]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/kernfs/dir.c
kernfs: add dummy implementation of kernfs_path_from_node()
[mirror_ubuntu-bionic-kernel.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
9f6df573
AK
47/* kernfs_node_depth - compute depth from @from to @to */
48static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
3eef34ad 49{
9f6df573 50 size_t depth = 0;
3eef34ad 51
9f6df573
AK
52 while (to->parent && to != from) {
53 depth++;
54 to = to->parent;
55 }
56 return depth;
57}
3eef34ad 58
9f6df573
AK
59static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 struct kernfs_node *b)
61{
62 size_t da, db;
63 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64
65 if (ra != rb)
66 return NULL;
67
68 da = kernfs_depth(ra->kn, a);
69 db = kernfs_depth(rb->kn, b);
70
71 while (da > db) {
72 a = a->parent;
73 da--;
74 }
75 while (db > da) {
76 b = b->parent;
77 db--;
78 }
79
80 /* worst case b and a will be the same at root */
81 while (b != a) {
82 b = b->parent;
83 a = a->parent;
84 }
85
86 return a;
87}
88
89/**
90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91 * where kn_from is treated as root of the path.
92 * @kn_from: kernfs node which should be treated as root for the path
93 * @kn_to: kernfs node to which path is needed
94 * @buf: buffer to copy the path into
95 * @buflen: size of @buf
96 *
97 * We need to handle couple of scenarios here:
98 * [1] when @kn_from is an ancestor of @kn_to at some level
99 * kn_from: /n1/n2/n3
100 * kn_to: /n1/n2/n3/n4/n5
101 * result: /n4/n5
102 *
103 * [2] when @kn_from is on a different hierarchy and we need to find common
104 * ancestor between @kn_from and @kn_to.
105 * kn_from: /n1/n2/n3/n4
106 * kn_to: /n1/n2/n5
107 * result: /../../n5
108 * OR
109 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
110 * kn_to: /n1/n2/n3 [depth=3]
111 * result: /../..
112 *
113 * return value: length of the string. If greater than buflen,
114 * then contents of buf are undefined. On error, -1 is returned.
115 */
116static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
117 struct kernfs_node *kn_from,
118 char *buf, size_t buflen)
119{
120 struct kernfs_node *kn, *common;
121 const char parent_str[] = "/..";
122 size_t depth_from, depth_to, len = 0, nlen = 0;
123 char *p;
124 int i;
125
126 if (!kn_from)
127 kn_from = kernfs_root(kn_to)->kn;
128
129 if (kn_from == kn_to)
130 return strlcpy(buf, "/", buflen);
131
132 common = kernfs_common_ancestor(kn_from, kn_to);
133 if (WARN_ON(!common))
134 return -1;
135
136 depth_to = kernfs_depth(common, kn_to);
137 depth_from = kernfs_depth(common, kn_from);
138
139 if (buf)
140 buf[0] = '\0';
141
142 for (i = 0; i < depth_from; i++)
143 len += strlcpy(buf + len, parent_str,
144 len < buflen ? buflen - len : 0);
145
146 /* Calculate how many bytes we need for the rest */
147 for (kn = kn_to; kn != common; kn = kn->parent)
148 nlen += strlen(kn->name) + 1;
149
150 if (len + nlen >= buflen)
151 return len + nlen;
152
153 p = buf + len + nlen;
154 *p = '\0';
155 for (kn = kn_to; kn != common; kn = kn->parent) {
e99ed4de
SH
156 size_t tmp = strlen(kn->name);
157 p -= tmp;
158 memcpy(p, kn->name, tmp);
9f6df573
AK
159 *(--p) = '/';
160 }
3eef34ad 161
9f6df573 162 return len + nlen;
3eef34ad
TH
163}
164
165/**
166 * kernfs_name - obtain the name of a given node
167 * @kn: kernfs_node of interest
168 * @buf: buffer to copy @kn's name into
169 * @buflen: size of @buf
170 *
171 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
172 * similar to strlcpy(). It returns the length of @kn's name and if @buf
173 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
174 *
175 * This function can be called from any context.
176 */
177int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
178{
179 unsigned long flags;
180 int ret;
181
182 spin_lock_irqsave(&kernfs_rename_lock, flags);
183 ret = kernfs_name_locked(kn, buf, buflen);
184 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
185 return ret;
186}
187
9acee9c5
TH
188/**
189 * kernfs_path_len - determine the length of the full path of a given node
190 * @kn: kernfs_node of interest
191 *
192 * The returned length doesn't include the space for the terminating '\0'.
193 */
194size_t kernfs_path_len(struct kernfs_node *kn)
195{
196 size_t len = 0;
197 unsigned long flags;
198
199 spin_lock_irqsave(&kernfs_rename_lock, flags);
200
201 do {
202 len += strlen(kn->name) + 1;
203 kn = kn->parent;
204 } while (kn && kn->parent);
205
206 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207
208 return len;
209}
210
9f6df573
AK
211/**
212 * kernfs_path_from_node - build path of node @to relative to @from.
213 * @from: parent kernfs_node relative to which we need to build the path
214 * @to: kernfs_node of interest
215 * @buf: buffer to copy @to's path into
216 * @buflen: size of @buf
217 *
218 * Builds @to's path relative to @from in @buf. @from and @to must
219 * be on the same kernfs-root. If @from is not parent of @to, then a relative
220 * path (which includes '..'s) as needed to reach from @from to @to is
221 * returned.
222 *
223 * If @buf isn't long enough, the return value will be greater than @buflen
224 * and @buf contents are undefined.
225 */
226int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
227 char *buf, size_t buflen)
228{
229 unsigned long flags;
230 int ret;
231
232 spin_lock_irqsave(&kernfs_rename_lock, flags);
233 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
234 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
235 return ret;
236}
237EXPORT_SYMBOL_GPL(kernfs_path_from_node);
238
3eef34ad
TH
239/**
240 * kernfs_path - build full path of a given node
241 * @kn: kernfs_node of interest
242 * @buf: buffer to copy @kn's name into
243 * @buflen: size of @buf
244 *
245 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
246 * path is built from the end of @buf so the returned pointer usually
247 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
248 * and %NULL is returned.
249 */
250char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
251{
9f6df573 252 int ret;
3eef34ad 253
9f6df573
AK
254 ret = kernfs_path_from_node(kn, NULL, buf, buflen);
255 if (ret < 0 || ret >= buflen)
256 return NULL;
257 return buf;
3eef34ad 258}
e61734c5 259EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
260
261/**
262 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
263 * @kn: kernfs_node of interest
264 *
265 * This function can be called from any context.
