]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/gfs2/lock_dlm.c
Merge branch 'for-5.13/warnings' into for-linus
[mirror_ubuntu-jammy-kernel.git] / fs / gfs2 / lock_dlm.c
CommitLineData
7336d0e6 1// SPDX-License-Identifier: GPL-2.0-only
f057f6cd
SW
2/*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
e0c2a9aa 4 * Copyright 2004-2011 Red Hat, Inc.
f057f6cd
SW
5 */
6
d77d1b58
JP
7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
f057f6cd
SW
9#include <linux/fs.h>
10#include <linux/dlm.h>
5a0e3ad6 11#include <linux/slab.h>
f057f6cd 12#include <linux/types.h>
e0c2a9aa 13#include <linux/delay.h>
f057f6cd 14#include <linux/gfs2_ondisk.h>
174cd4b1 15#include <linux/sched/signal.h>
f057f6cd
SW
16
17#include "incore.h"
18#include "glock.h"
601ef0d5
BP
19#include "glops.h"
20#include "recovery.h"
f057f6cd 21#include "util.h"
e0c2a9aa 22#include "sys.h"
a245769f 23#include "trace_gfs2.h"
f057f6cd 24
a245769f
SW
25/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
c9ea8c8b 32 * update the current srtt estimate. The variance estimate is a bit
5a5ec83d
AG
33 * more complicated. We subtract the current variance estimate from
34 * the abs value of the @delta and add 1/4 of that to the running
35 * total. That's equivalent to 3/4 of the current variance
36 * estimate plus 1/4 of the abs of @delta.
a245769f
SW
37 *
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
40 *
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
44 */
45
46static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47 s64 sample)
48{
49 s64 delta = sample - s->stats[index];
50 s->stats[index] += (delta >> 3);
51 index++;
5a5ec83d 52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
a245769f
SW
53}
54
55/**
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
58 *
59 * This assumes that gl->gl_dstamp has been set earlier.
60 *
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
63 * reply from the dlm.
64 *
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
71 */
72static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73{
74 struct gfs2_pcpu_lkstats *lks;
75 const unsigned gltype = gl->gl_name.ln_type;
76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78 s64 rtt;
79
80 preempt_disable();
81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
15562c43 82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
a245769f
SW
83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
85 preempt_enable();
86
87 trace_gfs2_glock_lock_time(gl, rtt);
88}
89
90/**
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
93 *
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
96 * each dlm call.
97 */
98
99static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100{
101 struct gfs2_pcpu_lkstats *lks;
102 const unsigned gltype = gl->gl_name.ln_type;
103 ktime_t dstamp;
104 s64 irt;
105
106 preempt_disable();
107 dstamp = gl->gl_dstamp;
108 gl->gl_dstamp = ktime_get_real();
109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
15562c43 110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
a245769f
SW
111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
113 preempt_enable();
114}
115
f057f6cd
SW
116static void gdlm_ast(void *arg)
117{
118 struct gfs2_glock *gl = arg;
119 unsigned ret = gl->gl_state;
120
a245769f 121 gfs2_update_reply_times(gl);
f057f6cd
SW
122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123
4e2f8849
DT
124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
f057f6cd
SW
126
127 switch (gl->gl_lksb.sb_status) {
128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
601ef0d5
BP
129 if (gl->gl_ops->go_free)
130 gl->gl_ops->go_free(gl);
fc0e38da 131 gfs2_glock_free(gl);
f057f6cd
SW
132 return;
133 case -DLM_ECANCEL: /* Cancel while getting lock */
134 ret |= LM_OUT_CANCELED;
135 goto out;
136 case -EAGAIN: /* Try lock fails */
1fea7c25 137 case -EDEADLK: /* Deadlock detected */
f057f6cd 138 goto out;
1fea7c25 139 case -ETIMEDOUT: /* Canceled due to timeout */
f057f6cd
SW
140 ret |= LM_OUT_ERROR;
141 goto out;
142 case 0: /* Success */
143 break;
144 default: /* Something unexpected */
145 BUG();
146 }
147
02ffad08 148 ret = gl->gl_req;
f057f6cd 149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
02ffad08 150 if (gl->gl_req == LM_ST_SHARED)
f057f6cd 151 ret = LM_ST_DEFERRED;
02ffad08 152 else if (gl->gl_req == LM_ST_DEFERRED)
f057f6cd
SW
153 ret = LM_ST_SHARED;
154 else
155 BUG();
156 }
157
158 set_bit(GLF_INITIAL, &gl->gl_flags);
159 gfs2_glock_complete(gl, ret);
160 return;
161out:
162 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 gl->gl_lksb.sb_lkid = 0;
164 gfs2_glock_complete(gl, ret);
165}
166
167static void gdlm_bast(void *arg, int mode)
168{
169 struct gfs2_glock *gl = arg;
170
171 switch (mode) {
172 case DLM_LOCK_EX:
173 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 break;
175 case DLM_LOCK_CW:
176 gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 break;
178 case DLM_LOCK_PR:
179 gfs2_glock_cb(gl, LM_ST_SHARED);
180 break;
181 default:
e54c78a2 182 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
