]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/kernfs/dir.c
VFS: security/: d_inode() annotations
[mirror_ubuntu-artful-kernel.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
94/**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106{
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114}
e61734c5 115EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
116
117/**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123void pr_cont_kernfs_name(struct kernfs_node *kn)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133}
134
135/**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141void pr_cont_kernfs_path(struct kernfs_node *kn)
142{
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166{
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176}
177
fd7b9f7b 178/**
c637b8ac 179 * kernfs_name_hash
fd7b9f7b
TH
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
c637b8ac 185static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
186{
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 194 if (hash < 2)
fd7b9f7b
TH
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199}
200
c637b8ac
TH
201static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 203{
72392ed0
RV
204 if (hash < kn->hash)
205 return -1;
206 if (hash > kn->hash)
207 return 1;
208 if (ns < kn->ns)
209 return -1;
210 if (ns > kn->ns)
211 return 1;
adc5e8b5 212 return strcmp(name, kn->name);
fd7b9f7b
TH
213}
214
c637b8ac
TH
215static int kernfs_sd_compare(const struct kernfs_node *left,
216 const struct kernfs_node *right)
fd7b9f7b 217{
c637b8ac 218 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
219}
220
221/**
c637b8ac 222 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 223 * @kn: kernfs_node of interest
fd7b9f7b 224 *
324a56e1 225 * Link @kn into its sibling rbtree which starts from
adc5e8b5 226 * @kn->parent->dir.children.
fd7b9f7b
TH
227 *
228 * Locking:
a797bfc3 229 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
230 *
231 * RETURNS:
232 * 0 on susccess -EEXIST on failure.
233 */
c637b8ac 234static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 235{
adc5e8b5 236 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
237 struct rb_node *parent = NULL;
238
fd7b9f7b 239 while (*node) {
324a56e1 240 struct kernfs_node *pos;
fd7b9f7b
TH
241 int result;
242
324a56e1 243 pos = rb_to_kn(*node);
fd7b9f7b 244 parent = *node;
c637b8ac 245 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 246 if (result < 0)
adc5e8b5 247 node = &pos->rb.rb_left;
fd7b9f7b 248 else if (result > 0)
adc5e8b5 249 node = &pos->rb.rb_right;
fd7b9f7b
TH
250 else
251 return -EEXIST;
252 }
c1befb88 253
fd7b9f7b 254 /* add new node and rebalance the tree */
adc5e8b5
TH
255 rb_link_node(&kn->rb, parent, node);
256 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
257
258 /* successfully added, account subdir number */
259 if (kernfs_type(kn) == KERNFS_DIR)
260 kn->parent->dir.subdirs++;
261
fd7b9f7b
TH
262 return 0;
263}
264
265/**
c637b8ac 266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 267 * @kn: kernfs_node of interest
fd7b9f7b 268 *
35beab06
TH
269 * Try to unlink @kn from its sibling rbtree which starts from
270 * kn->parent->dir.children. Returns %true if @kn was actually
271 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
272 *
273 * Locking:
a797bfc3 274 * mutex_lock(kernfs_mutex)
fd7b9f7b 275 */
35beab06 276static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 277{
35beab06
TH
278 if (RB_EMPTY_NODE(&kn->rb))
279 return false;
280
df23fc39 281 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 282 kn->parent->dir.subdirs--;
fd7b9f7b 283
adc5e8b5 284 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
285 RB_CLEAR_NODE(&kn->rb);
286 return true;
fd7b9f7b
TH
287}
288
289/**
c637b8ac 290 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 291 * @kn: kernfs_node to get an active reference to
fd7b9f7b 292 *
324a56e1 293 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
294 * is NULL.
295 *
296 * RETURNS:
324a56e1 297 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 298 */
c637b8ac 299struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 300{
324a56e1 301 if (unlikely(!kn))
fd7b9f7b
TH
302 return NULL;
303
f4b3e631
GKH
304 if (!atomic_inc_unless_negative(&kn->active))
305 return NULL;
895a068a 306
182fd64b 307 if (kernfs_lockdep(kn))
f4b3e631
GKH
308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 return kn;
fd7b9f7b
TH
310}
311
312/**
c637b8ac 313 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 314 * @kn: kernfs_node to put an active reference to
fd7b9f7b 315 *
324a56e1 316 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
317 * is NULL.
