]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - fs/namespace.c
ext4: check for inconsistent extents between index and leaf block
[mirror_ubuntu-focal-kernel.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
037f11b4 32#include <linux/shmem_fs.h>
9164bb4a 33
07b20889 34#include "pnode.h"
948730b0 35#include "internal.h"
1da177e4 36
d2921684
EB
37/* Maximum number of mounts in a mount namespace */
38unsigned int sysctl_mount_max __read_mostly = 100000;
39
0818bf27
AV
40static unsigned int m_hash_mask __read_mostly;
41static unsigned int m_hash_shift __read_mostly;
42static unsigned int mp_hash_mask __read_mostly;
43static unsigned int mp_hash_shift __read_mostly;
44
45static __initdata unsigned long mhash_entries;
46static int __init set_mhash_entries(char *str)
47{
48 if (!str)
49 return 0;
50 mhash_entries = simple_strtoul(str, &str, 0);
51 return 1;
52}
53__setup("mhash_entries=", set_mhash_entries);
54
55static __initdata unsigned long mphash_entries;
56static int __init set_mphash_entries(char *str)
57{
58 if (!str)
59 return 0;
60 mphash_entries = simple_strtoul(str, &str, 0);
61 return 1;
62}
63__setup("mphash_entries=", set_mphash_entries);
13f14b4d 64
c7999c36 65static u64 event;
73cd49ec 66static DEFINE_IDA(mnt_id_ida);
719f5d7f 67static DEFINE_IDA(mnt_group_ida);
1da177e4 68
38129a13 69static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 70static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 71static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 72static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
73static HLIST_HEAD(unmounted); /* protected by namespace_sem */
74static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 75
f87fd4c2 76/* /sys/fs */
00d26666
GKH
77struct kobject *fs_kobj;
78EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 79
99b7db7b
NP
80/*
81 * vfsmount lock may be taken for read to prevent changes to the
82 * vfsmount hash, ie. during mountpoint lookups or walking back
83 * up the tree.
84 *
85 * It should be taken for write in all cases where the vfsmount
86 * tree or hash is modified or when a vfsmount structure is modified.
87 */
48a066e7 88__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 89
38129a13 90static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 91{
b58fed8b
RP
92 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
93 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
94 tmp = tmp + (tmp >> m_hash_shift);
95 return &mount_hashtable[tmp & m_hash_mask];
96}
97
98static inline struct hlist_head *mp_hash(struct dentry *dentry)
99{
100 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
101 tmp = tmp + (tmp >> mp_hash_shift);
102 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
103}
104
b105e270 105static int mnt_alloc_id(struct mount *mnt)
73cd49ec 106{
169b480e
MW
107 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
108
109 if (res < 0)
110 return res;
111 mnt->mnt_id = res;
112 return 0;
73cd49ec
MS
113}
114
b105e270 115static void mnt_free_id(struct mount *mnt)
73cd49ec 116{
169b480e 117 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
118}
119
719f5d7f
MS
120/*
121 * Allocate a new peer group ID
719f5d7f 122 */
4b8b21f4 123static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 124{
169b480e 125 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 126
169b480e
MW
127 if (res < 0)
128 return res;
129 mnt->mnt_group_id = res;
130 return 0;
719f5d7f
MS
131}
132
133/*
134 * Release a peer group ID
135 */
4b8b21f4 136void mnt_release_group_id(struct mount *mnt)
719f5d7f 137{
169b480e 138 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 139 mnt->mnt_group_id = 0;
719f5d7f
MS
140}
141
b3e19d92
NP
142/*
143 * vfsmount lock must be held for read
144 */
83adc753 145static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
146{
147#ifdef CONFIG_SMP
68e8a9fe 148 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
149#else
150 preempt_disable();
68e8a9fe 151 mnt->mnt_count += n;
b3e19d92
NP
152 preempt_enable();
153#endif
154}
155
b3e19d92
NP
156/*
157 * vfsmount lock must be held for write
158 */
d4f7a82b 159int mnt_get_count(struct mount *mnt)
b3e19d92
NP
160{
161#ifdef CONFIG_SMP
d4f7a82b 162 int count = 0;
b3e19d92
NP
163 int cpu;
164
165 for_each_possible_cpu(cpu) {
68e8a9fe 166 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
167 }
168
169 return count;
170#else
68e8a9fe 171 return mnt->mnt_count;
b3e19d92
NP
172#endif
173}
174
b105e270 175static struct mount *alloc_vfsmnt(const char *name)
1da177e4 176{
c63181e6
AV
177 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
178 if (mnt) {
73cd49ec
MS
179 int err;
180
c63181e6 181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
fcc139ae 186 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 187 if (!mnt->mnt_devname)
88b38782 188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92 191#ifdef CONFIG_SMP
c63181e6
AV
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
b3e19d92
NP
194 goto out_free_devname;
195
c63181e6 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 197#else
c63181e6
AV
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
b3e19d92
NP
200#endif
201
38129a13 202 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
206 INIT_LIST_HEAD(&mnt->mnt_expire);
207 INIT_LIST_HEAD(&mnt->mnt_share);
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 210 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 211 INIT_LIST_HEAD(&mnt->mnt_umounting);
56cbb429 212 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
1da177e4 213 }
c63181e6 214 return mnt;
88b38782 215
d3ef3d73 216#ifdef CONFIG_SMP
217out_free_devname:
fcc139ae 218 kfree_const(mnt->mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
c63181e6 221 mnt_free_id(mnt);
88b38782 222out_free_cache:
c63181e6 223 kmem_cache_free(mnt_cache, mnt);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
43f5e655 246bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 247{
43f5e655 248 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
249}
250EXPORT_SYMBOL_GPL(__mnt_is_readonly);
251
83adc753 252static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 253{
254#ifdef CONFIG_SMP
68e8a9fe 255 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 256#else
68e8a9fe 257 mnt->mnt_writers++;
d3ef3d73 258#endif
259}
3d733633 260
83adc753 261static inline void mnt_dec_writers(struct mount *mnt)
3d733633 262{
d3ef3d73 263#ifdef CONFIG_SMP
68e8a9fe 264 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 265#else
68e8a9fe 266 mnt->mnt_writers--;
d3ef3d73 267#endif
3d733633 268}
3d733633 269
83adc753 270static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 271{
d3ef3d73 272#ifdef CONFIG_SMP
273 unsigned int count = 0;
3d733633 274 int cpu;
3d733633
DH
275
276 for_each_possible_cpu(cpu) {
68e8a9fe 277 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 278 }
3d733633 279
d3ef3d73 280 return count;
281#else
282 return mnt->mnt_writers;
283#endif
3d733633
DH
284}
285
4ed5e82f
MS
286static int mnt_is_readonly(struct vfsmount *mnt)
287{
288 if (mnt->mnt_sb->s_readonly_remount)
289 return 1;
290 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
291 smp_rmb();
292 return __mnt_is_readonly(mnt);
293}
294
8366025e 295/*
eb04c282
JK
296 * Most r/o & frozen checks on a fs are for operations that take discrete
297 * amounts of time, like a write() or unlink(). We must keep track of when
298 * those operations start (for permission checks) and when they end, so that we
299 * can determine when writes are able to occur to a filesystem.
8366025e
DH
300 */
301/**
eb04c282 302 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 303 * @m: the mount on which to take a write
8366025e 304 *
eb04c282
JK
305 * This tells the low-level filesystem that a write is about to be performed to
306 * it, and makes sure that writes are allowed (mnt it read-write) before
307 * returning success. This operation does not protect against filesystem being
308 * frozen. When the write operation is finished, __mnt_drop_write() must be
309 * called. This is effectively a refcount.
8366025e 310 */
eb04c282 311int __mnt_want_write(struct vfsmount *m)
8366025e 312{
83adc753 313 struct mount *mnt = real_mount(m);
3d733633 314 int ret = 0;
3d733633 315
d3ef3d73 316 preempt_disable();
c6653a83 317 mnt_inc_writers(mnt);
d3ef3d73 318 /*
c6653a83 319 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 320 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
321 * incremented count after it has set MNT_WRITE_HOLD.
322 */
323 smp_mb();
6aa7de05 324 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 325 cpu_relax();
326 /*
327 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
328 * be set to match its requirements. So we must not load that until
329 * MNT_WRITE_HOLD is cleared.
330 */
331 smp_rmb();
4ed5e82f 332 if (mnt_is_readonly(m)) {
c6653a83 333 mnt_dec_writers(mnt);
3d733633 334 ret = -EROFS;
3d733633 335 }
d3ef3d73 336 preempt_enable();
eb04c282
JK
337
338 return ret;
339}
340
341/**
342 * mnt_want_write - get write access to a mount
343 * @m: the mount on which to take a write
344 *
345 * This tells the low-level filesystem that a write is about to be performed to
346 * it, and makes sure that writes are allowed (mount is read-write, filesystem
347 * is not frozen) before returning success. When the write operation is
348 * finished, mnt_drop_write() must be called. This is effectively a refcount.
349 */
350int mnt_want_write(struct vfsmount *m)
351{
352 int ret;
353
354 sb_start_write(m->mnt_sb);
355 ret = __mnt_want_write(m);
356 if (ret)
357 sb_end_write(m->mnt_sb);
3d733633 358 return ret;
8366025e
DH
359}
360EXPORT_SYMBOL_GPL(mnt_want_write);
361
96029c4e 362/**
363 * mnt_clone_write - get write access to a mount
364 * @mnt: the mount on which to take a write
365 *
366 * This is effectively like mnt_want_write, except
367 * it must only be used to take an extra write reference
368 * on a mountpoint that we already know has a write reference
369 * on it. This allows some optimisation.
370 *
371 * After finished, mnt_drop_write must be called as usual to
372 * drop the reference.
373 */
374int mnt_clone_write(struct vfsmount *mnt)
375{
376 /* superblock may be r/o */
377 if (__mnt_is_readonly(mnt))
378 return -EROFS;
379 preempt_disable();
83adc753 380 mnt_inc_writers(real_mount(mnt));
96029c4e 381 preempt_enable();
382 return 0;
383}
384EXPORT_SYMBOL_GPL(mnt_clone_write);
385
386/**
eb04c282 387 * __mnt_want_write_file - get write access to a file's mount
96029c4e 388 * @file: the file who's mount on which to take a write
389 *
eb04c282 390 * This is like __mnt_want_write, but it takes a file and can
96029c4e 391 * do some optimisations if the file is open for write already
392 */
eb04c282 393int __mnt_want_write_file(struct file *file)
96029c4e 394{
83f936c7 395 if (!(file->f_mode & FMODE_WRITER))
eb04c282 396 return __mnt_want_write(file->f_path.mnt);
96029c4e 397 else
398 return mnt_clone_write(file->f_path.mnt);
399}
eb04c282 400
7c6893e3
MS
401/**
402 * mnt_want_write_file - get write access to a file's mount
403 * @file: the file who's mount on which to take a write
404 *
405 * This is like mnt_want_write, but it takes a file and can
406 * do some optimisations if the file is open for write already
7c6893e3
MS
407 */
408int mnt_want_write_file(struct file *file)
409{
410 int ret;
411
a6795a58 412 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
413 ret = __mnt_want_write_file(file);
414 if (ret)
a6795a58 415 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
416 return ret;
417}
96029c4e 418EXPORT_SYMBOL_GPL(mnt_want_write_file);
419
8366025e 420/**
eb04c282 421 * __mnt_drop_write - give up write access to a mount
8366025e
DH
422 * @mnt: the mount on which to give up write access
423 *
424 * Tells the low-level filesystem that we are done
425 * performing writes to it. Must be matched with
eb04c282 426 * __mnt_want_write() call above.
8366025e 427 */
eb04c282 428void __mnt_drop_write(struct vfsmount *mnt)
8366025e 429{
d3ef3d73 430 preempt_disable();
83adc753 431 mnt_dec_writers(real_mount(mnt));
d3ef3d73 432 preempt_enable();
8366025e 433}
a3a49a17 434EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
435
436/**
437 * mnt_drop_write - give up write access to a mount
438 * @mnt: the mount on which to give up write access
439 *
440 * Tells the low-level filesystem that we are done performing writes to it and
441 * also allows filesystem to be frozen again. Must be matched with
442 * mnt_want_write() call above.
443 */
444void mnt_drop_write(struct vfsmount *mnt)
445{
446 __mnt_drop_write(mnt);
447 sb_end_write(mnt->mnt_sb);
448}
8366025e
DH
449EXPORT_SYMBOL_GPL(mnt_drop_write);
450
eb04c282
JK
451void __mnt_drop_write_file(struct file *file)
452{
453 __mnt_drop_write(file->f_path.mnt);
454}
455
7c6893e3
MS
456void mnt_drop_write_file(struct file *file)
457{
a6795a58 458 __mnt_drop_write_file(file);
7c6893e3
MS
459 sb_end_write(file_inode(file)->i_sb);
460}
2a79f17e
AV
461EXPORT_SYMBOL(mnt_drop_write_file);
462
83adc753 463static int mnt_make_readonly(struct mount *mnt)
8366025e 464{
3d733633
DH
465 int ret = 0;
466
719ea2fb 467 lock_mount_hash();
83adc753 468 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 469 /*
d3ef3d73 470 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
471 * should be visible before we do.
3d733633 472 */
d3ef3d73 473 smp_mb();
474
3d733633 475 /*
d3ef3d73 476 * With writers on hold, if this value is zero, then there are
477 * definitely no active writers (although held writers may subsequently
478 * increment the count, they'll have to wait, and decrement it after
479 * seeing MNT_READONLY).
480 *
481 * It is OK to have counter incremented on one CPU and decremented on
482 * another: the sum will add up correctly. The danger would be when we
483 * sum up each counter, if we read a counter before it is incremented,
484 * but then read another CPU's count which it has been subsequently
485 * decremented from -- we would see more decrements than we should.
486 * MNT_WRITE_HOLD protects against this scenario, because
487 * mnt_want_write first increments count, then smp_mb, then spins on
488 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
489 * we're counting up here.
3d733633 490 */
c6653a83 491 if (mnt_get_writers(mnt) > 0)
d3ef3d73 492 ret = -EBUSY;
493 else
83adc753 494 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 495 /*
496 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
497 * that become unheld will see MNT_READONLY.
