]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/fs-writeback.c
writeback: make the super_block pinning more efficient
[mirror_ubuntu-jammy-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
f5ff8422 17#include <linux/module.h>
1da177e4
LT
18#include <linux/spinlock.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/mm.h>
03ba3782
JA
22#include <linux/kthread.h>
23#include <linux/freezer.h>
1da177e4
LT
24#include <linux/writeback.h>
25#include <linux/blkdev.h>
26#include <linux/backing-dev.h>
27#include <linux/buffer_head.h>
07f3f05c 28#include "internal.h"
1da177e4 29
66f3b8e2 30#define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
f11b00f3 31
d0bceac7
JA
32/*
33 * We don't actually have pdflush, but this one is exported though /proc...
34 */
35int nr_pdflush_threads;
36
c4a77a6c
JA
37/*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40struct wb_writeback_args {
41 long nr_pages;
42 struct super_block *sb;
43 enum writeback_sync_modes sync_mode;
d3ddec76
WF
44 int for_kupdate:1;
45 int range_cyclic:1;
46 int for_background:1;
c4a77a6c
JA
47};
48
03ba3782
JA
49/*
50 * Work items for the bdi_writeback threads
f11b00f3 51 */
03ba3782 52struct bdi_work {
8010c3b6
JA
53 struct list_head list; /* pending work list */
54 struct rcu_head rcu_head; /* for RCU free/clear of work */
03ba3782 55
8010c3b6
JA
56 unsigned long seen; /* threads that have seen this work */
57 atomic_t pending; /* number of threads still to do work */
03ba3782 58
8010c3b6 59 struct wb_writeback_args args; /* writeback arguments */
03ba3782 60
8010c3b6 61 unsigned long state; /* flag bits, see WS_* */
03ba3782
JA
62};
63
64enum {
65 WS_USED_B = 0,
66 WS_ONSTACK_B,
67};
68
69#define WS_USED (1 << WS_USED_B)
70#define WS_ONSTACK (1 << WS_ONSTACK_B)
71
72static inline bool bdi_work_on_stack(struct bdi_work *work)
73{
74 return test_bit(WS_ONSTACK_B, &work->state);
75}
76
77static inline void bdi_work_init(struct bdi_work *work,
b6e51316 78 struct wb_writeback_args *args)
03ba3782
JA
79{
80 INIT_RCU_HEAD(&work->rcu_head);
b6e51316 81 work->args = *args;
03ba3782
JA
82 work->state = WS_USED;
83}
84
f11b00f3
AB
85/**
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
88 *
03ba3782
JA
89 * Determine whether there is writeback waiting to be handled against a
90 * backing device.
f11b00f3
AB
91 */
92int writeback_in_progress(struct backing_dev_info *bdi)
93{
03ba3782 94 return !list_empty(&bdi->work_list);
f11b00f3
AB
95}
96
03ba3782 97static void bdi_work_clear(struct bdi_work *work)
f11b00f3 98{
03ba3782
JA
99 clear_bit(WS_USED_B, &work->state);
100 smp_mb__after_clear_bit();
1ef7d9aa
NP
101 /*
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
105 */
03ba3782 106 wake_up_bit(&work->state, WS_USED_B);
f11b00f3
AB
107}
108
03ba3782 109static void bdi_work_free(struct rcu_head *head)
4195f73d 110{
03ba3782 111 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
4195f73d 112
03ba3782
JA
113 if (!bdi_work_on_stack(work))
114 kfree(work);
115 else
116 bdi_work_clear(work);
4195f73d
NP
117}
118
03ba3782 119static void wb_work_complete(struct bdi_work *work)
1da177e4 120{
c4a77a6c 121 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
77b9d059 122 int onstack = bdi_work_on_stack(work);
1da177e4
LT
123
124 /*
03ba3782
JA
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
1da177e4 129 */
77b9d059 130 if (!onstack)
03ba3782 131 bdi_work_clear(work);
77b9d059 132 if (sync_mode == WB_SYNC_NONE || onstack)
03ba3782
JA
133 call_rcu(&work->rcu_head, bdi_work_free);
134}
1da177e4 135
03ba3782
JA
136static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
137{
1da177e4 138 /*
03ba3782
JA
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
1da177e4 141 */
03ba3782
JA
142 if (atomic_dec_and_test(&work->pending)) {
143 struct backing_dev_info *bdi = wb->bdi;
1da177e4 144
03ba3782
JA
145 spin_lock(&bdi->wb_lock);
146 list_del_rcu(&work->list);
147 spin_unlock(&bdi->wb_lock);
1da177e4 148
03ba3782
JA
149 wb_work_complete(work);
150 }
151}
1da177e4 152
03ba3782
JA
153static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
154{
bcddc3f0
JA
155 work->seen = bdi->wb_mask;
156 BUG_ON(!work->seen);
157 atomic_set(&work->pending, bdi->wb_cnt);
158 BUG_ON(!bdi->wb_cnt);
1da177e4 159
bcddc3f0 160 /*
deed62ed
NP
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
bcddc3f0 164 */
bcddc3f0
JA
165 spin_lock(&bdi->wb_lock);
166 list_add_tail_rcu(&work->list, &bdi->work_list);
167 spin_unlock(&bdi->wb_lock);
03ba3782
JA
168
169 /*
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
172 */
173 if (unlikely(list_empty_careful(&bdi->wb_list)))
174 wake_up_process(default_backing_dev_info.wb.task);
175 else {
176 struct bdi_writeback *wb = &bdi->wb;
1da177e4 177
1ef7d9aa 178 if (wb->task)
03ba3782 179 wake_up_process(wb->task);
1da177e4 180 }
1da177e4
LT
181}
182
03ba3782
JA
183/*
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
186 */
187static void bdi_wait_on_work_clear(struct bdi_work *work)
188{
189 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
190 TASK_UNINTERRUPTIBLE);
191}
1da177e4 192
f11fcae8 193static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
b6e51316 194 struct wb_writeback_args *args)
1da177e4 195{
03ba3782
JA
196 struct bdi_work *work;