318 */
c637b8ac 319void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 320{
abd54f02 321 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
322 int v;
323
324a56e1 324 if (unlikely(!kn))
fd7b9f7b
TH
325 return;
326
182fd64b 327 if (kernfs_lockdep(kn))
324a56e1 328 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 329 v = atomic_dec_return(&kn->active);
df23fc39 330 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
331 return;
332
abd54f02 333 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
334}
335
336/**
81c173cb
TH
337 * kernfs_drain - drain kernfs_node
338 * @kn: kernfs_node to drain
fd7b9f7b 339 *
81c173cb
TH
340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
341 * removers may invoke this function concurrently on @kn and all will
342 * return after draining is complete.
fd7b9f7b 343 */
81c173cb 344static void kernfs_drain(struct kernfs_node *kn)
35beab06 345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 346{
abd54f02 347 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 348
35beab06 349 lockdep_assert_held(&kernfs_mutex);
81c173cb 350 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 351
35beab06 352 mutex_unlock(&kernfs_mutex);
abd54f02 353
182fd64b 354 if (kernfs_lockdep(kn)) {
35beab06
TH
355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 lock_contended(&kn->dep_map, _RET_IP_);
358 }
abd54f02 359
35beab06 360 /* but everyone should wait for draining */
abd54f02
TH
361 wait_event(root->deactivate_waitq,
362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 363
182fd64b 364 if (kernfs_lockdep(kn)) {
a6607930
TH
365 lock_acquired(&kn->dep_map, _RET_IP_);
366 rwsem_release(&kn->dep_map, 1, _RET_IP_);
367 }
35beab06 368
ccf02aaf
TH
369 kernfs_unmap_bin_file(kn);
370
35beab06 371 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
372}
373
fd7b9f7b 374/**
324a56e1
TH
375 * kernfs_get - get a reference count on a kernfs_node
376 * @kn: the target kernfs_node
fd7b9f7b 377 */
324a56e1 378void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 379{
324a56e1 380 if (kn) {
adc5e8b5
TH
381 WARN_ON(!atomic_read(&kn->count));
382 atomic_inc(&kn->count);
fd7b9f7b
TH
383 }
384}
385EXPORT_SYMBOL_GPL(kernfs_get);
386
387/**
324a56e1
TH
388 * kernfs_put - put a reference count on a kernfs_node
389 * @kn: the target kernfs_node
fd7b9f7b 390 *
324a56e1 391 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 392 */
324a56e1 393void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 394{
324a56e1 395 struct kernfs_node *parent;
ba7443bc 396 struct kernfs_root *root;
fd7b9f7b 397
adc5e8b5 398 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 399 return;
324a56e1 400 root = kernfs_root(kn);
fd7b9f7b 401 repeat:
81c173cb
TH
402 /*
403 * Moving/renaming is always done while holding reference.
adc5e8b5 404 * kn->parent won't change beneath us.
fd7b9f7b 405 */
adc5e8b5 406 parent = kn->parent;
fd7b9f7b 407
81c173cb
TH
408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 411
df23fc39 412 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 413 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
414
415 kfree_const(kn->name);
416
adc5e8b5
TH
417 if (kn->iattr) {
418 if (kn->iattr->ia_secdata)
419 security_release_secctx(kn->iattr->ia_secdata,
420 kn->iattr->ia_secdata_len);
421 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 422 }
adc5e8b5
TH
423 kfree(kn->iattr);
424 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 425 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 426
324a56e1
TH
427 kn = parent;
428 if (kn) {
adc5e8b5 429 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
430 goto repeat;
431 } else {
324a56e1 432 /* just released the root kn, free @root too */
bc755553 433 ida_destroy(&root->ino_ida);
ba7443bc
TH
434 kfree(root);
435 }
fd7b9f7b
TH
436}
437EXPORT_SYMBOL_GPL(kernfs_put);
438
c637b8ac 439static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 440{
324a56e1 441 struct kernfs_node *kn;
fd7b9f7b
TH
442
443 if (flags & LOOKUP_RCU)
444 return -ECHILD;
445
19bbb926
TH
446 /* Always perform fresh lookup for negatives */
447 if (!dentry->d_inode)
448 goto out_bad_unlocked;
449
324a56e1 450 kn = dentry->d_fsdata;
a797bfc3 451 mutex_lock(&kernfs_mutex);
fd7b9f7b 452
81c173cb
TH
453 /* The kernfs node has been deactivated */
454 if (!kernfs_active(kn))
fd7b9f7b
TH
455 goto out_bad;
456
c637b8ac 457 /* The kernfs node has been moved? */
adc5e8b5 458 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
459 goto out_bad;
460
c637b8ac 461 /* The kernfs node has been renamed */
adc5e8b5 462 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
463 goto out_bad;
464
c637b8ac 465 /* The kernfs node has been moved to a different namespace */
adc5e8b5 466 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 467 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
468 goto out_bad;
469
a797bfc3 470 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
471 return 1;
472out_bad:
a797bfc3 473 mutex_unlock(&kernfs_mutex);
19bbb926 474out_bad_unlocked:
fd7b9f7b
TH
475 return 0;
476}
477
c637b8ac 478static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
479{
480 kernfs_put(dentry->d_fsdata);
481}
482
a797bfc3 483const struct dentry_operations kernfs_dops = {
c637b8ac 484 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 485 .d_release = kernfs_dop_release,
fd7b9f7b
TH
486};
487
0c23b225
TH
488/**
489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
490 * @dentry: the dentry in question
491 *
492 * Return the kernfs_node associated with @dentry. If @dentry is not a
493 * kernfs one, %NULL is returned.
494 *
495 * While the returned kernfs_node will stay accessible as long as @dentry
496 * is accessible, the returned node can be in any state and the caller is
497 * fully responsible for determining what's accessible.
