]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/jbd2/transaction.c
Merge branch 'work.uaccess2' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-bionic-kernel.git] / fs / jbd2 / transaction.c
CommitLineData
470decc6 1/*
58862699 2 * linux/fs/jbd2/transaction.c
470decc6
DK
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
f7f4bccb 22#include <linux/jbd2.h>
470decc6
DK
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
470decc6
DK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e07f7183 28#include <linux/hrtimer.h>
47def826 29#include <linux/backing-dev.h>
44705754 30#include <linux/bug.h>
47def826 31#include <linux/module.h>
470decc6 32
343d9c28
TT
33#include <trace/events/jbd2.h>
34
7ddae860 35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
de1b7941 36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
7ddae860 37
0c2022ec
YY
38static struct kmem_cache *transaction_cache;
39int __init jbd2_journal_init_transaction_cache(void)
40{
41 J_ASSERT(!transaction_cache);
42 transaction_cache = kmem_cache_create("jbd2_transaction_s",
43 sizeof(transaction_t),
44 0,
45 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46 NULL);
47 if (transaction_cache)
48 return 0;
49 return -ENOMEM;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54 if (transaction_cache) {
55 kmem_cache_destroy(transaction_cache);
56 transaction_cache = NULL;
57 }
58}
59
60void jbd2_journal_free_transaction(transaction_t *transaction)
61{
62 if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63 return;
64 kmem_cache_free(transaction_cache, transaction);
65}
66
470decc6 67/*
f7f4bccb 68 * jbd2_get_transaction: obtain a new transaction_t object.
470decc6
DK
69 *
70 * Simply allocate and initialise a new transaction. Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 * The journal MUST be locked. We don't perform atomic mallocs on the
77 * new transaction and we can't block without protecting against other
78 * processes trying to touch the journal while it is in transition.
79 *
470decc6
DK
80 */
81
82static transaction_t *
f7f4bccb 83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
470decc6
DK
84{
85 transaction->t_journal = journal;
86 transaction->t_state = T_RUNNING;
e07f7183 87 transaction->t_start_time = ktime_get();
470decc6
DK
88 transaction->t_tid = journal->j_transaction_sequence++;
89 transaction->t_expires = jiffies + journal->j_commit_interval;
90 spin_lock_init(&transaction->t_handle_lock);
a51dca9c 91 atomic_set(&transaction->t_updates, 0);
8f7d89f3
JK
92 atomic_set(&transaction->t_outstanding_credits,
93 atomic_read(&journal->j_reserved_credits));
8dd42046 94 atomic_set(&transaction->t_handle_count, 0);
c851ed54 95 INIT_LIST_HEAD(&transaction->t_inode_list);
3e624fc7 96 INIT_LIST_HEAD(&transaction->t_private_list);
470decc6
DK
97
98 /* Set up the commit timer for the new transaction. */
b1f485f2 99 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
470decc6
DK
100 add_timer(&journal->j_commit_timer);
101
102 J_ASSERT(journal->j_running_transaction == NULL);
103 journal->j_running_transaction = transaction;
8e85fb3f
JL
104 transaction->t_max_wait = 0;
105 transaction->t_start = jiffies;
9fff24aa 106 transaction->t_requested = 0;
470decc6
DK
107
108 return transaction;
109}
110
111/*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
6d0bf005 119/*
28e35e42 120 * Update transaction's maximum wait time, if debugging is enabled.
6d0bf005
TT
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock. But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability. So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
28e35e42
TM
129static inline void update_t_max_wait(transaction_t *transaction,
130 unsigned long ts)
6d0bf005
TT
131{
132#ifdef CONFIG_JBD2_DEBUG
6d0bf005
TT
133 if (jbd2_journal_enable_debug &&
134 time_after(transaction->t_start, ts)) {
135 ts = jbd2_time_diff(ts, transaction->t_start);
136 spin_lock(&transaction->t_handle_lock);
137 if (ts > transaction->t_max_wait)
138 transaction->t_max_wait = ts;
139 spin_unlock(&transaction->t_handle_lock);
140 }
141#endif
142}
143
8f7d89f3
JK
144/*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149static void wait_transaction_locked(journal_t *journal)
150 __releases(journal->j_state_lock)
151{
152 DEFINE_WAIT(wait);
153 int need_to_start;
154 tid_t tid = journal->j_running_transaction->t_tid;
155
156 prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157 TASK_UNINTERRUPTIBLE);
158 need_to_start = !tid_geq(journal->j_commit_request, tid);
159 read_unlock(&journal->j_state_lock);
160 if (need_to_start)
161 jbd2_log_start_commit(journal, tid);
e03a9976 162 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
163 schedule();
164 finish_wait(&journal->j_wait_transaction_locked, &wait);
165}
166
167static void sub_reserved_credits(journal_t *journal, int blocks)
168{
169 atomic_sub(blocks, &journal->j_reserved_credits);
170 wake_up(&journal->j_wait_reserved);
171}
172
173/*
174 * Wait until we can add credits for handle to the running transaction. Called
175 * with j_state_lock held for reading. Returns 0 if handle joined the running
176 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
177 * caller must retry.
178 */
179static int add_transaction_credits(journal_t *journal, int blocks,
180 int rsv_blocks)
181{
182 transaction_t *t = journal->j_running_transaction;
183 int needed;
184 int total = blocks + rsv_blocks;
185
186 /*
187 * If the current transaction is locked down for commit, wait
188 * for the lock to be released.
189 */
190 if (t->t_state == T_LOCKED) {
191 wait_transaction_locked(journal);
192 return 1;
193 }
194
195 /*
196 * If there is not enough space left in the log to write all
197 * potential buffers requested by this operation, we need to
198 * stall pending a log checkpoint to free some more log space.
199 */
200 needed = atomic_add_return(total, &t->t_outstanding_credits);
201 if (needed > journal->j_max_transaction_buffers) {
202 /*
203 * If the current transaction is already too large,
204 * then start to commit it: we can then go back and
205 * attach this handle to a new transaction.
206 */
207 atomic_sub(total, &t->t_outstanding_credits);
6d3ec14d
LC
208
209 /*
210 * Is the number of reserved credits in the current transaction too
211 * big to fit this handle? Wait until reserved credits are freed.
212 */
213 if (atomic_read(&journal->j_reserved_credits) + total >
214 journal->j_max_transaction_buffers) {
215 read_unlock(&journal->j_state_lock);
e03a9976 216 jbd2_might_wait_for_commit(journal);
6d3ec14d
LC
217 wait_event(journal->j_wait_reserved,
218 atomic_read(&journal->j_reserved_credits) + total <=
219 journal->j_max_transaction_buffers);
220 return 1;
221 }
222
8f7d89f3
JK
223 wait_transaction_locked(journal);
224 return 1;
225 }
226
227 /*
228 * The commit code assumes that it can get enough log space
229 * without forcing a checkpoint. This is *critical* for
230 * correctness: a checkpoint of a buffer which is also
231 * associated with a committing transaction creates a deadlock,
232 * so commit simply cannot force through checkpoints.
233 *
234 * We must therefore ensure the necessary space in the journal
235 * *before* starting to dirty potentially checkpointed buffers
236 * in the new transaction.
237 */
238 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
239 atomic_sub(total, &t->t_outstanding_credits);
240 read_unlock(&journal->j_state_lock);
e03a9976 241 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
242 write_lock(&journal->j_state_lock);
243 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
244 __jbd2_log_wait_for_space(journal);
245 write_unlock(&journal->j_state_lock);
246 return 1;
247 }
248
249 /* No reservation? We are done... */
250 if (!rsv_blocks)
251 return 0;
252
253 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
254 /* We allow at most half of a transaction to be reserved */
255 if (needed > journal->j_max_transaction_buffers / 2) {
256 sub_reserved_credits(journal, rsv_blocks);
257 atomic_sub(total, &t->t_outstanding_credits);
258 read_unlock(&journal->j_state_lock);
e03a9976 259 jbd2_might_wait_for_commit(journal);
8f7d89f3
JK
260 wait_event(journal->j_wait_reserved,
261 atomic_read(&journal->j_reserved_credits) + rsv_blocks
262 <= journal->j_max_transaction_buffers / 2);
263 return 1;
264 }
265 return 0;
266}
267
470decc6
DK
268/*
269 * start_this_handle: Given a handle, deal with any locking or stalling
270 * needed to make sure that there is enough journal space for the handle
271 * to begin. Attach the handle to a transaction and set up the
272 * transaction's buffer credits.
273 */
274
47def826 275static int start_this_handle(journal_t *journal, handle_t *handle,
d2159fb7 276 gfp_t gfp_mask)
470decc6 277{
e4471831 278 transaction_t *transaction, *new_transaction = NULL;
8f7d89f3
JK
279 int blocks = handle->h_buffer_credits;
280 int rsv_blocks = 0;
28e35e42 281 unsigned long ts = jiffies;
470decc6 282
6d3ec14d
LC
283 if (handle->h_rsv_handle)
284 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
285
8f7d89f3 286 /*
6d3ec14d
LC
287 * Limit the number of reserved credits to 1/2 of maximum transaction
288 * size and limit the number of total credits to not exceed maximum
289 * transaction size per operation.
8f7d89f3 290 */
6d3ec14d
LC
291 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
292 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
293 printk(KERN_ERR "JBD2: %s wants too many credits "
294 "credits:%d rsv_credits:%d max:%d\n",
295 current->comm, blocks, rsv_blocks,
296 journal->j_max_transaction_buffers);
297 WARN_ON(1);
47def826 298 return -ENOSPC;
470decc6
DK
299 }
300
301alloc_transaction:
302 if (!journal->j_running_transaction) {
6ccaf3e2
MH
303 /*
304 * If __GFP_FS is not present, then we may be being called from
305 * inside the fs writeback layer, so we MUST NOT fail.
306 */
307 if ((gfp_mask & __GFP_FS) == 0)
308 gfp_mask |= __GFP_NOFAIL;
b2f4edb3
WG
309 new_transaction = kmem_cache_zalloc(transaction_cache,
310 gfp_mask);
6ccaf3e2 311 if (!new_transaction)
47def826 312 return -ENOMEM;
470decc6
DK
313 }
314
315 jbd_debug(3, "New handle %p going live.\n", handle);
316
470decc6
DK
317 /*
318 * We need to hold j_state_lock until t_updates has been incremented,
319 * for proper journal barrier handling
320 */
a931da6a
TT
321repeat:
322 read_lock(&journal->j_state_lock);
5c2178e7 323 BUG_ON(journal->j_flags & JBD2_UNMOUNT);
470decc6 324 if (is_journal_aborted(journal) ||
f7f4bccb 325 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
a931da6a 326 read_unlock(&journal->j_state_lock);
0c2022ec 327 jbd2_journal_free_transaction(new_transaction);
47def826 328 return -EROFS;
470decc6
DK
329 }
330
8f7d89f3
JK
331 /*
332 * Wait on the journal's transaction barrier if necessary. Specifically
333 * we allow reserved handles to proceed because otherwise commit could
334 * deadlock on page writeback not being able to complete.
335 */
336 if (!handle->h_reserved && journal->j_barrier_count) {
a931da6a 337 read_unlock(&journal->j_state_lock);
470decc6
DK
338 wait_event(journal->j_wait_transaction_locked,
339 journal->j_barrier_count == 0);
340 goto repeat;
341 }
342
343 if (!journal->j_running_transaction) {
a931da6a
TT
344 read_unlock(&journal->j_state_lock);
345 if (!new_transaction)
470decc6 346 goto alloc_transaction;
a931da6a 347 write_lock(&journal->j_state_lock);
d7961c7f 348 if (!journal->j_running_transaction &&
8f7d89f3 349 (handle->h_reserved || !journal->j_barrier_count)) {
a931da6a
TT
350 jbd2_get_transaction(journal, new_transaction);
351 new_transaction = NULL;
470decc6 352 }
a931da6a
TT
353 write_unlock(&journal->j_state_lock);
354 goto repeat;
470decc6
DK
355 }
356
357 transaction = journal->j_running_transaction;
358
8f7d89f3
JK
359 if (!handle->h_reserved) {
360 /* We may have dropped j_state_lock - restart in that case */
361 if (add_transaction_credits(journal, blocks, rsv_blocks))
362 goto repeat;
363 } else {
470decc6 364 /*
8f7d89f3
JK
365 * We have handle reserved so we are allowed to join T_LOCKED
366 * transaction and we don't have to check for transaction size
367 * and journal space.
