PAGES);
1457 }
d46db3d5
WF
1458
1459 return pages;
1460}
1461
f11c9c5c
ES
1462/*
1463 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1464 *
d46db3d5 1465 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1466 *
1467 * NOTE! This is called with wb->list_lock held, and will
1468 * unlock and relock that for each inode it ends up doing
1469 * IO for.
f11c9c5c 1470 */
d46db3d5
WF
1471static long writeback_sb_inodes(struct super_block *sb,
1472 struct bdi_writeback *wb,
1473 struct wb_writeback_work *work)
1da177e4 1474{
d46db3d5
WF
1475 struct writeback_control wbc = {
1476 .sync_mode = work->sync_mode,
1477 .tagged_writepages = work->tagged_writepages,
1478 .for_kupdate = work->for_kupdate,
1479 .for_background = work->for_background,
7747bd4b 1480 .for_sync = work->for_sync,
d46db3d5
WF
1481 .range_cyclic = work->range_cyclic,
1482 .range_start = 0,
1483 .range_end = LLONG_MAX,
1484 };
1485 unsigned long start_time = jiffies;
1486 long write_chunk;
1487 long wrote = 0; /* count both pages and inodes */
1488
03ba3782 1489 while (!list_empty(&wb->b_io)) {
7ccf19a8 1490 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1491 struct bdi_writeback *tmp_wb;
edadfb10
CH
1492
1493 if (inode->i_sb != sb) {
d46db3d5 1494 if (work->sb) {
edadfb10
CH
1495 /*
1496 * We only want to write back data for this
1497 * superblock, move all inodes not belonging
1498 * to it back onto the dirty list.
1499 */
f758eeab 1500 redirty_tail(inode, wb);
edadfb10
CH
1501 continue;
1502 }
1503
1504 /*
1505 * The inode belongs to a different superblock.
1506 * Bounce back to the caller to unpin this and
1507 * pin the next superblock.
1508 */
d46db3d5 1509 break;
edadfb10
CH
1510 }
1511
9843b76a 1512 /*
331cbdee
WL
1513 * Don't bother with new inodes or inodes being freed, first
1514 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1515 * kind writeout is handled by the freer.
1516 */
250df6ed 1517 spin_lock(&inode->i_lock);
9843b76a 1518 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1519 spin_unlock(&inode->i_lock);
fcc5c222 1520 redirty_tail(inode, wb);
7ef0d737
NP
1521 continue;
1522 }
cc1676d9
JK
1523 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1524 /*
1525 * If this inode is locked for writeback and we are not
1526 * doing writeback-for-data-integrity, move it to
1527 * b_more_io so that writeback can proceed with the
1528 * other inodes on s_io.
1529 *
1530 * We'll have another go at writing back this inode
1531 * when we completed a full scan of b_io.
1532 */
1533 spin_unlock(&inode->i_lock);
1534 requeue_io(inode, wb);
1535 trace_writeback_sb_inodes_requeue(inode);
1536 continue;
1537 }
f0d07b7f
JK
1538 spin_unlock(&wb->list_lock);
1539
4f8ad655
JK
1540 /*
1541 * We already requeued the inode if it had I_SYNC set and we
1542 * are doing WB_SYNC_NONE writeback. So this catches only the
1543 * WB_SYNC_ALL case.
1544 */
169ebd90
JK
1545 if (inode->i_state & I_SYNC) {
1546 /* Wait for I_SYNC. This function drops i_lock... */
1547 inode_sleep_on_writeback(inode);
1548 /* Inode may be gone, start again */
ead188f9 1549 spin_lock(&wb->list_lock);
169ebd90
JK
1550 continue;
1551 }
4f8ad655 1552 inode->i_state |= I_SYNC;
b16b1deb 1553 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1554
a88a341a 1555 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1556 wbc.nr_to_write = write_chunk;
1557 wbc.pages_skipped = 0;
250df6ed 1558
169ebd90
JK
1559 /*
1560 * We use I_SYNC to pin the inode in memory. While it is set
1561 * evict_inode() will wait so the inode cannot be freed.
1562 */
cd8ed2a4 1563 __writeback_single_inode(inode, &wbc);
250df6ed 1564
b16b1deb 1565 wbc_detach_inode(&wbc);
d46db3d5
WF
1566 work->nr_pages -= write_chunk - wbc.nr_to_write;
1567 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1568
1569 if (need_resched()) {
1570 /*
1571 * We're trying to balance between building up a nice
1572 * long list of IOs to improve our merge rate, and
1573 * getting those IOs out quickly for anyone throttling
1574 * in balance_dirty_pages(). cond_resched() doesn't
1575 * unplug, so get our IOs out the door before we
1576 * give up the CPU.