498 */
499struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
500{
f41c5934 501 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
502 return dentry->d_fsdata;
503 return NULL;
504}
505
db4aad20
TH
506static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
507 const char *name, umode_t mode,
508 unsigned flags)
fd7b9f7b 509{
324a56e1 510 struct kernfs_node *kn;
bc755553 511 int ret;
fd7b9f7b 512
dfeb0750
TH
513 name = kstrdup_const(name, GFP_KERNEL);
514 if (!name)
515 return NULL;
fd7b9f7b 516
a797bfc3 517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 518 if (!kn)
fd7b9f7b
TH
519 goto err_out1;
520
bc755553
TH
521 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
522 if (ret < 0)
fd7b9f7b 523 goto err_out2;
adc5e8b5 524 kn->ino = ret;
fd7b9f7b 525
adc5e8b5 526 atomic_set(&kn->count, 1);
81c173cb 527 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 528 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 529
adc5e8b5
TH
530 kn->name = name;
531 kn->mode = mode;
81c173cb 532 kn->flags = flags;
fd7b9f7b 533
324a56e1 534 return kn;
fd7b9f7b
TH
535
536 err_out2:
a797bfc3 537 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 538 err_out1:
dfeb0750 539 kfree_const(name);
fd7b9f7b
TH
540 return NULL;
541}
542
db4aad20
TH
543struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
544 const char *name, umode_t mode,
545 unsigned flags)
546{
547 struct kernfs_node *kn;
548
549 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
550 if (kn) {
551 kernfs_get(parent);
552 kn->parent = parent;
553 }
554 return kn;
555}
556
fd7b9f7b 557/**
c637b8ac 558 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 559 * @kn: kernfs_node to be added
fd7b9f7b 560 *
db4aad20
TH
561 * The caller must already have initialized @kn->parent. This
562 * function increments nlink of the parent's inode if @kn is a
563 * directory and link into the children list of the parent.
fd7b9f7b 564 *
fd7b9f7b
TH
565 * RETURNS:
566 * 0 on success, -EEXIST if entry with the given name already
567 * exists.
568 */
988cd7af 569int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 570{
db4aad20 571 struct kernfs_node *parent = kn->parent;
c525aadd 572 struct kernfs_iattrs *ps_iattr;
988cd7af 573 bool has_ns;
fd7b9f7b
TH
574 int ret;
575
988cd7af
TH
576 mutex_lock(&kernfs_mutex);
577
578 ret = -EINVAL;
579 has_ns = kernfs_ns_enabled(parent);
580 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
581 has_ns ? "required" : "invalid", parent->name, kn->name))
582 goto out_unlock;
fd7b9f7b 583
df23fc39 584 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 585 goto out_unlock;
fd7b9f7b 586
988cd7af 587 ret = -ENOENT;
d35258ef 588 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 589 goto out_unlock;
798c75a0 590
c637b8ac 591 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 592
c637b8ac 593 ret = kernfs_link_sibling(kn);
fd7b9f7b 594 if (ret)
988cd7af 595 goto out_unlock;
fd7b9f7b
TH
596
597 /* Update timestamps on the parent */
adc5e8b5 598 ps_iattr = parent->iattr;
fd7b9f7b
TH
599 if (ps_iattr) {
600 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
601 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
602 }
603
d35258ef
TH
604 mutex_unlock(&kernfs_mutex);
605
606 /*
607 * Activate the new node unless CREATE_DEACTIVATED is requested.
608 * If not activated here, the kernfs user is responsible for
609 * activating the node with kernfs_activate(). A node which hasn't
610 * been activated is not visible to userland and its removal won't
611 * trigger deactivation.
612 */
613 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
614 kernfs_activate(kn);
615 return 0;
616
988cd7af 617out_unlock:
a797bfc3 618 mutex_unlock(&kernfs_mutex);
988cd7af 619 return ret;
fd7b9f7b
TH
620}
621
622/**
324a56e1
TH
623 * kernfs_find_ns - find kernfs_node with the given name
624 * @parent: kernfs_node to search under
fd7b9f7b
TH
625 * @name: name to look for
626 * @ns: the namespace tag to use
627 *
324a56e1
TH
628 * Look for kernfs_node with name @name under @parent. Returns pointer to
629 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 630 */
324a56e1
TH
631static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
632 const unsigned char *name,
633 const void *ns)
fd7b9f7b 634{
adc5e8b5 635 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 636 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
637 unsigned int hash;
638
a797bfc3 639 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
640
641 if (has_ns != (bool)ns) {
c637b8ac 642 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 643 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
644 return NULL;
645 }
646
c637b8ac 647 hash = kernfs_name_hash(name, ns);
fd7b9f7b 648 while (node) {
324a56e1 649 struct kernfs_node *kn;
fd7b9f7b
TH
650 int result;
651
324a56e1 652 kn = rb_to_kn(node);
c637b8ac 653 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
654 if (result < 0)
655 node = node->rb_left;
656 else if (result > 0)
657 node = node->rb_right;
658 else
324a56e1 659 return kn;
fd7b9f7b
TH
660 }
661 return NULL;
662}
663
664/**
324a56e1
TH
665 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
666 * @parent: kernfs_node to search under
fd7b9f7b
TH
667 * @name: name to look for
668 * @ns: the namespace tag to use
669 *
324a56e1 670 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 671 * if found. This function may sleep and returns pointer to the found
324a56e1 672 * kernfs_node on success, %NULL on failure.