470decc6 368 */
8f7d89f3
JK
369 sub_reserved_credits(journal, blocks);
370 handle->h_reserved = 0;
470decc6
DK
371 }
372
373 /* OK, account for the buffers that this operation expects to
8dd42046 374 * use and add the handle to the running transaction.
8dd42046 375 */
28e35e42 376 update_t_max_wait(transaction, ts);
470decc6 377 handle->h_transaction = transaction;
8f7d89f3 378 handle->h_requested_credits = blocks;
343d9c28 379 handle->h_start_jiffies = jiffies;
a51dca9c 380 atomic_inc(&transaction->t_updates);
8dd42046 381 atomic_inc(&transaction->t_handle_count);
8f7d89f3
JK
382 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
383 handle, blocks,
a51dca9c 384 atomic_read(&transaction->t_outstanding_credits),
76c39904 385 jbd2_log_space_left(journal));
a931da6a 386 read_unlock(&journal->j_state_lock);
41a5b913 387 current->journal_info = handle;
9599b0e5 388
ab714aff 389 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
0c2022ec 390 jbd2_journal_free_transaction(new_transaction);
47def826 391 return 0;
470decc6
DK
392}
393
394/* Allocate a new handle. This should probably be in a slab... */
395static handle_t *new_handle(int nblocks)
396{
af1e76d6 397 handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
470decc6
DK
398 if (!handle)
399 return NULL;
470decc6
DK
400 handle->h_buffer_credits = nblocks;
401 handle->h_ref = 1;
402
403 return handle;
404}
405
406/**
f7f4bccb 407 * handle_t *jbd2_journal_start() - Obtain a new handle.
470decc6
DK
408 * @journal: Journal to start transaction on.
409 * @nblocks: number of block buffer we might modify
410 *
411 * We make sure that the transaction can guarantee at least nblocks of
412 * modified buffers in the log. We block until the log can guarantee
8f7d89f3
JK
413 * that much space. Additionally, if rsv_blocks > 0, we also create another
414 * handle with rsv_blocks reserved blocks in the journal. This handle is
415 * is stored in h_rsv_handle. It is not attached to any particular transaction
416 * and thus doesn't block transaction commit. If the caller uses this reserved
417 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
418 * on the parent handle will dispose the reserved one. Reserved handle has to
419 * be converted to a normal handle using jbd2_journal_start_reserved() before
420 * it can be used.
470decc6 421 *
c867516d
EG
422 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
423 * on failure.
470decc6 424 */
8f7d89f3
JK
425handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
426 gfp_t gfp_mask, unsigned int type,
427 unsigned int line_no)
470decc6
DK
428{
429 handle_t *handle = journal_current_handle();
430 int err;
431
432 if (!journal)
433 return ERR_PTR(-EROFS);
434
435 if (handle) {
436 J_ASSERT(handle->h_transaction->t_journal == journal);
437 handle->h_ref++;
438 return handle;
439 }
440
441 handle = new_handle(nblocks);
442 if (!handle)
443 return ERR_PTR(-ENOMEM);
8f7d89f3
JK
444 if (rsv_blocks) {
445 handle_t *rsv_handle;
446
447 rsv_handle = new_handle(rsv_blocks);
448 if (!rsv_handle) {
449 jbd2_free_handle(handle);
450 return ERR_PTR(-ENOMEM);
451 }
452 rsv_handle->h_reserved = 1;
453 rsv_handle->h_journal = journal;
454 handle->h_rsv_handle = rsv_handle;
455 }
470decc6 456
47def826 457 err = start_this_handle(journal, handle, gfp_mask);
470decc6 458 if (err < 0) {
8f7d89f3
JK
459 if (handle->h_rsv_handle)
460 jbd2_free_handle(handle->h_rsv_handle);
af1e76d6 461 jbd2_free_handle(handle);
df05c1b8 462 return ERR_PTR(err);
470decc6 463 }
343d9c28
TT
464 handle->h_type = type;
465 handle->h_line_no = line_no;
466 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
467 handle->h_transaction->t_tid, type,
468 line_no, nblocks);
470decc6
DK
469 return handle;
470}
47def826
TT
471EXPORT_SYMBOL(jbd2__journal_start);
472
473
474handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
475{
8f7d89f3 476 return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
47def826
TT
477}
478EXPORT_SYMBOL(jbd2_journal_start);
479
8f7d89f3
JK
480void jbd2_journal_free_reserved(handle_t *handle)
481{
482 journal_t *journal = handle->h_journal;
483
484 WARN_ON(!handle->h_reserved);
485 sub_reserved_credits(journal, handle->h_buffer_credits);
486 jbd2_free_handle(handle);
487}
488EXPORT_SYMBOL(jbd2_journal_free_reserved);
489
490/**
491 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
492 * @handle: handle to start
493 *
494 * Start handle that has been previously reserved with jbd2_journal_reserve().
495 * This attaches @handle to the running transaction (or creates one if there's
496 * not transaction running). Unlike jbd2_journal_start() this function cannot
497 * block on journal commit, checkpointing, or similar stuff. It can block on
498 * memory allocation or frozen journal though.
499 *
500 * Return 0 on success, non-zero on error - handle is freed in that case.
501 */
502int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
503 unsigned int line_no)
504{
505 journal_t *journal = handle->h_journal;
506 int ret = -EIO;
507
508 if (WARN_ON(!handle->h_reserved)) {
509 /* Someone passed in normal handle? Just stop it. */
510 jbd2_journal_stop(handle);
511 return ret;
512 }
513 /*
514 * Usefulness of mixing of reserved and unreserved handles is
515 * questionable. So far nobody seems to need it so just error out.
516 */
517 if (WARN_ON(current->journal_info)) {
518 jbd2_journal_free_reserved(handle);
519 return ret;
520 }
521
522 handle->h_journal = NULL;
8f7d89f3
JK
523 /*
524 * GFP_NOFS is here because callers are likely from writeback or
525 * similarly constrained call sites
526 */
527 ret = start_this_handle(journal, handle, GFP_NOFS);
92e3b405 528 if (ret < 0) {
8f7d89f3 529 jbd2_journal_free_reserved(handle);
92e3b405
DC
530 return ret;
531 }
8f7d89f3
JK
532 handle->h_type = type;
533 handle->h_line_no = line_no;
92e3b405 534 return 0;
8f7d89f3
JK
535}
536EXPORT_SYMBOL(jbd2_journal_start_reserved);
470decc6
DK
537
538/**
f7f4bccb 539 * int jbd2_journal_extend() - extend buffer credits.
470decc6
DK
540 * @handle: handle to 'extend'
541 * @nblocks: nr blocks to try to extend by.
542 *
543 * Some transactions, such as large extends and truncates, can be done
544 * atomically all at once or in several stages. The operation requests
bd7ced98 545 * a credit for a number of buffer modifications in advance, but can
470decc6
DK
546 * extend its credit if it needs more.
547 *
f7f4bccb 548 * jbd2_journal_extend tries to give the running handle more buffer credits.
470decc6
DK
549 * It does not guarantee that allocation - this is a best-effort only.
550 * The calling process MUST be able to deal cleanly with a failure to
551 * extend here.
552 *
553 * Return 0 on success, non-zero on failure.
554 *
555 * return code < 0 implies an error
556 * return code > 0 implies normal transaction-full status.
557 */
f7f4bccb 558int jbd2_journal_extend(handle_t *handle, int nblocks)
470decc6
DK
559{
560 transaction_t *transaction = handle->h_transaction;
41a5b913 561 journal_t *journal;
470decc6
DK
562 int result;
563 int wanted;
564
470decc6 565 if (is_handle_aborted(handle))
41a5b913
TT
566 return -EROFS;
567 journal = transaction->t_journal;
470decc6
DK
568
569 result = 1;
570
a931da6a 571 read_lock(&journal->j_state_lock);
470decc6
DK
572
573 /* Don't extend a locked-down transaction! */
41a5b913 574 if (transaction->t_state != T_RUNNING) {
470decc6
DK
575 jbd_debug(3, "denied handle %p %d blocks: "
576 "transaction not running\n", handle, nblocks);
577 goto error_out;
578 }
579
580 spin_lock(&transaction->t_handle_lock);
fe1e8db5
JK
581 wanted = atomic_add_return(nblocks,
582 &transaction->t_outstanding_credits);
470decc6
DK
583
584 if (wanted > journal->j_max_transaction_buffers) {
585 jbd_debug(3, "denied handle %p %d blocks: "
586 "transaction too large\n", handle, nblocks);
fe1e8db5 587 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
588 goto unlock;
589 }
590
76c39904
JK
591 if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
592 jbd2_log_space_left(journal)) {
470decc6
DK
593 jbd_debug(3, "denied handle %p %d blocks: "
594 "insufficient log space\n", handle, nblocks);
fe1e8db5 595 atomic_sub(nblocks, &transaction->t_outstanding_credits);
470decc6
DK
596 goto unlock;
597 }
598
343d9c28 599 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
41a5b913 600 transaction->t_tid,
343d9c28
TT
601 handle->h_type, handle->h_line_no,
602 handle->h_buffer_credits,
603 nblocks);
604
470decc6 605 handle->h_buffer_credits += nblocks;
343d9c28 606 handle->h_requested_credits += nblocks;
470decc6
DK
607 result = 0;
608
609 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
610unlock:
611 spin_unlock(&transaction->t_handle_lock);
612error_out:
a931da6a 613 read_unlock(&journal->j_state_lock);
470decc6
DK
614 return result;
615}
616
617
618/**
f7f4bccb 619 * int jbd2_journal_restart() - restart a handle .
470decc6
DK
620 * @handle: handle to restart
621 * @nblocks: nr credits requested
622 *
623 * Restart a handle for a multi-transaction filesystem
624 * operation.
625 *
f7f4bccb
MC
626 * If the jbd2_journal_extend() call above fails to grant new buffer credits
627 * to a running handle, a call to jbd2_journal_restart will commit the
470decc6 628 * handle's transaction so far and reattach the handle to a new
bd7ced98 629 * transaction capable of guaranteeing the requested number of
8f7d89f3
JK
630 * credits. We preserve reserved handle if there's any attached to the
631 * passed in handle.
470decc6 632 */
d2159fb7 633int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
470decc6
DK
634{
635 transaction_t *transaction = handle->h_transaction;
41a5b913 636 journal_t *journal;
e4471831
TT
637 tid_t tid;
638 int need_to_start, ret;
470decc6
DK
639
640 /* If we've had an abort of any type, don't even think about
641 * actually doing the restart! */
642 if (is_handle_aborted(handle))
643 return 0;
41a5b913 644 journal = transaction->t_journal;
470decc6
DK
645
646 /*
647 * First unlink the handle from its current transaction, and start the
648 * commit on that.
649 */
a51dca9c 650 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
651 J_ASSERT(journal_current_handle() == handle);
652
a931da6a 653 read_lock(&journal->j_state_lock);
470decc6 654 spin_lock(&transaction->t_handle_lock);
a51dca9c
TT
655 atomic_sub(handle->h_buffer_credits,
656 &transaction->t_outstanding_credits);
8f7d89f3
JK
657 if (handle->h_rsv_handle) {
658 sub_reserved_credits(journal,
659 handle->h_rsv_handle->h_buffer_credits);
660 }
a51dca9c 661 if (atomic_dec_and_test(&transaction->t_updates))
470decc6 662 wake_up(&journal->j_wait_updates);
39c04153 663 tid = transaction->t_tid;
470decc6 664 spin_unlock(&transaction->t_handle_lock);
41a5b913
TT
665 handle->h_transaction = NULL;
666 current->journal_info = NULL;
470decc6
DK
667
668 jbd_debug(2, "restarting handle %p\n", handle);
e4471831 669 need_to_start = !tid_geq(journal->j_commit_request, tid);
a931da6a 670 read_unlock(&journal->j_state_lock);
e4471831
TT
671 if (need_to_start)
672 jbd2_log_start_commit(journal, tid);
470decc6 673
ab714aff 674 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
470decc6 675 handle->h_buffer_credits = nblocks;
47def826 676 ret = start_this_handle(journal, handle, gfp_mask);
470decc6
DK
677 return ret;
678}
47def826 679EXPORT_SYMBOL(jbd2__journal_restart);
470decc6
DK
680
681
47def826
TT
682int jbd2_journal_restart(handle_t *handle, int nblocks)
683{
684 return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
685}
686EXPORT_SYMBOL(jbd2_journal_restart);
687
470decc6 688/**
f7f4bccb 689 * void jbd2_journal_lock_updates () - establish a transaction barrier.