498 */
499 smp_wmb();
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 501 unlock_mount_hash();
3d733633 502 return ret;
8366025e 503}
8366025e 504
43f5e655 505static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 506{
719ea2fb 507 lock_mount_hash();
83adc753 508 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 509 unlock_mount_hash();
43f5e655 510 return 0;
2e4b7fcd
DH
511}
512
4ed5e82f
MS
513int sb_prepare_remount_readonly(struct super_block *sb)
514{
515 struct mount *mnt;
516 int err = 0;
517
8e8b8796
MS
518 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
519 if (atomic_long_read(&sb->s_remove_count))
520 return -EBUSY;
521
719ea2fb 522 lock_mount_hash();
4ed5e82f
MS
523 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
524 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
525 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
526 smp_mb();
527 if (mnt_get_writers(mnt) > 0) {
528 err = -EBUSY;
529 break;
530 }
531 }
532 }
8e8b8796
MS
533 if (!err && atomic_long_read(&sb->s_remove_count))
534 err = -EBUSY;
535
4ed5e82f
MS
536 if (!err) {
537 sb->s_readonly_remount = 1;
538 smp_wmb();
539 }
540 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
541 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
542 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
543 }
719ea2fb 544 unlock_mount_hash();
4ed5e82f
MS
545
546 return err;
547}
548
b105e270 549static void free_vfsmnt(struct mount *mnt)
1da177e4 550{
fcc139ae 551 kfree_const(mnt->mnt_devname);
d3ef3d73 552#ifdef CONFIG_SMP
68e8a9fe 553 free_percpu(mnt->mnt_pcp);
d3ef3d73 554#endif
b105e270 555 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
556}
557
8ffcb32e
DH
558static void delayed_free_vfsmnt(struct rcu_head *head)
559{
560 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
561}
562
48a066e7 563/* call under rcu_read_lock */
294d71ff 564int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
565{
566 struct mount *mnt;
567 if (read_seqretry(&mount_lock, seq))
294d71ff 568 return 1;
48a066e7 569 if (bastard == NULL)
294d71ff 570 return 0;
48a066e7
AV
571 mnt = real_mount(bastard);
572 mnt_add_count(mnt, 1);
119e1ef8 573 smp_mb(); // see mntput_no_expire()
48a066e7 574 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 575 return 0;
48a066e7
AV
576 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
577 mnt_add_count(mnt, -1);
294d71ff
AV
578 return 1;
579 }
119e1ef8
AV
580 lock_mount_hash();
581 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
582 mnt_add_count(mnt, -1);
583 unlock_mount_hash();
584 return 1;
585 }
586 unlock_mount_hash();
587 /* caller will mntput() */
294d71ff
AV
588 return -1;
589}
590
591/* call under rcu_read_lock */
592bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
593{
594 int res = __legitimize_mnt(bastard, seq);
595 if (likely(!res))
596 return true;
597 if (unlikely(res < 0)) {
598 rcu_read_unlock();
599 mntput(bastard);
600 rcu_read_lock();
48a066e7 601 }
48a066e7
AV
602 return false;
603}
604
1da177e4 605/*
474279dc 606 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 607 * call under rcu_read_lock()
1da177e4 608 */
474279dc 609struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 610{
38129a13 611 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
612 struct mount *p;
613
38129a13 614 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
615 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
616 return p;
617 return NULL;
618}
619
a05964f3 620/*
f015f126
DH
621 * lookup_mnt - Return the first child mount mounted at path
622 *
623 * "First" means first mounted chronologically. If you create the
624 * following mounts:
625 *
626 * mount /dev/sda1 /mnt
627 * mount /dev/sda2 /mnt
628 * mount /dev/sda3 /mnt
629 *
630 * Then lookup_mnt() on the base /mnt dentry in the root mount will
631 * return successively the root dentry and vfsmount of /dev/sda1, then
632 * /dev/sda2, then /dev/sda3, then NULL.
633 *
634 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 635 */
ca71cf71 636struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 637{
c7105365 638 struct mount *child_mnt;
48a066e7
AV
639 struct vfsmount *m;
640 unsigned seq;
99b7db7b 641
48a066e7
AV
642 rcu_read_lock();
643 do {
644 seq = read_seqbegin(&mount_lock);
645 child_mnt = __lookup_mnt(path->mnt, path->dentry);
646 m = child_mnt ? &child_mnt->mnt : NULL;
647 } while (!legitimize_mnt(m, seq));
648 rcu_read_unlock();
649 return m;
a05964f3
RP
650}
651
7af1364f
EB
652/*
653 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
654 * current mount namespace.
655 *
656 * The common case is dentries are not mountpoints at all and that
657 * test is handled inline. For the slow case when we are actually
658 * dealing with a mountpoint of some kind, walk through all of the
659 * mounts in the current mount namespace and test to see if the dentry
660 * is a mountpoint.
661 *
662 * The mount_hashtable is not usable in the context because we
663 * need to identify all mounts that may be in the current mount
664 * namespace not just a mount that happens to have some specified
665 * parent mount.
666 */
667bool __is_local_mountpoint(struct dentry *dentry)
668{
669 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
670 struct mount *mnt;
671 bool is_covered = false;
672
673 if (!d_mountpoint(dentry))
674 goto out;
675
676 down_read(&namespace_sem);
677 list_for_each_entry(mnt, &ns->list, mnt_list) {
678 is_covered = (mnt->mnt_mountpoint == dentry);
679 if (is_covered)
680 break;
681 }
682 up_read(&namespace_sem);
683out:
684 return is_covered;
685}
686
e2dfa935 687static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 688{
0818bf27 689 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
690 struct mountpoint *mp;
691
0818bf27 692 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 693 if (mp->m_dentry == dentry) {
84d17192
AV
694 mp->m_count++;
695 return mp;
696 }
697 }
e2dfa935
EB
698 return NULL;
699}
700
3895dbf8 701static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 702{
3895dbf8 703 struct mountpoint *mp, *new = NULL;
e2dfa935 704 int ret;
84d17192 705
3895dbf8 706 if (d_mountpoint(dentry)) {
1e9c75fb
BC
707 /* might be worth a WARN_ON() */
708 if (d_unlinked(dentry))
709 return ERR_PTR(-ENOENT);
3895dbf8
EB
710mountpoint:
711 read_seqlock_excl(&mount_lock);
712 mp = lookup_mountpoint(dentry);
713 read_sequnlock_excl(&mount_lock);
714 if (mp)
715 goto done;
716 }
717
718 if (!new)
719 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
720 if (!new)
84d17192
AV
721 return ERR_PTR(-ENOMEM);
722
3895dbf8
EB
723
724 /* Exactly one processes may set d_mounted */
eed81007 725 ret = d_set_mounted(dentry);
eed81007 726
3895dbf8
EB
727 /* Someone else set d_mounted? */
728 if (ret == -EBUSY)
729 goto mountpoint;
730
731 /* The dentry is not available as a mountpoint? */
732 mp = ERR_PTR(ret);
733 if (ret)
734 goto done;
735
736 /* Add the new mountpoint to the hash table */
737 read_seqlock_excl(&mount_lock);
4edbe133 738 new->m_dentry = dget(dentry);
3895dbf8
EB
739 new->m_count = 1;
740 hlist_add_head(&new->m_hash, mp_hash(dentry));
741 INIT_HLIST_HEAD(&new->m_list);
742 read_sequnlock_excl(&mount_lock);
743
744 mp = new;
745 new = NULL;
746done:
747 kfree(new);
84d17192
AV
748 return mp;
749}
750
4edbe133
AV
751/*
752 * vfsmount lock must be held. Additionally, the caller is responsible
753 * for serializing calls for given disposal list.
754 */
755static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
756{
757 if (!--mp->m_count) {
758 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 759 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
760 spin_lock(&dentry->d_lock);
761 dentry->d_flags &= ~DCACHE_MOUNTED;
762 spin_unlock(&dentry->d_lock);
4edbe133 763 dput_to_list(dentry, list);
0818bf27 764 hlist_del(&mp->m_hash);
84d17192
AV
765 kfree(mp);
766 }
767}
768
4edbe133
AV
769/* called with namespace_lock and vfsmount lock */
770static void put_mountpoint(struct mountpoint *mp)
771{
772 __put_mountpoint(mp, &ex_mountpoints);
773}
774
143c8c91 775static inline int check_mnt(struct mount *mnt)
1da177e4 776{
6b3286ed 777 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
778}
779
a3a49a17
SF
780/* for aufs, CONFIG_AUFS_BR_FUSE */
781int is_current_mnt_ns(struct vfsmount *mnt)
782{
783 return check_mnt(real_mount(mnt));
784}
785EXPORT_SYMBOL_GPL(is_current_mnt_ns);
786
99b7db7b
NP
787/*
788 * vfsmount lock must be held for write
789 */
6b3286ed 790static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
791{
792 if (ns) {
793 ns->event = ++event;
794 wake_up_interruptible(&ns->poll);
795 }
796}
797
99b7db7b
NP
798/*
799 * vfsmount lock must be held for write
800 */
6b3286ed 801static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
802{
803 if (ns && ns->event != event) {
804 ns->event = event;
805 wake_up_interruptible(&ns->poll);
806 }
807}
808
99b7db7b
NP
809/*
810 * vfsmount lock must be held for write
811 */
e4e59906 812static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 813{
e4e59906 814 struct mountpoint *mp;
0714a533 815 mnt->mnt_parent = mnt;
a73324da 816 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 817 list_del_init(&mnt->mnt_child);
38129a13 818 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 819 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 820 mp = mnt->mnt_mp;
84d17192 821 mnt->mnt_mp = NULL;
e4e59906 822 return mp;
7bdb11de
EB
823}
824
6a46c573
EB
825/*
826 * vfsmount lock must be held for write
827 */
828static void umount_mnt(struct mount *mnt)
829{
e4e59906 830 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
831}
832
99b7db7b
NP
833/*
834 * vfsmount lock must be held for write
835 */
84d17192
AV
836void mnt_set_mountpoint(struct mount *mnt,
837 struct mountpoint *mp,
44d964d6 838 struct mount *child_mnt)
b90fa9ae 839{
84d17192 840 mp->m_count++;
3a2393d7 841 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 842 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 843 child_mnt->mnt_parent = mnt;
84d17192 844 child_mnt->mnt_mp = mp;
0a5eb7c8 845 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
846}
847
1064f874
EB
848static void __attach_mnt(struct mount *mnt, struct mount *parent)
849{
850 hlist_add_head_rcu(&mnt->mnt_hash,
851 m_hash(&parent->mnt, mnt->mnt_mountpoint));
852 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
853}
854
99b7db7b
NP
855/*
856 * vfsmount lock must be held for write
857 */
84d17192
AV
858static void attach_mnt(struct mount *mnt,
859 struct mount *parent,
860 struct mountpoint *mp)
1da177e4 861{
84d17192 862 mnt_set_mountpoint(parent, mp, mnt);
1064f874 863 __attach_mnt(mnt, parent);
b90fa9ae
RP
864}
865
1064f874 866void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 867{
1064f874 868 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
869 struct mount *old_parent = mnt->mnt_parent;
870
871 list_del_init(&mnt->mnt_child);
872 hlist_del_init(&mnt->mnt_mp_list);
873 hlist_del_init_rcu(&mnt->mnt_hash);
874
875 attach_mnt(mnt, parent, mp);
876
877 put_mountpoint(old_mp);
1064f874 878 mnt_add_count(old_parent, -1);
12a5b529
AV
879}
880
b90fa9ae 881/*
99b7db7b 882 * vfsmount lock must be held for write
b90fa9ae 883 */
1064f874 884static void commit_tree(struct mount *mnt)
b90fa9ae 885{
0714a533 886 struct mount *parent = mnt->mnt_parent;
83adc753 887 struct mount *m;
b90fa9ae 888 LIST_HEAD(head);
143c8c91 889 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 890
0714a533 891 BUG_ON(parent == mnt);
b90fa9ae 892
1a4eeaf2 893 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 894 list_for_each_entry(m, &head, mnt_list)
143c8c91 895 m->mnt_ns = n;
f03c6599 896
b90fa9ae
RP
897 list_splice(&head, n->list.prev);
898
d2921684
EB
899 n->mounts += n->pending_mounts;
900 n->pending_mounts = 0;
901
1064f874 902 __attach_mnt(mnt, parent);
6b3286ed 903 touch_mnt_namespace(n);
1da177e4
LT
904}
905
909b0a88 906static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 907{
6b41d536
AV
908 struct list_head *next = p->mnt_mounts.next;
909 if (next == &p->mnt_mounts) {
1da177e4 910 while (1) {
909b0a88 911 if (p == root)
1da177e4 912 return NULL;
6b41d536
AV
913 next = p->mnt_child.next;
914 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 915 break;
0714a533 916 p = p->mnt_parent;
1da177e4
LT
917 }
918 }
6b41d536 919 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
920}
921
315fc83e 922static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 923{
6b41d536
AV
924 struct list_head *prev = p->mnt_mounts.prev;
925 while (prev != &p->mnt_mounts) {
926 p = list_entry(prev, struct mount, mnt_child);
927 prev = p->mnt_mounts.prev;
9676f0c6
RP
928 }
929 return p;
930}
931
8f291889
AV
932/**
933 * vfs_create_mount - Create a mount for a configured superblock
934 * @fc: The configuration context with the superblock attached
935 *
936 * Create a mount to an already configured superblock. If necessary, the
937 * caller should invoke vfs_get_tree() before calling this.
938 *
939 * Note that this does not attach the mount to anything.