197
bcddc3f0
JA
198 /*
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
201 */
03ba3782 202 work = kmalloc(sizeof(*work), GFP_ATOMIC);
bcddc3f0 203 if (work) {
b6e51316 204 bdi_work_init(work, args);
bcddc3f0
JA
205 bdi_queue_work(bdi, work);
206 } else {
207 struct bdi_writeback *wb = &bdi->wb;
03ba3782 208
bcddc3f0
JA
209 if (wb->task)
210 wake_up_process(wb->task);
211 }
03ba3782
JA
212}
213
b6e51316
JA
214/**
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
218 *
219 * Description:
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
223 */
224static void bdi_sync_writeback(struct backing_dev_info *bdi,
225 struct super_block *sb)
03ba3782 226{
b6e51316
JA
227 struct wb_writeback_args args = {
228 .sb = sb,
229 .sync_mode = WB_SYNC_ALL,
230 .nr_pages = LONG_MAX,
231 .range_cyclic = 0,
232 };
233 struct bdi_work work;
03ba3782 234
b6e51316
JA
235 bdi_work_init(&work, &args);
236 work.state |= WS_ONSTACK;
03ba3782 237
b6e51316
JA
238 bdi_queue_work(bdi, &work);
239 bdi_wait_on_work_clear(&work);
240}
241
242/**
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @nr_pages: the number of pages to write
246 *
247 * Description:
248 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
249 * started when this function returns, we make no guarentees on
250 * completion. Caller need not hold sb s_umount semaphore.
251 *
252 */
253void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
254{
255 struct wb_writeback_args args = {
256 .sync_mode = WB_SYNC_NONE,
257 .nr_pages = nr_pages,
258 .range_cyclic = 1,
259 };
260
d3ddec76
WF
261 /*
262 * We treat @nr_pages=0 as the special case to do background writeback,
263 * ie. to sync pages until the background dirty threshold is reached.
264 */
265 if (!nr_pages) {
266 args.nr_pages = LONG_MAX;
267 args.for_background = 1;
268 }
269
b6e51316 270 bdi_alloc_queue_work(bdi, &args);
1da177e4
LT
271}
272
6610a0bc
AM
273/*
274 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
275 * furthest end of its superblock's dirty-inode list.
276 *
277 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 278 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
279 * the case then the inode must have been redirtied while it was being written
280 * out and we don't reset its dirtied_when.
281 */
282static void redirty_tail(struct inode *inode)
283{
03ba3782 284 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
6610a0bc 285
03ba3782 286 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 287 struct inode *tail;
6610a0bc 288
03ba3782 289 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
66f3b8e2 290 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
291 inode->dirtied_when = jiffies;
292 }
03ba3782 293 list_move(&inode->i_list, &wb->b_dirty);
6610a0bc
AM
294}
295
c986d1e2 296/*
66f3b8e2 297 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 298 */
0e0f4fc2 299static void requeue_io(struct inode *inode)
c986d1e2 300{
03ba3782
JA
301 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
302
303 list_move(&inode->i_list, &wb->b_more_io);
c986d1e2
AM
304}
305
1c0eeaf5
JE
306static void inode_sync_complete(struct inode *inode)
307{
308 /*
309 * Prevent speculative execution through spin_unlock(&inode_lock);
310 */
311 smp_mb();
312 wake_up_bit(&inode->i_state, __I_SYNC);
313}
314
d2caa3c5
JL
315static bool inode_dirtied_after(struct inode *inode, unsigned long t)
316{
317 bool ret = time_after(inode->dirtied_when, t);
318#ifndef CONFIG_64BIT
319 /*
320 * For inodes being constantly redirtied, dirtied_when can get stuck.
321 * It _appears_ to be in the future, but is actually in distant past.
322 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 323 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
324 */
325 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
326#endif
327 return ret;
328}
329
2c136579
FW
330/*
331 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
332 */
333static void move_expired_inodes(struct list_head *delaying_queue,
334 struct list_head *dispatch_queue,
335 unsigned long *older_than_this)
336{
5c03449d
SL
337 LIST_HEAD(tmp);
338 struct list_head *pos, *node;
cf137307 339 struct super_block *sb = NULL;
5c03449d 340 struct inode *inode;
cf137307 341 int do_sb_sort = 0;
5c03449d 342
2c136579 343 while (!list_empty(delaying_queue)) {
5c03449d 344 inode = list_entry(delaying_queue->prev, struct inode, i_list);
2c136579 345 if (older_than_this &&
d2caa3c5 346 inode_dirtied_after(inode, *older_than_this))
2c136579 347 break;
cf137307
JA
348 if (sb && sb != inode->i_sb)
349 do_sb_sort = 1;
350 sb = inode->i_sb;
5c03449d
SL
351 list_move(&inode->i_list, &tmp);
352 }
353
cf137307
JA
354 /* just one sb in list, splice to dispatch_queue and we're done */
355 if (!do_sb_sort) {
356 list_splice(&tmp, dispatch_queue);
357 return;
358 }
359
5c03449d
SL
360 /* Move inodes from one superblock together */
361 while (!list_empty(&tmp)) {
362 inode = list_entry(tmp.prev, struct inode, i_list);
363 sb = inode->i_sb;
364 list_for_each_prev_safe(pos, node, &tmp) {
365 inode = list_entry(pos, struct inode, i_list);
366 if (inode->i_sb == sb)
367 list_move(&inode->i_list, dispatch_queue);
368 }
2c136579
FW
369 }
370}
371
372/*
373 * Queue all expired dirty inodes for io, eldest first.