470decc6
DK
690 * @journal: Journal to establish a barrier on.
691 *
692 * This locks out any further updates from being started, and blocks
693 * until all existing updates have completed, returning only once the
694 * journal is in a quiescent state with no updates running.
695 *
696 * The journal lock should not be held on entry.
697 */
f7f4bccb 698void jbd2_journal_lock_updates(journal_t *journal)
470decc6
DK
699{
700 DEFINE_WAIT(wait);
701
1eaa566d
JK
702 jbd2_might_wait_for_commit(journal);
703
a931da6a 704 write_lock(&journal->j_state_lock);
470decc6
DK
705 ++journal->j_barrier_count;
706
8f7d89f3
JK
707 /* Wait until there are no reserved handles */
708 if (atomic_read(&journal->j_reserved_credits)) {
709 write_unlock(&journal->j_state_lock);
710 wait_event(journal->j_wait_reserved,
711 atomic_read(&journal->j_reserved_credits) == 0);
712 write_lock(&journal->j_state_lock);
713 }
714
470decc6
DK
715 /* Wait until there are no running updates */
716 while (1) {
717 transaction_t *transaction = journal->j_running_transaction;
718
719 if (!transaction)
720 break;
721
722 spin_lock(&transaction->t_handle_lock);
9837d8e9
JK
723 prepare_to_wait(&journal->j_wait_updates, &wait,
724 TASK_UNINTERRUPTIBLE);
a51dca9c 725 if (!atomic_read(&transaction->t_updates)) {
470decc6 726 spin_unlock(&transaction->t_handle_lock);
9837d8e9 727 finish_wait(&journal->j_wait_updates, &wait);
470decc6
DK
728 break;
729 }
470decc6 730 spin_unlock(&transaction->t_handle_lock);
a931da6a 731 write_unlock(&journal->j_state_lock);
470decc6
DK
732 schedule();
733 finish_wait(&journal->j_wait_updates, &wait);
a931da6a 734 write_lock(&journal->j_state_lock);
470decc6 735 }
a931da6a 736 write_unlock(&journal->j_state_lock);
470decc6
DK
737
738 /*
739 * We have now established a barrier against other normal updates, but
f7f4bccb 740 * we also need to barrier against other jbd2_journal_lock_updates() calls
470decc6
DK
741 * to make sure that we serialise special journal-locked operations
742 * too.
743 */
744 mutex_lock(&journal->j_barrier);
745}
746
747/**
f7f4bccb 748 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
470decc6
DK
749 * @journal: Journal to release the barrier on.
750 *
f7f4bccb 751 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
470decc6
DK
752 *
753 * Should be called without the journal lock held.
754 */
f7f4bccb 755void jbd2_journal_unlock_updates (journal_t *journal)
470decc6
DK
756{
757 J_ASSERT(journal->j_barrier_count != 0);
758
759 mutex_unlock(&journal->j_barrier);
a931da6a 760 write_lock(&journal->j_state_lock);
470decc6 761 --journal->j_barrier_count;
a931da6a 762 write_unlock(&journal->j_state_lock);
470decc6
DK
763 wake_up(&journal->j_wait_transaction_locked);
764}
765
f91d1d04 766static void warn_dirty_buffer(struct buffer_head *bh)
470decc6 767{
f91d1d04 768 printk(KERN_WARNING
a1c6f057 769 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
f91d1d04
JK
770 "There's a risk of filesystem corruption in case of system "
771 "crash.\n",
a1c6f057 772 bh->b_bdev, (unsigned long long)bh->b_blocknr);
470decc6
DK
773}
774
ee57aba1
JK
775/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
776static void jbd2_freeze_jh_data(struct journal_head *jh)
777{
778 struct page *page;
779 int offset;
780 char *source;
781 struct buffer_head *bh = jh2bh(jh);
782
783 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
784 page = bh->b_page;
785 offset = offset_in_page(bh->b_data);
786 source = kmap_atomic(page);
787 /* Fire data frozen trigger just before we copy the data */
788 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
789 memcpy(jh->b_frozen_data, source + offset, bh->b_size);
790 kunmap_atomic(source);
791
792 /*
793 * Now that the frozen data is saved off, we need to store any matching
794 * triggers.
795 */
796 jh->b_frozen_triggers = jh->b_triggers;
797}
798
470decc6
DK
799/*
800 * If the buffer is already part of the current transaction, then there
801 * is nothing we need to do. If it is already part of a prior
802 * transaction which we are still committing to disk, then we need to
803 * make sure that we do not overwrite the old copy: we do copy-out to
804 * preserve the copy going to disk. We also account the buffer against
805 * the handle's metadata buffer credits (unless the buffer is already
806 * part of the transaction, that is).
807 *
808 */
809static int
810do_get_write_access(handle_t *handle, struct journal_head *jh,
811 int force_copy)
812{
813 struct buffer_head *bh;
41a5b913 814 transaction_t *transaction = handle->h_transaction;
470decc6
DK
815 journal_t *journal;
816 int error;
817 char *frozen_buffer = NULL;
f783f091 818 unsigned long start_lock, time_lock;
470decc6
DK
819
820 if (is_handle_aborted(handle))
821 return -EROFS;
470decc6
DK
822 journal = transaction->t_journal;
823
cfef2c6a 824 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
470decc6
DK
825
826 JBUFFER_TRACE(jh, "entry");
827repeat:
828 bh = jh2bh(jh);
829
830 /* @@@ Need to check for errors here at some point. */
831
f783f091 832 start_lock = jiffies;
470decc6
DK
833 lock_buffer(bh);
834 jbd_lock_bh_state(bh);
835
f783f091
TT
836 /* If it takes too long to lock the buffer, trace it */
837 time_lock = jbd2_time_diff(start_lock, jiffies);
838 if (time_lock > HZ/10)
839 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
840 jiffies_to_msecs(time_lock));
841
470decc6
DK
842 /* We now hold the buffer lock so it is safe to query the buffer
843 * state. Is the buffer dirty?
844 *
845 * If so, there are two possibilities. The buffer may be
846 * non-journaled, and undergoing a quite legitimate writeback.
847 * Otherwise, it is journaled, and we don't expect dirty buffers
848 * in that state (the buffers should be marked JBD_Dirty
849 * instead.) So either the IO is being done under our own
850 * control and this is a bug, or it's a third party IO such as
851 * dump(8) (which may leave the buffer scheduled for read ---
852 * ie. locked but not dirty) or tune2fs (which may actually have
853 * the buffer dirtied, ugh.) */
854
855 if (buffer_dirty(bh)) {
856 /*
857 * First question: is this buffer already part of the current
858 * transaction or the existing committing transaction?
859 */
860 if (jh->b_transaction) {
861 J_ASSERT_JH(jh,
862 jh->b_transaction == transaction ||
863 jh->b_transaction ==
864 journal->j_committing_transaction);
865 if (jh->b_next_transaction)
866 J_ASSERT_JH(jh, jh->b_next_transaction ==
867 transaction);
f91d1d04 868 warn_dirty_buffer(bh);
470decc6
DK
869 }
870 /*
871 * In any case we need to clean the dirty flag and we must
872 * do it under the buffer lock to be sure we don't race
873 * with running write-out.
874 */
f91d1d04
JK
875 JBUFFER_TRACE(jh, "Journalling dirty buffer");
876 clear_buffer_dirty(bh);
877 set_buffer_jbddirty(bh);
470decc6
DK
878 }
879
880 unlock_buffer(bh);
881
882 error = -EROFS;
883 if (is_handle_aborted(handle)) {
884 jbd_unlock_bh_state(bh);
885 goto out;
886 }
887 error = 0;
888
889 /*
890 * The buffer is already part of this transaction if b_transaction or
891 * b_next_transaction points to it
892 */
893 if (jh->b_transaction == transaction ||
894 jh->b_next_transaction == transaction)
895 goto done;
896
9fc7c63a
JB
897 /*
898 * this is the first time this transaction is touching this buffer,
899 * reset the modified flag
900 */
901 jh->b_modified = 0;
902
8b00f400
JK
903 /*
904 * If the buffer is not journaled right now, we need to make sure it
905 * doesn't get written to disk before the caller actually commits the
906 * new data
907 */
908 if (!jh->b_transaction) {
909 JBUFFER_TRACE(jh, "no transaction");
910 J_ASSERT_JH(jh, !jh->b_next_transaction);
911 JBUFFER_TRACE(jh, "file as BJ_Reserved");
de92c8ca
JK
912 /*
913 * Make sure all stores to jh (b_modified, b_frozen_data) are
914 * visible before attaching it to the running transaction.
915 * Paired with barrier in jbd2_write_access_granted()
916 */
917 smp_wmb();
8b00f400
JK
918 spin_lock(&journal->j_list_lock);
919 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
920 spin_unlock(&journal->j_list_lock);
921 goto done;
922 }
470decc6
DK
923 /*
924 * If there is already a copy-out version of this buffer, then we don't
925 * need to make another one
926 */
927 if (jh->b_frozen_data) {
928 JBUFFER_TRACE(jh, "has frozen data");
929 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
de92c8ca 930 goto attach_next;
470decc6
DK
931 }
932
8b00f400
JK
933 JBUFFER_TRACE(jh, "owned by older transaction");
934 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
935 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
470decc6 936
8b00f400
JK
937 /*
938 * There is one case we have to be very careful about. If the
939 * committing transaction is currently writing this buffer out to disk
940 * and has NOT made a copy-out, then we cannot modify the buffer
941 * contents at all right now. The essence of copy-out is that it is
942 * the extra copy, not the primary copy, which gets journaled. If the
943 * primary copy is already going to disk then we cannot do copy-out
944 * here.
945 */
946 if (buffer_shadow(bh)) {
947 JBUFFER_TRACE(jh, "on shadow: sleep");
948 jbd_unlock_bh_state(bh);
949 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
950 goto repeat;
951 }
470decc6 952
8b00f400
JK
953 /*
954 * Only do the copy if the currently-owning transaction still needs it.
955 * If buffer isn't on BJ_Metadata list, the committing transaction is
956 * past that stage (here we use the fact that BH_Shadow is set under
957 * bh_state lock together with refiling to BJ_Shadow list and at this
958 * point we know the buffer doesn't have BH_Shadow set).
959 *
960 * Subtle point, though: if this is a get_undo_access, then we will be
961 * relying on the frozen_data to contain the new value of the
962 * committed_data record after the transaction, so we HAVE to force the
963 * frozen_data copy in that case.
964 */
965 if (jh->b_jlist == BJ_Metadata || force_copy) {
966 JBUFFER_TRACE(jh, "generate frozen data");
967 if (!frozen_buffer) {
968 JBUFFER_TRACE(jh, "allocate memory for buffer");
470decc6 969 jbd_unlock_bh_state(bh);
490c1b44
MH
970 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
971 GFP_NOFS | __GFP_NOFAIL);
8b00f400 972 goto repeat;
470decc6 973 }
8b00f400
JK
974 jh->b_frozen_data = frozen_buffer;
975 frozen_buffer = NULL;
976 jbd2_freeze_jh_data(jh);
470decc6 977 }
de92c8ca
JK
978attach_next:
979 /*
980 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
981 * before attaching it to the running transaction. Paired with barrier
982 * in jbd2_write_access_granted()
983 */
984 smp_wmb();
8b00f400 985 jh->b_next_transaction = transaction;
470decc6
DK
986
987done:
470decc6
DK
988 jbd_unlock_bh_state(bh);
989
990 /*
991 * If we are about to journal a buffer, then any revoke pending on it is
992 * no longer valid
993 */
f7f4bccb 994 jbd2_journal_cancel_revoke(handle, jh);
470decc6
DK
995
996out:
997 if (unlikely(frozen_buffer)) /* It's usually NULL */
af1e76d6 998 jbd2_free(frozen_buffer, bh->b_size);
470decc6
DK
999
1000 JBUFFER_TRACE(jh, "exit");
1001 return error;
1002}
1003
de92c8ca 1004/* Fast check whether buffer is already attached to the required transaction */
087ffd4e
JB
1005static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1006 bool undo)
de92c8ca
JK
1007{
1008 struct journal_head *jh;
1009 bool ret = false;
1010
1011 /* Dirty buffers require special handling... */
1012 if (buffer_dirty(bh))
1013 return false;
1014
1015 /*
1016 * RCU protects us from dereferencing freed pages. So the checks we do
1017 * are guaranteed not to oops. However the jh slab object can get freed
1018 * & reallocated while we work with it. So we have to be careful. When
1019 * we see jh attached to the running transaction, we know it must stay
1020 * so until the transaction is committed. Thus jh won't be freed and
1021 * will be attached to the same bh while we run. However it can
1022 * happen jh gets freed, reallocated, and attached to the transaction
1023 * just after we get pointer to it from bh. So we have to be careful
1024 * and recheck jh still belongs to our bh before we return success.
