]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/kernfs/dir.c
kernfs: remove unnecessary NULL check in __kernfs_remove()
[mirror_ubuntu-bionic-kernel.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
ea1c472d 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
fd7b9f7b 22
adc5e8b5 23#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 24
a69d001c
TH
25static bool kernfs_lockdep(struct kernfs_node *kn)
26{
27#ifdef CONFIG_DEBUG_LOCK_ALLOC
28 return kn->flags & KERNFS_LOCKDEP;
29#else
30 return false;
31#endif
32}
33
fd7b9f7b 34/**
c637b8ac 35 * kernfs_name_hash
fd7b9f7b
TH
36 * @name: Null terminated string to hash
37 * @ns: Namespace tag to hash
38 *
39 * Returns 31 bit hash of ns + name (so it fits in an off_t )
40 */
c637b8ac 41static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
42{
43 unsigned long hash = init_name_hash();
44 unsigned int len = strlen(name);
45 while (len--)
46 hash = partial_name_hash(*name++, hash);
47 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
48 hash &= 0x7fffffffU;
49 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
50 if (hash < 1)
51 hash += 2;
52 if (hash >= INT_MAX)
53 hash = INT_MAX - 1;
54 return hash;
55}
56
c637b8ac
TH
57static int kernfs_name_compare(unsigned int hash, const char *name,
58 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 59{
adc5e8b5
TH
60 if (hash != kn->hash)
61 return hash - kn->hash;
62 if (ns != kn->ns)
63 return ns - kn->ns;
64 return strcmp(name, kn->name);
fd7b9f7b
TH
65}
66
c637b8ac
TH
67static int kernfs_sd_compare(const struct kernfs_node *left,
68 const struct kernfs_node *right)
fd7b9f7b 69{
c637b8ac 70 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
71}
72
73/**
c637b8ac 74 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 75 * @kn: kernfs_node of interest
fd7b9f7b 76 *
324a56e1 77 * Link @kn into its sibling rbtree which starts from
adc5e8b5 78 * @kn->parent->dir.children.
fd7b9f7b
TH
79 *
80 * Locking:
a797bfc3 81 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
82 *
83 * RETURNS:
84 * 0 on susccess -EEXIST on failure.
85 */
c637b8ac 86static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 87{
adc5e8b5 88 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
89 struct rb_node *parent = NULL;
90
df23fc39 91 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 92 kn->parent->dir.subdirs++;
fd7b9f7b
TH
93
94 while (*node) {
324a56e1 95 struct kernfs_node *pos;
fd7b9f7b
TH
96 int result;
97
324a56e1 98 pos = rb_to_kn(*node);
fd7b9f7b 99 parent = *node;
c637b8ac 100 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 101 if (result < 0)
adc5e8b5 102 node = &pos->rb.rb_left;
fd7b9f7b 103 else if (result > 0)
adc5e8b5 104 node = &pos->rb.rb_right;
fd7b9f7b
TH
105 else
106 return -EEXIST;
107 }
108 /* add new node and rebalance the tree */
adc5e8b5
TH
109 rb_link_node(&kn->rb, parent, node);
110 rb_insert_color(&kn->rb, &kn->parent->dir.children);
fd7b9f7b
TH
111 return 0;
112}
113
114/**
c637b8ac 115 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 116 * @kn: kernfs_node of interest
fd7b9f7b 117 *
324a56e1 118 * Unlink @kn from its sibling rbtree which starts from
adc5e8b5 119 * kn->parent->dir.children.
fd7b9f7b
TH
120 *
121 * Locking:
a797bfc3 122 * mutex_lock(kernfs_mutex)
fd7b9f7b 123 */
f601f9a2 124static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 125{
f601f9a2
TH
126 if (RB_EMPTY_NODE(&kn->rb))
127 return false;
128
df23fc39 129 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 130 kn->parent->dir.subdirs--;
fd7b9f7b 131
adc5e8b5 132 rb_erase(&kn->rb, &kn->parent->dir.children);
ae34372e 133 RB_CLEAR_NODE(&kn->rb);
f601f9a2 134 return true;
fd7b9f7b
TH
135}
136
137/**
c637b8ac 138 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 139 * @kn: kernfs_node to get an active reference to
fd7b9f7b 140 *
324a56e1 141 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
142 * is NULL.
143 *
144 * RETURNS:
324a56e1 145 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 146 */
c637b8ac 147struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 148{
324a56e1 149 if (unlikely(!kn))
fd7b9f7b
TH
150 return NULL;
151
a69d001c 152 if (kernfs_lockdep(kn))
324a56e1 153 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
895a068a
TH
154
155 /*
156 * Try to obtain an active ref. If @kn is deactivated, we block
157 * till either it's reactivated or killed.
158 */
159 do {
160 if (atomic_inc_unless_negative(&kn->active))
161 return kn;
162
163 wait_event(kernfs_root(kn)->deactivate_waitq,
164 atomic_read(&kn->active) >= 0 ||
165 RB_EMPTY_NODE(&kn->rb));
166 } while (!RB_EMPTY_NODE(&kn->rb));
167
168 if (kernfs_lockdep(kn))
169 rwsem_release(&kn->dep_map, 1, _RET_IP_);
170 return NULL;
fd7b9f7b
TH
171}
172
173/**
c637b8ac 174 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 175 * @kn: kernfs_node to put an active reference to
fd7b9f7b 176 *
324a56e1 177 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
178 * is NULL.