266 */
267void pr_cont_kernfs_name(struct kernfs_node *kn)
268{
269 unsigned long flags;
270
271 spin_lock_irqsave(&kernfs_rename_lock, flags);
272
273 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
274 pr_cont("%s", kernfs_pr_cont_buf);
275
276 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
277}
278
279/**
280 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
281 * @kn: kernfs_node of interest
282 *
283 * This function can be called from any context.
284 */
285void pr_cont_kernfs_path(struct kernfs_node *kn)
286{
287 unsigned long flags;
9f6df573 288 int sz;
3eef34ad
TH
289
290 spin_lock_irqsave(&kernfs_rename_lock, flags);
291
9f6df573
AK
292 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
293 sizeof(kernfs_pr_cont_buf));
294 if (sz < 0) {
295 pr_cont("(error)");
296 goto out;
297 }
298
299 if (sz >= sizeof(kernfs_pr_cont_buf)) {
300 pr_cont("(name too long)");
301 goto out;
302 }
303
304 pr_cont("%s", kernfs_pr_cont_buf);
3eef34ad 305
9f6df573 306out:
3eef34ad
TH
307 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
308}
309
310/**
311 * kernfs_get_parent - determine the parent node and pin it
312 * @kn: kernfs_node of interest
313 *
314 * Determines @kn's parent, pins and returns it. This function can be
315 * called from any context.
316 */
317struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
318{
319 struct kernfs_node *parent;
320 unsigned long flags;
321
322 spin_lock_irqsave(&kernfs_rename_lock, flags);
323 parent = kn->parent;
324 kernfs_get(parent);
325 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
326
327 return parent;
328}
329
fd7b9f7b 330/**
c637b8ac 331 * kernfs_name_hash
fd7b9f7b
TH
332 * @name: Null terminated string to hash
333 * @ns: Namespace tag to hash
334 *
335 * Returns 31 bit hash of ns + name (so it fits in an off_t )
336 */
c637b8ac 337static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b 338{
8387ff25 339 unsigned long hash = init_name_hash(ns);
fd7b9f7b
TH
340 unsigned int len = strlen(name);
341 while (len--)
342 hash = partial_name_hash(*name++, hash);
8387ff25 343 hash = end_name_hash(hash);
fd7b9f7b
TH
344 hash &= 0x7fffffffU;
345 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 346 if (hash < 2)
fd7b9f7b
TH
347 hash += 2;
348 if (hash >= INT_MAX)
349 hash = INT_MAX - 1;
350 return hash;
351}
352
c637b8ac
TH
353static int kernfs_name_compare(unsigned int hash, const char *name,
354 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 355{
72392ed0
RV
356 if (hash < kn->hash)
357 return -1;
358 if (hash > kn->hash)
359 return 1;
360 if (ns < kn->ns)
361 return -1;
362 if (ns > kn->ns)
363 return 1;
adc5e8b5 364 return strcmp(name, kn->name);
fd7b9f7b
TH
365}
366
c637b8ac
TH
367static int kernfs_sd_compare(const struct kernfs_node *left,
368 const struct kernfs_node *right)
fd7b9f7b 369{
c637b8ac 370 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
371}
372
373/**
c637b8ac 374 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 375 * @kn: kernfs_node of interest
fd7b9f7b 376 *
324a56e1 377 * Link @kn into its sibling rbtree which starts from
adc5e8b5 378 * @kn->parent->dir.children.
fd7b9f7b
TH
379 *
380 * Locking:
a797bfc3 381 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
382 *
383 * RETURNS:
384 * 0 on susccess -EEXIST on failure.
385 */
c637b8ac 386static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 387{
adc5e8b5 388 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
389 struct rb_node *parent = NULL;
390
fd7b9f7b 391 while (*node) {
324a56e1 392 struct kernfs_node *pos;
fd7b9f7b
TH
393 int result;
394
324a56e1 395 pos = rb_to_kn(*node);
fd7b9f7b 396 parent = *node;
c637b8ac 397 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 398 if (result < 0)
adc5e8b5 399 node = &pos->rb.rb_left;
fd7b9f7b 400 else if (result > 0)
adc5e8b5 401 node = &pos->rb.rb_right;
fd7b9f7b
TH
402 else
403 return -EEXIST;
404 }
c1befb88 405
fd7b9f7b 406 /* add new node and rebalance the tree */
adc5e8b5
TH
407 rb_link_node(&kn->rb, parent, node);
408 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
409
410 /* successfully added, account subdir number */
411 if (kernfs_type(kn) == KERNFS_DIR)
412 kn->parent->dir.subdirs++;
413
fd7b9f7b
TH
414 return 0;
415}
416
417/**
c637b8ac 418 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 419 * @kn: kernfs_node of interest
fd7b9f7b 420 *
35beab06
TH
421 * Try to unlink @kn from its sibling rbtree which starts from
422 * kn->parent->dir.children. Returns %true if @kn was actually
423 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
424 *
425 * Locking:
a797bfc3 426 * mutex_lock(kernfs_mutex)
fd7b9f7b 427 */
35beab06 428static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 429{
35beab06
TH
430 if (RB_EMPTY_NODE(&kn->rb))
431 return false;
432
df23fc39 433 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 434 kn->parent->dir.subdirs--;
fd7b9f7b 435
adc5e8b5 436 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
437 RB_CLEAR_NODE(&kn->rb);
438 return true;
fd7b9f7b
TH
439}
440
441/**
c637b8ac 442 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 443 * @kn: kernfs_node to get an active reference to
fd7b9f7b 444 *
324a56e1 445 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
446 * is NULL.
447 *
448 * RETURNS:
324a56e1 449 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 450 */
c637b8ac 451struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 452{
324a56e1 453 if (unlikely(!kn))
fd7b9f7b
TH
454 return NULL;
455
f4b3e631
GKH
456 if (!atomic_inc_unless_negative(&kn->active))
457 return NULL;
895a068a 458
182fd64b 459 if (kernfs_lockdep(kn))
f4b3e631
GKH
460 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
461 return kn;
fd7b9f7b
TH
462}
463
464/**
c637b8ac 465 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 466 * @kn: kernfs_node to put an active reference to
fd7b9f7b 467 *
324a56e1 468 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
469 * is NULL.