1025 */
1026 rcu_read_lock();
1027 if (!buffer_jbd(bh))
1028 goto out;
1029 /* This should be bh2jh() but that doesn't work with inline functions */
1030 jh = READ_ONCE(bh->b_private);
1031 if (!jh)
1032 goto out;
087ffd4e
JB
1033 /* For undo access buffer must have data copied */
1034 if (undo && !jh->b_committed_data)
1035 goto out;
de92c8ca
JK
1036 if (jh->b_transaction != handle->h_transaction &&
1037 jh->b_next_transaction != handle->h_transaction)
1038 goto out;
1039 /*
1040 * There are two reasons for the barrier here:
1041 * 1) Make sure to fetch b_bh after we did previous checks so that we
1042 * detect when jh went through free, realloc, attach to transaction
1043 * while we were checking. Paired with implicit barrier in that path.
1044 * 2) So that access to bh done after jbd2_write_access_granted()
1045 * doesn't get reordered and see inconsistent state of concurrent
1046 * do_get_write_access().
1047 */
1048 smp_mb();
1049 if (unlikely(jh->b_bh != bh))
1050 goto out;
1051 ret = true;
1052out:
1053 rcu_read_unlock();
1054 return ret;
1055}
1056
470decc6 1057/**
f7f4bccb 1058 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
470decc6
DK
1059 * @handle: transaction to add buffer modifications to
1060 * @bh: bh to be used for metadata writes
470decc6
DK
1061 *
1062 * Returns an error code or 0 on success.
1063 *
1064 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1065 * because we're write()ing a buffer which is also part of a shared mapping.
1066 */
1067
f7f4bccb 1068int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
470decc6 1069{
de92c8ca 1070 struct journal_head *jh;
470decc6
DK
1071 int rc;
1072
087ffd4e 1073 if (jbd2_write_access_granted(handle, bh, false))
de92c8ca
JK
1074 return 0;
1075
1076 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1077 /* We do not want to get caught playing with fields which the
1078 * log thread also manipulates. Make sure that the buffer
1079 * completes any outstanding IO before proceeding. */
1080 rc = do_get_write_access(handle, jh, 0);
f7f4bccb 1081 jbd2_journal_put_journal_head(jh);
470decc6
DK
1082 return rc;
1083}
1084
1085
1086/*
1087 * When the user wants to journal a newly created buffer_head
1088 * (ie. getblk() returned a new buffer and we are going to populate it
1089 * manually rather than reading off disk), then we need to keep the
1090 * buffer_head locked until it has been completely filled with new
1091 * data. In this case, we should be able to make the assertion that
1092 * the bh is not already part of an existing transaction.
1093 *
1094 * The buffer should already be locked by the caller by this point.
1095 * There is no lock ranking violation: it was a newly created,
1096 * unlocked buffer beforehand. */
1097
1098/**
f7f4bccb 1099 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
470decc6
DK
1100 * @handle: transaction to new buffer to
1101 * @bh: new buffer.
1102 *
1103 * Call this if you create a new bh.
1104 */
f7f4bccb 1105int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1106{
1107 transaction_t *transaction = handle->h_transaction;
41a5b913 1108 journal_t *journal;
f7f4bccb 1109 struct journal_head *jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1110 int err;
1111
1112 jbd_debug(5, "journal_head %p\n", jh);
1113 err = -EROFS;
1114 if (is_handle_aborted(handle))
1115 goto out;
41a5b913 1116 journal = transaction->t_journal;
470decc6
DK
1117 err = 0;
1118
1119 JBUFFER_TRACE(jh, "entry");
1120 /*
1121 * The buffer may already belong to this transaction due to pre-zeroing
1122 * in the filesystem's new_block code. It may also be on the previous,
1123 * committing transaction's lists, but it HAS to be in Forget state in
1124 * that case: the transaction must have deleted the buffer for it to be
1125 * reused here.
1126 */
1127 jbd_lock_bh_state(bh);
470decc6
DK
1128 J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1129 jh->b_transaction == NULL ||
1130 (jh->b_transaction == journal->j_committing_transaction &&
1131 jh->b_jlist == BJ_Forget)));
1132
1133 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1134 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1135
1136 if (jh->b_transaction == NULL) {
f91d1d04
JK
1137 /*
1138 * Previous jbd2_journal_forget() could have left the buffer
1139 * with jbddirty bit set because it was being committed. When
1140 * the commit finished, we've filed the buffer for
1141 * checkpointing and marked it dirty. Now we are reallocating
1142 * the buffer so the transaction freeing it must have
1143 * committed and so it's safe to clear the dirty bit.
1144 */
1145 clear_buffer_dirty(jh2bh(jh));
9fc7c63a
JB
1146 /* first access by this transaction */
1147 jh->b_modified = 0;
1148
470decc6 1149 JBUFFER_TRACE(jh, "file as BJ_Reserved");
6e4862a5 1150 spin_lock(&journal->j_list_lock);
f7f4bccb 1151 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
470decc6 1152 } else if (jh->b_transaction == journal->j_committing_transaction) {
9fc7c63a
JB
1153 /* first access by this transaction */
1154 jh->b_modified = 0;
1155
470decc6 1156 JBUFFER_TRACE(jh, "set next transaction");
6e4862a5 1157 spin_lock(&journal->j_list_lock);
470decc6
DK
1158 jh->b_next_transaction = transaction;
1159 }
1160 spin_unlock(&journal->j_list_lock);
1161 jbd_unlock_bh_state(bh);
1162
1163 /*
1164 * akpm: I added this. ext3_alloc_branch can pick up new indirect
1165 * blocks which contain freed but then revoked metadata. We need
1166 * to cancel the revoke in case we end up freeing it yet again
1167 * and the reallocating as data - this would cause a second revoke,
1168 * which hits an assertion error.
1169 */
1170 JBUFFER_TRACE(jh, "cancelling revoke");
f7f4bccb 1171 jbd2_journal_cancel_revoke(handle, jh);
470decc6 1172out:
3991b400 1173 jbd2_journal_put_journal_head(jh);
470decc6
DK
1174 return err;
1175}
1176
1177/**
f7f4bccb 1178 * int jbd2_journal_get_undo_access() - Notify intent to modify metadata with
470decc6
DK
1179 * non-rewindable consequences
1180 * @handle: transaction
1181 * @bh: buffer to undo
470decc6
DK
1182 *
1183 * Sometimes there is a need to distinguish between metadata which has
1184 * been committed to disk and that which has not. The ext3fs code uses
1185 * this for freeing and allocating space, we have to make sure that we
1186 * do not reuse freed space until the deallocation has been committed,
1187 * since if we overwrote that space we would make the delete
1188 * un-rewindable in case of a crash.
1189 *
f7f4bccb 1190 * To deal with that, jbd2_journal_get_undo_access requests write access to a
470decc6
DK
1191 * buffer for parts of non-rewindable operations such as delete
1192 * operations on the bitmaps. The journaling code must keep a copy of
1193 * the buffer's contents prior to the undo_access call until such time
1194 * as we know that the buffer has definitely been committed to disk.
1195 *
1196 * We never need to know which transaction the committed data is part
1197 * of, buffers touched here are guaranteed to be dirtied later and so
1198 * will be committed to a new transaction in due course, at which point
1199 * we can discard the old committed data pointer.
1200 *
1201 * Returns error number or 0 on success.
1202 */
f7f4bccb 1203int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1204{
1205 int err;
de92c8ca 1206 struct journal_head *jh;
470decc6
DK
1207 char *committed_data = NULL;
1208
1209 JBUFFER_TRACE(jh, "entry");
087ffd4e 1210 if (jbd2_write_access_granted(handle, bh, true))
de92c8ca 1211 return 0;
470decc6 1212
de92c8ca 1213 jh = jbd2_journal_add_journal_head(bh);
470decc6
DK
1214 /*
1215 * Do this first --- it can drop the journal lock, so we want to
1216 * make sure that obtaining the committed_data is done
1217 * atomically wrt. completion of any outstanding commits.
1218 */
1219 err = do_get_write_access(handle, jh, 1);
1220 if (err)
1221 goto out;
1222
1223repeat:
490c1b44
MH
1224 if (!jh->b_committed_data)
1225 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1226 GFP_NOFS|__GFP_NOFAIL);
470decc6
DK
1227
1228 jbd_lock_bh_state(bh);
1229 if (!jh->b_committed_data) {
1230 /* Copy out the current buffer contents into the
1231 * preserved, committed copy. */
1232 JBUFFER_TRACE(jh, "generate b_committed data");
1233 if (!committed_data) {
1234 jbd_unlock_bh_state(bh);
1235 goto repeat;
1236 }
1237
1238 jh->b_committed_data = committed_data;
1239 committed_data = NULL;
1240 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1241 }
1242 jbd_unlock_bh_state(bh);
1243out:
f7f4bccb 1244 jbd2_journal_put_journal_head(jh);
470decc6 1245 if (unlikely(committed_data))
af1e76d6 1246 jbd2_free(committed_data, bh->b_size);
470decc6
DK
1247 return err;
1248}
1249
e06c8227
JB
1250/**
1251 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1252 * @bh: buffer to trigger on
1253 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1254 *
1255 * Set any triggers on this journal_head. This is always safe, because
1256 * triggers for a committing buffer will be saved off, and triggers for
1257 * a running transaction will match the buffer in that transaction.
1258 *
1259 * Call with NULL to clear the triggers.
1260 */
1261void jbd2_journal_set_triggers(struct buffer_head *bh,
1262 struct jbd2_buffer_trigger_type *type)
1263{
ad56edad 1264 struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
e06c8227 1265
ad56edad
JK
1266 if (WARN_ON(!jh))
1267 return;
e06c8227 1268 jh->b_triggers = type;
ad56edad 1269 jbd2_journal_put_journal_head(jh);
e06c8227
JB
1270}
1271
13ceef09 1272void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
e06c8227
JB
1273 struct jbd2_buffer_trigger_type *triggers)
1274{
1275 struct buffer_head *bh = jh2bh(jh);
1276
13ceef09 1277 if (!triggers || !triggers->t_frozen)
e06c8227
JB
1278 return;
1279
13ceef09 1280 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
e06c8227
JB
1281}
1282
1283void jbd2_buffer_abort_trigger(struct journal_head *jh,
1284 struct jbd2_buffer_trigger_type *triggers)
1285{
1286 if (!triggers || !triggers->t_abort)
1287 return;
1288
1289 triggers->t_abort(triggers, jh2bh(jh));
1290}
1291
470decc6 1292/**
f7f4bccb 1293 * int jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata
470decc6
DK
1294 * @handle: transaction to add buffer to.
1295 * @bh: buffer to mark
1296 *
1297 * mark dirty metadata which needs to be journaled as part of the current
1298 * transaction.
1299 *
9ea7a0df
TT
1300 * The buffer must have previously had jbd2_journal_get_write_access()
1301 * called so that it has a valid journal_head attached to the buffer
1302 * head.
1303 *
470decc6
DK
1304 * The buffer is placed on the transaction's metadata list and is marked
1305 * as belonging to the transaction.
1306 *
1307 * Returns error number or 0 on success.
1308 *
1309 * Special care needs to be taken if the buffer already belongs to the
1310 * current committing transaction (in which case we should have frozen
1311 * data present for that commit). In that case, we don't relink the
1312 * buffer: that only gets done when the old transaction finally
1313 * completes its commit.
1314 */
f7f4bccb 1315int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
470decc6
DK
1316{
1317 transaction_t *transaction = handle->h_transaction;
41a5b913 1318 journal_t *journal;
ad56edad 1319 struct journal_head *jh;
9ea7a0df 1320 int ret = 0;
470decc6 1321
470decc6 1322 if (is_handle_aborted(handle))
41a5b913 1323 return -EROFS;
6e06ae88 1324 if (!buffer_jbd(bh)) {
9ea7a0df
TT
1325 ret = -EUCLEAN;
1326 goto out;
1327 }
6e06ae88
JK
1328 /*
1329 * We don't grab jh reference here since the buffer must be part
1330 * of the running transaction.
