]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/iomap/buffered-io.c
iomap: remove the unused iomap argument to __iomap_write_end
[mirror_ubuntu-hirsute-kernel.git] / fs / iomap / buffered-io.c
CommitLineData
afc51aaa
DW
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2010 Red Hat, Inc.
598ecfba 4 * Copyright (C) 2016-2019 Christoph Hellwig.
afc51aaa
DW
5 */
6#include <linux/module.h>
7#include <linux/compiler.h>
8#include <linux/fs.h>
9#include <linux/iomap.h>
10#include <linux/pagemap.h>
11#include <linux/uio.h>
12#include <linux/buffer_head.h>
13#include <linux/dax.h>
14#include <linux/writeback.h>
598ecfba 15#include <linux/list_sort.h>
afc51aaa
DW
16#include <linux/swap.h>
17#include <linux/bio.h>
18#include <linux/sched/signal.h>
19#include <linux/migrate.h>
9e91c572 20#include "trace.h"
afc51aaa
DW
21
22#include "../internal.h"
23
ab08b01e
CH
24/*
25 * Structure allocated for each page when block size < PAGE_SIZE to track
26 * sub-page uptodate status and I/O completions.
27 */
28struct iomap_page {
29 atomic_t read_count;
30 atomic_t write_count;
31 DECLARE_BITMAP(uptodate, PAGE_SIZE / 512);
32};
33
34static inline struct iomap_page *to_iomap_page(struct page *page)
35{
36 if (page_has_private(page))
37 return (struct iomap_page *)page_private(page);
38 return NULL;
39}
40
598ecfba
CH
41static struct bio_set iomap_ioend_bioset;
42
afc51aaa
DW
43static struct iomap_page *
44iomap_page_create(struct inode *inode, struct page *page)
45{
46 struct iomap_page *iop = to_iomap_page(page);
47
48 if (iop || i_blocksize(inode) == PAGE_SIZE)
49 return iop;
50
51 iop = kmalloc(sizeof(*iop), GFP_NOFS | __GFP_NOFAIL);
52 atomic_set(&iop->read_count, 0);
53 atomic_set(&iop->write_count, 0);
54 bitmap_zero(iop->uptodate, PAGE_SIZE / SECTOR_SIZE);
55
56 /*
57 * migrate_page_move_mapping() assumes that pages with private data have
58 * their count elevated by 1.
59 */
60 get_page(page);
61 set_page_private(page, (unsigned long)iop);
62 SetPagePrivate(page);
63 return iop;
64}
65
66static void
67iomap_page_release(struct page *page)
68{
69 struct iomap_page *iop = to_iomap_page(page);
70
71 if (!iop)
72 return;
73 WARN_ON_ONCE(atomic_read(&iop->read_count));
74 WARN_ON_ONCE(atomic_read(&iop->write_count));
75 ClearPagePrivate(page);
76 set_page_private(page, 0);
77 put_page(page);
78 kfree(iop);
79}
80
81/*
82 * Calculate the range inside the page that we actually need to read.
83 */
84static void
85iomap_adjust_read_range(struct inode *inode, struct iomap_page *iop,
86 loff_t *pos, loff_t length, unsigned *offp, unsigned *lenp)
87{
88 loff_t orig_pos = *pos;
89 loff_t isize = i_size_read(inode);
90 unsigned block_bits = inode->i_blkbits;
91 unsigned block_size = (1 << block_bits);
92 unsigned poff = offset_in_page(*pos);
93 unsigned plen = min_t(loff_t, PAGE_SIZE - poff, length);
94 unsigned first = poff >> block_bits;
95 unsigned last = (poff + plen - 1) >> block_bits;
96
97 /*
98 * If the block size is smaller than the page size we need to check the
99 * per-block uptodate status and adjust the offset and length if needed
100 * to avoid reading in already uptodate ranges.
101 */
102 if (iop) {
103 unsigned int i;
104
105 /* move forward for each leading block marked uptodate */
106 for (i = first; i <= last; i++) {
107 if (!test_bit(i, iop->uptodate))
108 break;
109 *pos += block_size;
110 poff += block_size;
111 plen -= block_size;
112 first++;
113 }
114
115 /* truncate len if we find any trailing uptodate block(s) */
116 for ( ; i <= last; i++) {
117 if (test_bit(i, iop->uptodate)) {
118 plen -= (last - i + 1) * block_size;
119 last = i - 1;
120 break;
121 }
122 }
123 }
124
125 /*
126 * If the extent spans the block that contains the i_size we need to
127 * handle both halves separately so that we properly zero data in the
128 * page cache for blocks that are entirely outside of i_size.
129 */
130 if (orig_pos <= isize && orig_pos + length > isize) {
131 unsigned end = offset_in_page(isize - 1) >> block_bits;
132
133 if (first <= end && last > end)
134 plen -= (last - end) * block_size;
135 }
136
137 *offp = poff;
138 *lenp = plen;
139}
140
141static void
142iomap_set_range_uptodate(struct page *page, unsigned off, unsigned len)
143{
144 struct iomap_page *iop = to_iomap_page(page);
145 struct inode *inode = page->mapping->host;
146 unsigned first = off >> inode->i_blkbits;
147 unsigned last = (off + len - 1) >> inode->i_blkbits;
148 unsigned int i;
149 bool uptodate = true;
150
151 if (iop) {
152 for (i = 0; i < PAGE_SIZE / i_blocksize(inode); i++) {
153 if (i >= first && i <= last)
154 set_bit(i, iop->uptodate);
155 else if (!test_bit(i, iop->uptodate))
156 uptodate = false;
157 }
158 }
159
160 if (uptodate && !PageError(page))
161 SetPageUptodate(page);
162}
163
164static void
165iomap_read_finish(struct iomap_page *iop, struct page *page)
166{
167 if (!iop || atomic_dec_and_test(&iop->read_count))
168 unlock_page(page);
169}
170
171static void
172iomap_read_page_end_io(struct bio_vec *bvec, int error)
173{
174 struct page *page = bvec->bv_page;
175 struct iomap_page *iop = to_iomap_page(page);
176
177 if (unlikely(error)) {
178 ClearPageUptodate(page);
179 SetPageError(page);
180 } else {
181 iomap_set_range_uptodate(page, bvec->bv_offset, bvec->bv_len);
182 }
183
184 iomap_read_finish(iop, page);
185}
186
187static void
188iomap_read_end_io(struct bio *bio)
189{
190 int error = blk_status_to_errno(bio->bi_status);
191 struct bio_vec *bvec;
192 struct bvec_iter_all iter_all;
193
194 bio_for_each_segment_all(bvec, bio, iter_all)
195 iomap_read_page_end_io(bvec, error);
196 bio_put(bio);
197}
198
199struct iomap_readpage_ctx {
200 struct page *cur_page;
201 bool cur_page_in_bio;
202 bool is_readahead;
203 struct bio *bio;
204 struct list_head *pages;
205};
206
207static void
208iomap_read_inline_data(struct inode *inode, struct page *page,
209 struct iomap *iomap)
210{
211 size_t size = i_size_read(inode);
212 void *addr;
213
214 if (PageUptodate(page))
215 return;
216
217 BUG_ON(page->index);
218 BUG_ON(size > PAGE_SIZE - offset_in_page(iomap->inline_data));
219
220 addr = kmap_atomic(page);
221 memcpy(addr, iomap->inline_data, size);
222 memset(addr + size, 0, PAGE_SIZE - size);
223 kunmap_atomic(addr);
224 SetPageUptodate(page);
225}
226
009d8d84
CH
227static inline bool iomap_block_needs_zeroing(struct inode *inode,
228 struct iomap *iomap, loff_t pos)
229{
230 return iomap->type != IOMAP_MAPPED ||
231 (iomap->flags & IOMAP_F_NEW) ||
232 pos >= i_size_read(inode);
233}
234
afc51aaa
DW
235static loff_t
236iomap_readpage_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
237 struct iomap *iomap)
238{
239 struct iomap_readpage_ctx *ctx = data;
240 struct page *page = ctx->cur_page;
241 struct iomap_page *iop = iomap_page_create(inode, page);
242 bool same_page = false, is_contig = false;
243 loff_t orig_pos = pos;
244 unsigned poff, plen;
245 sector_t sector;
246
247 if (iomap->type == IOMAP_INLINE) {
248 WARN_ON_ONCE(pos);
249 iomap_read_inline_data(inode, page, iomap);
250 return PAGE_SIZE;
251 }
252
253 /* zero post-eof blocks as the page may be mapped */
254 iomap_adjust_read_range(inode, iop, &pos, length, &poff, &plen);
255 if (plen == 0)
256 goto done;
257
009d8d84 258 if (iomap_block_needs_zeroing(inode, iomap, pos)) {
afc51aaa
DW
259 zero_user(page, poff, plen);
260 iomap_set_range_uptodate(page, poff, plen);
261 goto done;
262 }
263
264 ctx->cur_page_in_bio = true;
265
266 /*
267 * Try to merge into a previous segment if we can.