fd7b9f7b 673 */
324a56e1
TH
674struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
675 const char *name, const void *ns)
fd7b9f7b 676{
324a56e1 677 struct kernfs_node *kn;
fd7b9f7b 678
a797bfc3 679 mutex_lock(&kernfs_mutex);
324a56e1
TH
680 kn = kernfs_find_ns(parent, name, ns);
681 kernfs_get(kn);
a797bfc3 682 mutex_unlock(&kernfs_mutex);
fd7b9f7b 683
324a56e1 684 return kn;
fd7b9f7b
TH
685}
686EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
687
ba7443bc
TH
688/**
689 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 690 * @scops: optional syscall operations for the hierarchy
d35258ef 691 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
692 * @priv: opaque data associated with the new directory
693 *
694 * Returns the root of the new hierarchy on success, ERR_PTR() value on
695 * failure.
696 */
90c07c89 697struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 698 unsigned int flags, void *priv)
ba7443bc
TH
699{
700 struct kernfs_root *root;
324a56e1 701 struct kernfs_node *kn;
ba7443bc
TH
702
703 root = kzalloc(sizeof(*root), GFP_KERNEL);
704 if (!root)
705 return ERR_PTR(-ENOMEM);
706
bc755553 707 ida_init(&root->ino_ida);
7d568a83 708 INIT_LIST_HEAD(&root->supers);
bc755553 709
db4aad20
TH
710 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
711 KERNFS_DIR);
324a56e1 712 if (!kn) {
bc755553 713 ida_destroy(&root->ino_ida);
ba7443bc
TH
714 kfree(root);
715 return ERR_PTR(-ENOMEM);
716 }
717
324a56e1 718 kn->priv = priv;
adc5e8b5 719 kn->dir.root = root;
ba7443bc 720
90c07c89 721 root->syscall_ops = scops;
d35258ef 722 root->flags = flags;
324a56e1 723 root->kn = kn;
abd54f02 724 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 725
d35258ef
TH
726 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
727 kernfs_activate(kn);
728
ba7443bc
TH
729 return root;
730}
731
732/**
733 * kernfs_destroy_root - destroy a kernfs hierarchy
734 * @root: root of the hierarchy to destroy
735 *
736 * Destroy the hierarchy anchored at @root by removing all existing
737 * directories and destroying @root.
738 */
739void kernfs_destroy_root(struct kernfs_root *root)
740{
324a56e1 741 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
742}
743
fd7b9f7b
TH
744/**
745 * kernfs_create_dir_ns - create a directory
746 * @parent: parent in which to create a new directory
747 * @name: name of the new directory
bb8b9d09 748 * @mode: mode of the new directory
fd7b9f7b
TH
749 * @priv: opaque data associated with the new directory
750 * @ns: optional namespace tag of the directory
751 *
752 * Returns the created node on success, ERR_PTR() value on failure.
753 */
324a56e1 754struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
755 const char *name, umode_t mode,
756 void *priv, const void *ns)
fd7b9f7b 757{
324a56e1 758 struct kernfs_node *kn;
fd7b9f7b
TH
759 int rc;
760
761 /* allocate */
db4aad20 762 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 763 if (!kn)
fd7b9f7b
TH
764 return ERR_PTR(-ENOMEM);
765
adc5e8b5
TH
766 kn->dir.root = parent->dir.root;
767 kn->ns = ns;
324a56e1 768 kn->priv = priv;
fd7b9f7b
TH
769
770 /* link in */
988cd7af 771 rc = kernfs_add_one(kn);
fd7b9f7b 772 if (!rc)
324a56e1 773 return kn;
fd7b9f7b 774
324a56e1 775 kernfs_put(kn);
fd7b9f7b
TH
776 return ERR_PTR(rc);
777}
778
c637b8ac
TH
779static struct dentry *kernfs_iop_lookup(struct inode *dir,
780 struct dentry *dentry,
781 unsigned int flags)
fd7b9f7b 782{
19bbb926 783 struct dentry *ret;
324a56e1
TH
784 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
785 struct kernfs_node *kn;
fd7b9f7b
TH
786 struct inode *inode;
787 const void *ns = NULL;
788
a797bfc3 789 mutex_lock(&kernfs_mutex);
fd7b9f7b 790
324a56e1 791 if (kernfs_ns_enabled(parent))
c525aadd 792 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 793
324a56e1 794 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
795
796 /* no such entry */
b9c9dad0 797 if (!kn || !kernfs_active(kn)) {
19bbb926 798 ret = NULL;
fd7b9f7b
TH
799 goto out_unlock;
800 }
324a56e1
TH
801 kernfs_get(kn);
802 dentry->d_fsdata = kn;
fd7b9f7b
TH
803
804 /* attach dentry and inode */
c637b8ac 805 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
806 if (!inode) {
807 ret = ERR_PTR(-ENOMEM);
808 goto out_unlock;
809 }
810
811 /* instantiate and hash dentry */
41d28bca 812 ret = d_splice_alias(inode, dentry);
fd7b9f7b 813 out_unlock:
a797bfc3 814 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
815 return ret;
816}
817