940 */
941struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 942{
b105e270 943 struct mount *mnt;
9d412a43 944
8f291889
AV
945 if (!fc->root)
946 return ERR_PTR(-EINVAL);
9d412a43 947
8f291889 948 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
949 if (!mnt)
950 return ERR_PTR(-ENOMEM);
951
8f291889 952 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 953 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 954
8f291889
AV
955 atomic_inc(&fc->root->d_sb->s_active);
956 mnt->mnt.mnt_sb = fc->root->d_sb;
957 mnt->mnt.mnt_root = dget(fc->root);
958 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
959 mnt->mnt_parent = mnt;
9d412a43 960
719ea2fb 961 lock_mount_hash();
8f291889 962 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 963 unlock_mount_hash();
b105e270 964 return &mnt->mnt;
9d412a43 965}
8f291889
AV
966EXPORT_SYMBOL(vfs_create_mount);
967
968struct vfsmount *fc_mount(struct fs_context *fc)
969{
970 int err = vfs_get_tree(fc);
971 if (!err) {
972 up_write(&fc->root->d_sb->s_umount);
973 return vfs_create_mount(fc);
974 }
975 return ERR_PTR(err);
976}
977EXPORT_SYMBOL(fc_mount);
978
9bc61ab1
DH
979struct vfsmount *vfs_kern_mount(struct file_system_type *type,
980 int flags, const char *name,
981 void *data)
9d412a43 982{
9bc61ab1 983 struct fs_context *fc;
8f291889 984 struct vfsmount *mnt;
9bc61ab1 985 int ret = 0;
9d412a43
AV
986
987 if (!type)
3e1aeb00 988 return ERR_PTR(-EINVAL);
9d412a43 989
9bc61ab1
DH
990 fc = fs_context_for_mount(type, flags);
991 if (IS_ERR(fc))
992 return ERR_CAST(fc);
993
3e1aeb00
DH
994 if (name)
995 ret = vfs_parse_fs_string(fc, "source",
996 name, strlen(name));
9bc61ab1
DH
997 if (!ret)
998 ret = parse_monolithic_mount_data(fc, data);
999 if (!ret)
8f291889
AV
1000 mnt = fc_mount(fc);
1001 else
1002 mnt = ERR_PTR(ret);
9d412a43 1003
9bc61ab1 1004 put_fs_context(fc);
8f291889 1005 return mnt;
9d412a43
AV
1006}
1007EXPORT_SYMBOL_GPL(vfs_kern_mount);
1008
93faccbb
EB
1009struct vfsmount *
1010vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1011 const char *name, void *data)
1012{
1013 /* Until it is worked out how to pass the user namespace
1014 * through from the parent mount to the submount don't support
1015 * unprivileged mounts with submounts.
1016 */
1017 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1018 return ERR_PTR(-EPERM);
1019
e462ec50 1020 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1021}
1022EXPORT_SYMBOL_GPL(vfs_submount);
1023
87129cc0 1024static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1025 int flag)
1da177e4 1026{
87129cc0 1027 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1028 struct mount *mnt;
1029 int err;
1da177e4 1030
be34d1a3
DH
1031 mnt = alloc_vfsmnt(old->mnt_devname);
1032 if (!mnt)
1033 return ERR_PTR(-ENOMEM);
719f5d7f 1034
7a472ef4 1035 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1036 mnt->mnt_group_id = 0; /* not a peer of original */
1037 else
1038 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1039
be34d1a3
DH
1040 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1041 err = mnt_alloc_group_id(mnt);
1042 if (err)
1043 goto out_free;
1da177e4 1044 }
be34d1a3 1045
16a34adb
AV
1046 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1047 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1048
be34d1a3
DH
1049 atomic_inc(&sb->s_active);
1050 mnt->mnt.mnt_sb = sb;
1051 mnt->mnt.mnt_root = dget(root);
1052 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1053 mnt->mnt_parent = mnt;
719ea2fb 1054 lock_mount_hash();
be34d1a3 1055 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1056 unlock_mount_hash();
be34d1a3 1057
7a472ef4
EB
1058 if ((flag & CL_SLAVE) ||
1059 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1060 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1061 mnt->mnt_master = old;
1062 CLEAR_MNT_SHARED(mnt);
1063 } else if (!(flag & CL_PRIVATE)) {
1064 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1065 list_add(&mnt->mnt_share, &old->mnt_share);
1066 if (IS_MNT_SLAVE(old))
1067 list_add(&mnt->mnt_slave, &old->mnt_slave);
1068 mnt->mnt_master = old->mnt_master;
5235d448
AV
1069 } else {
1070 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1071 }
1072 if (flag & CL_MAKE_SHARED)
1073 set_mnt_shared(mnt);
1074
1075 /* stick the duplicate mount on the same expiry list
1076 * as the original if that was on one */
1077 if (flag & CL_EXPIRE) {
1078 if (!list_empty(&old->mnt_expire))
1079 list_add(&mnt->mnt_expire, &old->mnt_expire);
1080 }
1081
cb338d06 1082 return mnt;
719f5d7f
MS
1083
1084 out_free:
8ffcb32e 1085 mnt_free_id(mnt);
719f5d7f 1086 free_vfsmnt(mnt);
be34d1a3 1087 return ERR_PTR(err);
1da177e4
LT
1088}
1089
9ea459e1
AV
1090static void cleanup_mnt(struct mount *mnt)
1091{
56cbb429
AV
1092 struct hlist_node *p;
1093 struct mount *m;
9ea459e1 1094 /*
56cbb429
AV
1095 * The warning here probably indicates that somebody messed
1096 * up a mnt_want/drop_write() pair. If this happens, the
1097 * filesystem was probably unable to make r/w->r/o transitions.
9ea459e1
AV
1098 * The locking used to deal with mnt_count decrement provides barriers,
1099 * so mnt_get_writers() below is safe.
1100 */
1101 WARN_ON(mnt_get_writers(mnt));
1102 if (unlikely(mnt->mnt_pins.first))
1103 mnt_pin_kill(mnt);
56cbb429
AV
1104 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1105 hlist_del(&m->mnt_umount);
1106 mntput(&m->mnt);
1107 }
9ea459e1
AV
1108 fsnotify_vfsmount_delete(&mnt->mnt);
1109 dput(mnt->mnt.mnt_root);
1110 deactivate_super(mnt->mnt.mnt_sb);
1111 mnt_free_id(mnt);
1112 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1113}
1114
1115static void __cleanup_mnt(struct rcu_head *head)
1116{
1117 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1118}
1119
1120static LLIST_HEAD(delayed_mntput_list);
1121static void delayed_mntput(struct work_struct *unused)
1122{
1123 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1124 struct mount *m, *t;
9ea459e1 1125
29785735
BP
1126 llist_for_each_entry_safe(m, t, node, mnt_llist)
1127 cleanup_mnt(m);
9ea459e1
AV
1128}
1129static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1130
900148dc 1131static void mntput_no_expire(struct mount *mnt)
b3e19d92 1132{
4edbe133 1133 LIST_HEAD(list);
d4f7a82b 1134 int count;
4edbe133 1135
48a066e7 1136 rcu_read_lock();
9ea0a46c
AV
1137 if (likely(READ_ONCE(mnt->mnt_ns))) {
1138 /*
1139 * Since we don't do lock_mount_hash() here,
1140 * ->mnt_ns can change under us. However, if it's
1141 * non-NULL, then there's a reference that won't
1142 * be dropped until after an RCU delay done after
1143 * turning ->mnt_ns NULL. So if we observe it
1144 * non-NULL under rcu_read_lock(), the reference
1145 * we are dropping is not the final one.
1146 */
1147 mnt_add_count(mnt, -1);
48a066e7 1148 rcu_read_unlock();
f03c6599 1149 return;
b3e19d92 1150 }
719ea2fb 1151 lock_mount_hash();
119e1ef8
AV
1152 /*
1153 * make sure that if __legitimize_mnt() has not seen us grab
1154 * mount_lock, we'll see their refcount increment here.
1155 */
1156 smp_mb();
9ea0a46c 1157 mnt_add_count(mnt, -1);
d4f7a82b
EB
1158 count = mnt_get_count(mnt);
1159 if (count != 0) {
1160 WARN_ON(count < 0);
48a066e7 1161 rcu_read_unlock();
719ea2fb 1162 unlock_mount_hash();
99b7db7b
NP
1163 return;
1164 }
48a066e7
AV
1165 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1166 rcu_read_unlock();
1167 unlock_mount_hash();
1168 return;
1169 }
1170 mnt->mnt.mnt_flags |= MNT_DOOMED;
1171 rcu_read_unlock();
962830df 1172
39f7c4db 1173 list_del(&mnt->mnt_instance);
ce07d891
EB
1174
1175 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1176 struct mount *p, *tmp;
1177 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1178 __put_mountpoint(unhash_mnt(p), &list);
56cbb429 1179 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
ce07d891
EB
1180 }
1181 }
719ea2fb 1182 unlock_mount_hash();
4edbe133 1183 shrink_dentry_list(&list);
649a795a 1184
9ea459e1
AV
1185 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1186 struct task_struct *task = current;
1187 if (likely(!(task->flags & PF_KTHREAD))) {
1188 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1189 if (!task_work_add(task, &mnt->mnt_rcu, true))
1190 return;
1191 }
1192 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1193 schedule_delayed_work(&delayed_mntput_work, 1);
1194 return;
1195 }
1196 cleanup_mnt(mnt);
b3e19d92 1197}
b3e19d92
NP
1198
1199void mntput(struct vfsmount *mnt)
1200{
1201 if (mnt) {
863d684f 1202 struct mount *m = real_mount(mnt);
b3e19d92 1203 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1204 if (unlikely(m->mnt_expiry_mark))
1205 m->mnt_expiry_mark = 0;
1206 mntput_no_expire(m);
b3e19d92
NP
1207 }
1208}
1209EXPORT_SYMBOL(mntput);
1210
1211struct vfsmount *mntget(struct vfsmount *mnt)
1212{
1213 if (mnt)
83adc753 1214 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1215 return mnt;
1216}
1217EXPORT_SYMBOL(mntget);
1218
c6609c0a
IK
1219/* path_is_mountpoint() - Check if path is a mount in the current
1220 * namespace.
1221 *
1222 * d_mountpoint() can only be used reliably to establish if a dentry is
1223 * not mounted in any namespace and that common case is handled inline.
1224 * d_mountpoint() isn't aware of the possibility there may be multiple
1225 * mounts using a given dentry in a different namespace. This function
1226 * checks if the passed in path is a mountpoint rather than the dentry
1227 * alone.
1228 */
1229bool path_is_mountpoint(const struct path *path)
1230{
1231 unsigned seq;
1232 bool res;
1233
1234 if (!d_mountpoint(path->dentry))
1235 return false;
1236
1237 rcu_read_lock();
1238 do {
1239 seq = read_seqbegin(&mount_lock);
1240 res = __path_is_mountpoint(path);
1241 } while (read_seqretry(&mount_lock, seq));
1242 rcu_read_unlock();
1243
1244 return res;
1245}
1246EXPORT_SYMBOL(path_is_mountpoint);
1247
ca71cf71 1248struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1249{
3064c356
AV
1250 struct mount *p;
1251 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1252 if (IS_ERR(p))
1253 return ERR_CAST(p);
1254 p->mnt.mnt_flags |= MNT_INTERNAL;
1255 return &p->mnt;
7b7b1ace 1256}
1da177e4 1257
a1a2c409 1258#ifdef CONFIG_PROC_FS
0226f492 1259/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1260static void *m_start(struct seq_file *m, loff_t *pos)
1261{
ede1bf0d 1262 struct proc_mounts *p = m->private;
1da177e4 1263
390c6843 1264 down_read(&namespace_sem);
c7999c36
AV
1265 if (p->cached_event == p->ns->event) {
1266 void *v = p->cached_mount;
1267 if (*pos == p->cached_index)
1268 return v;
1269 if (*pos == p->cached_index + 1) {
1270 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1271 return p->cached_mount = v;
1272 }
1273 }
1274
1275 p->cached_event = p->ns->event;
1276 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1277 p->cached_index = *pos;
1278 return p->cached_mount;
1da177e4
LT
1279}
1280
1281static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1282{
ede1bf0d 1283 struct proc_mounts *p = m->private;
b0765fb8 1284
c7999c36
AV
1285 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1286 p->cached_index = *pos;
1287 return p->cached_mount;
1da177e4
LT
1288}
1289
1290static void m_stop(struct seq_file *m, void *v)
1291{
390c6843 1292 up_read(&namespace_sem);
1da177e4
LT
1293}
1294
0226f492 1295static int m_show(struct seq_file *m, void *v)
2d4d4864 1296{
ede1bf0d 1297 struct proc_mounts *p = m->private;
1a4eeaf2 1298 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1299 return p->show(m, &r->mnt);
1da177e4
LT
1300}
1301
a1a2c409 1302const struct seq_operations mounts_op = {
1da177e4
LT
1303 .start = m_start,
1304 .next = m_next,
1305 .stop = m_stop,
0226f492 1306 .show = m_show,
b4629fe2 1307};
a1a2c409 1308#endif /* CONFIG_PROC_FS */
b4629fe2 1309
1da177e4
LT
1310/**
1311 * may_umount_tree - check if a mount tree is busy
1312 * @mnt: root of mount tree
1313 *
1314 * This is called to check if a tree of mounts has any
1315 * open files, pwds, chroots or sub mounts that are
1316 * busy.
1317 */
909b0a88 1318int may_umount_tree(struct vfsmount *m)
1da177e4 1319{
909b0a88 1320 struct mount *mnt = real_mount(m);
36341f64
RP
1321 int actual_refs = 0;
1322 int minimum_refs = 0;
315fc83e 1323 struct mount *p;
909b0a88 1324 BUG_ON(!m);
1da177e4 1325
b3e19d92 1326 /* write lock needed for mnt_get_count */
719ea2fb 1327 lock_mount_hash();
909b0a88 1328 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1329 actual_refs += mnt_get_count(p);
1da177e4 1330 minimum_refs += 2;
1da177e4 1331 }
719ea2fb 1332 unlock_mount_hash();
1da177e4
LT
1333
1334 if (actual_refs > minimum_refs)
e3474a8e 1335 return 0;
1da177e4 1336
e3474a8e 1337 return 1;
1da177e4
LT
1338}
1339
1340EXPORT_SYMBOL(may_umount_tree);
1341
1342/**
1343 * may_umount - check if a mount point is busy
1344 * @mnt: root of mount
1345 *
1346 * This is called to check if a mount point has any
1347 * open files, pwds, chroots or sub mounts. If the
1348 * mount has sub mounts this will return busy
1349 * regardless of whether the sub mounts are busy.
1350 *
1351 * Doesn't take quota and stuff into account. IOW, in some cases it will
1352 * give false negatives. The main reason why it's here is that we need
1353 * a non-destructive way to look for easily umountable filesystems.