268 */
269 sector = iomap_sector(iomap, pos);
270 if (ctx->bio && bio_end_sector(ctx->bio) == sector)
271 is_contig = true;
272
273 if (is_contig &&
274 __bio_try_merge_page(ctx->bio, page, plen, poff, &same_page)) {
275 if (!same_page && iop)
276 atomic_inc(&iop->read_count);
277 goto done;
278 }
279
280 /*
281 * If we start a new segment we need to increase the read count, and we
282 * need to do so before submitting any previous full bio to make sure
283 * that we don't prematurely unlock the page.
284 */
285 if (iop)
286 atomic_inc(&iop->read_count);
287
288 if (!ctx->bio || !is_contig || bio_full(ctx->bio, plen)) {
289 gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
290 int nr_vecs = (length + PAGE_SIZE - 1) >> PAGE_SHIFT;
291
292 if (ctx->bio)
293 submit_bio(ctx->bio);
294
295 if (ctx->is_readahead) /* same as readahead_gfp_mask */
296 gfp |= __GFP_NORETRY | __GFP_NOWARN;
297 ctx->bio = bio_alloc(gfp, min(BIO_MAX_PAGES, nr_vecs));
298 ctx->bio->bi_opf = REQ_OP_READ;
299 if (ctx->is_readahead)
300 ctx->bio->bi_opf |= REQ_RAHEAD;
301 ctx->bio->bi_iter.bi_sector = sector;
302 bio_set_dev(ctx->bio, iomap->bdev);
303 ctx->bio->bi_end_io = iomap_read_end_io;
304 }
305
306 bio_add_page(ctx->bio, page, plen, poff);
307done:
308 /*
309 * Move the caller beyond our range so that it keeps making progress.
310 * For that we have to include any leading non-uptodate ranges, but
311 * we can skip trailing ones as they will be handled in the next
312 * iteration.
313 */
314 return pos - orig_pos + plen;
315}
316
317int
318iomap_readpage(struct page *page, const struct iomap_ops *ops)
319{
320 struct iomap_readpage_ctx ctx = { .cur_page = page };
321 struct inode *inode = page->mapping->host;
322 unsigned poff;
323 loff_t ret;
324
9e91c572
CH
325 trace_iomap_readpage(page->mapping->host, 1);
326
afc51aaa
DW
327 for (poff = 0; poff < PAGE_SIZE; poff += ret) {
328 ret = iomap_apply(inode, page_offset(page) + poff,
329 PAGE_SIZE - poff, 0, ops, &ctx,
330 iomap_readpage_actor);
331 if (ret <= 0) {
332 WARN_ON_ONCE(ret == 0);
333 SetPageError(page);
334 break;
335 }
336 }
337
338 if (ctx.bio) {
339 submit_bio(ctx.bio);
340 WARN_ON_ONCE(!ctx.cur_page_in_bio);
341 } else {
342 WARN_ON_ONCE(ctx.cur_page_in_bio);
343 unlock_page(page);
344 }
345
346 /*
347 * Just like mpage_readpages and block_read_full_page we always
348 * return 0 and just mark the page as PageError on errors. This
349 * should be cleaned up all through the stack eventually.
350 */
351 return 0;
352}
353EXPORT_SYMBOL_GPL(iomap_readpage);
354
355static struct page *
356iomap_next_page(struct inode *inode, struct list_head *pages, loff_t pos,
357 loff_t length, loff_t *done)
358{
359 while (!list_empty(pages)) {
360 struct page *page = lru_to_page(pages);
361
362 if (page_offset(page) >= (u64)pos + length)
363 break;
364
365 list_del(&page->lru);
366 if (!add_to_page_cache_lru(page, inode->i_mapping, page->index,
367 GFP_NOFS))
368 return page;
369
370 /*
371 * If we already have a page in the page cache at index we are
372 * done. Upper layers don't care if it is uptodate after the
373 * readpages call itself as every page gets checked again once
374 * actually needed.
375 */
376 *done += PAGE_SIZE;
377 put_page(page);
378 }
379
380 return NULL;
381}
382
383static loff_t
384iomap_readpages_actor(struct inode *inode, loff_t pos, loff_t length,
385 void *data, struct iomap *iomap)
386{
387 struct iomap_readpage_ctx *ctx = data;
388 loff_t done, ret;
389
390 for (done = 0; done < length; done += ret) {
391 if (ctx->cur_page && offset_in_page(pos + done) == 0) {
392 if (!ctx->cur_page_in_bio)
393 unlock_page(ctx->cur_page);
394 put_page(ctx->cur_page);
395 ctx->cur_page = NULL;
396 }
397 if (!ctx->cur_page) {
398 ctx->cur_page = iomap_next_page(inode, ctx->pages,
399 pos, length, &done);
400 if (!ctx->cur_page)
401 break;
402 ctx->cur_page_in_bio = false;
403 }
404 ret = iomap_readpage_actor(inode, pos + done, length - done,
405 ctx, iomap);
406 }
407
408 return done;
409}
410
411int
412iomap_readpages(struct address_space *mapping, struct list_head *pages,
413 unsigned nr_pages, const struct iomap_ops *ops)
414{
415 struct iomap_readpage_ctx ctx = {
416 .pages = pages,
417 .is_readahead = true,
418 };
419 loff_t pos = page_offset(list_entry(pages->prev, struct page, lru));
420 loff_t last = page_offset(list_entry(pages->next, struct page, lru));
421 loff_t length = last - pos + PAGE_SIZE, ret = 0;
422
9e91c572
CH
423 trace_iomap_readpages(mapping->host, nr_pages);
424
afc51aaa
DW
425 while (length > 0) {
426 ret = iomap_apply(mapping->host, pos, length, 0, ops,
427 &ctx, iomap_readpages_actor);
428 if (ret <= 0) {
429 WARN_ON_ONCE(ret == 0);
430 goto done;
431 }
432 pos += ret;
433 length -= ret;
434 }
435 ret = 0;
436done:
437 if (ctx.bio)
438 submit_bio(ctx.bio);
439 if (ctx.cur_page) {
440 if (!ctx.cur_page_in_bio)
441 unlock_page(ctx.cur_page);
442 put_page(ctx.cur_page);
443 }
444
445 /*
446 * Check that we didn't lose a page due to the arcance calling
447 * conventions..