179 */
c637b8ac 180void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 181{
ea1c472d 182 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
183 int v;
184
324a56e1 185 if (unlikely(!kn))
fd7b9f7b
TH
186 return;
187
a69d001c 188 if (kernfs_lockdep(kn))
324a56e1 189 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 190 v = atomic_dec_return(&kn->active);
df23fc39 191 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
192 return;
193
ea1c472d 194 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
195}
196
197/**
ae34372e
TH
198 * kernfs_drain - drain kernfs_node
199 * @kn: kernfs_node to drain
fd7b9f7b 200 *
45a140e5
TH
201 * Drain existing usages of @kn. Mutiple removers may invoke this function
202 * concurrently on @kn and all will return after draining is complete.
203 * Returns %true if drain is performed and kernfs_mutex was temporarily
204 * released. %false if @kn was already drained and no operation was
205 * necessary.
206 *
207 * The caller is responsible for ensuring @kn stays pinned while this
208 * function is in progress even if it gets removed by someone else.
fd7b9f7b 209 */
45a140e5
TH
210static bool kernfs_drain(struct kernfs_node *kn)
211 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 212{
ea1c472d 213 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 214
45a140e5 215 lockdep_assert_held(&kernfs_mutex);
ae34372e 216 WARN_ON_ONCE(atomic_read(&kn->active) >= 0);
ea1c472d 217
45a140e5
TH
218 /*
219 * We want to go through the active ref lockdep annotation at least
220 * once for all node removals, but the lockdep annotation can't be
221 * nested inside kernfs_mutex and deactivation can't make forward
222 * progress if we keep dropping the mutex. Use JUST_ACTIVATED to
223 * force the slow path once for each deactivation if lockdep is
224 * enabled.
225 */
226 if ((!kernfs_lockdep(kn) || !(kn->flags & KERNFS_JUST_DEACTIVATED)) &&
227 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
228 return false;
229
230 kn->flags &= ~KERNFS_JUST_DEACTIVATED;
231 mutex_unlock(&kernfs_mutex);
232
a69d001c
TH
233 if (kernfs_lockdep(kn)) {
234 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
235 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
236 lock_contended(&kn->dep_map, _RET_IP_);
237 }
ea1c472d
TH
238
239 wait_event(root->deactivate_waitq,
240 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 241
a69d001c
TH
242 if (kernfs_lockdep(kn)) {
243 lock_acquired(&kn->dep_map, _RET_IP_);
244 rwsem_release(&kn->dep_map, 1, _RET_IP_);
245 }
45a140e5
TH
246
247 mutex_lock(&kernfs_mutex);
248 return true;
fd7b9f7b
TH
249}
250
fd7b9f7b 251/**
324a56e1
TH
252 * kernfs_get - get a reference count on a kernfs_node
253 * @kn: the target kernfs_node
fd7b9f7b 254 */
324a56e1 255void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 256{
324a56e1 257 if (kn) {
adc5e8b5
TH
258 WARN_ON(!atomic_read(&kn->count));
259 atomic_inc(&kn->count);
fd7b9f7b
TH
260 }
261}
262EXPORT_SYMBOL_GPL(kernfs_get);
263
264/**
324a56e1
TH
265 * kernfs_put - put a reference count on a kernfs_node
266 * @kn: the target kernfs_node
fd7b9f7b 267 *
324a56e1 268 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 269 */
324a56e1 270void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 271{
324a56e1 272 struct kernfs_node *parent;
ba7443bc 273 struct kernfs_root *root;
fd7b9f7b 274
adc5e8b5 275 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 276 return;
324a56e1 277 root = kernfs_root(kn);
fd7b9f7b 278 repeat:
ae34372e
TH
279 /*
280 * Moving/renaming is always done while holding reference.
adc5e8b5 281 * kn->parent won't change beneath us.
fd7b9f7b 282 */
adc5e8b5 283 parent = kn->parent;
fd7b9f7b 284
ae34372e
TH
285 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
286 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
287 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 288
df23fc39 289 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 290 kernfs_put(kn->symlink.target_kn);
2063d608 291 if (!(kn->flags & KERNFS_STATIC_NAME))
adc5e8b5
TH
292 kfree(kn->name);
293 if (kn->iattr) {
294 if (kn->iattr->ia_secdata)
295 security_release_secctx(kn->iattr->ia_secdata,
296 kn->iattr->ia_secdata_len);
297 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 298 }
adc5e8b5
TH
299 kfree(kn->iattr);
300 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 301 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 302
324a56e1
TH
303 kn = parent;
304 if (kn) {
adc5e8b5 305 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
306 goto repeat;
307 } else {
324a56e1 308 /* just released the root kn, free @root too */
bc755553 309 ida_destroy(&root->ino_ida);
ba7443bc
TH
310 kfree(root);
311 }
fd7b9f7b
TH
312}
313EXPORT_SYMBOL_GPL(kernfs_put);
314
c637b8ac 315static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 316{
324a56e1 317 struct kernfs_node *kn;
fd7b9f7b
TH
318
319 if (flags & LOOKUP_RCU)
320 return -ECHILD;
321
19bbb926
TH
322 /* Always perform fresh lookup for negatives */
323 if (!dentry->d_inode)
324 goto out_bad_unlocked;
325
324a56e1 326 kn = dentry->d_fsdata;
a797bfc3 327 mutex_lock(&kernfs_mutex);
fd7b9f7b 328
ae34372e
TH
329 /* Force fresh lookup if removed */
330 if (kn->parent && RB_EMPTY_NODE(&kn->rb))
fd7b9f7b
TH
331 goto out_bad;
332
c637b8ac 333 /* The kernfs node has been moved? */
adc5e8b5 334 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
335 goto out_bad;
336
c637b8ac 337 /* The kernfs node has been renamed */
adc5e8b5 338 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
339 goto out_bad;
340
c637b8ac 341 /* The kernfs node has been moved to a different namespace */
adc5e8b5 342 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 343 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
344 goto out_bad;
345
a797bfc3 346 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
347out_valid:
348 return 1;
349out_bad:
a797bfc3 350 mutex_unlock(&kernfs_mutex);
19bbb926
TH
351out_bad_unlocked:
352 /*
353 * @dentry doesn't match the underlying kernfs node, drop the
354 * dentry and force lookup. If we have submounts we must allow the
355 * vfs caches to lie about the state of the filesystem to prevent
356 * leaks and other nasty things, so use check_submounts_and_drop()
357 * instead of d_drop().