1331 */
1332 jh = bh2jh(bh);
1333 /*
1334 * This and the following assertions are unreliable since we may see jh
1335 * in inconsistent state unless we grab bh_state lock. But this is
1336 * crucial to catch bugs so let's do a reliable check until the
1337 * lockless handling is fully proven.
1338 */
1339 if (jh->b_transaction != transaction &&
1340 jh->b_next_transaction != transaction) {
1341 jbd_lock_bh_state(bh);
1342 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1343 jh->b_next_transaction == transaction);
1344 jbd_unlock_bh_state(bh);
1345 }
1346 if (jh->b_modified == 1) {
1347 /* If it's in our transaction it must be in BJ_Metadata list. */
1348 if (jh->b_transaction == transaction &&
1349 jh->b_jlist != BJ_Metadata) {
1350 jbd_lock_bh_state(bh);
1351 J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1352 jh->b_jlist == BJ_Metadata);
1353 jbd_unlock_bh_state(bh);
1354 }
1355 goto out;
1356 }
1357
1358 journal = transaction->t_journal;
ad56edad
JK
1359 jbd_debug(5, "journal_head %p\n", jh);
1360 JBUFFER_TRACE(jh, "entry");
470decc6
DK
1361
1362 jbd_lock_bh_state(bh);
1363
1364 if (jh->b_modified == 0) {
1365 /*
1366 * This buffer's got modified and becoming part
1367 * of the transaction. This needs to be done
1368 * once a transaction -bzzz
1369 */
1370 jh->b_modified = 1;
f6c07cad
TT
1371 if (handle->h_buffer_credits <= 0) {
1372 ret = -ENOSPC;
1373 goto out_unlock_bh;
1374 }
470decc6
DK
1375 handle->h_buffer_credits--;
1376 }
1377
1378 /*
1379 * fastpath, to avoid expensive locking. If this buffer is already
1380 * on the running transaction's metadata list there is nothing to do.
1381 * Nobody can take it off again because there is a handle open.
1382 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1383 * result in this test being false, so we go in and take the locks.
1384 */
1385 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1386 JBUFFER_TRACE(jh, "fastpath");
9ea7a0df
TT
1387 if (unlikely(jh->b_transaction !=
1388 journal->j_running_transaction)) {
a67c848a 1389 printk(KERN_ERR "JBD2: %s: "
9ea7a0df 1390 "jh->b_transaction (%llu, %p, %u) != "
66a4cb18 1391 "journal->j_running_transaction (%p, %u)\n",
9ea7a0df
TT
1392 journal->j_devname,
1393 (unsigned long long) bh->b_blocknr,
1394 jh->b_transaction,
1395 jh->b_transaction ? jh->b_transaction->t_tid : 0,
1396 journal->j_running_transaction,
1397 journal->j_running_transaction ?
1398 journal->j_running_transaction->t_tid : 0);
1399 ret = -EINVAL;
1400 }
470decc6
DK
1401 goto out_unlock_bh;
1402 }
1403
1404 set_buffer_jbddirty(bh);
1405
1406 /*
1407 * Metadata already on the current transaction list doesn't
1408 * need to be filed. Metadata on another transaction's list must
1409 * be committing, and will be refiled once the commit completes:
1410 * leave it alone for now.
1411 */
1412 if (jh->b_transaction != transaction) {
1413 JBUFFER_TRACE(jh, "already on other transaction");
66a4cb18
TT
1414 if (unlikely(((jh->b_transaction !=
1415 journal->j_committing_transaction)) ||
1416 (jh->b_next_transaction != transaction))) {
1417 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1418 "bad jh for block %llu: "
1419 "transaction (%p, %u), "
1420 "jh->b_transaction (%p, %u), "
1421 "jh->b_next_transaction (%p, %u), jlist %u\n",
9ea7a0df
TT
1422 journal->j_devname,
1423 (unsigned long long) bh->b_blocknr,
66a4cb18 1424 transaction, transaction->t_tid,
9ea7a0df 1425 jh->b_transaction,
66a4cb18
TT
1426 jh->b_transaction ?
1427 jh->b_transaction->t_tid : 0,
9ea7a0df
TT
1428 jh->b_next_transaction,
1429 jh->b_next_transaction ?
1430 jh->b_next_transaction->t_tid : 0,
66a4cb18
TT
1431 jh->b_jlist);
1432 WARN_ON(1);
9ea7a0df
TT
1433 ret = -EINVAL;
1434 }
470decc6
DK
1435 /* And this case is illegal: we can't reuse another
1436 * transaction's data buffer, ever. */
1437 goto out_unlock_bh;
1438 }
1439
1440 /* That test should have eliminated the following case: */
4019191b 1441 J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
470decc6
DK
1442
1443 JBUFFER_TRACE(jh, "file as BJ_Metadata");
1444 spin_lock(&journal->j_list_lock);
41a5b913 1445 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
470decc6
DK
1446 spin_unlock(&journal->j_list_lock);
1447out_unlock_bh:
1448 jbd_unlock_bh_state(bh);
1449out:
1450 JBUFFER_TRACE(jh, "exit");
9ea7a0df 1451 return ret;
470decc6
DK
1452}
1453
470decc6 1454/**
f7f4bccb 1455 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
470decc6
DK
1456 * @handle: transaction handle
1457 * @bh: bh to 'forget'
1458 *
1459 * We can only do the bforget if there are no commits pending against the
1460 * buffer. If the buffer is dirty in the current running transaction we
1461 * can safely unlink it.
1462 *
1463 * bh may not be a journalled buffer at all - it may be a non-JBD
1464 * buffer which came off the hashtable. Check for this.
1465 *
1466 * Decrements bh->b_count by one.
1467 *
1468 * Allow this call even if the handle has aborted --- it may be part of
1469 * the caller's cleanup after an abort.
1470 */
f7f4bccb 1471int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
470decc6
DK
1472{
1473 transaction_t *transaction = handle->h_transaction;
41a5b913 1474 journal_t *journal;
470decc6
DK
1475 struct journal_head *jh;
1476 int drop_reserve = 0;
1477 int err = 0;
1dfc3220 1478 int was_modified = 0;
470decc6 1479
41a5b913
TT
1480 if (is_handle_aborted(handle))
1481 return -EROFS;
1482 journal = transaction->t_journal;
1483
470decc6
DK
1484 BUFFER_TRACE(bh, "entry");
1485
1486 jbd_lock_bh_state(bh);
470decc6
DK
1487
1488 if (!buffer_jbd(bh))
1489 goto not_jbd;
1490 jh = bh2jh(bh);
1491
1492 /* Critical error: attempting to delete a bitmap buffer, maybe?
1493 * Don't do any jbd operations, and return an error. */
1494 if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1495 "inconsistent data on disk")) {
1496 err = -EIO;
1497 goto not_jbd;
1498 }
1499
48fc7f7e 1500 /* keep track of whether or not this transaction modified us */
1dfc3220
JB
1501 was_modified = jh->b_modified;
1502
470decc6
DK
1503 /*
1504 * The buffer's going from the transaction, we must drop
1505 * all references -bzzz
1506 */
1507 jh->b_modified = 0;
1508
41a5b913 1509 if (jh->b_transaction == transaction) {
470decc6
DK
1510 J_ASSERT_JH(jh, !jh->b_frozen_data);
1511
1512 /* If we are forgetting a buffer which is already part
1513 * of this transaction, then we can just drop it from
1514 * the transaction immediately. */
1515 clear_buffer_dirty(bh);
1516 clear_buffer_jbddirty(bh);
1517
1518 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1519
1dfc3220
JB
1520 /*
1521 * we only want to drop a reference if this transaction
1522 * modified the buffer
1523 */
1524 if (was_modified)
1525 drop_reserve = 1;
470decc6
DK
1526
1527 /*
1528 * We are no longer going to journal this buffer.
1529 * However, the commit of this transaction is still
1530 * important to the buffer: the delete that we are now
1531 * processing might obsolete an old log entry, so by
1532 * committing, we can satisfy the buffer's checkpoint.
1533 *
1534 * So, if we have a checkpoint on the buffer, we should
1535 * now refile the buffer on our BJ_Forget list so that
1536 * we know to remove the checkpoint after we commit.
1537 */
1538
0bfea811 1539 spin_lock(&journal->j_list_lock);
470decc6 1540 if (jh->b_cp_transaction) {
f7f4bccb
MC
1541 __jbd2_journal_temp_unlink_buffer(jh);
1542 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6 1543 } else {
f7f4bccb 1544 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
1545 if (!buffer_jbd(bh)) {
1546 spin_unlock(&journal->j_list_lock);
1547 jbd_unlock_bh_state(bh);
1548 __bforget(bh);
1549 goto drop;
1550 }
1551 }
0bfea811 1552 spin_unlock(&journal->j_list_lock);
470decc6
DK
1553 } else if (jh->b_transaction) {
1554 J_ASSERT_JH(jh, (jh->b_transaction ==
1555 journal->j_committing_transaction));
1556 /* However, if the buffer is still owned by a prior
1557 * (committing) transaction, we can't drop it yet... */
1558 JBUFFER_TRACE(jh, "belongs to older transaction");
1559 /* ... but we CAN drop it from the new transaction if we
1560 * have also modified it since the original commit. */
1561
1562 if (jh->b_next_transaction) {
1563 J_ASSERT(jh->b_next_transaction == transaction);
0bfea811 1564 spin_lock(&journal->j_list_lock);
470decc6 1565 jh->b_next_transaction = NULL;
0bfea811 1566 spin_unlock(&journal->j_list_lock);
1dfc3220
JB
1567
1568 /*
1569 * only drop a reference if this transaction modified
1570 * the buffer
1571 */
1572 if (was_modified)
1573 drop_reserve = 1;
470decc6
DK
1574 }
1575 }
1576
1577not_jbd:
470decc6
DK
1578 jbd_unlock_bh_state(bh);
1579 __brelse(bh);
1580drop:
1581 if (drop_reserve) {
1582 /* no need to reserve log space for this block -bzzz */
1583 handle->h_buffer_credits++;
1584 }
1585 return err;
1586}
1587
1588/**
f7f4bccb 1589 * int jbd2_journal_stop() - complete a transaction
bd7ced98 1590 * @handle: transaction to complete.
470decc6
DK
1591 *
1592 * All done for a particular handle.
1593 *
1594 * There is not much action needed here. We just return any remaining
1595 * buffer credits to the transaction and remove the handle. The only
1596 * complication is that we need to start a commit operation if the
1597 * filesystem is marked for synchronous update.
1598 *
f7f4bccb 1599 * jbd2_journal_stop itself will not usually return an error, but it may
470decc6 1600 * do so in unusual circumstances. In particular, expect it to
f7f4bccb 1601 * return -EIO if a jbd2_journal_abort has been executed since the
470decc6
DK
1602 * transaction began.
1603 */
f7f4bccb 1604int jbd2_journal_stop(handle_t *handle)
470decc6
DK
1605{
1606 transaction_t *transaction = handle->h_transaction;
41a5b913
TT
1607 journal_t *journal;
1608 int err = 0, wait_for_commit = 0;
a51dca9c 1609 tid_t tid;
470decc6
DK
1610 pid_t pid;
1611
9d506594
LC
1612 if (!transaction) {
1613 /*
1614 * Handle is already detached from the transaction so
1615 * there is nothing to do other than decrease a refcount,
1616 * or free the handle if refcount drops to zero
1617 */
1618 if (--handle->h_ref > 0) {
1619 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1620 handle->h_ref);
1621 return err;
1622 } else {
1623 if (handle->h_rsv_handle)
1624 jbd2_free_handle(handle->h_rsv_handle);
1625 goto free_and_exit;
1626 }
1627 }
41a5b913
TT
1628 journal = transaction->t_journal;
1629
470decc6
DK
1630 J_ASSERT(journal_current_handle() == handle);
1631
1632 if (is_handle_aborted(handle))
1633 err = -EIO;
41a5b913 1634 else
a51dca9c 1635 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
470decc6
DK
1636
1637 if (--handle->h_ref > 0) {
1638 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1639 handle->h_ref);
1640 return err;
1641 }
1642
1643 jbd_debug(4, "Handle %p going down\n", handle);
343d9c28 1644 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
41a5b913 1645 transaction->t_tid,
343d9c28
TT
1646 handle->h_type, handle->h_line_no,
1647 jiffies - handle->h_start_jiffies,
1648 handle->h_sync, handle->h_requested_credits,
1649 (handle->h_requested_credits -
1650 handle->h_buffer_credits));
470decc6
DK
1651
1652 /*
1653 * Implement synchronous transaction batching. If the handle
1654 * was synchronous, don't force a commit immediately. Let's
e07f7183
JB
1655 * yield and let another thread piggyback onto this
1656 * transaction. Keep doing that while new threads continue to
1657 * arrive. It doesn't cost much - we're about to run a commit
1658 * and sleep on IO anyway. Speeds up many-threaded, many-dir
1659 * operations by 30x or more...