448 */
449 WARN_ON_ONCE(!ret && !list_empty(ctx.pages));
450 return ret;
451}
452EXPORT_SYMBOL_GPL(iomap_readpages);
453
454/*
455 * iomap_is_partially_uptodate checks whether blocks within a page are
456 * uptodate or not.
457 *
458 * Returns true if all blocks which correspond to a file portion
459 * we want to read within the page are uptodate.
460 */
461int
462iomap_is_partially_uptodate(struct page *page, unsigned long from,
463 unsigned long count)
464{
465 struct iomap_page *iop = to_iomap_page(page);
466 struct inode *inode = page->mapping->host;
467 unsigned len, first, last;
468 unsigned i;
469
470 /* Limit range to one page */
471 len = min_t(unsigned, PAGE_SIZE - from, count);
472
473 /* First and last blocks in range within page */
474 first = from >> inode->i_blkbits;
475 last = (from + len - 1) >> inode->i_blkbits;
476
477 if (iop) {
478 for (i = first; i <= last; i++)
479 if (!test_bit(i, iop->uptodate))
480 return 0;
481 return 1;
482 }
483
484 return 0;
485}
486EXPORT_SYMBOL_GPL(iomap_is_partially_uptodate);
487
488int
489iomap_releasepage(struct page *page, gfp_t gfp_mask)
490{
9e91c572
CH
491 trace_iomap_releasepage(page->mapping->host, page, 0, 0);
492
afc51aaa
DW
493 /*
494 * mm accommodates an old ext3 case where clean pages might not have had
495 * the dirty bit cleared. Thus, it can send actual dirty pages to
496 * ->releasepage() via shrink_active_list(), skip those here.
497 */
498 if (PageDirty(page) || PageWriteback(page))
499 return 0;
500 iomap_page_release(page);
501 return 1;
502}
503EXPORT_SYMBOL_GPL(iomap_releasepage);
504
505void
506iomap_invalidatepage(struct page *page, unsigned int offset, unsigned int len)
507{
9e91c572
CH
508 trace_iomap_invalidatepage(page->mapping->host, page, offset, len);
509
afc51aaa
DW
510 /*
511 * If we are invalidating the entire page, clear the dirty state from it
512 * and release it to avoid unnecessary buildup of the LRU.
513 */
514 if (offset == 0 && len == PAGE_SIZE) {
515 WARN_ON_ONCE(PageWriteback(page));
516 cancel_dirty_page(page);
517 iomap_page_release(page);
518 }
519}
520EXPORT_SYMBOL_GPL(iomap_invalidatepage);
521
522#ifdef CONFIG_MIGRATION
523int
524iomap_migrate_page(struct address_space *mapping, struct page *newpage,
525 struct page *page, enum migrate_mode mode)
526{
527 int ret;
528
26473f83 529 ret = migrate_page_move_mapping(mapping, newpage, page, 0);
afc51aaa
DW
530 if (ret != MIGRATEPAGE_SUCCESS)
531 return ret;
532
533 if (page_has_private(page)) {
534 ClearPagePrivate(page);
535 get_page(newpage);
536 set_page_private(newpage, page_private(page));
537 set_page_private(page, 0);
538 put_page(page);
539 SetPagePrivate(newpage);
540 }
541
542 if (mode != MIGRATE_SYNC_NO_COPY)
543 migrate_page_copy(newpage, page);
544 else
545 migrate_page_states(newpage, page);
546 return MIGRATEPAGE_SUCCESS;
547}
548EXPORT_SYMBOL_GPL(iomap_migrate_page);
549#endif /* CONFIG_MIGRATION */
550
551static void
552iomap_write_failed(struct inode *inode, loff_t pos, unsigned len)
553{
554 loff_t i_size = i_size_read(inode);
555
556 /*
557 * Only truncate newly allocated pages beyoned EOF, even if the
558 * write started inside the existing inode size.
559 */
560 if (pos + len > i_size)
561 truncate_pagecache_range(inode, max(pos, i_size), pos + len);
562}
563
564static int
565iomap_read_page_sync(struct inode *inode, loff_t block_start, struct page *page,
566 unsigned poff, unsigned plen, unsigned from, unsigned to,
567 struct iomap *iomap)
568{
569 struct bio_vec bvec;
570 struct bio bio;
571
009d8d84 572 if (iomap_block_needs_zeroing(inode, iomap, block_start)) {
afc51aaa
DW
573 zero_user_segments(page, poff, from, to, poff + plen);
574 iomap_set_range_uptodate(page, poff, plen);
575 return 0;
576 }
577
578 bio_init(&bio, &bvec, 1);
579 bio.bi_opf = REQ_OP_READ;
580 bio.bi_iter.bi_sector = iomap_sector(iomap, block_start);
581 bio_set_dev(&bio, iomap->bdev);
582 __bio_add_page(&bio, page, plen, poff);
583 return submit_bio_wait(&bio);
584}
585
586static int
587__iomap_write_begin(struct inode *inode, loff_t pos, unsigned len,
588 struct page *page, struct iomap *iomap)
589{
590 struct iomap_page *iop = iomap_page_create(inode, page);
591 loff_t block_size = i_blocksize(inode);
592 loff_t block_start = pos & ~(block_size - 1);
593 loff_t block_end = (pos + len + block_size - 1) & ~(block_size - 1);
594 unsigned from = offset_in_page(pos), to = from + len, poff, plen;
595 int status = 0;
596
597 if (PageUptodate(page))
598 return 0;
599
600 do {
601 iomap_adjust_read_range(inode, iop, &block_start,
602 block_end - block_start, &poff, &plen);
603 if (plen == 0)
604 break;
605
606 if ((from > poff && from < poff + plen) ||
607 (to > poff && to < poff + plen)) {
608 status = iomap_read_page_sync(inode, block_start, page,
609 poff, plen, from, to, iomap);
610 if (status)
611 break;
612 }
613
614 } while ((block_start += plen) < block_end);
615
616 return status;
617}
618
619static int
620iomap_write_begin(struct inode *inode, loff_t pos, unsigned len, unsigned flags,
621 struct page **pagep, struct iomap *iomap)
622{
623 const struct iomap_page_ops *page_ops = iomap->page_ops;
624 pgoff_t index = pos >> PAGE_SHIFT;
625 struct page *page;
626 int status = 0;
627
628 BUG_ON(pos + len > iomap->offset + iomap->length);
629
630 if (fatal_signal_pending(current))
631 return -EINTR;
632
633 if (page_ops && page_ops->page_prepare) {
634 status = page_ops->page_prepare(inode, pos, len, iomap);
635 if (status)
636 return status;
637 }
638
639 page = grab_cache_page_write_begin(inode->i_mapping, index, flags);
640 if (!page) {
641 status = -ENOMEM;
642 goto out_no_page;
643 }
644
645 if (iomap->type == IOMAP_INLINE)
646 iomap_read_inline_data(inode, page, iomap);
647 else if (iomap->flags & IOMAP_F_BUFFER_HEAD)
648 status = __block_write_begin_int(page, pos, len, NULL, iomap);
649 else
650 status = __iomap_write_begin(inode, pos, len, page, iomap);
651
652 if (unlikely(status))
653 goto out_unlock;
654
655 *pagep = page;
656 return 0;
657
658out_unlock:
659 unlock_page(page);
660 put_page(page);
661 iomap_write_failed(inode, pos, len);
662
663out_no_page:
664 if (page_ops && page_ops->page_done)
665 page_ops->page_done(inode, pos, 0, NULL, iomap);
666 return status;
667}
668
669int
670iomap_set_page_dirty(struct page *page)
671{
672 struct address_space *mapping = page_mapping(page);
673 int newly_dirty;
674
675 if (unlikely(!mapping))
676 return !TestSetPageDirty(page);
677
678 /*
679 * Lock out page->mem_cgroup migration to keep PageDirty
680 * synchronized with per-memcg dirty page counters.
