]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/kernfs/dir.c
kernfs: convert kernfs_node->id from union kernfs_node_id to u64
[mirror_ubuntu-hirsute-kernel.git] / fs / kernfs / dir.c
CommitLineData
55716d26 1// SPDX-License-Identifier: GPL-2.0-only
b8441ed2
TH
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
b8441ed2 8 */
fd7b9f7b 9
abd54f02 10#include <linux/sched.h>
fd7b9f7b
TH
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
a797bfc3 20DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
21static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
7d35079f 23static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
17627157
KK
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
3eef34ad
TH
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48}
49
9f6df573
AK
50/* kernfs_node_depth - compute depth from @from to @to */
51static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
3eef34ad 52{
9f6df573 53 size_t depth = 0;
3eef34ad 54
9f6df573
AK
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60}
3eef34ad 61
9f6df573
AK
62static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64{
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90}
91
92/**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
17627157
KK
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
3abb1d90
TH
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
9f6df573
AK
121 */
122static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125{
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
3abb1d90
TH
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
9f6df573 130
17627157
KK
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
9f6df573
AK
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
bbe70e4e
JJB
140 if (!buf)
141 return -EINVAL;
142
9f6df573
AK
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
3abb1d90 145 return -EINVAL;
9f6df573
AK
146
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
149
bbe70e4e 150 buf[0] = '\0';
9f6df573
AK
151
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
155
156 /* Calculate how many bytes we need for the rest */
3abb1d90
TH
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
9f6df573 164 }
3eef34ad 165
3abb1d90 166 return len;
3eef34ad
TH
167}
168
169/**
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
174 *
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178 *
17627157
KK
179 * Fills buffer with "(null)" if @kn is NULL.
180 *
3eef34ad
TH
181 * This function can be called from any context.
182 */
183int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184{
185 unsigned long flags;
186 int ret;
187
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
192}
193
9f6df573
AK
194/**
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
200 *
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
205 *
3abb1d90
TH
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
9f6df573
AK
209 */
210int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
212{
213 unsigned long flags;
214 int ret;
215
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
220}
221EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222
3eef34ad
TH
223/**
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
226 *
227 * This function can be called from any context.
228 */
229void pr_cont_kernfs_name(struct kernfs_node *kn)
230{
231 unsigned long flags;
232
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
234
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
237
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239}
240
241/**
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
244 *
245 * This function can be called from any context.
246 */
247void pr_cont_kernfs_path(struct kernfs_node *kn)
248{
249 unsigned long flags;
9f6df573 250 int sz;
3eef34ad
TH
251
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
253
9f6df573
AK
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
259 }
260
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
264 }
265
266 pr_cont("%s", kernfs_pr_cont_buf);
3eef34ad 267
9f6df573 268out:
3eef34ad
TH
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270}
271
272/**
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
275 *
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
278 */
279struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280{
281 struct kernfs_node *parent;
282 unsigned long flags;
283
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288
289 return parent;
290}
291
fd7b9f7b 292/**
c637b8ac 293 * kernfs_name_hash
fd7b9f7b
TH
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
296 *
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
298 */
c637b8ac 299static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b 300{
8387ff25 301 unsigned long hash = init_name_hash(ns);
fd7b9f7b
TH
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
8387ff25 305 hash = end_name_hash(hash);
fd7b9f7b
TH
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 308 if (hash < 2)
fd7b9f7b
TH
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
313}
314
c637b8ac
TH
315static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 317{
72392ed0
RV
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
adc5e8b5 326 return strcmp(name, kn->name);
fd7b9f7b
TH
327}
328
c637b8ac
TH
329static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
fd7b9f7b 331{
c637b8ac 332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
333}
334
335/**
c637b8ac 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 337 * @kn: kernfs_node of interest
fd7b9f7b 338 *
324a56e1 339 * Link @kn into its sibling rbtree which starts from
adc5e8b5 340 * @kn->parent->dir.children.
fd7b9f7b
TH
341 *
342 * Locking:
a797bfc3 343 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
344 *
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
347 */
c637b8ac 348static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 349{
adc5e8b5 350 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
351 struct rb_node *parent = NULL;
352
fd7b9f7b 353 while (*node) {
324a56e1 354 struct kernfs_node *pos;
fd7b9f7b
TH
355 int result;
356
324a56e1 357 pos = rb_to_kn(*node);
fd7b9f7b 358 parent = *node;
c637b8ac 359 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 360 if (result < 0)
adc5e8b5 361 node = &pos->rb.rb_left;
fd7b9f7b 362 else if (result > 0)
adc5e8b5 363 node = &pos->rb.rb_right;
fd7b9f7b
TH
364 else
365 return -EEXIST;
366 }
c1befb88 367
fd7b9f7b 368 /* add new node and rebalance the tree */
adc5e8b5
TH
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
371
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
375
fd7b9f7b
TH
376 return 0;
377}
378
379/**
c637b8ac 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 381 * @kn: kernfs_node of interest
fd7b9f7b 382 *
35beab06
TH
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
386 *
387 * Locking:
a797bfc3 388 * mutex_lock(kernfs_mutex)
fd7b9f7b 389 */
35beab06 390static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 391{
35beab06
TH
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
394
df23fc39 395 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 396 kn->parent->dir.subdirs--;
fd7b9f7b 397
adc5e8b5 398 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
fd7b9f7b
TH
401}
402
403/**
c637b8ac 404 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 405 * @kn: kernfs_node to get an active reference to
fd7b9f7b 406 *
324a56e1 407 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
408 * is NULL.
409 *
410 * RETURNS:
324a56e1 411 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 412 */
c637b8ac 413struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 414{
324a56e1 415 if (unlikely(!kn))
fd7b9f7b
TH
416 return NULL;
417
f4b3e631
GKH
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
895a068a 420
182fd64b 421 if (kernfs_lockdep(kn))
f4b3e631
GKH
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
fd7b9f7b
TH
424}
425
426/**
c637b8ac 427 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 428 * @kn: kernfs_node to put an active reference to
fd7b9f7b 429 *
324a56e1 430 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
431 * is NULL.
