]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/fs-writeback.c
blk-mq: document the need to have STARTED and COMPLETED share a byte
[mirror_ubuntu-hirsute-kernel.git] / fs / fs-writeback.c
CommitLineData
1da177e4
LT
1/*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
e1f8e874 11 * 10Apr2002 Andrew Morton
1da177e4
LT
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16#include <linux/kernel.h>
630d9c47 17#include <linux/export.h>
1da177e4 18#include <linux/spinlock.h>
5a0e3ad6 19#include <linux/slab.h>
1da177e4
LT
20#include <linux/sched.h>
21#include <linux/fs.h>
22#include <linux/mm.h>
bc31b86a 23#include <linux/pagemap.h>
03ba3782 24#include <linux/kthread.h>
1da177e4
LT
25#include <linux/writeback.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
455b2864 28#include <linux/tracepoint.h>
719ea2fb 29#include <linux/device.h>
21c6321f 30#include <linux/memcontrol.h>
07f3f05c 31#include "internal.h"
1da177e4 32
bc31b86a
WF
33/*
34 * 4MB minimal write chunk size
35 */
09cbfeaf 36#define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
bc31b86a 37
cc395d7f
TH
38struct wb_completion {
39 atomic_t cnt;
40};
41
c4a77a6c
JA
42/*
43 * Passed into wb_writeback(), essentially a subset of writeback_control
44 */
83ba7b07 45struct wb_writeback_work {
c4a77a6c
JA
46 long nr_pages;
47 struct super_block *sb;
0dc83bd3 48 unsigned long *older_than_this;
c4a77a6c 49 enum writeback_sync_modes sync_mode;
6e6938b6 50 unsigned int tagged_writepages:1;
52957fe1
HS
51 unsigned int for_kupdate:1;
52 unsigned int range_cyclic:1;
53 unsigned int for_background:1;
7747bd4b 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
ac7b19a3 55 unsigned int auto_free:1; /* free on completion */
aac8d41c 56 unsigned int start_all:1; /* nr_pages == 0 (all) writeback */
0e175a18 57 enum wb_reason reason; /* why was writeback initiated? */
c4a77a6c 58
8010c3b6 59 struct list_head list; /* pending work list */
cc395d7f 60 struct wb_completion *done; /* set if the caller waits */
03ba3782
JA
61};
62
cc395d7f
TH
63/*
64 * If one wants to wait for one or more wb_writeback_works, each work's
65 * ->done should be set to a wb_completion defined using the following
66 * macro. Once all work items are issued with wb_queue_work(), the caller
67 * can wait for the completion of all using wb_wait_for_completion(). Work
68 * items which are waited upon aren't freed automatically on completion.
69 */
70#define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
71 struct wb_completion cmpl = { \
72 .cnt = ATOMIC_INIT(1), \
73 }
74
75
a2f48706
TT
76/*
77 * If an inode is constantly having its pages dirtied, but then the
78 * updates stop dirtytime_expire_interval seconds in the past, it's
79 * possible for the worst case time between when an inode has its
80 * timestamps updated and when they finally get written out to be two
81 * dirtytime_expire_intervals. We set the default to 12 hours (in
82 * seconds), which means most of the time inodes will have their
83 * timestamps written to disk after 12 hours, but in the worst case a
84 * few inodes might not their timestamps updated for 24 hours.
85 */
86unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87
7ccf19a8
NP
88static inline struct inode *wb_inode(struct list_head *head)
89{
c7f54084 90 return list_entry(head, struct inode, i_io_list);
7ccf19a8
NP
91}
92
15eb77a0
WF
93/*
94 * Include the creation of the trace points after defining the
95 * wb_writeback_work structure and inline functions so that the definition
96 * remains local to this file.
97 */
98#define CREATE_TRACE_POINTS
99#include <trace/events/writeback.h>
100
774016b2
SW
101EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102
d6c10f1f
TH
103static bool wb_io_lists_populated(struct bdi_writeback *wb)
104{
105 if (wb_has_dirty_io(wb)) {
106 return false;
107 } else {
108 set_bit(WB_has_dirty_io, &wb->state);
95a46c65 109 WARN_ON_ONCE(!wb->avg_write_bandwidth);
766a9d6e
TH
110 atomic_long_add(wb->avg_write_bandwidth,
111 &wb->bdi->tot_write_bandwidth);
d6c10f1f
TH
112 return true;
113 }
114}
115
116static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117{
118 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
766a9d6e 119 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
d6c10f1f 120 clear_bit(WB_has_dirty_io, &wb->state);
95a46c65
TH
121 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 &wb->bdi->tot_write_bandwidth) < 0);
766a9d6e 123 }
d6c10f1f
TH
124}
125
126/**
c7f54084 127 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
d6c10f1f
TH
128 * @inode: inode to be moved
129 * @wb: target bdi_writeback
130 * @head: one of @wb->b_{dirty|io|more_io}
131 *
c7f54084 132 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
d6c10f1f
TH
133 * Returns %true if @inode is the first occupant of the !dirty_time IO
134 * lists; otherwise, %false.
135 */
c7f54084 136static bool inode_io_list_move_locked(struct inode *inode,
d6c10f1f
TH
137 struct bdi_writeback *wb,
138 struct list_head *head)
139{
140 assert_spin_locked(&wb->list_lock);
141
c7f54084 142 list_move(&inode->i_io_list, head);
d6c10f1f
TH
143
144 /* dirty_time doesn't count as dirty_io until expiration */
145 if (head != &wb->b_dirty_time)
146 return wb_io_lists_populated(wb);
147
148 wb_io_lists_depopulated(wb);
149 return false;
150}
151
152/**
c7f54084 153 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
d6c10f1f
TH
154 * @inode: inode to be removed
155 * @wb: bdi_writeback @inode is being removed from
156 *
157 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158 * clear %WB_has_dirty_io if all are empty afterwards.
159 */
c7f54084 160static void inode_io_list_del_locked(struct inode *inode,
d6c10f1f
TH
161 struct bdi_writeback *wb)
162{
163 assert_spin_locked(&wb->list_lock);
164
c7f54084 165 list_del_init(&inode->i_io_list);
d6c10f1f
TH
166 wb_io_lists_depopulated(wb);
167}
168
f0054bb1 169static void wb_wakeup(struct bdi_writeback *wb)
5acda9d1 170{
f0054bb1
TH
171 spin_lock_bh(&wb->work_lock);
172 if (test_bit(WB_registered, &wb->state))
173 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 spin_unlock_bh(&wb->work_lock);
5acda9d1
JK
175}
176
4a3a485b
TE
177static void finish_writeback_work(struct bdi_writeback *wb,
178 struct wb_writeback_work *work)
179{
180 struct wb_completion *done = work->done;
181
182 if (work->auto_free)
183 kfree(work);
184 if (done && atomic_dec_and_test(&done->cnt))
185 wake_up_all(&wb->bdi->wb_waitq);
186}
187
f0054bb1
TH
188static void wb_queue_work(struct bdi_writeback *wb,
189 struct wb_writeback_work *work)
6585027a 190{
5634cc2a 191 trace_writeback_queue(wb, work);
6585027a 192
cc395d7f
TH
193 if (work->done)
194 atomic_inc(&work->done->cnt);
4a3a485b
TE
195
196 spin_lock_bh(&wb->work_lock);
197
198 if (test_bit(WB_registered, &wb->state)) {
199 list_add_tail(&work->list, &wb->work_list);
200 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 } else
202 finish_writeback_work(wb, work);
203
f0054bb1 204 spin_unlock_bh(&wb->work_lock);
1da177e4
LT
205}
206
cc395d7f
TH
207/**
208 * wb_wait_for_completion - wait for completion of bdi_writeback_works
209 * @bdi: bdi work items were issued to
210 * @done: target wb_completion
211 *
212 * Wait for one or more work items issued to @bdi with their ->done field
213 * set to @done, which should have been defined with
214 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
215 * work items are completed. Work items which are waited upon aren't freed
216 * automatically on completion.
217 */
218static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 struct wb_completion *done)
220{
221 atomic_dec(&done->cnt); /* put down the initial count */
222 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223}
224
703c2708
TH
225#ifdef CONFIG_CGROUP_WRITEBACK
226
2a814908
TH
227/* parameters for foreign inode detection, see wb_detach_inode() */
228#define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
229#define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
230#define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
231#define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232
233#define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
234#define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 /* each slot's duration is 2s / 16 */
236#define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
237 /* if foreign slots >= 8, switch */
238#define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 /* one round can affect upto 5 slots */
240
a1a0e23e
TH
241static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242static struct workqueue_struct *isw_wq;
243
21c6321f
TH
244void __inode_attach_wb(struct inode *inode, struct page *page)
245{
246 struct backing_dev_info *bdi = inode_to_bdi(inode);
247 struct bdi_writeback *wb = NULL;
248
249 if (inode_cgwb_enabled(inode)) {
250 struct cgroup_subsys_state *memcg_css;
251
252 if (page) {
253 memcg_css = mem_cgroup_css_from_page(page);
254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 } else {
256 /* must pin memcg_css, see wb_get_create() */
257 memcg_css = task_get_css(current, memory_cgrp_id);
258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 css_put(memcg_css);
260 }
261 }
262
263 if (!wb)
264 wb = &bdi->wb;
265
266 /*
267 * There may be multiple instances of this function racing to
268 * update the same inode. Use cmpxchg() to tell the winner.
269 */
270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 wb_put(wb);
272}
273
87e1d789
TH
274/**
275 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276 * @inode: inode of interest with i_lock held
277 *
278 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
279 * held on entry and is released on return. The returned wb is guaranteed
280 * to stay @inode's associated wb until its list_lock is released.
281 */
282static struct bdi_writeback *
283locked_inode_to_wb_and_lock_list(struct inode *inode)
284 __releases(&inode->i_lock)
285 __acquires(&wb->list_lock)
286{
287 while (true) {
288 struct bdi_writeback *wb = inode_to_wb(inode);
289
290 /*
291 * inode_to_wb() association is protected by both
292 * @inode->i_lock and @wb->list_lock but list_lock nests
293 * outside i_lock. Drop i_lock and verify that the
294 * association hasn't changed after acquiring list_lock.
295 */
296 wb_get(wb);
297 spin_unlock(&inode->i_lock);
298 spin_lock(&wb->list_lock);
87e1d789 299
aaa2cacf 300 /* i_wb may have changed inbetween, can't use inode_to_wb() */
614a4e37
TH
301 if (likely(wb == inode->i_wb)) {
302 wb_put(wb); /* @inode already has ref */
303 return wb;
304 }
87e1d789
TH
305
306 spin_unlock(&wb->list_lock);
614a4e37 307 wb_put(wb);
87e1d789
TH
308 cpu_relax();
309 spin_lock(&inode->i_lock);
310 }
311}
312
313/**
314 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315 * @inode: inode of interest
316 *
317 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318 * on entry.
319 */
320static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 __acquires(&wb->list_lock)
322{
323 spin_lock(&inode->i_lock);
324 return locked_inode_to_wb_and_lock_list(inode);
325}
326
682aa8e1
TH
327struct inode_switch_wbs_context {
328 struct inode *inode;
329 struct bdi_writeback *new_wb;
330
331 struct rcu_head rcu_head;
332 struct work_struct work;
333};
334
335static void inode_switch_wbs_work_fn(struct work_struct *work)
336{
337 struct inode_switch_wbs_context *isw =
338 container_of(work, struct inode_switch_wbs_context, work);
339 struct inode *inode = isw->inode;
d10c8095
TH
340 struct address_space *mapping = inode->i_mapping;
341 struct bdi_writeback *old_wb = inode->i_wb;
682aa8e1 342 struct bdi_writeback *new_wb = isw->new_wb;
d10c8095
TH
343 struct radix_tree_iter iter;
344 bool switched = false;
345 void **slot;
682aa8e1
TH
346
347 /*
348 * By the time control reaches here, RCU grace period has passed
349 * since I_WB_SWITCH assertion and all wb stat update transactions
350 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
351 * synchronizing against mapping->tree_lock.
d10c8095
TH
352 *
353 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
354 * gives us exclusion against all wb related operations on @inode
355 * including IO list manipulations and stat updates.