1354 */
1355int may_umount(struct vfsmount *mnt)
1356{
e3474a8e 1357 int ret = 1;
8ad08d8a 1358 down_read(&namespace_sem);
719ea2fb 1359 lock_mount_hash();
1ab59738 1360 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1361 ret = 0;
719ea2fb 1362 unlock_mount_hash();
8ad08d8a 1363 up_read(&namespace_sem);
a05964f3 1364 return ret;
1da177e4
LT
1365}
1366
1367EXPORT_SYMBOL(may_umount);
1368
97216be0 1369static void namespace_unlock(void)
70fbcdf4 1370{
a3b3c562 1371 struct hlist_head head;
56cbb429
AV
1372 struct hlist_node *p;
1373 struct mount *m;
4edbe133 1374 LIST_HEAD(list);
97216be0 1375
a3b3c562 1376 hlist_move_list(&unmounted, &head);
4edbe133 1377 list_splice_init(&ex_mountpoints, &list);
97216be0 1378
97216be0
AV
1379 up_write(&namespace_sem);
1380
4edbe133
AV
1381 shrink_dentry_list(&list);
1382
a3b3c562
EB
1383 if (likely(hlist_empty(&head)))
1384 return;
1385
22cb7405 1386 synchronize_rcu_expedited();
48a066e7 1387
56cbb429
AV
1388 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1389 hlist_del(&m->mnt_umount);
1390 mntput(&m->mnt);
1391 }
70fbcdf4
RP
1392}
1393
97216be0 1394static inline void namespace_lock(void)
e3197d83 1395{
97216be0 1396 down_write(&namespace_sem);
e3197d83
AV
1397}
1398
e819f152
EB
1399enum umount_tree_flags {
1400 UMOUNT_SYNC = 1,
1401 UMOUNT_PROPAGATE = 2,
e0c9c0af 1402 UMOUNT_CONNECTED = 4,
e819f152 1403};
f2d0a123
EB
1404
1405static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1406{
1407 /* Leaving mounts connected is only valid for lazy umounts */
1408 if (how & UMOUNT_SYNC)
1409 return true;
1410
1411 /* A mount without a parent has nothing to be connected to */
1412 if (!mnt_has_parent(mnt))
1413 return true;
1414
1415 /* Because the reference counting rules change when mounts are
1416 * unmounted and connected, umounted mounts may not be
1417 * connected to mounted mounts.
1418 */
1419 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1420 return true;
1421
1422 /* Has it been requested that the mount remain connected? */
1423 if (how & UMOUNT_CONNECTED)
1424 return false;
1425
1426 /* Is the mount locked such that it needs to remain connected? */
1427 if (IS_MNT_LOCKED(mnt))
1428 return false;
1429
1430 /* By default disconnect the mount */
1431 return true;
1432}
1433
99b7db7b 1434/*
48a066e7 1435 * mount_lock must be held
99b7db7b
NP
1436 * namespace_sem must be held for write
1437 */
e819f152 1438static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1439{
c003b26f 1440 LIST_HEAD(tmp_list);
315fc83e 1441 struct mount *p;
1da177e4 1442
5d88457e
EB
1443 if (how & UMOUNT_PROPAGATE)
1444 propagate_mount_unlock(mnt);
1445
c003b26f 1446 /* Gather the mounts to umount */
590ce4bc
EB
1447 for (p = mnt; p; p = next_mnt(p, mnt)) {
1448 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1449 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1450 }
1da177e4 1451
411a938b 1452 /* Hide the mounts from mnt_mounts */
c003b26f 1453 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1454 list_del_init(&p->mnt_child);
c003b26f 1455 }
88b368f2 1456
c003b26f 1457 /* Add propogated mounts to the tmp_list */
e819f152 1458 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1459 propagate_umount(&tmp_list);
a05964f3 1460
c003b26f 1461 while (!list_empty(&tmp_list)) {
d2921684 1462 struct mnt_namespace *ns;
ce07d891 1463 bool disconnect;
c003b26f 1464 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1465 list_del_init(&p->mnt_expire);
1a4eeaf2 1466 list_del_init(&p->mnt_list);
d2921684
EB
1467 ns = p->mnt_ns;
1468 if (ns) {
1469 ns->mounts--;
1470 __touch_mnt_namespace(ns);
1471 }
143c8c91 1472 p->mnt_ns = NULL;
e819f152 1473 if (how & UMOUNT_SYNC)
48a066e7 1474 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1475
f2d0a123 1476 disconnect = disconnect_mount(p, how);
676da58d 1477 if (mnt_has_parent(p)) {
81b6b061 1478 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1479 if (!disconnect) {
1480 /* Don't forget about p */
1481 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1482 } else {
1483 umount_mnt(p);
1484 }
7c4b93d8 1485 }
0f0afb1d 1486 change_mnt_propagation(p, MS_PRIVATE);
19a1c409
AV
1487 if (disconnect)
1488 hlist_add_head(&p->mnt_umount, &unmounted);
1da177e4
LT
1489 }
1490}
1491
b54b9be7 1492static void shrink_submounts(struct mount *mnt);
c35038be 1493
8d0347f6
DH
1494static int do_umount_root(struct super_block *sb)
1495{
1496 int ret = 0;
1497
1498 down_write(&sb->s_umount);
1499 if (!sb_rdonly(sb)) {
1500 struct fs_context *fc;
1501
1502 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1503 SB_RDONLY);
1504 if (IS_ERR(fc)) {
1505 ret = PTR_ERR(fc);
1506 } else {
1507 ret = parse_monolithic_mount_data(fc, NULL);
1508 if (!ret)
1509 ret = reconfigure_super(fc);
1510 put_fs_context(fc);
1511 }
1512 }
1513 up_write(&sb->s_umount);
1514 return ret;
1515}
1516
1ab59738 1517static int do_umount(struct mount *mnt, int flags)
1da177e4 1518{
1ab59738 1519 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1520 int retval;
1521
1ab59738 1522 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1523 if (retval)
1524 return retval;
1525
1526 /*
1527 * Allow userspace to request a mountpoint be expired rather than
1528 * unmounting unconditionally. Unmount only happens if:
1529 * (1) the mark is already set (the mark is cleared by mntput())
1530 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1531 */
1532 if (flags & MNT_EXPIRE) {
1ab59738 1533 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1534 flags & (MNT_FORCE | MNT_DETACH))
1535 return -EINVAL;
1536
b3e19d92
NP
1537 /*
1538 * probably don't strictly need the lock here if we examined
1539 * all race cases, but it's a slowpath.
1540 */
719ea2fb 1541 lock_mount_hash();
83adc753 1542 if (mnt_get_count(mnt) != 2) {
719ea2fb 1543 unlock_mount_hash();
1da177e4 1544 return -EBUSY;
b3e19d92 1545 }
719ea2fb 1546 unlock_mount_hash();
1da177e4 1547
863d684f 1548 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1549 return -EAGAIN;
1550 }
1551
1552 /*
1553 * If we may have to abort operations to get out of this
1554 * mount, and they will themselves hold resources we must
1555 * allow the fs to do things. In the Unix tradition of
1556 * 'Gee thats tricky lets do it in userspace' the umount_begin
1557 * might fail to complete on the first run through as other tasks
1558 * must return, and the like. Thats for the mount program to worry
1559 * about for the moment.
1560 */
1561
42faad99 1562 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1563 sb->s_op->umount_begin(sb);
42faad99 1564 }
1da177e4
LT
1565
1566 /*
1567 * No sense to grab the lock for this test, but test itself looks
1568 * somewhat bogus. Suggestions for better replacement?
1569 * Ho-hum... In principle, we might treat that as umount + switch
1570 * to rootfs. GC would eventually take care of the old vfsmount.
1571 * Actually it makes sense, especially if rootfs would contain a
1572 * /reboot - static binary that would close all descriptors and
1573 * call reboot(9). Then init(8) could umount root and exec /reboot.
1574 */
1ab59738 1575 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1576 /*
1577 * Special case for "unmounting" root ...
1578 * we just try to remount it readonly.
1579 */
bc6155d1 1580 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1581 return -EPERM;
8d0347f6 1582 return do_umount_root(sb);
1da177e4
LT
1583 }
1584
97216be0 1585 namespace_lock();
719ea2fb 1586 lock_mount_hash();
1da177e4 1587
25d202ed
EB
1588 /* Recheck MNT_LOCKED with the locks held */
1589 retval = -EINVAL;
1590 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1591 goto out;
1592
1593 event++;
48a066e7 1594 if (flags & MNT_DETACH) {
1a4eeaf2 1595 if (!list_empty(&mnt->mnt_list))
e819f152 1596 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1597 retval = 0;
48a066e7
AV
1598 } else {
1599 shrink_submounts(mnt);
1600 retval = -EBUSY;
1601 if (!propagate_mount_busy(mnt, 2)) {
1602 if (!list_empty(&mnt->mnt_list))
e819f152 1603 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1604 retval = 0;
1605 }
1da177e4 1606 }
25d202ed 1607out:
719ea2fb 1608 unlock_mount_hash();
e3197d83 1609 namespace_unlock();
1da177e4
LT
1610 return retval;
1611}
1612
80b5dce8
EB
1613/*
1614 * __detach_mounts - lazily unmount all mounts on the specified dentry
1615 *
1616 * During unlink, rmdir, and d_drop it is possible to loose the path
1617 * to an existing mountpoint, and wind up leaking the mount.
1618 * detach_mounts allows lazily unmounting those mounts instead of
1619 * leaking them.
1620 *
1621 * The caller may hold dentry->d_inode->i_mutex.
1622 */
1623void __detach_mounts(struct dentry *dentry)
1624{
1625 struct mountpoint *mp;
1626 struct mount *mnt;
1627
1628 namespace_lock();
3895dbf8 1629 lock_mount_hash();
80b5dce8 1630 mp = lookup_mountpoint(dentry);
adc9b5c0 1631 if (!mp)
80b5dce8
EB
1632 goto out_unlock;
1633
e06b933e 1634 event++;
80b5dce8
EB
1635 while (!hlist_empty(&mp->m_list)) {
1636 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1637 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8 1638 umount_mnt(mnt);
56cbb429 1639 hlist_add_head(&mnt->mnt_umount, &unmounted);
ce07d891 1640 }
e0c9c0af 1641 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1642 }
80b5dce8
EB
1643 put_mountpoint(mp);
1644out_unlock:
3895dbf8 1645 unlock_mount_hash();
80b5dce8
EB
1646 namespace_unlock();
1647}
1648
dd111b31 1649/*
9b40bc90
AV
1650 * Is the caller allowed to modify his namespace?
1651 */
1652static inline bool may_mount(void)
1653{
1654 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1655}
1656
df2474a2 1657#ifdef CONFIG_MANDATORY_FILE_LOCKING
30bcb98e 1658static bool may_mandlock(void)
9e8925b6 1659{
30bcb98e
JL
1660 pr_warn_once("======================================================\n"
1661 "WARNING: the mand mount option is being deprecated and\n"
1662 " will be removed in v5.15!\n"
1663 "======================================================\n");
95ace754 1664 return capable(CAP_SYS_ADMIN);
9e8925b6 1665}
df2474a2
JL
1666#else
1667static inline bool may_mandlock(void)
1668{
1669 pr_warn("VFS: \"mand\" mount option not supported");
1670 return false;
1671}
1672#endif
9e8925b6 1673
1da177e4
LT
1674/*
1675 * Now umount can handle mount points as well as block devices.
1676 * This is important for filesystems which use unnamed block devices.
1677 *
1678 * We now support a flag for forced unmount like the other 'big iron'
1679 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1680 */
1681
3a18ef5c 1682int ksys_umount(char __user *name, int flags)
1da177e4 1683{
2d8f3038 1684 struct path path;
900148dc 1685 struct mount *mnt;
1da177e4 1686 int retval;
db1f05bb 1687 int lookup_flags = 0;
1da177e4 1688
db1f05bb
MS
1689 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1690 return -EINVAL;
1691
9b40bc90
AV
1692 if (!may_mount())
1693 return -EPERM;
1694
db1f05bb
MS
1695 if (!(flags & UMOUNT_NOFOLLOW))
1696 lookup_flags |= LOOKUP_FOLLOW;
1697
197df04c 1698 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1699 if (retval)
1700 goto out;
900148dc 1701 mnt = real_mount(path.mnt);
1da177e4 1702 retval = -EINVAL;
2d8f3038 1703 if (path.dentry != path.mnt->mnt_root)
1da177e4 1704 goto dput_and_out;
143c8c91 1705 if (!check_mnt(mnt))
1da177e4 1706 goto dput_and_out;
25d202ed 1707 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1708 goto dput_and_out;
b2f5d4dc
EB
1709 retval = -EPERM;
1710 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1711 goto dput_and_out;
1da177e4 1712
900148dc 1713 retval = do_umount(mnt, flags);
1da177e4 1714dput_and_out:
429731b1 1715 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1716 dput(path.dentry);
900148dc 1717 mntput_no_expire(mnt);
1da177e4
LT
1718out:
1719 return retval;
1720}
1721
3a18ef5c
DB
1722SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1723{
1724 return ksys_umount(name, flags);
1725}
1726
1da177e4
LT
1727#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1728
1729/*
b58fed8b 1730 * The 2.0 compatible umount. No flags.
1da177e4 1731 */
bdc480e3 1732SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1733{
3a18ef5c 1734 return ksys_umount(name, 0);
1da177e4
LT
1735}
1736
1737#endif
1738
4ce5d2b1 1739static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1740{
4ce5d2b1 1741 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1742 return dentry->d_op == &ns_dentry_operations &&
1743 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1744}
1745
58be2825
AV
1746struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1747{
1748 return container_of(ns, struct mnt_namespace, ns);
1749}
1750
4ce5d2b1
EB
1751static bool mnt_ns_loop(struct dentry *dentry)
1752{
1753 /* Could bind mounting the mount namespace inode cause a
1754 * mount namespace loop?