432 */
c637b8ac 433void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b
TH
434{
435 int v;
436
324a56e1 437 if (unlikely(!kn))
fd7b9f7b
TH
438 return;
439
182fd64b 440 if (kernfs_lockdep(kn))
324a56e1 441 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 442 v = atomic_dec_return(&kn->active);
df23fc39 443 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
444 return;
445
2fd60da4 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
fd7b9f7b
TH
447}
448
449/**
81c173cb
TH
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
fd7b9f7b 452 *
81c173cb
TH
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
fd7b9f7b 456 */
81c173cb 457static void kernfs_drain(struct kernfs_node *kn)
35beab06 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 459{
abd54f02 460 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 461
35beab06 462 lockdep_assert_held(&kernfs_mutex);
81c173cb 463 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 464
35beab06 465 mutex_unlock(&kernfs_mutex);
abd54f02 466
182fd64b 467 if (kernfs_lockdep(kn)) {
35beab06
TH
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
471 }
abd54f02 472
35beab06 473 /* but everyone should wait for draining */
abd54f02
TH
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 476
182fd64b 477 if (kernfs_lockdep(kn)) {
a6607930
TH
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 }
35beab06 481
0e67db2f 482 kernfs_drain_open_files(kn);
ccf02aaf 483
35beab06 484 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
485}
486
fd7b9f7b 487/**
324a56e1
TH
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
fd7b9f7b 490 */
324a56e1 491void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 492{
324a56e1 493 if (kn) {
adc5e8b5
TH
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
fd7b9f7b
TH
496 }
497}
498EXPORT_SYMBOL_GPL(kernfs_get);
499
500/**
324a56e1
TH
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
fd7b9f7b 503 *
324a56e1 504 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 505 */
324a56e1 506void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 507{
324a56e1 508 struct kernfs_node *parent;
ba7443bc 509 struct kernfs_root *root;
fd7b9f7b 510
adc5e8b5 511 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 512 return;
324a56e1 513 root = kernfs_root(kn);
fd7b9f7b 514 repeat:
81c173cb
TH
515 /*
516 * Moving/renaming is always done while holding reference.
adc5e8b5 517 * kn->parent won't change beneath us.
fd7b9f7b 518 */
adc5e8b5 519 parent = kn->parent;
fd7b9f7b 520
81c173cb
TH
521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 524
df23fc39 525 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 526 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
527
528 kfree_const(kn->name);
529
adc5e8b5 530 if (kn->iattr) {
adc5e8b5 531 simple_xattrs_free(&kn->iattr->xattrs);
26e28d68 532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
2322392b 533 }
7d35079f 534 spin_lock(&kernfs_idr_lock);
67c0496e 535 idr_remove(&root->ino_idr, kernfs_ino(kn));
7d35079f 536 spin_unlock(&kernfs_idr_lock);
a797bfc3 537 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 538
324a56e1
TH
539 kn = parent;
540 if (kn) {
adc5e8b5 541 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
542 goto repeat;
543 } else {
324a56e1 544 /* just released the root kn, free @root too */
7d35079f 545 idr_destroy(&root->ino_idr);
ba7443bc
TH
546 kfree(root);
547 }
fd7b9f7b
TH
548}
549EXPORT_SYMBOL_GPL(kernfs_put);
550
c637b8ac 551static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 552{
324a56e1 553 struct kernfs_node *kn;
fd7b9f7b
TH
554
555 if (flags & LOOKUP_RCU)
556 return -ECHILD;
557
19bbb926 558 /* Always perform fresh lookup for negatives */
2b0143b5 559 if (d_really_is_negative(dentry))
19bbb926
TH
560 goto out_bad_unlocked;
561
319ba91d 562 kn = kernfs_dentry_node(dentry);
a797bfc3 563 mutex_lock(&kernfs_mutex);
fd7b9f7b 564
81c173cb
TH
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
fd7b9f7b
TH
567 goto out_bad;
568
c637b8ac 569 /* The kernfs node has been moved? */
319ba91d 570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
fd7b9f7b
TH
571 goto out_bad;
572
c637b8ac 573 /* The kernfs node has been renamed */
adc5e8b5 574 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
575 goto out_bad;
576
c637b8ac 577 /* The kernfs node has been moved to a different namespace */
adc5e8b5 578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 579 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
580 goto out_bad;
581
a797bfc3 582 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
583 return 1;
584out_bad:
a797bfc3 585 mutex_unlock(&kernfs_mutex);
19bbb926 586out_bad_unlocked:
fd7b9f7b
TH
587 return 0;
588}
589
a797bfc3 590const struct dentry_operations kernfs_dops = {
c637b8ac 591 .d_revalidate = kernfs_dop_revalidate,
fd7b9f7b
TH
592};
593
0c23b225
TH
594/**
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
597 *
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
600 *
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
604 */
605struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
606{
319ba91d
SL
607 if (dentry->d_sb->s_op == &kernfs_sops &&
608 !d_really_is_negative(dentry))
609 return kernfs_dentry_node(dentry);
0c23b225
TH
610 return NULL;
611}
612
db4aad20 613static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
e19dfdc8 614 struct kernfs_node *parent,