682aa8e1 356 */
d10c8095
TH
357 if (old_wb < new_wb) {
358 spin_lock(&old_wb->list_lock);
359 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
360 } else {
361 spin_lock(&new_wb->list_lock);
362 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
363 }
682aa8e1 364 spin_lock(&inode->i_lock);
d10c8095
TH
365 spin_lock_irq(&mapping->tree_lock);
366
367 /*
368 * Once I_FREEING is visible under i_lock, the eviction path owns
c7f54084 369 * the inode and we shouldn't modify ->i_io_list.
d10c8095
TH
370 */
371 if (unlikely(inode->i_state & I_FREEING))
372 goto skip_switch;
373
374 /*
375 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
376 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
377 * pages actually under underwriteback.
378 */
379 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
380 PAGECACHE_TAG_DIRTY) {
381 struct page *page = radix_tree_deref_slot_protected(slot,
382 &mapping->tree_lock);
383 if (likely(page) && PageDirty(page)) {
3e8f399d
NB
384 dec_wb_stat(old_wb, WB_RECLAIMABLE);
385 inc_wb_stat(new_wb, WB_RECLAIMABLE);
d10c8095
TH
386 }
387 }
388
389 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
390 PAGECACHE_TAG_WRITEBACK) {
391 struct page *page = radix_tree_deref_slot_protected(slot,
392 &mapping->tree_lock);
393 if (likely(page)) {
394 WARN_ON_ONCE(!PageWriteback(page));
3e8f399d
NB
395 dec_wb_stat(old_wb, WB_WRITEBACK);
396 inc_wb_stat(new_wb, WB_WRITEBACK);
d10c8095
TH
397 }
398 }
399
400 wb_get(new_wb);
401
402 /*
403 * Transfer to @new_wb's IO list if necessary. The specific list
404 * @inode was on is ignored and the inode is put on ->b_dirty which
405 * is always correct including from ->b_dirty_time. The transfer
406 * preserves @inode->dirtied_when ordering.
407 */
c7f54084 408 if (!list_empty(&inode->i_io_list)) {
d10c8095
TH
409 struct inode *pos;
410
c7f54084 411 inode_io_list_del_locked(inode, old_wb);
d10c8095 412 inode->i_wb = new_wb;
c7f54084 413 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
d10c8095
TH
414 if (time_after_eq(inode->dirtied_when,
415 pos->dirtied_when))
416 break;
c7f54084 417 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
d10c8095
TH
418 } else {
419 inode->i_wb = new_wb;
420 }
682aa8e1 421
d10c8095 422 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
682aa8e1
TH
423 inode->i_wb_frn_winner = 0;
424 inode->i_wb_frn_avg_time = 0;
425 inode->i_wb_frn_history = 0;
d10c8095
TH
426 switched = true;
427skip_switch:
682aa8e1
TH
428 /*
429 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
430 * ensures that the new wb is visible if they see !I_WB_SWITCH.
431 */
432 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
433
d10c8095 434 spin_unlock_irq(&mapping->tree_lock);
682aa8e1 435 spin_unlock(&inode->i_lock);
d10c8095
TH
436 spin_unlock(&new_wb->list_lock);
437 spin_unlock(&old_wb->list_lock);
682aa8e1 438
d10c8095
TH
439 if (switched) {
440 wb_wakeup(new_wb);
441 wb_put(old_wb);
442 }
682aa8e1 443 wb_put(new_wb);
d10c8095
TH
444
445 iput(inode);
682aa8e1 446 kfree(isw);
a1a0e23e
TH
447
448 atomic_dec(&isw_nr_in_flight);
682aa8e1
TH
449}
450
451static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
452{
453 struct inode_switch_wbs_context *isw = container_of(rcu_head,
454 struct inode_switch_wbs_context, rcu_head);
455
456 /* needs to grab bh-unsafe locks, bounce to work item */
457 INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
a1a0e23e 458 queue_work(isw_wq, &isw->work);
682aa8e1
TH
459}
460
461/**
462 * inode_switch_wbs - change the wb association of an inode
463 * @inode: target inode
464 * @new_wb_id: ID of the new wb
465 *
466 * Switch @inode's wb association to the wb identified by @new_wb_id. The
467 * switching is performed asynchronously and may fail silently.
468 */
469static void inode_switch_wbs(struct inode *inode, int new_wb_id)
470{
471 struct backing_dev_info *bdi = inode_to_bdi(inode);
472 struct cgroup_subsys_state *memcg_css;
473 struct inode_switch_wbs_context *isw;
474
475 /* noop if seems to be already in progress */
476 if (inode->i_state & I_WB_SWITCH)
477 return;
478
479 isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
480 if (!isw)
481 return;
482
483 /* find and pin the new wb */
484 rcu_read_lock();
485 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
486 if (memcg_css)
487 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
488 rcu_read_unlock();
489 if (!isw->new_wb)
490 goto out_free;
491
492 /* while holding I_WB_SWITCH, no one else can update the association */
493 spin_lock(&inode->i_lock);
a1a0e23e
TH
494 if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
495 inode->i_state & (I_WB_SWITCH | I_FREEING) ||
496 inode_to_wb(inode) == isw->new_wb) {
497 spin_unlock(&inode->i_lock);
498 goto out_free;
499 }
682aa8e1 500 inode->i_state |= I_WB_SWITCH;
74524955 501 __iget(inode);
682aa8e1
TH
502 spin_unlock(&inode->i_lock);
503
682aa8e1
TH
504 isw->inode = inode;
505
a1a0e23e
TH
506 atomic_inc(&isw_nr_in_flight);
507
682aa8e1
TH
508 /*
509 * In addition to synchronizing among switchers, I_WB_SWITCH tells
510 * the RCU protected stat update paths to grab the mapping's
511 * tree_lock so that stat transfer can synchronize against them.
512 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
513 */
514 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
515 return;
516
517out_free:
518 if (isw->new_wb)
519 wb_put(isw->new_wb);
520 kfree(isw);
521}
522
b16b1deb
TH
523/**
524 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
525 * @wbc: writeback_control of interest
526 * @inode: target inode
527 *
528 * @inode is locked and about to be written back under the control of @wbc.
529 * Record @inode's writeback context into @wbc and unlock the i_lock. On
530 * writeback completion, wbc_detach_inode() should be called. This is used
531 * to track the cgroup writeback context.
532 */
533void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
534 struct inode *inode)
535{
dd73e4b7
TH
536 if (!inode_cgwb_enabled(inode)) {
537 spin_unlock(&inode->i_lock);
538 return;
539 }
540
b16b1deb 541 wbc->wb = inode_to_wb(inode);
2a814908
TH
542 wbc->inode = inode;
543
544 wbc->wb_id = wbc->wb->memcg_css->id;
545 wbc->wb_lcand_id = inode->i_wb_frn_winner;
546 wbc->wb_tcand_id = 0;
547 wbc->wb_bytes = 0;
548 wbc->wb_lcand_bytes = 0;
549 wbc->wb_tcand_bytes = 0;
550
b16b1deb
TH
551 wb_get(wbc->wb);
552 spin_unlock(&inode->i_lock);
e8a7abf5
TH
553
554 /*
555 * A dying wb indicates that the memcg-blkcg mapping has changed
556 * and a new wb is already serving the memcg. Switch immediately.
557 */
558 if (unlikely(wb_dying(wbc->wb)))
559 inode_switch_wbs(inode, wbc->wb_id);
b16b1deb
TH
560}
561
562/**
2a814908
TH
563 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
564 * @wbc: writeback_control of the just finished writeback
b16b1deb
TH
565 *
566 * To be called after a writeback attempt of an inode finishes and undoes
567 * wbc_attach_and_unlock_inode(). Can be called under any context.
2a814908
TH
568 *
569 * As concurrent write sharing of an inode is expected to be very rare and
570 * memcg only tracks page ownership on first-use basis severely confining
571 * the usefulness of such sharing, cgroup writeback tracks ownership
572 * per-inode. While the support for concurrent write sharing of an inode
573 * is deemed unnecessary, an inode being written to by different cgroups at
574 * different points in time is a lot more common, and, more importantly,
575 * charging only by first-use can too readily lead to grossly incorrect
576 * behaviors (single foreign page can lead to gigabytes of writeback to be
577 * incorrectly attributed).
578 *
579 * To resolve this issue, cgroup writeback detects the majority dirtier of
580 * an inode and transfers the ownership to it. To avoid unnnecessary
581 * oscillation, the detection mechanism keeps track of history and gives
582 * out the switch verdict only if the foreign usage pattern is stable over
583 * a certain amount of time and/or writeback attempts.
584 *
585 * On each writeback attempt, @wbc tries to detect the majority writer
586 * using Boyer-Moore majority vote algorithm. In addition to the byte
587 * count from the majority voting, it also counts the bytes written for the
588 * current wb and the last round's winner wb (max of last round's current
589 * wb, the winner from two rounds ago, and the last round's majority
590 * candidate). Keeping track of the historical winner helps the algorithm
591 * to semi-reliably detect the most active writer even when it's not the
592 * absolute majority.
593 *
594 * Once the winner of the round is determined, whether the winner is
595 * foreign or not and how much IO time the round consumed is recorded in
596 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
597 * over a certain threshold, the switch verdict is given.
b16b1deb
TH
598 */
599void wbc_detach_inode(struct writeback_control *wbc)
600{
2a814908
TH
601 struct bdi_writeback *wb = wbc->wb;
602 struct inode *inode = wbc->inode;
dd73e4b7
TH
603 unsigned long avg_time, max_bytes, max_time;
604 u16 history;
2a814908
TH
605 int max_id;
606
dd73e4b7
TH
607 if (!wb)
608 return;
609
610 history = inode->i_wb_frn_history;
611 avg_time = inode->i_wb_frn_avg_time;
612
2a814908
TH
613 /* pick the winner of this round */
614 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
615 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
616 max_id = wbc->wb_id;
617 max_bytes = wbc->wb_bytes;
618 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
619 max_id = wbc->wb_lcand_id;
620 max_bytes = wbc->wb_lcand_bytes;
621 } else {
622 max_id = wbc->wb_tcand_id;
623 max_bytes = wbc->wb_tcand_bytes;
624 }
625
626 /*
627 * Calculate the amount of IO time the winner consumed and fold it
628 * into the running average kept per inode. If the consumed IO
629 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
630 * deciding whether to switch or not. This is to prevent one-off
631 * small dirtiers from skewing the verdict.
632 */
633 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
634 wb->avg_write_bandwidth);
635 if (avg_time)
636 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
637 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
638 else
639 avg_time = max_time; /* immediate catch up on first run */
640
641 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
642 int slots;
643
644 /*
645 * The switch verdict is reached if foreign wb's consume
646 * more than a certain proportion of IO time in a
647 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
648 * history mask where each bit represents one sixteenth of
649 * the period. Determine the number of slots to shift into
650 * history from @max_time.
651 */
652 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
653 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
654 history <<= slots;
655 if (wbc->wb_id != max_id)
656 history |= (1U << slots) - 1;
657
658 /*
659 * Switch if the current wb isn't the consistent winner.
660 * If there are multiple closely competing dirtiers, the
661 * inode may switch across them repeatedly over time, which
662 * is okay. The main goal is avoiding keeping an inode on
663 * the wrong wb for an extended period of time.
664 */
682aa8e1
TH
665 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
666 inode_switch_wbs(inode, max_id);
2a814908
TH
667 }
668
669 /*
670 * Multiple instances of this function may race to update the
671 * following fields but we don't mind occassional inaccuracies.
672 */
673 inode->i_wb_frn_winner = max_id;
674 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
675 inode->i_wb_frn_history = history;
676
b16b1deb
TH
677 wb_put(wbc->wb);
678 wbc->wb = NULL;
679}
680
2a814908
TH
681/**
682 * wbc_account_io - account IO issued during writeback
683 * @wbc: writeback_control of the writeback in progress
684 * @page: page being written out
685 * @bytes: number of bytes being written out
686 *
687 * @bytes from @page are about to written out during the writeback
688 * controlled by @wbc. Keep the book for foreign inode detection. See
689 * wbc_detach_inode().