1577 */
1578 blk_flush_plug(current);
1579 cond_resched();
1580 }
1581
aaf25593
TH
1582 /*
1583 * Requeue @inode if still dirty. Be careful as @inode may
1584 * have been switched to another wb in the meantime.
1585 */
1586 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1587 spin_lock(&inode->i_lock);
0ae45f63 1588 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1589 wrote++;
aaf25593 1590 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1591 inode_sync_complete(inode);
0f1b1fd8 1592 spin_unlock(&inode->i_lock);
590dca3a 1593
aaf25593
TH
1594 if (unlikely(tmp_wb != wb)) {
1595 spin_unlock(&tmp_wb->list_lock);
1596 spin_lock(&wb->list_lock);
1597 }
1598
d46db3d5
WF
1599 /*
1600 * bail out to wb_writeback() often enough to check
1601 * background threshold and other termination conditions.
1602 */
1603 if (wrote) {
1604 if (time_is_before_jiffies(start_time + HZ / 10UL))
1605 break;
1606 if (work->nr_pages <= 0)
1607 break;
8bc3be27 1608 }
1da177e4 1609 }
d46db3d5 1610 return wrote;
f11c9c5c
ES
1611}
1612
d46db3d5
WF
1613static long __writeback_inodes_wb(struct bdi_writeback *wb,
1614 struct wb_writeback_work *work)
f11c9c5c 1615{
d46db3d5
WF
1616 unsigned long start_time = jiffies;
1617 long wrote = 0;
38f21977 1618
f11c9c5c 1619 while (!list_empty(&wb->b_io)) {
7ccf19a8 1620 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1621 struct super_block *sb = inode->i_sb;
9ecc2738 1622
eb6ef3df 1623 if (!trylock_super(sb)) {
0e995816 1624 /*
eb6ef3df 1625 * trylock_super() may fail consistently due to
0e995816
WF
1626 * s_umount being grabbed by someone else. Don't use
1627 * requeue_io() to avoid busy retrying the inode/sb.
1628 */
1629 redirty_tail(inode, wb);
edadfb10 1630 continue;
f11c9c5c 1631 }
d46db3d5 1632 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1633 up_read(&sb->s_umount);
f11c9c5c 1634
d46db3d5
WF
1635 /* refer to the same tests at the end of writeback_sb_inodes */
1636 if (wrote) {
1637 if (time_is_before_jiffies(start_time + HZ / 10UL))
1638 break;
1639 if (work->nr_pages <= 0)
1640 break;
1641 }
f11c9c5c 1642 }
66f3b8e2 1643 /* Leave any unwritten inodes on b_io */
d46db3d5 1644 return wrote;
66f3b8e2
JA
1645}
1646
7d9f073b 1647static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1648 enum wb_reason reason)
edadfb10 1649{
d46db3d5
WF
1650 struct wb_writeback_work work = {
1651 .nr_pages = nr_pages,
1652 .sync_mode = WB_SYNC_NONE,
1653 .range_cyclic = 1,
0e175a18 1654 .reason = reason,
d46db3d5 1655 };
505a666e 1656 struct blk_plug plug;
edadfb10 1657
505a666e 1658 blk_start_plug(&plug);
f758eeab 1659 spin_lock(&wb->list_lock);
424b351f 1660 if (list_empty(&wb->b_io))
ad4e38dd 1661 queue_io(wb, &work);
d46db3d5 1662 __writeback_inodes_wb(wb, &work);
f758eeab 1663 spin_unlock(&wb->list_lock);
505a666e 1664 blk_finish_plug(&plug);
edadfb10 1665
d46db3d5
WF
1666 return nr_pages - work.nr_pages;
1667}
03ba3782 1668
03ba3782
JA
1669/*
1670 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1671 *
03ba3782
JA
1672 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1673 * dirtying-time in the inode's address_space. So this periodic writeback code
1674 * just walks the superblock inode list, writing back any inodes which are
1675 * older than a specific point in time.
66f3b8e2 1676 *
03ba3782
JA
1677 * Try to run once per dirty_writeback_interval. But if a writeback event
1678 * takes longer than a dirty_writeback_interval interval, then leave a
1679 * one-second gap.