470 */
c637b8ac 471void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 472{
abd54f02 473 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
474 int v;
475
324a56e1 476 if (unlikely(!kn))
fd7b9f7b
TH
477 return;
478
182fd64b 479 if (kernfs_lockdep(kn))
324a56e1 480 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 481 v = atomic_dec_return(&kn->active);
df23fc39 482 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
483 return;
484
abd54f02 485 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
486}
487
488/**
81c173cb
TH
489 * kernfs_drain - drain kernfs_node
490 * @kn: kernfs_node to drain
fd7b9f7b 491 *
81c173cb
TH
492 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
493 * removers may invoke this function concurrently on @kn and all will
494 * return after draining is complete.
fd7b9f7b 495 */
81c173cb 496static void kernfs_drain(struct kernfs_node *kn)
35beab06 497 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 498{
abd54f02 499 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 500
35beab06 501 lockdep_assert_held(&kernfs_mutex);
81c173cb 502 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 503
35beab06 504 mutex_unlock(&kernfs_mutex);
abd54f02 505
182fd64b 506 if (kernfs_lockdep(kn)) {
35beab06
TH
507 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
508 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
509 lock_contended(&kn->dep_map, _RET_IP_);
510 }
abd54f02 511
35beab06 512 /* but everyone should wait for draining */
abd54f02
TH
513 wait_event(root->deactivate_waitq,
514 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 515
182fd64b 516 if (kernfs_lockdep(kn)) {
a6607930
TH
517 lock_acquired(&kn->dep_map, _RET_IP_);
518 rwsem_release(&kn->dep_map, 1, _RET_IP_);
519 }
35beab06 520
ccf02aaf
TH
521 kernfs_unmap_bin_file(kn);
522
35beab06 523 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
524}
525
fd7b9f7b 526/**
324a56e1
TH
527 * kernfs_get - get a reference count on a kernfs_node
528 * @kn: the target kernfs_node
fd7b9f7b 529 */
324a56e1 530void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 531{
324a56e1 532 if (kn) {
adc5e8b5
TH
533 WARN_ON(!atomic_read(&kn->count));
534 atomic_inc(&kn->count);
fd7b9f7b
TH
535 }
536}
537EXPORT_SYMBOL_GPL(kernfs_get);
538
539/**
324a56e1
TH
540 * kernfs_put - put a reference count on a kernfs_node
541 * @kn: the target kernfs_node
fd7b9f7b 542 *
324a56e1 543 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 544 */
324a56e1 545void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 546{
324a56e1 547 struct kernfs_node *parent;
ba7443bc 548 struct kernfs_root *root;
fd7b9f7b 549
adc5e8b5 550 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 551 return;
324a56e1 552 root = kernfs_root(kn);
fd7b9f7b 553 repeat:
81c173cb
TH
554 /*
555 * Moving/renaming is always done while holding reference.
adc5e8b5 556 * kn->parent won't change beneath us.
fd7b9f7b 557 */
adc5e8b5 558 parent = kn->parent;
fd7b9f7b 559
81c173cb
TH
560 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
561 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
562 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 563
df23fc39 564 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 565 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
566
567 kfree_const(kn->name);
568
adc5e8b5
TH
569 if (kn->iattr) {
570 if (kn->iattr->ia_secdata)
571 security_release_secctx(kn->iattr->ia_secdata,
572 kn->iattr->ia_secdata_len);
573 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 574 }
adc5e8b5
TH
575 kfree(kn->iattr);
576 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 577 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 578
324a56e1
TH
579 kn = parent;
580 if (kn) {
adc5e8b5 581 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
582 goto repeat;
583 } else {
324a56e1 584 /* just released the root kn, free @root too */
bc755553 585 ida_destroy(&root->ino_ida);
ba7443bc
TH
586 kfree(root);
587 }
fd7b9f7b
TH
588}
589EXPORT_SYMBOL_GPL(kernfs_put);
590
c637b8ac 591static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 592{
324a56e1 593 struct kernfs_node *kn;
fd7b9f7b
TH
594
595 if (flags & LOOKUP_RCU)
596 return -ECHILD;
597
19bbb926 598 /* Always perform fresh lookup for negatives */
2b0143b5 599 if (d_really_is_negative(dentry))
19bbb926
TH
600 goto out_bad_unlocked;
601
324a56e1 602 kn = dentry->d_fsdata;
a797bfc3 603 mutex_lock(&kernfs_mutex);
fd7b9f7b 604
81c173cb
TH
605 /* The kernfs node has been deactivated */
606 if (!kernfs_active(kn))
fd7b9f7b
TH
607 goto out_bad;
608
c637b8ac 609 /* The kernfs node has been moved? */
adc5e8b5 610 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
611 goto out_bad;
612
c637b8ac 613 /* The kernfs node has been renamed */
adc5e8b5 614 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
615 goto out_bad;
616
c637b8ac 617 /* The kernfs node has been moved to a different namespace */
adc5e8b5 618 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 619 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
620 goto out_bad;
621
a797bfc3 622 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
623 return 1;
624out_bad:
a797bfc3 625 mutex_unlock(&kernfs_mutex);
19bbb926 626out_bad_unlocked:
fd7b9f7b
TH
627 return 0;
628}
629
c637b8ac 630static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
631{
632 kernfs_put(dentry->d_fsdata);
633}
634
a797bfc3 635const struct dentry_operations kernfs_dops = {
c637b8ac 636 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 637 .d_release = kernfs_dop_release,
fd7b9f7b
TH
638};
639
0c23b225
TH
640/**
641 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
642 * @dentry: the dentry in question
643 *
644 * Return the kernfs_node associated with @dentry. If @dentry is not a
645 * kernfs one, %NULL is returned.
646 *
647 * While the returned kernfs_node will stay accessible as long as @dentry
648 * is accessible, the returned node can be in any state and the caller is
649 * fully responsible for determining what's accessible.