db4aad20 615 const char *name, umode_t mode,
488dee96 616 kuid_t uid, kgid_t gid,
db4aad20 617 unsigned flags)
fd7b9f7b 618{
324a56e1 619 struct kernfs_node *kn;
4a3ef68a 620 u32 gen;
bc755553 621 int ret;
fd7b9f7b 622
dfeb0750
TH
623 name = kstrdup_const(name, GFP_KERNEL);
624 if (!name)
625 return NULL;
fd7b9f7b 626
a797bfc3 627 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 628 if (!kn)
fd7b9f7b
TH
629 goto err_out1;
630
7d35079f
SL
631 idr_preload(GFP_KERNEL);
632 spin_lock(&kernfs_idr_lock);
4a3ef68a 633 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
e23f568a 634 if (ret >= 0 && ret < root->last_ino)
4a3ef68a
SL
635 root->next_generation++;
636 gen = root->next_generation;
e23f568a 637 root->last_ino = ret;
7d35079f
SL
638 spin_unlock(&kernfs_idr_lock);
639 idr_preload_end();
bc755553 640 if (ret < 0)
fd7b9f7b 641 goto err_out2;
67c0496e
TH
642
643 kn->id = (u64)gen << 32 | ret;
fd7b9f7b 644
b680b081 645 atomic_set(&kn->count, 1);
81c173cb 646 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 647 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 648
adc5e8b5
TH
649 kn->name = name;
650 kn->mode = mode;
81c173cb 651 kn->flags = flags;
fd7b9f7b 652
488dee96
DT
653 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
654 struct iattr iattr = {
655 .ia_valid = ATTR_UID | ATTR_GID,
656 .ia_uid = uid,
657 .ia_gid = gid,
658 };
659
660 ret = __kernfs_setattr(kn, &iattr);
661 if (ret < 0)
662 goto err_out3;
663 }
664
e19dfdc8
OM
665 if (parent) {
666 ret = security_kernfs_init_security(parent, kn);
667 if (ret)
668 goto err_out3;
669 }
670
324a56e1 671 return kn;
fd7b9f7b 672
488dee96 673 err_out3:
67c0496e 674 idr_remove(&root->ino_idr, kernfs_ino(kn));
fd7b9f7b 675 err_out2:
a797bfc3 676 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 677 err_out1:
dfeb0750 678 kfree_const(name);
fd7b9f7b
TH
679 return NULL;
680}
681
db4aad20
TH
682struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
683 const char *name, umode_t mode,
488dee96 684 kuid_t uid, kgid_t gid,
db4aad20
TH
685 unsigned flags)
686{
687 struct kernfs_node *kn;
688
e19dfdc8 689 kn = __kernfs_new_node(kernfs_root(parent), parent,
488dee96 690 name, mode, uid, gid, flags);
db4aad20
TH
691 if (kn) {
692 kernfs_get(parent);
693 kn->parent = parent;
694 }
695 return kn;
696}
697
ba16b284
SL
698/*
699 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
700 * @root: the kernfs root
701 * @ino: inode number
702 *
703 * RETURNS:
704 * NULL on failure. Return a kernfs node with reference counter incremented
705 */
706struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
707 unsigned int ino)
708{
709 struct kernfs_node *kn;
710
b680b081
TH
711 spin_lock(&kernfs_idr_lock);
712
ba16b284
SL
713 kn = idr_find(&root->ino_idr, ino);
714 if (!kn)
b680b081 715 goto err_unlock;
ba16b284 716
880df131
TH
717 /*
718 * ACTIVATED is protected with kernfs_mutex but it was clear when
719 * @kn was added to idr and we just wanna see it set. No need to
720 * grab kernfs_mutex.
721 */
722 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
723 !atomic_inc_not_zero(&kn->count)))
b680b081 724 goto err_unlock;
ba16b284 725
b680b081 726 spin_unlock(&kernfs_idr_lock);
ba16b284 727 return kn;
b680b081
TH
728err_unlock:
729 spin_unlock(&kernfs_idr_lock);
ba16b284
SL
730 return NULL;
731}
732
fd7b9f7b 733/**
c637b8ac 734 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 735 * @kn: kernfs_node to be added
fd7b9f7b 736 *
db4aad20
TH
737 * The caller must already have initialized @kn->parent. This
738 * function increments nlink of the parent's inode if @kn is a
739 * directory and link into the children list of the parent.
fd7b9f7b 740 *
fd7b9f7b
TH
741 * RETURNS:
742 * 0 on success, -EEXIST if entry with the given name already
743 * exists.
744 */
988cd7af 745int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 746{
db4aad20 747 struct kernfs_node *parent = kn->parent;
c525aadd 748 struct kernfs_iattrs *ps_iattr;
988cd7af 749 bool has_ns;
fd7b9f7b
TH
750 int ret;
751
988cd7af
TH
752 mutex_lock(&kernfs_mutex);
753
754 ret = -EINVAL;
755 has_ns = kernfs_ns_enabled(parent);
756 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
757 has_ns ? "required" : "invalid", parent->name, kn->name))
758 goto out_unlock;
fd7b9f7b 759
df23fc39 760 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 761 goto out_unlock;
fd7b9f7b 762
988cd7af 763 ret = -ENOENT;
ea015218
EB
764 if (parent->flags & KERNFS_EMPTY_DIR)
765 goto out_unlock;
766
d35258ef 767 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 768 goto out_unlock;
798c75a0 769
c637b8ac 770 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 771
c637b8ac 772 ret = kernfs_link_sibling(kn);
fd7b9f7b 773 if (ret)
988cd7af 774 goto out_unlock;
fd7b9f7b
TH
775
776 /* Update timestamps on the parent */
adc5e8b5 777 ps_iattr = parent->iattr;
fd7b9f7b 778 if (ps_iattr) {
05895219
OM
779 ktime_get_real_ts64(&ps_iattr->ia_ctime);
780 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
fd7b9f7b
TH
781 }
782
d35258ef
TH
783 mutex_unlock(&kernfs_mutex);
784
785 /*
786 * Activate the new node unless CREATE_DEACTIVATED is requested.
787 * If not activated here, the kernfs user is responsible for
788 * activating the node with kernfs_activate(). A node which hasn't
789 * been activated is not visible to userland and its removal won't
790 * trigger deactivation.