681 */
682 lock_page_memcg(page);
683 newly_dirty = !TestSetPageDirty(page);
684 if (newly_dirty)
685 __set_page_dirty(page, mapping, 0);
686 unlock_page_memcg(page);
687
688 if (newly_dirty)
689 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
690 return newly_dirty;
691}
692EXPORT_SYMBOL_GPL(iomap_set_page_dirty);
693
694static int
695__iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
c12d6fa8 696 unsigned copied, struct page *page)
afc51aaa
DW
697{
698 flush_dcache_page(page);
699
700 /*
701 * The blocks that were entirely written will now be uptodate, so we
702 * don't have to worry about a readpage reading them and overwriting a
703 * partial write. However if we have encountered a short write and only
704 * partially written into a block, it will not be marked uptodate, so a
705 * readpage might come in and destroy our partial write.
706 *
707 * Do the simplest thing, and just treat any short write to a non
708 * uptodate page as a zero-length write, and force the caller to redo
709 * the whole thing.
710 */
711 if (unlikely(copied < len && !PageUptodate(page)))
712 return 0;
713 iomap_set_range_uptodate(page, offset_in_page(pos), len);
714 iomap_set_page_dirty(page);
715 return copied;
716}
717
718static int
719iomap_write_end_inline(struct inode *inode, struct page *page,
720 struct iomap *iomap, loff_t pos, unsigned copied)
721{
722 void *addr;
723
724 WARN_ON_ONCE(!PageUptodate(page));
725 BUG_ON(pos + copied > PAGE_SIZE - offset_in_page(iomap->inline_data));
726
727 addr = kmap_atomic(page);
728 memcpy(iomap->inline_data + pos, addr + pos, copied);
729 kunmap_atomic(addr);
730
731 mark_inode_dirty(inode);
732 return copied;
733}
734
735static int
736iomap_write_end(struct inode *inode, loff_t pos, unsigned len,
737 unsigned copied, struct page *page, struct iomap *iomap)
738{
739 const struct iomap_page_ops *page_ops = iomap->page_ops;
740 loff_t old_size = inode->i_size;
741 int ret;
742
743 if (iomap->type == IOMAP_INLINE) {
744 ret = iomap_write_end_inline(inode, page, iomap, pos, copied);
745 } else if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
746 ret = block_write_end(NULL, inode->i_mapping, pos, len, copied,
747 page, NULL);
748 } else {
c12d6fa8 749 ret = __iomap_write_end(inode, pos, len, copied, page);
afc51aaa
DW
750 }
751
752 /*
753 * Update the in-memory inode size after copying the data into the page
754 * cache. It's up to the file system to write the updated size to disk,
755 * preferably after I/O completion so that no stale data is exposed.
756 */
757 if (pos + ret > old_size) {
758 i_size_write(inode, pos + ret);
759 iomap->flags |= IOMAP_F_SIZE_CHANGED;
760 }
761 unlock_page(page);
762
763 if (old_size < pos)
764 pagecache_isize_extended(inode, old_size, pos);
765 if (page_ops && page_ops->page_done)
766 page_ops->page_done(inode, pos, ret, page, iomap);
767 put_page(page);
768
769 if (ret < len)
770 iomap_write_failed(inode, pos, len);
771 return ret;
772}
773
774static loff_t
775iomap_write_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
776 struct iomap *iomap)
777{
778 struct iov_iter *i = data;
779 long status = 0;
780 ssize_t written = 0;
781 unsigned int flags = AOP_FLAG_NOFS;
782
783 do {
784 struct page *page;
785 unsigned long offset; /* Offset into pagecache page */
786 unsigned long bytes; /* Bytes to write to page */
787 size_t copied; /* Bytes copied from user */
788
789 offset = offset_in_page(pos);
790 bytes = min_t(unsigned long, PAGE_SIZE - offset,
791 iov_iter_count(i));
792again:
793 if (bytes > length)
794 bytes = length;
795
796 /*
797 * Bring in the user page that we will copy from _first_.
798 * Otherwise there's a nasty deadlock on copying from the
799 * same page as we're writing to, without it being marked
800 * up-to-date.
801 *
802 * Not only is this an optimisation, but it is also required
803 * to check that the address is actually valid, when atomic
804 * usercopies are used, below.
805 */
806 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
807 status = -EFAULT;
808 break;
809 }
810
811 status = iomap_write_begin(inode, pos, bytes, flags, &page,
812 iomap);
813 if (unlikely(status))
814 break;
815
816 if (mapping_writably_mapped(inode->i_mapping))
817 flush_dcache_page(page);
818
819 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
820
821 flush_dcache_page(page);
822
823 status = iomap_write_end(inode, pos, bytes, copied, page,
824 iomap);
825 if (unlikely(status < 0))
826 break;
827 copied = status;
828
829 cond_resched();
830
831 iov_iter_advance(i, copied);
832 if (unlikely(copied == 0)) {
833 /*
834 * If we were unable to copy any data at all, we must
835 * fall back to a single segment length write.
836 *
837 * If we didn't fallback here, we could livelock
838 * because not all segments in the iov can be copied at
839 * once without a pagefault.