1755 */
1756 struct mnt_namespace *mnt_ns;
1757 if (!is_mnt_ns_file(dentry))
1758 return false;
1759
f77c8014 1760 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1761 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1762}
1763
87129cc0 1764struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1765 int flag)
1da177e4 1766{
84d17192 1767 struct mount *res, *p, *q, *r, *parent;
1da177e4 1768
4ce5d2b1
EB
1769 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1770 return ERR_PTR(-EINVAL);
1771
1772 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1773 return ERR_PTR(-EINVAL);
9676f0c6 1774
36341f64 1775 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1776 if (IS_ERR(q))
1777 return q;
1778
a73324da 1779 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1780
1781 p = mnt;
6b41d536 1782 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1783 struct mount *s;
7ec02ef1 1784 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1785 continue;
1786
909b0a88 1787 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1788 if (!(flag & CL_COPY_UNBINDABLE) &&
1789 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1790 if (s->mnt.mnt_flags & MNT_LOCKED) {
1791 /* Both unbindable and locked. */
1792 q = ERR_PTR(-EPERM);
1793 goto out;
1794 } else {
1795 s = skip_mnt_tree(s);
1796 continue;
1797 }
4ce5d2b1
EB
1798 }
1799 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1800 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1801 s = skip_mnt_tree(s);
1802 continue;
1803 }
0714a533
AV
1804 while (p != s->mnt_parent) {
1805 p = p->mnt_parent;
1806 q = q->mnt_parent;
1da177e4 1807 }
87129cc0 1808 p = s;
84d17192 1809 parent = q;
87129cc0 1810 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1811 if (IS_ERR(q))
1812 goto out;
719ea2fb 1813 lock_mount_hash();
1a4eeaf2 1814 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1815 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1816 unlock_mount_hash();
1da177e4
LT
1817 }
1818 }
1819 return res;
be34d1a3 1820out:
1da177e4 1821 if (res) {
719ea2fb 1822 lock_mount_hash();
e819f152 1823 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1824 unlock_mount_hash();
1da177e4 1825 }
be34d1a3 1826 return q;
1da177e4
LT
1827}
1828
be34d1a3
DH
1829/* Caller should check returned pointer for errors */
1830
ca71cf71 1831struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1832{
cb338d06 1833 struct mount *tree;
97216be0 1834 namespace_lock();
cd4a4017
EB
1835 if (!check_mnt(real_mount(path->mnt)))
1836 tree = ERR_PTR(-EINVAL);
1837 else
1838 tree = copy_tree(real_mount(path->mnt), path->dentry,
1839 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1840 namespace_unlock();
be34d1a3 1841 if (IS_ERR(tree))
52e220d3 1842 return ERR_CAST(tree);
be34d1a3 1843 return &tree->mnt;
8aec0809
AV
1844}
1845
a07b2000
AV
1846static void free_mnt_ns(struct mnt_namespace *);
1847static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1848
1849void dissolve_on_fput(struct vfsmount *mnt)
1850{
1851 struct mnt_namespace *ns;
1852 namespace_lock();
1853 lock_mount_hash();
1854 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1855 if (ns) {
1856 if (is_anon_ns(ns))
1857 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1858 else
1859 ns = NULL;
1860 }
a07b2000
AV
1861 unlock_mount_hash();
1862 namespace_unlock();
44dfd84a
DH
1863 if (ns)
1864 free_mnt_ns(ns);
a07b2000
AV
1865}
1866
8aec0809
AV
1867void drop_collected_mounts(struct vfsmount *mnt)
1868{
97216be0 1869 namespace_lock();
719ea2fb 1870 lock_mount_hash();
9c8e0a1b 1871 umount_tree(real_mount(mnt), 0);
719ea2fb 1872 unlock_mount_hash();
3ab6abee 1873 namespace_unlock();
8aec0809
AV
1874}
1875
d27f75a1
MS
1876static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
1877{
1878 struct mount *child;
1879
1880 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
1881 if (!is_subdir(child->mnt_mountpoint, dentry))
1882 continue;
1883
1884 if (child->mnt.mnt_flags & MNT_LOCKED)
1885 return true;
1886 }
1887 return false;
1888}
1889
c771d683
MS
1890/**
1891 * clone_private_mount - create a private clone of a path
1892 *
1893 * This creates a new vfsmount, which will be the clone of @path. The new will
1894 * not be attached anywhere in the namespace and will be private (i.e. changes
1895 * to the originating mount won't be propagated into this).
1896 *
1897 * Release with mntput().
1898 */
ca71cf71 1899struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1900{
1901 struct mount *old_mnt = real_mount(path->mnt);
1902 struct mount *new_mnt;
1903
d27f75a1 1904 down_read(&namespace_sem);
c771d683 1905 if (IS_MNT_UNBINDABLE(old_mnt))
d27f75a1
MS
1906 goto invalid;
1907
1908 if (!check_mnt(old_mnt))
1909 goto invalid;
1910
1911 if (has_locked_children(old_mnt, path->dentry))
1912 goto invalid;
c771d683 1913
c771d683 1914 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
d27f75a1
MS
1915 up_read(&namespace_sem);
1916
c771d683
MS
1917 if (IS_ERR(new_mnt))
1918 return ERR_CAST(new_mnt);
1919
1920 return &new_mnt->mnt;
d27f75a1
MS
1921
1922invalid:
1923 up_read(&namespace_sem);
1924 return ERR_PTR(-EINVAL);
c771d683
MS
1925}
1926EXPORT_SYMBOL_GPL(clone_private_mount);
1927
1f707137
AV
1928int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1929 struct vfsmount *root)
1930{
1a4eeaf2 1931 struct mount *mnt;
1f707137
AV
1932 int res = f(root, arg);
1933 if (res)
1934 return res;
1a4eeaf2
AV
1935 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1936 res = f(&mnt->mnt, arg);
1f707137
AV
1937 if (res)
1938 return res;
1939 }
1940 return 0;
1941}
a3a49a17 1942EXPORT_SYMBOL_GPL(iterate_mounts);
1f707137 1943
3bd045cc
AV
1944static void lock_mnt_tree(struct mount *mnt)
1945{
1946 struct mount *p;
1947
1948 for (p = mnt; p; p = next_mnt(p, mnt)) {
1949 int flags = p->mnt.mnt_flags;
1950 /* Don't allow unprivileged users to change mount flags */
1951 flags |= MNT_LOCK_ATIME;
1952
1953 if (flags & MNT_READONLY)
1954 flags |= MNT_LOCK_READONLY;
1955
1956 if (flags & MNT_NODEV)
1957 flags |= MNT_LOCK_NODEV;
1958
1959 if (flags & MNT_NOSUID)
1960 flags |= MNT_LOCK_NOSUID;
1961
1962 if (flags & MNT_NOEXEC)
1963 flags |= MNT_LOCK_NOEXEC;
1964 /* Don't allow unprivileged users to reveal what is under a mount */
1965 if (list_empty(&p->mnt_expire))
1966 flags |= MNT_LOCKED;
1967 p->mnt.mnt_flags = flags;
1968 }
1969}
1970
4b8b21f4 1971static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1972{
315fc83e 1973 struct mount *p;
719f5d7f 1974
909b0a88 1975 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1976 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1977 mnt_release_group_id(p);
719f5d7f
MS
1978 }
1979}
1980
4b8b21f4 1981static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1982{
315fc83e 1983 struct mount *p;
719f5d7f 1984
909b0a88 1985 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1986 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1987 int err = mnt_alloc_group_id(p);
719f5d7f 1988 if (err) {
4b8b21f4 1989 cleanup_group_ids(mnt, p);
719f5d7f
MS
1990 return err;
1991 }
1992 }
1993 }
1994
1995 return 0;
1996}
1997
d2921684
EB
1998int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1999{
2000 unsigned int max = READ_ONCE(sysctl_mount_max);
2001 unsigned int mounts = 0, old, pending, sum;
2002 struct mount *p;
2003
2004 for (p = mnt; p; p = next_mnt(p, mnt))
2005 mounts++;
2006
2007 old = ns->mounts;
2008 pending = ns->pending_mounts;
2009 sum = old + pending;
2010 if ((old > sum) ||
2011 (pending > sum) ||
2012 (max < sum) ||
2013 (mounts > (max - sum)))
2014 return -ENOSPC;
2015
2016 ns->pending_mounts = pending + mounts;
2017 return 0;
2018}
2019
b90fa9ae
RP
2020/*
2021 * @source_mnt : mount tree to be attached
21444403
RP
2022 * @nd : place the mount tree @source_mnt is attached
2023 * @parent_nd : if non-null, detach the source_mnt from its parent and
2024 * store the parent mount and mountpoint dentry.
2025 * (done when source_mnt is moved)
b90fa9ae
RP
2026 *
2027 * NOTE: in the table below explains the semantics when a source mount
2028 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
2029 * ---------------------------------------------------------------------------
2030 * | BIND MOUNT OPERATION |
2031 * |**************************************************************************
2032 * | source-->| shared | private | slave | unbindable |
2033 * | dest | | | | |
2034 * | | | | | | |
2035 * | v | | | | |
2036 * |**************************************************************************
2037 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2038 * | | | | | |
2039 * |non-shared| shared (+) | private | slave (*) | invalid |
2040 * ***************************************************************************
b90fa9ae
RP
2041 * A bind operation clones the source mount and mounts the clone on the
2042 * destination mount.
2043 *
2044 * (++) the cloned mount is propagated to all the mounts in the propagation
2045 * tree of the destination mount and the cloned mount is added to
2046 * the peer group of the source mount.
2047 * (+) the cloned mount is created under the destination mount and is marked
2048 * as shared. The cloned mount is added to the peer group of the source
2049 * mount.
5afe0022
RP
2050 * (+++) the mount is propagated to all the mounts in the propagation tree
2051 * of the destination mount and the cloned mount is made slave
2052 * of the same master as that of the source mount. The cloned mount
2053 * is marked as 'shared and slave'.
2054 * (*) the cloned mount is made a slave of the same master as that of the
2055 * source mount.
2056 *
9676f0c6
RP
2057 * ---------------------------------------------------------------------------
2058 * | MOVE MOUNT OPERATION |
2059 * |**************************************************************************
2060 * | source-->| shared | private | slave | unbindable |
2061 * | dest | | | | |
2062 * | | | | | | |
2063 * | v | | | | |
2064 * |**************************************************************************
2065 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2066 * | | | | | |
2067 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2068 * ***************************************************************************
5afe0022
RP
2069 *
2070 * (+) the mount is moved to the destination. And is then propagated to
2071 * all the mounts in the propagation tree of the destination mount.
21444403 2072 * (+*) the mount is moved to the destination.
5afe0022
RP
2073 * (+++) the mount is moved to the destination and is then propagated to
2074 * all the mounts belonging to the destination mount's propagation tree.
2075 * the mount is marked as 'shared and slave'.
2076 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2077 *
2078 * if the source mount is a tree, the operations explained above is
2079 * applied to each mount in the tree.
2080 * Must be called without spinlocks held, since this function can sleep
2081 * in allocations.
2082 */
0fb54e50 2083static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2084 struct mount *dest_mnt,
2085 struct mountpoint *dest_mp,
2763d119 2086 bool moving)
b90fa9ae 2087{
3bd045cc 2088 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2089 HLIST_HEAD(tree_list);
d2921684 2090 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2091 struct mountpoint *smp;
315fc83e 2092 struct mount *child, *p;
38129a13 2093 struct hlist_node *n;
719f5d7f 2094 int err;
b90fa9ae 2095
1064f874
EB
2096 /* Preallocate a mountpoint in case the new mounts need
2097 * to be tucked under other mounts.
2098 */
2099 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2100 if (IS_ERR(smp))
2101 return PTR_ERR(smp);
2102
d2921684 2103 /* Is there space to add these mounts to the mount namespace? */
2763d119 2104 if (!moving) {
d2921684
EB
2105 err = count_mounts(ns, source_mnt);
2106 if (err)
2107 goto out;
2108 }
2109
fc7be130 2110 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2111 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2112 if (err)
2113 goto out;
0b1b901b 2114 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2115 lock_mount_hash();
0b1b901b
AV
2116 if (err)
2117 goto out_cleanup_ids;
909b0a88 2118 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2119 set_mnt_shared(p);
0b1b901b
AV
2120 } else {
2121 lock_mount_hash();
b90fa9ae 2122 }
2763d119
AV
2123 if (moving) {
2124 unhash_mnt(source_mnt);
84d17192 2125 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2126 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2127 } else {
44dfd84a
DH
2128 if (source_mnt->mnt_ns) {
2129 /* move from anon - the caller will destroy */
2130 list_del_init(&source_mnt->mnt_ns->list);
2131 }
84d17192 2132 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2133 commit_tree(source_mnt);
21444403 2134 }
b90fa9ae 2135
38129a13 2136 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2137 struct mount *q;
38129a13 2138 hlist_del_init(&child->mnt_hash);
1064f874
EB
2139 q = __lookup_mnt(&child->mnt_parent->mnt,
2140 child->mnt_mountpoint);
2141 if (q)
2142 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2143 /* Notice when we are propagating across user namespaces */
2144 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2145 lock_mnt_tree(child);
d728cf79 2146 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2147 commit_tree(child);
b90fa9ae 2148 }
1064f874 2149 put_mountpoint(smp);
719ea2fb 2150 unlock_mount_hash();
99b7db7b 2151
b90fa9ae 2152 return 0;
719f5d7f
MS
2153
2154 out_cleanup_ids:
f2ebb3a9
AV
2155 while (!hlist_empty(&tree_list)) {
2156 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2157 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2158 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2159 }
2160 unlock_mount_hash();
0b1b901b 2161 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2162 out:
d2921684 2163 ns->pending_mounts = 0;
1064f874
EB
2164
2165 read_seqlock_excl(&mount_lock);
2166 put_mountpoint(smp);
2167 read_sequnlock_excl(&mount_lock);
2168
719f5d7f 2169 return err;
b90fa9ae
RP
2170}
2171
84d17192 2172static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2173{
2174 struct vfsmount *mnt;
84d17192 2175 struct dentry *dentry = path->dentry;
b12cea91 2176retry:
5955102c 2177 inode_lock(dentry->d_inode);
84d17192 2178 if (unlikely(cant_mount(dentry))) {
5955102c 2179 inode_unlock(dentry->d_inode);
84d17192 2180 return ERR_PTR(-ENOENT);
b12cea91 2181 }
97216be0 2182 namespace_lock();
b12cea91 2183 mnt = lookup_mnt(path);
84d17192 2184 if (likely(!mnt)) {
3895dbf8 2185 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2186 if (IS_ERR(mp)) {
97216be0 2187 namespace_unlock();
5955102c 2188 inode_unlock(dentry->d_inode);
84d17192
AV
2189 return mp;
2190 }
2191 return mp;
2192 }
97216be0 2193 namespace_unlock();
5955102c 2194 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2195 path_put(path);
2196 path->mnt = mnt;
84d17192 2197 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2198 goto retry;
2199}
2200
84d17192 2201static void unlock_mount(struct mountpoint *where)
b12cea91 2202{
84d17192 2203 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2204
2205 read_seqlock_excl(&mount_lock);
84d17192 2206 put_mountpoint(where);
3895dbf8
EB
2207 read_sequnlock_excl(&mount_lock);
2208
328e6d90 2209 namespace_unlock();
5955102c 2210 inode_unlock(dentry->d_inode);
b12cea91
AV
2211}
2212
84d17192 2213static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2214{
e462ec50 2215 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2216 return -EINVAL;
2217
e36cb0b8
DH
2218 if (d_is_dir(mp->m_dentry) !=
2219 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2220 return -ENOTDIR;
2221
2763d119 2222 return attach_recursive_mnt(mnt, p, mp, false);
1da177e4
LT
2223}
2224
7a2e8a8f
VA
2225/*
2226 * Sanity check the flags to change_mnt_propagation.