1660 *
1661 * We try and optimize the sleep time against what the
1662 * underlying disk can do, instead of having a static sleep
1663 * time. This is useful for the case where our storage is so
1664 * fast that it is more optimal to go ahead and force a flush
1665 * and wait for the transaction to be committed than it is to
1666 * wait for an arbitrary amount of time for new writers to
1667 * join the transaction. We achieve this by measuring how
1668 * long it takes to commit a transaction, and compare it with
1669 * how long this transaction has been running, and if run time
1670 * < commit time then we sleep for the delta and commit. This
1671 * greatly helps super fast disks that would see slowdowns as
1672 * more threads started doing fsyncs.
470decc6 1673 *
e07f7183
JB
1674 * But don't do this if this process was the most recent one
1675 * to perform a synchronous write. We do this to detect the
1676 * case where a single process is doing a stream of sync
1677 * writes. No point in waiting for joiners in that case.
5dd21424
ES
1678 *
1679 * Setting max_batch_time to 0 disables this completely.
470decc6
DK
1680 */
1681 pid = current->pid;
5dd21424
ES
1682 if (handle->h_sync && journal->j_last_sync_writer != pid &&
1683 journal->j_max_batch_time) {
e07f7183
JB
1684 u64 commit_time, trans_time;
1685
470decc6 1686 journal->j_last_sync_writer = pid;
e07f7183 1687
a931da6a 1688 read_lock(&journal->j_state_lock);
e07f7183 1689 commit_time = journal->j_average_commit_time;
a931da6a 1690 read_unlock(&journal->j_state_lock);
e07f7183
JB
1691
1692 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1693 transaction->t_start_time));
1694
30773840
TT
1695 commit_time = max_t(u64, commit_time,
1696 1000*journal->j_min_batch_time);
e07f7183 1697 commit_time = min_t(u64, commit_time,
30773840 1698 1000*journal->j_max_batch_time);
e07f7183
JB
1699
1700 if (trans_time < commit_time) {
1701 ktime_t expires = ktime_add_ns(ktime_get(),
1702 commit_time);
1703 set_current_state(TASK_UNINTERRUPTIBLE);
1704 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1705 }
470decc6
DK
1706 }
1707
7058548c
TT
1708 if (handle->h_sync)
1709 transaction->t_synchronous_commit = 1;
470decc6 1710 current->journal_info = NULL;
a51dca9c
TT
1711 atomic_sub(handle->h_buffer_credits,
1712 &transaction->t_outstanding_credits);
470decc6
DK
1713
1714 /*
1715 * If the handle is marked SYNC, we need to set another commit
1716 * going! We also want to force a commit if the current
1717 * transaction is occupying too much of the log, or if the
1718 * transaction is too old now.
1719 */
1720 if (handle->h_sync ||
a51dca9c
TT
1721 (atomic_read(&transaction->t_outstanding_credits) >
1722 journal->j_max_transaction_buffers) ||
1723 time_after_eq(jiffies, transaction->t_expires)) {
470decc6
DK
1724 /* Do this even for aborted journals: an abort still
1725 * completes the commit thread, it just doesn't write
1726 * anything to disk. */
470decc6 1727
470decc6
DK
1728 jbd_debug(2, "transaction too old, requesting commit for "
1729 "handle %p\n", handle);
1730 /* This is non-blocking */
c35a56a0 1731 jbd2_log_start_commit(journal, transaction->t_tid);
470decc6
DK
1732
1733 /*
f7f4bccb 1734 * Special case: JBD2_SYNC synchronous updates require us
470decc6
DK
1735 * to wait for the commit to complete.
1736 */
1737 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
a51dca9c 1738 wait_for_commit = 1;
470decc6
DK
1739 }
1740
a51dca9c
TT
1741 /*
1742 * Once we drop t_updates, if it goes to zero the transaction
25985edc 1743 * could start committing on us and eventually disappear. So
a51dca9c
TT
1744 * once we do this, we must not dereference transaction
1745 * pointer again.
1746 */
1747 tid = transaction->t_tid;
1748 if (atomic_dec_and_test(&transaction->t_updates)) {
1749 wake_up(&journal->j_wait_updates);
1750 if (journal->j_barrier_count)
1751 wake_up(&journal->j_wait_transaction_locked);
1752 }
1753
ab714aff 1754 rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
7a4b188f 1755
a51dca9c
TT
1756 if (wait_for_commit)
1757 err = jbd2_log_wait_commit(journal, tid);
1758
8f7d89f3
JK
1759 if (handle->h_rsv_handle)
1760 jbd2_journal_free_reserved(handle->h_rsv_handle);
41a5b913 1761free_and_exit:
af1e76d6 1762 jbd2_free_handle(handle);
470decc6
DK
1763 return err;
1764}
1765
470decc6
DK
1766/*
1767 *
1768 * List management code snippets: various functions for manipulating the
1769 * transaction buffer lists.
1770 *
1771 */
1772
1773/*
1774 * Append a buffer to a transaction list, given the transaction's list head
1775 * pointer.
1776 *
1777 * j_list_lock is held.
1778 *
1779 * jbd_lock_bh_state(jh2bh(jh)) is held.
1780 */
1781
1782static inline void
1783__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1784{
1785 if (!*list) {
1786 jh->b_tnext = jh->b_tprev = jh;
1787 *list = jh;
1788 } else {
1789 /* Insert at the tail of the list to preserve order */
1790 struct journal_head *first = *list, *last = first->b_tprev;
1791 jh->b_tprev = last;
1792 jh->b_tnext = first;
1793 last->b_tnext = first->b_tprev = jh;
1794 }
1795}
1796
1797/*
1798 * Remove a buffer from a transaction list, given the transaction's list
1799 * head pointer.
1800 *
1801 * Called with j_list_lock held, and the journal may not be locked.
1802 *
1803 * jbd_lock_bh_state(jh2bh(jh)) is held.
1804 */
1805
1806static inline void
1807__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1808{
1809 if (*list == jh) {
1810 *list = jh->b_tnext;
1811 if (*list == jh)
1812 *list = NULL;
1813 }
1814 jh->b_tprev->b_tnext = jh->b_tnext;
1815 jh->b_tnext->b_tprev = jh->b_tprev;
1816}
1817
1818/*
1819 * Remove a buffer from the appropriate transaction list.
1820 *
1821 * Note that this function can *change* the value of
f5113eff
JK
1822 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1823 * t_reserved_list. If the caller is holding onto a copy of one of these
1824 * pointers, it could go bad. Generally the caller needs to re-read the
1825 * pointer from the transaction_t.
470decc6 1826 *
5bebccf9 1827 * Called under j_list_lock.
470decc6 1828 */
5bebccf9 1829static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
470decc6
DK
1830{
1831 struct journal_head **list = NULL;
1832 transaction_t *transaction;
1833 struct buffer_head *bh = jh2bh(jh);
1834
1835 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1836 transaction = jh->b_transaction;
1837 if (transaction)
1838 assert_spin_locked(&transaction->t_journal->j_list_lock);
1839
1840 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1841 if (jh->b_jlist != BJ_None)
4019191b 1842 J_ASSERT_JH(jh, transaction != NULL);
470decc6
DK
1843
1844 switch (jh->b_jlist) {
1845 case BJ_None:
1846 return;
470decc6
DK
1847 case BJ_Metadata:
1848 transaction->t_nr_buffers--;
1849 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1850 list = &transaction->t_buffers;
1851 break;
1852 case BJ_Forget:
1853 list = &transaction->t_forget;
1854 break;
470decc6
DK
1855 case BJ_Shadow:
1856 list = &transaction->t_shadow_list;
1857 break;
470decc6
DK
1858 case BJ_Reserved:
1859 list = &transaction->t_reserved_list;
1860 break;
470decc6
DK
1861 }
1862
1863 __blist_del_buffer(list, jh);
1864 jh->b_jlist = BJ_None;
1865 if (test_clear_buffer_jbddirty(bh))
1866 mark_buffer_dirty(bh); /* Expose it to the VM */
1867}
1868
de1b7941
JK
1869/*
1870 * Remove buffer from all transactions.
1871 *
1872 * Called with bh_state lock and j_list_lock
1873 *
1874 * jh and bh may be already freed when this function returns.
1875 */
1876static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
470decc6 1877{
f7f4bccb 1878 __jbd2_journal_temp_unlink_buffer(jh);
470decc6 1879 jh->b_transaction = NULL;
de1b7941 1880 jbd2_journal_put_journal_head(jh);
470decc6
DK
1881}
1882
f7f4bccb 1883void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
470decc6 1884{
de1b7941
JK
1885 struct buffer_head *bh = jh2bh(jh);
1886
1887 /* Get reference so that buffer cannot be freed before we unlock it */
1888 get_bh(bh);
1889 jbd_lock_bh_state(bh);
470decc6 1890 spin_lock(&journal->j_list_lock);
f7f4bccb 1891 __jbd2_journal_unfile_buffer(jh);
470decc6 1892 spin_unlock(&journal->j_list_lock);
de1b7941
JK
1893 jbd_unlock_bh_state(bh);
1894 __brelse(bh);
470decc6
DK
1895}
1896
1897/*
f7f4bccb 1898 * Called from jbd2_journal_try_to_free_buffers().
470decc6
DK
1899 *
1900 * Called under jbd_lock_bh_state(bh)
1901 */
1902static void
1903__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1904{
1905 struct journal_head *jh;
1906
1907 jh = bh2jh(bh);
1908
1909 if (buffer_locked(bh) || buffer_dirty(bh))
1910 goto out;
1911
d2eb0b99 1912 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
470decc6
DK
1913 goto out;
1914
1915 spin_lock(&journal->j_list_lock);
d2eb0b99 1916 if (jh->b_cp_transaction != NULL) {
470decc6 1917 /* written-back checkpointed metadata buffer */
c254c9ec
JK
1918 JBUFFER_TRACE(jh, "remove from checkpoint list");
1919 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
1920 }
1921 spin_unlock(&journal->j_list_lock);
1922out:
1923 return;
1924}
1925
470decc6 1926/**
f7f4bccb 1927 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
470decc6
DK
1928 * @journal: journal for operation
1929 * @page: to try and free
530576bb 1930 * @gfp_mask: we use the mask to detect how hard should we try to release
d0164adc
MG
1931 * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1932 * code to release the buffers.
470decc6
DK
1933 *
1934 *
1935 * For all the buffers on this page,
1936 * if they are fully written out ordered data, move them onto BUF_CLEAN
1937 * so try_to_free_buffers() can reap them.
1938 *
1939 * This function returns non-zero if we wish try_to_free_buffers()
1940 * to be called. We do this if the page is releasable by try_to_free_buffers().
1941 * We also do it if the page has locked or dirty buffers and the caller wants
1942 * us to perform sync or async writeout.
1943 *
1944 * This complicates JBD locking somewhat. We aren't protected by the
1945 * BKL here. We wish to remove the buffer from its committing or
f7f4bccb 1946 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
470decc6
DK
1947 *
1948 * This may *change* the value of transaction_t->t_datalist, so anyone
1949 * who looks at t_datalist needs to lock against this function.
1950 *
f7f4bccb
MC
1951 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1952 * buffer. So we need to lock against that. jbd2_journal_dirty_data()
470decc6
DK
1953 * will come out of the lock with the buffer dirty, which makes it
1954 * ineligible for release here.
1955 *
1956 * Who else is affected by this? hmm... Really the only contender
1957 * is do_get_write_access() - it could be looking at the buffer while
1958 * journal_try_to_free_buffer() is changing its state. But that
1959 * cannot happen because we never reallocate freed data as metadata
1960 * while the data is part of a transaction. Yes?
530576bb
MC
1961 *
1962 * Return 0 on failure, 1 on success
470decc6 1963 */
f7f4bccb 1964int jbd2_journal_try_to_free_buffers(journal_t *journal,
530576bb 1965 struct page *page, gfp_t gfp_mask)
470decc6
DK
1966{
1967 struct buffer_head *head;
1968 struct buffer_head *bh;
1969 int ret = 0;
1970
1971 J_ASSERT(PageLocked(page));
1972
1973 head = page_buffers(page);
1974 bh = head;
1975 do {
1976 struct journal_head *jh;
1977
1978 /*
1979 * We take our own ref against the journal_head here to avoid
1980 * having to add tons of locking around each instance of
530576bb 1981 * jbd2_journal_put_journal_head().