690 */
691void wbc_account_io(struct writeback_control *wbc, struct page *page,
692 size_t bytes)
693{
694 int id;
695
696 /*
697 * pageout() path doesn't attach @wbc to the inode being written
698 * out. This is intentional as we don't want the function to block
699 * behind a slow cgroup. Ultimately, we want pageout() to kick off
700 * regular writeback instead of writing things out itself.
701 */
702 if (!wbc->wb)
703 return;
704
2a814908 705 id = mem_cgroup_css_from_page(page)->id;
2a814908
TH
706
707 if (id == wbc->wb_id) {
708 wbc->wb_bytes += bytes;
709 return;
710 }
711
712 if (id == wbc->wb_lcand_id)
713 wbc->wb_lcand_bytes += bytes;
714
715 /* Boyer-Moore majority vote algorithm */
716 if (!wbc->wb_tcand_bytes)
717 wbc->wb_tcand_id = id;
718 if (id == wbc->wb_tcand_id)
719 wbc->wb_tcand_bytes += bytes;
720 else
721 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
722}
5aa2a96b 723EXPORT_SYMBOL_GPL(wbc_account_io);
2a814908 724
703c2708
TH
725/**
726 * inode_congested - test whether an inode is congested
60292bcc 727 * @inode: inode to test for congestion (may be NULL)
703c2708
TH
728 * @cong_bits: mask of WB_[a]sync_congested bits to test
729 *
730 * Tests whether @inode is congested. @cong_bits is the mask of congestion
731 * bits to test and the return value is the mask of set bits.
732 *
733 * If cgroup writeback is enabled for @inode, the congestion state is
734 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
735 * associated with @inode is congested; otherwise, the root wb's congestion
736 * state is used.
60292bcc
TH
737 *
738 * @inode is allowed to be NULL as this function is often called on
739 * mapping->host which is NULL for the swapper space.
703c2708
TH
740 */
741int inode_congested(struct inode *inode, int cong_bits)
742{
5cb8b824
TH
743 /*
744 * Once set, ->i_wb never becomes NULL while the inode is alive.
745 * Start transaction iff ->i_wb is visible.
746 */
aaa2cacf 747 if (inode && inode_to_wb_is_valid(inode)) {
5cb8b824
TH
748 struct bdi_writeback *wb;
749 bool locked, congested;
750
751 wb = unlocked_inode_to_wb_begin(inode, &locked);
752 congested = wb_congested(wb, cong_bits);
753 unlocked_inode_to_wb_end(inode, locked);
754 return congested;
703c2708
TH
755 }
756
757 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
758}
759EXPORT_SYMBOL_GPL(inode_congested);
760
f2b65121
TH
761/**
762 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
763 * @wb: target bdi_writeback to split @nr_pages to
764 * @nr_pages: number of pages to write for the whole bdi
765 *
766 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
767 * relation to the total write bandwidth of all wb's w/ dirty inodes on
768 * @wb->bdi.
769 */
770static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
771{
772 unsigned long this_bw = wb->avg_write_bandwidth;
773 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
774
775 if (nr_pages == LONG_MAX)
776 return LONG_MAX;
777
778 /*
779 * This may be called on clean wb's and proportional distribution
780 * may not make sense, just use the original @nr_pages in those
781 * cases. In general, we wanna err on the side of writing more.
782 */
783 if (!tot_bw || this_bw >= tot_bw)
784 return nr_pages;
785 else
786 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
787}
788
db125360
TH
789/**
790 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
791 * @bdi: target backing_dev_info
792 * @base_work: wb_writeback_work to issue
793 * @skip_if_busy: skip wb's which already have writeback in progress
794 *
795 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
796 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
797 * distributed to the busy wbs according to each wb's proportion in the
798 * total active write bandwidth of @bdi.
799 */
800static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
801 struct wb_writeback_work *base_work,
802 bool skip_if_busy)
803{
b817525a 804 struct bdi_writeback *last_wb = NULL;
b33e18f6
TH
805 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
806 struct bdi_writeback, bdi_node);
db125360
TH
807
808 might_sleep();
db125360
TH
809restart:
810 rcu_read_lock();
b817525a 811 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
8a1270cd
TH
812 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
813 struct wb_writeback_work fallback_work;
814 struct wb_writeback_work *work;
815 long nr_pages;
816
b817525a
TH
817 if (last_wb) {
818 wb_put(last_wb);
819 last_wb = NULL;
820 }
821
006a0973
TH
822 /* SYNC_ALL writes out I_DIRTY_TIME too */
823 if (!wb_has_dirty_io(wb) &&
824 (base_work->sync_mode == WB_SYNC_NONE ||
825 list_empty(&wb->b_dirty_time)))
826 continue;
827 if (skip_if_busy && writeback_in_progress(wb))
db125360
TH
828 continue;
829
8a1270cd
TH
830 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
831
832 work = kmalloc(sizeof(*work), GFP_ATOMIC);
833 if (work) {
834 *work = *base_work;
835 work->nr_pages = nr_pages;
836 work->auto_free = 1;
837 wb_queue_work(wb, work);
838 continue;
db125360 839 }
8a1270cd
TH
840
841 /* alloc failed, execute synchronously using on-stack fallback */
842 work = &fallback_work;
843 *work = *base_work;
844 work->nr_pages = nr_pages;
845 work->auto_free = 0;
846 work->done = &fallback_work_done;
847
848 wb_queue_work(wb, work);
849
b817525a
TH
850 /*
851 * Pin @wb so that it stays on @bdi->wb_list. This allows
852 * continuing iteration from @wb after dropping and
853 * regrabbing rcu read lock.
854 */
855 wb_get(wb);
856 last_wb = wb;
857
8a1270cd
TH
858 rcu_read_unlock();
859 wb_wait_for_completion(bdi, &fallback_work_done);
860 goto restart;
db125360
TH
861 }
862 rcu_read_unlock();
b817525a
TH
863
864 if (last_wb)
865 wb_put(last_wb);
db125360
TH
866}
867
a1a0e23e
TH
868/**
869 * cgroup_writeback_umount - flush inode wb switches for umount
870 *
871 * This function is called when a super_block is about to be destroyed and
872 * flushes in-flight inode wb switches. An inode wb switch goes through
873 * RCU and then workqueue, so the two need to be flushed in order to ensure
874 * that all previously scheduled switches are finished. As wb switches are
875 * rare occurrences and synchronize_rcu() can take a while, perform
876 * flushing iff wb switches are in flight.
877 */
878void cgroup_writeback_umount(void)
879{
880 if (atomic_read(&isw_nr_in_flight)) {
881 synchronize_rcu();
882 flush_workqueue(isw_wq);
883 }
884}
885
886static int __init cgroup_writeback_init(void)
887{
888 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
889 if (!isw_wq)
890 return -ENOMEM;
891 return 0;
892}
893fs_initcall(cgroup_writeback_init);
894
f2b65121
TH
895#else /* CONFIG_CGROUP_WRITEBACK */
896
87e1d789
TH
897static struct bdi_writeback *
898locked_inode_to_wb_and_lock_list(struct inode *inode)
899 __releases(&inode->i_lock)
900 __acquires(&wb->list_lock)
901{
902 struct bdi_writeback *wb = inode_to_wb(inode);
903
904 spin_unlock(&inode->i_lock);
905 spin_lock(&wb->list_lock);
906 return wb;
907}
908
909static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
910 __acquires(&wb->list_lock)
911{
912 struct bdi_writeback *wb = inode_to_wb(inode);
913
914 spin_lock(&wb->list_lock);
915 return wb;
916}
917
f2b65121
TH
918static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
919{
920 return nr_pages;
921}
922
db125360
TH
923static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
924 struct wb_writeback_work *base_work,
925 bool skip_if_busy)
926{
927 might_sleep();
928
006a0973 929 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
db125360 930 base_work->auto_free = 0;
db125360
TH
931 wb_queue_work(&bdi->wb, base_work);
932 }
933}
934
703c2708
TH
935#endif /* CONFIG_CGROUP_WRITEBACK */
936
e8e8a0c6
JA
937/*
938 * Add in the number of potentially dirty inodes, because each inode
939 * write can dirty pagecache in the underlying blockdev.
940 */
941static unsigned long get_nr_dirty_pages(void)
942{
943 return global_node_page_state(NR_FILE_DIRTY) +
944 global_node_page_state(NR_UNSTABLE_NFS) +
945 get_nr_dirty_inodes();
946}
947
948static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
b6e51316 949{
c00ddad3
TH
950 struct wb_writeback_work *work;
951
952 if (!wb_has_dirty_io(wb))
953 return;
954
aac8d41c
JA
955 /*
956 * All callers of this function want to start writeback of all
957 * dirty pages. Places like vmscan can call this at a very
958 * high frequency, causing pointless allocations of tons of
959 * work items and keeping the flusher threads busy retrieving
960 * that work. Ensure that we only allow one of them pending and
961 * inflight at the time. It doesn't matter if we race a little
962 * bit on this, so use the faster separate test/set bit variants.
963 */
964 if (test_bit(WB_start_all, &wb->state))
965 return;
966
967 set_bit(WB_start_all, &wb->state);
968
c00ddad3
TH
969 /*
970 * This is WB_SYNC_NONE writeback, so if allocation fails just
971 * wakeup the thread for old dirty data writeback
972 */
78ebc2f7
TH
973 work = kzalloc(sizeof(*work),
974 GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
c00ddad3 975 if (!work) {
aac8d41c 976 clear_bit(WB_start_all, &wb->state);
5634cc2a 977 trace_writeback_nowork(wb);
c00ddad3
TH
978 wb_wakeup(wb);
979 return;
980 }
981
982 work->sync_mode = WB_SYNC_NONE;
e8e8a0c6 983 work->nr_pages = wb_split_bdi_pages(wb, get_nr_dirty_pages());
47410d88 984 work->range_cyclic = 1;
c00ddad3 985 work->reason = reason;
ac7b19a3 986 work->auto_free = 1;
aac8d41c 987 work->start_all = 1;
c00ddad3
TH
988
989 wb_queue_work(wb, work);
c5444198 990}
d3ddec76 991
c5444198 992/**
9ecf4866
TH
993 * wb_start_background_writeback - start background writeback
994 * @wb: bdi_writback to write from
c5444198
CH
995 *
996 * Description:
6585027a 997 * This makes sure WB_SYNC_NONE background writeback happens. When
9ecf4866 998 * this function returns, it is only guaranteed that for given wb
6585027a
JK
999 * some IO is happening if we are over background dirty threshold.
1000 * Caller need not hold sb s_umount semaphore.
c5444198 1001 */
9ecf4866 1002void wb_start_background_writeback(struct bdi_writeback *wb)
c5444198 1003{
6585027a
JK
1004 /*
1005 * We just wake up the flusher thread. It will perform background
1006 * writeback as soon as there is no other work to do.
1007 */
5634cc2a 1008 trace_writeback_wake_background(wb);
9ecf4866 1009 wb_wakeup(wb);
1da177e4
LT
1010}
1011
a66979ab
DC
1012/*
1013 * Remove the inode from the writeback list it is on.