f057f6cd
SW
183 BUG();
184 }
185}
186
187/* convert gfs lock-state to dlm lock-mode */
188
e54c78a2 189static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
f057f6cd
SW
190{
191 switch (lmstate) {
192 case LM_ST_UNLOCKED:
193 return DLM_LOCK_NL;
194 case LM_ST_EXCLUSIVE:
195 return DLM_LOCK_EX;
196 case LM_ST_DEFERRED:
197 return DLM_LOCK_CW;
198 case LM_ST_SHARED:
199 return DLM_LOCK_PR;
200 }
e54c78a2 201 fs_err(sdp, "unknown LM state %d\n", lmstate);
f057f6cd
SW
202 BUG();
203 return -1;
204}
205
4c569a72 206static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
f057f6cd
SW
207 const int req)
208{
dba2d70c
DT
209 u32 lkf = 0;
210
4e2f8849 211 if (gl->gl_lksb.sb_lvbptr)
dba2d70c 212 lkf |= DLM_LKF_VALBLK;
f057f6cd
SW
213
214 if (gfs_flags & LM_FLAG_TRY)
215 lkf |= DLM_LKF_NOQUEUE;
216
217 if (gfs_flags & LM_FLAG_TRY_1CB) {
218 lkf |= DLM_LKF_NOQUEUE;
219 lkf |= DLM_LKF_NOQUEUEBAST;
220 }
221
222 if (gfs_flags & LM_FLAG_PRIORITY) {
223 lkf |= DLM_LKF_NOORDER;
224 lkf |= DLM_LKF_HEADQUE;
225 }
226
227 if (gfs_flags & LM_FLAG_ANY) {
228 if (req == DLM_LOCK_PR)
229 lkf |= DLM_LKF_ALTCW;
230 else if (req == DLM_LOCK_CW)
231 lkf |= DLM_LKF_ALTPR;
232 else
233 BUG();
234 }
235
dba2d70c 236 if (gl->gl_lksb.sb_lkid != 0) {
f057f6cd 237 lkf |= DLM_LKF_CONVERT;
4c569a72
BP
238 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 lkf |= DLM_LKF_QUECVT;
240 }
f057f6cd 241
f057f6cd
SW
242 return lkf;
243}
244
a245769f
SW
245static void gfs2_reverse_hex(char *c, u64 value)
246{
ec148752 247 *c = '0';
a245769f
SW
248 while (value) {
249 *c-- = hex_asc[value & 0x0f];
250 value >>= 4;
251 }
252}
253
921169ca
SW
254static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 unsigned int flags)
f057f6cd 256{
15562c43 257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
f057f6cd
SW
258 int req;
259 u32 lkf;
a245769f 260 char strname[GDLM_STRNAME_BYTES] = "";
f057f6cd 261
e54c78a2 262 req = make_mode(gl->gl_name.ln_sbd, req_state);
4c569a72 263 lkf = make_flags(gl, flags, req);
a245769f
SW
264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 if (gl->gl_lksb.sb_lkid) {
267 gfs2_update_request_times(gl);
268 } else {
269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 gl->gl_dstamp = ktime_get_real();
274 }
f057f6cd
SW
275 /*
276 * Submit the actual lock request.
277 */
278
a245769f 279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
921169ca 280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
f057f6cd
SW
281}
282
bc015cb8 283static void gdlm_put_lock(struct gfs2_glock *gl)
f057f6cd 284{
15562c43 285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
e402746a 286 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
f057f6cd
SW
287 int error;
288
289 if (gl->gl_lksb.sb_lkid == 0) {
fc0e38da 290 gfs2_glock_free(gl);
f057f6cd
SW
291 return;
292 }
293
a245769f
SW
294 clear_bit(GLF_BLOCKING, &gl->gl_flags);
295 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
296 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
297 gfs2_update_request_times(gl);
fb6791d1 298
78178ca8 299 /* don't want to skip dlm_unlock writing the lvb when lock has one */
d4e0bfec 300
fb6791d1 301 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
78178ca8 302 !gl->gl_lksb.sb_lvbptr) {
fb6791d1
DT
303 gfs2_glock_free(gl);
304 return;
305 }
306
f057f6cd
SW
307 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
308 NULL, gl);
309 if (error) {
e54c78a2 310 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
d77d1b58 311 gl->gl_name.ln_type,
f057f6cd
SW
312 (unsigned long long)gl->gl_name.ln_number, error);
313 return;
314 }
315}
316
317static void gdlm_cancel(struct gfs2_glock *gl)
318{
15562c43 319 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
f057f6cd
SW
320 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
321}
322
e0c2a9aa
DT
323/*
324 * dlm/gfs2 recovery coordination using dlm_recover callbacks
325 *
601ef0d5 326 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
e0c2a9aa
DT
327 * 1. dlm_controld sees lockspace members change
328 * 2. dlm_controld blocks dlm-kernel locking activity
329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330 * 4. dlm_controld starts and finishes its own user level recovery
331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333 * 7. dlm_recoverd does its own lock recovery
334 * 8. dlm_recoverd unblocks dlm-kernel locking activity
335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338 * 12. gfs2_recover dequeues and recovers journals of failed nodes
339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 *
343 * - failures during recovery
344 *
345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347 * recovering for a prior failure. gfs2_control needs a way to detect
348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
349 * the recover_block and recover_start values.
350 *
351 * recover_done() provides a new lockspace generation number each time it
352 * is called (step 9). This generation number is saved as recover_start.
