]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/jbd2/transaction.c
s390/crypto: Fix return code checking in cbc_paes_crypt()
[mirror_ubuntu-bionic-kernel.git] / fs / jbd2 / transaction.c
CommitLineData
470decc6 1/*
58862699 2 * linux/fs/jbd2/transaction.c
470decc6
DK
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
f7f4bccb 22#include <linux/jbd2.h>
470decc6
DK
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
470decc6
DK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e07f7183 28#include <linux/hrtimer.h>
47def826 29#include <linux/backing-dev.h>
44705754 30#include <linux/bug.h>
47def826 31#include <linux/module.h>
81378da6 32#include <linux/sched/mm.h>
470decc6 33
343d9c28
TT
34#include <trace/events/jbd2.h>
35
7ddae860 36static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
de1b7941 37static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
7ddae860 38
0c2022ec
YY
39static struct kmem_cache *transaction_cache;
40int __init jbd2_journal_init_transaction_cache(void)
41{
42 J_ASSERT(!transaction_cache);
43 transaction_cache = kmem_cache_create("jbd2_transaction_s",
44 sizeof(transaction_t),
45 0,
46 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47 NULL);
48 if (transaction_cache)
49 return 0;
50 return -ENOMEM;
51}
52
53void jbd2_journal_destroy_transaction_cache(void)
54{
55 if (transaction_cache) {
56 kmem_cache_destroy(transaction_cache);
57 transaction_cache = NULL;
58 }
59}
60
61void jbd2_journal_free_transaction(transaction_t *transaction)
62{
63 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64 return;
65 kmem_cache_free(transaction_cache, transaction);
66}
67
470decc6 68/*
f7f4bccb 69 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
70 *
71 * Simply allocate and initialise a new transaction. Create it in
72 * RUNNING state and add it to the current journal (which should not
73 * have an existing running transaction: we only make a new transaction
74 * once we have started to commit the old one).
75 *
76 * Preconditions:
77 * The journal MUST be locked. We don't perform atomic mallocs on the
78 * new transaction and we can't block without protecting against other
79 * processes trying to touch the journal while it is in transition.
80 *
470decc6
DK
81 */
82
83static transaction_t *
f7f4bccb 84jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
85{
86 transaction->t_journal = journal;
87 transaction->t_state = T_RUNNING;
e07f7183 88 transaction->t_start_time = ktime_get();
470decc6
DK
89 transaction->t_tid = journal->j_transaction_sequence++;
90 transaction->t_expires = jiffies + journal->j_commit_interval;
91 spin_lock_init(&transaction->t_handle_lock);
a51dca9c 92 atomic_set(&transaction->t_updates, 0);
8f7d89f3
JK
93 atomic_set(&transaction->t_outstanding_credits,
94 atomic_read(&journal->j_reserved_credits));
8dd42046 95 atomic_set(&transaction->t_handle_count, 0);
c851ed54 96 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 97 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
98
99 /* Set up the commit timer for the new transaction. */
b1f485f2 100 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
470decc6
DK
101 add_timer(&journal->j_commit_timer);
102
103 J_ASSERT(journal->j_running_transaction == NULL);
104 journal->j_running_transaction = transaction;
8e85fb3f
JL
105 transaction->t_max_wait = 0;
106 transaction->t_start = jiffies;
9fff24aa 107 transaction->t_requested = 0;
470decc6
DK
108
109 return transaction;
110}
111
112/*
113 * Handle management.
114 *
115 * A handle_t is an object which represents a single atomic update to a
116 * filesystem, and which tracks all of the modifications which form part
117 * of that one update.
118 */
119
6d0bf005 120/*
28e35e42 121 * Update transaction's maximum wait time, if debugging is enabled.
6d0bf005
TT
122 *
123 * In order for t_max_wait to be reliable, it must be protected by a
124 * lock. But doing so will mean that start_this_handle() can not be
125 * run in parallel on SMP systems, which limits our scalability. So
126 * unless debugging is enabled, we no longer update t_max_wait, which
127 * means that maximum wait time reported by the jbd2_run_stats
128 * tracepoint will always be zero.
129 */
28e35e42
TM
130static inline void update_t_max_wait(transaction_t *transaction,
131 unsigned long ts)
6d0bf005
TT
132{
133#ifdef CONFIG_JBD2_DEBUG
6d0bf005
TT
134 if (jbd2_journal_enable_debug &&
135 time_after(transaction->t_start, ts)) {
136 ts = jbd2_time_diff(ts, transaction->t_start);
137 spin_lock(&transaction->t_handle_lock);
138 if (ts > transaction->t_max_wait)
139 transaction->t_max_wait = ts;
140 spin_unlock(&transaction->t_handle_lock);
141 }
142#endif
143}
144
8f7d89f3
JK
145/*
146 * Wait until running transaction passes T_LOCKED state. Also starts the commit
147 * if needed. The function expects running transaction to exist and releases
148 * j_state_lock.
149 */
150static void wait_transaction_locked(journal_t *journal)
151 __releases(journal->j_state_lock)
152{
153 DEFINE_WAIT(wait);
154 int need_to_start;
155 tid_t tid = journal->j_running_transaction->t_tid;
156
157 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158 TASK_UNINTERRUPTIBLE);
159 need_to_start = !tid_geq(journal->j_commit_request, tid);
160 read_unlock(&journal->j_state_lock);
161 if (need_to_start)
162 jbd2_log_start_commit(journal, tid);
e03a9976 163 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
164 schedule();
165 finish_wait(&journal->j_wait_transaction_locked, &wait);
166}
167
168static void sub_reserved_credits(journal_t *journal, int blocks)
169{
170 atomic_sub(blocks, &journal->j_reserved_credits);
171 wake_up(&journal->j_wait_reserved);
172}
173
174/*
175 * Wait until we can add credits for handle to the running transaction. Called
176 * with j_state_lock held for reading. Returns 0 if handle joined the running
177 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178 * caller must retry.
179 */
180static int add_transaction_credits(journal_t *journal, int blocks,
181 int rsv_blocks)
182{
183 transaction_t *t = journal->j_running_transaction;
184 int needed;
185 int total = blocks + rsv_blocks;
186
187 /*
188 * If the current transaction is locked down for commit, wait
189 * for the lock to be released.
190 */
191 if (t->t_state == T_LOCKED) {
192 wait_transaction_locked(journal);
193 return 1;
194 }
195
196 /*
197 * If there is not enough space left in the log to write all
198 * potential buffers requested by this operation, we need to
199 * stall pending a log checkpoint to free some more log space.
200 */
201 needed = atomic_add_return(total, &t->t_outstanding_credits);
202 if (needed > journal->j_max_transaction_buffers) {
203 /*
204 * If the current transaction is already too large,
205 * then start to commit it: we can then go back and
206 * attach this handle to a new transaction.
207 */
208 atomic_sub(total, &t->t_outstanding_credits);
6d3ec14d
LC
209
210 /*
211 * Is the number of reserved credits in the current transaction too
212 * big to fit this handle? Wait until reserved credits are freed.
213 */
214 if (atomic_read(&journal->j_reserved_credits) + total >
215 journal->j_max_transaction_buffers) {
216 read_unlock(&journal->j_state_lock);
e03a9976 217 jbd2_might_wait_for_commit(journal);
6d3ec14d
LC
218 wait_event(journal->j_wait_reserved,
219 atomic_read(&journal->j_reserved_credits) + total <=
220 journal->j_max_transaction_buffers);
221 return 1;
222 }
223
8f7d89f3
JK
224 wait_transaction_locked(journal);
225 return 1;
226 }
227
228 /*
229 * The commit code assumes that it can get enough log space
230 * without forcing a checkpoint. This is *critical* for
231 * correctness: a checkpoint of a buffer which is also
232 * associated with a committing transaction creates a deadlock,
233 * so commit simply cannot force through checkpoints.
234 *
235 * We must therefore ensure the necessary space in the journal
236 * *before* starting to dirty potentially checkpointed buffers
237 * in the new transaction.
238 */
239 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240 atomic_sub(total, &t->t_outstanding_credits);
241 read_unlock(&journal->j_state_lock);
e03a9976 242 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
243 write_lock(&journal->j_state_lock);
244 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245 __jbd2_log_wait_for_space(journal);
246 write_unlock(&journal->j_state_lock);
247 return 1;
248 }
249
250 /* No reservation? We are done... */
251 if (!rsv_blocks)
252 return 0;
253
254 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255 /* We allow at most half of a transaction to be reserved */
256 if (needed > journal->j_max_transaction_buffers / 2) {
257 sub_reserved_credits(journal, rsv_blocks);
258 atomic_sub(total, &t->t_outstanding_credits);
259 read_unlock(&journal->j_state_lock);
e03a9976 260 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
261 wait_event(journal->j_wait_reserved,
262 atomic_read(&journal->j_reserved_credits) + rsv_blocks
263 <= journal->j_max_transaction_buffers / 2);
264 return 1;
265 }
266 return 0;
267}
268
470decc6
DK
269/*
270 * start_this_handle: Given a handle, deal with any locking or stalling
271 * needed to make sure that there is enough journal space for the handle
272 * to begin. Attach the handle to a transaction and set up the
273 * transaction's buffer credits.
274 */
275
47def826 276static int start_this_handle(journal_t *journal, handle_t *handle,
d2159fb7 277 gfp_t gfp_mask)
470decc6 278{
e4471831 279 transaction_t *transaction, *new_transaction = NULL;
8f7d89f3
JK
280 int blocks = handle->h_buffer_credits;
281 int rsv_blocks = 0;
28e35e42 282 unsigned long ts = jiffies;
470decc6 283
6d3ec14d
LC
284 if (handle->h_rsv_handle)
285 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
8f7d89f3 287 /*
6d3ec14d
LC
288 * Limit the number of reserved credits to 1/2 of maximum transaction
289 * size and limit the number of total credits to not exceed maximum
290 * transaction size per operation.
8f7d89f3 291 */
6d3ec14d
LC
292 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294 printk(KERN_ERR "JBD2: %s wants too many credits "
295 "credits:%d rsv_credits:%d max:%d\n",
296 current->comm, blocks, rsv_blocks,
297 journal->j_max_transaction_buffers);
298 WARN_ON(1);
47def826 299 return -ENOSPC;
470decc6
DK
300 }
301
302alloc_transaction:
303 if (!journal->j_running_transaction) {
6ccaf3e2
MH
304 /*
305 * If __GFP_FS is not present, then we may be being called from
306 * inside the fs writeback layer, so we MUST NOT fail.
307 */
308 if ((gfp_mask & __GFP_FS) == 0)
309 gfp_mask |= __GFP_NOFAIL;
b2f4edb3
WG
310 new_transaction = kmem_cache_zalloc(transaction_cache,
311 gfp_mask);
6ccaf3e2 312 if (!new_transaction)
47def826 313 return -ENOMEM;
470decc6
DK
314 }
315
316 jbd_debug(3, "New handle %p going live.\n", handle);
317
470decc6
DK
318 /*
319 * We need to hold j_state_lock until t_updates has been incremented,
320 * for proper journal barrier handling
321 */
a931da6a
TT
322repeat:
323 read_lock(&journal->j_state_lock);
5c2178e7 324 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
470decc6 325 if (is_journal_aborted(journal) ||
f7f4bccb 326 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
a931da6a 327 read_unlock(&journal->j_state_lock);
0c2022ec 328 jbd2_journal_free_transaction(new_transaction);
47def826 329 return -EROFS;
470decc6
DK
330 }
331
8f7d89f3
JK
332 /*
333 * Wait on the journal's transaction barrier if necessary. Specifically
334 * we allow reserved handles to proceed because otherwise commit could
335 * deadlock on page writeback not being able to complete.