1014 */
c7f54084 1015void inode_io_list_del(struct inode *inode)
a66979ab 1016{
87e1d789 1017 struct bdi_writeback *wb;
f758eeab 1018
87e1d789 1019 wb = inode_to_wb_and_lock_list(inode);
c7f54084 1020 inode_io_list_del_locked(inode, wb);
52ebea74 1021 spin_unlock(&wb->list_lock);
a66979ab
DC
1022}
1023
6c60d2b5
DC
1024/*
1025 * mark an inode as under writeback on the sb
1026 */
1027void sb_mark_inode_writeback(struct inode *inode)
1028{
1029 struct super_block *sb = inode->i_sb;
1030 unsigned long flags;
1031
1032 if (list_empty(&inode->i_wb_list)) {
1033 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f 1034 if (list_empty(&inode->i_wb_list)) {
6c60d2b5 1035 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
9a46b04f
BF
1036 trace_sb_mark_inode_writeback(inode);
1037 }
6c60d2b5
DC
1038 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1039 }
1040}
1041
1042/*
1043 * clear an inode as under writeback on the sb
1044 */
1045void sb_clear_inode_writeback(struct inode *inode)
1046{
1047 struct super_block *sb = inode->i_sb;
1048 unsigned long flags;
1049
1050 if (!list_empty(&inode->i_wb_list)) {
1051 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
9a46b04f
BF
1052 if (!list_empty(&inode->i_wb_list)) {
1053 list_del_init(&inode->i_wb_list);
1054 trace_sb_clear_inode_writeback(inode);
1055 }
6c60d2b5
DC
1056 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1057 }
1058}
1059
6610a0bc
AM
1060/*
1061 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1062 * furthest end of its superblock's dirty-inode list.
1063 *
1064 * Before stamping the inode's ->dirtied_when, we check to see whether it is
66f3b8e2 1065 * already the most-recently-dirtied inode on the b_dirty list. If that is
6610a0bc
AM
1066 * the case then the inode must have been redirtied while it was being written
1067 * out and we don't reset its dirtied_when.
1068 */
f758eeab 1069static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
6610a0bc 1070{
03ba3782 1071 if (!list_empty(&wb->b_dirty)) {
66f3b8e2 1072 struct inode *tail;
6610a0bc 1073
7ccf19a8 1074 tail = wb_inode(wb->b_dirty.next);
66f3b8e2 1075 if (time_before(inode->dirtied_when, tail->dirtied_when))
6610a0bc
AM
1076 inode->dirtied_when = jiffies;
1077 }
c7f54084 1078 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
6610a0bc
AM
1079}
1080
c986d1e2 1081/*
66f3b8e2 1082 * requeue inode for re-scanning after bdi->b_io list is exhausted.
c986d1e2 1083 */
f758eeab 1084static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
c986d1e2 1085{
c7f54084 1086 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
c986d1e2
AM
1087}
1088
1c0eeaf5
JE
1089static void inode_sync_complete(struct inode *inode)
1090{
365b94ae 1091 inode->i_state &= ~I_SYNC;
4eff96dd
JK
1092 /* If inode is clean an unused, put it into LRU now... */
1093 inode_add_lru(inode);
365b94ae 1094 /* Waiters must see I_SYNC cleared before being woken up */
1c0eeaf5
JE
1095 smp_mb();
1096 wake_up_bit(&inode->i_state, __I_SYNC);
1097}
1098
d2caa3c5
JL
1099static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1100{
1101 bool ret = time_after(inode->dirtied_when, t);
1102#ifndef CONFIG_64BIT
1103 /*
1104 * For inodes being constantly redirtied, dirtied_when can get stuck.
1105 * It _appears_ to be in the future, but is actually in distant past.
1106 * This test is necessary to prevent such wrapped-around relative times
5b0830cb 1107 * from permanently stopping the whole bdi writeback.
d2caa3c5
JL
1108 */
1109 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1110#endif
1111 return ret;
1112}
1113
0ae45f63
TT
1114#define EXPIRE_DIRTY_ATIME 0x0001
1115
2c136579 1116/*
0e2f2b23 1117 * Move expired (dirtied before work->older_than_this) dirty inodes from
697e6fed 1118 * @delaying_queue to @dispatch_queue.
2c136579 1119 */
e84d0a4f 1120static int move_expired_inodes(struct list_head *delaying_queue,
2c136579 1121 struct list_head *dispatch_queue,
0ae45f63 1122 int flags,
ad4e38dd 1123 struct wb_writeback_work *work)
2c136579 1124{
0ae45f63
TT
1125 unsigned long *older_than_this = NULL;
1126 unsigned long expire_time;
5c03449d
SL
1127 LIST_HEAD(tmp);
1128 struct list_head *pos, *node;
cf137307 1129 struct super_block *sb = NULL;
5c03449d 1130 struct inode *inode;
cf137307 1131 int do_sb_sort = 0;
e84d0a4f 1132 int moved = 0;
5c03449d 1133
0ae45f63
TT
1134 if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1135 older_than_this = work->older_than_this;
a2f48706
TT
1136 else if (!work->for_sync) {
1137 expire_time = jiffies - (dirtytime_expire_interval * HZ);
0ae45f63
TT
1138 older_than_this = &expire_time;
1139 }
2c136579 1140 while (!list_empty(delaying_queue)) {
7ccf19a8 1141 inode = wb_inode(delaying_queue->prev);
0ae45f63
TT
1142 if (older_than_this &&
1143 inode_dirtied_after(inode, *older_than_this))
2c136579 1144 break;
c7f54084 1145 list_move(&inode->i_io_list, &tmp);
a8855990 1146 moved++;
0ae45f63
TT
1147 if (flags & EXPIRE_DIRTY_ATIME)
1148 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
a8855990
JK
1149 if (sb_is_blkdev_sb(inode->i_sb))
1150 continue;
cf137307
JA
1151 if (sb && sb != inode->i_sb)
1152 do_sb_sort = 1;
1153 sb = inode->i_sb;
5c03449d
SL
1154 }
1155
cf137307
JA
1156 /* just one sb in list, splice to dispatch_queue and we're done */
1157 if (!do_sb_sort) {
1158 list_splice(&tmp, dispatch_queue);
e84d0a4f 1159 goto out;
cf137307
JA
1160 }
1161
5c03449d
SL
1162 /* Move inodes from one superblock together */
1163 while (!list_empty(&tmp)) {
7ccf19a8 1164 sb = wb_inode(tmp.prev)->i_sb;
5c03449d 1165 list_for_each_prev_safe(pos, node, &tmp) {
7ccf19a8 1166 inode = wb_inode(pos);
5c03449d 1167 if (inode->i_sb == sb)
c7f54084 1168 list_move(&inode->i_io_list, dispatch_queue);
5c03449d 1169 }
2c136579 1170 }
e84d0a4f
WF
1171out:
1172 return moved;
2c136579
FW
1173}
1174
1175/*
1176 * Queue all expired dirty inodes for io, eldest first.
4ea879b9
WF
1177 * Before
1178 * newly dirtied b_dirty b_io b_more_io
1179 * =============> gf edc BA
1180 * After
1181 * newly dirtied b_dirty b_io b_more_io
1182 * =============> g fBAedc
1183 * |
1184 * +--> dequeue for IO
2c136579 1185 */
ad4e38dd 1186static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
66f3b8e2 1187{
e84d0a4f 1188 int moved;
0ae45f63 1189
f758eeab 1190 assert_spin_locked(&wb->list_lock);
4ea879b9 1191 list_splice_init(&wb->b_more_io, &wb->b_io);
0ae45f63
TT
1192 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1193 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1194 EXPIRE_DIRTY_ATIME, work);
d6c10f1f
TH
1195 if (moved)
1196 wb_io_lists_populated(wb);
ad4e38dd 1197 trace_writeback_queue_io(wb, work, moved);
66f3b8e2
JA
1198}
1199
a9185b41 1200static int write_inode(struct inode *inode, struct writeback_control *wbc)
08d8e974 1201{
9fb0a7da
TH
1202 int ret;
1203
1204 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1205 trace_writeback_write_inode_start(inode, wbc);
1206 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1207 trace_writeback_write_inode(inode, wbc);
1208 return ret;
1209 }
03ba3782 1210 return 0;
08d8e974 1211}
08d8e974 1212
1da177e4 1213/*
169ebd90
JK
1214 * Wait for writeback on an inode to complete. Called with i_lock held.
1215 * Caller must make sure inode cannot go away when we drop i_lock.
01c03194 1216 */
169ebd90
JK
1217static void __inode_wait_for_writeback(struct inode *inode)
1218 __releases(inode->i_lock)
1219 __acquires(inode->i_lock)
01c03194
CH
1220{
1221 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1222 wait_queue_head_t *wqh;
1223
1224 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
250df6ed
DC
1225 while (inode->i_state & I_SYNC) {
1226 spin_unlock(&inode->i_lock);
74316201
N
1227 __wait_on_bit(wqh, &wq, bit_wait,
1228 TASK_UNINTERRUPTIBLE);
250df6ed 1229 spin_lock(&inode->i_lock);
58a9d3d8 1230 }
01c03194
CH
1231}
1232
169ebd90
JK
1233/*
1234 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1235 */
1236void inode_wait_for_writeback(struct inode *inode)
1237{
1238 spin_lock(&inode->i_lock);
1239 __inode_wait_for_writeback(inode);
1240 spin_unlock(&inode->i_lock);
1241}
1242
1243/*
1244 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1245 * held and drops it. It is aimed for callers not holding any inode reference
1246 * so once i_lock is dropped, inode can go away.
1247 */
1248static void inode_sleep_on_writeback(struct inode *inode)
1249 __releases(inode->i_lock)
1250{
1251 DEFINE_WAIT(wait);
1252 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1253 int sleep;
1254
1255 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1256 sleep = inode->i_state & I_SYNC;
1257 spin_unlock(&inode->i_lock);
1258 if (sleep)
1259 schedule();
1260 finish_wait(wqh, &wait);
1261}
1262
ccb26b5a
JK
1263/*
1264 * Find proper writeback list for the inode depending on its current state and
1265 * possibly also change of its state while we were doing writeback. Here we
1266 * handle things such as livelock prevention or fairness of writeback among
1267 * inodes. This function can be called only by flusher thread - noone else
1268 * processes all inodes in writeback lists and requeueing inodes behind flusher
1269 * thread's back can have unexpected consequences.
1270 */
1271static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1272 struct writeback_control *wbc)
1273{
1274 if (inode->i_state & I_FREEING)
1275 return;
1276
1277 /*
1278 * Sync livelock prevention. Each inode is tagged and synced in one
1279 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1280 * the dirty time to prevent enqueue and sync it again.
1281 */
1282 if ((inode->i_state & I_DIRTY) &&
1283 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1284 inode->dirtied_when = jiffies;
1285
4f8ad655
JK
1286 if (wbc->pages_skipped) {
1287 /*
1288 * writeback is not making progress due to locked
1289 * buffers. Skip this inode for now.
1290 */
1291 redirty_tail(inode, wb);
1292 return;
1293 }
1294
ccb26b5a
JK
1295 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1296 /*
1297 * We didn't write back all the pages. nfs_writepages()
1298 * sometimes bales out without doing anything.
1299 */
1300 if (wbc->nr_to_write <= 0) {
1301 /* Slice used up. Queue for next turn. */
1302 requeue_io(inode, wb);
1303 } else {
1304 /*
1305 * Writeback blocked by something other than
1306 * congestion. Delay the inode for some time to
1307 * avoid spinning on the CPU (100% iowait)
1308 * retrying writeback of the dirty page/inode
1309 * that cannot be performed immediately.
1310 */
1311 redirty_tail(inode, wb);
1312 }
1313 } else if (inode->i_state & I_DIRTY) {
1314 /*
1315 * Filesystems can dirty the inode during writeback operations,
1316 * such as delayed allocation during submission or metadata
1317 * updates after data IO completion.
1318 */
1319 redirty_tail(inode, wb);
0ae45f63 1320 } else if (inode->i_state & I_DIRTY_TIME) {
a2f48706 1321 inode->dirtied_when = jiffies;
c7f54084 1322 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
ccb26b5a
JK
1323 } else {
1324 /* The inode is clean. Remove from writeback lists. */
c7f54084 1325 inode_io_list_del_locked(inode, wb);
ccb26b5a
JK
1326 }
1327}
1328
01c03194 1329/*
4f8ad655
JK
1330 * Write out an inode and its dirty pages. Do not update the writeback list
1331 * linkage. That is left to the caller. The caller is also responsible for
1332 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1da177e4
LT
1333 */
1334static int
cd8ed2a4 1335__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1da177e4 1336{
1da177e4 1337 struct address_space *mapping = inode->i_mapping;
251d6a47 1338 long nr_to_write = wbc->nr_to_write;
01c03194 1339 unsigned dirty;
1da177e4
LT
1340 int ret;
1341
4f8ad655 1342 WARN_ON(!(inode->i_state & I_SYNC));
1da177e4 1343
9fb0a7da
TH
1344 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1345
1da177e4
LT
1346 ret = do_writepages(mapping, wbc);
1347
26821ed4
CH
1348 /*
1349 * Make sure to wait on the data before writing out the metadata.