66f3b8e2 1680 *
03ba3782
JA
1681 * older_than_this takes precedence over nr_to_write. So we'll only write back
1682 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1683 */
c4a77a6c 1684static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1685 struct wb_writeback_work *work)
66f3b8e2 1686{
e98be2d5 1687 unsigned long wb_start = jiffies;
d46db3d5 1688 long nr_pages = work->nr_pages;
0dc83bd3 1689 unsigned long oldest_jif;
a5989bdc 1690 struct inode *inode;
d46db3d5 1691 long progress;
505a666e 1692 struct blk_plug plug;
66f3b8e2 1693
0dc83bd3
JK
1694 oldest_jif = jiffies;
1695 work->older_than_this = &oldest_jif;
38f21977 1696
505a666e 1697 blk_start_plug(&plug);
e8dfc305 1698 spin_lock(&wb->list_lock);
03ba3782
JA
1699 for (;;) {
1700 /*
d3ddec76 1701 * Stop writeback when nr_pages has been consumed
03ba3782 1702 */
83ba7b07 1703 if (work->nr_pages <= 0)
03ba3782 1704 break;
66f3b8e2 1705
aa373cf5
JK
1706 /*
1707 * Background writeout and kupdate-style writeback may
1708 * run forever. Stop them if there is other work to do
1709 * so that e.g. sync can proceed. They'll be restarted
1710 * after the other works are all done.
1711 */
1712 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1713 !list_empty(&wb->work_list))
aa373cf5
JK
1714 break;
1715
38f21977 1716 /*
d3ddec76
WF
1717 * For background writeout, stop when we are below the
1718 * background dirty threshold
38f21977 1719 */
aa661bbe 1720 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1721 break;
38f21977 1722
1bc36b64
JK
1723 /*
1724 * Kupdate and background works are special and we want to
1725 * include all inodes that need writing. Livelock avoidance is
1726 * handled by these works yielding to any other work so we are
1727 * safe.
1728 */
ba9aa839 1729 if (work->for_kupdate) {
0dc83bd3 1730 oldest_jif = jiffies -
ba9aa839 1731 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1732 } else if (work->for_background)
0dc83bd3 1733 oldest_jif = jiffies;
028c2dd1 1734
5634cc2a 1735 trace_writeback_start(wb, work);
e8dfc305 1736 if (list_empty(&wb->b_io))
ad4e38dd 1737 queue_io(wb, work);
83ba7b07 1738 if (work->sb)
d46db3d5 1739 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1740 else
d46db3d5 1741 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1742 trace_writeback_written(wb, work);
028c2dd1 1743
e98be2d5 1744 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1745
1746 /*
e6fb6da2
WF
1747 * Did we write something? Try for more
1748 *
1749 * Dirty inodes are moved to b_io for writeback in batches.
1750 * The completion of the current batch does not necessarily
1751 * mean the overall work is done. So we keep looping as long
1752 * as made some progress on cleaning pages or inodes.
03ba3782 1753 */
d46db3d5 1754 if (progress)
71fd05a8
JA
1755 continue;
1756 /*
e6fb6da2 1757 * No more inodes for IO, bail
71fd05a8 1758 */
b7a2441f 1759 if (list_empty(&wb->b_more_io))
03ba3782 1760 break;
71fd05a8
JA
1761 /*
1762 * Nothing written. Wait for some inode to
1763 * become available for writeback. Otherwise
1764 * we'll just busyloop.
1765 */
71fd05a8 1766 if (!list_empty(&wb->b_more_io)) {
5634cc2a 1767 trace_writeback_wait(wb, work);
7ccf19a8 1768 inode = wb_inode(wb->b_more_io.prev);
250df6ed 1769 spin_lock(&inode->i_lock);
f0d07b7f 1770 spin_unlock(&wb->list_lock);
169ebd90
JK
1771 /* This function drops i_lock... */
1772 inode_sleep_on_writeback(inode);
f0d07b7f 1773 spin_lock(&wb->list_lock);
03ba3782
JA
1774 }
1775 }
e8dfc305 1776 spin_unlock(&wb->list_lock);
505a666e 1777 blk_finish_plug(&plug);
03ba3782 1778
d46db3d5 1779 return nr_pages - work->nr_pages;
03ba3782
JA
1780}
1781
1782/*
83ba7b07 1783 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1784 */
f0054bb1 1785static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1786{
83ba7b07 1787 struct wb_writeback_work *work = NULL;
03ba3782 1788
f0054bb1
TH
1789 spin_lock_bh(&wb->work_lock);
1790 if (!list_empty(&wb->work_list)) {
1791 work = list_entry(wb->work_list.next,
83ba7b07
CH
1792 struct wb_writeback_work, list);
1793 list_del_init(&work->list);
03ba3782 1794 }
f0054bb1 1795 spin_unlock_bh(&wb->work_lock);
83ba7b07 1796 return work;
03ba3782
JA
1797}
1798
cdf01dd5
LT
1799/*
1800 * Add in the number of potentially dirty inodes, because each inode
1801 * write can dirty pagecache in the underlying blockdev.