336 */
337 if (!handle->h_reserved && journal->j_barrier_count) {
a931da6a 338 read_unlock(&journal->j_state_lock);
470decc6
DK
339 wait_event(journal->j_wait_transaction_locked,
340 journal->j_barrier_count == 0);
341 goto repeat;
342 }
343
344 if (!journal->j_running_transaction) {
a931da6a
TT
345 read_unlock(&journal->j_state_lock);
346 if (!new_transaction)
470decc6 347 goto alloc_transaction;
a931da6a 348 write_lock(&journal->j_state_lock);
d7961c7f 349 if (!journal->j_running_transaction &&
8f7d89f3 350 (handle->h_reserved || !journal->j_barrier_count)) {
a931da6a
TT
351 jbd2_get_transaction(journal, new_transaction);
352 new_transaction = NULL;
470decc6 353 }
a931da6a
TT
354 write_unlock(&journal->j_state_lock);
355 goto repeat;
470decc6
DK
356 }
357
358 transaction = journal->j_running_transaction;
359
8f7d89f3
JK
360 if (!handle->h_reserved) {
361 /* We may have dropped j_state_lock - restart in that case */
362 if (add_transaction_credits(journal, blocks, rsv_blocks))
363 goto repeat;
364 } else {
470decc6 365 /*
8f7d89f3
JK
366 * We have handle reserved so we are allowed to join T_LOCKED
367 * transaction and we don't have to check for transaction size
368 * and journal space.
470decc6 369 */
8f7d89f3
JK
370 sub_reserved_credits(journal, blocks);
371 handle->h_reserved = 0;
470decc6
DK
372 }
373
374 /* OK, account for the buffers that this operation expects to
8dd42046 375 * use and add the handle to the running transaction.
8dd42046 376 */
28e35e42 377 update_t_max_wait(transaction, ts);
470decc6 378 handle->h_transaction = transaction;
8f7d89f3 379 handle->h_requested_credits = blocks;
343d9c28 380 handle->h_start_jiffies = jiffies;
a51dca9c 381 atomic_inc(&transaction->t_updates);
8dd42046 382 atomic_inc(&transaction->t_handle_count);
8f7d89f3
JK
383 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384 handle, blocks,
a51dca9c 385 atomic_read(&transaction->t_outstanding_credits),
76c39904 386 jbd2_log_space_left(journal));
a931da6a 387 read_unlock(&journal->j_state_lock);
41a5b913 388 current->journal_info = handle;
9599b0e5 389
ab714aff 390 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
0c2022ec 391 jbd2_journal_free_transaction(new_transaction);
81378da6
MH
392 /*
393 * Ensure that no allocations done while the transaction is open are
394 * going to recurse back to the fs layer.
395 */
396 handle->saved_alloc_context = memalloc_nofs_save();
47def826 397 return 0;
470decc6
DK
398}
399
400/* Allocate a new handle. This should probably be in a slab... */
401static handle_t *new_handle(int nblocks)
402{
af1e76d6 403 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
404 if (!handle)
405 return NULL;
470decc6
DK
406 handle->h_buffer_credits = nblocks;
407 handle->h_ref = 1;
408
409 return handle;
410}
411
8f7d89f3
JK
412handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413 gfp_t gfp_mask, unsigned int type,
414 unsigned int line_no)
470decc6
DK
415{
416 handle_t *handle = journal_current_handle();
417 int err;
418
419 if (!journal)
420 return ERR_PTR(-EROFS);
421
422 if (handle) {
423 J_ASSERT(handle->h_transaction->t_journal == journal);
424 handle->h_ref++;
425 return handle;
426 }
427
428 handle = new_handle(nblocks);
429 if (!handle)
430 return ERR_PTR(-ENOMEM);
8f7d89f3
JK
431 if (rsv_blocks) {
432 handle_t *rsv_handle;
433
434 rsv_handle = new_handle(rsv_blocks);
435 if (!rsv_handle) {
436 jbd2_free_handle(handle);
437 return ERR_PTR(-ENOMEM);
438 }
439 rsv_handle->h_reserved = 1;
440 rsv_handle->h_journal = journal;
441 handle->h_rsv_handle = rsv_handle;
442 }
470decc6 443
47def826 444 err = start_this_handle(journal, handle, gfp_mask);
470decc6 445 if (err < 0) {
8f7d89f3
JK
446 if (handle->h_rsv_handle)
447 jbd2_free_handle(handle->h_rsv_handle);
af1e76d6 448 jbd2_free_handle(handle);
df05c1b8 449 return ERR_PTR(err);
470decc6 450 }
343d9c28
TT
451 handle->h_type = type;
452 handle->h_line_no = line_no;
453 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454 handle->h_transaction->t_tid, type,
455 line_no, nblocks);
81378da6 456
470decc6
DK
457 return handle;
458}
47def826
TT
459EXPORT_SYMBOL(jbd2__journal_start);
460
461
91e4775d
MCC
462/**
463 * handle_t *jbd2_journal_start() - Obtain a new handle.
464 * @journal: Journal to start transaction on.
465 * @nblocks: number of block buffer we might modify
466 *
467 * We make sure that the transaction can guarantee at least nblocks of
468 * modified buffers in the log. We block until the log can guarantee
469 * that much space. Additionally, if rsv_blocks > 0, we also create another
470 * handle with rsv_blocks reserved blocks in the journal. This handle is
471 * is stored in h_rsv_handle. It is not attached to any particular transaction
472 * and thus doesn't block transaction commit. If the caller uses this reserved
473 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474 * on the parent handle will dispose the reserved one. Reserved handle has to
475 * be converted to a normal handle using jbd2_journal_start_reserved() before
476 * it can be used.
477 *
478 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479 * on failure.
480 */
47def826
TT
481handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482{
8f7d89f3 483 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
47def826
TT
484}
485EXPORT_SYMBOL(jbd2_journal_start);
486
8f7d89f3
JK
487void jbd2_journal_free_reserved(handle_t *handle)
488{
489 journal_t *journal = handle->h_journal;
490
491 WARN_ON(!handle->h_reserved);
492 sub_reserved_credits(journal, handle->h_buffer_credits);
493 jbd2_free_handle(handle);
494}
495EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497/**
1980a53c 498 * int jbd2_journal_start_reserved() - start reserved handle
8f7d89f3 499 * @handle: handle to start
1980a53c
TH
500 * @type: for handle statistics
501 * @line_no: for handle statistics
8f7d89f3
JK
502 *
503 * Start handle that has been previously reserved with jbd2_journal_reserve().
504 * This attaches @handle to the running transaction (or creates one if there's
505 * not transaction running). Unlike jbd2_journal_start() this function cannot
506 * block on journal commit, checkpointing, or similar stuff. It can block on
507 * memory allocation or frozen journal though.
508 *
509 * Return 0 on success, non-zero on error - handle is freed in that case.
510 */
511int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
512 unsigned int line_no)
513{
514 journal_t *journal = handle->h_journal;
515 int ret = -EIO;
516
517 if (WARN_ON(!handle->h_reserved)) {
518 /* Someone passed in normal handle? Just stop it. */
519 jbd2_journal_stop(handle);
520 return ret;
521 }
522 /*
523 * Usefulness of mixing of reserved and unreserved handles is
524 * questionable. So far nobody seems to need it so just error out.
525 */
526 if (WARN_ON(current->journal_info)) {
527 jbd2_journal_free_reserved(handle);
528 return ret;
529 }
530
531 handle->h_journal = NULL;
8f7d89f3
JK
532 /*
533 * GFP_NOFS is here because callers are likely from writeback or
534 * similarly constrained call sites
535 */
536 ret = start_this_handle(journal, handle, GFP_NOFS);
92e3b405 537 if (ret < 0) {
f0177bd8 538 handle->h_journal = journal;
8f7d89f3 539 jbd2_journal_free_reserved(handle);
92e3b405
DC
540 return ret;
541 }
8f7d89f3
JK
542 handle->h_type = type;
543 handle->h_line_no = line_no;
92e3b405 544 return 0;
8f7d89f3
JK
545}
546EXPORT_SYMBOL(jbd2_journal_start_reserved);
470decc6
DK
547
548/**
f7f4bccb 549 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
550 * @handle: handle to 'extend'
551 * @nblocks: nr blocks to try to extend by.
552 *
553 * Some transactions, such as large extends and truncates, can be done
554 * atomically all at once or in several stages. The operation requests
bd7ced98 555 * a credit for a number of buffer modifications in advance, but can
470decc6
DK
556 * extend its credit if it needs more.
557 *
f7f4bccb 558 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
559 * It does not guarantee that allocation - this is a best-effort only.
560 * The calling process MUST be able to deal cleanly with a failure to
561 * extend here.
562 *
563 * Return 0 on success, non-zero on failure.
564 *
565 * return code < 0 implies an error
566 * return code > 0 implies normal transaction-full status.
567 */
f7f4bccb 568int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
569{
570 transaction_t *transaction = handle->h_transaction;
41a5b913 571 journal_t *journal;
470decc6
DK
572 int result;
573 int wanted;
574
470decc6 575 if (is_handle_aborted(handle))
41a5b913
TT
576 return -EROFS;
577 journal = transaction->t_journal;
470decc6
DK
578
579 result = 1;
580
a931da6a 581 read_lock(&journal->j_state_lock);
470decc6
DK
582
583 /* Don't extend a locked-down transaction! */
41a5b913 584 if (transaction->t_state != T_RUNNING) {
470decc6
DK
585 jbd_debug(3, "denied handle %p %d blocks: "
586 "transaction not running\n", handle, nblocks);
587 goto error_out;
588 }
589
590 spin_lock(&transaction->t_handle_lock);
fe1e8db5
JK
591 wanted = atomic_add_return(nblocks,
592 &transaction->t_outstanding_credits);
470decc6
DK
593
594 if (wanted > journal->j_max_transaction_buffers) {
595 jbd_debug(3, "denied handle %p %d blocks: "
596 "transaction too large\n", handle, nblocks);
fe1e8db5 597 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
598 goto unlock;
599 }
600
76c39904
JK
601 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
602 jbd2_log_space_left(journal)) {
470decc6
DK
603 jbd_debug(3, "denied handle %p %d blocks: "
604 "insufficient log space\n", handle, nblocks);
fe1e8db5 605 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
606 goto unlock;
607 }
608
343d9c28 609 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
41a5b913 610 transaction->t_tid,
343d9c28
TT
611 handle->h_type, handle->h_line_no,
612 handle->h_buffer_credits,
613 nblocks);
614
470decc6 615 handle->h_buffer_credits += nblocks;
343d9c28 616 handle->h_requested_credits += nblocks;
470decc6
DK
617 result = 0;
618
619 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
620unlock:
621 spin_unlock(&transaction->t_handle_lock);
622error_out:
a931da6a 623 read_unlock(&journal->j_state_lock);
470decc6
DK
624 return result;
625}
626
627
628/**
f7f4bccb 629 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
630 * @handle: handle to restart
631 * @nblocks: nr credits requested
1980a53c 632 * @gfp_mask: memory allocation flags (for start_this_handle)
470decc6
DK
633 *
634 * Restart a handle for a multi-transaction filesystem
635 * operation.
636 *
f7f4bccb
MC
637 * If the jbd2_journal_extend() call above fails to grant new buffer credits
638 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6 639 * handle's transaction so far and reattach the handle to a new
bd7ced98 640 * transaction capable of guaranteeing the requested number of
8f7d89f3
JK
641 * credits. We preserve reserved handle if there's any attached to the
642 * passed in handle.
470decc6 643 */
d2159fb7 644int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
470decc6
DK
645{
646 transaction_t *transaction = handle->h_transaction;
41a5b913 647 journal_t *journal;
e4471831
TT
648 tid_t tid;
649 int need_to_start, ret;
470decc6
DK
650
651 /* If we've had an abort of any type, don't even think about
652 * actually doing the restart! */
653 if (is_handle_aborted(handle))
654 return 0;
41a5b913 655 journal = transaction->t_journal;
470decc6
DK
656
657 /*
658 * First unlink the handle from its current transaction, and start the
659 * commit on that.
660 */
a51dca9c 661 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
662 J_ASSERT(journal_current_handle() == handle);
663
a931da6a 664 read_lock(&journal->j_state_lock);
470decc6 665 spin_lock(&transaction->t_handle_lock);
a51dca9c
TT
666 atomic_sub(handle->h_buffer_credits,
667 &transaction->t_outstanding_credits);
8f7d89f3
JK
668 if (handle->h_rsv_handle) {
669 sub_reserved_credits(journal,
670 handle->h_rsv_handle->h_buffer_credits);
671 }
a51dca9c 672 if (atomic_dec_and_test(&transaction->t_updates))
470decc6 673 wake_up(&journal->j_wait_updates);
39c04153 674 tid = transaction->t_tid;
470decc6 675 spin_unlock(&transaction->t_handle_lock);
41a5b913
TT
676 handle->h_transaction = NULL;
677 current->journal_info = NULL;
470decc6
DK
678
679 jbd_debug(2, "restarting handle %p\n", handle);
e4471831 680 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 681 read_unlock(&journal->j_state_lock);
e4471831
TT
682 if (need_to_start)
683 jbd2_log_start_commit(journal, tid);
470decc6 684
ab714aff 685 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
470decc6 686 handle->h_buffer_credits = nblocks;
b4709067
TE
687 /*
688 * Restore the original nofs context because the journal restart
689 * is basically the same thing as journal stop and start.