374 */
03ba3782 375static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
66f3b8e2 376{
03ba3782
JA
377 list_splice_init(&wb->b_more_io, wb->b_io.prev);
378 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
66f3b8e2
JA
379}
380
03ba3782 381static int write_inode(struct inode *inode, int sync)
08d8e974 382{
03ba3782
JA
383 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
384 return inode->i_sb->s_op->write_inode(inode, sync);
385 return 0;
08d8e974 386}
08d8e974 387
1da177e4 388/*
01c03194
CH
389 * Wait for writeback on an inode to complete.
390 */
391static void inode_wait_for_writeback(struct inode *inode)
392{
393 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
394 wait_queue_head_t *wqh;
395
396 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
397 do {
398 spin_unlock(&inode_lock);
399 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
400 spin_lock(&inode_lock);
401 } while (inode->i_state & I_SYNC);
402}
403
404/*
405 * Write out an inode's dirty pages. Called under inode_lock. Either the
406 * caller has ref on the inode (either via __iget or via syscall against an fd)
407 * or the inode has I_WILL_FREE set (via generic_forget_inode)
408 *
1da177e4
LT
409 * If `wait' is set, wait on the writeout.
410 *
411 * The whole writeout design is quite complex and fragile. We want to avoid
412 * starvation of particular inodes when others are being redirtied, prevent
413 * livelocks, etc.
414 *
415 * Called under inode_lock.
416 */
417static int
01c03194 418writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 419{
1da177e4 420 struct address_space *mapping = inode->i_mapping;
1da177e4 421 int wait = wbc->sync_mode == WB_SYNC_ALL;
01c03194 422 unsigned dirty;
1da177e4
LT
423 int ret;
424
01c03194
CH
425 if (!atomic_read(&inode->i_count))
426 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
427 else
428 WARN_ON(inode->i_state & I_WILL_FREE);
429
430 if (inode->i_state & I_SYNC) {
431 /*
432 * If this inode is locked for writeback and we are not doing
66f3b8e2 433 * writeback-for-data-integrity, move it to b_more_io so that
01c03194
CH
434 * writeback can proceed with the other inodes on s_io.
435 *
436 * We'll have another go at writing back this inode when we
66f3b8e2 437 * completed a full scan of b_io.
01c03194
CH
438 */
439 if (!wait) {
440 requeue_io(inode);
441 return 0;
442 }
443
444 /*
445 * It's a data-integrity sync. We must wait.
446 */
447 inode_wait_for_writeback(inode);
448 }
449
1c0eeaf5 450 BUG_ON(inode->i_state & I_SYNC);
1da177e4 451
1c0eeaf5 452 /* Set I_SYNC, reset I_DIRTY */
1da177e4 453 dirty = inode->i_state & I_DIRTY;
1c0eeaf5 454 inode->i_state |= I_SYNC;
1da177e4
LT
455 inode->i_state &= ~I_DIRTY;
456
457 spin_unlock(&inode_lock);
458
459 ret = do_writepages(mapping, wbc);
460
461 /* Don't write the inode if only I_DIRTY_PAGES was set */
462 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
463 int err = write_inode(inode, wait);
464 if (ret == 0)
465 ret = err;
466 }
467
468 if (wait) {
469 int err = filemap_fdatawait(mapping);
470 if (ret == 0)
471 ret = err;
472 }
473
474 spin_lock(&inode_lock);
1c0eeaf5 475 inode->i_state &= ~I_SYNC;
84a89245 476 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
ae1b7f7d
WF
477 if (inode->i_state & I_DIRTY) {
478 /*
479 * Someone redirtied the inode while were writing back
480 * the pages.
481 */
482 redirty_tail(inode);
483 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
1da177e4
LT
484 /*
485 * We didn't write back all the pages. nfs_writepages()
486 * sometimes bales out without doing anything. Redirty
66f3b8e2 487 * the inode; Move it from b_io onto b_more_io/b_dirty.
1b43ef91
AM
488 */
489 /*
490 * akpm: if the caller was the kupdate function we put
66f3b8e2 491 * this inode at the head of b_dirty so it gets first
1b43ef91
AM
492 * consideration. Otherwise, move it to the tail, for
493 * the reasons described there. I'm not really sure
494 * how much sense this makes. Presumably I had a good
495 * reasons for doing it this way, and I'd rather not
496 * muck with it at present.
1da177e4
LT
497 */
498 if (wbc->for_kupdate) {
499 /*
2c136579 500 * For the kupdate function we move the inode
66f3b8e2 501 * to b_more_io so it will get more writeout as
2c136579 502 * soon as the queue becomes uncongested.