1802 */
1803static unsigned long get_nr_dirty_pages(void)
1804{
1805 return global_page_state(NR_FILE_DIRTY) +
1806 global_page_state(NR_UNSTABLE_NFS) +
1807 get_nr_dirty_inodes();
1808}
1809
6585027a
JK
1810static long wb_check_background_flush(struct bdi_writeback *wb)
1811{
aa661bbe 1812 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1813
1814 struct wb_writeback_work work = {
1815 .nr_pages = LONG_MAX,
1816 .sync_mode = WB_SYNC_NONE,
1817 .for_background = 1,
1818 .range_cyclic = 1,
0e175a18 1819 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1820 };
1821
1822 return wb_writeback(wb, &work);
1823 }
1824
1825 return 0;
1826}
1827
03ba3782
JA
1828static long wb_check_old_data_flush(struct bdi_writeback *wb)
1829{
1830 unsigned long expired;
1831 long nr_pages;
1832
69b62d01
JA
1833 /*
1834 * When set to zero, disable periodic writeback
1835 */
1836 if (!dirty_writeback_interval)
1837 return 0;
1838
03ba3782
JA
1839 expired = wb->last_old_flush +
1840 msecs_to_jiffies(dirty_writeback_interval * 10);
1841 if (time_before(jiffies, expired))
1842 return 0;
1843
1844 wb->last_old_flush = jiffies;
cdf01dd5 1845 nr_pages = get_nr_dirty_pages();
03ba3782 1846
c4a77a6c 1847 if (nr_pages) {
83ba7b07 1848 struct wb_writeback_work work = {
c4a77a6c
JA
1849 .nr_pages = nr_pages,
1850 .sync_mode = WB_SYNC_NONE,
1851 .for_kupdate = 1,
1852 .range_cyclic = 1,
0e175a18 1853 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1854 };
1855
83ba7b07 1856 return wb_writeback(wb, &work);
c4a77a6c 1857 }
03ba3782
JA
1858
1859 return 0;
1860}
1861
1862/*
1863 * Retrieve work items and do the writeback they describe
1864 */
25d130ba 1865static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1866{
83ba7b07 1867 struct wb_writeback_work *work;
c4a77a6c 1868 long wrote = 0;
03ba3782 1869
4452226e 1870 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1871 while ((work = get_next_work_item(wb)) != NULL) {
cc395d7f 1872 struct wb_completion *done = work->done;
03ba3782 1873
5634cc2a 1874 trace_writeback_exec(wb, work);
455b2864 1875
83ba7b07 1876 wrote += wb_writeback(wb, work);
03ba3782 1877
8a1270cd 1878 if (work->auto_free)
83ba7b07 1879 kfree(work);
cc395d7f
TH
1880 if (done && atomic_dec_and_test(&done->cnt))
1881 wake_up_all(&wb->bdi->wb_waitq);
03ba3782
JA
1882 }
1883
1884 /*
1885 * Check for periodic writeback, kupdated() style
1886 */
1887 wrote += wb_check_old_data_flush(wb);
6585027a 1888 wrote += wb_check_background_flush(wb);
4452226e 1889 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1890
1891 return wrote;
1892}
1893
1894/*
1895 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1896 * reschedules periodically and does kupdated style flushing.
03ba3782 1897 */
f0054bb1 1898void wb_workfn(struct work_struct *work)
03ba3782 1899{
839a8e86
TH
1900 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1901 struct bdi_writeback, dwork);
03ba3782
JA
1902 long pages_written;
1903
f0054bb1 1904 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1905 current->flags |= PF_SWAPWRITE;
455b2864 1906
839a8e86 1907 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1908 !test_bit(WB_registered, &wb->state))) {
6467716a 1909 /*
f0054bb1 1910 * The normal path. Keep writing back @wb until its
839a8e86 1911 * work_list is empty. Note that this path is also taken
f0054bb1 1912 * if @wb is shutting down even when we're running off the
839a8e86 1913 * rescuer as work_list needs to be drained.
6467716a 1914 */
839a8e86 1915 do {
25d130ba 1916 pages_written = wb_do_writeback(wb);
839a8e86 1917 trace_writeback_pages_written(pages_written);
f0054bb1 1918 } while (!list_empty(&wb->work_list));
839a8e86
TH
1919 } else {
1920 /*
1921 * bdi_wq can't get enough workers and we're running off
1922 * the emergency worker. Don't hog it. Hopefully, 1024 is
1923 * enough for efficient IO.