353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354 * recover_block = recover_start. So, while recover_block is equal to
355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 *
358 * - more specific gfs2 steps in sequence above
359 *
360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361 * 6. recover_slot records any failed jids (maybe none)
362 * 9. recover_done sets recover_start = new generation number
363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364 * 12. gfs2_recover does journal recoveries for failed jids identified above
365 * 14. gfs2_control clears control_lock lvb bits for recovered jids
366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367 * again) then do nothing, otherwise if recover_start > recover_block
368 * then clear BLOCK_LOCKS.
369 *
370 * - parallel recovery steps across all nodes
371 *
372 * All nodes attempt to update the control_lock lvb with the new generation
373 * number and jid bits, but only the first to get the control_lock EX will
374 * do so; others will see that it's already done (lvb already contains new
375 * generation number.)
376 *
377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379 * . One node gets control_lock first and writes the lvb, others see it's done
380 * . All nodes attempt to recover jids for which they see control_lock bits set
381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382 * . All nodes will eventually see all lvb bits clear and unblock locks
383 *
384 * - is there a problem with clearing an lvb bit that should be set
385 * and missing a journal recovery?
386 *
387 * 1. jid fails
388 * 2. lvb bit set for step 1
389 * 3. jid recovered for step 1
390 * 4. jid taken again (new mount)
391 * 5. jid fails (for step 4)
392 * 6. lvb bit set for step 5 (will already be set)
393 * 7. lvb bit cleared for step 3
394 *
395 * This is not a problem because the failure in step 5 does not
396 * require recovery, because the mount in step 4 could not have
397 * progressed far enough to unblock locks and access the fs. The
398 * control_mount() function waits for all recoveries to be complete
399 * for the latest lockspace generation before ever unblocking locks
400 * and returning. The mount in step 4 waits until the recovery in
401 * step 1 is done.
402 *
403 * - special case of first mounter: first node to mount the fs
404 *
405 * The first node to mount a gfs2 fs needs to check all the journals
406 * and recover any that need recovery before other nodes are allowed
407 * to mount the fs. (Others may begin mounting, but they must wait
408 * for the first mounter to be done before taking locks on the fs
409 * or accessing the fs.) This has two parts:
410 *
411 * 1. The mounted_lock tells a node it's the first to mount the fs.
412 * Each node holds the mounted_lock in PR while it's mounted.
413 * Each node tries to acquire the mounted_lock in EX when it mounts.
414 * If a node is granted the mounted_lock EX it means there are no
415 * other mounted nodes (no PR locks exist), and it is the first mounter.
416 * The mounted_lock is demoted to PR when first recovery is done, so
417 * others will fail to get an EX lock, but will get a PR lock.
418 *
419 * 2. The control_lock blocks others in control_mount() while the first
420 * mounter is doing first mount recovery of all journals.
421 * A mounting node needs to acquire control_lock in EX mode before
422 * it can proceed. The first mounter holds control_lock in EX while doing
423 * the first mount recovery, blocking mounts from other nodes, then demotes
424 * control_lock to NL when it's done (others_may_mount/first_done),
425 * allowing other nodes to continue mounting.
426 *
427 * first mounter:
428 * control_lock EX/NOQUEUE success
429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * set first=1
431 * do first mounter recovery
432 * mounted_lock EX->PR
433 * control_lock EX->NL, write lvb generation
434 *
435 * other mounter:
436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438 * mounted_lock PR/NOQUEUE success
439 * read lvb generation
440 * control_lock EX->NL
441 * set first=0
442 *
443 * - mount during recovery
444 *
445 * If a node mounts while others are doing recovery (not first mounter),
446 * the mounting node will get its initial recover_done() callback without
447 * having seen any previous failures/callbacks.
448 *
449 * It must wait for all recoveries preceding its mount to be finished
450 * before it unblocks locks. It does this by repeating the "other mounter"
451 * steps above until the lvb generation number is >= its mount generation
452 * number (from initial recover_done) and all lvb bits are clear.
453 *
454 * - control_lock lvb format
455 *
456 * 4 bytes generation number: the latest dlm lockspace generation number
457 * from recover_done callback. Indicates the jid bitmap has been updated
458 * to reflect all slot failures through that generation.
459 * 4 bytes unused.
460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461 * that jid N needs recovery.