80b9bbef
TH
818static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
819 umode_t mode)
820{
821 struct kernfs_node *parent = dir->i_private;
90c07c89 822 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 823 int ret;
80b9bbef 824
90c07c89 825 if (!scops || !scops->mkdir)
80b9bbef
TH
826 return -EPERM;
827
07c7530d
TH
828 if (!kernfs_get_active(parent))
829 return -ENODEV;
830
90c07c89 831 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
832
833 kernfs_put_active(parent);
834 return ret;
80b9bbef
TH
835}
836
837static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
838{
839 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 840 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 841 int ret;
80b9bbef 842
90c07c89 843 if (!scops || !scops->rmdir)
80b9bbef
TH
844 return -EPERM;
845
07c7530d
TH
846 if (!kernfs_get_active(kn))
847 return -ENODEV;
848
90c07c89 849 ret = scops->rmdir(kn);
07c7530d
TH
850
851 kernfs_put_active(kn);
852 return ret;
80b9bbef
TH
853}
854
855static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
856 struct inode *new_dir, struct dentry *new_dentry)
857{
858 struct kernfs_node *kn = old_dentry->d_fsdata;
859 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 860 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 861 int ret;
80b9bbef 862
90c07c89 863 if (!scops || !scops->rename)
80b9bbef
TH
864 return -EPERM;
865
07c7530d
TH
866 if (!kernfs_get_active(kn))
867 return -ENODEV;
868
869 if (!kernfs_get_active(new_parent)) {
870 kernfs_put_active(kn);
871 return -ENODEV;
872 }
873
90c07c89 874 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
875
876 kernfs_put_active(new_parent);
877 kernfs_put_active(kn);
878 return ret;
80b9bbef
TH
879}
880
a797bfc3 881const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
882 .lookup = kernfs_iop_lookup,
883 .permission = kernfs_iop_permission,
884 .setattr = kernfs_iop_setattr,
885 .getattr = kernfs_iop_getattr,
886 .setxattr = kernfs_iop_setxattr,
887 .removexattr = kernfs_iop_removexattr,
888 .getxattr = kernfs_iop_getxattr,
889 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
890
891 .mkdir = kernfs_iop_mkdir,
892 .rmdir = kernfs_iop_rmdir,
893 .rename = kernfs_iop_rename,
fd7b9f7b
TH
894};
895
c637b8ac 896static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 897{
324a56e1 898 struct kernfs_node *last;
fd7b9f7b
TH
899
900 while (true) {
901 struct rb_node *rbn;
902
903 last = pos;
904
df23fc39 905 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
906 break;
907
adc5e8b5 908 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
909 if (!rbn)
910 break;
911
324a56e1 912 pos = rb_to_kn(rbn);
fd7b9f7b
TH
913 }
914
915 return last;
916}
917
918/**
c637b8ac 919 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 920 * @pos: the current position (%NULL to initiate traversal)
324a56e1 921 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
922 *
923 * Find the next descendant to visit for post-order traversal of @root's
924 * descendants. @root is included in the iteration and the last node to be
925 * visited.
926 */
c637b8ac
TH
927static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
928 struct kernfs_node *root)
fd7b9f7b
TH
929{
930 struct rb_node *rbn;
931
a797bfc3 932 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
933
934 /* if first iteration, visit leftmost descendant which may be root */
935 if (!pos)
c637b8ac 936 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
937
938 /* if we visited @root, we're done */
939 if (pos == root)
940 return NULL;
941
942 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 943 rbn = rb_next(&pos->rb);
fd7b9f7b 944 if (rbn)
c637b8ac 945 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
946
947 /* no sibling left, visit parent */
adc5e8b5 948 return pos->parent;
fd7b9f7b
TH
949}
950
d35258ef
TH
951/**
952 * kernfs_activate - activate a node which started deactivated
953 * @kn: kernfs_node whose subtree is to be activated
954 *
955 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
956 * needs to be explicitly activated. A node which hasn't been activated
957 * isn't visible to userland and deactivation is skipped during its
958 * removal. This is useful to construct atomic init sequences where
959 * creation of multiple nodes should either succeed or fail atomically.
960 *
961 * The caller is responsible for ensuring that this function is not called
962 * after kernfs_remove*() is invoked on @kn.