650 */
651struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
652{
f41c5934 653 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
654 return dentry->d_fsdata;
655 return NULL;
656}
657
db4aad20
TH
658static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
659 const char *name, umode_t mode,
660 unsigned flags)
fd7b9f7b 661{
324a56e1 662 struct kernfs_node *kn;
bc755553 663 int ret;
fd7b9f7b 664
dfeb0750
TH
665 name = kstrdup_const(name, GFP_KERNEL);
666 if (!name)
667 return NULL;
fd7b9f7b 668
a797bfc3 669 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 670 if (!kn)
fd7b9f7b
TH
671 goto err_out1;
672
b2a209ff 673 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
bc755553 674 if (ret < 0)
fd7b9f7b 675 goto err_out2;
adc5e8b5 676 kn->ino = ret;
fd7b9f7b 677
adc5e8b5 678 atomic_set(&kn->count, 1);
81c173cb 679 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 680 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 681
adc5e8b5
TH
682 kn->name = name;
683 kn->mode = mode;
81c173cb 684 kn->flags = flags;
fd7b9f7b 685
324a56e1 686 return kn;
fd7b9f7b
TH
687
688 err_out2:
a797bfc3 689 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 690 err_out1:
dfeb0750 691 kfree_const(name);
fd7b9f7b
TH
692 return NULL;
693}
694
db4aad20
TH
695struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
696 const char *name, umode_t mode,
697 unsigned flags)
698{
699 struct kernfs_node *kn;
700
701 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
702 if (kn) {
703 kernfs_get(parent);
704 kn->parent = parent;
705 }
706 return kn;
707}
708
fd7b9f7b 709/**
c637b8ac 710 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 711 * @kn: kernfs_node to be added
fd7b9f7b 712 *
db4aad20
TH
713 * The caller must already have initialized @kn->parent. This
714 * function increments nlink of the parent's inode if @kn is a
715 * directory and link into the children list of the parent.
fd7b9f7b 716 *
fd7b9f7b
TH
717 * RETURNS:
718 * 0 on success, -EEXIST if entry with the given name already
719 * exists.
720 */
988cd7af 721int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 722{
db4aad20 723 struct kernfs_node *parent = kn->parent;
c525aadd 724 struct kernfs_iattrs *ps_iattr;
988cd7af 725 bool has_ns;
fd7b9f7b
TH
726 int ret;
727
988cd7af
TH
728 mutex_lock(&kernfs_mutex);
729
730 ret = -EINVAL;
731 has_ns = kernfs_ns_enabled(parent);
732 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
733 has_ns ? "required" : "invalid", parent->name, kn->name))
734 goto out_unlock;
fd7b9f7b 735
df23fc39 736 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 737 goto out_unlock;
fd7b9f7b 738
988cd7af 739 ret = -ENOENT;
ea015218
EB
740 if (parent->flags & KERNFS_EMPTY_DIR)
741 goto out_unlock;
742
d35258ef 743 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 744 goto out_unlock;
798c75a0 745
c637b8ac 746 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 747
c637b8ac 748 ret = kernfs_link_sibling(kn);
fd7b9f7b 749 if (ret)
988cd7af 750 goto out_unlock;
fd7b9f7b
TH
751
752 /* Update timestamps on the parent */
adc5e8b5 753 ps_iattr = parent->iattr;
fd7b9f7b
TH
754 if (ps_iattr) {
755 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
3a3a5fec
DD
756 ktime_get_real_ts(&ps_iattrs->ia_ctime);
757 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
fd7b9f7b
TH
758 }
759
d35258ef
TH
760 mutex_unlock(&kernfs_mutex);
761
762 /*
763 * Activate the new node unless CREATE_DEACTIVATED is requested.
764 * If not activated here, the kernfs user is responsible for
765 * activating the node with kernfs_activate(). A node which hasn't
766 * been activated is not visible to userland and its removal won't
767 * trigger deactivation.
768 */
769 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
770 kernfs_activate(kn);
771 return 0;
772
988cd7af 773out_unlock:
a797bfc3 774 mutex_unlock(&kernfs_mutex);
988cd7af 775 return ret;
fd7b9f7b
TH
776}
777
778/**
324a56e1
TH
779 * kernfs_find_ns - find kernfs_node with the given name
780 * @parent: kernfs_node to search under
fd7b9f7b
TH
781 * @name: name to look for
782 * @ns: the namespace tag to use
783 *
324a56e1
TH
784 * Look for kernfs_node with name @name under @parent. Returns pointer to
785 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 786 */
324a56e1
TH
787static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
788 const unsigned char *name,
789 const void *ns)
fd7b9f7b 790{
adc5e8b5 791 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 792 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
793 unsigned int hash;
794
a797bfc3 795 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
796
797 if (has_ns != (bool)ns) {
c637b8ac 798 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 799 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
800 return NULL;
801 }
802
c637b8ac 803 hash = kernfs_name_hash(name, ns);
fd7b9f7b 804 while (node) {
324a56e1 805 struct kernfs_node *kn;
fd7b9f7b
TH
806 int result;
807
324a56e1 808 kn = rb_to_kn(node);
c637b8ac 809 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
810 if (result < 0)
811 node = node->rb_left;
812 else if (result > 0)
813 node = node->rb_right;
814 else
324a56e1 815 return kn;
fd7b9f7b
TH
816 }
817 return NULL;
818}
819
bd96f76a
TH
820static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
821 const unsigned char *path,
822 const void *ns)
823{
e56ed358
TH
824 size_t len;
825 char *p, *name;
bd96f76a
TH
826
827 lockdep_assert_held(&kernfs_mutex);
828
e56ed358
TH
829 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
830 spin_lock_irq(&kernfs_rename_lock);
831
832 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
833
834 if (len >= sizeof(kernfs_pr_cont_buf)) {
835 spin_unlock_irq(&kernfs_rename_lock);
bd96f76a 836 return NULL;
e56ed358
TH
837 }
838
839 p = kernfs_pr_cont_buf;
bd96f76a
TH
840
841 while ((name = strsep(&p, "/")) && parent) {
842 if (*name == '\0')
843 continue;
844 parent = kernfs_find_ns(parent, name, ns);
845 }
846
e56ed358
TH
847 spin_unlock_irq(&kernfs_rename_lock);
848
bd96f76a
TH
849 return parent;
850}
851
fd7b9f7b 852/**
324a56e1
TH
853 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
854 * @parent: kernfs_node to search under
fd7b9f7b
TH
855 * @name: name to look for
856 * @ns: the namespace tag to use
857 *
324a56e1 858 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 859 * if found. This function may sleep and returns pointer to the found
324a56e1 860 * kernfs_node on success, %NULL on failure.
fd7b9f7b 861 */
324a56e1
TH
862struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
863 const char *name, const void *ns)
fd7b9f7b 864{
324a56e1 865 struct kernfs_node *kn;
fd7b9f7b 866
a797bfc3 867 mutex_lock(&kernfs_mutex);
324a56e1
TH
868 kn = kernfs_find_ns(parent, name, ns);
869 kernfs_get(kn);
a797bfc3 870 mutex_unlock(&kernfs_mutex);
fd7b9f7b 871
324a56e1 872 return kn;
fd7b9f7b
TH
873}
874EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
875
bd96f76a
TH
876/**
877 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
878 * @parent: kernfs_node to search under
879 * @path: path to look for
880 * @ns: the namespace tag to use
881 *
882 * Look for kernfs_node with path @path under @parent and get a reference
883 * if found. This function may sleep and returns pointer to the found
884 * kernfs_node on success, %NULL on failure.