470decc6 1982 */
f7f4bccb 1983 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
1984 if (!jh)
1985 continue;
1986
1987 jbd_lock_bh_state(bh);
1988 __journal_try_to_free_buffer(journal, bh);
f7f4bccb 1989 jbd2_journal_put_journal_head(jh);
470decc6
DK
1990 jbd_unlock_bh_state(bh);
1991 if (buffer_jbd(bh))
1992 goto busy;
1993 } while ((bh = bh->b_this_page) != head);
530576bb 1994
470decc6 1995 ret = try_to_free_buffers(page);
530576bb 1996
470decc6
DK
1997busy:
1998 return ret;
1999}
2000
2001/*
2002 * This buffer is no longer needed. If it is on an older transaction's
2003 * checkpoint list we need to record it on this transaction's forget list
2004 * to pin this buffer (and hence its checkpointing transaction) down until
2005 * this transaction commits. If the buffer isn't on a checkpoint list, we
2006 * release it.
2007 * Returns non-zero if JBD no longer has an interest in the buffer.
2008 *
2009 * Called under j_list_lock.
2010 *
2011 * Called under jbd_lock_bh_state(bh).
2012 */
2013static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2014{
2015 int may_free = 1;
2016 struct buffer_head *bh = jh2bh(jh);
2017
470decc6
DK
2018 if (jh->b_cp_transaction) {
2019 JBUFFER_TRACE(jh, "on running+cp transaction");
de1b7941 2020 __jbd2_journal_temp_unlink_buffer(jh);
f91d1d04
JK
2021 /*
2022 * We don't want to write the buffer anymore, clear the
2023 * bit so that we don't confuse checks in
2024 * __journal_file_buffer
2025 */
2026 clear_buffer_dirty(bh);
f7f4bccb 2027 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
470decc6
DK
2028 may_free = 0;
2029 } else {
2030 JBUFFER_TRACE(jh, "on running transaction");
de1b7941 2031 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2032 }
2033 return may_free;
2034}
2035
2036/*
f7f4bccb 2037 * jbd2_journal_invalidatepage
470decc6
DK
2038 *
2039 * This code is tricky. It has a number of cases to deal with.
2040 *
2041 * There are two invariants which this code relies on:
2042 *
2043 * i_size must be updated on disk before we start calling invalidatepage on the
2044 * data.
2045 *
2046 * This is done in ext3 by defining an ext3_setattr method which
2047 * updates i_size before truncate gets going. By maintaining this
2048 * invariant, we can be sure that it is safe to throw away any buffers
2049 * attached to the current transaction: once the transaction commits,
2050 * we know that the data will not be needed.
2051 *
2052 * Note however that we can *not* throw away data belonging to the
2053 * previous, committing transaction!
2054 *
2055 * Any disk blocks which *are* part of the previous, committing
2056 * transaction (and which therefore cannot be discarded immediately) are
2057 * not going to be reused in the new running transaction
2058 *
2059 * The bitmap committed_data images guarantee this: any block which is
2060 * allocated in one transaction and removed in the next will be marked
2061 * as in-use in the committed_data bitmap, so cannot be reused until
2062 * the next transaction to delete the block commits. This means that
2063 * leaving committing buffers dirty is quite safe: the disk blocks
2064 * cannot be reallocated to a different file and so buffer aliasing is
2065 * not possible.
2066 *
2067 *
2068 * The above applies mainly to ordered data mode. In writeback mode we
2069 * don't make guarantees about the order in which data hits disk --- in
2070 * particular we don't guarantee that new dirty data is flushed before
2071 * transaction commit --- so it is always safe just to discard data
2072 * immediately in that mode. --sct
2073 */
2074
2075/*
2076 * The journal_unmap_buffer helper function returns zero if the buffer
2077 * concerned remains pinned as an anonymous buffer belonging to an older
2078 * transaction.
2079 *
2080 * We're outside-transaction here. Either or both of j_running_transaction
2081 * and j_committing_transaction may be NULL.
2082 */
b794e7a6
JK
2083static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2084 int partial_page)
470decc6
DK
2085{
2086 transaction_t *transaction;
2087 struct journal_head *jh;
2088 int may_free = 1;
470decc6
DK
2089
2090 BUFFER_TRACE(bh, "entry");
2091
2092 /*
2093 * It is safe to proceed here without the j_list_lock because the
2094 * buffers cannot be stolen by try_to_free_buffers as long as we are
2095 * holding the page lock. --sct
2096 */
2097
2098 if (!buffer_jbd(bh))
2099 goto zap_buffer_unlocked;
2100
87c89c23 2101 /* OK, we have data buffer in journaled mode */
a931da6a 2102 write_lock(&journal->j_state_lock);
470decc6
DK
2103 jbd_lock_bh_state(bh);
2104 spin_lock(&journal->j_list_lock);
2105
f7f4bccb 2106 jh = jbd2_journal_grab_journal_head(bh);
470decc6
DK
2107 if (!jh)
2108 goto zap_buffer_no_jh;
2109
ba869023 2110 /*
2111 * We cannot remove the buffer from checkpoint lists until the
2112 * transaction adding inode to orphan list (let's call it T)
2113 * is committed. Otherwise if the transaction changing the
2114 * buffer would be cleaned from the journal before T is
2115 * committed, a crash will cause that the correct contents of
2116 * the buffer will be lost. On the other hand we have to
2117 * clear the buffer dirty bit at latest at the moment when the
2118 * transaction marking the buffer as freed in the filesystem
2119 * structures is committed because from that moment on the
b794e7a6 2120 * block can be reallocated and used by a different page.
ba869023 2121 * Since the block hasn't been freed yet but the inode has
2122 * already been added to orphan list, it is safe for us to add
2123 * the buffer to BJ_Forget list of the newest transaction.
b794e7a6
JK
2124 *
2125 * Also we have to clear buffer_mapped flag of a truncated buffer
2126 * because the buffer_head may be attached to the page straddling
2127 * i_size (can happen only when blocksize < pagesize) and thus the
2128 * buffer_head can be reused when the file is extended again. So we end
2129 * up keeping around invalidated buffers attached to transactions'
2130 * BJ_Forget list just to stop checkpointing code from cleaning up
2131 * the transaction this buffer was modified in.
ba869023 2132 */
470decc6
DK
2133 transaction = jh->b_transaction;
2134 if (transaction == NULL) {
2135 /* First case: not on any transaction. If it
2136 * has no checkpoint link, then we can zap it:
2137 * it's a writeback-mode buffer so we don't care
2138 * if it hits disk safely. */
2139 if (!jh->b_cp_transaction) {
2140 JBUFFER_TRACE(jh, "not on any transaction: zap");
2141 goto zap_buffer;
2142 }
2143
2144 if (!buffer_dirty(bh)) {
2145 /* bdflush has written it. We can drop it now */
bc23f0c8 2146 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2147 goto zap_buffer;
2148 }
2149
2150 /* OK, it must be in the journal but still not
2151 * written fully to disk: it's metadata or
2152 * journaled data... */
2153
2154 if (journal->j_running_transaction) {
2155 /* ... and once the current transaction has
2156 * committed, the buffer won't be needed any
2157 * longer. */
2158 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
b794e7a6 2159 may_free = __dispose_buffer(jh,
470decc6 2160 journal->j_running_transaction);
b794e7a6 2161 goto zap_buffer;
470decc6
DK
2162 } else {
2163 /* There is no currently-running transaction. So the
2164 * orphan record which we wrote for this file must have
2165 * passed into commit. We must attach this buffer to
2166 * the committing transaction, if it exists. */
2167 if (journal->j_committing_transaction) {
2168 JBUFFER_TRACE(jh, "give to committing trans");
b794e7a6 2169 may_free = __dispose_buffer(jh,
470decc6 2170 journal->j_committing_transaction);
b794e7a6 2171 goto zap_buffer;
470decc6
DK
2172 } else {
2173 /* The orphan record's transaction has
2174 * committed. We can cleanse this buffer */
2175 clear_buffer_jbddirty(bh);
bc23f0c8 2176 __jbd2_journal_remove_checkpoint(jh);
470decc6
DK
2177 goto zap_buffer;
2178 }
2179 }
2180 } else if (transaction == journal->j_committing_transaction) {
9b57988d 2181 JBUFFER_TRACE(jh, "on committing transaction");
470decc6 2182 /*
ba869023 2183 * The buffer is committing, we simply cannot touch
b794e7a6
JK
2184 * it. If the page is straddling i_size we have to wait
2185 * for commit and try again.
2186 */
2187 if (partial_page) {
b794e7a6
JK
2188 jbd2_journal_put_journal_head(jh);
2189 spin_unlock(&journal->j_list_lock);
2190 jbd_unlock_bh_state(bh);
2191 write_unlock(&journal->j_state_lock);
53e87268 2192 return -EBUSY;
b794e7a6
JK
2193 }
2194 /*
2195 * OK, buffer won't be reachable after truncate. We just set
2196 * j_next_transaction to the running transaction (if there is
2197 * one) and mark buffer as freed so that commit code knows it
2198 * should clear dirty bits when it is done with the buffer.
ba869023 2199 */
470decc6 2200 set_buffer_freed(bh);
ba869023 2201 if (journal->j_running_transaction && buffer_jbddirty(bh))
2202 jh->b_next_transaction = journal->j_running_transaction;
f7f4bccb 2203 jbd2_journal_put_journal_head(jh);
470decc6
DK
2204 spin_unlock(&journal->j_list_lock);
2205 jbd_unlock_bh_state(bh);
a931da6a 2206 write_unlock(&journal->j_state_lock);
470decc6
DK
2207 return 0;
2208 } else {
2209 /* Good, the buffer belongs to the running transaction.
2210 * We are writing our own transaction's data, not any
2211 * previous one's, so it is safe to throw it away
2212 * (remember that we expect the filesystem to have set
2213 * i_size already for this truncate so recovery will not
2214 * expose the disk blocks we are discarding here.) */
2215 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
9b57988d 2216 JBUFFER_TRACE(jh, "on running transaction");
470decc6
DK
2217 may_free = __dispose_buffer(jh, transaction);
2218 }
2219
2220zap_buffer:
b794e7a6
JK
2221 /*
2222 * This is tricky. Although the buffer is truncated, it may be reused
2223 * if blocksize < pagesize and it is attached to the page straddling
2224 * EOF. Since the buffer might have been added to BJ_Forget list of the
2225 * running transaction, journal_get_write_access() won't clear
2226 * b_modified and credit accounting gets confused. So clear b_modified
2227 * here.
2228 */
2229 jh->b_modified = 0;
f7f4bccb 2230 jbd2_journal_put_journal_head(jh);
470decc6
DK
2231zap_buffer_no_jh:
2232 spin_unlock(&journal->j_list_lock);
2233 jbd_unlock_bh_state(bh);
a931da6a 2234 write_unlock(&journal->j_state_lock);
470decc6
DK
2235zap_buffer_unlocked:
2236 clear_buffer_dirty(bh);
2237 J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2238 clear_buffer_mapped(bh);
2239 clear_buffer_req(bh);
2240 clear_buffer_new(bh);
15291164
ES
2241 clear_buffer_delay(bh);
2242 clear_buffer_unwritten(bh);
470decc6
DK
2243 bh->b_bdev = NULL;
2244 return may_free;
2245}
2246
2247/**
f7f4bccb 2248 * void jbd2_journal_invalidatepage()
470decc6
DK
2249 * @journal: journal to use for flush...
2250 * @page: page to flush
259709b0
LC
2251 * @offset: start of the range to invalidate
2252 * @length: length of the range to invalidate
470decc6 2253 *
259709b0
LC
2254 * Reap page buffers containing data after in the specified range in page.
2255 * Can return -EBUSY if buffers are part of the committing transaction and
2256 * the page is straddling i_size. Caller then has to wait for current commit
2257 * and try again.