fd7b9f7b
TH
358 */
359 if (check_submounts_and_drop(dentry) != 0)
360 goto out_valid;
361
362 return 0;
363}
364
c637b8ac 365static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
366{
367 kernfs_put(dentry->d_fsdata);
368}
369
a797bfc3 370const struct dentry_operations kernfs_dops = {
c637b8ac 371 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 372 .d_release = kernfs_dop_release,
fd7b9f7b
TH
373};
374
c637b8ac 375struct kernfs_node *kernfs_new_node(struct kernfs_root *root, const char *name,
2063d608 376 umode_t mode, unsigned flags)
fd7b9f7b
TH
377{
378 char *dup_name = NULL;
324a56e1 379 struct kernfs_node *kn;
bc755553 380 int ret;
fd7b9f7b 381
2063d608 382 if (!(flags & KERNFS_STATIC_NAME)) {
fd7b9f7b
TH
383 name = dup_name = kstrdup(name, GFP_KERNEL);
384 if (!name)
385 return NULL;
386 }
387
a797bfc3 388 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 389 if (!kn)
fd7b9f7b
TH
390 goto err_out1;
391
bc755553
TH
392 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
393 if (ret < 0)
fd7b9f7b 394 goto err_out2;
adc5e8b5 395 kn->ino = ret;
fd7b9f7b 396
adc5e8b5 397 atomic_set(&kn->count, 1);
ae34372e 398 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
9f010c2a 399 kn->deact_depth = 1;
ae34372e 400 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 401
adc5e8b5
TH
402 kn->name = name;
403 kn->mode = mode;
ae34372e 404 kn->flags = flags;
fd7b9f7b 405
324a56e1 406 return kn;
fd7b9f7b
TH
407
408 err_out2:
a797bfc3 409 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b
TH
410 err_out1:
411 kfree(dup_name);
412 return NULL;
413}
414
fd7b9f7b 415/**
c637b8ac 416 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1
TH
417 * @kn: kernfs_node to be added
418 * @parent: the parent kernfs_node to add @kn to
fd7b9f7b 419 *
adc5e8b5
TH
420 * Get @parent and set @kn->parent to it and increment nlink of the
421 * parent inode if @kn is a directory and link into the children list
422 * of the parent.
fd7b9f7b 423 *
fd7b9f7b
TH
424 * RETURNS:
425 * 0 on success, -EEXIST if entry with the given name already
426 * exists.
427 */
99177a34 428int kernfs_add_one(struct kernfs_node *kn, struct kernfs_node *parent)
fd7b9f7b 429{
c525aadd 430 struct kernfs_iattrs *ps_iattr;
99177a34 431 bool has_ns;
fd7b9f7b
TH
432 int ret;
433
99177a34
TH
434 if (!kernfs_get_active(parent))
435 return -ENOENT;
ae34372e 436
99177a34
TH
437 mutex_lock(&kernfs_mutex);
438
439 ret = -EINVAL;
440 has_ns = kernfs_ns_enabled(parent);
441 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
442 has_ns ? "required" : "invalid", parent->name, kn->name))
443 goto out_unlock;
fd7b9f7b 444
df23fc39 445 if (kernfs_type(parent) != KERNFS_DIR)
99177a34 446 goto out_unlock;
fd7b9f7b 447
c637b8ac 448 kn->hash = kernfs_name_hash(kn->name, kn->ns);
adc5e8b5 449 kn->parent = parent;
324a56e1 450 kernfs_get(parent);
fd7b9f7b 451
c637b8ac 452 ret = kernfs_link_sibling(kn);
fd7b9f7b 453 if (ret)
99177a34 454 goto out_unlock;
fd7b9f7b
TH
455
456 /* Update timestamps on the parent */
adc5e8b5 457 ps_iattr = parent->iattr;
fd7b9f7b
TH
458 if (ps_iattr) {
459 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
460 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
461 }
462
463 /* Mark the entry added into directory tree */
ae34372e 464 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
9f010c2a 465 kn->deact_depth--;
99177a34
TH
466 ret = 0;
467out_unlock:
a797bfc3 468 mutex_unlock(&kernfs_mutex);
99177a34
TH
469 kernfs_put_active(parent);
470 return ret;
fd7b9f7b
TH
471}
472
473/**
324a56e1
TH
474 * kernfs_find_ns - find kernfs_node with the given name
475 * @parent: kernfs_node to search under
fd7b9f7b
TH
476 * @name: name to look for
477 * @ns: the namespace tag to use
478 *
324a56e1
TH
479 * Look for kernfs_node with name @name under @parent. Returns pointer to
480 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 481 */
324a56e1
TH
482static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
483 const unsigned char *name,
484 const void *ns)
fd7b9f7b 485{
adc5e8b5 486 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 487 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
488 unsigned int hash;
489
a797bfc3 490 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
491
492 if (has_ns != (bool)ns) {
c637b8ac 493 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 494 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
495 return NULL;
496 }
497
c637b8ac 498 hash = kernfs_name_hash(name, ns);
fd7b9f7b 499 while (node) {
324a56e1 500 struct kernfs_node *kn;
fd7b9f7b
TH
501 int result;
502
324a56e1 503 kn = rb_to_kn(node);
c637b8ac 504 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
505 if (result < 0)
506 node = node->rb_left;
507 else if (result > 0)
508 node = node->rb_right;
509 else
324a56e1 510 return kn;
fd7b9f7b
TH
511 }
512 return NULL;
513}
514
515/**
324a56e1
TH
516 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
517 * @parent: kernfs_node to search under
fd7b9f7b
TH
518 * @name: name to look for
519 * @ns: the namespace tag to use
520 *
324a56e1 521 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 522 * if found. This function may sleep and returns pointer to the found
324a56e1 523 * kernfs_node on success, %NULL on failure.