791 */
792 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
793 kernfs_activate(kn);
794 return 0;
795
988cd7af 796out_unlock:
a797bfc3 797 mutex_unlock(&kernfs_mutex);
988cd7af 798 return ret;
fd7b9f7b
TH
799}
800
801/**
324a56e1
TH
802 * kernfs_find_ns - find kernfs_node with the given name
803 * @parent: kernfs_node to search under
fd7b9f7b
TH
804 * @name: name to look for
805 * @ns: the namespace tag to use
806 *
324a56e1
TH
807 * Look for kernfs_node with name @name under @parent. Returns pointer to
808 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 809 */
324a56e1
TH
810static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
811 const unsigned char *name,
812 const void *ns)
fd7b9f7b 813{
adc5e8b5 814 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 815 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
816 unsigned int hash;
817
a797bfc3 818 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
819
820 if (has_ns != (bool)ns) {
c637b8ac 821 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 822 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
823 return NULL;
824 }
825
c637b8ac 826 hash = kernfs_name_hash(name, ns);
fd7b9f7b 827 while (node) {
324a56e1 828 struct kernfs_node *kn;
fd7b9f7b
TH
829 int result;
830
324a56e1 831 kn = rb_to_kn(node);
c637b8ac 832 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
833 if (result < 0)
834 node = node->rb_left;
835 else if (result > 0)
836 node = node->rb_right;
837 else
324a56e1 838 return kn;
fd7b9f7b
TH
839 }
840 return NULL;
841}
842
bd96f76a
TH
843static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
844 const unsigned char *path,
845 const void *ns)
846{
e56ed358
TH
847 size_t len;
848 char *p, *name;
bd96f76a
TH
849
850 lockdep_assert_held(&kernfs_mutex);
851
e56ed358
TH
852 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
853 spin_lock_irq(&kernfs_rename_lock);
854
855 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
856
857 if (len >= sizeof(kernfs_pr_cont_buf)) {
858 spin_unlock_irq(&kernfs_rename_lock);
bd96f76a 859 return NULL;
e56ed358
TH
860 }
861
862 p = kernfs_pr_cont_buf;
bd96f76a
TH
863
864 while ((name = strsep(&p, "/")) && parent) {
865 if (*name == '\0')
866 continue;
867 parent = kernfs_find_ns(parent, name, ns);
868 }
869
e56ed358
TH
870 spin_unlock_irq(&kernfs_rename_lock);
871
bd96f76a
TH
872 return parent;
873}
874
fd7b9f7b 875/**
324a56e1
TH
876 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
877 * @parent: kernfs_node to search under
fd7b9f7b
TH
878 * @name: name to look for
879 * @ns: the namespace tag to use
880 *
324a56e1 881 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 882 * if found. This function may sleep and returns pointer to the found
324a56e1 883 * kernfs_node on success, %NULL on failure.
fd7b9f7b 884 */
324a56e1
TH
885struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
886 const char *name, const void *ns)
fd7b9f7b 887{
324a56e1 888 struct kernfs_node *kn;
fd7b9f7b 889
a797bfc3 890 mutex_lock(&kernfs_mutex);
324a56e1
TH
891 kn = kernfs_find_ns(parent, name, ns);
892 kernfs_get(kn);
a797bfc3 893 mutex_unlock(&kernfs_mutex);
fd7b9f7b 894
324a56e1 895 return kn;
fd7b9f7b
TH
896}
897EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
898
bd96f76a
TH
899/**
900 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
901 * @parent: kernfs_node to search under
902 * @path: path to look for
903 * @ns: the namespace tag to use
904 *
905 * Look for kernfs_node with path @path under @parent and get a reference
906 * if found. This function may sleep and returns pointer to the found
907 * kernfs_node on success, %NULL on failure.
908 */
909struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
910 const char *path, const void *ns)
911{
912 struct kernfs_node *kn;
913
914 mutex_lock(&kernfs_mutex);
915 kn = kernfs_walk_ns(parent, path, ns);
916 kernfs_get(kn);
917 mutex_unlock(&kernfs_mutex);
918
919 return kn;
920}
921
ba7443bc
TH
922/**
923 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 924 * @scops: optional syscall operations for the hierarchy
d35258ef 925 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
926 * @priv: opaque data associated with the new directory
927 *
928 * Returns the root of the new hierarchy on success, ERR_PTR() value on
929 * failure.
930 */
90c07c89 931struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 932 unsigned int flags, void *priv)
ba7443bc
TH
933{
934 struct kernfs_root *root;
324a56e1 935 struct kernfs_node *kn;
ba7443bc
TH
936
937 root = kzalloc(sizeof(*root), GFP_KERNEL);
938 if (!root)
939 return ERR_PTR(-ENOMEM);
940
7d35079f 941 idr_init(&root->ino_idr);
7d568a83 942 INIT_LIST_HEAD(&root->supers);
4a3ef68a 943 root->next_generation = 1;
bc755553 944
e19dfdc8 945 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
488dee96 946 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
db4aad20 947 KERNFS_DIR);
324a56e1 948 if (!kn) {
7d35079f 949 idr_destroy(&root->ino_idr);
ba7443bc
TH
950 kfree(root);
951 return ERR_PTR(-ENOMEM);
952 }
953
324a56e1 954 kn->priv = priv;
adc5e8b5 955 kn->dir.root = root;
ba7443bc 956
90c07c89 957 root->syscall_ops = scops;
d35258ef 958 root->flags = flags;
324a56e1 959 root->kn = kn;
abd54f02 960 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 961
d35258ef
TH
962 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
963 kernfs_activate(kn);
964
ba7443bc
TH
965 return root;
966}
967
968/**
969 * kernfs_destroy_root - destroy a kernfs hierarchy
970 * @root: root of the hierarchy to destroy
971 *
972 * Destroy the hierarchy anchored at @root by removing all existing
973 * directories and destroying @root.