690 * start_this_handle will start a new nofs context.
691 */
692 memalloc_nofs_restore(handle->saved_alloc_context);
47def826 693 ret = start_this_handle(journal, handle, gfp_mask);
470decc6
DK
694 return ret;
695}
47def826 696EXPORT_SYMBOL(jbd2__journal_restart);
470decc6
DK
697
698
47def826
TT
699int jbd2_journal_restart(handle_t *handle, int nblocks)
700{
701 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
702}
703EXPORT_SYMBOL(jbd2_journal_restart);
704
470decc6 705/**
f7f4bccb 706 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
707 * @journal: Journal to establish a barrier on.
708 *
709 * This locks out any further updates from being started, and blocks
710 * until all existing updates have completed, returning only once the
711 * journal is in a quiescent state with no updates running.
712 *
713 * The journal lock should not be held on entry.
714 */
f7f4bccb 715void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
716{
717 DEFINE_WAIT(wait);
718
1eaa566d
JK
719 jbd2_might_wait_for_commit(journal);
720
a931da6a 721 write_lock(&journal->j_state_lock);
470decc6
DK
722 ++journal->j_barrier_count;
723
8f7d89f3
JK
724 /* Wait until there are no reserved handles */
725 if (atomic_read(&journal->j_reserved_credits)) {
726 write_unlock(&journal->j_state_lock);
727 wait_event(journal->j_wait_reserved,
728 atomic_read(&journal->j_reserved_credits) == 0);
729 write_lock(&journal->j_state_lock);
730 }
731
470decc6
DK
732 /* Wait until there are no running updates */
733 while (1) {
734 transaction_t *transaction = journal->j_running_transaction;
735
736 if (!transaction)
737 break;
738
739 spin_lock(&transaction->t_handle_lock);
9837d8e9
JK
740 prepare_to_wait(&journal->j_wait_updates, &wait,
741 TASK_UNINTERRUPTIBLE);
a51dca9c 742 if (!atomic_read(&transaction->t_updates)) {
470decc6 743 spin_unlock(&transaction->t_handle_lock);
9837d8e9 744 finish_wait(&journal->j_wait_updates, &wait);
470decc6
DK
745 break;
746 }
470decc6 747 spin_unlock(&transaction->t_handle_lock);
a931da6a 748 write_unlock(&journal->j_state_lock);
470decc6
DK
749 schedule();
750 finish_wait(&journal->j_wait_updates, &wait);
a931da6a 751 write_lock(&journal->j_state_lock);
470decc6 752 }
a931da6a 753 write_unlock(&journal->j_state_lock);
470decc6
DK
754
755 /*
756 * We have now established a barrier against other normal updates, but
f7f4bccb 757 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
758 * to make sure that we serialise special journal-locked operations
759 * too.
760 */
761 mutex_lock(&journal->j_barrier);
762}
763
764/**
f7f4bccb 765 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
766 * @journal: Journal to release the barrier on.
767 *
f7f4bccb 768 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
769 *
770 * Should be called without the journal lock held.
771 */
f7f4bccb 772void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
773{
774 J_ASSERT(journal->j_barrier_count != 0);
775
776 mutex_unlock(&journal->j_barrier);
a931da6a 777 write_lock(&journal->j_state_lock);
470decc6 778 --journal->j_barrier_count;
a931da6a 779 write_unlock(&journal->j_state_lock);
470decc6
DK
780 wake_up(&journal->j_wait_transaction_locked);
781}
782
f91d1d04 783static void warn_dirty_buffer(struct buffer_head *bh)
470decc6 784{
f91d1d04 785 printk(KERN_WARNING
a1c6f057 786 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
f91d1d04
JK
787 "There's a risk of filesystem corruption in case of system "
788 "crash.\n",
a1c6f057 789 bh->b_bdev, (unsigned long long)bh->b_blocknr);
470decc6
DK
790}
791
ee57aba1
JK
792/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
793static void jbd2_freeze_jh_data(struct journal_head *jh)
794{
795 struct page *page;
796 int offset;
797 char *source;
798 struct buffer_head *bh = jh2bh(jh);
799
800 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
801 page = bh->b_page;
802 offset = offset_in_page(bh->b_data);
803 source = kmap_atomic(page);
804 /* Fire data frozen trigger just before we copy the data */
805 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
806 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
807 kunmap_atomic(source);
808
809 /*
810 * Now that the frozen data is saved off, we need to store any matching
811 * triggers.
812 */
813 jh->b_frozen_triggers = jh->b_triggers;
814}
815
470decc6
DK
816/*
817 * If the buffer is already part of the current transaction, then there
818 * is nothing we need to do. If it is already part of a prior
819 * transaction which we are still committing to disk, then we need to
820 * make sure that we do not overwrite the old copy: we do copy-out to
821 * preserve the copy going to disk. We also account the buffer against
822 * the handle's metadata buffer credits (unless the buffer is already
823 * part of the transaction, that is).
824 *
825 */
826static int
827do_get_write_access(handle_t *handle, struct journal_head *jh,
828 int force_copy)
829{
830 struct buffer_head *bh;
41a5b913 831 transaction_t *transaction = handle->h_transaction;
470decc6
DK
832 journal_t *journal;
833 int error;
834 char *frozen_buffer = NULL;
f783f091 835 unsigned long start_lock, time_lock;
470decc6
DK
836
837 if (is_handle_aborted(handle))
838 return -EROFS;
470decc6
DK
839 journal = transaction->t_journal;
840
cfef2c6a 841 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
470decc6
DK
842
843 JBUFFER_TRACE(jh, "entry");
844repeat:
845 bh = jh2bh(jh);
846
847 /* @@@ Need to check for errors here at some point. */
848
f783f091 849 start_lock = jiffies;
470decc6
DK
850 lock_buffer(bh);
851 jbd_lock_bh_state(bh);
852
f783f091
TT
853 /* If it takes too long to lock the buffer, trace it */
854 time_lock = jbd2_time_diff(start_lock, jiffies);
855 if (time_lock > HZ/10)
856 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
857 jiffies_to_msecs(time_lock));
858
470decc6
DK
859 /* We now hold the buffer lock so it is safe to query the buffer
860 * state. Is the buffer dirty?
861 *
862 * If so, there are two possibilities. The buffer may be
863 * non-journaled, and undergoing a quite legitimate writeback.
864 * Otherwise, it is journaled, and we don't expect dirty buffers
865 * in that state (the buffers should be marked JBD_Dirty
866 * instead.) So either the IO is being done under our own
867 * control and this is a bug, or it's a third party IO such as
868 * dump(8) (which may leave the buffer scheduled for read ---
869 * ie. locked but not dirty) or tune2fs (which may actually have
870 * the buffer dirtied, ugh.) */
871
872 if (buffer_dirty(bh)) {
873 /*
874 * First question: is this buffer already part of the current
875 * transaction or the existing committing transaction?
876 */
877 if (jh->b_transaction) {
878 J_ASSERT_JH(jh,
879 jh->b_transaction == transaction ||
880 jh->b_transaction ==
881 journal->j_committing_transaction);
882 if (jh->b_next_transaction)
883 J_ASSERT_JH(jh, jh->b_next_transaction ==
884 transaction);
f91d1d04 885 warn_dirty_buffer(bh);
470decc6
DK
886 }
887 /*
888 * In any case we need to clean the dirty flag and we must
889 * do it under the buffer lock to be sure we don't race
890 * with running write-out.
891 */
f91d1d04
JK
892 JBUFFER_TRACE(jh, "Journalling dirty buffer");
893 clear_buffer_dirty(bh);
894 set_buffer_jbddirty(bh);
470decc6
DK
895 }
896
897 unlock_buffer(bh);
898
899 error = -EROFS;
900 if (is_handle_aborted(handle)) {
901 jbd_unlock_bh_state(bh);
902 goto out;
903 }
904 error = 0;
905
906 /*
907 * The buffer is already part of this transaction if b_transaction or
908 * b_next_transaction points to it
909 */
910 if (jh->b_transaction == transaction ||
911 jh->b_next_transaction == transaction)
912 goto done;
913
9fc7c63a
JB
914 /*
915 * this is the first time this transaction is touching this buffer,
916 * reset the modified flag
917 */
918 jh->b_modified = 0;
919
8b00f400
JK
920 /*
921 * If the buffer is not journaled right now, we need to make sure it
922 * doesn't get written to disk before the caller actually commits the
923 * new data
924 */
925 if (!jh->b_transaction) {
926 JBUFFER_TRACE(jh, "no transaction");
927 J_ASSERT_JH(jh, !jh->b_next_transaction);
928 JBUFFER_TRACE(jh, "file as BJ_Reserved");
de92c8ca
JK
929 /*
930 * Make sure all stores to jh (b_modified, b_frozen_data) are
931 * visible before attaching it to the running transaction.
932 * Paired with barrier in jbd2_write_access_granted()
933 */
934 smp_wmb();
8b00f400
JK
935 spin_lock(&journal->j_list_lock);
936 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
937 spin_unlock(&journal->j_list_lock);
938 goto done;
939 }
470decc6
DK
940 /*
941 * If there is already a copy-out version of this buffer, then we don't
942 * need to make another one
943 */
944 if (jh->b_frozen_data) {
945 JBUFFER_TRACE(jh, "has frozen data");
946 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
de92c8ca 947 goto attach_next;
470decc6
DK
948 }
949
8b00f400
JK
950 JBUFFER_TRACE(jh, "owned by older transaction");
951 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
952 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
470decc6 953
8b00f400
JK
954 /*
955 * There is one case we have to be very careful about. If the
956 * committing transaction is currently writing this buffer out to disk
957 * and has NOT made a copy-out, then we cannot modify the buffer
958 * contents at all right now. The essence of copy-out is that it is
959 * the extra copy, not the primary copy, which gets journaled. If the
960 * primary copy is already going to disk then we cannot do copy-out
961 * here.
962 */
963 if (buffer_shadow(bh)) {
964 JBUFFER_TRACE(jh, "on shadow: sleep");
965 jbd_unlock_bh_state(bh);
966 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
967 goto repeat;
968 }
470decc6 969
8b00f400
JK
970 /*
971 * Only do the copy if the currently-owning transaction still needs it.
972 * If buffer isn't on BJ_Metadata list, the committing transaction is
973 * past that stage (here we use the fact that BH_Shadow is set under
974 * bh_state lock together with refiling to BJ_Shadow list and at this
975 * point we know the buffer doesn't have BH_Shadow set).
976 *
977 * Subtle point, though: if this is a get_undo_access, then we will be
978 * relying on the frozen_data to contain the new value of the
979 * committed_data record after the transaction, so we HAVE to force the
980 * frozen_data copy in that case.