fd7b9f7b 524 */
324a56e1
TH
525struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
526 const char *name, const void *ns)
fd7b9f7b 527{
324a56e1 528 struct kernfs_node *kn;
fd7b9f7b 529
a797bfc3 530 mutex_lock(&kernfs_mutex);
324a56e1
TH
531 kn = kernfs_find_ns(parent, name, ns);
532 kernfs_get(kn);
a797bfc3 533 mutex_unlock(&kernfs_mutex);
fd7b9f7b 534
324a56e1 535 return kn;
fd7b9f7b
TH
536}
537EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
538
ba7443bc
TH
539/**
540 * kernfs_create_root - create a new kernfs hierarchy
80b9bbef 541 * @kdops: optional directory syscall operations for the hierarchy
ba7443bc
TH
542 * @priv: opaque data associated with the new directory
543 *
544 * Returns the root of the new hierarchy on success, ERR_PTR() value on
545 * failure.
546 */
80b9bbef 547struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv)
ba7443bc
TH
548{
549 struct kernfs_root *root;
324a56e1 550 struct kernfs_node *kn;
ba7443bc
TH
551
552 root = kzalloc(sizeof(*root), GFP_KERNEL);
553 if (!root)
554 return ERR_PTR(-ENOMEM);
555
bc755553
TH
556 ida_init(&root->ino_ida);
557
c637b8ac 558 kn = kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, KERNFS_DIR);
324a56e1 559 if (!kn) {
bc755553 560 ida_destroy(&root->ino_ida);
ba7443bc
TH
561 kfree(root);
562 return ERR_PTR(-ENOMEM);
563 }
564
ae34372e 565 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
9f010c2a 566 kn->deact_depth--;
324a56e1 567 kn->priv = priv;
adc5e8b5 568 kn->dir.root = root;
ba7443bc 569
80b9bbef 570 root->dir_ops = kdops;
324a56e1 571 root->kn = kn;
ea1c472d 572 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc
TH
573
574 return root;
575}
576
577/**
578 * kernfs_destroy_root - destroy a kernfs hierarchy
579 * @root: root of the hierarchy to destroy
580 *
581 * Destroy the hierarchy anchored at @root by removing all existing
582 * directories and destroying @root.
583 */
584void kernfs_destroy_root(struct kernfs_root *root)
585{
324a56e1 586 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
587}
588
fd7b9f7b
TH
589/**
590 * kernfs_create_dir_ns - create a directory
591 * @parent: parent in which to create a new directory
592 * @name: name of the new directory
bb8b9d09 593 * @mode: mode of the new directory
fd7b9f7b
TH
594 * @priv: opaque data associated with the new directory
595 * @ns: optional namespace tag of the directory
596 *
597 * Returns the created node on success, ERR_PTR() value on failure.