462 */
463
464#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465
466static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 char *lvb_bits)
468{
951b4bd5 469 __le32 gen;
e0c2a9aa 470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
951b4bd5 471 memcpy(&gen, lvb_bits, sizeof(__le32));
e0c2a9aa
DT
472 *lvb_gen = le32_to_cpu(gen);
473}
474
475static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 char *lvb_bits)
477{
951b4bd5 478 __le32 gen;
e0c2a9aa
DT
479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 gen = cpu_to_le32(lvb_gen);
951b4bd5 481 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
e0c2a9aa
DT
482}
483
484static int all_jid_bits_clear(char *lvb)
485{
4146c3d4
AM
486 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
487 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
e0c2a9aa
DT
488}
489
490static void sync_wait_cb(void *arg)
491{
492 struct lm_lockstruct *ls = arg;
493 complete(&ls->ls_sync_wait);
494}
495
496static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
f057f6cd
SW
497{
498 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
499 int error;
500
e0c2a9aa
DT
501 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
502 if (error) {
503 fs_err(sdp, "%s lkid %x error %d\n",
504 name, lksb->sb_lkid, error);
505 return error;
506 }
507
508 wait_for_completion(&ls->ls_sync_wait);
509
510 if (lksb->sb_status != -DLM_EUNLOCK) {
511 fs_err(sdp, "%s lkid %x status %d\n",
512 name, lksb->sb_lkid, lksb->sb_status);
513 return -1;
514 }
515 return 0;
516}
517
518static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
519 unsigned int num, struct dlm_lksb *lksb, char *name)
520{
521 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
522 char strname[GDLM_STRNAME_BYTES];
523 int error, status;
524
525 memset(strname, 0, GDLM_STRNAME_BYTES);
526 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
527
528 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
529 strname, GDLM_STRNAME_BYTES - 1,
530 0, sync_wait_cb, ls, NULL);
531 if (error) {
532 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
533 name, lksb->sb_lkid, flags, mode, error);
534 return error;
535 }
536
537 wait_for_completion(&ls->ls_sync_wait);
538
539 status = lksb->sb_status;
540
541 if (status && status != -EAGAIN) {
542 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
543 name, lksb->sb_lkid, flags, mode, status);
544 }
545
546 return status;
547}
548
549static int mounted_unlock(struct gfs2_sbd *sdp)
550{
551 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
552 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
553}
554
555static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
556{
557 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
558 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
559 &ls->ls_mounted_lksb, "mounted_lock");
560}
561
562static int control_unlock(struct gfs2_sbd *sdp)
563{
564 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
565 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
566}
567
568static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
569{
570 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
571 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
572 &ls->ls_control_lksb, "control_lock");
573}
574
601ef0d5
BP
575/**
576 * remote_withdraw - react to a node withdrawing from the file system
577 * @sdp: The superblock
578 */
579static void remote_withdraw(struct gfs2_sbd *sdp)
580{
581 struct gfs2_jdesc *jd;
582 int ret = 0, count = 0;
583
584 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
585 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
586 continue;
587 ret = gfs2_recover_journal(jd, true);
588 if (ret)
589 break;
590 count++;
591 }
592
593 /* Now drop the additional reference we acquired */
594 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
595}
596
e0c2a9aa
DT
597static void gfs2_control_func(struct work_struct *work)
598{
599 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
600 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
601 uint32_t block_gen, start_gen, lvb_gen, flags;
602 int recover_set = 0;
603 int write_lvb = 0;
604 int recover_size;
605 int i, error;
606
601ef0d5
BP
607 /* First check for other nodes that may have done a withdraw. */
608 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
609 remote_withdraw(sdp);
610 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
611 return;
612 }
613
e0c2a9aa
DT
614 spin_lock(&ls->ls_recover_spin);
615 /*
616 * No MOUNT_DONE means we're still mounting; control_mount()
617 * will set this flag, after which this thread will take over
618 * all further clearing of BLOCK_LOCKS.
619 *
620 * FIRST_MOUNT means this node is doing first mounter recovery,
621 * for which recovery control is handled by
622 * control_mount()/control_first_done(), not this thread.
623 */
624 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
625 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
626 spin_unlock(&ls->ls_recover_spin);
627 return;
628 }
629 block_gen = ls->ls_recover_block;
630 start_gen = ls->ls_recover_start;
631 spin_unlock(&ls->ls_recover_spin);
632
633 /*
634 * Equal block_gen and start_gen implies we are between
635 * recover_prep and recover_done callbacks, which means
636 * dlm recovery is in progress and dlm locking is blocked.
637 * There's no point trying to do any work until recover_done.
638 */
639
640 if (block_gen == start_gen)
641 return;
642
643 /*
644 * Propagate recover_submit[] and recover_result[] to lvb:
645 * dlm_recoverd adds to recover_submit[] jids needing recovery
646 * gfs2_recover adds to recover_result[] journal recovery results
647 *
648 * set lvb bit for jids in recover_submit[] if the lvb has not
649 * yet been updated for the generation of the failure
650 *
651 * clear lvb bit for jids in recover_result[] if the result of
652 * the journal recovery is SUCCESS
653 */
654
655 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
656 if (error) {
657 fs_err(sdp, "control lock EX error %d\n", error);
658 return;
659 }
660
57c7310b 661 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
662
663 spin_lock(&ls->ls_recover_spin);
664 if (block_gen != ls->ls_recover_block ||
665 start_gen != ls->ls_recover_start) {
666 fs_info(sdp, "recover generation %u block1 %u %u\n",
667 start_gen, block_gen, ls->ls_recover_block);
668 spin_unlock(&ls->ls_recover_spin);
669 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
670 return;
671 }
672
673 recover_size = ls->ls_recover_size;
674
675 if (lvb_gen <= start_gen) {
676 /*
677 * Clear lvb bits for jids we've successfully recovered.
678 * Because all nodes attempt to recover failed journals,
679 * a journal can be recovered multiple times successfully
680 * in succession. Only the first will really do recovery,
681 * the others find it clean, but still report a successful
682 * recovery. So, another node may have already recovered
683 * the jid and cleared the lvb bit for it.
684 */
685 for (i = 0; i < recover_size; i++) {
686 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
687 continue;
688
689 ls->ls_recover_result[i] = 0;
690
57c7310b 691 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
e0c2a9aa
DT
692 continue;
693
57c7310b 694 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
695 write_lvb = 1;
696 }
697 }
698
699 if (lvb_gen == start_gen) {
700 /*
701 * Failed slots before start_gen are already set in lvb.