1350 * This is important for filesystems that modify metadata on data
7747bd4b
DC
1351 * I/O completion. We don't do it for sync(2) writeback because it has a
1352 * separate, external IO completion path and ->sync_fs for guaranteeing
1353 * inode metadata is written back correctly.
26821ed4 1354 */
7747bd4b 1355 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
26821ed4 1356 int err = filemap_fdatawait(mapping);
1da177e4
LT
1357 if (ret == 0)
1358 ret = err;
1359 }
1360
5547e8aa
DM
1361 /*
1362 * Some filesystems may redirty the inode during the writeback
1363 * due to delalloc, clear dirty metadata flags right before
1364 * write_inode()
1365 */
250df6ed 1366 spin_lock(&inode->i_lock);
9c6ac78e 1367
5547e8aa 1368 dirty = inode->i_state & I_DIRTY;
a2f48706
TT
1369 if (inode->i_state & I_DIRTY_TIME) {
1370 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
dc5ff2b1 1371 wbc->sync_mode == WB_SYNC_ALL ||
a2f48706
TT
1372 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1373 unlikely(time_after(jiffies,
1374 (inode->dirtied_time_when +
1375 dirtytime_expire_interval * HZ)))) {
1376 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1377 trace_writeback_lazytime(inode);
1378 }
1379 } else
1380 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
0ae45f63 1381 inode->i_state &= ~dirty;
9c6ac78e
TH
1382
1383 /*
1384 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1385 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1386 * either they see the I_DIRTY bits cleared or we see the dirtied
1387 * inode.
1388 *
1389 * I_DIRTY_PAGES is always cleared together above even if @mapping
1390 * still has dirty pages. The flag is reinstated after smp_mb() if
1391 * necessary. This guarantees that either __mark_inode_dirty()
1392 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1393 */
1394 smp_mb();
1395
1396 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1397 inode->i_state |= I_DIRTY_PAGES;
1398
250df6ed 1399 spin_unlock(&inode->i_lock);
9c6ac78e 1400
0ae45f63
TT
1401 if (dirty & I_DIRTY_TIME)
1402 mark_inode_dirty_sync(inode);
26821ed4 1403 /* Don't write the inode if only I_DIRTY_PAGES was set */
0ae45f63 1404 if (dirty & ~I_DIRTY_PAGES) {
a9185b41 1405 int err = write_inode(inode, wbc);
1da177e4
LT
1406 if (ret == 0)
1407 ret = err;
1408 }
4f8ad655
JK
1409 trace_writeback_single_inode(inode, wbc, nr_to_write);
1410 return ret;
1411}
1412
1413/*
1414 * Write out an inode's dirty pages. Either the caller has an active reference
1415 * on the inode or the inode has I_WILL_FREE set.
1416 *
1417 * This function is designed to be called for writing back one inode which
1418 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1419 * and does more profound writeback list handling in writeback_sb_inodes().
1420 */
aaf25593
TH
1421static int writeback_single_inode(struct inode *inode,
1422 struct writeback_control *wbc)
4f8ad655 1423{
aaf25593 1424 struct bdi_writeback *wb;
4f8ad655
JK
1425 int ret = 0;
1426
1427 spin_lock(&inode->i_lock);
1428 if (!atomic_read(&inode->i_count))
1429 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1430 else
1431 WARN_ON(inode->i_state & I_WILL_FREE);
1432
1433 if (inode->i_state & I_SYNC) {
1434 if (wbc->sync_mode != WB_SYNC_ALL)
1435 goto out;
1436 /*
169ebd90
JK
1437 * It's a data-integrity sync. We must wait. Since callers hold
1438 * inode reference or inode has I_WILL_FREE set, it cannot go
1439 * away under us.
4f8ad655 1440 */
169ebd90 1441 __inode_wait_for_writeback(inode);
4f8ad655
JK
1442 }
1443 WARN_ON(inode->i_state & I_SYNC);
1444 /*
f9b0e058
JK
1445 * Skip inode if it is clean and we have no outstanding writeback in
1446 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1447 * function since flusher thread may be doing for example sync in
1448 * parallel and if we move the inode, it could get skipped. So here we
1449 * make sure inode is on some writeback list and leave it there unless
1450 * we have completely cleaned the inode.
4f8ad655 1451 */
0ae45f63 1452 if (!(inode->i_state & I_DIRTY_ALL) &&
f9b0e058
JK
1453 (wbc->sync_mode != WB_SYNC_ALL ||
1454 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
4f8ad655
JK
1455 goto out;
1456 inode->i_state |= I_SYNC;
b16b1deb 1457 wbc_attach_and_unlock_inode(wbc, inode);
4f8ad655 1458
cd8ed2a4 1459 ret = __writeback_single_inode(inode, wbc);
1da177e4 1460
b16b1deb 1461 wbc_detach_inode(wbc);
aaf25593
TH
1462
1463 wb = inode_to_wb_and_lock_list(inode);
250df6ed 1464 spin_lock(&inode->i_lock);
4f8ad655
JK
1465 /*
1466 * If inode is clean, remove it from writeback lists. Otherwise don't
1467 * touch it. See comment above for explanation.
1468 */
0ae45f63 1469 if (!(inode->i_state & I_DIRTY_ALL))
c7f54084 1470 inode_io_list_del_locked(inode, wb);
4f8ad655 1471 spin_unlock(&wb->list_lock);
1c0eeaf5 1472 inode_sync_complete(inode);
4f8ad655
JK
1473out:
1474 spin_unlock(&inode->i_lock);
1da177e4
LT
1475 return ret;
1476}
1477
a88a341a 1478static long writeback_chunk_size(struct bdi_writeback *wb,
1a12d8bd 1479 struct wb_writeback_work *work)
d46db3d5
WF
1480{
1481 long pages;
1482
1483 /*
1484 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1485 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1486 * here avoids calling into writeback_inodes_wb() more than once.
1487 *
1488 * The intended call sequence for WB_SYNC_ALL writeback is:
1489 *
1490 * wb_writeback()
1491 * writeback_sb_inodes() <== called only once
1492 * write_cache_pages() <== called once for each inode
1493 * (quickly) tag currently dirty pages
1494 * (maybe slowly) sync all tagged pages
1495 */
1496 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1497 pages = LONG_MAX;
1a12d8bd 1498 else {
a88a341a 1499 pages = min(wb->avg_write_bandwidth / 2,
dcc25ae7 1500 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1a12d8bd
WF
1501 pages = min(pages, work->nr_pages);
1502 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1503 MIN_WRITEBACK_PAGES);
1504 }
d46db3d5
WF
1505
1506 return pages;
1507}
1508
f11c9c5c
ES
1509/*
1510 * Write a portion of b_io inodes which belong to @sb.
edadfb10 1511 *
d46db3d5 1512 * Return the number of pages and/or inodes written.
0ba13fd1
LT
1513 *
1514 * NOTE! This is called with wb->list_lock held, and will
1515 * unlock and relock that for each inode it ends up doing
1516 * IO for.
f11c9c5c 1517 */
d46db3d5
WF
1518static long writeback_sb_inodes(struct super_block *sb,
1519 struct bdi_writeback *wb,
1520 struct wb_writeback_work *work)
1da177e4 1521{
d46db3d5
WF
1522 struct writeback_control wbc = {
1523 .sync_mode = work->sync_mode,
1524 .tagged_writepages = work->tagged_writepages,
1525 .for_kupdate = work->for_kupdate,
1526 .for_background = work->for_background,
7747bd4b 1527 .for_sync = work->for_sync,
d46db3d5
WF
1528 .range_cyclic = work->range_cyclic,
1529 .range_start = 0,
1530 .range_end = LLONG_MAX,
1531 };
1532 unsigned long start_time = jiffies;
1533 long write_chunk;
1534 long wrote = 0; /* count both pages and inodes */
1535
03ba3782 1536 while (!list_empty(&wb->b_io)) {
7ccf19a8 1537 struct inode *inode = wb_inode(wb->b_io.prev);
aaf25593 1538 struct bdi_writeback *tmp_wb;
edadfb10
CH
1539
1540 if (inode->i_sb != sb) {
d46db3d5 1541 if (work->sb) {
edadfb10
CH
1542 /*
1543 * We only want to write back data for this
1544 * superblock, move all inodes not belonging
1545 * to it back onto the dirty list.
1546 */
f758eeab 1547 redirty_tail(inode, wb);
edadfb10
CH
1548 continue;
1549 }
1550
1551 /*
1552 * The inode belongs to a different superblock.
1553 * Bounce back to the caller to unpin this and
1554 * pin the next superblock.
1555 */
d46db3d5 1556 break;
edadfb10
CH
1557 }
1558
9843b76a 1559 /*
331cbdee
WL
1560 * Don't bother with new inodes or inodes being freed, first
1561 * kind does not need periodic writeout yet, and for the latter
9843b76a
CH
1562 * kind writeout is handled by the freer.
1563 */
250df6ed 1564 spin_lock(&inode->i_lock);
9843b76a 1565 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
250df6ed 1566 spin_unlock(&inode->i_lock);
fcc5c222 1567 redirty_tail(inode, wb);
7ef0d737
NP
1568 continue;
1569 }
cc1676d9
JK
1570 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1571 /*
1572 * If this inode is locked for writeback and we are not
1573 * doing writeback-for-data-integrity, move it to
1574 * b_more_io so that writeback can proceed with the
1575 * other inodes on s_io.
1576 *
1577 * We'll have another go at writing back this inode
1578 * when we completed a full scan of b_io.
1579 */
1580 spin_unlock(&inode->i_lock);
1581 requeue_io(inode, wb);
1582 trace_writeback_sb_inodes_requeue(inode);
1583 continue;
1584 }
f0d07b7f
JK
1585 spin_unlock(&wb->list_lock);
1586
4f8ad655
JK
1587 /*
1588 * We already requeued the inode if it had I_SYNC set and we
1589 * are doing WB_SYNC_NONE writeback. So this catches only the
1590 * WB_SYNC_ALL case.
1591 */
169ebd90
JK
1592 if (inode->i_state & I_SYNC) {
1593 /* Wait for I_SYNC. This function drops i_lock... */
1594 inode_sleep_on_writeback(inode);
1595 /* Inode may be gone, start again */
ead188f9 1596 spin_lock(&wb->list_lock);
169ebd90
JK
1597 continue;
1598 }
4f8ad655 1599 inode->i_state |= I_SYNC;
b16b1deb 1600 wbc_attach_and_unlock_inode(&wbc, inode);
169ebd90 1601
a88a341a 1602 write_chunk = writeback_chunk_size(wb, work);
d46db3d5
WF
1603 wbc.nr_to_write = write_chunk;
1604 wbc.pages_skipped = 0;
250df6ed 1605
169ebd90
JK
1606 /*
1607 * We use I_SYNC to pin the inode in memory. While it is set
1608 * evict_inode() will wait so the inode cannot be freed.
1609 */
cd8ed2a4 1610 __writeback_single_inode(inode, &wbc);
250df6ed 1611
b16b1deb 1612 wbc_detach_inode(&wbc);
d46db3d5
WF
1613 work->nr_pages -= write_chunk - wbc.nr_to_write;
1614 wrote += write_chunk - wbc.nr_to_write;
590dca3a
CM
1615
1616 if (need_resched()) {
1617 /*
1618 * We're trying to balance between building up a nice
1619 * long list of IOs to improve our merge rate, and
1620 * getting those IOs out quickly for anyone throttling
1621 * in balance_dirty_pages(). cond_resched() doesn't
1622 * unplug, so get our IOs out the door before we
1623 * give up the CPU.
1624 */
1625 blk_flush_plug(current);
1626 cond_resched();
1627 }
1628
aaf25593
TH
1629 /*
1630 * Requeue @inode if still dirty. Be careful as @inode may
1631 * have been switched to another wb in the meantime.