981 */
982 if (jh->b_jlist == BJ_Metadata || force_copy) {
983 JBUFFER_TRACE(jh, "generate frozen data");
984 if (!frozen_buffer) {
985 JBUFFER_TRACE(jh, "allocate memory for buffer");
470decc6 986 jbd_unlock_bh_state(bh);
490c1b44
MH
987 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
988 GFP_NOFS | __GFP_NOFAIL);
8b00f400 989 goto repeat;
470decc6 990 }
8b00f400
JK
991 jh->b_frozen_data = frozen_buffer;
992 frozen_buffer = NULL;
993 jbd2_freeze_jh_data(jh);
470decc6 994 }
de92c8ca
JK
995attach_next:
996 /*
997 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
998 * before attaching it to the running transaction. Paired with barrier
999 * in jbd2_write_access_granted()
1000 */
1001 smp_wmb();
8b00f400 1002 jh->b_next_transaction = transaction;
470decc6
DK
1003
1004done:
470decc6
DK
1005 jbd_unlock_bh_state(bh);
1006
1007 /*
1008 * If we are about to journal a buffer, then any revoke pending on it is
1009 * no longer valid
1010 */
f7f4bccb 1011 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
1012
1013out:
1014 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 1015 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
1016
1017 JBUFFER_TRACE(jh, "exit");
1018 return error;
1019}
1020
de92c8ca 1021/* Fast check whether buffer is already attached to the required transaction */
087ffd4e
JB
1022static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1023 bool undo)
de92c8ca
JK
1024{
1025 struct journal_head *jh;
1026 bool ret = false;
1027
1028 /* Dirty buffers require special handling... */
1029 if (buffer_dirty(bh))
1030 return false;
1031
1032 /*
1033 * RCU protects us from dereferencing freed pages. So the checks we do
1034 * are guaranteed not to oops. However the jh slab object can get freed
1035 * & reallocated while we work with it. So we have to be careful. When
1036 * we see jh attached to the running transaction, we know it must stay
1037 * so until the transaction is committed. Thus jh won't be freed and
1038 * will be attached to the same bh while we run. However it can
1039 * happen jh gets freed, reallocated, and attached to the transaction
1040 * just after we get pointer to it from bh. So we have to be careful
1041 * and recheck jh still belongs to our bh before we return success.
1042 */
1043 rcu_read_lock();
1044 if (!buffer_jbd(bh))
1045 goto out;
1046 /* This should be bh2jh() but that doesn't work with inline functions */
1047 jh = READ_ONCE(bh->b_private);
1048 if (!jh)
1049 goto out;
087ffd4e
JB
1050 /* For undo access buffer must have data copied */
1051 if (undo && !jh->b_committed_data)
1052 goto out;
de92c8ca
JK
1053 if (jh->b_transaction != handle->h_transaction &&
1054 jh->b_next_transaction != handle->h_transaction)
1055 goto out;
1056 /*
1057 * There are two reasons for the barrier here:
1058 * 1) Make sure to fetch b_bh after we did previous checks so that we
1059 * detect when jh went through free, realloc, attach to transaction
1060 * while we were checking. Paired with implicit barrier in that path.
1061 * 2) So that access to bh done after jbd2_write_access_granted()
1062 * doesn't get reordered and see inconsistent state of concurrent
1063 * do_get_write_access().
1064 */
1065 smp_mb();
1066 if (unlikely(jh->b_bh != bh))
1067 goto out;
1068 ret = true;
1069out:
1070 rcu_read_unlock();
1071 return ret;
1072}
1073
470decc6 1074/**
f7f4bccb 1075 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
1076 * @handle: transaction to add buffer modifications to
1077 * @bh: bh to be used for metadata writes
470decc6 1078 *
df1b560a 1079 * Returns: error code or 0 on success.
470decc6
DK
1080 *
1081 * In full data journalling mode the buffer may be of type BJ_AsyncData,
df1b560a 1082 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
470decc6
DK
1083 */
1084
f7f4bccb 1085int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 1086{
de92c8ca 1087 struct journal_head *jh;
470decc6
DK
1088 int rc;
1089
087ffd4e 1090 if (jbd2_write_access_granted(handle, bh, false))
de92c8ca
JK
1091 return 0;
1092
1093 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1094 /* We do not want to get caught playing with fields which the
1095 * log thread also manipulates. Make sure that the buffer
1096 * completes any outstanding IO before proceeding. */
1097 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 1098 jbd2_journal_put_journal_head(jh);
470decc6
DK
1099 return rc;
1100}
1101
1102
1103/*
1104 * When the user wants to journal a newly created buffer_head
1105 * (ie. getblk() returned a new buffer and we are going to populate it
1106 * manually rather than reading off disk), then we need to keep the
1107 * buffer_head locked until it has been completely filled with new
1108 * data. In this case, we should be able to make the assertion that
1109 * the bh is not already part of an existing transaction.
1110 *
1111 * The buffer should already be locked by the caller by this point.
1112 * There is no lock ranking violation: it was a newly created,
1113 * unlocked buffer beforehand. */
1114
1115/**
f7f4bccb 1116 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
1117 * @handle: transaction to new buffer to
1118 * @bh: new buffer.
1119 *
1120 * Call this if you create a new bh.
1121 */
f7f4bccb 1122int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1123{
1124 transaction_t *transaction = handle->h_transaction;
41a5b913 1125 journal_t *journal;
f7f4bccb 1126 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1127 int err;
1128
1129 jbd_debug(5, "journal_head %p\n", jh);
1130 err = -EROFS;
1131 if (is_handle_aborted(handle))
1132 goto out;
41a5b913 1133 journal = transaction->t_journal;
470decc6
DK
1134 err = 0;
1135
1136 JBUFFER_TRACE(jh, "entry");
1137 /*
1138 * The buffer may already belong to this transaction due to pre-zeroing
1139 * in the filesystem's new_block code. It may also be on the previous,
1140 * committing transaction's lists, but it HAS to be in Forget state in
1141 * that case: the transaction must have deleted the buffer for it to be
1142 * reused here.
1143 */
1144 jbd_lock_bh_state(bh);
470decc6
DK
1145 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1146 jh->b_transaction == NULL ||
1147 (jh->b_transaction == journal->j_committing_transaction &&
1148 jh->b_jlist == BJ_Forget)));
1149
1150 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1151 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1152
1153 if (jh->b_transaction == NULL) {
f91d1d04
JK
1154 /*
1155 * Previous jbd2_journal_forget() could have left the buffer
1156 * with jbddirty bit set because it was being committed. When
1157 * the commit finished, we've filed the buffer for
1158 * checkpointing and marked it dirty. Now we are reallocating
1159 * the buffer so the transaction freeing it must have
1160 * committed and so it's safe to clear the dirty bit.
1161 */
1162 clear_buffer_dirty(jh2bh(jh));
9fc7c63a
JB
1163 /* first access by this transaction */
1164 jh->b_modified = 0;
1165
470decc6 1166 JBUFFER_TRACE(jh, "file as BJ_Reserved");
6e4862a5 1167 spin_lock(&journal->j_list_lock);
f7f4bccb 1168 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
559cce69 1169 spin_unlock(&journal->j_list_lock);
470decc6 1170 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
1171 /* first access by this transaction */
1172 jh->b_modified = 0;
1173
470decc6 1174 JBUFFER_TRACE(jh, "set next transaction");
6e4862a5 1175 spin_lock(&journal->j_list_lock);
470decc6 1176 jh->b_next_transaction = transaction;
559cce69 1177 spin_unlock(&journal->j_list_lock);
470decc6 1178 }
470decc6
DK
1179 jbd_unlock_bh_state(bh);
1180
1181 /*
1182 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1183 * blocks which contain freed but then revoked metadata. We need
1184 * to cancel the revoke in case we end up freeing it yet again
1185 * and the reallocating as data - this would cause a second revoke,
1186 * which hits an assertion error.
1187 */
1188 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb 1189 jbd2_journal_cancel_revoke(handle, jh);
470decc6 1190out:
3991b400 1191 jbd2_journal_put_journal_head(jh);
470decc6
DK
1192 return err;
1193}
1194
1195/**
f7f4bccb 1196 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
1197 * non-rewindable consequences
1198 * @handle: transaction
1199 * @bh: buffer to undo
470decc6
DK
1200 *
1201 * Sometimes there is a need to distinguish between metadata which has
1202 * been committed to disk and that which has not. The ext3fs code uses
1203 * this for freeing and allocating space, we have to make sure that we
1204 * do not reuse freed space until the deallocation has been committed,
1205 * since if we overwrote that space we would make the delete
1206 * un-rewindable in case of a crash.
1207 *
f7f4bccb 1208 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
1209 * buffer for parts of non-rewindable operations such as delete
1210 * operations on the bitmaps. The journaling code must keep a copy of
1211 * the buffer's contents prior to the undo_access call until such time
1212 * as we know that the buffer has definitely been committed to disk.
1213 *
1214 * We never need to know which transaction the committed data is part
1215 * of, buffers touched here are guaranteed to be dirtied later and so
1216 * will be committed to a new transaction in due course, at which point
1217 * we can discard the old committed data pointer.
1218 *
1219 * Returns error number or 0 on success.
1220 */
f7f4bccb 1221int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1222{
1223 int err;
de92c8ca 1224 struct journal_head *jh;
470decc6
DK
1225 char *committed_data = NULL;
1226
1227 JBUFFER_TRACE(jh, "entry");
087ffd4e 1228 if (jbd2_write_access_granted(handle, bh, true))
de92c8ca 1229 return 0;
470decc6 1230
de92c8ca 1231 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1232 /*
1233 * Do this first --- it can drop the journal lock, so we want to
1234 * make sure that obtaining the committed_data is done
1235 * atomically wrt. completion of any outstanding commits.
1236 */
1237 err = do_get_write_access(handle, jh, 1);
1238 if (err)
1239 goto out;
1240
1241repeat:
490c1b44
MH
1242 if (!jh->b_committed_data)
1243 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1244 GFP_NOFS|__GFP_NOFAIL);
470decc6
DK
1245
1246 jbd_lock_bh_state(bh);
1247 if (!jh->b_committed_data) {
1248 /* Copy out the current buffer contents into the
1249 * preserved, committed copy. */
1250 JBUFFER_TRACE(jh, "generate b_committed data");
1251 if (!committed_data) {
1252 jbd_unlock_bh_state(bh);
1253 goto repeat;
1254 }
1255
1256 jh->b_committed_data = committed_data;
1257 committed_data = NULL;
1258 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1259 }
1260 jbd_unlock_bh_state(bh);
1261out:
f7f4bccb 1262 jbd2_journal_put_journal_head(jh);
470decc6 1263 if (unlikely(committed_data))
af1e76d6 1264 jbd2_free(committed_data, bh->b_size);
470decc6
DK
1265 return err;
1266}
1267
e06c8227
JB
1268/**
1269 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1270 * @bh: buffer to trigger on
1271 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1272 *
1273 * Set any triggers on this journal_head. This is always safe, because
1274 * triggers for a committing buffer will be saved off, and triggers for
1275 * a running transaction will match the buffer in that transaction.
1276 *
1277 * Call with NULL to clear the triggers.
1278 */
1279void jbd2_journal_set_triggers(struct buffer_head *bh,
1280 struct jbd2_buffer_trigger_type *type)
1281{
ad56edad 1282 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
e06c8227 1283
ad56edad
JK
1284 if (WARN_ON(!jh))
1285 return;
e06c8227 1286 jh->b_triggers = type;
ad56edad 1287 jbd2_journal_put_journal_head(jh);
e06c8227
JB
1288}
1289
13ceef09 1290void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
e06c8227
JB
1291 struct jbd2_buffer_trigger_type *triggers)
1292{
1293 struct buffer_head *bh = jh2bh(jh);
1294
13ceef09 1295 if (!triggers || !triggers->t_frozen)
e06c8227
JB
1296 return;
1297
13ceef09 1298 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
e06c8227
JB
1299}
1300
1301void jbd2_buffer_abort_trigger(struct journal_head *jh,
1302 struct jbd2_buffer_trigger_type *triggers)
1303{
1304 if (!triggers || !triggers->t_abort)
1305 return;
1306
1307 triggers->t_abort(triggers, jh2bh(jh));
1308}
1309
470decc6 1310/**
f7f4bccb 1311 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
1312 * @handle: transaction to add buffer to.
1313 * @bh: buffer to mark
1314 *
1315 * mark dirty metadata which needs to be journaled as part of the current
1316 * transaction.
1317 *
9ea7a0df
TT
1318 * The buffer must have previously had jbd2_journal_get_write_access()
1319 * called so that it has a valid journal_head attached to the buffer
1320 * head.
1321 *
470decc6
DK
1322 * The buffer is placed on the transaction's metadata list and is marked
1323 * as belonging to the transaction.
1324 *
1325 * Returns error number or 0 on success.
1326 *
1327 * Special care needs to be taken if the buffer already belongs to the
1328 * current committing transaction (in which case we should have frozen
1329 * data present for that commit). In that case, we don't relink the
1330 * buffer: that only gets done when the old transaction finally
1331 * completes its commit.