702 */
703 for (i = 0; i < recover_size; i++) {
704 if (!ls->ls_recover_submit[i])
705 continue;
706 if (ls->ls_recover_submit[i] < lvb_gen)
707 ls->ls_recover_submit[i] = 0;
708 }
709 } else if (lvb_gen < start_gen) {
710 /*
711 * Failed slots before start_gen are not yet set in lvb.
712 */
713 for (i = 0; i < recover_size; i++) {
714 if (!ls->ls_recover_submit[i])
715 continue;
716 if (ls->ls_recover_submit[i] < start_gen) {
717 ls->ls_recover_submit[i] = 0;
57c7310b 718 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
719 }
720 }
721 /* even if there are no bits to set, we need to write the
722 latest generation to the lvb */
723 write_lvb = 1;
724 } else {
725 /*
726 * we should be getting a recover_done() for lvb_gen soon
727 */
728 }
729 spin_unlock(&ls->ls_recover_spin);
730
731 if (write_lvb) {
57c7310b 732 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
733 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
734 } else {
735 flags = DLM_LKF_CONVERT;
736 }
737
738 error = control_lock(sdp, DLM_LOCK_NL, flags);
739 if (error) {
740 fs_err(sdp, "control lock NL error %d\n", error);
741 return;
742 }
743
744 /*
745 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
746 * and clear a jid bit in the lvb if the recovery is a success.
747 * Eventually all journals will be recovered, all jid bits will
748 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
749 */
750
751 for (i = 0; i < recover_size; i++) {
57c7310b 752 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
e0c2a9aa
DT
753 fs_info(sdp, "recover generation %u jid %d\n",
754 start_gen, i);
755 gfs2_recover_set(sdp, i);
756 recover_set++;
757 }
758 }
759 if (recover_set)
760 return;
761
762 /*
763 * No more jid bits set in lvb, all recovery is done, unblock locks
764 * (unless a new recover_prep callback has occured blocking locks
765 * again while working above)
766 */
767
768 spin_lock(&ls->ls_recover_spin);
769 if (ls->ls_recover_block == block_gen &&
770 ls->ls_recover_start == start_gen) {
771 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
772 spin_unlock(&ls->ls_recover_spin);
773 fs_info(sdp, "recover generation %u done\n", start_gen);
774 gfs2_glock_thaw(sdp);
775 } else {
776 fs_info(sdp, "recover generation %u block2 %u %u\n",
777 start_gen, block_gen, ls->ls_recover_block);
778 spin_unlock(&ls->ls_recover_spin);
779 }
780}
781
782static int control_mount(struct gfs2_sbd *sdp)
783{
784 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
785 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
786 int mounted_mode;
787 int retries = 0;
788 int error;
789
790 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
791 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
792 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
793 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
794 init_completion(&ls->ls_sync_wait);
795
796 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
797
798 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
799 if (error) {
800 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
801 return error;
802 }
803
804 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
805 if (error) {
806 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
807 control_unlock(sdp);
808 return error;
809 }
810 mounted_mode = DLM_LOCK_NL;
811
812restart:
813 if (retries++ && signal_pending(current)) {
814 error = -EINTR;
815 goto fail;
816 }
817
818 /*
819 * We always start with both locks in NL. control_lock is
820 * demoted to NL below so we don't need to do it here.
821 */
822
823 if (mounted_mode != DLM_LOCK_NL) {
824 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
825 if (error)
826 goto fail;
827 mounted_mode = DLM_LOCK_NL;
828 }
829
830 /*
831 * Other nodes need to do some work in dlm recovery and gfs2_control
832 * before the recover_done and control_lock will be ready for us below.
833 * A delay here is not required but often avoids having to retry.
834 */
835
836 msleep_interruptible(500);
837
838 /*
839 * Acquire control_lock in EX and mounted_lock in either EX or PR.
840 * control_lock lvb keeps track of any pending journal recoveries.
841 * mounted_lock indicates if any other nodes have the fs mounted.
842 */
843
844 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
845 if (error == -EAGAIN) {
846 goto restart;
847 } else if (error) {
848 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
849 goto fail;
850 }
851
4a772772
BP
852 /**
853 * If we're a spectator, we don't want to take the lock in EX because
854 * we cannot do the first-mount responsibility it implies: recovery.
855 */
856 if (sdp->sd_args.ar_spectator)
857 goto locks_done;
858
e0c2a9aa
DT
859 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
860 if (!error) {
861 mounted_mode = DLM_LOCK_EX;
862 goto locks_done;
863 } else if (error != -EAGAIN) {
864 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
865 goto fail;
866 }
867
868 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
869 if (!error) {
870 mounted_mode = DLM_LOCK_PR;
871 goto locks_done;
872 } else {
873 /* not even -EAGAIN should happen here */
874 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
875 goto fail;
876 }
877
878locks_done:
879 /*
880 * If we got both locks above in EX, then we're the first mounter.
881 * If not, then we need to wait for the control_lock lvb to be
882 * updated by other mounted nodes to reflect our mount generation.
883 *
884 * In simple first mounter cases, first mounter will see zero lvb_gen,
885 * but in cases where all existing nodes leave/fail before mounting
886 * nodes finish control_mount, then all nodes will be mounting and
887 * lvb_gen will be non-zero.