885 */
886struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
887 const char *path, const void *ns)
888{
889 struct kernfs_node *kn;
890
891 mutex_lock(&kernfs_mutex);
892 kn = kernfs_walk_ns(parent, path, ns);
893 kernfs_get(kn);
894 mutex_unlock(&kernfs_mutex);
895
896 return kn;
897}
898
ba7443bc
TH
899/**
900 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 901 * @scops: optional syscall operations for the hierarchy
d35258ef 902 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
903 * @priv: opaque data associated with the new directory
904 *
905 * Returns the root of the new hierarchy on success, ERR_PTR() value on
906 * failure.
907 */
90c07c89 908struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 909 unsigned int flags, void *priv)
ba7443bc
TH
910{
911 struct kernfs_root *root;
324a56e1 912 struct kernfs_node *kn;
ba7443bc
TH
913
914 root = kzalloc(sizeof(*root), GFP_KERNEL);
915 if (!root)
916 return ERR_PTR(-ENOMEM);
917
bc755553 918 ida_init(&root->ino_ida);
7d568a83 919 INIT_LIST_HEAD(&root->supers);
bc755553 920
db4aad20
TH
921 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
922 KERNFS_DIR);
324a56e1 923 if (!kn) {
bc755553 924 ida_destroy(&root->ino_ida);
ba7443bc
TH
925 kfree(root);
926 return ERR_PTR(-ENOMEM);
927 }
928
324a56e1 929 kn->priv = priv;
adc5e8b5 930 kn->dir.root = root;
ba7443bc 931
90c07c89 932 root->syscall_ops = scops;
d35258ef 933 root->flags = flags;
324a56e1 934 root->kn = kn;
abd54f02 935 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 936
d35258ef
TH
937 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
938 kernfs_activate(kn);
939
ba7443bc
TH
940 return root;
941}
942
943/**
944 * kernfs_destroy_root - destroy a kernfs hierarchy
945 * @root: root of the hierarchy to destroy
946 *
947 * Destroy the hierarchy anchored at @root by removing all existing
948 * directories and destroying @root.
949 */
950void kernfs_destroy_root(struct kernfs_root *root)
951{
324a56e1 952 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
953}
954
fd7b9f7b
TH
955/**
956 * kernfs_create_dir_ns - create a directory
957 * @parent: parent in which to create a new directory
958 * @name: name of the new directory
bb8b9d09 959 * @mode: mode of the new directory
fd7b9f7b
TH
960 * @priv: opaque data associated with the new directory
961 * @ns: optional namespace tag of the directory
962 *
963 * Returns the created node on success, ERR_PTR() value on failure.
964 */
324a56e1 965struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
966 const char *name, umode_t mode,
967 void *priv, const void *ns)
fd7b9f7b 968{
324a56e1 969 struct kernfs_node *kn;
fd7b9f7b
TH
970 int rc;
971
972 /* allocate */
db4aad20 973 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 974 if (!kn)
fd7b9f7b
TH
975 return ERR_PTR(-ENOMEM);
976
adc5e8b5
TH
977 kn->dir.root = parent->dir.root;
978 kn->ns = ns;
324a56e1 979 kn->priv = priv;
fd7b9f7b
TH
980
981 /* link in */
988cd7af 982 rc = kernfs_add_one(kn);
fd7b9f7b 983 if (!rc)
324a56e1 984 return kn;
fd7b9f7b 985
324a56e1 986 kernfs_put(kn);
fd7b9f7b
TH
987 return ERR_PTR(rc);
988}
989
ea015218
EB
990/**
991 * kernfs_create_empty_dir - create an always empty directory
992 * @parent: parent in which to create a new directory
993 * @name: name of the new directory
994 *
995 * Returns the created node on success, ERR_PTR() value on failure.
996 */
997struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
998 const char *name)
999{
1000 struct kernfs_node *kn;
1001 int rc;
1002
1003 /* allocate */
1004 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1005 if (!kn)
1006 return ERR_PTR(-ENOMEM);
1007
1008 kn->flags |= KERNFS_EMPTY_DIR;
1009 kn->dir.root = parent->dir.root;
1010 kn->ns = NULL;
1011 kn->priv = NULL;
1012
1013 /* link in */
1014 rc = kernfs_add_one(kn);
1015 if (!rc)
1016 return kn;
1017
1018 kernfs_put(kn);
1019 return ERR_PTR(rc);
1020}
1021
c637b8ac
TH
1022static struct dentry *kernfs_iop_lookup(struct inode *dir,
1023 struct dentry *dentry,
1024 unsigned int flags)
fd7b9f7b 1025{
19bbb926 1026 struct dentry *ret;
324a56e1
TH
1027 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
1028 struct kernfs_node *kn;
fd7b9f7b
TH
1029 struct inode *inode;
1030 const void *ns = NULL;
1031
a797bfc3 1032 mutex_lock(&kernfs_mutex);
fd7b9f7b 1033
324a56e1 1034 if (kernfs_ns_enabled(parent))
c525aadd 1035 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 1036
324a56e1 1037 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
1038
1039 /* no such entry */
b9c9dad0 1040 if (!kn || !kernfs_active(kn)) {
19bbb926 1041 ret = NULL;
fd7b9f7b
TH
1042 goto out_unlock;
1043 }
324a56e1
TH
1044 kernfs_get(kn);
1045 dentry->d_fsdata = kn;
fd7b9f7b
TH
1046
1047 /* attach dentry and inode */
c637b8ac 1048 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
1049 if (!inode) {
1050 ret = ERR_PTR(-ENOMEM);
1051 goto out_unlock;
1052 }
1053
1054 /* instantiate and hash dentry */
41d28bca 1055 ret = d_splice_alias(inode, dentry);
fd7b9f7b 1056 out_unlock:
a797bfc3 1057 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1058 return ret;
1059}
1060
80b9bbef
TH
1061static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1062 umode_t mode)
1063{
1064 struct kernfs_node *parent = dir->i_private;
90c07c89 1065 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 1066 int ret;
80b9bbef 1067
90c07c89 1068 if (!scops || !scops->mkdir)
80b9bbef
TH
1069 return -EPERM;
1070
07c7530d
TH
1071 if (!kernfs_get_active(parent))
1072 return -ENODEV;
1073
90c07c89 1074 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
1075
1076 kernfs_put_active(parent);
1077 return ret;
80b9bbef
TH
1078}
1079
1080static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1081{
1082 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 1083 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1084 int ret;
80b9bbef 1085
90c07c89 1086 if (!scops || !scops->rmdir)
80b9bbef
TH
1087 return -EPERM;
1088
07c7530d
TH