470decc6 2258 */
53e87268
JK
2259int jbd2_journal_invalidatepage(journal_t *journal,
2260 struct page *page,
259709b0
LC
2261 unsigned int offset,
2262 unsigned int length)
470decc6
DK
2263{
2264 struct buffer_head *head, *bh, *next;
259709b0 2265 unsigned int stop = offset + length;
470decc6 2266 unsigned int curr_off = 0;
09cbfeaf 2267 int partial_page = (offset || length < PAGE_SIZE);
470decc6 2268 int may_free = 1;
53e87268 2269 int ret = 0;
470decc6
DK
2270
2271 if (!PageLocked(page))
2272 BUG();
2273 if (!page_has_buffers(page))
53e87268 2274 return 0;
470decc6 2275
09cbfeaf 2276 BUG_ON(stop > PAGE_SIZE || stop < length);
259709b0 2277
470decc6
DK
2278 /* We will potentially be playing with lists other than just the
2279 * data lists (especially for journaled data mode), so be
2280 * cautious in our locking. */
2281
2282 head = bh = page_buffers(page);
2283 do {
2284 unsigned int next_off = curr_off + bh->b_size;
2285 next = bh->b_this_page;
2286
259709b0
LC
2287 if (next_off > stop)
2288 return 0;
2289
470decc6
DK
2290 if (offset <= curr_off) {
2291 /* This block is wholly outside the truncation point */
2292 lock_buffer(bh);
259709b0 2293 ret = journal_unmap_buffer(journal, bh, partial_page);
470decc6 2294 unlock_buffer(bh);
53e87268
JK
2295 if (ret < 0)
2296 return ret;
2297 may_free &= ret;
470decc6
DK
2298 }
2299 curr_off = next_off;
2300 bh = next;
2301
2302 } while (bh != head);
2303
259709b0 2304 if (!partial_page) {
470decc6
DK
2305 if (may_free && try_to_free_buffers(page))
2306 J_ASSERT(!page_has_buffers(page));
2307 }
53e87268 2308 return 0;
470decc6
DK
2309}
2310
2311/*
2312 * File a buffer on the given transaction list.
2313 */
f7f4bccb 2314void __jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2315 transaction_t *transaction, int jlist)
2316{
2317 struct journal_head **list = NULL;
2318 int was_dirty = 0;
2319 struct buffer_head *bh = jh2bh(jh);
2320
2321 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2322 assert_spin_locked(&transaction->t_journal->j_list_lock);
2323
2324 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2325 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
4019191b 2326 jh->b_transaction == NULL);
470decc6
DK
2327
2328 if (jh->b_transaction && jh->b_jlist == jlist)
2329 return;
2330
470decc6
DK
2331 if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2332 jlist == BJ_Shadow || jlist == BJ_Forget) {
f91d1d04
JK
2333 /*
2334 * For metadata buffers, we track dirty bit in buffer_jbddirty
2335 * instead of buffer_dirty. We should not see a dirty bit set
2336 * here because we clear it in do_get_write_access but e.g.
2337 * tune2fs can modify the sb and set the dirty bit at any time
2338 * so we try to gracefully handle that.
2339 */
2340 if (buffer_dirty(bh))
2341 warn_dirty_buffer(bh);
470decc6
DK
2342 if (test_clear_buffer_dirty(bh) ||
2343 test_clear_buffer_jbddirty(bh))
2344 was_dirty = 1;
2345 }
2346
2347 if (jh->b_transaction)
f7f4bccb 2348 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2349 else
2350 jbd2_journal_grab_journal_head(bh);
470decc6
DK
2351 jh->b_transaction = transaction;
2352
2353 switch (jlist) {
2354 case BJ_None:
2355 J_ASSERT_JH(jh, !jh->b_committed_data);
2356 J_ASSERT_JH(jh, !jh->b_frozen_data);
2357 return;
470decc6
DK
2358 case BJ_Metadata:
2359 transaction->t_nr_buffers++;
2360 list = &transaction->t_buffers;
2361 break;
2362 case BJ_Forget:
2363 list = &transaction->t_forget;
2364 break;
470decc6
DK
2365 case BJ_Shadow:
2366 list = &transaction->t_shadow_list;
2367 break;
470decc6
DK
2368 case BJ_Reserved:
2369 list = &transaction->t_reserved_list;
2370 break;
470decc6
DK
2371 }
2372
2373 __blist_add_buffer(list, jh);
2374 jh->b_jlist = jlist;
2375
2376 if (was_dirty)
2377 set_buffer_jbddirty(bh);
2378}
2379
f7f4bccb 2380void jbd2_journal_file_buffer(struct journal_head *jh,
470decc6
DK
2381 transaction_t *transaction, int jlist)
2382{
2383 jbd_lock_bh_state(jh2bh(jh));
2384 spin_lock(&transaction->t_journal->j_list_lock);
f7f4bccb 2385 __jbd2_journal_file_buffer(jh, transaction, jlist);
470decc6
DK
2386 spin_unlock(&transaction->t_journal->j_list_lock);
2387 jbd_unlock_bh_state(jh2bh(jh));
2388}
2389
2390/*
2391 * Remove a buffer from its current buffer list in preparation for
2392 * dropping it from its current transaction entirely. If the buffer has
2393 * already started to be used by a subsequent transaction, refile the
2394 * buffer on that transaction's metadata list.
2395 *
de1b7941 2396 * Called under j_list_lock
470decc6 2397 * Called under jbd_lock_bh_state(jh2bh(jh))
de1b7941
JK
2398 *
2399 * jh and bh may be already free when this function returns
470decc6 2400 */
f7f4bccb 2401void __jbd2_journal_refile_buffer(struct journal_head *jh)
470decc6 2402{
ba869023 2403 int was_dirty, jlist;
470decc6
DK
2404 struct buffer_head *bh = jh2bh(jh);
2405
2406 J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2407 if (jh->b_transaction)
2408 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2409
2410 /* If the buffer is now unused, just drop it. */
2411 if (jh->b_next_transaction == NULL) {
f7f4bccb 2412 __jbd2_journal_unfile_buffer(jh);
470decc6
DK
2413 return;
2414 }
2415
2416 /*
2417 * It has been modified by a later transaction: add it to the new
2418 * transaction's metadata list.
2419 */
2420
2421 was_dirty = test_clear_buffer_jbddirty(bh);
f7f4bccb 2422 __jbd2_journal_temp_unlink_buffer(jh);
de1b7941
JK
2423 /*
2424 * We set b_transaction here because b_next_transaction will inherit
2425 * our jh reference and thus __jbd2_journal_file_buffer() must not
2426 * take a new one.
2427 */
470decc6
DK
2428 jh->b_transaction = jh->b_next_transaction;
2429 jh->b_next_transaction = NULL;
ba869023 2430 if (buffer_freed(bh))
2431 jlist = BJ_Forget;
2432 else if (jh->b_modified)
2433 jlist = BJ_Metadata;
2434 else
2435 jlist = BJ_Reserved;
2436 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
470decc6
DK
2437 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2438
2439 if (was_dirty)
2440 set_buffer_jbddirty(bh);
2441}
2442
2443/*
de1b7941
JK
2444 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2445 * bh reference so that we can safely unlock bh.
2446 *
2447 * The jh and bh may be freed by this call.
470decc6 2448 */
f7f4bccb 2449void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
470decc6
DK
2450{
2451 struct buffer_head *bh = jh2bh(jh);
2452
de1b7941
JK
2453 /* Get reference so that buffer cannot be freed before we unlock it */
2454 get_bh(bh);
470decc6
DK
2455 jbd_lock_bh_state(bh);
2456 spin_lock(&journal->j_list_lock);
f7f4bccb 2457 __jbd2_journal_refile_buffer(jh);
470decc6 2458 jbd_unlock_bh_state(bh);
470decc6
DK
2459 spin_unlock(&journal->j_list_lock);
2460 __brelse(bh);
2461}
c851ed54
JK
2462
2463/*
2464 * File inode in the inode list of the handle's transaction
2465 */
41617e1a
JK
2466static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2467 unsigned long flags)
c851ed54
JK
2468{
2469 transaction_t *transaction = handle->h_transaction;
41a5b913 2470 journal_t *journal;
c851ed54
JK
2471
2472 if (is_handle_aborted(handle))
41a5b913
TT
2473 return -EROFS;
2474 journal = transaction->t_journal;
c851ed54
JK
2475
2476 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2477 transaction->t_tid);
2478
2479 /*
2480 * First check whether inode isn't already on the transaction's
2481 * lists without taking the lock. Note that this check is safe
2482 * without the lock as we cannot race with somebody removing inode
2483 * from the transaction. The reason is that we remove inode from the
2484 * transaction only in journal_release_jbd_inode() and when we commit
2485 * the transaction. We are guarded from the first case by holding
2486 * a reference to the inode. We are safe against the second case
2487 * because if jinode->i_transaction == transaction, commit code
2488 * cannot touch the transaction because we hold reference to it,
2489 * and if jinode->i_next_transaction == transaction, commit code
2490 * will only file the inode where we want it.
2491 */
41617e1a
JK
2492 if ((jinode->i_transaction == transaction ||
2493 jinode->i_next_transaction == transaction) &&
2494 (jinode->i_flags & flags) == flags)
c851ed54
JK
2495 return 0;
2496
2497 spin_lock(&journal->j_list_lock);
41617e1a
JK
2498 jinode->i_flags |= flags;
2499 /* Is inode already attached where we need it? */
c851ed54
JK
2500 if (jinode->i_transaction == transaction ||
2501 jinode->i_next_transaction == transaction)
2502 goto done;
2503
81be12c8
JK
2504 /*
2505 * We only ever set this variable to 1 so the test is safe. Since
2506 * t_need_data_flush is likely to be set, we do the test to save some
2507 * cacheline bouncing
2508 */
2509 if (!transaction->t_need_data_flush)
2510 transaction->t_need_data_flush = 1;
c851ed54
JK
2511 /* On some different transaction's list - should be
2512 * the committing one */
2513 if (jinode->i_transaction) {
2514 J_ASSERT(jinode->i_next_transaction == NULL);
2515 J_ASSERT(jinode->i_transaction ==
2516 journal->j_committing_transaction);
2517 jinode->i_next_transaction = transaction;
2518 goto done;
2519 }
2520 /* Not on any transaction list... */
2521 J_ASSERT(!jinode->i_next_transaction);
2522 jinode->i_transaction = transaction;
2523 list_add(&jinode->i_list, &transaction->t_inode_list);
2524done:
2525 spin_unlock(&journal->j_list_lock);
2526
2527 return 0;
2528}
2529
41617e1a
JK
2530int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2531{
2532 return jbd2_journal_file_inode(handle, jinode,
2533 JI_WRITE_DATA | JI_WAIT_DATA);
2534}
2535
2536int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2537{
2538 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA);
2539}
2540
c851ed54 2541/*
7f5aa215
JK
2542 * File truncate and transaction commit interact with each other in a
2543 * non-trivial way. If a transaction writing data block A is
2544 * committing, we cannot discard the data by truncate until we have
2545 * written them. Otherwise if we crashed after the transaction with
2546 * write has committed but before the transaction with truncate has
2547 * committed, we could see stale data in block A. This function is a
2548 * helper to solve this problem. It starts writeout of the truncated
2549 * part in case it is in the committing transaction.
2550 *
2551 * Filesystem code must call this function when inode is journaled in
2552 * ordered mode before truncation happens and after the inode has been
2553 * placed on orphan list with the new inode size. The second condition
2554 * avoids the race that someone writes new data and we start
2555 * committing the transaction after this function has been called but
2556 * before a transaction for truncate is started (and furthermore it
2557 * allows us to optimize the case where the addition to orphan list
2558 * happens in the same transaction as write --- we don't have to write
2559 * any data in such case).
c851ed54 2560 */
7f5aa215
JK
2561int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2562 struct jbd2_inode *jinode,
c851ed54
JK
2563 loff_t new_size)
2564{
7f5aa215 2565 transaction_t *inode_trans, *commit_trans;
c851ed54
JK
2566 int ret = 0;
2567
7f5aa215
JK
2568 /* This is a quick check to avoid locking if not necessary */
2569 if (!jinode->i_transaction)
c851ed54 2570 goto out;
7f5aa215
JK
2571 /* Locks are here just to force reading of recent values, it is
2572 * enough that the transaction was not committing before we started
2573 * a transaction adding the inode to orphan list */
a931da6a 2574 read_lock(&journal->j_state_lock);
c851ed54 2575 commit_trans = journal->j_committing_transaction;
a931da6a 2576 read_unlock(&journal->j_state_lock);
7f5aa215
JK
2577 spin_lock(&journal->j_list_lock);
2578 inode_trans = jinode->i_transaction;
2579 spin_unlock(&journal->j_list_lock);
2580 if (inode_trans == commit_trans) {
2581 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
c851ed54
JK
2582 new_size, LLONG_MAX);
2583 if (ret)
2584 jbd2_journal_abort(journal, ret);
2585 }
2586out:
2587 return ret;
2588}