840 */
841 bytes = min_t(unsigned long, PAGE_SIZE - offset,
842 iov_iter_single_seg_count(i));
843 goto again;
844 }
845 pos += copied;
846 written += copied;
847 length -= copied;
848
849 balance_dirty_pages_ratelimited(inode->i_mapping);
850 } while (iov_iter_count(i) && length);
851
852 return written ? written : status;
853}
854
855ssize_t
856iomap_file_buffered_write(struct kiocb *iocb, struct iov_iter *iter,
857 const struct iomap_ops *ops)
858{
859 struct inode *inode = iocb->ki_filp->f_mapping->host;
860 loff_t pos = iocb->ki_pos, ret = 0, written = 0;
861
862 while (iov_iter_count(iter)) {
863 ret = iomap_apply(inode, pos, iov_iter_count(iter),
864 IOMAP_WRITE, ops, iter, iomap_write_actor);
865 if (ret <= 0)
866 break;
867 pos += ret;
868 written += ret;
869 }
870
871 return written ? written : ret;
872}
873EXPORT_SYMBOL_GPL(iomap_file_buffered_write);
874
875static struct page *
876__iomap_read_page(struct inode *inode, loff_t offset)
877{
878 struct address_space *mapping = inode->i_mapping;
879 struct page *page;
880
881 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, NULL);
882 if (IS_ERR(page))
883 return page;
884 if (!PageUptodate(page)) {
885 put_page(page);
886 return ERR_PTR(-EIO);
887 }
888 return page;
889}
890
891static loff_t
892iomap_dirty_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
893 struct iomap *iomap)
894{
895 long status = 0;
896 ssize_t written = 0;
897
898 do {
899 struct page *page, *rpage;
900 unsigned long offset; /* Offset into pagecache page */
901 unsigned long bytes; /* Bytes to write to page */
902
903 offset = offset_in_page(pos);
904 bytes = min_t(loff_t, PAGE_SIZE - offset, length);
905
906 rpage = __iomap_read_page(inode, pos);
907 if (IS_ERR(rpage))
908 return PTR_ERR(rpage);
909
910 status = iomap_write_begin(inode, pos, bytes,
911 AOP_FLAG_NOFS, &page, iomap);
912 put_page(rpage);
913 if (unlikely(status))
914 return status;
915
916 WARN_ON_ONCE(!PageUptodate(page));
917
918 status = iomap_write_end(inode, pos, bytes, bytes, page, iomap);
919 if (unlikely(status <= 0)) {
920 if (WARN_ON_ONCE(status == 0))
921 return -EIO;
922 return status;
923 }
924
925 cond_resched();
926
927 pos += status;
928 written += status;
929 length -= status;
930
931 balance_dirty_pages_ratelimited(inode->i_mapping);
932 } while (length);
933
934 return written;
935}
936
937int
938iomap_file_dirty(struct inode *inode, loff_t pos, loff_t len,
939 const struct iomap_ops *ops)
940{
941 loff_t ret;
942
943 while (len) {
944 ret = iomap_apply(inode, pos, len, IOMAP_WRITE, ops, NULL,
945 iomap_dirty_actor);
946 if (ret <= 0)
947 return ret;
948 pos += ret;
949 len -= ret;
950 }
951
952 return 0;
953}
954EXPORT_SYMBOL_GPL(iomap_file_dirty);
955
956static int iomap_zero(struct inode *inode, loff_t pos, unsigned offset,
957 unsigned bytes, struct iomap *iomap)
958{
959 struct page *page;
960 int status;
961
962 status = iomap_write_begin(inode, pos, bytes, AOP_FLAG_NOFS, &page,
963 iomap);
964 if (status)
965 return status;
966
967 zero_user(page, offset, bytes);
968 mark_page_accessed(page);
969
970 return iomap_write_end(inode, pos, bytes, bytes, page, iomap);
971}
972
973static int iomap_dax_zero(loff_t pos, unsigned offset, unsigned bytes,
974 struct iomap *iomap)
975{
976 return __dax_zero_page_range(iomap->bdev, iomap->dax_dev,
977 iomap_sector(iomap, pos & PAGE_MASK), offset, bytes);
978}
979
980static loff_t
981iomap_zero_range_actor(struct inode *inode, loff_t pos, loff_t count,
982 void *data, struct iomap *iomap)
983{
984 bool *did_zero = data;
985 loff_t written = 0;
986 int status;
987
988 /* already zeroed? we're done. */
989 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
990 return count;
991
992 do {
993 unsigned offset, bytes;
994
995 offset = offset_in_page(pos);
996 bytes = min_t(loff_t, PAGE_SIZE - offset, count);
997
998 if (IS_DAX(inode))
999 status = iomap_dax_zero(pos, offset, bytes, iomap);
1000 else
1001 status = iomap_zero(inode, pos, offset, bytes, iomap);
1002 if (status < 0)
1003 return status;
1004
1005 pos += bytes;
1006 count -= bytes;
1007 written += bytes;
1008 if (did_zero)
1009 *did_zero = true;
1010 } while (count > 0);
1011
1012 return written;
1013}
1014
1015int
1016iomap_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1017 const struct iomap_ops *ops)
1018{
1019 loff_t ret;
1020
1021 while (len > 0) {
1022 ret = iomap_apply(inode, pos, len, IOMAP_ZERO,
1023 ops, did_zero, iomap_zero_range_actor);
1024 if (ret <= 0)
1025 return ret;
1026
1027 pos += ret;
1028 len -= ret;
1029 }
1030
1031 return 0;
1032}
1033EXPORT_SYMBOL_GPL(iomap_zero_range);
1034
1035int
1036iomap_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1037 const struct iomap_ops *ops)
1038{
1039 unsigned int blocksize = i_blocksize(inode);
1040 unsigned int off = pos & (blocksize - 1);
1041
1042 /* Block boundary? Nothing to do */
1043 if (!off)
1044 return 0;
1045 return iomap_zero_range(inode, pos, blocksize - off, did_zero, ops);
1046}
1047EXPORT_SYMBOL_GPL(iomap_truncate_page);
1048
1049static loff_t
1050iomap_page_mkwrite_actor(struct inode *inode, loff_t pos, loff_t length,
1051 void *data, struct iomap *iomap)
1052{
1053 struct page *page = data;
1054 int ret;
1055
1056 if (iomap->flags & IOMAP_F_BUFFER_HEAD) {
1057 ret = __block_write_begin_int(page, pos, length, NULL, iomap);
1058 if (ret)
1059 return ret;
1060 block_commit_write(page, 0, length);
1061 } else {
1062 WARN_ON_ONCE(!PageUptodate(page));
1063 iomap_page_create(inode, page);
1064 set_page_dirty(page);
1065 }
1066
1067 return length;
1068}
1069
1070vm_fault_t iomap_page_mkwrite(struct vm_fault *vmf, const struct iomap_ops *ops)
1071{
1072 struct page *page = vmf->page;
1073 struct inode *inode = file_inode(vmf->vma->vm_file);
1074 unsigned long length;
1075 loff_t offset, size;
1076 ssize_t ret;
1077
1078 lock_page(page);
1079 size = i_size_read(inode);
1080 if ((page->mapping != inode->i_mapping) ||
1081 (page_offset(page) > size)) {
1082 /* We overload EFAULT to mean page got truncated */
1083 ret = -EFAULT;
1084 goto out_unlock;
1085 }
1086
1087 /* page is wholly or partially inside EOF */
1088 if (((page->index + 1) << PAGE_SHIFT) > size)
1089 length = offset_in_page(size);
1090 else
1091 length = PAGE_SIZE;
1092
1093 offset = page_offset(page);
1094 while (length > 0) {
1095 ret = iomap_apply(inode, offset, length,
1096 IOMAP_WRITE | IOMAP_FAULT, ops, page,
1097 iomap_page_mkwrite_actor);
1098 if (unlikely(ret <= 0))
1099 goto out_unlock;
1100 offset += ret;
1101 length -= ret;
1102 }
1103
1104 wait_for_stable_page(page);
1105 return VM_FAULT_LOCKED;
1106out_unlock:
1107 unlock_page(page);
1108 return block_page_mkwrite_return(ret);
1109}
1110EXPORT_SYMBOL_GPL(iomap_page_mkwrite);
598ecfba
CH
1111
1112static void
48d64cd1 1113iomap_finish_page_writeback(struct inode *inode, struct page *page,
598ecfba
CH
1114 int error)
1115{
48d64cd1 1116 struct iomap_page *iop = to_iomap_page(page);
598ecfba
CH
1117
1118 if (error) {
48d64cd1 1119 SetPageError(page);
598ecfba
CH
1120 mapping_set_error(inode->i_mapping, -EIO);
1121 }
1122
1123 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1124 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) <= 0);
1125
1126 if (!iop || atomic_dec_and_test(&iop->write_count))
48d64cd1 1127 end_page_writeback(page);
598ecfba
CH
1128}
1129
1130/*
1131 * We're now finished for good with this ioend structure. Update the page
1132 * state, release holds on bios, and finally free up memory. Do not use the
1133 * ioend after this.