1332 */
f7f4bccb 1333int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1334{
1335 transaction_t *transaction = handle->h_transaction;
41a5b913 1336 journal_t *journal;
ad56edad 1337 struct journal_head *jh;
9ea7a0df 1338 int ret = 0;
470decc6 1339
470decc6 1340 if (is_handle_aborted(handle))
41a5b913 1341 return -EROFS;
6e06ae88 1342 if (!buffer_jbd(bh)) {
9ea7a0df
TT
1343 ret = -EUCLEAN;
1344 goto out;
1345 }
6e06ae88
JK
1346 /*
1347 * We don't grab jh reference here since the buffer must be part
1348 * of the running transaction.
1349 */
1350 jh = bh2jh(bh);
1351 /*
1352 * This and the following assertions are unreliable since we may see jh
1353 * in inconsistent state unless we grab bh_state lock. But this is
1354 * crucial to catch bugs so let's do a reliable check until the
1355 * lockless handling is fully proven.
1356 */
1357 if (jh->b_transaction != transaction &&
1358 jh->b_next_transaction != transaction) {
1359 jbd_lock_bh_state(bh);
1360 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1361 jh->b_next_transaction == transaction);
1362 jbd_unlock_bh_state(bh);
1363 }
1364 if (jh->b_modified == 1) {
1365 /* If it's in our transaction it must be in BJ_Metadata list. */
1366 if (jh->b_transaction == transaction &&
1367 jh->b_jlist != BJ_Metadata) {
1368 jbd_lock_bh_state(bh);
1369 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1370 jh->b_jlist == BJ_Metadata);
1371 jbd_unlock_bh_state(bh);
1372 }
1373 goto out;
1374 }
1375
1376 journal = transaction->t_journal;
ad56edad
JK
1377 jbd_debug(5, "journal_head %p\n", jh);
1378 JBUFFER_TRACE(jh, "entry");
470decc6
DK
1379
1380 jbd_lock_bh_state(bh);
1381
1382 if (jh->b_modified == 0) {
1383 /*
1384 * This buffer's got modified and becoming part
1385 * of the transaction. This needs to be done
1386 * once a transaction -bzzz
1387 */
1388 jh->b_modified = 1;
f6c07cad
TT
1389 if (handle->h_buffer_credits <= 0) {
1390 ret = -ENOSPC;
1391 goto out_unlock_bh;
1392 }
470decc6
DK
1393 handle->h_buffer_credits--;
1394 }
1395
1396 /*
1397 * fastpath, to avoid expensive locking. If this buffer is already
1398 * on the running transaction's metadata list there is nothing to do.
1399 * Nobody can take it off again because there is a handle open.
1400 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1401 * result in this test being false, so we go in and take the locks.
1402 */
1403 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1404 JBUFFER_TRACE(jh, "fastpath");
9ea7a0df
TT
1405 if (unlikely(jh->b_transaction !=
1406 journal->j_running_transaction)) {
a67c848a 1407 printk(KERN_ERR "JBD2: %s: "
9ea7a0df 1408 "jh->b_transaction (%llu, %p, %u) != "
66a4cb18 1409 "journal->j_running_transaction (%p, %u)\n",
9ea7a0df
TT
1410 journal->j_devname,
1411 (unsigned long long) bh->b_blocknr,
1412 jh->b_transaction,
1413 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1414 journal->j_running_transaction,
1415 journal->j_running_transaction ?
1416 journal->j_running_transaction->t_tid : 0);
1417 ret = -EINVAL;
1418 }
470decc6
DK
1419 goto out_unlock_bh;
1420 }
1421
1422 set_buffer_jbddirty(bh);
1423
1424 /*
1425 * Metadata already on the current transaction list doesn't
1426 * need to be filed. Metadata on another transaction's list must
1427 * be committing, and will be refiled once the commit completes:
1428 * leave it alone for now.
1429 */
1430 if (jh->b_transaction != transaction) {
1431 JBUFFER_TRACE(jh, "already on other transaction");
66a4cb18
TT
1432 if (unlikely(((jh->b_transaction !=
1433 journal->j_committing_transaction)) ||
1434 (jh->b_next_transaction != transaction))) {
1435 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1436 "bad jh for block %llu: "
1437 "transaction (%p, %u), "
1438 "jh->b_transaction (%p, %u), "
1439 "jh->b_next_transaction (%p, %u), jlist %u\n",
9ea7a0df
TT
1440 journal->j_devname,
1441 (unsigned long long) bh->b_blocknr,
66a4cb18 1442 transaction, transaction->t_tid,
9ea7a0df 1443 jh->b_transaction,
66a4cb18
TT
1444 jh->b_transaction ?
1445 jh->b_transaction->t_tid : 0,
9ea7a0df
TT
1446 jh->b_next_transaction,
1447 jh->b_next_transaction ?
1448 jh->b_next_transaction->t_tid : 0,
66a4cb18
TT
1449 jh->b_jlist);
1450 WARN_ON(1);
9ea7a0df
TT
1451 ret = -EINVAL;
1452 }
470decc6
DK
1453 /* And this case is illegal: we can't reuse another
1454 * transaction's data buffer, ever. */
1455 goto out_unlock_bh;
1456 }
1457
1458 /* That test should have eliminated the following case: */
4019191b 1459 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1460
1461 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1462 spin_lock(&journal->j_list_lock);
41a5b913 1463 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
470decc6
DK
1464 spin_unlock(&journal->j_list_lock);
1465out_unlock_bh:
1466 jbd_unlock_bh_state(bh);
1467out:
1468 JBUFFER_TRACE(jh, "exit");
9ea7a0df 1469 return ret;
470decc6
DK
1470}
1471
470decc6 1472/**
f7f4bccb 1473 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1474 * @handle: transaction handle
1475 * @bh: bh to 'forget'
1476 *
1477 * We can only do the bforget if there are no commits pending against the
1478 * buffer. If the buffer is dirty in the current running transaction we
1479 * can safely unlink it.
1480 *
1481 * bh may not be a journalled buffer at all - it may be a non-JBD
1482 * buffer which came off the hashtable. Check for this.
1483 *
1484 * Decrements bh->b_count by one.
1485 *
1486 * Allow this call even if the handle has aborted --- it may be part of
1487 * the caller's cleanup after an abort.
1488 */
f7f4bccb 1489int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1490{
1491 transaction_t *transaction = handle->h_transaction;
41a5b913 1492 journal_t *journal;
470decc6
DK
1493 struct journal_head *jh;
1494 int drop_reserve = 0;
1495 int err = 0;
1dfc3220 1496 int was_modified = 0;
470decc6 1497
41a5b913
TT
1498 if (is_handle_aborted(handle))
1499 return -EROFS;
1500 journal = transaction->t_journal;
1501
470decc6
DK
1502 BUFFER_TRACE(bh, "entry");
1503
1504 jbd_lock_bh_state(bh);
470decc6
DK
1505
1506 if (!buffer_jbd(bh))
1507 goto not_jbd;
1508 jh = bh2jh(bh);
1509
1510 /* Critical error: attempting to delete a bitmap buffer, maybe?
1511 * Don't do any jbd operations, and return an error. */
1512 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1513 "inconsistent data on disk")) {
1514 err = -EIO;
1515 goto not_jbd;
1516 }
1517
48fc7f7e 1518 /* keep track of whether or not this transaction modified us */
1dfc3220
JB
1519 was_modified = jh->b_modified;
1520
470decc6
DK
1521 /*
1522 * The buffer's going from the transaction, we must drop
1523 * all references -bzzz
1524 */
1525 jh->b_modified = 0;
1526
41a5b913 1527 if (jh->b_transaction == transaction) {
470decc6
DK
1528 J_ASSERT_JH(jh, !jh->b_frozen_data);
1529
1530 /* If we are forgetting a buffer which is already part
1531 * of this transaction, then we can just drop it from
1532 * the transaction immediately. */
1533 clear_buffer_dirty(bh);
1534 clear_buffer_jbddirty(bh);
1535
1536 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1537
1dfc3220
JB
1538 /*
1539 * we only want to drop a reference if this transaction
1540 * modified the buffer
1541 */
1542 if (was_modified)
1543 drop_reserve = 1;
470decc6
DK
1544
1545 /*
1546 * We are no longer going to journal this buffer.
1547 * However, the commit of this transaction is still
1548 * important to the buffer: the delete that we are now
1549 * processing might obsolete an old log entry, so by
1550 * committing, we can satisfy the buffer's checkpoint.
1551 *
1552 * So, if we have a checkpoint on the buffer, we should
1553 * now refile the buffer on our BJ_Forget list so that
1554 * we know to remove the checkpoint after we commit.
1555 */
1556
0bfea811 1557 spin_lock(&journal->j_list_lock);
470decc6 1558 if (jh->b_cp_transaction) {
f7f4bccb
MC
1559 __jbd2_journal_temp_unlink_buffer(jh);
1560 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1561 } else {
f7f4bccb 1562 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1563 if (!buffer_jbd(bh)) {
1564 spin_unlock(&journal->j_list_lock);
1565 jbd_unlock_bh_state(bh);
1566 __bforget(bh);
1567 goto drop;
1568 }
1569 }
0bfea811 1570 spin_unlock(&journal->j_list_lock);
470decc6
DK
1571 } else if (jh->b_transaction) {
1572 J_ASSERT_JH(jh, (jh->b_transaction ==
1573 journal->j_committing_transaction));
1574 /* However, if the buffer is still owned by a prior
1575 * (committing) transaction, we can't drop it yet... */
1576 JBUFFER_TRACE(jh, "belongs to older transaction");
1577 /* ... but we CAN drop it from the new transaction if we
1578 * have also modified it since the original commit. */
1579
1580 if (jh->b_next_transaction) {
1581 J_ASSERT(jh->b_next_transaction == transaction);
0bfea811 1582 spin_lock(&journal->j_list_lock);
470decc6 1583 jh->b_next_transaction = NULL;
0bfea811 1584 spin_unlock(&journal->j_list_lock);
1dfc3220
JB
1585
1586 /*
1587 * only drop a reference if this transaction modified
1588 * the buffer
1589 */
1590 if (was_modified)
1591 drop_reserve = 1;
470decc6
DK
1592 }
1593 }
1594
1595not_jbd:
470decc6
DK
1596 jbd_unlock_bh_state(bh);
1597 __brelse(bh);
1598drop:
1599 if (drop_reserve) {
1600 /* no need to reserve log space for this block -bzzz */
1601 handle->h_buffer_credits++;
1602 }
1603 return err;
1604}
1605
1606/**
f7f4bccb 1607 * int jbd2_journal_stop() - complete a transaction
bd7ced98 1608 * @handle: transaction to complete.
470decc6
DK
1609 *
1610 * All done for a particular handle.
1611 *
1612 * There is not much action needed here. We just return any remaining
1613 * buffer credits to the transaction and remove the handle. The only
1614 * complication is that we need to start a commit operation if the
1615 * filesystem is marked for synchronous update.
1616 *
f7f4bccb 1617 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1618 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1619 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1620 * transaction began.
1621 */
f7f4bccb 1622int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1623{
1624 transaction_t *transaction = handle->h_transaction;
41a5b913
TT
1625 journal_t *journal;
1626 int err = 0, wait_for_commit = 0;
a51dca9c 1627 tid_t tid;
470decc6
DK
1628 pid_t pid;
1629
9d506594
LC
1630 if (!transaction) {
1631 /*
1632 * Handle is already detached from the transaction so
1633 * there is nothing to do other than decrease a refcount,
1634 * or free the handle if refcount drops to zero
1635 */
1636 if (--handle->h_ref > 0) {
1637 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1638 handle->h_ref);
1639 return err;
1640 } else {
1641 if (handle->h_rsv_handle)
1642 jbd2_free_handle(handle->h_rsv_handle);
1643 goto free_and_exit;
1644 }
1645 }
41a5b913
TT
1646 journal = transaction->t_journal;
1647
470decc6
DK
1648 J_ASSERT(journal_current_handle() == handle);
1649
1650 if (is_handle_aborted(handle))
1651 err = -EIO;
41a5b913 1652 else
a51dca9c 1653 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
1654
1655 if (--handle->h_ref > 0) {
1656 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1657 handle->h_ref);
1658 return err;
1659 }
1660
1661 jbd_debug(4, "Handle %p going down\n", handle);
343d9c28 1662 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
41a5b913 1663 transaction->t_tid,
343d9c28
TT
1664 handle->h_type, handle->h_line_no,
1665 jiffies - handle->h_start_jiffies,
1666 handle->h_sync, handle->h_requested_credits,
1667 (handle->h_requested_credits -
1668 handle->h_buffer_credits));
470decc6
DK
1669
1670 /*
1671 * Implement synchronous transaction batching. If the handle
1672 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1673 * yield and let another thread piggyback onto this
1674 * transaction. Keep doing that while new threads continue to
1675 * arrive. It doesn't cost much - we're about to run a commit
1676 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1677 * operations by 30x or more...