974 */
975void kernfs_destroy_root(struct kernfs_root *root)
976{
324a56e1 977 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
978}
979
fd7b9f7b
TH
980/**
981 * kernfs_create_dir_ns - create a directory
982 * @parent: parent in which to create a new directory
983 * @name: name of the new directory
bb8b9d09 984 * @mode: mode of the new directory
488dee96
DT
985 * @uid: uid of the new directory
986 * @gid: gid of the new directory
fd7b9f7b
TH
987 * @priv: opaque data associated with the new directory
988 * @ns: optional namespace tag of the directory
989 *
990 * Returns the created node on success, ERR_PTR() value on failure.
991 */
324a56e1 992struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09 993 const char *name, umode_t mode,
488dee96 994 kuid_t uid, kgid_t gid,
bb8b9d09 995 void *priv, const void *ns)
fd7b9f7b 996{
324a56e1 997 struct kernfs_node *kn;
fd7b9f7b
TH
998 int rc;
999
1000 /* allocate */
488dee96
DT
1001 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1002 uid, gid, KERNFS_DIR);
324a56e1 1003 if (!kn)
fd7b9f7b
TH
1004 return ERR_PTR(-ENOMEM);
1005
adc5e8b5
TH
1006 kn->dir.root = parent->dir.root;
1007 kn->ns = ns;
324a56e1 1008 kn->priv = priv;
fd7b9f7b
TH
1009
1010 /* link in */
988cd7af 1011 rc = kernfs_add_one(kn);
fd7b9f7b 1012 if (!rc)
324a56e1 1013 return kn;
fd7b9f7b 1014
324a56e1 1015 kernfs_put(kn);
fd7b9f7b
TH
1016 return ERR_PTR(rc);
1017}
1018
ea015218
EB
1019/**
1020 * kernfs_create_empty_dir - create an always empty directory
1021 * @parent: parent in which to create a new directory
1022 * @name: name of the new directory
1023 *
1024 * Returns the created node on success, ERR_PTR() value on failure.
1025 */
1026struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1027 const char *name)
1028{
1029 struct kernfs_node *kn;
1030 int rc;
1031
1032 /* allocate */
488dee96
DT
1033 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1034 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
ea015218
EB
1035 if (!kn)
1036 return ERR_PTR(-ENOMEM);
1037
1038 kn->flags |= KERNFS_EMPTY_DIR;
1039 kn->dir.root = parent->dir.root;
1040 kn->ns = NULL;
1041 kn->priv = NULL;
1042
1043 /* link in */
1044 rc = kernfs_add_one(kn);
1045 if (!rc)
1046 return kn;
1047
1048 kernfs_put(kn);
1049 return ERR_PTR(rc);
1050}
1051
c637b8ac
TH
1052static struct dentry *kernfs_iop_lookup(struct inode *dir,
1053 struct dentry *dentry,
1054 unsigned int flags)
fd7b9f7b 1055{
19bbb926 1056 struct dentry *ret;
319ba91d 1057 struct kernfs_node *parent = dir->i_private;
324a56e1 1058 struct kernfs_node *kn;
fd7b9f7b
TH
1059 struct inode *inode;
1060 const void *ns = NULL;
1061
a797bfc3 1062 mutex_lock(&kernfs_mutex);
fd7b9f7b 1063
324a56e1 1064 if (kernfs_ns_enabled(parent))
c525aadd 1065 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 1066
324a56e1 1067 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
1068
1069 /* no such entry */
b9c9dad0 1070 if (!kn || !kernfs_active(kn)) {
19bbb926 1071 ret = NULL;
fd7b9f7b
TH
1072 goto out_unlock;
1073 }
fd7b9f7b
TH
1074
1075 /* attach dentry and inode */
c637b8ac 1076 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
1077 if (!inode) {
1078 ret = ERR_PTR(-ENOMEM);
1079 goto out_unlock;
1080 }
1081
1082 /* instantiate and hash dentry */
41d28bca 1083 ret = d_splice_alias(inode, dentry);
fd7b9f7b 1084 out_unlock:
a797bfc3 1085 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1086 return ret;
1087}
1088
80b9bbef
TH
1089static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1090 umode_t mode)
1091{
1092 struct kernfs_node *parent = dir->i_private;
90c07c89 1093 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 1094 int ret;
80b9bbef 1095
90c07c89 1096 if (!scops || !scops->mkdir)
80b9bbef
TH
1097 return -EPERM;
1098
07c7530d
TH
1099 if (!kernfs_get_active(parent))
1100 return -ENODEV;
1101
90c07c89 1102 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
1103
1104 kernfs_put_active(parent);
1105 return ret;
80b9bbef
TH
1106}
1107
1108static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1109{
319ba91d 1110 struct kernfs_node *kn = kernfs_dentry_node(dentry);
90c07c89 1111 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1112 int ret;
80b9bbef 1113
90c07c89 1114 if (!scops || !scops->rmdir)
80b9bbef
TH
1115 return -EPERM;
1116
07c7530d
TH
1117 if (!kernfs_get_active(kn))
1118 return -ENODEV;
1119
90c07c89 1120 ret = scops->rmdir(kn);
07c7530d
TH
1121
1122 kernfs_put_active(kn);
1123 return ret;
80b9bbef
TH
1124}
1125
1126static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1cd66c93
MS
1127 struct inode *new_dir, struct dentry *new_dentry,
1128 unsigned int flags)
80b9bbef 1129{
319ba91d 1130 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
80b9bbef 1131 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 1132 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1133 int ret;
80b9bbef 1134
1cd66c93
MS
1135 if (flags)
1136 return -EINVAL;
1137
90c07c89 1138 if (!scops || !scops->rename)
80b9bbef
TH
1139 return -EPERM;
1140
07c7530d
TH
1141 if (!kernfs_get_active(kn))
1142 return -ENODEV;
1143
1144 if (!kernfs_get_active(new_parent)) {
1145 kernfs_put_active(kn);
1146 return -ENODEV;
1147 }
1148
90c07c89 1149 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
1150
1151 kernfs_put_active(new_parent);
1152 kernfs_put_active(kn);
1153 return ret;
80b9bbef
TH
1154}
1155
a797bfc3 1156const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
1157 .lookup = kernfs_iop_lookup,
1158 .permission = kernfs_iop_permission,
1159 .setattr = kernfs_iop_setattr,
1160 .getattr = kernfs_iop_getattr,
c637b8ac 1161 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1162
1163 .mkdir = kernfs_iop_mkdir,
1164 .rmdir = kernfs_iop_rmdir,
1165 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1166};
1167
c637b8ac 1168static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1169{
324a56e1 1170 struct kernfs_node *last;
fd7b9f7b
TH
1171
1172 while (true) {
1173 struct rb_node *rbn;
1174
1175 last = pos;
1176
df23fc39 1177 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1178 break;
1179
adc5e8b5 1180 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1181 if (!rbn)
1182 break;
1183
324a56e1 1184 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1185 }
1186
1187 return last;
1188}
1189
1190/**
c637b8ac 1191 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1192 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1193 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1194 *
1195 * Find the next descendant to visit for post-order traversal of @root's
1196 * descendants. @root is included in the iteration and the last node to be
1197 * visited.