2227 */
2228
e462ec50 2229static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2230{
e462ec50 2231 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2232
2233 /* Fail if any non-propagation flags are set */
2234 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2235 return 0;
2236 /* Only one propagation flag should be set */
2237 if (!is_power_of_2(type))
2238 return 0;
2239 return type;
2240}
2241
07b20889
RP
2242/*
2243 * recursively change the type of the mountpoint.
2244 */
e462ec50 2245static int do_change_type(struct path *path, int ms_flags)
07b20889 2246{
315fc83e 2247 struct mount *m;
4b8b21f4 2248 struct mount *mnt = real_mount(path->mnt);
e462ec50 2249 int recurse = ms_flags & MS_REC;
7a2e8a8f 2250 int type;
719f5d7f 2251 int err = 0;
07b20889 2252
2d92ab3c 2253 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2254 return -EINVAL;
2255
e462ec50 2256 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2257 if (!type)
2258 return -EINVAL;
2259
97216be0 2260 namespace_lock();
719f5d7f
MS
2261 if (type == MS_SHARED) {
2262 err = invent_group_ids(mnt, recurse);
2263 if (err)
2264 goto out_unlock;
2265 }
2266
719ea2fb 2267 lock_mount_hash();
909b0a88 2268 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2269 change_mnt_propagation(m, type);
719ea2fb 2270 unlock_mount_hash();
719f5d7f
MS
2271
2272 out_unlock:
97216be0 2273 namespace_unlock();
719f5d7f 2274 return err;
07b20889
RP
2275}
2276
a07b2000
AV
2277static struct mount *__do_loopback(struct path *old_path, int recurse)
2278{
2279 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2280
2281 if (IS_MNT_UNBINDABLE(old))
2282 return mnt;
2283
2284 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2285 return mnt;
2286
2287 if (!recurse && has_locked_children(old, old_path->dentry))
2288 return mnt;
2289
2290 if (recurse)
2291 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2292 else
2293 mnt = clone_mnt(old, old_path->dentry, 0);
2294
2295 if (!IS_ERR(mnt))
2296 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2297
2298 return mnt;
2299}
2300
1da177e4
LT
2301/*
2302 * do loopback mount.
2303 */
808d4e3c 2304static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2305 int recurse)
1da177e4 2306{
2d92ab3c 2307 struct path old_path;
a07b2000 2308 struct mount *mnt = NULL, *parent;
84d17192 2309 struct mountpoint *mp;
57eccb83 2310 int err;
1da177e4
LT
2311 if (!old_name || !*old_name)
2312 return -EINVAL;
815d405c 2313 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2314 if (err)
2315 return err;
2316
8823c079 2317 err = -EINVAL;
4ce5d2b1 2318 if (mnt_ns_loop(old_path.dentry))
dd111b31 2319 goto out;
8823c079 2320
84d17192 2321 mp = lock_mount(path);
a07b2000
AV
2322 if (IS_ERR(mp)) {
2323 err = PTR_ERR(mp);
b12cea91 2324 goto out;
a07b2000 2325 }
b12cea91 2326
84d17192 2327 parent = real_mount(path->mnt);
e149ed2b
AV
2328 if (!check_mnt(parent))
2329 goto out2;
2330
a07b2000 2331 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2332 if (IS_ERR(mnt)) {
2333 err = PTR_ERR(mnt);
e9c5d8a5 2334 goto out2;
be34d1a3 2335 }
ccd48bc7 2336
84d17192 2337 err = graft_tree(mnt, parent, mp);
ccd48bc7 2338 if (err) {
719ea2fb 2339 lock_mount_hash();
e819f152 2340 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2341 unlock_mount_hash();
5b83d2c5 2342 }
b12cea91 2343out2:
84d17192 2344 unlock_mount(mp);
ccd48bc7 2345out:
2d92ab3c 2346 path_put(&old_path);
1da177e4
LT
2347 return err;
2348}
2349
a07b2000
AV
2350static struct file *open_detached_copy(struct path *path, bool recursive)
2351{
2352 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2353 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2354 struct mount *mnt, *p;
2355 struct file *file;
2356
2357 if (IS_ERR(ns))
2358 return ERR_CAST(ns);
2359
2360 namespace_lock();
2361 mnt = __do_loopback(path, recursive);
2362 if (IS_ERR(mnt)) {
2363 namespace_unlock();
2364 free_mnt_ns(ns);
2365 return ERR_CAST(mnt);
2366 }
2367
2368 lock_mount_hash();
2369 for (p = mnt; p; p = next_mnt(p, mnt)) {
2370 p->mnt_ns = ns;
2371 ns->mounts++;
2372 }
2373 ns->root = mnt;
2374 list_add_tail(&ns->list, &mnt->mnt_list);
2375 mntget(&mnt->mnt);
2376 unlock_mount_hash();
2377 namespace_unlock();
2378
2379 mntput(path->mnt);
2380 path->mnt = &mnt->mnt;
2381 file = dentry_open(path, O_PATH, current_cred());
2382 if (IS_ERR(file))
2383 dissolve_on_fput(path->mnt);
2384 else
2385 file->f_mode |= FMODE_NEED_UNMOUNT;
2386 return file;
2387}
2388
2389SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2390{
2391 struct file *file;
2392 struct path path;
2393 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2394 bool detached = flags & OPEN_TREE_CLONE;
2395 int error;
2396 int fd;
2397
2398 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2399
2400 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2401 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2402 OPEN_TREE_CLOEXEC))
2403 return -EINVAL;
2404
2405 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2406 return -EINVAL;
2407
2408 if (flags & AT_NO_AUTOMOUNT)
2409 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2410 if (flags & AT_SYMLINK_NOFOLLOW)
2411 lookup_flags &= ~LOOKUP_FOLLOW;
2412 if (flags & AT_EMPTY_PATH)
2413 lookup_flags |= LOOKUP_EMPTY;
2414
2415 if (detached && !may_mount())
2416 return -EPERM;
2417
2418 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2419 if (fd < 0)
2420 return fd;
2421
2422 error = user_path_at(dfd, filename, lookup_flags, &path);
2423 if (unlikely(error)) {
2424 file = ERR_PTR(error);
2425 } else {
2426 if (detached)
2427 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2428 else
2429 file = dentry_open(&path, O_PATH, current_cred());
2430 path_put(&path);
2431 }
2432 if (IS_ERR(file)) {
2433 put_unused_fd(fd);
2434 return PTR_ERR(file);
2435 }
2436 fd_install(fd, file);
2437 return fd;
2438}
2439
43f5e655
DH
2440/*
2441 * Don't allow locked mount flags to be cleared.
2442 *
2443 * No locks need to be held here while testing the various MNT_LOCK
2444 * flags because those flags can never be cleared once they are set.
2445 */
2446static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2447{
43f5e655
DH
2448 unsigned int fl = mnt->mnt.mnt_flags;
2449
2450 if ((fl & MNT_LOCK_READONLY) &&
2451 !(mnt_flags & MNT_READONLY))
2452 return false;
2453
2454 if ((fl & MNT_LOCK_NODEV) &&
2455 !(mnt_flags & MNT_NODEV))
2456 return false;
2457
2458 if ((fl & MNT_LOCK_NOSUID) &&
2459 !(mnt_flags & MNT_NOSUID))
2460 return false;
2461
2462 if ((fl & MNT_LOCK_NOEXEC) &&
2463 !(mnt_flags & MNT_NOEXEC))
2464 return false;
2465
2466 if ((fl & MNT_LOCK_ATIME) &&
2467 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2468 return false;
2e4b7fcd 2469
43f5e655
DH
2470 return true;
2471}
2472
2473static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2474{
43f5e655 2475 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2476
43f5e655 2477 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2478 return 0;
2479
2480 if (readonly_request)
43f5e655
DH
2481 return mnt_make_readonly(mnt);
2482
2483 return __mnt_unmake_readonly(mnt);
2484}
2485
2486/*
2487 * Update the user-settable attributes on a mount. The caller must hold
2488 * sb->s_umount for writing.
2489 */
2490static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2491{
2492 lock_mount_hash();
2493 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2494 mnt->mnt.mnt_flags = mnt_flags;
2495 touch_mnt_namespace(mnt->mnt_ns);
2496 unlock_mount_hash();
2497}
2498
f8b92ba6
DD
2499static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
2500{
2501 struct super_block *sb = mnt->mnt_sb;
2502
2503 if (!__mnt_is_readonly(mnt) &&
2504 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
2505 char *buf = (char *)__get_free_page(GFP_KERNEL);
2506 char *mntpath = buf ? d_path(mountpoint, buf, PAGE_SIZE) : ERR_PTR(-ENOMEM);
2507 struct tm tm;
2508
2509 time64_to_tm(sb->s_time_max, 0, &tm);
2510
0ecee669
EB
2511 pr_warn("%s filesystem being %s at %s supports timestamps until %04ld (0x%llx)\n",
2512 sb->s_type->name,
2513 is_mounted(mnt) ? "remounted" : "mounted",
2514 mntpath,
f8b92ba6
DD
2515 tm.tm_year+1900, (unsigned long long)sb->s_time_max);
2516
2517 free_page((unsigned long)buf);
2518 }
2519}
2520
43f5e655
DH
2521/*
2522 * Handle reconfiguration of the mountpoint only without alteration of the
2523 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2524 * to mount(2).
2525 */
2526static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2527{
2528 struct super_block *sb = path->mnt->mnt_sb;
2529 struct mount *mnt = real_mount(path->mnt);
2530 int ret;
2531
2532 if (!check_mnt(mnt))
2533 return -EINVAL;
2534
2535 if (path->dentry != mnt->mnt.mnt_root)
2536 return -EINVAL;
2537
2538 if (!can_change_locked_flags(mnt, mnt_flags))
2539 return -EPERM;
2540
2541 down_write(&sb->s_umount);
2542 ret = change_mount_ro_state(mnt, mnt_flags);
2543 if (ret == 0)
2544 set_mount_attributes(mnt, mnt_flags);
2545 up_write(&sb->s_umount);
f8b92ba6
DD
2546
2547 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2548
43f5e655 2549 return ret;
2e4b7fcd
DH
2550}
2551
1da177e4
LT
2552/*
2553 * change filesystem flags. dir should be a physical root of filesystem.
2554 * If you've mounted a non-root directory somewhere and want to do remount
2555 * on it - tough luck.
2556 */
e462ec50
DH
2557static int do_remount(struct path *path, int ms_flags, int sb_flags,
2558 int mnt_flags, void *data)
1da177e4
LT
2559{
2560 int err;
2d92ab3c 2561 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2562 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2563 struct fs_context *fc;
1da177e4 2564
143c8c91 2565 if (!check_mnt(mnt))
1da177e4
LT
2566 return -EINVAL;
2567
2d92ab3c 2568 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2569 return -EINVAL;
2570
43f5e655 2571 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2572 return -EPERM;
9566d674 2573
8d0347f6
DH
2574 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2575 if (IS_ERR(fc))
2576 return PTR_ERR(fc);
ff36fe2c 2577
8d0347f6
DH
2578 err = parse_monolithic_mount_data(fc, data);
2579 if (!err) {
2580 down_write(&sb->s_umount);
2581 err = -EPERM;
2582 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2583 err = reconfigure_super(fc);
2584 if (!err)
2585 set_mount_attributes(mnt, mnt_flags);
2586 }
2587 up_write(&sb->s_umount);
0e55a7cc 2588 }
f8b92ba6
DD
2589
2590 mnt_warn_timestamp_expiry(path, &mnt->mnt);
2591
8d0347f6 2592 put_fs_context(fc);
1da177e4
LT
2593 return err;
2594}
2595
cbbe362c 2596static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2597{
315fc83e 2598 struct mount *p;
909b0a88 2599 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2600 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2601 return 1;
2602 }
2603 return 0;
2604}
2605
44dfd84a
DH
2606/*
2607 * Check that there aren't references to earlier/same mount namespaces in the
2608 * specified subtree. Such references can act as pins for mount namespaces
2609 * that aren't checked by the mount-cycle checking code, thereby allowing
2610 * cycles to be made.
2611 */
2612static bool check_for_nsfs_mounts(struct mount *subtree)
2613{
2614 struct mount *p;
2615 bool ret = false;
2616
2617 lock_mount_hash();
2618 for (p = subtree; p; p = next_mnt(p, subtree))
2619 if (mnt_ns_loop(p->mnt.mnt_root))
2620 goto out;
2621
2622 ret = true;
2623out:
2624 unlock_mount_hash();
2625 return ret;
2626}
2627
2db154b3 2628static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2629{
44dfd84a 2630 struct mnt_namespace *ns;
676da58d 2631 struct mount *p;
0fb54e50 2632 struct mount *old;
2763d119
AV
2633 struct mount *parent;
2634 struct mountpoint *mp, *old_mp;
57eccb83 2635 int err;
44dfd84a 2636 bool attached;
1da177e4 2637
2db154b3 2638 mp = lock_mount(new_path);
84d17192 2639 if (IS_ERR(mp))
2db154b3 2640 return PTR_ERR(mp);
cc53ce53 2641
2db154b3
DH
2642 old = real_mount(old_path->mnt);
2643 p = real_mount(new_path->mnt);
2763d119 2644 parent = old->mnt_parent;
44dfd84a 2645 attached = mnt_has_parent(old);
2763d119 2646 old_mp = old->mnt_mp;
44dfd84a 2647 ns = old->mnt_ns;
143c8c91 2648
1da177e4 2649 err = -EINVAL;
44dfd84a
DH
2650 /* The mountpoint must be in our namespace. */
2651 if (!check_mnt(p))
2db154b3 2652 goto out;
1da177e4 2653
570d7a98
EB
2654 /* The thing moved must be mounted... */
2655 if (!is_mounted(&old->mnt))
44dfd84a
DH
2656 goto out;
2657
570d7a98
EB
2658 /* ... and either ours or the root of anon namespace */
2659 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2660 goto out;
5ff9d8a6 2661
2db154b3
DH
2662 if (old->mnt.mnt_flags & MNT_LOCKED)
2663 goto out;
1da177e4 2664
2db154b3
DH
2665 if (old_path->dentry != old_path->mnt->mnt_root)
2666 goto out;
1da177e4 2667
2db154b3
DH
2668 if (d_is_dir(new_path->dentry) !=
2669 d_is_dir(old_path->dentry))
2670 goto out;
21444403
RP
2671 /*
2672 * Don't move a mount residing in a shared parent.