1678 *
1679 * We try and optimize the sleep time against what the
1680 * underlying disk can do, instead of having a static sleep
1681 * time. This is useful for the case where our storage is so
1682 * fast that it is more optimal to go ahead and force a flush
1683 * and wait for the transaction to be committed than it is to
1684 * wait for an arbitrary amount of time for new writers to
1685 * join the transaction. We achieve this by measuring how
1686 * long it takes to commit a transaction, and compare it with
1687 * how long this transaction has been running, and if run time
1688 * < commit time then we sleep for the delta and commit. This
1689 * greatly helps super fast disks that would see slowdowns as
1690 * more threads started doing fsyncs.
470decc6 1691 *
e07f7183
JB
1692 * But don't do this if this process was the most recent one
1693 * to perform a synchronous write. We do this to detect the
1694 * case where a single process is doing a stream of sync
1695 * writes. No point in waiting for joiners in that case.
5dd21424
ES
1696 *
1697 * Setting max_batch_time to 0 disables this completely.
470decc6
DK
1698 */
1699 pid = current->pid;
5dd21424
ES
1700 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1701 journal->j_max_batch_time) {
e07f7183
JB
1702 u64 commit_time, trans_time;
1703
470decc6 1704 journal->j_last_sync_writer = pid;
e07f7183 1705
a931da6a 1706 read_lock(&journal->j_state_lock);
e07f7183 1707 commit_time = journal->j_average_commit_time;
a931da6a 1708 read_unlock(&journal->j_state_lock);
e07f7183
JB
1709
1710 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1711 transaction->t_start_time));
1712
30773840
TT
1713 commit_time = max_t(u64, commit_time,
1714 1000*journal->j_min_batch_time);
e07f7183 1715 commit_time = min_t(u64, commit_time,
30773840 1716 1000*journal->j_max_batch_time);
e07f7183
JB
1717
1718 if (trans_time < commit_time) {
1719 ktime_t expires = ktime_add_ns(ktime_get(),
1720 commit_time);
1721 set_current_state(TASK_UNINTERRUPTIBLE);
1722 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1723 }
470decc6
DK
1724 }
1725
7058548c
TT
1726 if (handle->h_sync)
1727 transaction->t_synchronous_commit = 1;
470decc6 1728 current->journal_info = NULL;
a51dca9c
TT
1729 atomic_sub(handle->h_buffer_credits,
1730 &transaction->t_outstanding_credits);
470decc6
DK
1731
1732 /*
1733 * If the handle is marked SYNC, we need to set another commit
1734 * going! We also want to force a commit if the current
1735 * transaction is occupying too much of the log, or if the
1736 * transaction is too old now.
1737 */
1738 if (handle->h_sync ||
a51dca9c
TT
1739 (atomic_read(&transaction->t_outstanding_credits) >
1740 journal->j_max_transaction_buffers) ||
1741 time_after_eq(jiffies, transaction->t_expires)) {
470decc6
DK
1742 /* Do this even for aborted journals: an abort still
1743 * completes the commit thread, it just doesn't write
1744 * anything to disk. */
470decc6 1745
470decc6
DK
1746 jbd_debug(2, "transaction too old, requesting commit for "
1747 "handle %p\n", handle);
1748 /* This is non-blocking */
c35a56a0 1749 jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1750
1751 /*
f7f4bccb 1752 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1753 * to wait for the commit to complete.
1754 */
1755 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
a51dca9c 1756 wait_for_commit = 1;
470decc6
DK
1757 }
1758
a51dca9c
TT
1759 /*
1760 * Once we drop t_updates, if it goes to zero the transaction
25985edc 1761 * could start committing on us and eventually disappear. So
a51dca9c
TT
1762 * once we do this, we must not dereference transaction
1763 * pointer again.
1764 */
1765 tid = transaction->t_tid;
1766 if (atomic_dec_and_test(&transaction->t_updates)) {
1767 wake_up(&journal->j_wait_updates);
1768 if (journal->j_barrier_count)
1769 wake_up(&journal->j_wait_transaction_locked);
1770 }
1771
ab714aff 1772 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
7a4b188f 1773
a51dca9c
TT
1774 if (wait_for_commit)
1775 err = jbd2_log_wait_commit(journal, tid);
1776
8f7d89f3
JK
1777 if (handle->h_rsv_handle)
1778 jbd2_journal_free_reserved(handle->h_rsv_handle);
41a5b913 1779free_and_exit:
81378da6
MH
1780 /*
1781 * Scope of the GFP_NOFS context is over here and so we can restore the
1782 * original alloc context.
1783 */
1784 memalloc_nofs_restore(handle->saved_alloc_context);
af1e76d6 1785 jbd2_free_handle(handle);
470decc6
DK
1786 return err;
1787}
1788
470decc6
DK
1789/*
1790 *
1791 * List management code snippets: various functions for manipulating the
1792 * transaction buffer lists.
1793 *
1794 */
1795
1796/*
1797 * Append a buffer to a transaction list, given the transaction's list head
1798 * pointer.
1799 *
1800 * j_list_lock is held.
1801 *
1802 * jbd_lock_bh_state(jh2bh(jh)) is held.
1803 */
1804
1805static inline void
1806__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1807{
1808 if (!*list) {
1809 jh->b_tnext = jh->b_tprev = jh;
1810 *list = jh;
1811 } else {
1812 /* Insert at the tail of the list to preserve order */
1813 struct journal_head *first = *list, *last = first->b_tprev;
1814 jh->b_tprev = last;
1815 jh->b_tnext = first;
1816 last->b_tnext = first->b_tprev = jh;
1817 }
1818}
1819
1820/*
1821 * Remove a buffer from a transaction list, given the transaction's list
1822 * head pointer.
1823 *
1824 * Called with j_list_lock held, and the journal may not be locked.
1825 *
1826 * jbd_lock_bh_state(jh2bh(jh)) is held.
1827 */
1828
1829static inline void
1830__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1831{
1832 if (*list == jh) {
1833 *list = jh->b_tnext;
1834 if (*list == jh)
1835 *list = NULL;
1836 }
1837 jh->b_tprev->b_tnext = jh->b_tnext;
1838 jh->b_tnext->b_tprev = jh->b_tprev;
1839}
1840
1841/*
1842 * Remove a buffer from the appropriate transaction list.
1843 *
1844 * Note that this function can *change* the value of
f5113eff
JK
1845 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1846 * t_reserved_list. If the caller is holding onto a copy of one of these
1847 * pointers, it could go bad. Generally the caller needs to re-read the
1848 * pointer from the transaction_t.
470decc6 1849 *
5bebccf9 1850 * Called under j_list_lock.
470decc6 1851 */
5bebccf9 1852static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1853{
1854 struct journal_head **list = NULL;
1855 transaction_t *transaction;
1856 struct buffer_head *bh = jh2bh(jh);
1857
1858 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1859 transaction = jh->b_transaction;
1860 if (transaction)
1861 assert_spin_locked(&transaction->t_journal->j_list_lock);
1862
1863 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1864 if (jh->b_jlist != BJ_None)
4019191b 1865 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1866
1867 switch (jh->b_jlist) {
1868 case BJ_None:
1869 return;
470decc6
DK
1870 case BJ_Metadata:
1871 transaction->t_nr_buffers--;
1872 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1873 list = &transaction->t_buffers;
1874 break;
1875 case BJ_Forget:
1876 list = &transaction->t_forget;
1877 break;
470decc6
DK
1878 case BJ_Shadow:
1879 list = &transaction->t_shadow_list;
1880 break;
470decc6
DK
1881 case BJ_Reserved:
1882 list = &transaction->t_reserved_list;
1883 break;
470decc6
DK
1884 }
1885
1886 __blist_del_buffer(list, jh);
1887 jh->b_jlist = BJ_None;
e112666b
TT
1888 if (transaction && is_journal_aborted(transaction->t_journal))
1889 clear_buffer_jbddirty(bh);
1890 else if (test_clear_buffer_jbddirty(bh))
470decc6
DK
1891 mark_buffer_dirty(bh); /* Expose it to the VM */
1892}
1893
de1b7941
JK
1894/*
1895 * Remove buffer from all transactions.
1896 *
1897 * Called with bh_state lock and j_list_lock
1898 *
1899 * jh and bh may be already freed when this function returns.
1900 */
1901static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1902{
f7f4bccb 1903 __jbd2_journal_temp_unlink_buffer(jh);
470decc6 1904 jh->b_transaction = NULL;
de1b7941 1905 jbd2_journal_put_journal_head(jh);
470decc6
DK
1906}
1907
f7f4bccb 1908void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6 1909{
de1b7941
JK
1910 struct buffer_head *bh = jh2bh(jh);
1911
1912 /* Get reference so that buffer cannot be freed before we unlock it */
1913 get_bh(bh);
1914 jbd_lock_bh_state(bh);
470decc6 1915 spin_lock(&journal->j_list_lock);
f7f4bccb 1916 __jbd2_journal_unfile_buffer(jh);
470decc6 1917 spin_unlock(&journal->j_list_lock);
de1b7941
JK
1918 jbd_unlock_bh_state(bh);
1919 __brelse(bh);
470decc6
DK
1920}
1921
1922/*
f7f4bccb 1923 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1924 *
1925 * Called under jbd_lock_bh_state(bh)
1926 */
1927static void
1928__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1929{
1930 struct journal_head *jh;
1931
1932 jh = bh2jh(bh);
1933
1934 if (buffer_locked(bh) || buffer_dirty(bh))
1935 goto out;
1936
d2eb0b99 1937 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
470decc6
DK
1938 goto out;
1939
1940 spin_lock(&journal->j_list_lock);
d2eb0b99 1941 if (jh->b_cp_transaction != NULL) {
470decc6 1942 /* written-back checkpointed metadata buffer */
c254c9ec
JK
1943 JBUFFER_TRACE(jh, "remove from checkpoint list");
1944 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1945 }
1946 spin_unlock(&journal->j_list_lock);
1947out:
1948 return;
1949}
1950
470decc6 1951/**
f7f4bccb 1952 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1953 * @journal: journal for operation
1954 * @page: to try and free
530576bb 1955 * @gfp_mask: we use the mask to detect how hard should we try to release
d0164adc
MG
1956 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1957 * code to release the buffers.
470decc6
DK
1958 *
1959 *
1960 * For all the buffers on this page,
1961 * if they are fully written out ordered data, move them onto BUF_CLEAN
1962 * so try_to_free_buffers() can reap them.
1963 *
1964 * This function returns non-zero if we wish try_to_free_buffers()
1965 * to be called. We do this if the page is releasable by try_to_free_buffers().
1966 * We also do it if the page has locked or dirty buffers and the caller wants
1967 * us to perform sync or async writeout.
1968 *
1969 * This complicates JBD locking somewhat. We aren't protected by the
1970 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1971 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1972 *
1973 * This may *change* the value of transaction_t->t_datalist, so anyone
1974 * who looks at t_datalist needs to lock against this function.
1975 *
f7f4bccb
MC
1976 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1977 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1978 * will come out of the lock with the buffer dirty, which makes it
1979 * ineligible for release here.
1980 *
1981 * Who else is affected by this? hmm... Really the only contender
1982 * is do_get_write_access() - it could be looking at the buffer while
1983 * journal_try_to_free_buffer() is changing its state. But that
1984 * cannot happen because we never reallocate freed data as metadata
1985 * while the data is part of a transaction. Yes?