1da177e4
LT
503 */
504 inode->i_state |= I_DIRTY_PAGES;
8bc3be27
FW
505 if (wbc->nr_to_write <= 0) {
506 /*
507 * slice used up: queue for next turn
508 */
509 requeue_io(inode);
510 } else {
511 /*
512 * somehow blocked: retry later
513 */
514 redirty_tail(inode);
515 }
1da177e4
LT
516 } else {
517 /*
518 * Otherwise fully redirty the inode so that
519 * other inodes on this superblock will get some
520 * writeout. Otherwise heavy writing to one
521 * file would indefinitely suspend writeout of
522 * all the other files.
523 */
524 inode->i_state |= I_DIRTY_PAGES;
1b43ef91 525 redirty_tail(inode);
1da177e4 526 }
1da177e4
LT
527 } else if (atomic_read(&inode->i_count)) {
528 /*
529 * The inode is clean, inuse
530 */
531 list_move(&inode->i_list, &inode_in_use);
532 } else {
533 /*
534 * The inode is clean, unused
535 */
536 list_move(&inode->i_list, &inode_unused);
1da177e4
LT
537 }
538 }
1c0eeaf5 539 inode_sync_complete(inode);
1da177e4
LT
540 return ret;
541}
542
9ecc2738
JA
543static void unpin_sb_for_writeback(struct super_block **psb)
544{
545 struct super_block *sb = *psb;
546
547 if (sb) {
548 up_read(&sb->s_umount);
549 put_super(sb);
550 *psb = NULL;
551 }
552}
553
03ba3782
JA
554/*
555 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
556 * before calling writeback. So make sure that we do pin it, so it doesn't
557 * go away while we are writing inodes from it.
558 *
559 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
560 * 1 if we failed.
561 */
562static int pin_sb_for_writeback(struct writeback_control *wbc,
9ecc2738 563 struct inode *inode, struct super_block **psb)
03ba3782
JA
564{
565 struct super_block *sb = inode->i_sb;
566
9ecc2738
JA
567 /*
568 * If this sb is already pinned, nothing more to do. If not and
569 * *psb is non-NULL, unpin the old one first
570 */
571 if (sb == *psb)
572 return 0;
573 else if (*psb)
574 unpin_sb_for_writeback(psb);
575
03ba3782
JA
576 /*
577 * Caller must already hold the ref for this
578 */
579 if (wbc->sync_mode == WB_SYNC_ALL) {
580 WARN_ON(!rwsem_is_locked(&sb->s_umount));
581 return 0;
582 }
583
584 spin_lock(&sb_lock);
585 sb->s_count++;
586 if (down_read_trylock(&sb->s_umount)) {
587 if (sb->s_root) {
588 spin_unlock(&sb_lock);
9ecc2738 589 goto pinned;
03ba3782
JA
590 }
591 /*
592 * umounted, drop rwsem again and fall through to failure
593 */
594 up_read(&sb->s_umount);
595 }
596
597 sb->s_count--;
598 spin_unlock(&sb_lock);
599 return 1;
9ecc2738
JA
600pinned:
601 *psb = sb;
602 return 0;
03ba3782
JA
603}
604
605static void writeback_inodes_wb(struct bdi_writeback *wb,
606 struct writeback_control *wbc)
1da177e4 607{
9ecc2738 608 struct super_block *sb = wbc->sb, *pin_sb = NULL;
66f3b8e2 609 const int is_blkdev_sb = sb_is_blkdev_sb(sb);
1da177e4
LT
610 const unsigned long start = jiffies; /* livelock avoidance */
611
ae8547b0 612 spin_lock(&inode_lock);
1da177e4 613
03ba3782
JA
614 if (!wbc->for_kupdate || list_empty(&wb->b_io))
615 queue_io(wb, wbc->older_than_this);
66f3b8e2 616
03ba3782
JA
617 while (!list_empty(&wb->b_io)) {
618 struct inode *inode = list_entry(wb->b_io.prev,
1da177e4 619 struct inode, i_list);
1da177e4
LT
620 long pages_skipped;
621
66f3b8e2
JA
622 /*
623 * super block given and doesn't match, skip this inode
624 */
625 if (sb && sb != inode->i_sb) {
626 redirty_tail(inode);
627 continue;
628 }
629
03ba3782 630 if (!bdi_cap_writeback_dirty(wb->bdi)) {
9852a0e7 631 redirty_tail(inode);
66f3b8e2 632 if (is_blkdev_sb) {
1da177e4
LT
633 /*
634 * Dirty memory-backed blockdev: the ramdisk
635 * driver does this. Skip just this inode
636 */
637 continue;
638 }
639 /*
640 * Dirty memory-backed inode against a filesystem other
641 * than the kernel-internal bdev filesystem. Skip the
642 * entire superblock.
643 */
644 break;
645 }
646
84a89245 647 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
7ef0d737
NP
648 requeue_io(inode);
649 continue;
650 }
651
03ba3782 652 if (wbc->nonblocking && bdi_write_congested(wb->bdi)) {
1da177e4 653 wbc->encountered_congestion = 1;
66f3b8e2 654 if (!is_blkdev_sb)
1da177e4 655 break; /* Skip a congested fs */
0e0f4fc2 656 requeue_io(inode);
1da177e4
LT
657 continue; /* Skip a congested blockdev */
658 }
659
d2caa3c5
JL
660 /*
661 * Was this inode dirtied after sync_sb_inodes was called?
662 * This keeps sync from extra jobs and livelock.