888 */
889
57c7310b 890 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
891
892 if (lvb_gen == 0xFFFFFFFF) {
893 /* special value to force mount attempts to fail */
894 fs_err(sdp, "control_mount control_lock disabled\n");
895 error = -EINVAL;
896 goto fail;
897 }
898
899 if (mounted_mode == DLM_LOCK_EX) {
900 /* first mounter, keep both EX while doing first recovery */
901 spin_lock(&ls->ls_recover_spin);
902 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
903 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
904 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
905 spin_unlock(&ls->ls_recover_spin);
906 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
907 return 0;
908 }
909
910 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
911 if (error)
912 goto fail;
913
914 /*
915 * We are not first mounter, now we need to wait for the control_lock
916 * lvb generation to be >= the generation from our first recover_done
917 * and all lvb bits to be clear (no pending journal recoveries.)
918 */
919
57c7310b 920 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
e0c2a9aa
DT
921 /* journals need recovery, wait until all are clear */
922 fs_info(sdp, "control_mount wait for journal recovery\n");
923 goto restart;
924 }
925
926 spin_lock(&ls->ls_recover_spin);
927 block_gen = ls->ls_recover_block;
928 start_gen = ls->ls_recover_start;
929 mount_gen = ls->ls_recover_mount;
930
931 if (lvb_gen < mount_gen) {
932 /* wait for mounted nodes to update control_lock lvb to our
933 generation, which might include new recovery bits set */
4a772772
BP
934 if (sdp->sd_args.ar_spectator) {
935 fs_info(sdp, "Recovery is required. Waiting for a "
936 "non-spectator to mount.\n");
937 msleep_interruptible(1000);
938 } else {
939 fs_info(sdp, "control_mount wait1 block %u start %u "
940 "mount %u lvb %u flags %lx\n", block_gen,
941 start_gen, mount_gen, lvb_gen,
942 ls->ls_recover_flags);
943 }
e0c2a9aa
DT
944 spin_unlock(&ls->ls_recover_spin);
945 goto restart;
946 }
947
948 if (lvb_gen != start_gen) {
949 /* wait for mounted nodes to update control_lock lvb to the
950 latest recovery generation */
951 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
952 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
953 lvb_gen, ls->ls_recover_flags);
954 spin_unlock(&ls->ls_recover_spin);
955 goto restart;
956 }
957
958 if (block_gen == start_gen) {
959 /* dlm recovery in progress, wait for it to finish */
960 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
961 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
962 lvb_gen, ls->ls_recover_flags);
963 spin_unlock(&ls->ls_recover_spin);
964 goto restart;
f057f6cd
SW
965 }
966
e0c2a9aa
DT
967 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
968 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
969 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
970 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
971 spin_unlock(&ls->ls_recover_spin);
972 return 0;
973
974fail:
975 mounted_unlock(sdp);
976 control_unlock(sdp);
977 return error;
978}
979
e0c2a9aa
DT
980static int control_first_done(struct gfs2_sbd *sdp)
981{
982 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
983 uint32_t start_gen, block_gen;
984 int error;
985
986restart:
987 spin_lock(&ls->ls_recover_spin);
988 start_gen = ls->ls_recover_start;
989 block_gen = ls->ls_recover_block;
990
991 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
992 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
993 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
994 /* sanity check, should not happen */
995 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
996 start_gen, block_gen, ls->ls_recover_flags);
997 spin_unlock(&ls->ls_recover_spin);
998 control_unlock(sdp);
999 return -1;
1000 }
1001
1002 if (start_gen == block_gen) {
1003 /*
1004 * Wait for the end of a dlm recovery cycle to switch from
1005 * first mounter recovery. We can ignore any recover_slot
1006 * callbacks between the recover_prep and next recover_done
1007 * because we are still the first mounter and any failed nodes
1008 * have not fully mounted, so they don't need recovery.