1134 */
1135static void
1136iomap_finish_ioend(struct iomap_ioend *ioend, int error)
1137{
1138 struct inode *inode = ioend->io_inode;
1139 struct bio *bio = &ioend->io_inline_bio;
1140 struct bio *last = ioend->io_bio, *next;
1141 u64 start = bio->bi_iter.bi_sector;
1142 bool quiet = bio_flagged(bio, BIO_QUIET);
1143
1144 for (bio = &ioend->io_inline_bio; bio; bio = next) {
1145 struct bio_vec *bv;
1146 struct bvec_iter_all iter_all;
1147
1148 /*
1149 * For the last bio, bi_private points to the ioend, so we
1150 * need to explicitly end the iteration here.
1151 */
1152 if (bio == last)
1153 next = NULL;
1154 else
1155 next = bio->bi_private;
1156
1157 /* walk each page on bio, ending page IO on them */
1158 bio_for_each_segment_all(bv, bio, iter_all)
48d64cd1 1159 iomap_finish_page_writeback(inode, bv->bv_page, error);
598ecfba
CH
1160 bio_put(bio);
1161 }
1162
1163 if (unlikely(error && !quiet)) {
1164 printk_ratelimited(KERN_ERR
9cd0ed63
DW
1165"%s: writeback error on inode %lu, offset %lld, sector %llu",
1166 inode->i_sb->s_id, inode->i_ino, ioend->io_offset,
1167 start);
598ecfba
CH
1168 }
1169}
1170
1171void
1172iomap_finish_ioends(struct iomap_ioend *ioend, int error)
1173{
1174 struct list_head tmp;
1175
1176 list_replace_init(&ioend->io_list, &tmp);
1177 iomap_finish_ioend(ioend, error);
1178
1179 while (!list_empty(&tmp)) {
1180 ioend = list_first_entry(&tmp, struct iomap_ioend, io_list);
1181 list_del_init(&ioend->io_list);
1182 iomap_finish_ioend(ioend, error);
1183 }
1184}
1185EXPORT_SYMBOL_GPL(iomap_finish_ioends);
1186
1187/*
1188 * We can merge two adjacent ioends if they have the same set of work to do.
1189 */
1190static bool
1191iomap_ioend_can_merge(struct iomap_ioend *ioend, struct iomap_ioend *next)
1192{
1193 if (ioend->io_bio->bi_status != next->io_bio->bi_status)
1194 return false;
1195 if ((ioend->io_flags & IOMAP_F_SHARED) ^
1196 (next->io_flags & IOMAP_F_SHARED))
1197 return false;
1198 if ((ioend->io_type == IOMAP_UNWRITTEN) ^
1199 (next->io_type == IOMAP_UNWRITTEN))
1200 return false;
1201 if (ioend->io_offset + ioend->io_size != next->io_offset)
1202 return false;
1203 return true;
1204}
1205
1206void
1207iomap_ioend_try_merge(struct iomap_ioend *ioend, struct list_head *more_ioends,
1208 void (*merge_private)(struct iomap_ioend *ioend,
1209 struct iomap_ioend *next))
1210{
1211 struct iomap_ioend *next;
1212
1213 INIT_LIST_HEAD(&ioend->io_list);
1214
1215 while ((next = list_first_entry_or_null(more_ioends, struct iomap_ioend,
1216 io_list))) {
1217 if (!iomap_ioend_can_merge(ioend, next))
1218 break;
1219 list_move_tail(&next->io_list, &ioend->io_list);
1220 ioend->io_size += next->io_size;
1221 if (next->io_private && merge_private)
1222 merge_private(ioend, next);
1223 }
1224}
1225EXPORT_SYMBOL_GPL(iomap_ioend_try_merge);
1226
1227static int
1228iomap_ioend_compare(void *priv, struct list_head *a, struct list_head *b)
1229{
b3d423ec
CH
1230 struct iomap_ioend *ia = container_of(a, struct iomap_ioend, io_list);
1231 struct iomap_ioend *ib = container_of(b, struct iomap_ioend, io_list);
598ecfba 1232
598ecfba
CH
1233 if (ia->io_offset < ib->io_offset)
1234 return -1;
b3d423ec 1235 if (ia->io_offset > ib->io_offset)
598ecfba
CH
1236 return 1;
1237 return 0;
1238}
1239
1240void
1241iomap_sort_ioends(struct list_head *ioend_list)
1242{
1243 list_sort(NULL, ioend_list, iomap_ioend_compare);
1244}
1245EXPORT_SYMBOL_GPL(iomap_sort_ioends);
1246
1247static void iomap_writepage_end_bio(struct bio *bio)
1248{
1249 struct iomap_ioend *ioend = bio->bi_private;
1250
1251 iomap_finish_ioend(ioend, blk_status_to_errno(bio->bi_status));
1252}
1253
1254/*
1255 * Submit the final bio for an ioend.
1256 *
1257 * If @error is non-zero, it means that we have a situation where some part of
1258 * the submission process has failed after we have marked paged for writeback
1259 * and unlocked them. In this situation, we need to fail the bio instead of
1260 * submitting it. This typically only happens on a filesystem shutdown.
1261 */
1262static int
1263iomap_submit_ioend(struct iomap_writepage_ctx *wpc, struct iomap_ioend *ioend,
1264 int error)
1265{
1266 ioend->io_bio->bi_private = ioend;
1267 ioend->io_bio->bi_end_io = iomap_writepage_end_bio;
1268
1269 if (wpc->ops->prepare_ioend)
1270 error = wpc->ops->prepare_ioend(ioend, error);
1271 if (error) {
1272 /*
1273 * If we are failing the IO now, just mark the ioend with an
1274 * error and finish it. This will run IO completion immediately
1275 * as there is only one reference to the ioend at this point in
1276 * time.