663 */
664 if (inode_dirtied_after(inode, start))
1da177e4
LT
665 break;
666
9ecc2738 667 if (pin_sb_for_writeback(wbc, inode, &pin_sb)) {
03ba3782
JA
668 requeue_io(inode);
669 continue;
670 }
1da177e4 671
84a89245 672 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
1da177e4
LT
673 __iget(inode);
674 pages_skipped = wbc->pages_skipped;
01c03194 675 writeback_single_inode(inode, wbc);
1da177e4
LT
676 if (wbc->pages_skipped != pages_skipped) {
677 /*
678 * writeback is not making progress due to locked
679 * buffers. Skip this inode for now.
680 */
f57b9b7b 681 redirty_tail(inode);
1da177e4
LT
682 }
683 spin_unlock(&inode_lock);
1da177e4 684 iput(inode);
4ffc8444 685 cond_resched();
1da177e4 686 spin_lock(&inode_lock);
8bc3be27
FW
687 if (wbc->nr_to_write <= 0) {
688 wbc->more_io = 1;
1da177e4 689 break;
8bc3be27 690 }
03ba3782 691 if (!list_empty(&wb->b_more_io))
8bc3be27 692 wbc->more_io = 1;
1da177e4 693 }
38f21977 694
9ecc2738
JA
695 unpin_sb_for_writeback(&pin_sb);
696
66f3b8e2
JA
697 spin_unlock(&inode_lock);
698 /* Leave any unwritten inodes on b_io */
699}
700
03ba3782
JA
701void writeback_inodes_wbc(struct writeback_control *wbc)
702{
703 struct backing_dev_info *bdi = wbc->bdi;
704
705 writeback_inodes_wb(&bdi->wb, wbc);
706}
707
66f3b8e2 708/*
03ba3782
JA
709 * The maximum number of pages to writeout in a single bdi flush/kupdate
710 * operation. We do this so we don't hold I_SYNC against an inode for
711 * enormous amounts of time, which would block a userspace task which has
712 * been forced to throttle against that inode. Also, the code reevaluates
713 * the dirty each time it has written this many pages.
714 */
715#define MAX_WRITEBACK_PAGES 1024
716
717static inline bool over_bground_thresh(void)
718{
719 unsigned long background_thresh, dirty_thresh;
720
721 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
722
723 return (global_page_state(NR_FILE_DIRTY) +
724 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
725}
726
727/*
728 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 729 *
03ba3782
JA
730 * Define "old": the first time one of an inode's pages is dirtied, we mark the
731 * dirtying-time in the inode's address_space. So this periodic writeback code
732 * just walks the superblock inode list, writing back any inodes which are
733 * older than a specific point in time.
66f3b8e2 734 *
03ba3782
JA
735 * Try to run once per dirty_writeback_interval. But if a writeback event
736 * takes longer than a dirty_writeback_interval interval, then leave a
737 * one-second gap.
66f3b8e2 738 *
03ba3782
JA
739 * older_than_this takes precedence over nr_to_write. So we'll only write back
740 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 741 */
c4a77a6c
JA
742static long wb_writeback(struct bdi_writeback *wb,
743 struct wb_writeback_args *args)
66f3b8e2 744{
03ba3782
JA
745 struct writeback_control wbc = {
746 .bdi = wb->bdi,
c4a77a6c
JA
747 .sb = args->sb,
748 .sync_mode = args->sync_mode,
03ba3782 749 .older_than_this = NULL,
c4a77a6c
JA
750 .for_kupdate = args->for_kupdate,
751 .range_cyclic = args->range_cyclic,
03ba3782
JA
752 };
753 unsigned long oldest_jif;
754 long wrote = 0;
a5989bdc 755 struct inode *inode;
66f3b8e2 756
03ba3782
JA
757 if (wbc.for_kupdate) {
758 wbc.older_than_this = &oldest_jif;
759 oldest_jif = jiffies -
760 msecs_to_jiffies(dirty_expire_interval * 10);
761 }
c4a77a6c
JA
762 if (!wbc.range_cyclic) {
763 wbc.range_start = 0;
764 wbc.range_end = LLONG_MAX;
765 }
38f21977 766
03ba3782
JA
767 for (;;) {
768 /*
d3ddec76 769 * Stop writeback when nr_pages has been consumed
03ba3782 770 */
d3ddec76 771 if (args->nr_pages <= 0)
03ba3782 772 break;
66f3b8e2 773
38f21977 774 /*
d3ddec76
WF
775 * For background writeout, stop when we are below the
776 * background dirty threshold
38f21977 777 */
d3ddec76 778 if (args->for_background && !over_bground_thresh())
03ba3782 779 break;
38f21977 780
03ba3782
JA
781 wbc.more_io = 0;
782 wbc.encountered_congestion = 0;
783 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
784 wbc.pages_skipped = 0;
785 writeback_inodes_wb(wb, &wbc);
c4a77a6c 786 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
03ba3782
JA
787 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
788
789 /*
71fd05a8 790 * If we consumed everything, see if we have more
03ba3782 791 */
71fd05a8
JA
792 if (wbc.nr_to_write <= 0)
793 continue;
794 /*
795 * Didn't write everything and we don't have more IO, bail
796 */
797 if (!wbc.more_io)
03ba3782 798 break;
71fd05a8
JA
799 /*
800 * Did we write something? Try for more
801 */
802 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
803 continue;
804 /*
805 * Nothing written. Wait for some inode to
806 * become available for writeback. Otherwise
807 * we'll just busyloop.