1632 */
1633 tmp_wb = inode_to_wb_and_lock_list(inode);
4f8ad655 1634 spin_lock(&inode->i_lock);
0ae45f63 1635 if (!(inode->i_state & I_DIRTY_ALL))
d46db3d5 1636 wrote++;
aaf25593 1637 requeue_inode(inode, tmp_wb, &wbc);
4f8ad655 1638 inode_sync_complete(inode);
0f1b1fd8 1639 spin_unlock(&inode->i_lock);
590dca3a 1640
aaf25593
TH
1641 if (unlikely(tmp_wb != wb)) {
1642 spin_unlock(&tmp_wb->list_lock);
1643 spin_lock(&wb->list_lock);
1644 }
1645
d46db3d5
WF
1646 /*
1647 * bail out to wb_writeback() often enough to check
1648 * background threshold and other termination conditions.
1649 */
1650 if (wrote) {
1651 if (time_is_before_jiffies(start_time + HZ / 10UL))
1652 break;
1653 if (work->nr_pages <= 0)
1654 break;
8bc3be27 1655 }
1da177e4 1656 }
d46db3d5 1657 return wrote;
f11c9c5c
ES
1658}
1659
d46db3d5
WF
1660static long __writeback_inodes_wb(struct bdi_writeback *wb,
1661 struct wb_writeback_work *work)
f11c9c5c 1662{
d46db3d5
WF
1663 unsigned long start_time = jiffies;
1664 long wrote = 0;
38f21977 1665
f11c9c5c 1666 while (!list_empty(&wb->b_io)) {
7ccf19a8 1667 struct inode *inode = wb_inode(wb->b_io.prev);
f11c9c5c 1668 struct super_block *sb = inode->i_sb;
9ecc2738 1669
eb6ef3df 1670 if (!trylock_super(sb)) {
0e995816 1671 /*
eb6ef3df 1672 * trylock_super() may fail consistently due to
0e995816
WF
1673 * s_umount being grabbed by someone else. Don't use
1674 * requeue_io() to avoid busy retrying the inode/sb.
1675 */
1676 redirty_tail(inode, wb);
edadfb10 1677 continue;
f11c9c5c 1678 }
d46db3d5 1679 wrote += writeback_sb_inodes(sb, wb, work);
eb6ef3df 1680 up_read(&sb->s_umount);
f11c9c5c 1681
d46db3d5
WF
1682 /* refer to the same tests at the end of writeback_sb_inodes */
1683 if (wrote) {
1684 if (time_is_before_jiffies(start_time + HZ / 10UL))
1685 break;
1686 if (work->nr_pages <= 0)
1687 break;
1688 }
f11c9c5c 1689 }
66f3b8e2 1690 /* Leave any unwritten inodes on b_io */
d46db3d5 1691 return wrote;
66f3b8e2
JA
1692}
1693
7d9f073b 1694static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
0e175a18 1695 enum wb_reason reason)
edadfb10 1696{
d46db3d5
WF
1697 struct wb_writeback_work work = {
1698 .nr_pages = nr_pages,
1699 .sync_mode = WB_SYNC_NONE,
1700 .range_cyclic = 1,
0e175a18 1701 .reason = reason,
d46db3d5 1702 };
505a666e 1703 struct blk_plug plug;
edadfb10 1704
505a666e 1705 blk_start_plug(&plug);
f758eeab 1706 spin_lock(&wb->list_lock);
424b351f 1707 if (list_empty(&wb->b_io))
ad4e38dd 1708 queue_io(wb, &work);
d46db3d5 1709 __writeback_inodes_wb(wb, &work);
f758eeab 1710 spin_unlock(&wb->list_lock);
505a666e 1711 blk_finish_plug(&plug);
edadfb10 1712
d46db3d5
WF
1713 return nr_pages - work.nr_pages;
1714}
03ba3782 1715
03ba3782
JA
1716/*
1717 * Explicit flushing or periodic writeback of "old" data.
66f3b8e2 1718 *
03ba3782
JA
1719 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1720 * dirtying-time in the inode's address_space. So this periodic writeback code
1721 * just walks the superblock inode list, writing back any inodes which are
1722 * older than a specific point in time.
66f3b8e2 1723 *
03ba3782
JA
1724 * Try to run once per dirty_writeback_interval. But if a writeback event
1725 * takes longer than a dirty_writeback_interval interval, then leave a
1726 * one-second gap.
66f3b8e2 1727 *
03ba3782
JA
1728 * older_than_this takes precedence over nr_to_write. So we'll only write back
1729 * all dirty pages if they are all attached to "old" mappings.
66f3b8e2 1730 */
c4a77a6c 1731static long wb_writeback(struct bdi_writeback *wb,
83ba7b07 1732 struct wb_writeback_work *work)
66f3b8e2 1733{
e98be2d5 1734 unsigned long wb_start = jiffies;
d46db3d5 1735 long nr_pages = work->nr_pages;
0dc83bd3 1736 unsigned long oldest_jif;
a5989bdc 1737 struct inode *inode;
d46db3d5 1738 long progress;
505a666e 1739 struct blk_plug plug;
66f3b8e2 1740
0dc83bd3
JK
1741 oldest_jif = jiffies;
1742 work->older_than_this = &oldest_jif;
38f21977 1743
505a666e 1744 blk_start_plug(&plug);
e8dfc305 1745 spin_lock(&wb->list_lock);
03ba3782
JA
1746 for (;;) {
1747 /*
d3ddec76 1748 * Stop writeback when nr_pages has been consumed
03ba3782 1749 */
83ba7b07 1750 if (work->nr_pages <= 0)
03ba3782 1751 break;
66f3b8e2 1752
aa373cf5
JK
1753 /*
1754 * Background writeout and kupdate-style writeback may
1755 * run forever. Stop them if there is other work to do
1756 * so that e.g. sync can proceed. They'll be restarted
1757 * after the other works are all done.
1758 */
1759 if ((work->for_background || work->for_kupdate) &&
f0054bb1 1760 !list_empty(&wb->work_list))
aa373cf5
JK
1761 break;
1762
38f21977 1763 /*
d3ddec76
WF
1764 * For background writeout, stop when we are below the
1765 * background dirty threshold
38f21977 1766 */
aa661bbe 1767 if (work->for_background && !wb_over_bg_thresh(wb))
03ba3782 1768 break;
38f21977 1769
1bc36b64
JK
1770 /*
1771 * Kupdate and background works are special and we want to
1772 * include all inodes that need writing. Livelock avoidance is
1773 * handled by these works yielding to any other work so we are
1774 * safe.
1775 */
ba9aa839 1776 if (work->for_kupdate) {
0dc83bd3 1777 oldest_jif = jiffies -
ba9aa839 1778 msecs_to_jiffies(dirty_expire_interval * 10);
1bc36b64 1779 } else if (work->for_background)
0dc83bd3 1780 oldest_jif = jiffies;
028c2dd1 1781
5634cc2a 1782 trace_writeback_start(wb, work);
e8dfc305 1783 if (list_empty(&wb->b_io))
ad4e38dd 1784 queue_io(wb, work);
83ba7b07 1785 if (work->sb)
d46db3d5 1786 progress = writeback_sb_inodes(work->sb, wb, work);
edadfb10 1787 else
d46db3d5 1788 progress = __writeback_inodes_wb(wb, work);
5634cc2a 1789 trace_writeback_written(wb, work);
028c2dd1 1790
e98be2d5 1791 wb_update_bandwidth(wb, wb_start);
03ba3782
JA
1792
1793 /*
e6fb6da2
WF
1794 * Did we write something? Try for more
1795 *
1796 * Dirty inodes are moved to b_io for writeback in batches.
1797 * The completion of the current batch does not necessarily
1798 * mean the overall work is done. So we keep looping as long
1799 * as made some progress on cleaning pages or inodes.
03ba3782 1800 */
d46db3d5 1801 if (progress)
71fd05a8
JA
1802 continue;
1803 /*
e6fb6da2 1804 * No more inodes for IO, bail
71fd05a8 1805 */
b7a2441f 1806 if (list_empty(&wb->b_more_io))
03ba3782 1807 break;
71fd05a8
JA
1808 /*
1809 * Nothing written. Wait for some inode to
1810 * become available for writeback. Otherwise
1811 * we'll just busyloop.
1812 */
bace9248
TE
1813 trace_writeback_wait(wb, work);
1814 inode = wb_inode(wb->b_more_io.prev);
1815 spin_lock(&inode->i_lock);
1816 spin_unlock(&wb->list_lock);
1817 /* This function drops i_lock... */
1818 inode_sleep_on_writeback(inode);
1819 spin_lock(&wb->list_lock);
03ba3782 1820 }
e8dfc305 1821 spin_unlock(&wb->list_lock);
505a666e 1822 blk_finish_plug(&plug);
03ba3782 1823
d46db3d5 1824 return nr_pages - work->nr_pages;
03ba3782
JA
1825}
1826
1827/*
83ba7b07 1828 * Return the next wb_writeback_work struct that hasn't been processed yet.
03ba3782 1829 */
f0054bb1 1830static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
03ba3782 1831{
83ba7b07 1832 struct wb_writeback_work *work = NULL;
03ba3782 1833
f0054bb1
TH
1834 spin_lock_bh(&wb->work_lock);
1835 if (!list_empty(&wb->work_list)) {
1836 work = list_entry(wb->work_list.next,
83ba7b07
CH
1837 struct wb_writeback_work, list);
1838 list_del_init(&work->list);
03ba3782 1839 }
f0054bb1 1840 spin_unlock_bh(&wb->work_lock);
aac8d41c
JA
1841
1842 /*
1843 * Once we start processing a work item that had !nr_pages,
1844 * clear the wb state bit for that so we can allow more.
1845 */
1846 if (work && work->start_all)
1847 clear_bit(WB_start_all, &wb->state);
1848
83ba7b07 1849 return work;
03ba3782
JA
1850}
1851
6585027a
JK
1852static long wb_check_background_flush(struct bdi_writeback *wb)
1853{
aa661bbe 1854 if (wb_over_bg_thresh(wb)) {
6585027a
JK
1855
1856 struct wb_writeback_work work = {
1857 .nr_pages = LONG_MAX,
1858 .sync_mode = WB_SYNC_NONE,
1859 .for_background = 1,
1860 .range_cyclic = 1,
0e175a18 1861 .reason = WB_REASON_BACKGROUND,
6585027a
JK
1862 };
1863
1864 return wb_writeback(wb, &work);
1865 }
1866
1867 return 0;
1868}
1869
03ba3782
JA
1870static long wb_check_old_data_flush(struct bdi_writeback *wb)
1871{
1872 unsigned long expired;
1873 long nr_pages;
1874
69b62d01
JA
1875 /*
1876 * When set to zero, disable periodic writeback
1877 */
1878 if (!dirty_writeback_interval)
1879 return 0;
1880
03ba3782
JA
1881 expired = wb->last_old_flush +
1882 msecs_to_jiffies(dirty_writeback_interval * 10);
1883 if (time_before(jiffies, expired))
1884 return 0;
1885
1886 wb->last_old_flush = jiffies;
cdf01dd5 1887 nr_pages = get_nr_dirty_pages();
03ba3782 1888
c4a77a6c 1889 if (nr_pages) {
83ba7b07 1890 struct wb_writeback_work work = {
c4a77a6c
JA
1891 .nr_pages = nr_pages,
1892 .sync_mode = WB_SYNC_NONE,
1893 .for_kupdate = 1,
1894 .range_cyclic = 1,
0e175a18 1895 .reason = WB_REASON_PERIODIC,
c4a77a6c
JA
1896 };
1897
83ba7b07 1898 return wb_writeback(wb, &work);
c4a77a6c 1899 }
03ba3782
JA
1900
1901 return 0;
1902}
1903
1904/*
1905 * Retrieve work items and do the writeback they describe
1906 */
25d130ba 1907static long wb_do_writeback(struct bdi_writeback *wb)
03ba3782 1908{
83ba7b07 1909 struct wb_writeback_work *work;
c4a77a6c 1910 long wrote = 0;
03ba3782 1911
4452226e 1912 set_bit(WB_writeback_running, &wb->state);
f0054bb1 1913 while ((work = get_next_work_item(wb)) != NULL) {
5634cc2a 1914 trace_writeback_exec(wb, work);
83ba7b07 1915 wrote += wb_writeback(wb, work);
4a3a485b 1916 finish_writeback_work(wb, work);
03ba3782
JA
1917 }
1918
1919 /*
1920 * Check for periodic writeback, kupdated() style
1921 */
1922 wrote += wb_check_old_data_flush(wb);
6585027a 1923 wrote += wb_check_background_flush(wb);
4452226e 1924 clear_bit(WB_writeback_running, &wb->state);
03ba3782
JA
1925
1926 return wrote;
1927}
1928
1929/*
1930 * Handle writeback of dirty data for the device backed by this bdi. Also
839a8e86 1931 * reschedules periodically and does kupdated style flushing.