1277 */
1278 ioend->io_bio->bi_status = errno_to_blk_status(error);
1279 bio_endio(ioend->io_bio);
1280 return error;
1281 }
1282
1283 submit_bio(ioend->io_bio);
1284 return 0;
1285}
1286
1287static struct iomap_ioend *
1288iomap_alloc_ioend(struct inode *inode, struct iomap_writepage_ctx *wpc,
1289 loff_t offset, sector_t sector, struct writeback_control *wbc)
1290{
1291 struct iomap_ioend *ioend;
1292 struct bio *bio;
1293
1294 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &iomap_ioend_bioset);
1295 bio_set_dev(bio, wpc->iomap.bdev);
1296 bio->bi_iter.bi_sector = sector;
1297 bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
1298 bio->bi_write_hint = inode->i_write_hint;
1299 wbc_init_bio(wbc, bio);
1300
1301 ioend = container_of(bio, struct iomap_ioend, io_inline_bio);
1302 INIT_LIST_HEAD(&ioend->io_list);
1303 ioend->io_type = wpc->iomap.type;
1304 ioend->io_flags = wpc->iomap.flags;
1305 ioend->io_inode = inode;
1306 ioend->io_size = 0;
1307 ioend->io_offset = offset;
1308 ioend->io_private = NULL;
1309 ioend->io_bio = bio;
1310 return ioend;
1311}
1312
1313/*
1314 * Allocate a new bio, and chain the old bio to the new one.
1315 *
1316 * Note that we have to do perform the chaining in this unintuitive order
1317 * so that the bi_private linkage is set up in the right direction for the
1318 * traversal in iomap_finish_ioend().
1319 */
1320static struct bio *
1321iomap_chain_bio(struct bio *prev)
1322{
1323 struct bio *new;
1324
1325 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
1326 bio_copy_dev(new, prev);/* also copies over blkcg information */
1327 new->bi_iter.bi_sector = bio_end_sector(prev);
1328 new->bi_opf = prev->bi_opf;
1329 new->bi_write_hint = prev->bi_write_hint;
1330
1331 bio_chain(prev, new);
1332 bio_get(prev); /* for iomap_finish_ioend */
1333 submit_bio(prev);
1334 return new;
1335}
1336
1337static bool
1338iomap_can_add_to_ioend(struct iomap_writepage_ctx *wpc, loff_t offset,
1339 sector_t sector)
1340{
1341 if ((wpc->iomap.flags & IOMAP_F_SHARED) !=
1342 (wpc->ioend->io_flags & IOMAP_F_SHARED))
1343 return false;
1344 if (wpc->iomap.type != wpc->ioend->io_type)
1345 return false;
1346 if (offset != wpc->ioend->io_offset + wpc->ioend->io_size)
1347 return false;
1348 if (sector != bio_end_sector(wpc->ioend->io_bio))
1349 return false;
1350 return true;
1351}
1352
1353/*
1354 * Test to see if we have an existing ioend structure that we could append to
1355 * first, otherwise finish off the current ioend and start another.
1356 */
1357static void
1358iomap_add_to_ioend(struct inode *inode, loff_t offset, struct page *page,
1359 struct iomap_page *iop, struct iomap_writepage_ctx *wpc,
1360 struct writeback_control *wbc, struct list_head *iolist)
1361{
1362 sector_t sector = iomap_sector(&wpc->iomap, offset);
1363 unsigned len = i_blocksize(inode);
1364 unsigned poff = offset & (PAGE_SIZE - 1);
1365 bool merged, same_page = false;
1366
1367 if (!wpc->ioend || !iomap_can_add_to_ioend(wpc, offset, sector)) {
1368 if (wpc->ioend)
1369 list_add(&wpc->ioend->io_list, iolist);
1370 wpc->ioend = iomap_alloc_ioend(inode, wpc, offset, sector, wbc);
1371 }
1372
1373 merged = __bio_try_merge_page(wpc->ioend->io_bio, page, len, poff,
1374 &same_page);
1375 if (iop && !same_page)
1376 atomic_inc(&iop->write_count);
1377
1378 if (!merged) {
1379 if (bio_full(wpc->ioend->io_bio, len)) {
1380 wpc->ioend->io_bio =
1381 iomap_chain_bio(wpc->ioend->io_bio);
1382 }
1383 bio_add_page(wpc->ioend->io_bio, page, len, poff);
1384 }
1385
1386 wpc->ioend->io_size += len;
1387 wbc_account_cgroup_owner(wbc, page, len);
1388}
1389
1390/*
1391 * We implement an immediate ioend submission policy here to avoid needing to
1392 * chain multiple ioends and hence nest mempool allocations which can violate
1393 * forward progress guarantees we need to provide. The current ioend we are
1394 * adding blocks to is cached on the writepage context, and if the new block
1395 * does not append to the cached ioend it will create a new ioend and cache that
1396 * instead.
1397 *
1398 * If a new ioend is created and cached, the old ioend is returned and queued
1399 * locally for submission once the entire page is processed or an error has been
1400 * detected. While ioends are submitted immediately after they are completed,
1401 * batching optimisations are provided by higher level block plugging.
1402 *
1403 * At the end of a writeback pass, there will be a cached ioend remaining on the
1404 * writepage context that the caller will need to submit.
1405 */
1406static int
1407iomap_writepage_map(struct iomap_writepage_ctx *wpc,
1408 struct writeback_control *wbc, struct inode *inode,
1409 struct page *page, u64 end_offset)
1410{
1411 struct iomap_page *iop = to_iomap_page(page);
1412 struct iomap_ioend *ioend, *next;
1413 unsigned len = i_blocksize(inode);
1414 u64 file_offset; /* file offset of page */
1415 int error = 0, count = 0, i;
1416 LIST_HEAD(submit_list);
1417
1418 WARN_ON_ONCE(i_blocksize(inode) < PAGE_SIZE && !iop);
1419 WARN_ON_ONCE(iop && atomic_read(&iop->write_count) != 0);
1420
1421 /*
1422 * Walk through the page to find areas to write back. If we run off the
1423 * end of the current map or find the current map invalid, grab a new
1424 * one.
1425 */
1426 for (i = 0, file_offset = page_offset(page);
1427 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
1428 i++, file_offset += len) {
1429 if (iop && !test_bit(i, iop->uptodate))
1430 continue;
1431
1432 error = wpc->ops->map_blocks(wpc, inode, file_offset);
1433 if (error)
1434 break;
3e19e6f3
CH
1435 if (WARN_ON_ONCE(wpc->iomap.type == IOMAP_INLINE))
1436 continue;
598ecfba
CH
1437 if (wpc->iomap.type == IOMAP_HOLE)
1438 continue;
1439 iomap_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
1440 &submit_list);
1441 count++;
1442 }
1443
1444 WARN_ON_ONCE(!wpc->ioend && !list_empty(&submit_list));
1445 WARN_ON_ONCE(!PageLocked(page));
1446 WARN_ON_ONCE(PageWriteback(page));
1447
1448 /*
1449 * We cannot cancel the ioend directly here on error. We may have
1450 * already set other pages under writeback and hence we have to run I/O
1451 * completion to mark the error state of the pages under writeback
1452 * appropriately.