963 */
964void kernfs_activate(struct kernfs_node *kn)
965{
966 struct kernfs_node *pos;
967
968 mutex_lock(&kernfs_mutex);
969
970 pos = NULL;
971 while ((pos = kernfs_next_descendant_post(pos, kn))) {
972 if (!pos || (pos->flags & KERNFS_ACTIVATED))
973 continue;
974
975 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
976 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
977
978 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
979 pos->flags |= KERNFS_ACTIVATED;
980 }
981
982 mutex_unlock(&kernfs_mutex);
983}
984
988cd7af 985static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 986{
35beab06
TH
987 struct kernfs_node *pos;
988
989 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 990
6b0afc2a
TH
991 /*
992 * Short-circuit if non-root @kn has already finished removal.
993 * This is for kernfs_remove_self() which plays with active ref
994 * after removal.
995 */
996 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
997 return;
998
c637b8ac 999 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1000
81c173cb 1001 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1002 pos = NULL;
1003 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1004 if (kernfs_active(pos))
1005 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1006
1007 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1008 do {
35beab06
TH
1009 pos = kernfs_leftmost_descendant(kn);
1010
1011 /*
81c173cb
TH
1012 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1013 * base ref could have been put by someone else by the time
1014 * the function returns. Make sure it doesn't go away
1015 * underneath us.
35beab06
TH
1016 */
1017 kernfs_get(pos);
1018
d35258ef
TH
1019 /*
1020 * Drain iff @kn was activated. This avoids draining and
1021 * its lockdep annotations for nodes which have never been
1022 * activated and allows embedding kernfs_remove() in create
1023 * error paths without worrying about draining.
1024 */
1025 if (kn->flags & KERNFS_ACTIVATED)
1026 kernfs_drain(pos);
1027 else
1028 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1029
1030 /*
1031 * kernfs_unlink_sibling() succeeds once per node. Use it
1032 * to decide who's responsible for cleanups.
1033 */
1034 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1035 struct kernfs_iattrs *ps_iattr =
1036 pos->parent ? pos->parent->iattr : NULL;
1037
1038 /* update timestamps on the parent */
1039 if (ps_iattr) {
1040 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1041 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1042 }
1043
988cd7af 1044 kernfs_put(pos);
35beab06
TH
1045 }
1046
1047 kernfs_put(pos);
1048 } while (pos != kn);
fd7b9f7b
TH
1049}
1050
1051/**
324a56e1
TH
1052 * kernfs_remove - remove a kernfs_node recursively
1053 * @kn: the kernfs_node to remove
fd7b9f7b 1054 *
324a56e1 1055 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1056 */
324a56e1 1057void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1058{
988cd7af
TH
1059 mutex_lock(&kernfs_mutex);
1060 __kernfs_remove(kn);
1061 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1062}
1063
6b0afc2a
TH
1064/**
1065 * kernfs_break_active_protection - break out of active protection
1066 * @kn: the self kernfs_node
1067 *
1068 * The caller must be running off of a kernfs operation which is invoked
1069 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1070 * this function must also be matched with an invocation of
1071 * kernfs_unbreak_active_protection().
1072 *
1073 * This function releases the active reference of @kn the caller is
1074 * holding. Once this function is called, @kn may be removed at any point
1075 * and the caller is solely responsible for ensuring that the objects it
1076 * dereferences are accessible.
1077 */
1078void kernfs_break_active_protection(struct kernfs_node *kn)
1079{
1080 /*
1081 * Take out ourself out of the active ref dependency chain. If
1082 * we're called without an active ref, lockdep will complain.
1083 */
1084 kernfs_put_active(kn);
1085}
1086
1087/**
1088 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1089 * @kn: the self kernfs_node
1090 *
1091 * If kernfs_break_active_protection() was called, this function must be
1092 * invoked before finishing the kernfs operation. Note that while this
1093 * function restores the active reference, it doesn't and can't actually
1094 * restore the active protection - @kn may already or be in the process of
1095 * being removed. Once kernfs_break_active_protection() is invoked, that
1096 * protection is irreversibly gone for the kernfs operation instance.
1097 *
1098 * While this function may be called at any point after
1099 * kernfs_break_active_protection() is invoked, its most useful location
1100 * would be right before the enclosing kernfs operation returns.
1101 */
1102void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1103{
1104 /*
1105 * @kn->active could be in any state; however, the increment we do
1106 * here will be undone as soon as the enclosing kernfs operation
1107 * finishes and this temporary bump can't break anything. If @kn
1108 * is alive, nothing changes. If @kn is being deactivated, the
1109 * soon-to-follow put will either finish deactivation or restore
1110 * deactivated state. If @kn is already removed, the temporary
1111 * bump is guaranteed to be gone before @kn is released.
1112 */
1113 atomic_inc(&kn->active);
1114 if (kernfs_lockdep(kn))
1115 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1116}
1117
1118/**
1119 * kernfs_remove_self - remove a kernfs_node from its own method
1120 * @kn: the self kernfs_node to remove
1121 *
1122 * The caller must be running off of a kernfs operation which is invoked
1123 * with an active reference - e.g. one of kernfs_ops. This can be used to
1124 * implement a file operation which deletes itself.