1924 */
f0054bb1 1925 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1926 WB_REASON_FORKER_THREAD);
455b2864 1927 trace_writeback_pages_written(pages_written);
03ba3782
JA
1928 }
1929
f0054bb1 1930 if (!list_empty(&wb->work_list))
6ca738d6
DB
1931 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1932 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1933 wb_wakeup_delayed(wb);
455b2864 1934
839a8e86 1935 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1936}
1937
1938/*
b8c2f347
CH
1939 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1940 * the whole world.
03ba3782 1941 */
0e175a18 1942void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
03ba3782 1943{
b8c2f347 1944 struct backing_dev_info *bdi;
03ba3782 1945
47df3dde
JK
1946 if (!nr_pages)
1947 nr_pages = get_nr_dirty_pages();
03ba3782 1948
b8c2f347 1949 rcu_read_lock();
f2b65121
TH
1950 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1951 struct bdi_writeback *wb;
f2b65121
TH
1952
1953 if (!bdi_has_dirty_io(bdi))
1954 continue;
1955
b817525a 1956 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
f2b65121
TH
1957 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1958 false, reason);
1959 }
cfc4ba53 1960 rcu_read_unlock();
1da177e4
LT
1961}
1962
a2f48706
TT
1963/*
1964 * Wake up bdi's periodically to make sure dirtytime inodes gets
1965 * written back periodically. We deliberately do *not* check the
1966 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1967 * kernel to be constantly waking up once there are any dirtytime
1968 * inodes on the system. So instead we define a separate delayed work
1969 * function which gets called much more rarely. (By default, only
1970 * once every 12 hours.)
1971 *
1972 * If there is any other write activity going on in the file system,
1973 * this function won't be necessary. But if the only thing that has
1974 * happened on the file system is a dirtytime inode caused by an atime
1975 * update, we need this infrastructure below to make sure that inode
1976 * eventually gets pushed out to disk.
1977 */
1978static void wakeup_dirtytime_writeback(struct work_struct *w);
1979static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1980
1981static void wakeup_dirtytime_writeback(struct work_struct *w)
1982{
1983 struct backing_dev_info *bdi;
1984
1985 rcu_read_lock();
1986 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 1987 struct bdi_writeback *wb;
001fe6f6 1988
b817525a 1989 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
1990 if (!list_empty(&wb->b_dirty_time))
1991 wb_wakeup(wb);
a2f48706
TT
1992 }
1993 rcu_read_unlock();
1994 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1995}
1996
1997static int __init start_dirtytime_writeback(void)
1998{
1999 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2000 return 0;
2001}
2002__initcall(start_dirtytime_writeback);
2003
1efff914
TT
2004int dirtytime_interval_handler(struct ctl_table *table, int write,
2005 void __user *buffer, size_t *lenp, loff_t *ppos)
2006{
2007 int ret;
2008
2009 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2010 if (ret == 0 && write)
2011 mod_delayed_work(system_wq, &dirtytime_work, 0);
2012 return ret;
2013}
2014
03ba3782
JA
2015static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2016{
2017 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2018 struct dentry *dentry;
2019 const char *name = "?";
2020
2021 dentry = d_find_alias(inode);
2022 if (dentry) {
2023 spin_lock(&dentry->d_lock);
2024 name = (const char *) dentry->d_name.name;
2025 }
2026 printk(KERN_DEBUG
2027 "%s(%d): dirtied inode %lu (%s) on %s\n",
2028 current->comm, task_pid_nr(current), inode->i_ino,
2029 name, inode->i_sb->s_id);
2030 if (dentry) {
2031 spin_unlock(&dentry->d_lock);
2032 dput(dentry);
2033 }
2034 }
2035}
2036
2037/**
2038 * __mark_inode_dirty - internal function
2039 * @inode: inode to mark
2040 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2041 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2042 * mark_inode_dirty_sync.
1da177e4 2043 *
03ba3782
JA
2044 * Put the inode on the super block's dirty list.
2045 *
2046 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2047 * dirty list only if it is hashed or if it refers to a blockdev.
2048 * If it was not hashed, it will never be added to the dirty list
2049 * even if it is later hashed, as it will have been marked dirty already.
2050 *
2051 * In short, make sure you hash any inodes _before_ you start marking
2052 * them dirty.
1da177e4 2053 *
03ba3782
JA
2054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2056 * the kernel-internal blockdev inode represents the dirtying time of the
2057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2058 * page->mapping->host, so the page-dirtying time is recorded in the internal
2059 * blockdev inode.