598 */
324a56e1 599struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
600 const char *name, umode_t mode,
601 void *priv, const void *ns)
fd7b9f7b 602{
324a56e1 603 struct kernfs_node *kn;
fd7b9f7b
TH
604 int rc;
605
606 /* allocate */
bb8b9d09
TH
607 kn = kernfs_new_node(kernfs_root(parent), name, mode | S_IFDIR,
608 KERNFS_DIR);
324a56e1 609 if (!kn)
fd7b9f7b
TH
610 return ERR_PTR(-ENOMEM);
611
adc5e8b5
TH
612 kn->dir.root = parent->dir.root;
613 kn->ns = ns;
324a56e1 614 kn->priv = priv;
fd7b9f7b
TH
615
616 /* link in */
99177a34 617 rc = kernfs_add_one(kn, parent);
fd7b9f7b 618 if (!rc)
324a56e1 619 return kn;
fd7b9f7b 620
324a56e1 621 kernfs_put(kn);
fd7b9f7b
TH
622 return ERR_PTR(rc);
623}
624
c637b8ac
TH
625static struct dentry *kernfs_iop_lookup(struct inode *dir,
626 struct dentry *dentry,
627 unsigned int flags)
fd7b9f7b 628{
19bbb926 629 struct dentry *ret;
324a56e1
TH
630 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
631 struct kernfs_node *kn;
fd7b9f7b
TH
632 struct inode *inode;
633 const void *ns = NULL;
634
a797bfc3 635 mutex_lock(&kernfs_mutex);
fd7b9f7b 636
324a56e1 637 if (kernfs_ns_enabled(parent))
c525aadd 638 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 639
324a56e1 640 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
641
642 /* no such entry */
324a56e1 643 if (!kn) {
19bbb926 644 ret = NULL;
fd7b9f7b
TH
645 goto out_unlock;
646 }
324a56e1
TH
647 kernfs_get(kn);
648 dentry->d_fsdata = kn;
fd7b9f7b
TH
649
650 /* attach dentry and inode */
c637b8ac 651 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
652 if (!inode) {
653 ret = ERR_PTR(-ENOMEM);
654 goto out_unlock;
655 }
656
657 /* instantiate and hash dentry */
658 ret = d_materialise_unique(dentry, inode);
659 out_unlock:
a797bfc3 660 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
661 return ret;
662}
663
80b9bbef
TH
664static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
665 umode_t mode)
666{
667 struct kernfs_node *parent = dir->i_private;
668 struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops;
669
670 if (!kdops || !kdops->mkdir)
671 return -EPERM;
672
673 return kdops->mkdir(parent, dentry->d_name.name, mode);
674}
675
676static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
677{
678 struct kernfs_node *kn = dentry->d_fsdata;
679 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
680
681 if (!kdops || !kdops->rmdir)
682 return -EPERM;
683
684 return kdops->rmdir(kn);
685}
686
687static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
688 struct inode *new_dir, struct dentry *new_dentry)
689{
690 struct kernfs_node *kn = old_dentry->d_fsdata;
691 struct kernfs_node *new_parent = new_dir->i_private;
692 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops;
693
694 if (!kdops || !kdops->rename)
695 return -EPERM;
696
697 return kdops->rename(kn, new_parent, new_dentry->d_name.name);
698}
699
a797bfc3 700const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
701 .lookup = kernfs_iop_lookup,
702 .permission = kernfs_iop_permission,
703 .setattr = kernfs_iop_setattr,
704 .getattr = kernfs_iop_getattr,
705 .setxattr = kernfs_iop_setxattr,
706 .removexattr = kernfs_iop_removexattr,
707 .getxattr = kernfs_iop_getxattr,
708 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
709
710 .mkdir = kernfs_iop_mkdir,
711 .rmdir = kernfs_iop_rmdir,
712 .rename = kernfs_iop_rename,
fd7b9f7b
TH
713};
714
c637b8ac 715static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 716{
324a56e1 717 struct kernfs_node *last;
fd7b9f7b
TH
718
719 while (true) {
720 struct rb_node *rbn;
721
722 last = pos;
723
df23fc39 724 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
725 break;
726
adc5e8b5 727 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
728 if (!rbn)
729 break;
730
324a56e1 731 pos = rb_to_kn(rbn);
fd7b9f7b
TH
732 }
733
734 return last;
735}
736
737/**
c637b8ac 738 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 739 * @pos: the current position (%NULL to initiate traversal)
324a56e1 740 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
741 *
742 * Find the next descendant to visit for post-order traversal of @root's
743 * descendants. @root is included in the iteration and the last node to be
744 * visited.
745 */
c637b8ac
TH
746static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
747 struct kernfs_node *root)
fd7b9f7b
TH
748{
749 struct rb_node *rbn;
750
a797bfc3 751 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
752
753 /* if first iteration, visit leftmost descendant which may be root */
754 if (!pos)
c637b8ac 755 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
756
757 /* if we visited @root, we're done */
758 if (pos == root)
759 return NULL;
760
761 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 762 rbn = rb_next(&pos->rb);
fd7b9f7b 763 if (rbn)
c637b8ac 764 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
765
766 /* no sibling left, visit parent */
adc5e8b5 767 return pos->parent;
fd7b9f7b
TH
768}
769
45a140e5
TH
770static void __kernfs_deactivate(struct kernfs_node *kn)
771{
772 struct kernfs_node *pos;
773
774 lockdep_assert_held(&kernfs_mutex);
775
776 /* prevent any new usage under @kn by deactivating all nodes */
777 pos = NULL;
778 while ((pos = kernfs_next_descendant_post(pos, kn))) {
9f010c2a
TH
779 if (!pos->deact_depth++) {
780 WARN_ON_ONCE(atomic_read(&pos->active) < 0);
45a140e5
TH
781 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
782 pos->flags |= KERNFS_JUST_DEACTIVATED;
783 }
784 }
785
786 /*
787 * Drain the subtree. If kernfs_drain() blocked to drain, which is
788 * indicated by %true return, it temporarily released kernfs_mutex
789 * and the rbtree might have been modified inbetween breaking our
790 * future walk. Restart the walk after each %true return.