03ba3782 1932 */
f0054bb1 1933void wb_workfn(struct work_struct *work)
03ba3782 1934{
839a8e86
TH
1935 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1936 struct bdi_writeback, dwork);
03ba3782
JA
1937 long pages_written;
1938
f0054bb1 1939 set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
766f9164 1940 current->flags |= PF_SWAPWRITE;
455b2864 1941
839a8e86 1942 if (likely(!current_is_workqueue_rescuer() ||
4452226e 1943 !test_bit(WB_registered, &wb->state))) {
6467716a 1944 /*
f0054bb1 1945 * The normal path. Keep writing back @wb until its
839a8e86 1946 * work_list is empty. Note that this path is also taken
f0054bb1 1947 * if @wb is shutting down even when we're running off the
839a8e86 1948 * rescuer as work_list needs to be drained.
6467716a 1949 */
839a8e86 1950 do {
25d130ba 1951 pages_written = wb_do_writeback(wb);
839a8e86 1952 trace_writeback_pages_written(pages_written);
f0054bb1 1953 } while (!list_empty(&wb->work_list));
839a8e86
TH
1954 } else {
1955 /*
1956 * bdi_wq can't get enough workers and we're running off
1957 * the emergency worker. Don't hog it. Hopefully, 1024 is
1958 * enough for efficient IO.
1959 */
f0054bb1 1960 pages_written = writeback_inodes_wb(wb, 1024,
839a8e86 1961 WB_REASON_FORKER_THREAD);
455b2864 1962 trace_writeback_pages_written(pages_written);
03ba3782
JA
1963 }
1964
f0054bb1 1965 if (!list_empty(&wb->work_list))
6ca738d6
DB
1966 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1967 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
f0054bb1 1968 wb_wakeup_delayed(wb);
455b2864 1969
839a8e86 1970 current->flags &= ~PF_SWAPWRITE;
03ba3782
JA
1971}
1972
595043e5
JA
1973/*
1974 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1975 * write back the whole world.
1976 */
1977static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
e8e8a0c6 1978 enum wb_reason reason)
595043e5
JA
1979{
1980 struct bdi_writeback *wb;
1981
1982 if (!bdi_has_dirty_io(bdi))
1983 return;
1984
1985 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
e8e8a0c6 1986 wb_start_writeback(wb, reason);
595043e5
JA
1987}
1988
1989void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1990 enum wb_reason reason)
1991{
595043e5 1992 rcu_read_lock();
e8e8a0c6 1993 __wakeup_flusher_threads_bdi(bdi, reason);
595043e5
JA
1994 rcu_read_unlock();
1995}
1996
03ba3782 1997/*
9ba4b2df 1998 * Wakeup the flusher threads to start writeback of all currently dirty pages
03ba3782 1999 */
9ba4b2df 2000void wakeup_flusher_threads(enum wb_reason reason)
03ba3782 2001{
b8c2f347 2002 struct backing_dev_info *bdi;
03ba3782 2003
51350ea0
KK
2004 /*
2005 * If we are expecting writeback progress we must submit plugged IO.
2006 */
2007 if (blk_needs_flush_plug(current))
2008 blk_schedule_flush_plug(current);
2009
b8c2f347 2010 rcu_read_lock();
595043e5 2011 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
e8e8a0c6 2012 __wakeup_flusher_threads_bdi(bdi, reason);
cfc4ba53 2013 rcu_read_unlock();
1da177e4
LT
2014}
2015
a2f48706
TT
2016/*
2017 * Wake up bdi's periodically to make sure dirtytime inodes gets
2018 * written back periodically. We deliberately do *not* check the
2019 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2020 * kernel to be constantly waking up once there are any dirtytime
2021 * inodes on the system. So instead we define a separate delayed work
2022 * function which gets called much more rarely. (By default, only
2023 * once every 12 hours.)
2024 *
2025 * If there is any other write activity going on in the file system,
2026 * this function won't be necessary. But if the only thing that has
2027 * happened on the file system is a dirtytime inode caused by an atime
2028 * update, we need this infrastructure below to make sure that inode
2029 * eventually gets pushed out to disk.
2030 */
2031static void wakeup_dirtytime_writeback(struct work_struct *w);
2032static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2033
2034static void wakeup_dirtytime_writeback(struct work_struct *w)
2035{
2036 struct backing_dev_info *bdi;
2037
2038 rcu_read_lock();
2039 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
001fe6f6 2040 struct bdi_writeback *wb;
001fe6f6 2041
b817525a 2042 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
6fdf860f
TH
2043 if (!list_empty(&wb->b_dirty_time))
2044 wb_wakeup(wb);
a2f48706
TT
2045 }
2046 rcu_read_unlock();
2047 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2048}
2049
2050static int __init start_dirtytime_writeback(void)
2051{
2052 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2053 return 0;
2054}
2055__initcall(start_dirtytime_writeback);
2056
1efff914
TT
2057int dirtytime_interval_handler(struct ctl_table *table, int write,
2058 void __user *buffer, size_t *lenp, loff_t *ppos)
2059{
2060 int ret;
2061
2062 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2063 if (ret == 0 && write)
2064 mod_delayed_work(system_wq, &dirtytime_work, 0);
2065 return ret;
2066}
2067
03ba3782
JA
2068static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2069{
2070 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2071 struct dentry *dentry;
2072 const char *name = "?";
2073
2074 dentry = d_find_alias(inode);
2075 if (dentry) {
2076 spin_lock(&dentry->d_lock);
2077 name = (const char *) dentry->d_name.name;
2078 }
2079 printk(KERN_DEBUG
2080 "%s(%d): dirtied inode %lu (%s) on %s\n",
2081 current->comm, task_pid_nr(current), inode->i_ino,
2082 name, inode->i_sb->s_id);
2083 if (dentry) {
2084 spin_unlock(&dentry->d_lock);
2085 dput(dentry);
2086 }
2087 }
2088}
2089
2090/**
0117d427
MCC
2091 * __mark_inode_dirty - internal function
2092 *
2093 * @inode: inode to mark
2094 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2095 *
2096 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2097 * mark_inode_dirty_sync.
1da177e4 2098 *
03ba3782
JA
2099 * Put the inode on the super block's dirty list.
2100 *
2101 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2102 * dirty list only if it is hashed or if it refers to a blockdev.
2103 * If it was not hashed, it will never be added to the dirty list
2104 * even if it is later hashed, as it will have been marked dirty already.
2105 *
2106 * In short, make sure you hash any inodes _before_ you start marking
2107 * them dirty.
1da177e4 2108 *
03ba3782
JA
2109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2111 * the kernel-internal blockdev inode represents the dirtying time of the
2112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2113 * page->mapping->host, so the page-dirtying time is recorded in the internal
2114 * blockdev inode.
1da177e4 2115 */
03ba3782 2116void __mark_inode_dirty(struct inode *inode, int flags)
1da177e4 2117{
dbce03b9 2118#define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
03ba3782 2119 struct super_block *sb = inode->i_sb;
0ae45f63
TT
2120 int dirtytime;
2121
2122 trace_writeback_mark_inode_dirty(inode, flags);
1da177e4 2123
03ba3782
JA
2124 /*
2125 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2126 * dirty the inode itself
2127 */
0ae45f63 2128 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
9fb0a7da
TH
2129 trace_writeback_dirty_inode_start(inode, flags);
2130
03ba3782 2131 if (sb->s_op->dirty_inode)
aa385729 2132 sb->s_op->dirty_inode(inode, flags);
9fb0a7da
TH
2133
2134 trace_writeback_dirty_inode(inode, flags);
03ba3782 2135 }
0ae45f63
TT
2136 if (flags & I_DIRTY_INODE)
2137 flags &= ~I_DIRTY_TIME;
2138 dirtytime = flags & I_DIRTY_TIME;
03ba3782
JA
2139
2140 /*
9c6ac78e
TH
2141 * Paired with smp_mb() in __writeback_single_inode() for the
2142 * following lockless i_state test. See there for details.
03ba3782
JA
2143 */
2144 smp_mb();
2145
0ae45f63
TT
2146 if (((inode->i_state & flags) == flags) ||
2147 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
03ba3782
JA
2148 return;
2149
2150 if (unlikely(block_dump))
2151 block_dump___mark_inode_dirty(inode);
2152
250df6ed 2153 spin_lock(&inode->i_lock);
0ae45f63
TT
2154 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2155 goto out_unlock_inode;
03ba3782
JA
2156 if ((inode->i_state & flags) != flags) {
2157 const int was_dirty = inode->i_state & I_DIRTY;
2158
52ebea74
TH
2159 inode_attach_wb(inode, NULL);
2160
0ae45f63
TT
2161 if (flags & I_DIRTY_INODE)
2162 inode->i_state &= ~I_DIRTY_TIME;
03ba3782
JA
2163 inode->i_state |= flags;
2164
2165 /*
2166 * If the inode is being synced, just update its dirty state.
2167 * The unlocker will place the inode on the appropriate
2168 * superblock list, based upon its state.
2169 */
2170 if (inode->i_state & I_SYNC)
250df6ed 2171 goto out_unlock_inode;
03ba3782
JA
2172
2173 /*
2174 * Only add valid (hashed) inodes to the superblock's
2175 * dirty list. Add blockdev inodes as well.
2176 */
2177 if (!S_ISBLK(inode->i_mode)) {
1d3382cb 2178 if (inode_unhashed(inode))
250df6ed 2179 goto out_unlock_inode;
03ba3782 2180 }
a4ffdde6 2181 if (inode->i_state & I_FREEING)
250df6ed 2182 goto out_unlock_inode;
03ba3782
JA
2183
2184 /*
2185 * If the inode was already on b_dirty/b_io/b_more_io, don't
2186 * reposition it (that would break b_dirty time-ordering).
2187 */
2188 if (!was_dirty) {
87e1d789 2189 struct bdi_writeback *wb;
d6c10f1f 2190 struct list_head *dirty_list;
a66979ab 2191 bool wakeup_bdi = false;
253c34e9 2192
87e1d789 2193 wb = locked_inode_to_wb_and_lock_list(inode);
253c34e9 2194
0747259d
TH
2195 WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2196 !test_bit(WB_registered, &wb->state),
2197 "bdi-%s not registered\n", wb->bdi->name);
03ba3782
JA
2198
2199 inode->dirtied_when = jiffies;
a2f48706
TT
2200 if (dirtytime)
2201 inode->dirtied_time_when = jiffies;
d6c10f1f 2202
a2f48706 2203 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
0747259d 2204 dirty_list = &wb->b_dirty;
a2f48706 2205 else
0747259d 2206 dirty_list = &wb->b_dirty_time;
d6c10f1f 2207
c7f54084 2208 wakeup_bdi = inode_io_list_move_locked(inode, wb,
d6c10f1f
TH
2209 dirty_list);
2210
0747259d 2211 spin_unlock(&wb->list_lock);
0ae45f63 2212 trace_writeback_dirty_inode_enqueue(inode);
a66979ab 2213
d6c10f1f
TH
2214 /*
2215 * If this is the first dirty inode for this bdi,
2216 * we have to wake-up the corresponding bdi thread
2217 * to make sure background write-back happens
2218 * later.