1089 if (!kernfs_get_active(kn))
1090 return -ENODEV;
1091
90c07c89 1092 ret = scops->rmdir(kn);
07c7530d
TH
1093
1094 kernfs_put_active(kn);
1095 return ret;
80b9bbef
TH
1096}
1097
1098static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1099 struct inode *new_dir, struct dentry *new_dentry)
1100{
1101 struct kernfs_node *kn = old_dentry->d_fsdata;
1102 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 1103 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1104 int ret;
80b9bbef 1105
90c07c89 1106 if (!scops || !scops->rename)
80b9bbef
TH
1107 return -EPERM;
1108
07c7530d
TH
1109 if (!kernfs_get_active(kn))
1110 return -ENODEV;
1111
1112 if (!kernfs_get_active(new_parent)) {
1113 kernfs_put_active(kn);
1114 return -ENODEV;
1115 }
1116
90c07c89 1117 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
1118
1119 kernfs_put_active(new_parent);
1120 kernfs_put_active(kn);
1121 return ret;
80b9bbef
TH
1122}
1123
a797bfc3 1124const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
1125 .lookup = kernfs_iop_lookup,
1126 .permission = kernfs_iop_permission,
1127 .setattr = kernfs_iop_setattr,
1128 .getattr = kernfs_iop_getattr,
1129 .setxattr = kernfs_iop_setxattr,
1130 .removexattr = kernfs_iop_removexattr,
1131 .getxattr = kernfs_iop_getxattr,
1132 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1133
1134 .mkdir = kernfs_iop_mkdir,
1135 .rmdir = kernfs_iop_rmdir,
1136 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1137};
1138
c637b8ac 1139static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1140{
324a56e1 1141 struct kernfs_node *last;
fd7b9f7b
TH
1142
1143 while (true) {
1144 struct rb_node *rbn;
1145
1146 last = pos;
1147
df23fc39 1148 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1149 break;
1150
adc5e8b5 1151 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1152 if (!rbn)
1153 break;
1154
324a56e1 1155 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1156 }
1157
1158 return last;
1159}
1160
1161/**
c637b8ac 1162 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1163 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1164 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1165 *
1166 * Find the next descendant to visit for post-order traversal of @root's
1167 * descendants. @root is included in the iteration and the last node to be
1168 * visited.
1169 */
c637b8ac
TH
1170static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1171 struct kernfs_node *root)
fd7b9f7b
TH
1172{
1173 struct rb_node *rbn;
1174
a797bfc3 1175 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1176
1177 /* if first iteration, visit leftmost descendant which may be root */
1178 if (!pos)
c637b8ac 1179 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1180
1181 /* if we visited @root, we're done */
1182 if (pos == root)
1183 return NULL;
1184
1185 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1186 rbn = rb_next(&pos->rb);
fd7b9f7b 1187 if (rbn)
c637b8ac 1188 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1189
1190 /* no sibling left, visit parent */
adc5e8b5 1191 return pos->parent;
fd7b9f7b
TH
1192}
1193
d35258ef
TH
1194/**
1195 * kernfs_activate - activate a node which started deactivated
1196 * @kn: kernfs_node whose subtree is to be activated
1197 *
1198 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1199 * needs to be explicitly activated. A node which hasn't been activated
1200 * isn't visible to userland and deactivation is skipped during its
1201 * removal. This is useful to construct atomic init sequences where
1202 * creation of multiple nodes should either succeed or fail atomically.
1203 *
1204 * The caller is responsible for ensuring that this function is not called
1205 * after kernfs_remove*() is invoked on @kn.
1206 */
1207void kernfs_activate(struct kernfs_node *kn)
1208{
1209 struct kernfs_node *pos;
1210
1211 mutex_lock(&kernfs_mutex);
1212
1213 pos = NULL;
1214 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1215 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1216 continue;
1217
1218 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1219 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1220
1221 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1222 pos->flags |= KERNFS_ACTIVATED;
1223 }
1224
1225 mutex_unlock(&kernfs_mutex);
1226}
1227
988cd7af 1228static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1229{
35beab06
TH
1230 struct kernfs_node *pos;
1231
1232 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1233
6b0afc2a
TH
1234 /*
1235 * Short-circuit if non-root @kn has already finished removal.
1236 * This is for kernfs_remove_self() which plays with active ref
1237 * after removal.
1238 */
1239 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1240 return;
1241
c637b8ac 1242 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1243
81c173cb 1244 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1245 pos = NULL;
1246 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1247 if (kernfs_active(pos))
1248 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1249
1250 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1251 do {
35beab06
TH
1252 pos = kernfs_leftmost_descendant(kn);
1253
1254 /*
81c173cb
TH
1255 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1256 * base ref could have been put by someone else by the time
1257 * the function returns. Make sure it doesn't go away
1258 * underneath us.
35beab06
TH
1259 */
1260 kernfs_get(pos);
1261
d35258ef
TH
1262 /*
1263 * Drain iff @kn was activated. This avoids draining and
1264 * its lockdep annotations for nodes which have never been
1265 * activated and allows embedding kernfs_remove() in create
1266 * error paths without worrying about draining.
1267 */
1268 if (kn->flags & KERNFS_ACTIVATED)
1269 kernfs_drain(pos);
1270 else
1271 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1272
1273 /*
1274 * kernfs_unlink_sibling() succeeds once per node. Use it
1275 * to decide who's responsible for cleanups.