791 */
792 pos = NULL;
793 while ((pos = kernfs_next_descendant_post(pos, kn))) {
794 bool drained;
795
796 kernfs_get(pos);
797 drained = kernfs_drain(pos);
798 kernfs_put(pos);
799 if (drained)
800 pos = NULL;
801 }
802}
803
9f010c2a
TH
804static void __kernfs_reactivate(struct kernfs_node *kn)
805{
806 struct kernfs_node *pos;
807
808 lockdep_assert_held(&kernfs_mutex);
809
810 pos = NULL;
811 while ((pos = kernfs_next_descendant_post(pos, kn))) {
812 if (!--pos->deact_depth) {
813 WARN_ON_ONCE(atomic_read(&pos->active) >= 0);
814 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
815 }
816 WARN_ON_ONCE(pos->deact_depth < 0);
817 }
818
819 /* some nodes reactivated, kick get_active waiters */
820 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
821}
822
823static void __kernfs_deactivate_self(struct kernfs_node *kn)
824{
825 /*
826 * Take out ourself out of the active ref dependency chain and
827 * deactivate. If we're called without an active ref, lockdep will
828 * complain.
829 */
830 kernfs_put_active(kn);
831 __kernfs_deactivate(kn);
832}
833
834static void __kernfs_reactivate_self(struct kernfs_node *kn)
835{
836 __kernfs_reactivate(kn);
837 /*
838 * Restore active ref dropped by deactivate_self() so that it's
839 * balanced on return. put_active() will soon be called on @kn, so
840 * this can't break anything regardless of @kn's state.
841 */
842 atomic_inc(&kn->active);
843 if (kernfs_lockdep(kn))
844 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
845}
846
847/**
848 * kernfs_deactivate - deactivate subtree of a node
849 * @kn: kernfs_node to deactivate subtree of
850 *
851 * Deactivate the subtree of @kn. On return, there's no active operation
852 * going on under @kn and creation or renaming of a node under @kn is
853 * blocked until @kn is reactivated or removed. This function can be
854 * called multiple times and nests properly. Each invocation should be
855 * paired with kernfs_reactivate().
856 *
857 * For a kernfs user which uses simple locking, the subsystem lock would
858 * nest inside active reference. This becomes problematic if the user
859 * tries to remove nodes while holding the subystem lock as it would create
860 * a reverse locking dependency from the subsystem lock to active ref.
861 * This function can be used to break such reverse dependency. The user
862 * can call this function outside the subsystem lock and then proceed to
863 * invoke kernfs_remove() while holding the subsystem lock without
864 * introducing such reverse dependency.
865 */
866void kernfs_deactivate(struct kernfs_node *kn)
867{
868 mutex_lock(&kernfs_mutex);
869 __kernfs_deactivate(kn);
870 mutex_unlock(&kernfs_mutex);
871}
872
873/**
874 * kernfs_reactivate - reactivate subtree of a node
875 * @kn: kernfs_node to reactivate subtree of
876 *
877 * Undo kernfs_deactivate().
878 */
879void kernfs_reactivate(struct kernfs_node *kn)
880{
881 mutex_lock(&kernfs_mutex);
882 __kernfs_reactivate(kn);
883 mutex_unlock(&kernfs_mutex);
884}
885
886/**
887 * kernfs_deactivate_self - deactivate subtree of a node from its own method
888 * @kn: the self kernfs_node to deactivate subtree of
889 *
890 * The caller must be running off of a kernfs operation which is invoked
891 * with an active reference - e.g. one of kernfs_ops. Once this function
892 * is called, @kn may be removed by someone else while the enclosing method
893 * is in progress. Other than that, this function is equivalent to
894 * kernfs_deactivate() and should be paired with kernfs_reactivate_self().
895 */
896void kernfs_deactivate_self(struct kernfs_node *kn)
897{
898 mutex_lock(&kernfs_mutex);
899 __kernfs_deactivate_self(kn);
900 mutex_unlock(&kernfs_mutex);
901}
902
903/**
904 * kernfs_reactivate_self - reactivate subtree of a node from its own method
905 * @kn: the self kernfs_node to reactivate subtree of
906 *
907 * Undo kernfs_deactivate_self().
908 */
909void kernfs_reactivate_self(struct kernfs_node *kn)
910{
911 mutex_lock(&kernfs_mutex);
912 __kernfs_reactivate_self(kn);
913 mutex_unlock(&kernfs_mutex);
914}
915
99177a34 916static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 917{
895a068a 918 struct kernfs_root *root = kernfs_root(kn);
45a140e5
TH
919 struct kernfs_node *pos;
920
921 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 922
c637b8ac 923 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 924
45a140e5
TH
925 __kernfs_deactivate(kn);
926
927 /* unlink the subtree node-by-node */
fd7b9f7b 928 do {
45a140e5
TH
929 pos = kernfs_leftmost_descendant(kn);
930
f601f9a2
TH
931 /*
932 * We're gonna release kernfs_mutex to unmap bin files,
933 * Make sure @pos doesn't go away inbetween.
934 */
935 kernfs_get(pos);
936
937 /*
938 * This must be come before unlinking; otherwise, when
939 * there are multiple removers, some may finish before
940 * unmapping is complete.
941 */
942 if (pos->flags & KERNFS_HAS_MMAP) {
943 mutex_unlock(&kernfs_mutex);
944 kernfs_unmap_file(pos);
945 mutex_lock(&kernfs_mutex);
946 }
947
948 /*
949 * kernfs_unlink_sibling() succeeds once per node. Use it
950 * to decide who's responsible for cleanups.