1453 */
1454 if (unlikely(error)) {
1455 if (!count) {
1456 /*
1457 * If the current page hasn't been added to ioend, it
1458 * won't be affected by I/O completions and we must
1459 * discard and unlock it right here.
1460 */
1461 if (wpc->ops->discard_page)
1462 wpc->ops->discard_page(page);
1463 ClearPageUptodate(page);
1464 unlock_page(page);
1465 goto done;
1466 }
1467
1468 /*
1469 * If the page was not fully cleaned, we need to ensure that the
1470 * higher layers come back to it correctly. That means we need
1471 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
1472 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
1473 * so another attempt to write this page in this writeback sweep
1474 * will be made.
1475 */
1476 set_page_writeback_keepwrite(page);
1477 } else {
1478 clear_page_dirty_for_io(page);
1479 set_page_writeback(page);
1480 }
1481
1482 unlock_page(page);
1483
1484 /*
1485 * Preserve the original error if there was one, otherwise catch
1486 * submission errors here and propagate into subsequent ioend
1487 * submissions.
1488 */
1489 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
1490 int error2;
1491
1492 list_del_init(&ioend->io_list);
1493 error2 = iomap_submit_ioend(wpc, ioend, error);
1494 if (error2 && !error)
1495 error = error2;
1496 }
1497
1498 /*
1499 * We can end up here with no error and nothing to write only if we race
1500 * with a partial page truncate on a sub-page block sized filesystem.
1501 */
1502 if (!count)
1503 end_page_writeback(page);
1504done:
1505 mapping_set_error(page->mapping, error);
1506 return error;
1507}
1508
1509/*
1510 * Write out a dirty page.
1511 *
1512 * For delalloc space on the page we need to allocate space and flush it.
1513 * For unwritten space on the page we need to start the conversion to
1514 * regular allocated space.
1515 */
1516static int
1517iomap_do_writepage(struct page *page, struct writeback_control *wbc, void *data)
1518{
1519 struct iomap_writepage_ctx *wpc = data;
1520 struct inode *inode = page->mapping->host;
1521 pgoff_t end_index;
1522 u64 end_offset;
1523 loff_t offset;
1524
1525 trace_iomap_writepage(inode, page, 0, 0);
1526
1527 /*
1528 * Refuse to write the page out if we are called from reclaim context.
1529 *
1530 * This avoids stack overflows when called from deeply used stacks in
1531 * random callers for direct reclaim or memcg reclaim. We explicitly
1532 * allow reclaim from kswapd as the stack usage there is relatively low.
1533 *
1534 * This should never happen except in the case of a VM regression so
1535 * warn about it.
1536 */
1537 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1538 PF_MEMALLOC))
1539 goto redirty;
1540
1541 /*
1542 * Given that we do not allow direct reclaim to call us, we should
1543 * never be called in a recursive filesystem reclaim context.
1544 */
1545 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
1546 goto redirty;
1547
1548 /*
1549 * Is this page beyond the end of the file?
1550 *
1551 * The page index is less than the end_index, adjust the end_offset
1552 * to the highest offset that this page should represent.
1553 * -----------------------------------------------------
1554 * | file mapping | <EOF> |
1555 * -----------------------------------------------------
1556 * | Page ... | Page N-2 | Page N-1 | Page N | |
1557 * ^--------------------------------^----------|--------
1558 * | desired writeback range | see else |
1559 * ---------------------------------^------------------|
1560 */
1561 offset = i_size_read(inode);
1562 end_index = offset >> PAGE_SHIFT;
1563 if (page->index < end_index)
1564 end_offset = (loff_t)(page->index + 1) << PAGE_SHIFT;
1565 else {
1566 /*
1567 * Check whether the page to write out is beyond or straddles
1568 * i_size or not.
1569 * -------------------------------------------------------
1570 * | file mapping | <EOF> |
1571 * -------------------------------------------------------
1572 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
1573 * ^--------------------------------^-----------|---------
1574 * | | Straddles |
1575 * ---------------------------------^-----------|--------|
1576 */
1577 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
1578
1579 /*
1580 * Skip the page if it is fully outside i_size, e.g. due to a
1581 * truncate operation that is in progress. We must redirty the
1582 * page so that reclaim stops reclaiming it. Otherwise
1583 * iomap_vm_releasepage() is called on it and gets confused.
1584 *
1585 * Note that the end_index is unsigned long, it would overflow
1586 * if the given offset is greater than 16TB on 32-bit system
1587 * and if we do check the page is fully outside i_size or not
1588 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1589 * will be evaluated to 0. Hence this page will be redirtied
1590 * and be written out repeatedly which would result in an
1591 * infinite loop, the user program that perform this operation
1592 * will hang. Instead, we can verify this situation by checking
1593 * if the page to write is totally beyond the i_size or if it's
1594 * offset is just equal to the EOF.
1595 */
1596 if (page->index > end_index ||
1597 (page->index == end_index && offset_into_page == 0))
1598 goto redirty;
1599
1600 /*
1601 * The page straddles i_size. It must be zeroed out on each
1602 * and every writepage invocation because it may be mmapped.
1603 * "A file is mapped in multiples of the page size. For a file
1604 * that is not a multiple of the page size, the remaining
1605 * memory is zeroed when mapped, and writes to that region are
1606 * not written out to the file."
1607 */
1608 zero_user_segment(page, offset_into_page, PAGE_SIZE);
1609
1610 /* Adjust the end_offset to the end of file */
1611 end_offset = offset;
1612 }
1613
1614 return iomap_writepage_map(wpc, wbc, inode, page, end_offset);
1615
1616redirty:
1617 redirty_page_for_writepage(wbc, page);
1618 unlock_page(page);
1619 return 0;
1620}
1621
1622int
1623iomap_writepage(struct page *page, struct writeback_control *wbc,
1624 struct iomap_writepage_ctx *wpc,
1625 const struct iomap_writeback_ops *ops)
1626{
1627 int ret;
1628
1629 wpc->ops = ops;
1630 ret = iomap_do_writepage(page, wbc, wpc);
1631 if (!wpc->ioend)
1632 return ret;
1633 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1634}
1635EXPORT_SYMBOL_GPL(iomap_writepage);
1636
1637int
1638iomap_writepages(struct address_space *mapping, struct writeback_control *wbc,
1639 struct iomap_writepage_ctx *wpc,
1640 const struct iomap_writeback_ops *ops)
1641{
1642 int ret;
1643
1644 wpc->ops = ops;
1645 ret = write_cache_pages(mapping, wbc, iomap_do_writepage, wpc);
1646 if (!wpc->ioend)
1647 return ret;
1648 return iomap_submit_ioend(wpc, wpc->ioend, ret);
1649}
1650EXPORT_SYMBOL_GPL(iomap_writepages);
1651
1652static int __init iomap_init(void)
1653{
1654 return bioset_init(&iomap_ioend_bioset, 4 * (PAGE_SIZE / SECTOR_SIZE),
1655 offsetof(struct iomap_ioend, io_inline_bio),
1656 BIOSET_NEED_BVECS);
1657}
1658fs_initcall(iomap_init);