1198 */
c637b8ac
TH
1199static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1200 struct kernfs_node *root)
fd7b9f7b
TH
1201{
1202 struct rb_node *rbn;
1203
a797bfc3 1204 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1205
1206 /* if first iteration, visit leftmost descendant which may be root */
1207 if (!pos)
c637b8ac 1208 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1209
1210 /* if we visited @root, we're done */
1211 if (pos == root)
1212 return NULL;
1213
1214 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1215 rbn = rb_next(&pos->rb);
fd7b9f7b 1216 if (rbn)
c637b8ac 1217 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1218
1219 /* no sibling left, visit parent */
adc5e8b5 1220 return pos->parent;
fd7b9f7b
TH
1221}
1222
d35258ef
TH
1223/**
1224 * kernfs_activate - activate a node which started deactivated
1225 * @kn: kernfs_node whose subtree is to be activated
1226 *
1227 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1228 * needs to be explicitly activated. A node which hasn't been activated
1229 * isn't visible to userland and deactivation is skipped during its
1230 * removal. This is useful to construct atomic init sequences where
1231 * creation of multiple nodes should either succeed or fail atomically.
1232 *
1233 * The caller is responsible for ensuring that this function is not called
1234 * after kernfs_remove*() is invoked on @kn.
1235 */
1236void kernfs_activate(struct kernfs_node *kn)
1237{
1238 struct kernfs_node *pos;
1239
1240 mutex_lock(&kernfs_mutex);
1241
1242 pos = NULL;
1243 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1244 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1245 continue;
1246
1247 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1248 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1249
1250 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1251 pos->flags |= KERNFS_ACTIVATED;
1252 }
1253
1254 mutex_unlock(&kernfs_mutex);
1255}
1256
988cd7af 1257static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1258{
35beab06
TH
1259 struct kernfs_node *pos;
1260
1261 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1262
6b0afc2a
TH
1263 /*
1264 * Short-circuit if non-root @kn has already finished removal.
1265 * This is for kernfs_remove_self() which plays with active ref
1266 * after removal.
1267 */
1268 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1269 return;
1270
c637b8ac 1271 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1272
81c173cb 1273 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1274 pos = NULL;
1275 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1276 if (kernfs_active(pos))
1277 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1278
1279 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1280 do {
35beab06
TH
1281 pos = kernfs_leftmost_descendant(kn);
1282
1283 /*
81c173cb
TH
1284 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1285 * base ref could have been put by someone else by the time
1286 * the function returns. Make sure it doesn't go away
1287 * underneath us.
35beab06
TH
1288 */
1289 kernfs_get(pos);
1290
d35258ef
TH
1291 /*
1292 * Drain iff @kn was activated. This avoids draining and
1293 * its lockdep annotations for nodes which have never been
1294 * activated and allows embedding kernfs_remove() in create
1295 * error paths without worrying about draining.
1296 */
1297 if (kn->flags & KERNFS_ACTIVATED)
1298 kernfs_drain(pos);
1299 else
1300 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1301
1302 /*
1303 * kernfs_unlink_sibling() succeeds once per node. Use it
1304 * to decide who's responsible for cleanups.
1305 */
1306 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1307 struct kernfs_iattrs *ps_iattr =
1308 pos->parent ? pos->parent->iattr : NULL;
1309
1310 /* update timestamps on the parent */
1311 if (ps_iattr) {
05895219
OM
1312 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1313 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
35beab06
TH
1314 }
1315
988cd7af 1316 kernfs_put(pos);
35beab06
TH
1317 }
1318
1319 kernfs_put(pos);
1320 } while (pos != kn);
fd7b9f7b
TH
1321}
1322
1323/**
324a56e1
TH
1324 * kernfs_remove - remove a kernfs_node recursively
1325 * @kn: the kernfs_node to remove
fd7b9f7b 1326 *
324a56e1 1327 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1328 */
324a56e1 1329void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1330{
988cd7af
TH
1331 mutex_lock(&kernfs_mutex);
1332 __kernfs_remove(kn);
1333 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1334}
1335
6b0afc2a
TH
1336/**
1337 * kernfs_break_active_protection - break out of active protection
1338 * @kn: the self kernfs_node
1339 *
1340 * The caller must be running off of a kernfs operation which is invoked
1341 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1342 * this function must also be matched with an invocation of
1343 * kernfs_unbreak_active_protection().