951 */
952 if (!pos->parent || kernfs_unlink_sibling(pos)) {
953 struct kernfs_iattrs *ps_iattr =
954 pos->parent ? pos->parent->iattr : NULL;
45a140e5
TH
955
956 /* update timestamps on the parent */
45a140e5
TH
957 if (ps_iattr) {
958 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
959 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
960 }
f601f9a2 961
99177a34 962 kernfs_put(pos);
45a140e5
TH
963 }
964
f601f9a2 965 kernfs_put(pos);
45a140e5 966 } while (pos != kn);
895a068a
TH
967
968 /* some nodes killed, kick get_active waiters */
969 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
970}
971
972/**
324a56e1
TH
973 * kernfs_remove - remove a kernfs_node recursively
974 * @kn: the kernfs_node to remove
fd7b9f7b 975 *
324a56e1 976 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 977 */
324a56e1 978void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 979{
99177a34
TH
980 mutex_lock(&kernfs_mutex);
981 __kernfs_remove(kn);
982 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
983}
984
1ae06819
TH
985/**
986 * kernfs_remove_self - remove a kernfs_node from its own method
987 * @kn: the self kernfs_node to remove
988 *
989 * The caller must be running off of a kernfs operation which is invoked
990 * with an active reference - e.g. one of kernfs_ops. This can be used to
991 * implement a file operation which deletes itself.
992 *
993 * For example, the "delete" file for a sysfs device directory can be
994 * implemented by invoking kernfs_remove_self() on the "delete" file
995 * itself. This function breaks the circular dependency of trying to
996 * deactivate self while holding an active ref itself. It isn't necessary
997 * to modify the usual removal path to use kernfs_remove_self(). The
998 * "delete" implementation can simply invoke kernfs_remove_self() on self
999 * before proceeding with the usual removal path. kernfs will ignore later
1000 * kernfs_remove() on self.
1001 *
1002 * kernfs_remove_self() can be called multiple times concurrently on the
1003 * same kernfs_node. Only the first one actually performs removal and
1004 * returns %true. All others will wait until the kernfs operation which
1005 * won self-removal finishes and return %false. Note that the losers wait
1006 * for the completion of not only the winning kernfs_remove_self() but also
1007 * the whole kernfs_ops which won the arbitration. This can be used to
1008 * guarantee, for example, all concurrent writes to a "delete" file to
1009 * finish only after the whole operation is complete.
1010 */
1011bool kernfs_remove_self(struct kernfs_node *kn)
1012{
1013 bool ret;
1014
1015 mutex_lock(&kernfs_mutex);
1016 __kernfs_deactivate_self(kn);
1017
1018 /*
1019 * SUICIDAL is used to arbitrate among competing invocations. Only
1020 * the first one will actually perform removal. When the removal
1021 * is complete, SUICIDED is set and the active ref is restored
1022 * while holding kernfs_mutex. The ones which lost arbitration
1023 * waits for SUICDED && drained which can happen only after the
1024 * enclosing kernfs operation which executed the winning instance
1025 * of kernfs_remove_self() finished.
1026 */
1027 if (!(kn->flags & KERNFS_SUICIDAL)) {
1028 kn->flags |= KERNFS_SUICIDAL;
1029 __kernfs_remove(kn);
1030 kn->flags |= KERNFS_SUICIDED;
1031 ret = true;
1032 } else {
1033 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1034 DEFINE_WAIT(wait);
1035
1036 while (true) {
1037 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1038
1039 if ((kn->flags & KERNFS_SUICIDED) &&
1040 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1041 break;
1042
1043 mutex_unlock(&kernfs_mutex);
1044 schedule();
1045 mutex_lock(&kernfs_mutex);
1046 }
1047 finish_wait(waitq, &wait);
1048 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1049 ret = false;
1050 }
1051
1052 __kernfs_reactivate_self(kn);
1053 mutex_unlock(&kernfs_mutex);
1054 return ret;
1055}
1056
fd7b9f7b 1057/**
324a56e1
TH
1058 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1059 * @parent: parent of the target
1060 * @name: name of the kernfs_node to remove
1061 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1062 *
324a56e1
TH
1063 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1064 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1065 */
324a56e1 1066int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1067 const void *ns)
1068{
324a56e1 1069 struct kernfs_node *kn;
fd7b9f7b 1070
324a56e1 1071 if (!parent) {
c637b8ac 1072 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1073 name);
1074 return -ENOENT;
1075 }
1076
99177a34 1077 mutex_lock(&kernfs_mutex);
fd7b9f7b 1078
324a56e1
TH
1079 kn = kernfs_find_ns(parent, name, ns);
1080 if (kn)
99177a34 1081 __kernfs_remove(kn);
fd7b9f7b 1082
99177a34 1083 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1084
324a56e1 1085 if (kn)
fd7b9f7b
TH
1086 return 0;
1087 else
1088 return -ENOENT;
1089}
1090
1091/**
1092 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1093 * @kn: target node
fd7b9f7b
TH
1094 * @new_parent: new parent to put @sd under
1095 * @new_name: new name
1096 * @new_ns: new namespace tag
1097 */
324a56e1 1098int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1099 const char *new_name, const void *new_ns)
1100{
1101 int error;
1102
d0ae3d43 1103 error = -ENOENT;
ae34372e 1104 if (!kernfs_get_active(new_parent))
d0ae3d43 1105 goto out;
ae34372e
TH
1106 if (!kernfs_get_active(kn))
1107 goto out_put_new_parent;
1108
1109 mutex_lock(&kernfs_mutex);
d0ae3d43 1110
fd7b9f7b 1111 error = 0;
adc5e8b5
TH
1112 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1113 (strcmp(kn->name, new_name) == 0))
ae34372e 1114 goto out_unlock; /* nothing to rename */
fd7b9f7b
TH
1115
1116 error = -EEXIST;
1117 if (kernfs_find_ns(new_parent, new_name, new_ns))
ae34372e 1118 goto out_unlock;
fd7b9f7b 1119
324a56e1 1120 /* rename kernfs_node */
adc5e8b5 1121 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b
TH
1122 error = -ENOMEM;
1123 new_name = kstrdup(new_name, GFP_KERNEL);
1124 if (!new_name)
ae34372e 1125 goto out_unlock;
fd7b9f7b 1126
47a52e91
TH
1127 if (kn->flags & KERNFS_STATIC_NAME)
1128 kn->flags &= ~KERNFS_STATIC_NAME;
1129 else
1130 kfree(kn->name);
1131
adc5e8b5 1132 kn->name = new_name;
fd7b9f7b
TH
1133 }
1134
1135 /*
1136 * Move to the appropriate place in the appropriate directories rbtree.