1125 *
1126 * For example, the "delete" file for a sysfs device directory can be
1127 * implemented by invoking kernfs_remove_self() on the "delete" file
1128 * itself. This function breaks the circular dependency of trying to
1129 * deactivate self while holding an active ref itself. It isn't necessary
1130 * to modify the usual removal path to use kernfs_remove_self(). The
1131 * "delete" implementation can simply invoke kernfs_remove_self() on self
1132 * before proceeding with the usual removal path. kernfs will ignore later
1133 * kernfs_remove() on self.
1134 *
1135 * kernfs_remove_self() can be called multiple times concurrently on the
1136 * same kernfs_node. Only the first one actually performs removal and
1137 * returns %true. All others will wait until the kernfs operation which
1138 * won self-removal finishes and return %false. Note that the losers wait
1139 * for the completion of not only the winning kernfs_remove_self() but also
1140 * the whole kernfs_ops which won the arbitration. This can be used to
1141 * guarantee, for example, all concurrent writes to a "delete" file to
1142 * finish only after the whole operation is complete.
1143 */
1144bool kernfs_remove_self(struct kernfs_node *kn)
1145{
1146 bool ret;
1147
1148 mutex_lock(&kernfs_mutex);
1149 kernfs_break_active_protection(kn);
1150
1151 /*
1152 * SUICIDAL is used to arbitrate among competing invocations. Only
1153 * the first one will actually perform removal. When the removal
1154 * is complete, SUICIDED is set and the active ref is restored
1155 * while holding kernfs_mutex. The ones which lost arbitration
1156 * waits for SUICDED && drained which can happen only after the
1157 * enclosing kernfs operation which executed the winning instance
1158 * of kernfs_remove_self() finished.
1159 */
1160 if (!(kn->flags & KERNFS_SUICIDAL)) {
1161 kn->flags |= KERNFS_SUICIDAL;
1162 __kernfs_remove(kn);
1163 kn->flags |= KERNFS_SUICIDED;
1164 ret = true;
1165 } else {
1166 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1167 DEFINE_WAIT(wait);
1168
1169 while (true) {
1170 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1171
1172 if ((kn->flags & KERNFS_SUICIDED) &&
1173 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1174 break;
1175
1176 mutex_unlock(&kernfs_mutex);
1177 schedule();
1178 mutex_lock(&kernfs_mutex);
1179 }
1180 finish_wait(waitq, &wait);
1181 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1182 ret = false;
1183 }
1184
1185 /*
1186 * This must be done while holding kernfs_mutex; otherwise, waiting
1187 * for SUICIDED && deactivated could finish prematurely.
1188 */
1189 kernfs_unbreak_active_protection(kn);
1190
1191 mutex_unlock(&kernfs_mutex);
1192 return ret;
1193}
1194
fd7b9f7b 1195/**
324a56e1
TH
1196 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1197 * @parent: parent of the target
1198 * @name: name of the kernfs_node to remove
1199 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1200 *
324a56e1
TH
1201 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1202 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1203 */
324a56e1 1204int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1205 const void *ns)
1206{
324a56e1 1207 struct kernfs_node *kn;
fd7b9f7b 1208
324a56e1 1209 if (!parent) {
c637b8ac 1210 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1211 name);
1212 return -ENOENT;
1213 }
1214
988cd7af 1215 mutex_lock(&kernfs_mutex);
fd7b9f7b 1216
324a56e1
TH
1217 kn = kernfs_find_ns(parent, name, ns);
1218 if (kn)
988cd7af 1219 __kernfs_remove(kn);
fd7b9f7b 1220
988cd7af 1221 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1222
324a56e1 1223 if (kn)
fd7b9f7b
TH
1224 return 0;
1225 else
1226 return -ENOENT;
1227}
1228
1229/**
1230 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1231 * @kn: target node
fd7b9f7b
TH
1232 * @new_parent: new parent to put @sd under
1233 * @new_name: new name
1234 * @new_ns: new namespace tag
1235 */
324a56e1 1236int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1237 const char *new_name, const void *new_ns)
1238{
3eef34ad
TH
1239 struct kernfs_node *old_parent;
1240 const char *old_name = NULL;
fd7b9f7b
TH
1241 int error;
1242
3eef34ad
TH
1243 /* can't move or rename root */
1244 if (!kn->parent)
1245 return -EINVAL;
1246
798c75a0
GKH
1247 mutex_lock(&kernfs_mutex);
1248
d0ae3d43 1249 error = -ENOENT;
81c173cb 1250 if (!kernfs_active(kn) || !kernfs_active(new_parent))
d0ae3d43
TH
1251 goto out;
1252
fd7b9f7b 1253 error = 0;
adc5e8b5
TH
1254 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1255 (strcmp(kn->name, new_name) == 0))
798c75a0 1256 goto out; /* nothing to rename */
fd7b9f7b
TH
1257
1258 error = -EEXIST;
1259 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1260 goto out;
fd7b9f7b 1261
324a56e1 1262 /* rename kernfs_node */
adc5e8b5 1263 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1264 error = -ENOMEM;
75287a67 1265 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1266 if (!new_name)
798c75a0 1267 goto out;
3eef34ad
TH
1268 } else {
1269 new_name = NULL;
fd7b9f7b
TH
1270 }
1271
1272 /*
1273 * Move to the appropriate place in the appropriate directories rbtree.