1da177e4 2060 */
03ba3782 2061void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2062{
dbce03b9 2063#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2064 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2065 int dirtytime;
2066
2067 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2068
03ba3782
JA
2069 /*
2070 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2071 * dirty the inode itself
2072 */
0ae45f63 2073 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2074 trace_writeback_dirty_inode_start(inode, flags);
2075
03ba3782 2076 if (sb->s_op->dirty_inode)
aa385729 2077 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2078
2079 trace_writeback_dirty_inode(inode, flags);
03ba3782 2080 }
0ae45f63
TT
2081 if (flags & I_DIRTY_INODE)
2082 flags &= ~I_DIRTY_TIME;
2083 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2084
2085 /*
9c6ac78e
TH
2086 * Paired with smp_mb() in __writeback_single_inode() for the
2087 * following lockless i_state test. See there for details.
03ba3782
JA
2088 */
2089 smp_mb();
2090
0ae45f63
TT
2091 if (((inode->i_state & flags) == flags) ||
2092 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2093 return;
2094
2095 if (unlikely(block_dump))
2096 block_dump___mark_inode_dirty(inode);
2097
250df6ed 2098 spin_lock(&inode->i_lock);
0ae45f63
TT
2099 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2100 goto out_unlock_inode;
03ba3782
JA
2101 if ((inode->i_state & flags) != flags) {
2102 const int was_dirty = inode->i_state & I_DIRTY;
2103
52ebea74
TH
2104 inode_attach_wb(inode, NULL);
2105
0ae45f63
TT
2106 if (flags & I_DIRTY_INODE)
2107 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2108 inode->i_state |= flags;
2109
2110 /*
2111 * If the inode is being synced, just update its dirty state.
2112 * The unlocker will place the inode on the appropriate
2113 * superblock list, based upon its state.
2114 */
2115 if (inode->i_state & I_SYNC)
250df6ed 2116 goto out_unlock_inode;
03ba3782
JA
2117
2118 /*
2119 * Only add valid (hashed) inodes to the superblock's
2120 * dirty list. Add blockdev inodes as well.
2121 */
2122 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2123 if (inode_unhashed(inode))
250df6ed 2124 goto out_unlock_inode;
03ba3782 2125 }
a4ffdde6 2126 if (inode->i_state & I_FREEING)
250df6ed 2127 goto out_unlock_inode;
03ba3782
JA
2128
2129 /*
2130 * If the inode was already on b_dirty/b_io/b_more_io, don't
2131 * reposition it (that would break b_dirty time-ordering).
2132 */
2133 if (!was_dirty) {
87e1d789 2134 struct bdi_writeback *wb;
d6c10f1f 2135 struct list_head *dirty_list;
a66979ab 2136 bool wakeup_bdi = false;
253c34e9 2137
87e1d789 2138 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2139
0747259d
TH
2140 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2141 !test_bit(WB_registered, &wb->state),
2142 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2143
2144 inode->dirtied_when = jiffies;
a2f48706
TT
2145 if (dirtytime)
2146 inode->dirtied_time_when = jiffies;
d6c10f1f 2147
a2f48706 2148 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2149 dirty_list = &wb->b_dirty;
a2f48706 2150 else
0747259d 2151 dirty_list = &wb->b_dirty_time;
d6c10f1f 2152
c7f54084 2153 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2154 dirty_list);
2155
0747259d 2156 spin_unlock(&wb->list_lock);
0ae45f63 2157 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2158
d6c10f1f
TH
2159 /*
2160 * If this is the first dirty inode for this bdi,
2161 * we have to wake-up the corresponding bdi thread
2162 * to make sure background write-back happens
2163 * later.
2164 */
0747259d
TH
2165 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2166 wb_wakeup_delayed(wb);
a66979ab 2167 return;
1da177e4 2168 }
1da177e4 2169 }
250df6ed
DC
2170out_unlock_inode:
2171 spin_unlock(&inode->i_lock);
253c34e9 2172
dbce03b9 2173#undef I_DIRTY_INODE
03ba3782
JA
2174}
2175EXPORT_SYMBOL(__mark_inode_dirty);
2176
e97fedb9
DC
2177/*
2178 * The @s_sync_lock is used to serialise concurrent sync operations
2179 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2180 * Concurrent callers will block on the s_sync_lock rather than doing contending
2181 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2182 * has been issued up to the time this function is enter is guaranteed to be
2183 * completed by the time we have gained the lock and waited for all IO that is
2184 * in progress regardless of the order callers are granted the lock.
2185 */
b6e51316 2186static void wait_sb_inodes(struct super_block *sb)
03ba3782 2187{
6c60d2b5 2188 LIST_HEAD(sync_list);
03ba3782
JA
2189
2190 /*
2191 * We need to be protected against the filesystem going from
2192 * r/o to r/w or vice versa.