808 */
809 spin_lock(&inode_lock);
810 if (!list_empty(&wb->b_more_io)) {
811 inode = list_entry(wb->b_more_io.prev,
812 struct inode, i_list);
813 inode_wait_for_writeback(inode);
03ba3782 814 }
71fd05a8 815 spin_unlock(&inode_lock);
03ba3782
JA
816 }
817
818 return wrote;
819}
820
821/*
822 * Return the next bdi_work struct that hasn't been processed by this
8010c3b6
JA
823 * wb thread yet. ->seen is initially set for each thread that exists
824 * for this device, when a thread first notices a piece of work it
825 * clears its bit. Depending on writeback type, the thread will notify
826 * completion on either receiving the work (WB_SYNC_NONE) or after
827 * it is done (WB_SYNC_ALL).
03ba3782
JA
828 */
829static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
830 struct bdi_writeback *wb)
831{
832 struct bdi_work *work, *ret = NULL;
833
834 rcu_read_lock();
835
836 list_for_each_entry_rcu(work, &bdi->work_list, list) {
77fad5e6 837 if (!test_bit(wb->nr, &work->seen))
03ba3782 838 continue;
77fad5e6 839 clear_bit(wb->nr, &work->seen);
03ba3782
JA
840
841 ret = work;
842 break;
843 }
844
845 rcu_read_unlock();
846 return ret;
847}
848
849static long wb_check_old_data_flush(struct bdi_writeback *wb)
850{
851 unsigned long expired;
852 long nr_pages;
853
854 expired = wb->last_old_flush +
855 msecs_to_jiffies(dirty_writeback_interval * 10);
856 if (time_before(jiffies, expired))
857 return 0;
858
859 wb->last_old_flush = jiffies;
860 nr_pages = global_page_state(NR_FILE_DIRTY) +
861 global_page_state(NR_UNSTABLE_NFS) +
862 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
863
c4a77a6c
JA
864 if (nr_pages) {
865 struct wb_writeback_args args = {
866 .nr_pages = nr_pages,
867 .sync_mode = WB_SYNC_NONE,
868 .for_kupdate = 1,
869 .range_cyclic = 1,
870 };
871
872 return wb_writeback(wb, &args);
873 }
03ba3782
JA
874
875 return 0;
876}
877
878/*
879 * Retrieve work items and do the writeback they describe
880 */
881long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
882{
883 struct backing_dev_info *bdi = wb->bdi;
884 struct bdi_work *work;
c4a77a6c 885 long wrote = 0;
03ba3782
JA
886
887 while ((work = get_next_work_item(bdi, wb)) != NULL) {
c4a77a6c 888 struct wb_writeback_args args = work->args;
03ba3782
JA
889
890 /*
891 * Override sync mode, in case we must wait for completion
892 */
893 if (force_wait)
c4a77a6c 894 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
03ba3782
JA
895
896 /*
897 * If this isn't a data integrity operation, just notify
898 * that we have seen this work and we are now starting it.
899 */
c4a77a6c 900 if (args.sync_mode == WB_SYNC_NONE)
03ba3782
JA
901 wb_clear_pending(wb, work);
902
c4a77a6c 903 wrote += wb_writeback(wb, &args);
03ba3782
JA
904
905 /*
906 * This is a data integrity writeback, so only do the
907 * notification when we have completed the work.
908 */
c4a77a6c 909 if (args.sync_mode == WB_SYNC_ALL)
03ba3782
JA
910 wb_clear_pending(wb, work);
911 }
912
913 /*
914 * Check for periodic writeback, kupdated() style
915 */
916 wrote += wb_check_old_data_flush(wb);
917
918 return wrote;
919}
920
921/*
922 * Handle writeback of dirty data for the device backed by this bdi. Also
923 * wakes up periodically and does kupdated style flushing.
924 */
925int bdi_writeback_task(struct bdi_writeback *wb)
926{
927 unsigned long last_active = jiffies;
928 unsigned long wait_jiffies = -1UL;
929 long pages_written;
930
931 while (!kthread_should_stop()) {
932 pages_written = wb_do_writeback(wb, 0);
933
934 if (pages_written)
935 last_active = jiffies;
936 else if (wait_jiffies != -1UL) {
937 unsigned long max_idle;
938
38f21977 939 /*
03ba3782
JA
940 * Longest period of inactivity that we tolerate. If we
941 * see dirty data again later, the task will get
942 * recreated automatically.
38f21977 943 */
03ba3782
JA
944 max_idle = max(5UL * 60 * HZ, wait_jiffies);
945 if (time_after(jiffies, max_idle + last_active))
946 break;
947 }
948
949 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
49db0414 950 schedule_timeout_interruptible(wait_jiffies);
03ba3782
JA
951 try_to_freeze();
952 }
953
954 return 0;
955}
956
957/*
b6e51316
JA
958 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
959 * writeback, for integrity writeback see bdi_sync_writeback().
03ba3782 960 */
b6e51316 961static void bdi_writeback_all(struct super_block *sb, long nr_pages)
03ba3782 962{
b6e51316
JA
963 struct wb_writeback_args args = {
964 .sb = sb,
965 .nr_pages = nr_pages,
966 .sync_mode = WB_SYNC_NONE,
967 };
03ba3782 968 struct backing_dev_info *bdi;
03ba3782 969
cfc4ba53 970 rcu_read_lock();
03ba3782 971
cfc4ba53 972 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
03ba3782
JA
973 if (!bdi_has_dirty_io(bdi))
974 continue;
38f21977 975
b6e51316 976 bdi_alloc_queue_work(bdi, &args);
03ba3782
JA
977 }
978
cfc4ba53 979 rcu_read_unlock();
1da177e4
LT
980}
981
982/*
03ba3782
JA
983 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
984 * the whole world.