1276 */
1277 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1278 struct kernfs_iattrs *ps_iattr =
1279 pos->parent ? pos->parent->iattr : NULL;
1280
1281 /* update timestamps on the parent */
1282 if (ps_iattr) {
3a3a5fec
DD
1283 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1284 ps_iattr->ia_iattr.ia_mtime =
1285 ps_iattr->ia_iattr.ia_ctime;
35beab06
TH
1286 }
1287
988cd7af 1288 kernfs_put(pos);
35beab06
TH
1289 }
1290
1291 kernfs_put(pos);
1292 } while (pos != kn);
fd7b9f7b
TH
1293}
1294
1295/**
324a56e1
TH
1296 * kernfs_remove - remove a kernfs_node recursively
1297 * @kn: the kernfs_node to remove
fd7b9f7b 1298 *
324a56e1 1299 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1300 */
324a56e1 1301void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1302{
988cd7af
TH
1303 mutex_lock(&kernfs_mutex);
1304 __kernfs_remove(kn);
1305 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1306}
1307
6b0afc2a
TH
1308/**
1309 * kernfs_break_active_protection - break out of active protection
1310 * @kn: the self kernfs_node
1311 *
1312 * The caller must be running off of a kernfs operation which is invoked
1313 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1314 * this function must also be matched with an invocation of
1315 * kernfs_unbreak_active_protection().
1316 *
1317 * This function releases the active reference of @kn the caller is
1318 * holding. Once this function is called, @kn may be removed at any point
1319 * and the caller is solely responsible for ensuring that the objects it
1320 * dereferences are accessible.
1321 */
1322void kernfs_break_active_protection(struct kernfs_node *kn)
1323{
1324 /*
1325 * Take out ourself out of the active ref dependency chain. If
1326 * we're called without an active ref, lockdep will complain.
1327 */
1328 kernfs_put_active(kn);
1329}
1330
1331/**
1332 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1333 * @kn: the self kernfs_node
1334 *
1335 * If kernfs_break_active_protection() was called, this function must be
1336 * invoked before finishing the kernfs operation. Note that while this
1337 * function restores the active reference, it doesn't and can't actually
1338 * restore the active protection - @kn may already or be in the process of
1339 * being removed. Once kernfs_break_active_protection() is invoked, that
1340 * protection is irreversibly gone for the kernfs operation instance.
1341 *
1342 * While this function may be called at any point after
1343 * kernfs_break_active_protection() is invoked, its most useful location
1344 * would be right before the enclosing kernfs operation returns.
1345 */
1346void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1347{
1348 /*
1349 * @kn->active could be in any state; however, the increment we do
1350 * here will be undone as soon as the enclosing kernfs operation
1351 * finishes and this temporary bump can't break anything. If @kn
1352 * is alive, nothing changes. If @kn is being deactivated, the
1353 * soon-to-follow put will either finish deactivation or restore
1354 * deactivated state. If @kn is already removed, the temporary
1355 * bump is guaranteed to be gone before @kn is released.
1356 */
1357 atomic_inc(&kn->active);
1358 if (kernfs_lockdep(kn))
1359 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1360}
1361
1362/**
1363 * kernfs_remove_self - remove a kernfs_node from its own method
1364 * @kn: the self kernfs_node to remove
1365 *
1366 * The caller must be running off of a kernfs operation which is invoked
1367 * with an active reference - e.g. one of kernfs_ops. This can be used to
1368 * implement a file operation which deletes itself.
1369 *
1370 * For example, the "delete" file for a sysfs device directory can be
1371 * implemented by invoking kernfs_remove_self() on the "delete" file
1372 * itself. This function breaks the circular dependency of trying to
1373 * deactivate self while holding an active ref itself. It isn't necessary
1374 * to modify the usual removal path to use kernfs_remove_self(). The
1375 * "delete" implementation can simply invoke kernfs_remove_self() on self
1376 * before proceeding with the usual removal path. kernfs will ignore later
1377 * kernfs_remove() on self.
1378 *
1379 * kernfs_remove_self() can be called multiple times concurrently on the
1380 * same kernfs_node. Only the first one actually performs removal and
1381 * returns %true. All others will wait until the kernfs operation which
1382 * won self-removal finishes and return %false. Note that the losers wait
1383 * for the completion of not only the winning kernfs_remove_self() but also
1384 * the whole kernfs_ops which won the arbitration. This can be used to
1385 * guarantee, for example, all concurrent writes to a "delete" file to
1386 * finish only after the whole operation is complete.
1387 */
1388bool kernfs_remove_self(struct kernfs_node *kn)
1389{
1390 bool ret;
1391
1392 mutex_lock(&kernfs_mutex);
1393 kernfs_break_active_protection(kn);
1394
1395 /*
1396 * SUICIDAL is used to arbitrate among competing invocations. Only
1397 * the first one will actually perform removal. When the removal
1398 * is complete, SUICIDED is set and the active ref is restored
1399 * while holding kernfs_mutex. The ones which lost arbitration
1400 * waits for SUICDED && drained which can happen only after the
1401 * enclosing kernfs operation which executed the winning instance
1402 * of kernfs_remove_self() finished.
1403 */
1404 if (!(kn->flags & KERNFS_SUICIDAL)) {
1405 kn->flags |= KERNFS_SUICIDAL;
1406 __kernfs_remove(kn);
1407 kn->flags |= KERNFS_SUICIDED;
1408 ret = true;
1409 } else {
1410 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1411 DEFINE_WAIT(wait);
1412
1413 while (true) {
1414 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1415
1416 if ((kn->flags & KERNFS_SUICIDED) &&
1417 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1418 break;
1419
1420 mutex_unlock(&kernfs_mutex);
1421 schedule();
1422 mutex_lock(&kernfs_mutex);
1423 }
1424 finish_wait(waitq, &wait);
1425 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1426 ret = false;
1427 }
1428
1429 /*
1430 * This must be done while holding kernfs_mutex; otherwise, waiting
1431 * for SUICIDED && deactivated could finish prematurely.