1344 *
1345 * This function releases the active reference of @kn the caller is
1346 * holding. Once this function is called, @kn may be removed at any point
1347 * and the caller is solely responsible for ensuring that the objects it
1348 * dereferences are accessible.
1349 */
1350void kernfs_break_active_protection(struct kernfs_node *kn)
1351{
1352 /*
1353 * Take out ourself out of the active ref dependency chain. If
1354 * we're called without an active ref, lockdep will complain.
1355 */
1356 kernfs_put_active(kn);
1357}
1358
1359/**
1360 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1361 * @kn: the self kernfs_node
1362 *
1363 * If kernfs_break_active_protection() was called, this function must be
1364 * invoked before finishing the kernfs operation. Note that while this
1365 * function restores the active reference, it doesn't and can't actually
1366 * restore the active protection - @kn may already or be in the process of
1367 * being removed. Once kernfs_break_active_protection() is invoked, that
1368 * protection is irreversibly gone for the kernfs operation instance.
1369 *
1370 * While this function may be called at any point after
1371 * kernfs_break_active_protection() is invoked, its most useful location
1372 * would be right before the enclosing kernfs operation returns.
1373 */
1374void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1375{
1376 /*
1377 * @kn->active could be in any state; however, the increment we do
1378 * here will be undone as soon as the enclosing kernfs operation
1379 * finishes and this temporary bump can't break anything. If @kn
1380 * is alive, nothing changes. If @kn is being deactivated, the
1381 * soon-to-follow put will either finish deactivation or restore
1382 * deactivated state. If @kn is already removed, the temporary
1383 * bump is guaranteed to be gone before @kn is released.
1384 */
1385 atomic_inc(&kn->active);
1386 if (kernfs_lockdep(kn))
1387 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1388}
1389
1390/**
1391 * kernfs_remove_self - remove a kernfs_node from its own method
1392 * @kn: the self kernfs_node to remove
1393 *
1394 * The caller must be running off of a kernfs operation which is invoked
1395 * with an active reference - e.g. one of kernfs_ops. This can be used to
1396 * implement a file operation which deletes itself.
1397 *
1398 * For example, the "delete" file for a sysfs device directory can be
1399 * implemented by invoking kernfs_remove_self() on the "delete" file
1400 * itself. This function breaks the circular dependency of trying to
1401 * deactivate self while holding an active ref itself. It isn't necessary
1402 * to modify the usual removal path to use kernfs_remove_self(). The
1403 * "delete" implementation can simply invoke kernfs_remove_self() on self
1404 * before proceeding with the usual removal path. kernfs will ignore later
1405 * kernfs_remove() on self.
1406 *
1407 * kernfs_remove_self() can be called multiple times concurrently on the
1408 * same kernfs_node. Only the first one actually performs removal and
1409 * returns %true. All others will wait until the kernfs operation which
1410 * won self-removal finishes and return %false. Note that the losers wait
1411 * for the completion of not only the winning kernfs_remove_self() but also
1412 * the whole kernfs_ops which won the arbitration. This can be used to
1413 * guarantee, for example, all concurrent writes to a "delete" file to
1414 * finish only after the whole operation is complete.
1415 */
1416bool kernfs_remove_self(struct kernfs_node *kn)
1417{
1418 bool ret;
1419
1420 mutex_lock(&kernfs_mutex);
1421 kernfs_break_active_protection(kn);
1422
1423 /*
1424 * SUICIDAL is used to arbitrate among competing invocations. Only
1425 * the first one will actually perform removal. When the removal
1426 * is complete, SUICIDED is set and the active ref is restored
1427 * while holding kernfs_mutex. The ones which lost arbitration
1428 * waits for SUICDED && drained which can happen only after the
1429 * enclosing kernfs operation which executed the winning instance
1430 * of kernfs_remove_self() finished.
1431 */
1432 if (!(kn->flags & KERNFS_SUICIDAL)) {
1433 kn->flags |= KERNFS_SUICIDAL;
1434 __kernfs_remove(kn);
1435 kn->flags |= KERNFS_SUICIDED;
1436 ret = true;
1437 } else {
1438 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1439 DEFINE_WAIT(wait);
1440
1441 while (true) {
1442 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1443
1444 if ((kn->flags & KERNFS_SUICIDED) &&
1445 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1446 break;
1447
1448 mutex_unlock(&kernfs_mutex);
1449 schedule();
1450 mutex_lock(&kernfs_mutex);
1451 }
1452 finish_wait(waitq, &wait);
1453 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1454 ret = false;
1455 }
1456
1457 /*
1458 * This must be done while holding kernfs_mutex; otherwise, waiting
1459 * for SUICIDED && deactivated could finish prematurely.