1009 */
1010 spin_unlock(&ls->ls_recover_spin);
1011 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1012
1013 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
74316201 1014 TASK_UNINTERRUPTIBLE);
e0c2a9aa
DT
1015 goto restart;
1016 }
1017
1018 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1019 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1020 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1021 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1022 spin_unlock(&ls->ls_recover_spin);
1023
57c7310b
DT
1024 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1025 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
1026
1027 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1028 if (error)
1029 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1030
1031 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
f057f6cd 1032 if (error)
e0c2a9aa 1033 fs_err(sdp, "control_first_done control NL error %d\n", error);
f057f6cd
SW
1034
1035 return error;
1036}
1037
e0c2a9aa
DT
1038/*
1039 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1040 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1041 * gfs2 jids start at 0, so jid = slot - 1)
1042 */
1043
1044#define RECOVER_SIZE_INC 16
1045
1046static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1047 int num_slots)
1048{
1049 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1050 uint32_t *submit = NULL;
1051 uint32_t *result = NULL;
1052 uint32_t old_size, new_size;
1053 int i, max_jid;
1054
57c7310b
DT
1055 if (!ls->ls_lvb_bits) {
1056 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1057 if (!ls->ls_lvb_bits)
1058 return -ENOMEM;
1059 }
1060
e0c2a9aa
DT
1061 max_jid = 0;
1062 for (i = 0; i < num_slots; i++) {
1063 if (max_jid < slots[i].slot - 1)
1064 max_jid = slots[i].slot - 1;
1065 }
1066
1067 old_size = ls->ls_recover_size;
8f0daef5
AG
1068 new_size = old_size;
1069 while (new_size < max_jid + 1)
1070 new_size += RECOVER_SIZE_INC;
1071 if (new_size == old_size)
e0c2a9aa
DT
1072 return 0;
1073
6ec43b18
FF
1074 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1075 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
e0c2a9aa
DT
1076 if (!submit || !result) {
1077 kfree(submit);
1078 kfree(result);
1079 return -ENOMEM;
1080 }
1081
1082 spin_lock(&ls->ls_recover_spin);
1083 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1084 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1085 kfree(ls->ls_recover_submit);
1086 kfree(ls->ls_recover_result);
1087 ls->ls_recover_submit = submit;
1088 ls->ls_recover_result = result;
1089 ls->ls_recover_size = new_size;
1090 spin_unlock(&ls->ls_recover_spin);
1091 return 0;
1092}
1093
1094static void free_recover_size(struct lm_lockstruct *ls)
1095{
57c7310b 1096 kfree(ls->ls_lvb_bits);
e0c2a9aa
DT
1097 kfree(ls->ls_recover_submit);
1098 kfree(ls->ls_recover_result);
1099 ls->ls_recover_submit = NULL;
1100 ls->ls_recover_result = NULL;
1101 ls->ls_recover_size = 0;
cc1dfa8b 1102 ls->ls_lvb_bits = NULL;
e0c2a9aa
DT
1103}
1104
1105/* dlm calls before it does lock recovery */
1106
1107static void gdlm_recover_prep(void *arg)
1108{
1109 struct gfs2_sbd *sdp = arg;
1110 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1111
03678a99
BP
1112 if (gfs2_withdrawn(sdp)) {
1113 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1114 return;
1115 }
e0c2a9aa
DT
1116 spin_lock(&ls->ls_recover_spin);
1117 ls->ls_recover_block = ls->ls_recover_start;
1118 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1119
1120 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1121 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1122 spin_unlock(&ls->ls_recover_spin);
1123 return;
1124 }
1125 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1126 spin_unlock(&ls->ls_recover_spin);
1127}
1128
1129/* dlm calls after recover_prep has been completed on all lockspace members;
1130 identifies slot/jid of failed member */
1131
1132static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1133{
1134 struct gfs2_sbd *sdp = arg;
1135 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1136 int jid = slot->slot - 1;
1137
03678a99
BP
1138 if (gfs2_withdrawn(sdp)) {
1139 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1140 jid);
1141 return;
1142 }
e0c2a9aa
DT
1143 spin_lock(&ls->ls_recover_spin);
1144 if (ls->ls_recover_size < jid + 1) {
af38816e 1145 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
e0c2a9aa
DT
1146 jid, ls->ls_recover_block, ls->ls_recover_size);
1147 spin_unlock(&ls->ls_recover_spin);
1148 return;
1149 }
1150
1151 if (ls->ls_recover_submit[jid]) {
ad781971 1152 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
e0c2a9aa
DT
1153 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1154 }
1155 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1156 spin_unlock(&ls->ls_recover_spin);
1157}
1158
1159/* dlm calls after recover_slot and after it completes lock recovery */
1160
1161static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1162 int our_slot, uint32_t generation)
1163{
1164 struct gfs2_sbd *sdp = arg;
1165 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1166
03678a99
BP
1167 if (gfs2_withdrawn(sdp)) {
1168 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1169 return;
1170 }
e0c2a9aa
DT
1171 /* ensure the ls jid arrays are large enough */
1172 set_recover_size(sdp, slots, num_slots);
1173
1174 spin_lock(&ls->ls_recover_spin);
1175 ls->ls_recover_start = generation;
1176
1177 if (!ls->ls_recover_mount) {
1178 ls->ls_recover_mount = generation;
1179 ls->ls_jid = our_slot - 1;
1180 }
1181
1182 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1183 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1184
1185 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
4e857c58 1186 smp_mb__after_atomic();
e0c2a9aa
DT
1187 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1188 spin_unlock(&ls->ls_recover_spin);
1189}
1190
1191/* gfs2_recover thread has a journal recovery result */