2219 */
0747259d
TH
2220 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2221 wb_wakeup_delayed(wb);
a66979ab 2222 return;
1da177e4 2223 }
1da177e4 2224 }
250df6ed
DC
2225out_unlock_inode:
2226 spin_unlock(&inode->i_lock);
253c34e9 2227
dbce03b9 2228#undef I_DIRTY_INODE
03ba3782
JA
2229}
2230EXPORT_SYMBOL(__mark_inode_dirty);
2231
e97fedb9
DC
2232/*
2233 * The @s_sync_lock is used to serialise concurrent sync operations
2234 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2235 * Concurrent callers will block on the s_sync_lock rather than doing contending
2236 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2237 * has been issued up to the time this function is enter is guaranteed to be
2238 * completed by the time we have gained the lock and waited for all IO that is
2239 * in progress regardless of the order callers are granted the lock.
2240 */
b6e51316 2241static void wait_sb_inodes(struct super_block *sb)
03ba3782 2242{
6c60d2b5 2243 LIST_HEAD(sync_list);
03ba3782
JA
2244
2245 /*
2246 * We need to be protected against the filesystem going from
2247 * r/o to r/w or vice versa.
2248 */
b6e51316 2249 WARN_ON(!rwsem_is_locked(&sb->s_umount));
03ba3782 2250
e97fedb9 2251 mutex_lock(&sb->s_sync_lock);
03ba3782
JA
2252
2253 /*
6c60d2b5
DC
2254 * Splice the writeback list onto a temporary list to avoid waiting on
2255 * inodes that have started writeback after this point.
2256 *
2257 * Use rcu_read_lock() to keep the inodes around until we have a
2258 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2259 * the local list because inodes can be dropped from either by writeback
2260 * completion.
2261 */
2262 rcu_read_lock();
2263 spin_lock_irq(&sb->s_inode_wblist_lock);
2264 list_splice_init(&sb->s_inodes_wb, &sync_list);
2265
2266 /*
2267 * Data integrity sync. Must wait for all pages under writeback, because
2268 * there may have been pages dirtied before our sync call, but which had
2269 * writeout started before we write it out. In which case, the inode
2270 * may not be on the dirty list, but we still have to wait for that
2271 * writeout.
03ba3782 2272 */
6c60d2b5
DC
2273 while (!list_empty(&sync_list)) {
2274 struct inode *inode = list_first_entry(&sync_list, struct inode,
2275 i_wb_list);
250df6ed 2276 struct address_space *mapping = inode->i_mapping;
03ba3782 2277
6c60d2b5
DC
2278 /*
2279 * Move each inode back to the wb list before we drop the lock
2280 * to preserve consistency between i_wb_list and the mapping
2281 * writeback tag. Writeback completion is responsible to remove
2282 * the inode from either list once the writeback tag is cleared.
2283 */
2284 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2285
2286 /*
2287 * The mapping can appear untagged while still on-list since we
2288 * do not have the mapping lock. Skip it here, wb completion
2289 * will remove it.
2290 */
2291 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2292 continue;
2293
2294 spin_unlock_irq(&sb->s_inode_wblist_lock);
2295
250df6ed 2296 spin_lock(&inode->i_lock);
6c60d2b5 2297 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
250df6ed 2298 spin_unlock(&inode->i_lock);
6c60d2b5
DC
2299
2300 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2301 continue;
250df6ed 2302 }
03ba3782 2303 __iget(inode);
250df6ed 2304 spin_unlock(&inode->i_lock);
6c60d2b5 2305 rcu_read_unlock();
03ba3782 2306
aa750fd7
JN
2307 /*
2308 * We keep the error status of individual mapping so that
2309 * applications can catch the writeback error using fsync(2).
2310 * See filemap_fdatawait_keep_errors() for details.
2311 */
2312 filemap_fdatawait_keep_errors(mapping);
03ba3782
JA
2313
2314 cond_resched();
2315
6c60d2b5
DC
2316 iput(inode);
2317
2318 rcu_read_lock();
2319 spin_lock_irq(&sb->s_inode_wblist_lock);
03ba3782 2320 }
6c60d2b5
DC
2321 spin_unlock_irq(&sb->s_inode_wblist_lock);
2322 rcu_read_unlock();
e97fedb9 2323 mutex_unlock(&sb->s_sync_lock);
1da177e4
LT
2324}
2325
f30a7d0c
TH
2326static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2327 enum wb_reason reason, bool skip_if_busy)
1da177e4 2328{
cc395d7f 2329 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2330 struct wb_writeback_work work = {
6e6938b6
WF
2331 .sb = sb,
2332 .sync_mode = WB_SYNC_NONE,
2333 .tagged_writepages = 1,
2334 .done = &done,
2335 .nr_pages = nr,
0e175a18 2336 .reason = reason,
3c4d7165 2337 };
e7972912 2338 struct backing_dev_info *bdi = sb->s_bdi;
d8a8559c 2339
e7972912 2340 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
6eedc701 2341 return;
cf37e972 2342 WARN_ON(!rwsem_is_locked(&sb->s_umount));
f30a7d0c 2343
db125360 2344 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
cc395d7f 2345 wb_wait_for_completion(bdi, &done);
e913fc82 2346}
f30a7d0c
TH
2347
2348/**
2349 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2350 * @sb: the superblock
2351 * @nr: the number of pages to write
2352 * @reason: reason why some writeback work initiated
2353 *
2354 * Start writeback on some inodes on this super_block. No guarantees are made
2355 * on how many (if any) will be written, and this function does not wait
2356 * for IO completion of submitted IO.
2357 */
2358void writeback_inodes_sb_nr(struct super_block *sb,
2359 unsigned long nr,
2360 enum wb_reason reason)
2361{
2362 __writeback_inodes_sb_nr(sb, nr, reason, false);
2363}
3259f8be
CM
2364EXPORT_SYMBOL(writeback_inodes_sb_nr);
2365
2366/**
2367 * writeback_inodes_sb - writeback dirty inodes from given super_block
2368 * @sb: the superblock
786228ab 2369 * @reason: reason why some writeback work was initiated
3259f8be
CM
2370 *
2371 * Start writeback on some inodes on this super_block. No guarantees are made
2372 * on how many (if any) will be written, and this function does not wait
2373 * for IO completion of submitted IO.
2374 */
0e175a18 2375void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2376{
0e175a18 2377 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2378}
0e3c9a22 2379EXPORT_SYMBOL(writeback_inodes_sb);
e913fc82 2380
17bd55d0 2381/**
10ee27a0 2382 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
17bd55d0 2383 * @sb: the superblock
10ee27a0
MX
2384 * @nr: the number of pages to write
2385 * @reason: the reason of writeback
17bd55d0 2386 *
10ee27a0 2387 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
17bd55d0
ES
2388 * Returns 1 if writeback was started, 0 if not.
2389 */
f30a7d0c
TH
2390bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2391 enum wb_reason reason)
17bd55d0 2392{
10ee27a0 2393 if (!down_read_trylock(&sb->s_umount))
f30a7d0c 2394 return false;
10ee27a0 2395
f30a7d0c 2396 __writeback_inodes_sb_nr(sb, nr, reason, true);
10ee27a0 2397 up_read(&sb->s_umount);
f30a7d0c 2398 return true;
17bd55d0 2399}
10ee27a0 2400EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
17bd55d0 2401
3259f8be 2402/**
10ee27a0 2403 * try_to_writeback_inodes_sb - try to start writeback if none underway
3259f8be 2404 * @sb: the superblock
786228ab 2405 * @reason: reason why some writeback work was initiated
3259f8be 2406 *
10ee27a0 2407 * Implement by try_to_writeback_inodes_sb_nr()
3259f8be
CM
2408 * Returns 1 if writeback was started, 0 if not.
2409 */
f30a7d0c 2410bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
3259f8be 2411{
10ee27a0 2412 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
3259f8be 2413}
10ee27a0 2414EXPORT_SYMBOL(try_to_writeback_inodes_sb);
3259f8be 2415
d8a8559c
JA
2416/**
2417 * sync_inodes_sb - sync sb inode pages
0dc83bd3 2418 * @sb: the superblock
d8a8559c
JA
2419 *
2420 * This function writes and waits on any dirty inode belonging to this
0dc83bd3 2421 * super_block.
d8a8559c 2422 */
0dc83bd3 2423void sync_inodes_sb(struct super_block *sb)
d8a8559c 2424{
cc395d7f 2425 DEFINE_WB_COMPLETION_ONSTACK(done);
83ba7b07 2426 struct wb_writeback_work work = {
3c4d7165
CH
2427 .sb = sb,
2428 .sync_mode = WB_SYNC_ALL,
2429 .nr_pages = LONG_MAX,
2430 .range_cyclic = 0,
83ba7b07 2431 .done = &done,
0e175a18 2432 .reason = WB_REASON_SYNC,
7747bd4b 2433 .for_sync = 1,
3c4d7165 2434 };
e7972912 2435 struct backing_dev_info *bdi = sb->s_bdi;
3c4d7165 2436
006a0973
TH
2437 /*
2438 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2439 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2440 * bdi_has_dirty() need to be written out too.
2441 */
2442 if (bdi == &noop_backing_dev_info)
6eedc701 2443 return;
cf37e972
CH
2444 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2445
db125360 2446 bdi_split_work_to_wbs(bdi, &work, false);
cc395d7f 2447 wb_wait_for_completion(bdi, &done);
83ba7b07 2448
b6e51316 2449 wait_sb_inodes(sb);
1da177e4 2450}
d8a8559c 2451EXPORT_SYMBOL(sync_inodes_sb);
1da177e4 2452
1da177e4 2453/**
7f04c26d
AA
2454 * write_inode_now - write an inode to disk
2455 * @inode: inode to write to disk
2456 * @sync: whether the write should be synchronous or not
2457 *
2458 * This function commits an inode to disk immediately if it is dirty. This is
2459 * primarily needed by knfsd.
1da177e4 2460 *
7f04c26d 2461 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1da177e4 2462 */
1da177e4
LT
2463int write_inode_now(struct inode *inode, int sync)
2464{
1da177e4
LT
2465 struct writeback_control wbc = {
2466 .nr_to_write = LONG_MAX,
18914b18 2467 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
111ebb6e
OH
2468 .range_start = 0,
2469 .range_end = LLONG_MAX,
1da177e4
LT
2470 };
2471
2472 if (!mapping_cap_writeback_dirty(inode->i_mapping))
49364ce2 2473 wbc.nr_to_write = 0;
1da177e4
LT
2474
2475 might_sleep();
aaf25593 2476 return writeback_single_inode(inode, &wbc);
1da177e4
LT
2477}
2478EXPORT_SYMBOL(write_inode_now);
2479
2480/**
2481 * sync_inode - write an inode and its pages to disk.
2482 * @inode: the inode to sync
2483 * @wbc: controls the writeback mode
2484 *
2485 * sync_inode() will write an inode and its pages to disk. It will also
2486 * correctly update the inode on its superblock's dirty inode lists and will
2487 * update inode->i_state.
2488 *
2489 * The caller must have a ref on the inode.
2490 */
2491int sync_inode(struct inode *inode, struct writeback_control *wbc)
2492{
aaf25593 2493 return writeback_single_inode(inode, wbc);
1da177e4
LT
2494}
2495EXPORT_SYMBOL(sync_inode);
c3765016
CH
2496
2497/**
c691b9d9 2498 * sync_inode_metadata - write an inode to disk
c3765016
CH
2499 * @inode: the inode to sync
2500 * @wait: wait for I/O to complete.
2501 *
c691b9d9 2502 * Write an inode to disk and adjust its dirty state after completion.
c3765016
CH
2503 *
2504 * Note: only writes the actual inode, no associated data or other metadata.
2505 */
2506int sync_inode_metadata(struct inode *inode, int wait)
2507{
2508 struct writeback_control wbc = {
2509 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2510 .nr_to_write = 0, /* metadata-only */
2511 };
2512
2513 return sync_inode(inode, &wbc);
2514}
2515EXPORT_SYMBOL(sync_inode_metadata);