2193 */
b6e51316 2194 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2195
e97fedb9 2196 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2197
2198 /*
6c60d2b5
DC
2199 * Splice the writeback list onto a temporary list to avoid waiting on
2200 * inodes that have started writeback after this point.
2201 *
2202 * Use rcu_read_lock() to keep the inodes around until we have a
2203 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2204 * the local list because inodes can be dropped from either by writeback
2205 * completion.
2206 */
2207 rcu_read_lock();
2208 spin_lock_irq(&sb->s_inode_wblist_lock);
2209 list_splice_init(&sb->s_inodes_wb, &sync_list);
2210
2211 /*
2212 * Data integrity sync. Must wait for all pages under writeback, because
2213 * there may have been pages dirtied before our sync call, but which had
2214 * writeout started before we write it out. In which case, the inode
2215 * may not be on the dirty list, but we still have to wait for that
2216 * writeout.
03ba3782 2217 */
6c60d2b5
DC
2218 while (!list_empty(&sync_list)) {
2219 struct inode *inode = list_first_entry(&sync_list, struct inode,
2220 i_wb_list);
250df6ed 2221 struct address_space *mapping = inode->i_mapping;
03ba3782 2222
6c60d2b5
DC
2223 /*
2224 * Move each inode back to the wb list before we drop the lock
2225 * to preserve consistency between i_wb_list and the mapping
2226 * writeback tag. Writeback completion is responsible to remove
2227 * the inode from either list once the writeback tag is cleared.
2228 */
2229 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2230
2231 /*
2232 * The mapping can appear untagged while still on-list since we
2233 * do not have the mapping lock. Skip it here, wb completion
2234 * will remove it.
2235 */
2236 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2237 continue;
2238
2239 spin_unlock_irq(&sb->s_inode_wblist_lock);
2240
250df6ed 2241 spin_lock(&inode->i_lock);
6c60d2b5 2242 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2243 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2244
2245 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2246 continue;
250df6ed 2247 }
03ba3782 2248 __iget(inode);
250df6ed 2249 spin_unlock(&inode->i_lock);
6c60d2b5 2250 rcu_read_unlock();
03ba3782 2251
aa750fd7
JN
2252 /*
2253 * We keep the error status of individual mapping so that
2254 * applications can catch the writeback error using fsync(2).
2255 * See filemap_fdatawait_keep_errors() for details.
2256 */
2257 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2258
2259 cond_resched();
2260
6c60d2b5
DC
2261 iput(inode);
2262
2263 rcu_read_lock();
2264 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2265 }
6c60d2b5
DC
2266 spin_unlock_irq(&sb->s_inode_wblist_lock);
2267 rcu_read_unlock();
e97fedb9 2268 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2269}
2270
f30a7d0c
TH
2271static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2272 enum wb_reason reason, bool skip_if_busy)
1da177e4 2273{
cc395d7f 2274 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2275 struct wb_writeback_work work = {
6e6938b6
WF
2276 .sb = sb,
2277 .sync_mode = WB_SYNC_NONE,
2278 .tagged_writepages = 1,
2279 .done = &done,
2280 .nr_pages = nr,
0e175a18 2281 .reason = reason,
3c4d7165 2282 };
e7972912 2283 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2284
e7972912 2285 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2286 return;
cf37e972 2287 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2288
db125360 2289 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2290 wb_wait_for_completion(bdi, &done);
e913fc82 2291}
f30a7d0c
TH
2292
2293/**
2294 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2295 * @sb: the superblock
2296 * @nr: the number of pages to write
2297 * @reason: reason why some writeback work initiated
2298 *
2299 * Start writeback on some inodes on this super_block. No guarantees are made
2300 * on how many (if any) will be written, and this function does not wait
2301 * for IO completion of submitted IO.
2302 */
2303void writeback_inodes_sb_nr(struct super_block *sb,
2304 unsigned long nr,
2305 enum wb_reason reason)
2306{
2307 __writeback_inodes_sb_nr(sb, nr, reason, false);
2308}
3259f8be
CM
2309EXPORT_SYMBOL(writeback_inodes_sb_nr);
2310
2311/**
2312 * writeback_inodes_sb - writeback dirty inodes from given super_block
2313 * @sb: the superblock
786228ab 2314 * @reason: reason why some writeback work was initiated
3259f8be
CM
2315 *
2316 * Start writeback on some inodes on this super_block. No guarantees are made
2317 * on how many (if any) will be written, and this function does not wait
2318 * for IO completion of submitted IO.