1192
1193static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1194 unsigned int result)
1195{
1196 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1197
03678a99
BP
1198 if (gfs2_withdrawn(sdp)) {
1199 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1200 jid);
1201 return;
1202 }
e0c2a9aa
DT
1203 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1204 return;
1205
1206 /* don't care about the recovery of own journal during mount */
1207 if (jid == ls->ls_jid)
1208 return;
1209
1210 spin_lock(&ls->ls_recover_spin);
1211 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1212 spin_unlock(&ls->ls_recover_spin);
1213 return;
1214 }
1215 if (ls->ls_recover_size < jid + 1) {
af38816e 1216 fs_err(sdp, "recovery_result jid %d short size %d\n",
e0c2a9aa
DT
1217 jid, ls->ls_recover_size);
1218 spin_unlock(&ls->ls_recover_spin);
1219 return;
1220 }
1221
1222 fs_info(sdp, "recover jid %d result %s\n", jid,
1223 result == LM_RD_GAVEUP ? "busy" : "success");
1224
1225 ls->ls_recover_result[jid] = result;
1226
1227 /* GAVEUP means another node is recovering the journal; delay our
1228 next attempt to recover it, to give the other node a chance to
1229 finish before trying again */
1230
1231 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1232 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1233 result == LM_RD_GAVEUP ? HZ : 0);
1234 spin_unlock(&ls->ls_recover_spin);
1235}
1236
27c3b415 1237static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
e0c2a9aa
DT
1238 .recover_prep = gdlm_recover_prep,
1239 .recover_slot = gdlm_recover_slot,
1240 .recover_done = gdlm_recover_done,
1241};
1242
1243static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1244{
1245 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1246 char cluster[GFS2_LOCKNAME_LEN];
1247 const char *fsname;
1248 uint32_t flags;
1249 int error, ops_result;
1250
1251 /*
1252 * initialize everything
1253 */
1254
1255 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1256 spin_lock_init(&ls->ls_recover_spin);
1257 ls->ls_recover_flags = 0;
1258 ls->ls_recover_mount = 0;
1259 ls->ls_recover_start = 0;
1260 ls->ls_recover_block = 0;
1261 ls->ls_recover_size = 0;
1262 ls->ls_recover_submit = NULL;
1263 ls->ls_recover_result = NULL;
57c7310b 1264 ls->ls_lvb_bits = NULL;
e0c2a9aa
DT
1265
1266 error = set_recover_size(sdp, NULL, 0);
1267 if (error)
1268 goto fail;
1269
1270 /*
1271 * prepare dlm_new_lockspace args
1272 */
1273
1274 fsname = strchr(table, ':');
1275 if (!fsname) {
1276 fs_info(sdp, "no fsname found\n");
1277 error = -EINVAL;
1278 goto fail_free;
1279 }
1280 memset(cluster, 0, sizeof(cluster));
1281 memcpy(cluster, table, strlen(table) - strlen(fsname));
1282 fsname++;
1283
1284 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
e0c2a9aa
DT
1285
1286 /*
1287 * create/join lockspace
1288 */
1289
1290 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1291 &gdlm_lockspace_ops, sdp, &ops_result,
1292 &ls->ls_dlm);
1293 if (error) {
1294 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1295 goto fail_free;
1296 }
1297
1298 if (ops_result < 0) {
1299 /*
1300 * dlm does not support ops callbacks,
1301 * old dlm_controld/gfs_controld are used, try without ops.
1302 */
1303 fs_info(sdp, "dlm lockspace ops not used\n");
1304 free_recover_size(ls);
1305 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1306 return 0;
1307 }
1308
1309 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1310 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1311 error = -EINVAL;
1312 goto fail_release;
1313 }
1314
1315 /*
1316 * control_mount() uses control_lock to determine first mounter,
1317 * and for later mounts, waits for any recoveries to be cleared.
1318 */
1319
1320 error = control_mount(sdp);
1321 if (error) {
1322 fs_err(sdp, "mount control error %d\n", error);
1323 goto fail_release;
1324 }
1325
1326 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1327 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
4e857c58 1328 smp_mb__after_atomic();
e0c2a9aa
DT
1329 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1330 return 0;
1331
1332fail_release:
1333 dlm_release_lockspace(ls->ls_dlm, 2);
1334fail_free:
1335 free_recover_size(ls);
1336fail:
1337 return error;
1338}
1339
1340static void gdlm_first_done(struct gfs2_sbd *sdp)
1341{
1342 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1343 int error;
1344
1345 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1346 return;
1347
1348 error = control_first_done(sdp);
1349 if (error)
1350 fs_err(sdp, "mount first_done error %d\n", error);
1351}
1352
f057f6cd
SW
1353static void gdlm_unmount(struct gfs2_sbd *sdp)
1354{
1355 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1356
e0c2a9aa
DT
1357 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1358 goto release;
1359
1360 /* wait for gfs2_control_wq to be done with this mount */
1361
1362 spin_lock(&ls->ls_recover_spin);
1363 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1364 spin_unlock(&ls->ls_recover_spin);
43829731 1365 flush_delayed_work(&sdp->sd_control_work);
e0c2a9aa
DT
1366
1367 /* mounted_lock and control_lock will be purged in dlm recovery */
1368release:
f057f6cd
SW
1369 if (ls->ls_dlm) {
1370 dlm_release_lockspace(ls->ls_dlm, 2);
1371 ls->ls_dlm = NULL;
1372 }
e0c2a9aa
DT
1373
1374 free_recover_size(ls);
f057f6cd
SW
1375}
1376
1377static const match_table_t dlm_tokens = {
1378 { Opt_jid, "jid=%d"},
1379 { Opt_id, "id=%d"},
1380 { Opt_first, "first=%d"},
1381 { Opt_nodir, "nodir=%d"},
1382 { Opt_err, NULL },
1383};
1384
1385const struct lm_lockops gfs2_dlm_ops = {
1386 .lm_proto_name = "lock_dlm",
1387 .lm_mount = gdlm_mount,
e0c2a9aa
DT
1388 .lm_first_done = gdlm_first_done,
1389 .lm_recovery_result = gdlm_recovery_result,
f057f6cd
SW
1390 .lm_unmount = gdlm_unmount,
1391 .lm_put_lock = gdlm_put_lock,
1392 .lm_lock = gdlm_lock,
1393 .lm_cancel = gdlm_cancel,
1394 .lm_tokens = &dlm_tokens,
1395};
1396