530576bb
MC
1986 *
1987 * Return 0 on failure, 1 on success
470decc6 1988 */
f7f4bccb 1989int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1990 struct page *page, gfp_t gfp_mask)
470decc6
DK
1991{
1992 struct buffer_head *head;
1993 struct buffer_head *bh;
1994 int ret = 0;
1995
1996 J_ASSERT(PageLocked(page));
1997
1998 head = page_buffers(page);
1999 bh = head;
2000 do {
2001 struct journal_head *jh;
2002
2003 /*
2004 * We take our own ref against the journal_head here to avoid
2005 * having to add tons of locking around each instance of
530576bb 2006 * jbd2_journal_put_journal_head().
470decc6 2007 */
f7f4bccb 2008 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
2009 if (!jh)
2010 continue;
2011
2012 jbd_lock_bh_state(bh);
2013 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 2014 jbd2_journal_put_journal_head(jh);
470decc6
DK
2015 jbd_unlock_bh_state(bh);
2016 if (buffer_jbd(bh))
2017 goto busy;
2018 } while ((bh = bh->b_this_page) != head);
530576bb 2019
470decc6 2020 ret = try_to_free_buffers(page);
530576bb 2021
470decc6
DK
2022busy:
2023 return ret;
2024}
2025
2026/*
2027 * This buffer is no longer needed. If it is on an older transaction's
2028 * checkpoint list we need to record it on this transaction's forget list
2029 * to pin this buffer (and hence its checkpointing transaction) down until
2030 * this transaction commits. If the buffer isn't on a checkpoint list, we
2031 * release it.
2032 * Returns non-zero if JBD no longer has an interest in the buffer.
2033 *
2034 * Called under j_list_lock.
2035 *
2036 * Called under jbd_lock_bh_state(bh).
2037 */
2038static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2039{
2040 int may_free = 1;
2041 struct buffer_head *bh = jh2bh(jh);
2042
470decc6
DK
2043 if (jh->b_cp_transaction) {
2044 JBUFFER_TRACE(jh, "on running+cp transaction");
de1b7941 2045 __jbd2_journal_temp_unlink_buffer(jh);
f91d1d04
JK
2046 /*
2047 * We don't want to write the buffer anymore, clear the
2048 * bit so that we don't confuse checks in
2049 * __journal_file_buffer
2050 */
2051 clear_buffer_dirty(bh);
f7f4bccb 2052 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
2053 may_free = 0;
2054 } else {
2055 JBUFFER_TRACE(jh, "on running transaction");
de1b7941 2056 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2057 }
2058 return may_free;
2059}
2060
2061/*
f7f4bccb 2062 * jbd2_journal_invalidatepage
470decc6
DK
2063 *
2064 * This code is tricky. It has a number of cases to deal with.
2065 *
2066 * There are two invariants which this code relies on:
2067 *
2068 * i_size must be updated on disk before we start calling invalidatepage on the
2069 * data.
2070 *
2071 * This is done in ext3 by defining an ext3_setattr method which
2072 * updates i_size before truncate gets going. By maintaining this
2073 * invariant, we can be sure that it is safe to throw away any buffers
2074 * attached to the current transaction: once the transaction commits,
2075 * we know that the data will not be needed.
2076 *
2077 * Note however that we can *not* throw away data belonging to the
2078 * previous, committing transaction!
2079 *
2080 * Any disk blocks which *are* part of the previous, committing
2081 * transaction (and which therefore cannot be discarded immediately) are
2082 * not going to be reused in the new running transaction
2083 *
2084 * The bitmap committed_data images guarantee this: any block which is
2085 * allocated in one transaction and removed in the next will be marked
2086 * as in-use in the committed_data bitmap, so cannot be reused until
2087 * the next transaction to delete the block commits. This means that
2088 * leaving committing buffers dirty is quite safe: the disk blocks
2089 * cannot be reallocated to a different file and so buffer aliasing is
2090 * not possible.
2091 *
2092 *
2093 * The above applies mainly to ordered data mode. In writeback mode we
2094 * don't make guarantees about the order in which data hits disk --- in
2095 * particular we don't guarantee that new dirty data is flushed before
2096 * transaction commit --- so it is always safe just to discard data
2097 * immediately in that mode. --sct
2098 */
2099
2100/*
2101 * The journal_unmap_buffer helper function returns zero if the buffer
2102 * concerned remains pinned as an anonymous buffer belonging to an older
2103 * transaction.
2104 *
2105 * We're outside-transaction here. Either or both of j_running_transaction
2106 * and j_committing_transaction may be NULL.
2107 */
b794e7a6
JK
2108static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2109 int partial_page)
470decc6
DK
2110{
2111 transaction_t *transaction;
2112 struct journal_head *jh;
2113 int may_free = 1;
470decc6
DK
2114
2115 BUFFER_TRACE(bh, "entry");
2116
2117 /*
2118 * It is safe to proceed here without the j_list_lock because the
2119 * buffers cannot be stolen by try_to_free_buffers as long as we are
2120 * holding the page lock. --sct
2121 */
2122
2123 if (!buffer_jbd(bh))
2124 goto zap_buffer_unlocked;
2125
87c89c23 2126 /* OK, we have data buffer in journaled mode */
a931da6a 2127 write_lock(&journal->j_state_lock);
470decc6
DK
2128 jbd_lock_bh_state(bh);
2129 spin_lock(&journal->j_list_lock);
2130
f7f4bccb 2131 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
2132 if (!jh)
2133 goto zap_buffer_no_jh;
2134
ba869023 2135 /*
2136 * We cannot remove the buffer from checkpoint lists until the
2137 * transaction adding inode to orphan list (let's call it T)
2138 * is committed. Otherwise if the transaction changing the
2139 * buffer would be cleaned from the journal before T is
2140 * committed, a crash will cause that the correct contents of
2141 * the buffer will be lost. On the other hand we have to
2142 * clear the buffer dirty bit at latest at the moment when the
2143 * transaction marking the buffer as freed in the filesystem
2144 * structures is committed because from that moment on the
b794e7a6 2145 * block can be reallocated and used by a different page.
ba869023 2146 * Since the block hasn't been freed yet but the inode has
2147 * already been added to orphan list, it is safe for us to add
2148 * the buffer to BJ_Forget list of the newest transaction.
b794e7a6
JK
2149 *
2150 * Also we have to clear buffer_mapped flag of a truncated buffer
2151 * because the buffer_head may be attached to the page straddling
2152 * i_size (can happen only when blocksize < pagesize) and thus the
2153 * buffer_head can be reused when the file is extended again. So we end
2154 * up keeping around invalidated buffers attached to transactions'
2155 * BJ_Forget list just to stop checkpointing code from cleaning up
2156 * the transaction this buffer was modified in.
ba869023 2157 */
470decc6
DK
2158 transaction = jh->b_transaction;
2159 if (transaction == NULL) {
2160 /* First case: not on any transaction. If it
2161 * has no checkpoint link, then we can zap it:
2162 * it's a writeback-mode buffer so we don't care
2163 * if it hits disk safely. */
2164 if (!jh->b_cp_transaction) {
2165 JBUFFER_TRACE(jh, "not on any transaction: zap");
2166 goto zap_buffer;
2167 }
2168
2169 if (!buffer_dirty(bh)) {
2170 /* bdflush has written it. We can drop it now */
bc23f0c8 2171 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2172 goto zap_buffer;
2173 }
2174
2175 /* OK, it must be in the journal but still not
2176 * written fully to disk: it's metadata or
2177 * journaled data... */
2178
2179 if (journal->j_running_transaction) {
2180 /* ... and once the current transaction has
2181 * committed, the buffer won't be needed any
2182 * longer. */
2183 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
b794e7a6 2184 may_free = __dispose_buffer(jh,
470decc6 2185 journal->j_running_transaction);
b794e7a6 2186 goto zap_buffer;
470decc6
DK
2187 } else {
2188 /* There is no currently-running transaction. So the
2189 * orphan record which we wrote for this file must have
2190 * passed into commit. We must attach this buffer to
2191 * the committing transaction, if it exists. */
2192 if (journal->j_committing_transaction) {
2193 JBUFFER_TRACE(jh, "give to committing trans");
b794e7a6 2194 may_free = __dispose_buffer(jh,
470decc6 2195 journal->j_committing_transaction);
b794e7a6 2196 goto zap_buffer;
470decc6
DK
2197 } else {
2198 /* The orphan record's transaction has
2199 * committed. We can cleanse this buffer */
2200 clear_buffer_jbddirty(bh);
bc23f0c8 2201 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2202 goto zap_buffer;
2203 }
2204 }
2205 } else if (transaction == journal->j_committing_transaction) {
9b57988d 2206 JBUFFER_TRACE(jh, "on committing transaction");
470decc6 2207 /*
ba869023 2208 * The buffer is committing, we simply cannot touch
b794e7a6
JK
2209 * it. If the page is straddling i_size we have to wait
2210 * for commit and try again.
2211 */
2212 if (partial_page) {
b794e7a6
JK
2213 jbd2_journal_put_journal_head(jh);
2214 spin_unlock(&journal->j_list_lock);
2215 jbd_unlock_bh_state(bh);
2216 write_unlock(&journal->j_state_lock);
53e87268 2217 return -EBUSY;
b794e7a6
JK
2218 }
2219 /*
2220 * OK, buffer won't be reachable after truncate. We just set
2221 * j_next_transaction to the running transaction (if there is
2222 * one) and mark buffer as freed so that commit code knows it
2223 * should clear dirty bits when it is done with the buffer.
ba869023 2224 */
470decc6 2225 set_buffer_freed(bh);
ba869023 2226 if (journal->j_running_transaction && buffer_jbddirty(bh))
2227 jh->b_next_transaction = journal->j_running_transaction;
f7f4bccb 2228 jbd2_journal_put_journal_head(jh);
470decc6
DK
2229 spin_unlock(&journal->j_list_lock);
2230 jbd_unlock_bh_state(bh);
a931da6a 2231 write_unlock(&journal->j_state_lock);
470decc6
DK
2232 return 0;
2233 } else {
2234 /* Good, the buffer belongs to the running transaction.
2235 * We are writing our own transaction's data, not any
2236 * previous one's, so it is safe to throw it away
2237 * (remember that we expect the filesystem to have set
2238 * i_size already for this truncate so recovery will not
2239 * expose the disk blocks we are discarding here.) */
2240 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 2241 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
2242 may_free = __dispose_buffer(jh, transaction);
2243 }
2244
2245zap_buffer:
b794e7a6
JK
2246 /*
2247 * This is tricky. Although the buffer is truncated, it may be reused
2248 * if blocksize < pagesize and it is attached to the page straddling
2249 * EOF. Since the buffer might have been added to BJ_Forget list of the
2250 * running transaction, journal_get_write_access() won't clear
2251 * b_modified and credit accounting gets confused. So clear b_modified
2252 * here.
2253 */
2254 jh->b_modified = 0;
f7f4bccb 2255 jbd2_journal_put_journal_head(jh);
470decc6
DK
2256zap_buffer_no_jh:
2257 spin_unlock(&journal->j_list_lock);
2258 jbd_unlock_bh_state(bh);
a931da6a 2259 write_unlock(&journal->j_state_lock);
470decc6
DK
2260zap_buffer_unlocked:
2261 clear_buffer_dirty(bh);
2262 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2263 clear_buffer_mapped(bh);
2264 clear_buffer_req(bh);
2265 clear_buffer_new(bh);
15291164
ES
2266 clear_buffer_delay(bh);
2267 clear_buffer_unwritten(bh);
470decc6
DK
2268 bh->b_bdev = NULL;
2269 return may_free;
2270}
2271
2272/**
f7f4bccb 2273 * void jbd2_journal_invalidatepage()
470decc6
DK
2274 * @journal: journal to use for flush...
2275 * @page: page to flush
259709b0
LC
2276 * @offset: start of the range to invalidate
2277 * @length: length of the range to invalidate
470decc6 2278 *
259709b0
LC
2279 * Reap page buffers containing data after in the specified range in page.
2280 * Can return -EBUSY if buffers are part of the committing transaction and
2281 * the page is straddling i_size. Caller then has to wait for current commit
2282 * and try again.