985 */
986void wakeup_flusher_threads(long nr_pages)
987{
03ba3782
JA
988 if (nr_pages == 0)
989 nr_pages = global_page_state(NR_FILE_DIRTY) +
990 global_page_state(NR_UNSTABLE_NFS);
b6e51316 991 bdi_writeback_all(NULL, nr_pages);
03ba3782
JA
992}
993
994static noinline void block_dump___mark_inode_dirty(struct inode *inode)
995{
996 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
997 struct dentry *dentry;
998 const char *name = "?";
999
1000 dentry = d_find_alias(inode);
1001 if (dentry) {
1002 spin_lock(&dentry->d_lock);
1003 name = (const char *) dentry->d_name.name;
1004 }
1005 printk(KERN_DEBUG
1006 "%s(%d): dirtied inode %lu (%s) on %s\n",
1007 current->comm, task_pid_nr(current), inode->i_ino,
1008 name, inode->i_sb->s_id);
1009 if (dentry) {
1010 spin_unlock(&dentry->d_lock);
1011 dput(dentry);
1012 }
1013 }
1014}
1015
1016/**
1017 * __mark_inode_dirty - internal function
1018 * @inode: inode to mark
1019 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1020 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1021 * mark_inode_dirty_sync.
1da177e4 1022 *
03ba3782
JA
1023 * Put the inode on the super block's dirty list.
1024 *
1025 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1026 * dirty list only if it is hashed or if it refers to a blockdev.
1027 * If it was not hashed, it will never be added to the dirty list
1028 * even if it is later hashed, as it will have been marked dirty already.
1029 *
1030 * In short, make sure you hash any inodes _before_ you start marking
1031 * them dirty.
1da177e4 1032 *
03ba3782
JA
1033 * This function *must* be atomic for the I_DIRTY_PAGES case -
1034 * set_page_dirty() is called under spinlock in several places.
1da177e4 1035 *
03ba3782
JA
1036 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1037 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1038 * the kernel-internal blockdev inode represents the dirtying time of the
1039 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1040 * page->mapping->host, so the page-dirtying time is recorded in the internal
1041 * blockdev inode.
1da177e4 1042 */
03ba3782 1043void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 1044{
03ba3782 1045 struct super_block *sb = inode->i_sb;
1da177e4 1046
03ba3782
JA
1047 /*
1048 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1049 * dirty the inode itself
1050 */
1051 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1052 if (sb->s_op->dirty_inode)
1053 sb->s_op->dirty_inode(inode);
1054 }
1055
1056 /*
1057 * make sure that changes are seen by all cpus before we test i_state
1058 * -- mikulas
1059 */
1060 smp_mb();
1061
1062 /* avoid the locking if we can */
1063 if ((inode->i_state & flags) == flags)
1064 return;
1065
1066 if (unlikely(block_dump))
1067 block_dump___mark_inode_dirty(inode);
1068
1069 spin_lock(&inode_lock);
1070 if ((inode->i_state & flags) != flags) {
1071 const int was_dirty = inode->i_state & I_DIRTY;
1072
1073 inode->i_state |= flags;
1074
1075 /*
1076 * If the inode is being synced, just update its dirty state.
1077 * The unlocker will place the inode on the appropriate
1078 * superblock list, based upon its state.
1079 */
1080 if (inode->i_state & I_SYNC)
1081 goto out;
1082
1083 /*
1084 * Only add valid (hashed) inodes to the superblock's
1085 * dirty list. Add blockdev inodes as well.
1086 */
1087 if (!S_ISBLK(inode->i_mode)) {
1088 if (hlist_unhashed(&inode->i_hash))
1089 goto out;
1090 }
1091 if (inode->i_state & (I_FREEING|I_CLEAR))
1092 goto out;
1093
1094 /*
1095 * If the inode was already on b_dirty/b_io/b_more_io, don't
1096 * reposition it (that would break b_dirty time-ordering).
1097 */
1098 if (!was_dirty) {
1099 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
500b067c
JA
1100 struct backing_dev_info *bdi = wb->bdi;
1101
1102 if (bdi_cap_writeback_dirty(bdi) &&
1103 !test_bit(BDI_registered, &bdi->state)) {
1104 WARN_ON(1);
1105 printk(KERN_ERR "bdi-%s not registered\n",
1106 bdi->name);
1107 }
03ba3782
JA
1108
1109 inode->dirtied_when = jiffies;
1110 list_move(&inode->i_list, &wb->b_dirty);
1da177e4 1111 }
1da177e4 1112 }
03ba3782
JA
1113out:
1114 spin_unlock(&inode_lock);
1115}
1116EXPORT_SYMBOL(__mark_inode_dirty);
1117
1118/*
1119 * Write out a superblock's list of dirty inodes. A wait will be performed
1120 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1121 *
1122 * If older_than_this is non-NULL, then only write out inodes which
1123 * had their first dirtying at a time earlier than *older_than_this.