1432 */
1433 kernfs_unbreak_active_protection(kn);
1434
1435 mutex_unlock(&kernfs_mutex);
1436 return ret;
1437}
1438
fd7b9f7b 1439/**
324a56e1
TH
1440 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1441 * @parent: parent of the target
1442 * @name: name of the kernfs_node to remove
1443 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1444 *
324a56e1
TH
1445 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1446 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1447 */
324a56e1 1448int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1449 const void *ns)
1450{
324a56e1 1451 struct kernfs_node *kn;
fd7b9f7b 1452
324a56e1 1453 if (!parent) {
c637b8ac 1454 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1455 name);
1456 return -ENOENT;
1457 }
1458
988cd7af 1459 mutex_lock(&kernfs_mutex);
fd7b9f7b 1460
324a56e1
TH
1461 kn = kernfs_find_ns(parent, name, ns);
1462 if (kn)
988cd7af 1463 __kernfs_remove(kn);
fd7b9f7b 1464
988cd7af 1465 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1466
324a56e1 1467 if (kn)
fd7b9f7b
TH
1468 return 0;
1469 else
1470 return -ENOENT;
1471}
1472
1473/**
1474 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1475 * @kn: target node
fd7b9f7b
TH
1476 * @new_parent: new parent to put @sd under
1477 * @new_name: new name
1478 * @new_ns: new namespace tag
1479 */
324a56e1 1480int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1481 const char *new_name, const void *new_ns)
1482{
3eef34ad
TH
1483 struct kernfs_node *old_parent;
1484 const char *old_name = NULL;
fd7b9f7b
TH
1485 int error;
1486
3eef34ad
TH
1487 /* can't move or rename root */
1488 if (!kn->parent)
1489 return -EINVAL;
1490
798c75a0
GKH
1491 mutex_lock(&kernfs_mutex);
1492
d0ae3d43 1493 error = -ENOENT;
ea015218
EB
1494 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1495 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1496 goto out;
1497
fd7b9f7b 1498 error = 0;
adc5e8b5
TH
1499 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1500 (strcmp(kn->name, new_name) == 0))
798c75a0 1501 goto out; /* nothing to rename */
fd7b9f7b
TH
1502
1503 error = -EEXIST;
1504 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1505 goto out;
fd7b9f7b 1506
324a56e1 1507 /* rename kernfs_node */
adc5e8b5 1508 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1509 error = -ENOMEM;
75287a67 1510 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1511 if (!new_name)
798c75a0 1512 goto out;
3eef34ad
TH
1513 } else {
1514 new_name = NULL;
fd7b9f7b
TH
1515 }
1516
1517 /*
1518 * Move to the appropriate place in the appropriate directories rbtree.
1519 */
c637b8ac 1520 kernfs_unlink_sibling(kn);
fd7b9f7b 1521 kernfs_get(new_parent);
3eef34ad
TH
1522
1523 /* rename_lock protects ->parent and ->name accessors */
1524 spin_lock_irq(&kernfs_rename_lock);
1525
1526 old_parent = kn->parent;
adc5e8b5 1527 kn->parent = new_parent;
3eef34ad
TH
1528
1529 kn->ns = new_ns;
1530 if (new_name) {
dfeb0750 1531 old_name = kn->name;
3eef34ad
TH
1532 kn->name = new_name;
1533 }
1534
1535 spin_unlock_irq(&kernfs_rename_lock);
1536
9561a896 1537 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1538 kernfs_link_sibling(kn);
fd7b9f7b 1539
3eef34ad 1540 kernfs_put(old_parent);
75287a67 1541 kfree_const(old_name);
3eef34ad 1542
fd7b9f7b 1543 error = 0;
798c75a0 1544 out:
a797bfc3 1545 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1546 return error;
1547}
1548
fd7b9f7b 1549/* Relationship between s_mode and the DT_xxx types */
324a56e1 1550static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1551{
adc5e8b5 1552 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1553}
1554
c637b8ac 1555static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1556{
1557 kernfs_put(filp->private_data);
1558 return 0;
1559}
1560
c637b8ac 1561static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1562 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1563{
1564 if (pos) {
81c173cb 1565 int valid = kernfs_active(pos) &&
798c75a0 1566 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1567 kernfs_put(pos);
1568 if (!valid)
1569 pos = NULL;
1570 }
1571 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1572 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1573 while (node) {
324a56e1 1574 pos = rb_to_kn(node);
fd7b9f7b 1575
adc5e8b5 1576 if (hash < pos->hash)
fd7b9f7b 1577 node = node->rb_left;
adc5e8b5 1578 else if (hash > pos->hash)
fd7b9f7b
TH
1579 node = node->rb_right;
1580 else
1581 break;
1582 }
1583 }
b9c9dad0
TH
1584 /* Skip over entries which are dying/dead or in the wrong namespace */
1585 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1586 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1587 if (!node)
1588 pos = NULL;
1589 else
324a56e1 1590 pos = rb_to_kn(node);
fd7b9f7b
TH
1591 }
1592 return pos;
1593}
1594
c637b8ac 1595static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1596 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1597{
c637b8ac 1598 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1599 if (pos) {
fd7b9f7b 1600 do {
adc5e8b5 1601 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1602 if (!node)
1603 pos = NULL;
1604 else
324a56e1 1605 pos = rb_to_kn(node);
b9c9dad0
TH
1606 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1607 }
fd7b9f7b
TH
1608 return pos;
1609}
1610
c637b8ac 1611static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1612{
1613 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1614 struct kernfs_node *parent = dentry->d_fsdata;
1615 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1616 const void *ns = NULL;
1617
1618 if (!dir_emit_dots(file, ctx))
1619 return 0;
a797bfc3 1620 mutex_lock(&kernfs_mutex);
fd7b9f7b 1621
324a56e1 1622 if (kernfs_ns_enabled(parent))
c525aadd 1623 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1624
c637b8ac 1625 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1626 pos;
c637b8ac 1627 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1628 const char *name = pos->name;
fd7b9f7b
TH
1629 unsigned int type = dt_type(pos);
1630 int len = strlen(name);
adc5e8b5 1631 ino_t ino = pos->ino;
fd7b9f7b 1632
adc5e8b5 1633 ctx->pos = pos->hash;
fd7b9f7b
TH
1634 file->private_data = pos;
1635 kernfs_get(pos);
1636
a797bfc3 1637 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1638 if (!dir_emit(ctx, name, len, ino, type))
1639 return 0;
a797bfc3 1640 mutex_lock(&kernfs_mutex);
fd7b9f7b 1641 }
a797bfc3 1642 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1643 file->private_data = NULL;
1644 ctx->pos = INT_MAX;
1645 return 0;
1646}
1647
a797bfc3 1648const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1649 .read = generic_read_dir,
8cb0d2c1 1650 .iterate_shared = kernfs_fop_readdir,
c637b8ac 1651 .release = kernfs_dir_fop_release,
8cb0d2c1 1652 .llseek = generic_file_llseek,
fd7b9f7b 1653};