1460 */
1461 kernfs_unbreak_active_protection(kn);
1462
1463 mutex_unlock(&kernfs_mutex);
1464 return ret;
1465}
1466
fd7b9f7b 1467/**
324a56e1
TH
1468 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1469 * @parent: parent of the target
1470 * @name: name of the kernfs_node to remove
1471 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1472 *
324a56e1
TH
1473 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1474 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1475 */
324a56e1 1476int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1477 const void *ns)
1478{
324a56e1 1479 struct kernfs_node *kn;
fd7b9f7b 1480
324a56e1 1481 if (!parent) {
c637b8ac 1482 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1483 name);
1484 return -ENOENT;
1485 }
1486
988cd7af 1487 mutex_lock(&kernfs_mutex);
fd7b9f7b 1488
324a56e1
TH
1489 kn = kernfs_find_ns(parent, name, ns);
1490 if (kn)
988cd7af 1491 __kernfs_remove(kn);
fd7b9f7b 1492
988cd7af 1493 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1494
324a56e1 1495 if (kn)
fd7b9f7b
TH
1496 return 0;
1497 else
1498 return -ENOENT;
1499}
1500
1501/**
1502 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1503 * @kn: target node
fd7b9f7b
TH
1504 * @new_parent: new parent to put @sd under
1505 * @new_name: new name
1506 * @new_ns: new namespace tag
1507 */
324a56e1 1508int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1509 const char *new_name, const void *new_ns)
1510{
3eef34ad
TH
1511 struct kernfs_node *old_parent;
1512 const char *old_name = NULL;
fd7b9f7b
TH
1513 int error;
1514
3eef34ad
TH
1515 /* can't move or rename root */
1516 if (!kn->parent)
1517 return -EINVAL;
1518
798c75a0
GKH
1519 mutex_lock(&kernfs_mutex);
1520
d0ae3d43 1521 error = -ENOENT;
ea015218
EB
1522 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1523 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1524 goto out;
1525
fd7b9f7b 1526 error = 0;
adc5e8b5
TH
1527 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1528 (strcmp(kn->name, new_name) == 0))
798c75a0 1529 goto out; /* nothing to rename */
fd7b9f7b
TH
1530
1531 error = -EEXIST;
1532 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1533 goto out;
fd7b9f7b 1534
324a56e1 1535 /* rename kernfs_node */
adc5e8b5 1536 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1537 error = -ENOMEM;
75287a67 1538 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1539 if (!new_name)
798c75a0 1540 goto out;
3eef34ad
TH
1541 } else {
1542 new_name = NULL;
fd7b9f7b
TH
1543 }
1544
1545 /*
1546 * Move to the appropriate place in the appropriate directories rbtree.
1547 */
c637b8ac 1548 kernfs_unlink_sibling(kn);
fd7b9f7b 1549 kernfs_get(new_parent);
3eef34ad
TH
1550
1551 /* rename_lock protects ->parent and ->name accessors */
1552 spin_lock_irq(&kernfs_rename_lock);
1553
1554 old_parent = kn->parent;
adc5e8b5 1555 kn->parent = new_parent;
3eef34ad
TH
1556
1557 kn->ns = new_ns;
1558 if (new_name) {
dfeb0750 1559 old_name = kn->name;
3eef34ad
TH
1560 kn->name = new_name;
1561 }
1562
1563 spin_unlock_irq(&kernfs_rename_lock);
1564
9561a896 1565 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1566 kernfs_link_sibling(kn);
fd7b9f7b 1567
3eef34ad 1568 kernfs_put(old_parent);
75287a67 1569 kfree_const(old_name);
3eef34ad 1570
fd7b9f7b 1571 error = 0;
798c75a0 1572 out:
a797bfc3 1573 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1574 return error;
1575}
1576
fd7b9f7b 1577/* Relationship between s_mode and the DT_xxx types */
324a56e1 1578static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1579{
adc5e8b5 1580 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1581}
1582
c637b8ac 1583static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1584{
1585 kernfs_put(filp->private_data);
1586 return 0;
1587}
1588
c637b8ac 1589static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1590 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1591{
1592 if (pos) {
81c173cb 1593 int valid = kernfs_active(pos) &&
798c75a0 1594 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1595 kernfs_put(pos);
1596 if (!valid)
1597 pos = NULL;
1598 }
1599 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1600 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1601 while (node) {
324a56e1 1602 pos = rb_to_kn(node);
fd7b9f7b 1603
adc5e8b5 1604 if (hash < pos->hash)
fd7b9f7b 1605 node = node->rb_left;
adc5e8b5 1606 else if (hash > pos->hash)
fd7b9f7b
TH
1607 node = node->rb_right;
1608 else
1609 break;
1610 }
1611 }
b9c9dad0
TH
1612 /* Skip over entries which are dying/dead or in the wrong namespace */
1613 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1614 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1615 if (!node)
1616 pos = NULL;
1617 else
324a56e1 1618 pos = rb_to_kn(node);
fd7b9f7b
TH
1619 }
1620 return pos;
1621}
1622
c637b8ac 1623static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1624 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1625{
c637b8ac 1626 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1627 if (pos) {
fd7b9f7b 1628 do {
adc5e8b5 1629 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1630 if (!node)
1631 pos = NULL;
1632 else
324a56e1 1633 pos = rb_to_kn(node);
b9c9dad0
TH
1634 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1635 }
fd7b9f7b
TH
1636 return pos;
1637}
1638
c637b8ac 1639static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1640{
1641 struct dentry *dentry = file->f_path.dentry;
319ba91d 1642 struct kernfs_node *parent = kernfs_dentry_node(dentry);
324a56e1 1643 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1644 const void *ns = NULL;
1645
1646 if (!dir_emit_dots(file, ctx))
1647 return 0;
a797bfc3 1648 mutex_lock(&kernfs_mutex);
fd7b9f7b 1649
324a56e1 1650 if (kernfs_ns_enabled(parent))
c525aadd 1651 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1652
c637b8ac 1653 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1654 pos;
c637b8ac 1655 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1656 const char *name = pos->name;
fd7b9f7b
TH
1657 unsigned int type = dt_type(pos);
1658 int len = strlen(name);
67c0496e 1659 ino_t ino = kernfs_ino(pos);
fd7b9f7b 1660
adc5e8b5 1661 ctx->pos = pos->hash;
fd7b9f7b
TH
1662 file->private_data = pos;
1663 kernfs_get(pos);
1664
a797bfc3 1665 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1666 if (!dir_emit(ctx, name, len, ino, type))
1667 return 0;
a797bfc3 1668 mutex_lock(&kernfs_mutex);
fd7b9f7b 1669 }
a797bfc3 1670 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1671 file->private_data = NULL;
1672 ctx->pos = INT_MAX;
1673 return 0;
1674}
1675
a797bfc3 1676const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1677 .read = generic_read_dir,
8cb0d2c1 1678 .iterate_shared = kernfs_fop_readdir,
c637b8ac 1679 .release = kernfs_dir_fop_release,
8cb0d2c1 1680 .llseek = generic_file_llseek,
fd7b9f7b 1681};