1274 */
c637b8ac 1275 kernfs_unlink_sibling(kn);
fd7b9f7b 1276 kernfs_get(new_parent);
3eef34ad
TH
1277
1278 /* rename_lock protects ->parent and ->name accessors */
1279 spin_lock_irq(&kernfs_rename_lock);
1280
1281 old_parent = kn->parent;
adc5e8b5 1282 kn->parent = new_parent;
3eef34ad
TH
1283
1284 kn->ns = new_ns;
1285 if (new_name) {
dfeb0750 1286 old_name = kn->name;
3eef34ad
TH
1287 kn->name = new_name;
1288 }
1289
1290 spin_unlock_irq(&kernfs_rename_lock);
1291
9561a896 1292 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1293 kernfs_link_sibling(kn);
fd7b9f7b 1294
3eef34ad 1295 kernfs_put(old_parent);
75287a67 1296 kfree_const(old_name);
3eef34ad 1297
fd7b9f7b 1298 error = 0;
798c75a0 1299 out:
a797bfc3 1300 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1301 return error;
1302}
1303
fd7b9f7b 1304/* Relationship between s_mode and the DT_xxx types */
324a56e1 1305static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1306{
adc5e8b5 1307 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1308}
1309
c637b8ac 1310static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1311{
1312 kernfs_put(filp->private_data);
1313 return 0;
1314}
1315
c637b8ac 1316static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1317 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1318{
1319 if (pos) {
81c173cb 1320 int valid = kernfs_active(pos) &&
798c75a0 1321 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1322 kernfs_put(pos);
1323 if (!valid)
1324 pos = NULL;
1325 }
1326 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1327 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1328 while (node) {
324a56e1 1329 pos = rb_to_kn(node);
fd7b9f7b 1330
adc5e8b5 1331 if (hash < pos->hash)
fd7b9f7b 1332 node = node->rb_left;
adc5e8b5 1333 else if (hash > pos->hash)
fd7b9f7b
TH
1334 node = node->rb_right;
1335 else
1336 break;
1337 }
1338 }
b9c9dad0
TH
1339 /* Skip over entries which are dying/dead or in the wrong namespace */
1340 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1341 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1342 if (!node)
1343 pos = NULL;
1344 else
324a56e1 1345 pos = rb_to_kn(node);
fd7b9f7b
TH
1346 }
1347 return pos;
1348}
1349
c637b8ac 1350static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1351 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1352{
c637b8ac 1353 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1354 if (pos) {
fd7b9f7b 1355 do {
adc5e8b5 1356 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1357 if (!node)
1358 pos = NULL;
1359 else
324a56e1 1360 pos = rb_to_kn(node);
b9c9dad0
TH
1361 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1362 }
fd7b9f7b
TH
1363 return pos;
1364}
1365
c637b8ac 1366static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1367{
1368 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1369 struct kernfs_node *parent = dentry->d_fsdata;
1370 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1371 const void *ns = NULL;
1372
1373 if (!dir_emit_dots(file, ctx))
1374 return 0;
a797bfc3 1375 mutex_lock(&kernfs_mutex);
fd7b9f7b 1376
324a56e1 1377 if (kernfs_ns_enabled(parent))
c525aadd 1378 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1379
c637b8ac 1380 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1381 pos;
c637b8ac 1382 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1383 const char *name = pos->name;
fd7b9f7b
TH
1384 unsigned int type = dt_type(pos);
1385 int len = strlen(name);
adc5e8b5 1386 ino_t ino = pos->ino;
fd7b9f7b 1387
adc5e8b5 1388 ctx->pos = pos->hash;
fd7b9f7b
TH
1389 file->private_data = pos;
1390 kernfs_get(pos);
1391
a797bfc3 1392 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1393 if (!dir_emit(ctx, name, len, ino, type))
1394 return 0;
a797bfc3 1395 mutex_lock(&kernfs_mutex);
fd7b9f7b 1396 }
a797bfc3 1397 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1398 file->private_data = NULL;
1399 ctx->pos = INT_MAX;
1400 return 0;
1401}
1402
c637b8ac
TH
1403static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1404 int whence)
fd7b9f7b
TH
1405{
1406 struct inode *inode = file_inode(file);
1407 loff_t ret;
1408
1409 mutex_lock(&inode->i_mutex);
1410 ret = generic_file_llseek(file, offset, whence);
1411 mutex_unlock(&inode->i_mutex);
1412
1413 return ret;
1414}
1415
a797bfc3 1416const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1417 .read = generic_read_dir,
c637b8ac
TH
1418 .iterate = kernfs_fop_readdir,
1419 .release = kernfs_dir_fop_release,
1420 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1421};