1124 *
03ba3782
JA
1125 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1126 * This function assumes that the blockdev superblock's inodes are backed by
1127 * a variety of queues, so all inodes are searched. For other superblocks,
1128 * assume that all inodes are backed by the same queue.
1129 *
1130 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1131 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1132 * on the writer throttling path, and we get decent balancing between many
1133 * throttled threads: we don't want them all piling up on inode_sync_wait.
1134 */
b6e51316 1135static void wait_sb_inodes(struct super_block *sb)
03ba3782
JA
1136{
1137 struct inode *inode, *old_inode = NULL;
1138
1139 /*
1140 * We need to be protected against the filesystem going from
1141 * r/o to r/w or vice versa.
1142 */
b6e51316 1143 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782
JA
1144
1145 spin_lock(&inode_lock);
1146
1147 /*
1148 * Data integrity sync. Must wait for all pages under writeback,
1149 * because there may have been pages dirtied before our sync
1150 * call, but which had writeout started before we write it out.
1151 * In which case, the inode may not be on the dirty list, but
1152 * we still have to wait for that writeout.
1153 */
b6e51316 1154 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
03ba3782
JA
1155 struct address_space *mapping;
1156
1157 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1158 continue;
1159 mapping = inode->i_mapping;
1160 if (mapping->nrpages == 0)
1161 continue;
1162 __iget(inode);
1163 spin_unlock(&inode_lock);
1164 /*
1165 * We hold a reference to 'inode' so it couldn't have
1166 * been removed from s_inodes list while we dropped the
1167 * inode_lock. We cannot iput the inode now as we can
1168 * be holding the last reference and we cannot iput it
1169 * under inode_lock. So we keep the reference and iput
1170 * it later.
1171 */
1172 iput(old_inode);
1173 old_inode = inode;
1174
1175 filemap_fdatawait(mapping);
1176
1177 cond_resched();
1178
1179 spin_lock(&inode_lock);
1180 }
1181 spin_unlock(&inode_lock);
1182 iput(old_inode);
1da177e4
LT
1183}
1184
d8a8559c
JA
1185/**
1186 * writeback_inodes_sb - writeback dirty inodes from given super_block
1187 * @sb: the superblock
1da177e4 1188 *
d8a8559c
JA
1189 * Start writeback on some inodes on this super_block. No guarantees are made
1190 * on how many (if any) will be written, and this function does not wait
1191 * for IO completion of submitted IO. The number of pages submitted is
1192 * returned.
1da177e4 1193 */
b6e51316 1194void writeback_inodes_sb(struct super_block *sb)
1da177e4 1195{
d8a8559c
JA
1196 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1197 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1198 long nr_to_write;
1da177e4 1199
d8a8559c 1200 nr_to_write = nr_dirty + nr_unstable +
38f21977 1201 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
38f21977 1202
b6e51316 1203 bdi_writeback_all(sb, nr_to_write);
d8a8559c
JA
1204}
1205EXPORT_SYMBOL(writeback_inodes_sb);
1206
1207/**
1208 * sync_inodes_sb - sync sb inode pages
1209 * @sb: the superblock
1210 *
1211 * This function writes and waits on any dirty inode belonging to this
1212 * super_block. The number of pages synced is returned.
1213 */
b6e51316 1214void sync_inodes_sb(struct super_block *sb)
d8a8559c 1215{
b6e51316
JA
1216 bdi_sync_writeback(sb->s_bdi, sb);
1217 wait_sb_inodes(sb);
1da177e4 1218}
d8a8559c 1219EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 1220
1da177e4 1221/**
7f04c26d
AA
1222 * write_inode_now - write an inode to disk
1223 * @inode: inode to write to disk
1224 * @sync: whether the write should be synchronous or not
1225 *
1226 * This function commits an inode to disk immediately if it is dirty. This is
1227 * primarily needed by knfsd.
1da177e4 1228 *
7f04c26d 1229 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 1230 */
1da177e4
LT
1231int write_inode_now(struct inode *inode, int sync)
1232{
1233 int ret;
1234 struct writeback_control wbc = {
1235 .nr_to_write = LONG_MAX,
18914b18 1236 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
1237 .range_start = 0,
1238 .range_end = LLONG_MAX,
1da177e4
LT
1239 };
1240
1241 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 1242 wbc.nr_to_write = 0;
1da177e4
LT
1243
1244 might_sleep();
1245 spin_lock(&inode_lock);
01c03194 1246 ret = writeback_single_inode(inode, &wbc);
1da177e4
LT
1247 spin_unlock(&inode_lock);
1248 if (sync)
1c0eeaf5 1249 inode_sync_wait(inode);
1da177e4
LT
1250 return ret;
1251}
1252EXPORT_SYMBOL(write_inode_now);
1253
1254/**
1255 * sync_inode - write an inode and its pages to disk.
1256 * @inode: the inode to sync
1257 * @wbc: controls the writeback mode
1258 *
1259 * sync_inode() will write an inode and its pages to disk. It will also
1260 * correctly update the inode on its superblock's dirty inode lists and will
1261 * update inode->i_state.
1262 *
1263 * The caller must have a ref on the inode.
1264 */
1265int sync_inode(struct inode *inode, struct writeback_control *wbc)
1266{
1267 int ret;
1268
1269 spin_lock(&inode_lock);
01c03194 1270 ret = writeback_single_inode(inode, wbc);
1da177e4
LT
1271 spin_unlock(&inode_lock);
1272 return ret;
1273}
1274EXPORT_SYMBOL(sync_inode);