2673 */
2763d119 2674 if (attached && IS_MNT_SHARED(parent))
2db154b3 2675 goto out;
9676f0c6
RP
2676 /*
2677 * Don't move a mount tree containing unbindable mounts to a destination
2678 * mount which is shared.
2679 */
fc7be130 2680 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2681 goto out;
1da177e4 2682 err = -ELOOP;
44dfd84a
DH
2683 if (!check_for_nsfs_mounts(old))
2684 goto out;
fc7be130 2685 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2686 if (p == old)
2db154b3 2687 goto out;
1da177e4 2688
2db154b3 2689 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
2763d119 2690 attached);
4ac91378 2691 if (err)
2db154b3 2692 goto out;
1da177e4
LT
2693
2694 /* if the mount is moved, it should no longer be expire
2695 * automatically */
6776db3d 2696 list_del_init(&old->mnt_expire);
2763d119
AV
2697 if (attached)
2698 put_mountpoint(old_mp);
1da177e4 2699out:
2db154b3 2700 unlock_mount(mp);
44dfd84a 2701 if (!err) {
2763d119
AV
2702 if (attached)
2703 mntput_no_expire(parent);
2704 else
44dfd84a
DH
2705 free_mnt_ns(ns);
2706 }
2db154b3
DH
2707 return err;
2708}
2709
2710static int do_move_mount_old(struct path *path, const char *old_name)
2711{
2712 struct path old_path;
2713 int err;
2714
2715 if (!old_name || !*old_name)
2716 return -EINVAL;
2717
2718 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2719 if (err)
2720 return err;
2721
2722 err = do_move_mount(&old_path, path);
2d92ab3c 2723 path_put(&old_path);
1da177e4
LT
2724 return err;
2725}
2726
9d412a43
AV
2727/*
2728 * add a mount into a namespace's mount tree
2729 */
95bc5f25 2730static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2731{
84d17192
AV
2732 struct mountpoint *mp;
2733 struct mount *parent;
9d412a43
AV
2734 int err;
2735
f2ebb3a9 2736 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2737
84d17192
AV
2738 mp = lock_mount(path);
2739 if (IS_ERR(mp))
2740 return PTR_ERR(mp);
9d412a43 2741
84d17192 2742 parent = real_mount(path->mnt);
9d412a43 2743 err = -EINVAL;
84d17192 2744 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2745 /* that's acceptable only for automounts done in private ns */
2746 if (!(mnt_flags & MNT_SHRINKABLE))
2747 goto unlock;
2748 /* ... and for those we'd better have mountpoint still alive */
84d17192 2749 if (!parent->mnt_ns)
156cacb1
AV
2750 goto unlock;
2751 }
9d412a43
AV
2752
2753 /* Refuse the same filesystem on the same mount point */
2754 err = -EBUSY;
95bc5f25 2755 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2756 path->mnt->mnt_root == path->dentry)
2757 goto unlock;
2758
2759 err = -EINVAL;
e36cb0b8 2760 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2761 goto unlock;
2762
95bc5f25 2763 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2764 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2765
2766unlock:
84d17192 2767 unlock_mount(mp);
9d412a43
AV
2768 return err;
2769}
b1e75df4 2770
132e4608
DH
2771static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2772
2773/*
2774 * Create a new mount using a superblock configuration and request it
2775 * be added to the namespace tree.
2776 */
2777static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2778 unsigned int mnt_flags)
2779{
2780 struct vfsmount *mnt;
2781 struct super_block *sb = fc->root->d_sb;
2782 int error;
2783
c9ce29ed
AV
2784 error = security_sb_kern_mount(sb);
2785 if (!error && mount_too_revealing(sb, &mnt_flags))
2786 error = -EPERM;
2787
2788 if (unlikely(error)) {
2789 fc_drop_locked(fc);
2790 return error;
132e4608
DH
2791 }
2792
2793 up_write(&sb->s_umount);
2794
2795 mnt = vfs_create_mount(fc);
2796 if (IS_ERR(mnt))
2797 return PTR_ERR(mnt);
2798
f8b92ba6
DD
2799 mnt_warn_timestamp_expiry(mountpoint, mnt);
2800
0ecee669
EB
2801 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2802 if (error < 0)
2803 mntput(mnt);
132e4608
DH
2804 return error;
2805}
1b852bce 2806
1da177e4
LT
2807/*
2808 * create a new mount for userspace and request it to be added into the
2809 * namespace's tree
2810 */
e462ec50 2811static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2812 int mnt_flags, const char *name, void *data)
1da177e4 2813{
0c55cfc4 2814 struct file_system_type *type;
a0c9a8b8
AV
2815 struct fs_context *fc;
2816 const char *subtype = NULL;
2817 int err = 0;
1da177e4 2818
0c55cfc4 2819 if (!fstype)
1da177e4
LT
2820 return -EINVAL;
2821
0c55cfc4
EB
2822 type = get_fs_type(fstype);
2823 if (!type)
2824 return -ENODEV;
2825
a0c9a8b8
AV
2826 if (type->fs_flags & FS_HAS_SUBTYPE) {
2827 subtype = strchr(fstype, '.');
2828 if (subtype) {
2829 subtype++;
2830 if (!*subtype) {
2831 put_filesystem(type);
2832 return -EINVAL;
2833 }
a0c9a8b8
AV
2834 }
2835 }
0c55cfc4 2836
a0c9a8b8 2837 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2838 put_filesystem(type);
a0c9a8b8
AV
2839 if (IS_ERR(fc))
2840 return PTR_ERR(fc);
2841
3e1aeb00
DH
2842 if (subtype)
2843 err = vfs_parse_fs_string(fc, "subtype",
2844 subtype, strlen(subtype));
2845 if (!err && name)
2846 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2847 if (!err)
2848 err = parse_monolithic_mount_data(fc, data);
c3aabf07
AV
2849 if (!err && !mount_capable(fc))
2850 err = -EPERM;
a0c9a8b8
AV
2851 if (!err)
2852 err = vfs_get_tree(fc);
132e4608
DH
2853 if (!err)
2854 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2855
a0c9a8b8 2856 put_fs_context(fc);
15f9a3f3 2857 return err;
1da177e4
LT
2858}
2859
19a167af
AV
2860int finish_automount(struct vfsmount *m, struct path *path)
2861{
6776db3d 2862 struct mount *mnt = real_mount(m);
19a167af
AV
2863 int err;
2864 /* The new mount record should have at least 2 refs to prevent it being
2865 * expired before we get a chance to add it
2866 */
6776db3d 2867 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2868
2869 if (m->mnt_sb == path->mnt->mnt_sb &&
2870 m->mnt_root == path->dentry) {
b1e75df4
AV
2871 err = -ELOOP;
2872 goto fail;
19a167af
AV
2873 }
2874
95bc5f25 2875 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2876 if (!err)
2877 return 0;
2878fail:
2879 /* remove m from any expiration list it may be on */
6776db3d 2880 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2881 namespace_lock();
6776db3d 2882 list_del_init(&mnt->mnt_expire);
97216be0 2883 namespace_unlock();
19a167af 2884 }
b1e75df4
AV
2885 mntput(m);
2886 mntput(m);
19a167af
AV
2887 return err;
2888}
2889
ea5b778a
DH
2890/**
2891 * mnt_set_expiry - Put a mount on an expiration list
2892 * @mnt: The mount to list.
2893 * @expiry_list: The list to add the mount to.
2894 */
2895void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2896{
97216be0 2897 namespace_lock();
ea5b778a 2898
6776db3d 2899 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2900
97216be0 2901 namespace_unlock();
ea5b778a
DH
2902}
2903EXPORT_SYMBOL(mnt_set_expiry);
2904
1da177e4
LT
2905/*
2906 * process a list of expirable mountpoints with the intent of discarding any
2907 * mountpoints that aren't in use and haven't been touched since last we came
2908 * here
2909 */
2910void mark_mounts_for_expiry(struct list_head *mounts)
2911{
761d5c38 2912 struct mount *mnt, *next;
1da177e4
LT
2913 LIST_HEAD(graveyard);
2914
2915 if (list_empty(mounts))
2916 return;
2917
97216be0 2918 namespace_lock();
719ea2fb 2919 lock_mount_hash();
1da177e4
LT
2920
2921 /* extract from the expiration list every vfsmount that matches the
2922 * following criteria:
2923 * - only referenced by its parent vfsmount
2924 * - still marked for expiry (marked on the last call here; marks are
2925 * cleared by mntput())
2926 */
6776db3d 2927 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2928 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2929 propagate_mount_busy(mnt, 1))
1da177e4 2930 continue;
6776db3d 2931 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2932 }
bcc5c7d2 2933 while (!list_empty(&graveyard)) {
6776db3d 2934 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2935 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2936 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2937 }
719ea2fb 2938 unlock_mount_hash();
3ab6abee 2939 namespace_unlock();
5528f911
TM
2940}
2941
2942EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2943
2944/*
2945 * Ripoff of 'select_parent()'
2946 *
2947 * search the list of submounts for a given mountpoint, and move any
2948 * shrinkable submounts to the 'graveyard' list.
2949 */
692afc31 2950static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2951{
692afc31 2952 struct mount *this_parent = parent;
5528f911
TM
2953 struct list_head *next;
2954 int found = 0;
2955
2956repeat:
6b41d536 2957 next = this_parent->mnt_mounts.next;
5528f911 2958resume:
6b41d536 2959 while (next != &this_parent->mnt_mounts) {
5528f911 2960 struct list_head *tmp = next;
6b41d536 2961 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2962
2963 next = tmp->next;
692afc31 2964 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2965 continue;
5528f911
TM
2966 /*
2967 * Descend a level if the d_mounts list is non-empty.
2968 */
6b41d536 2969 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2970 this_parent = mnt;
2971 goto repeat;
2972 }
1da177e4 2973
1ab59738 2974 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2975 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2976 found++;
2977 }
1da177e4 2978 }
5528f911
TM
2979 /*
2980 * All done at this level ... ascend and resume the search
2981 */
2982 if (this_parent != parent) {
6b41d536 2983 next = this_parent->mnt_child.next;
0714a533 2984 this_parent = this_parent->mnt_parent;
5528f911
TM
2985 goto resume;
2986 }
2987 return found;
2988}
2989
2990/*
2991 * process a list of expirable mountpoints with the intent of discarding any
2992 * submounts of a specific parent mountpoint
99b7db7b 2993 *
48a066e7 2994 * mount_lock must be held for write
5528f911 2995 */
b54b9be7 2996static void shrink_submounts(struct mount *mnt)
5528f911
TM
2997{
2998 LIST_HEAD(graveyard);
761d5c38 2999 struct mount *m;
5528f911 3000
5528f911 3001 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 3002 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 3003 while (!list_empty(&graveyard)) {
761d5c38 3004 m = list_first_entry(&graveyard, struct mount,
6776db3d 3005 mnt_expire);
143c8c91 3006 touch_mnt_namespace(m->mnt_ns);
e819f152 3007 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
3008 }
3009 }
1da177e4
LT
3010}
3011
1da177e4
LT
3012/*
3013 * Some copy_from_user() implementations do not return the exact number of
3014 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
3015 * Note that this function differs from copy_from_user() in that it will oops
3016 * on bad values of `to', rather than returning a short copy.
3017 */
b58fed8b
RP
3018static long exact_copy_from_user(void *to, const void __user * from,
3019 unsigned long n)
1da177e4
LT
3020{
3021 char *t = to;
3022 const char __user *f = from;
3023 char c;
3024
96d4f267 3025 if (!access_ok(from, n))
1da177e4
LT
3026 return n;
3027
3028 while (n) {
3029 if (__get_user(c, f)) {
3030 memset(t, 0, n);
3031 break;
3032 }
3033 *t++ = c;
3034 f++;
3035 n--;
3036 }
3037 return n;
3038}
3039
b40ef869 3040void *copy_mount_options(const void __user * data)
1da177e4
LT
3041{
3042 int i;
1da177e4 3043 unsigned long size;
b40ef869 3044 char *copy;
b58fed8b 3045
1da177e4 3046 if (!data)
b40ef869 3047 return NULL;
1da177e4 3048
b40ef869
AV
3049 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
3050 if (!copy)
3051 return ERR_PTR(-ENOMEM);
1da177e4
LT
3052
3053 /* We only care that *some* data at the address the user
3054 * gave us is valid. Just in case, we'll zero
3055 * the remainder of the page.
3056 */
3057 /* copy_from_user cannot cross TASK_SIZE ! */
ed8a66b8 3058 size = TASK_SIZE - (unsigned long)untagged_addr(data);
1da177e4
LT
3059 if (size > PAGE_SIZE)
3060 size = PAGE_SIZE;
3061
b40ef869 3062 i = size - exact_copy_from_user(copy, data, size);
1da177e4 3063 if (!i) {
b40ef869
AV
3064 kfree(copy);
3065 return ERR_PTR(-EFAULT);
1da177e4
LT
3066 }
3067 if (i != PAGE_SIZE)
b40ef869
AV
3068 memset(copy + i, 0, PAGE_SIZE - i);
3069 return copy;
1da177e4
LT
3070}
3071
b8850d1f 3072char *copy_mount_string(const void __user *data)
eca6f534 3073{
fbdb4401 3074 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3075}
3076
1da177e4
LT
3077/*
3078 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3079 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3080 *
3081 * data is a (void *) that can point to any structure up to
3082 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3083 * information (or be NULL).
3084 *
3085 * Pre-0.97 versions of mount() didn't have a flags word.
3086 * When the flags word was introduced its top half was required
3087 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3088 * Therefore, if this magic number is present, it carries no information
3089 * and must be discarded.