470decc6 2283 */
53e87268
JK
2284int jbd2_journal_invalidatepage(journal_t *journal,
2285 struct page *page,
259709b0
LC
2286 unsigned int offset,
2287 unsigned int length)
470decc6
DK
2288{
2289 struct buffer_head *head, *bh, *next;
259709b0 2290 unsigned int stop = offset + length;
470decc6 2291 unsigned int curr_off = 0;
09cbfeaf 2292 int partial_page = (offset || length < PAGE_SIZE);
470decc6 2293 int may_free = 1;
53e87268 2294 int ret = 0;
470decc6
DK
2295
2296 if (!PageLocked(page))
2297 BUG();
2298 if (!page_has_buffers(page))
53e87268 2299 return 0;
470decc6 2300
09cbfeaf 2301 BUG_ON(stop > PAGE_SIZE || stop < length);
259709b0 2302
470decc6
DK
2303 /* We will potentially be playing with lists other than just the
2304 * data lists (especially for journaled data mode), so be
2305 * cautious in our locking. */
2306
2307 head = bh = page_buffers(page);
2308 do {
2309 unsigned int next_off = curr_off + bh->b_size;
2310 next = bh->b_this_page;
2311
259709b0
LC
2312 if (next_off > stop)
2313 return 0;
2314
470decc6
DK
2315 if (offset <= curr_off) {
2316 /* This block is wholly outside the truncation point */
2317 lock_buffer(bh);
259709b0 2318 ret = journal_unmap_buffer(journal, bh, partial_page);
470decc6 2319 unlock_buffer(bh);
53e87268
JK
2320 if (ret < 0)
2321 return ret;
2322 may_free &= ret;
470decc6
DK
2323 }
2324 curr_off = next_off;
2325 bh = next;
2326
2327 } while (bh != head);
2328
259709b0 2329 if (!partial_page) {
470decc6
DK
2330 if (may_free && try_to_free_buffers(page))
2331 J_ASSERT(!page_has_buffers(page));
2332 }
53e87268 2333 return 0;
470decc6
DK
2334}
2335
2336/*
2337 * File a buffer on the given transaction list.
2338 */
f7f4bccb 2339void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2340 transaction_t *transaction, int jlist)
2341{
2342 struct journal_head **list = NULL;
2343 int was_dirty = 0;
2344 struct buffer_head *bh = jh2bh(jh);
2345
2346 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2347 assert_spin_locked(&transaction->t_journal->j_list_lock);
2348
2349 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2350 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 2351 jh->b_transaction == NULL);
470decc6
DK
2352
2353 if (jh->b_transaction && jh->b_jlist == jlist)
2354 return;
2355
470decc6
DK
2356 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2357 jlist == BJ_Shadow || jlist == BJ_Forget) {
f91d1d04
JK
2358 /*
2359 * For metadata buffers, we track dirty bit in buffer_jbddirty
2360 * instead of buffer_dirty. We should not see a dirty bit set
2361 * here because we clear it in do_get_write_access but e.g.
2362 * tune2fs can modify the sb and set the dirty bit at any time
2363 * so we try to gracefully handle that.
2364 */
2365 if (buffer_dirty(bh))
2366 warn_dirty_buffer(bh);
470decc6
DK
2367 if (test_clear_buffer_dirty(bh) ||
2368 test_clear_buffer_jbddirty(bh))
2369 was_dirty = 1;
2370 }
2371
2372 if (jh->b_transaction)
f7f4bccb 2373 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2374 else
2375 jbd2_journal_grab_journal_head(bh);
470decc6
DK
2376 jh->b_transaction = transaction;
2377
2378 switch (jlist) {
2379 case BJ_None:
2380 J_ASSERT_JH(jh, !jh->b_committed_data);
2381 J_ASSERT_JH(jh, !jh->b_frozen_data);
2382 return;
470decc6
DK
2383 case BJ_Metadata:
2384 transaction->t_nr_buffers++;
2385 list = &transaction->t_buffers;
2386 break;
2387 case BJ_Forget:
2388 list = &transaction->t_forget;
2389 break;
470decc6
DK
2390 case BJ_Shadow:
2391 list = &transaction->t_shadow_list;
2392 break;
470decc6
DK
2393 case BJ_Reserved:
2394 list = &transaction->t_reserved_list;
2395 break;
470decc6
DK
2396 }
2397
2398 __blist_add_buffer(list, jh);
2399 jh->b_jlist = jlist;
2400
2401 if (was_dirty)
2402 set_buffer_jbddirty(bh);
2403}
2404
f7f4bccb 2405void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2406 transaction_t *transaction, int jlist)
2407{
2408 jbd_lock_bh_state(jh2bh(jh));
2409 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 2410 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2411 spin_unlock(&transaction->t_journal->j_list_lock);
2412 jbd_unlock_bh_state(jh2bh(jh));
2413}
2414
2415/*
2416 * Remove a buffer from its current buffer list in preparation for
2417 * dropping it from its current transaction entirely. If the buffer has
2418 * already started to be used by a subsequent transaction, refile the
2419 * buffer on that transaction's metadata list.
2420 *
de1b7941 2421 * Called under j_list_lock
470decc6 2422 * Called under jbd_lock_bh_state(jh2bh(jh))
de1b7941
JK
2423 *
2424 * jh and bh may be already free when this function returns
470decc6 2425 */
f7f4bccb 2426void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6 2427{
ba869023 2428 int was_dirty, jlist;
470decc6
DK
2429 struct buffer_head *bh = jh2bh(jh);
2430
2431 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2432 if (jh->b_transaction)
2433 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2434
2435 /* If the buffer is now unused, just drop it. */
2436 if (jh->b_next_transaction == NULL) {
f7f4bccb 2437 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2438 return;
2439 }
2440
2441 /*
2442 * It has been modified by a later transaction: add it to the new
2443 * transaction's metadata list.
2444 */
2445
2446 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2447 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2448 /*
2449 * We set b_transaction here because b_next_transaction will inherit
2450 * our jh reference and thus __jbd2_journal_file_buffer() must not
2451 * take a new one.
2452 */
470decc6
DK
2453 jh->b_transaction = jh->b_next_transaction;
2454 jh->b_next_transaction = NULL;
ba869023 2455 if (buffer_freed(bh))
2456 jlist = BJ_Forget;
2457 else if (jh->b_modified)
2458 jlist = BJ_Metadata;
2459 else
2460 jlist = BJ_Reserved;
2461 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
470decc6
DK
2462 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2463
2464 if (was_dirty)
2465 set_buffer_jbddirty(bh);
2466}
2467
2468/*
de1b7941
JK
2469 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2470 * bh reference so that we can safely unlock bh.
2471 *
2472 * The jh and bh may be freed by this call.
470decc6 2473 */
f7f4bccb 2474void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2475{
2476 struct buffer_head *bh = jh2bh(jh);
2477
de1b7941
JK
2478 /* Get reference so that buffer cannot be freed before we unlock it */
2479 get_bh(bh);
470decc6
DK
2480 jbd_lock_bh_state(bh);
2481 spin_lock(&journal->j_list_lock);
f7f4bccb 2482 __jbd2_journal_refile_buffer(jh);
470decc6 2483 jbd_unlock_bh_state(bh);
470decc6
DK
2484 spin_unlock(&journal->j_list_lock);
2485 __brelse(bh);
2486}
c851ed54
JK
2487
2488/*
2489 * File inode in the inode list of the handle's transaction
2490 */
41617e1a
JK
2491static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2492 unsigned long flags)
c851ed54
JK
2493{
2494 transaction_t *transaction = handle->h_transaction;
41a5b913 2495 journal_t *journal;
c851ed54
JK
2496
2497 if (is_handle_aborted(handle))
41a5b913
TT
2498 return -EROFS;
2499 journal = transaction->t_journal;
c851ed54
JK
2500
2501 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2502 transaction->t_tid);
2503
2504 /*
2505 * First check whether inode isn't already on the transaction's
2506 * lists without taking the lock. Note that this check is safe
2507 * without the lock as we cannot race with somebody removing inode
2508 * from the transaction. The reason is that we remove inode from the
2509 * transaction only in journal_release_jbd_inode() and when we commit
2510 * the transaction. We are guarded from the first case by holding
2511 * a reference to the inode. We are safe against the second case
2512 * because if jinode->i_transaction == transaction, commit code
2513 * cannot touch the transaction because we hold reference to it,
2514 * and if jinode->i_next_transaction == transaction, commit code
2515 * will only file the inode where we want it.
2516 */
41617e1a
JK
2517 if ((jinode->i_transaction == transaction ||
2518 jinode->i_next_transaction == transaction) &&
2519 (jinode->i_flags & flags) == flags)
c851ed54
JK
2520 return 0;
2521
2522 spin_lock(&journal->j_list_lock);
41617e1a
JK
2523 jinode->i_flags |= flags;
2524 /* Is inode already attached where we need it? */
c851ed54
JK
2525 if (jinode->i_transaction == transaction ||
2526 jinode->i_next_transaction == transaction)
2527 goto done;
2528
81be12c8
JK
2529 /*
2530 * We only ever set this variable to 1 so the test is safe. Since
2531 * t_need_data_flush is likely to be set, we do the test to save some
2532 * cacheline bouncing
2533 */
2534 if (!transaction->t_need_data_flush)
2535 transaction->t_need_data_flush = 1;
c851ed54
JK
2536 /* On some different transaction's list - should be
2537 * the committing one */
2538 if (jinode->i_transaction) {
2539 J_ASSERT(jinode->i_next_transaction == NULL);
2540 J_ASSERT(jinode->i_transaction ==
2541 journal->j_committing_transaction);
2542 jinode->i_next_transaction = transaction;
2543 goto done;
2544 }
2545 /* Not on any transaction list... */
2546 J_ASSERT(!jinode->i_next_transaction);
2547 jinode->i_transaction = transaction;
2548 list_add(&jinode->i_list, &transaction->t_inode_list);
2549done:
2550 spin_unlock(&journal->j_list_lock);
2551
2552 return 0;
2553}
2554
41617e1a
JK
2555int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2556{
2557 return jbd2_journal_file_inode(handle, jinode,
2558 JI_WRITE_DATA | JI_WAIT_DATA);
2559}
2560
2561int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2562{
2563 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2564}
2565
c851ed54 2566/*
7f5aa215
JK
2567 * File truncate and transaction commit interact with each other in a
2568 * non-trivial way. If a transaction writing data block A is
2569 * committing, we cannot discard the data by truncate until we have
2570 * written them. Otherwise if we crashed after the transaction with
2571 * write has committed but before the transaction with truncate has
2572 * committed, we could see stale data in block A. This function is a
2573 * helper to solve this problem. It starts writeout of the truncated
2574 * part in case it is in the committing transaction.
2575 *
2576 * Filesystem code must call this function when inode is journaled in
2577 * ordered mode before truncation happens and after the inode has been
2578 * placed on orphan list with the new inode size. The second condition
2579 * avoids the race that someone writes new data and we start
2580 * committing the transaction after this function has been called but
2581 * before a transaction for truncate is started (and furthermore it
2582 * allows us to optimize the case where the addition to orphan list
2583 * happens in the same transaction as write --- we don't have to write
2584 * any data in such case).
c851ed54 2585 */
7f5aa215
JK
2586int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2587 struct jbd2_inode *jinode,
c851ed54
JK
2588 loff_t new_size)
2589{
7f5aa215 2590 transaction_t *inode_trans, *commit_trans;
c851ed54
JK
2591 int ret = 0;
2592
7f5aa215
JK
2593 /* This is a quick check to avoid locking if not necessary */
2594 if (!jinode->i_transaction)
c851ed54 2595 goto out;
7f5aa215
JK
2596 /* Locks are here just to force reading of recent values, it is
2597 * enough that the transaction was not committing before we started
2598 * a transaction adding the inode to orphan list */
a931da6a 2599 read_lock(&journal->j_state_lock);
c851ed54 2600 commit_trans = journal->j_committing_transaction;
a931da6a 2601 read_unlock(&journal->j_state_lock);
7f5aa215
JK
2602 spin_lock(&journal->j_list_lock);
2603 inode_trans = jinode->i_transaction;
2604 spin_unlock(&journal->j_list_lock);
2605 if (inode_trans == commit_trans) {
2606 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
c851ed54
JK
2607 new_size, LLONG_MAX);
2608 if (ret)
2609 jbd2_journal_abort(journal, ret);
2610 }
2611out:
2612 return ret;
2613}