1137 */
c637b8ac 1138 kernfs_unlink_sibling(kn);
fd7b9f7b 1139 kernfs_get(new_parent);
adc5e8b5
TH
1140 kernfs_put(kn->parent);
1141 kn->ns = new_ns;
c637b8ac 1142 kn->hash = kernfs_name_hash(kn->name, kn->ns);
adc5e8b5 1143 kn->parent = new_parent;
c637b8ac 1144 kernfs_link_sibling(kn);
fd7b9f7b
TH
1145
1146 error = 0;
ae34372e 1147out_unlock:
a797bfc3 1148 mutex_unlock(&kernfs_mutex);
ae34372e
TH
1149 kernfs_put_active(kn);
1150out_put_new_parent:
1151 kernfs_put_active(new_parent);
1152out:
fd7b9f7b
TH
1153 return error;
1154}
1155
fd7b9f7b 1156/* Relationship between s_mode and the DT_xxx types */
324a56e1 1157static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1158{
adc5e8b5 1159 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1160}
1161
c637b8ac 1162static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1163{
1164 kernfs_put(filp->private_data);
1165 return 0;
1166}
1167
c637b8ac 1168static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1169 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1170{
1171 if (pos) {
ae34372e 1172 int valid = pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1173 kernfs_put(pos);
1174 if (!valid)
1175 pos = NULL;
1176 }
1177 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1178 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1179 while (node) {
324a56e1 1180 pos = rb_to_kn(node);
fd7b9f7b 1181
adc5e8b5 1182 if (hash < pos->hash)
fd7b9f7b 1183 node = node->rb_left;
adc5e8b5 1184 else if (hash > pos->hash)
fd7b9f7b
TH
1185 node = node->rb_right;
1186 else
1187 break;
1188 }
1189 }
1190 /* Skip over entries in the wrong namespace */
adc5e8b5
TH
1191 while (pos && pos->ns != ns) {
1192 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1193 if (!node)
1194 pos = NULL;
1195 else
324a56e1 1196 pos = rb_to_kn(node);
fd7b9f7b
TH
1197 }
1198 return pos;
1199}
1200
c637b8ac 1201static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1202 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1203{
c637b8ac 1204 pos = kernfs_dir_pos(ns, parent, ino, pos);
fd7b9f7b
TH
1205 if (pos)
1206 do {
adc5e8b5 1207 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1208 if (!node)
1209 pos = NULL;
1210 else
324a56e1 1211 pos = rb_to_kn(node);
adc5e8b5 1212 } while (pos && pos->ns != ns);
fd7b9f7b
TH
1213 return pos;
1214}
1215
c637b8ac 1216static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1217{
1218 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1219 struct kernfs_node *parent = dentry->d_fsdata;
1220 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1221 const void *ns = NULL;
1222
1223 if (!dir_emit_dots(file, ctx))
1224 return 0;
a797bfc3 1225 mutex_lock(&kernfs_mutex);
fd7b9f7b 1226
324a56e1 1227 if (kernfs_ns_enabled(parent))
c525aadd 1228 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1229
c637b8ac 1230 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1231 pos;
c637b8ac 1232 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1233 const char *name = pos->name;
fd7b9f7b
TH
1234 unsigned int type = dt_type(pos);
1235 int len = strlen(name);
adc5e8b5 1236 ino_t ino = pos->ino;
fd7b9f7b 1237
adc5e8b5 1238 ctx->pos = pos->hash;
fd7b9f7b
TH
1239 file->private_data = pos;
1240 kernfs_get(pos);
1241
a797bfc3 1242 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1243 if (!dir_emit(ctx, name, len, ino, type))
1244 return 0;
a797bfc3 1245 mutex_lock(&kernfs_mutex);
fd7b9f7b 1246 }
a797bfc3 1247 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1248 file->private_data = NULL;
1249 ctx->pos = INT_MAX;
1250 return 0;
1251}
1252
c637b8ac
TH
1253static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1254 int whence)
fd7b9f7b
TH
1255{
1256 struct inode *inode = file_inode(file);
1257 loff_t ret;
1258
1259 mutex_lock(&inode->i_mutex);
1260 ret = generic_file_llseek(file, offset, whence);
1261 mutex_unlock(&inode->i_mutex);
1262
1263 return ret;
1264}
1265
a797bfc3 1266const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1267 .read = generic_read_dir,
c637b8ac
TH
1268 .iterate = kernfs_fop_readdir,
1269 .release = kernfs_dir_fop_release,
1270 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1271};