2319 */
0e175a18 2320void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2321{
0e175a18 2322 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2323}
0e3c9a22 2324EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2325
17bd55d0 2326/**
10ee27a0 2327 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2328 * @sb: the superblock
10ee27a0
MX
2329 * @nr: the number of pages to write
2330 * @reason: the reason of writeback
17bd55d0 2331 *
10ee27a0 2332 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2333 * Returns 1 if writeback was started, 0 if not.
2334 */
f30a7d0c
TH
2335bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2336 enum wb_reason reason)
17bd55d0 2337{
10ee27a0 2338 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2339 return false;
10ee27a0 2340
f30a7d0c 2341 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2342 up_read(&sb->s_umount);
f30a7d0c 2343 return true;
17bd55d0 2344}
10ee27a0 2345EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2346
3259f8be 2347/**
10ee27a0 2348 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2349 * @sb: the superblock
786228ab 2350 * @reason: reason why some writeback work was initiated
3259f8be 2351 *
10ee27a0 2352 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2353 * Returns 1 if writeback was started, 0 if not.
2354 */
f30a7d0c 2355bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2356{
10ee27a0 2357 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2358}
10ee27a0 2359EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2360
d8a8559c
JA
2361/**
2362 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2363 * @sb: the superblock
d8a8559c
JA
2364 *
2365 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2366 * super_block.
d8a8559c 2367 */
0dc83bd3 2368void sync_inodes_sb(struct super_block *sb)
d8a8559c 2369{
cc395d7f 2370 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2371 struct wb_writeback_work work = {
3c4d7165
CH
2372 .sb = sb,
2373 .sync_mode = WB_SYNC_ALL,
2374 .nr_pages = LONG_MAX,
2375 .range_cyclic = 0,
83ba7b07 2376 .done = &done,
0e175a18 2377 .reason = WB_REASON_SYNC,
7747bd4b 2378 .for_sync = 1,
3c4d7165 2379 };
e7972912 2380 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2381
006a0973
TH
2382 /*
2383 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2384 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2385 * bdi_has_dirty() need to be written out too.
2386 */
2387 if (bdi == &noop_backing_dev_info)
6eedc701 2388 return;
cf37e972
CH
2389 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2390
db125360 2391 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2392 wb_wait_for_completion(bdi, &done);
83ba7b07 2393
b6e51316 2394 wait_sb_inodes(sb);
1da177e4 2395}
d8a8559c 2396EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2397
1da177e4 2398/**
7f04c26d
AA
2399 * write_inode_now - write an inode to disk
2400 * @inode: inode to write to disk
2401 * @sync: whether the write should be synchronous or not
2402 *
2403 * This function commits an inode to disk immediately if it is dirty. This is
2404 * primarily needed by knfsd.
1da177e4 2405 *
7f04c26d 2406 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2407 */
1da177e4
LT
2408int write_inode_now(struct inode *inode, int sync)
2409{
1da177e4
LT
2410 struct writeback_control wbc = {
2411 .nr_to_write = LONG_MAX,
18914b18 2412 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2413 .range_start = 0,
2414 .range_end = LLONG_MAX,
1da177e4
LT
2415 };
2416
2417 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2418 wbc.nr_to_write = 0;
1da177e4
LT
2419
2420 might_sleep();
aaf25593 2421 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2422}
2423EXPORT_SYMBOL(write_inode_now);
2424
2425/**
2426 * sync_inode - write an inode and its pages to disk.
2427 * @inode: the inode to sync
2428 * @wbc: controls the writeback mode
2429 *
2430 * sync_inode() will write an inode and its pages to disk. It will also
2431 * correctly update the inode on its superblock's dirty inode lists and will
2432 * update inode->i_state.
2433 *
2434 * The caller must have a ref on the inode.
2435 */
2436int sync_inode(struct inode *inode, struct writeback_control *wbc)
2437{
aaf25593 2438 return writeback_single_inode(inode, wbc);
1da177e4
LT
2439}
2440EXPORT_SYMBOL(sync_inode);
c3765016
CH
2441
2442/**
c691b9d9 2443 * sync_inode_metadata - write an inode to disk
c3765016
CH
2444 * @inode: the inode to sync
2445 * @wait: wait for I/O to complete.
2446 *
c691b9d9 2447 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2448 *
2449 * Note: only writes the actual inode, no associated data or other metadata.
2450 */
2451int sync_inode_metadata(struct inode *inode, int wait)
2452{
2453 struct writeback_control wbc = {
2454 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2455 .nr_to_write = 0, /* metadata-only */
2456 };
2457
2458 return sync_inode(inode, &wbc);
2459}
2460EXPORT_SYMBOL(sync_inode_metadata);