3090 */
5e6123f3 3091long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3092 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3093{
2d92ab3c 3094 struct path path;
e462ec50 3095 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3096 int retval = 0;
1da177e4
LT
3097
3098 /* Discard magic */
3099 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3100 flags &= ~MS_MGC_MSK;
3101
3102 /* Basic sanity checks */
1da177e4
LT
3103 if (data_page)
3104 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3105
e462ec50
DH
3106 if (flags & MS_NOUSER)
3107 return -EINVAL;
3108
a27ab9f2 3109 /* ... and get the mountpoint */
ce6595a2 3110 retval = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
a27ab9f2
TH
3111 if (retval)
3112 return retval;
3113
3114 retval = security_sb_mount(dev_name, &path,
3115 type_page, flags, data_page);
0d5cadb8
AV
3116 if (!retval && !may_mount())
3117 retval = -EPERM;
e462ec50 3118 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3119 retval = -EPERM;
a27ab9f2
TH
3120 if (retval)
3121 goto dput_out;
3122
613cbe3d
AK
3123 /* Default to relatime unless overriden */
3124 if (!(flags & MS_NOATIME))
3125 mnt_flags |= MNT_RELATIME;
0a1c01c9 3126
1da177e4
LT
3127 /* Separate the per-mountpoint flags */
3128 if (flags & MS_NOSUID)
3129 mnt_flags |= MNT_NOSUID;
3130 if (flags & MS_NODEV)
3131 mnt_flags |= MNT_NODEV;
3132 if (flags & MS_NOEXEC)
3133 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3134 if (flags & MS_NOATIME)
3135 mnt_flags |= MNT_NOATIME;
3136 if (flags & MS_NODIRATIME)
3137 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3138 if (flags & MS_STRICTATIME)
3139 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3140 if (flags & MS_RDONLY)
2e4b7fcd 3141 mnt_flags |= MNT_READONLY;
fc33a7bb 3142
ffbc6f0e
EB
3143 /* The default atime for remount is preservation */
3144 if ((flags & MS_REMOUNT) &&
3145 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3146 MS_STRICTATIME)) == 0)) {
3147 mnt_flags &= ~MNT_ATIME_MASK;
3148 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3149 }
3150
e462ec50
DH
3151 sb_flags = flags & (SB_RDONLY |
3152 SB_SYNCHRONOUS |
3153 SB_MANDLOCK |
3154 SB_DIRSYNC |
3155 SB_SILENT |
917086ff 3156 SB_POSIXACL |
d7ee9469 3157 SB_LAZYTIME |
917086ff 3158 SB_I_VERSION);
1da177e4 3159
43f5e655
DH
3160 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3161 retval = do_reconfigure_mnt(&path, mnt_flags);
3162 else if (flags & MS_REMOUNT)
e462ec50 3163 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3164 data_page);
3165 else if (flags & MS_BIND)
2d92ab3c 3166 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3167 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3168 retval = do_change_type(&path, flags);
1da177e4 3169 else if (flags & MS_MOVE)
2db154b3 3170 retval = do_move_mount_old(&path, dev_name);
1da177e4 3171 else
e462ec50 3172 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3173 dev_name, data_page);
3174dput_out:
2d92ab3c 3175 path_put(&path);
1da177e4
LT
3176 return retval;
3177}
3178
537f7ccb
EB
3179static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3180{
3181 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3182}
3183
3184static void dec_mnt_namespaces(struct ucounts *ucounts)
3185{
3186 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3187}
3188
771b1371
EB
3189static void free_mnt_ns(struct mnt_namespace *ns)
3190{
74e83122
AV
3191 if (!is_anon_ns(ns))
3192 ns_free_inum(&ns->ns);
537f7ccb 3193 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3194 put_user_ns(ns->user_ns);
3195 kfree(ns);
3196}
3197
8823c079
EB
3198/*
3199 * Assign a sequence number so we can detect when we attempt to bind
3200 * mount a reference to an older mount namespace into the current
3201 * mount namespace, preventing reference counting loops. A 64bit
3202 * number incrementing at 10Ghz will take 12,427 years to wrap which
3203 * is effectively never, so we can ignore the possibility.
3204 */
3205static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3206
74e83122 3207static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3208{
3209 struct mnt_namespace *new_ns;
537f7ccb 3210 struct ucounts *ucounts;
98f842e6 3211 int ret;
cf8d2c11 3212
537f7ccb
EB
3213 ucounts = inc_mnt_namespaces(user_ns);
3214 if (!ucounts)
df75e774 3215 return ERR_PTR(-ENOSPC);
537f7ccb 3216
74e83122 3217 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3218 if (!new_ns) {
3219 dec_mnt_namespaces(ucounts);
cf8d2c11 3220 return ERR_PTR(-ENOMEM);
537f7ccb 3221 }
74e83122
AV
3222 if (!anon) {
3223 ret = ns_alloc_inum(&new_ns->ns);
3224 if (ret) {
3225 kfree(new_ns);
3226 dec_mnt_namespaces(ucounts);
3227 return ERR_PTR(ret);
3228 }
98f842e6 3229 }
33c42940 3230 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3231 if (!anon)
3232 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3233 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3234 INIT_LIST_HEAD(&new_ns->list);
3235 init_waitqueue_head(&new_ns->poll);
771b1371 3236 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3237 new_ns->ucounts = ucounts;
cf8d2c11
TM
3238 return new_ns;
3239}
3240
0766f788 3241__latent_entropy
9559f689
AV
3242struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3243 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3244{
6b3286ed 3245 struct mnt_namespace *new_ns;
7f2da1e7 3246 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3247 struct mount *p, *q;
9559f689 3248 struct mount *old;
cb338d06 3249 struct mount *new;
7a472ef4 3250 int copy_flags;
1da177e4 3251
9559f689
AV
3252 BUG_ON(!ns);
3253
3254 if (likely(!(flags & CLONE_NEWNS))) {
3255 get_mnt_ns(ns);
3256 return ns;
3257 }
3258
3259 old = ns->root;
3260
74e83122 3261 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3262 if (IS_ERR(new_ns))
3263 return new_ns;
1da177e4 3264
97216be0 3265 namespace_lock();
1da177e4 3266 /* First pass: copy the tree topology */
4ce5d2b1 3267 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3268 if (user_ns != ns->user_ns)
3bd045cc 3269 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3270 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3271 if (IS_ERR(new)) {
328e6d90 3272 namespace_unlock();
771b1371 3273 free_mnt_ns(new_ns);
be34d1a3 3274 return ERR_CAST(new);
1da177e4 3275 }
3bd045cc
AV
3276 if (user_ns != ns->user_ns) {
3277 lock_mount_hash();
3278 lock_mnt_tree(new);
3279 unlock_mount_hash();
3280 }
be08d6d2 3281 new_ns->root = new;
1a4eeaf2 3282 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3283
3284 /*
3285 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3286 * as belonging to new namespace. We have already acquired a private
3287 * fs_struct, so tsk->fs->lock is not needed.
3288 */
909b0a88 3289 p = old;
cb338d06 3290 q = new;
1da177e4 3291 while (p) {
143c8c91 3292 q->mnt_ns = new_ns;
d2921684 3293 new_ns->mounts++;
9559f689
AV
3294 if (new_fs) {
3295 if (&p->mnt == new_fs->root.mnt) {
3296 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3297 rootmnt = &p->mnt;
1da177e4 3298 }
9559f689
AV
3299 if (&p->mnt == new_fs->pwd.mnt) {
3300 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3301 pwdmnt = &p->mnt;
1da177e4 3302 }
1da177e4 3303 }
909b0a88
AV
3304 p = next_mnt(p, old);
3305 q = next_mnt(q, new);
4ce5d2b1
EB
3306 if (!q)
3307 break;
3308 while (p->mnt.mnt_root != q->mnt.mnt_root)
3309 p = next_mnt(p, old);
1da177e4 3310 }
328e6d90 3311 namespace_unlock();
1da177e4 3312
1da177e4 3313 if (rootmnt)
f03c6599 3314 mntput(rootmnt);
1da177e4 3315 if (pwdmnt)
f03c6599 3316 mntput(pwdmnt);
1da177e4 3317
741a2951 3318 return new_ns;
1da177e4
LT
3319}
3320
74e83122 3321struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3322{
74e83122 3323 struct mount *mnt = real_mount(m);
ea441d11 3324 struct mnt_namespace *ns;
d31da0f0 3325 struct super_block *s;
ea441d11
AV
3326 struct path path;
3327 int err;
3328
74e83122
AV
3329 ns = alloc_mnt_ns(&init_user_ns, true);
3330 if (IS_ERR(ns)) {
3331 mntput(m);
ea441d11 3332 return ERR_CAST(ns);
74e83122
AV
3333 }
3334 mnt->mnt_ns = ns;
3335 ns->root = mnt;
3336 ns->mounts++;
3337 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3338
74e83122 3339 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3340 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3341
3342 put_mnt_ns(ns);
3343
3344 if (err)
3345 return ERR_PTR(err);
3346
3347 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3348 s = path.mnt->mnt_sb;
3349 atomic_inc(&s->s_active);
ea441d11
AV
3350 mntput(path.mnt);
3351 /* lock the sucker */
d31da0f0 3352 down_write(&s->s_umount);
ea441d11
AV
3353 /* ... and return the root of (sub)tree on it */
3354 return path.dentry;
3355}
3356EXPORT_SYMBOL(mount_subtree);
3357
33488845
AV
3358int ksys_mount(const char __user *dev_name, const char __user *dir_name,
3359 const char __user *type, unsigned long flags, void __user *data)
1da177e4 3360{
eca6f534
VN
3361 int ret;
3362 char *kernel_type;
eca6f534 3363 char *kernel_dev;
b40ef869 3364 void *options;
1da177e4 3365
b8850d1f
TG
3366 kernel_type = copy_mount_string(type);
3367 ret = PTR_ERR(kernel_type);
3368 if (IS_ERR(kernel_type))
eca6f534 3369 goto out_type;
1da177e4 3370
b8850d1f
TG
3371 kernel_dev = copy_mount_string(dev_name);
3372 ret = PTR_ERR(kernel_dev);
3373 if (IS_ERR(kernel_dev))
eca6f534 3374 goto out_dev;
1da177e4 3375
b40ef869
AV
3376 options = copy_mount_options(data);
3377 ret = PTR_ERR(options);
3378 if (IS_ERR(options))
eca6f534 3379 goto out_data;
1da177e4 3380
b40ef869 3381 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3382
b40ef869 3383 kfree(options);
eca6f534
VN
3384out_data:
3385 kfree(kernel_dev);
3386out_dev:
eca6f534
VN
3387 kfree(kernel_type);
3388out_type:
3389 return ret;
1da177e4
LT
3390}
3391
312db1aa
DB
3392SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3393 char __user *, type, unsigned long, flags, void __user *, data)
3394{
3395 return ksys_mount(dev_name, dir_name, type, flags, data);
3396}
3397
2db154b3 3398/*
93766fbd
DH
3399 * Create a kernel mount representation for a new, prepared superblock
3400 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3401 */
3402SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3403 unsigned int, attr_flags)
3404{
3405 struct mnt_namespace *ns;
3406 struct fs_context *fc;
3407 struct file *file;
3408 struct path newmount;
3409 struct mount *mnt;
3410 struct fd f;
3411 unsigned int mnt_flags = 0;
3412 long ret;
3413
3414 if (!may_mount())
3415 return -EPERM;
3416
3417 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3418 return -EINVAL;
3419
3420 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3421 MOUNT_ATTR_NOSUID |
3422 MOUNT_ATTR_NODEV |
3423 MOUNT_ATTR_NOEXEC |
3424 MOUNT_ATTR__ATIME |
3425 MOUNT_ATTR_NODIRATIME))
3426 return -EINVAL;
3427
3428 if (attr_flags & MOUNT_ATTR_RDONLY)
3429 mnt_flags |= MNT_READONLY;
3430 if (attr_flags & MOUNT_ATTR_NOSUID)
3431 mnt_flags |= MNT_NOSUID;
3432 if (attr_flags & MOUNT_ATTR_NODEV)
3433 mnt_flags |= MNT_NODEV;
3434 if (attr_flags & MOUNT_ATTR_NOEXEC)
3435 mnt_flags |= MNT_NOEXEC;
3436 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3437 mnt_flags |= MNT_NODIRATIME;
3438
3439 switch (attr_flags & MOUNT_ATTR__ATIME) {
3440 case MOUNT_ATTR_STRICTATIME:
3441 break;
3442 case MOUNT_ATTR_NOATIME:
3443 mnt_flags |= MNT_NOATIME;
3444 break;
3445 case MOUNT_ATTR_RELATIME:
3446 mnt_flags |= MNT_RELATIME;
3447 break;
3448 default:
3449 return -EINVAL;
3450 }
3451
3452 f = fdget(fs_fd);
3453 if (!f.file)
3454 return -EBADF;
3455
3456 ret = -EINVAL;
3457 if (f.file->f_op != &fscontext_fops)
3458 goto err_fsfd;
3459
3460 fc = f.file->private_data;
3461
3462 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3463 if (ret < 0)
3464 goto err_fsfd;
3465
3466 /* There must be a valid superblock or we can't mount it */
3467 ret = -EINVAL;
3468 if (!fc->root)
3469 goto err_unlock;
3470
3471 ret = -EPERM;
3472 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3473 pr_warn("VFS: Mount too revealing\n");
3474 goto err_unlock;
3475 }
3476
3477 ret = -EBUSY;
3478 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3479 goto err_unlock;
3480
3481 ret = -EPERM;
3482 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3483 goto err_unlock;
3484
3485 newmount.mnt = vfs_create_mount(fc);
3486 if (IS_ERR(newmount.mnt)) {
3487 ret = PTR_ERR(newmount.mnt);
3488 goto err_unlock;
3489 }
3490 newmount.dentry = dget(fc->root);
3491 newmount.mnt->mnt_flags = mnt_flags;
3492
3493 /* We've done the mount bit - now move the file context into more or
3494 * less the same state as if we'd done an fspick(). We don't want to
3495 * do any memory allocation or anything like that at this point as we
3496 * don't want to have to handle any errors incurred.
3497 */
3498 vfs_clean_context(fc);
3499
3500 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3501 if (IS_ERR(ns)) {
3502 ret = PTR_ERR(ns);
3503 goto err_path;
3504 }
3505 mnt = real_mount(newmount.mnt);
3506 mnt->mnt_ns = ns;
3507 ns->root = mnt;
3508 ns->mounts = 1;
3509 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3510 mntget(newmount.mnt);
93766fbd
DH
3511
3512 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3513 * it, not just simply put it.
3514 */
3515 file = dentry_open(&newmount, O_PATH, fc->cred);
3516 if (IS_ERR(file)) {
3517 dissolve_on_fput(newmount.mnt);
3518 ret = PTR_ERR(file);
3519 goto err_path;
3520 }
3521 file->f_mode |= FMODE_NEED_UNMOUNT;
3522
3523 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3524 if (ret >= 0)
3525 fd_install(ret, file);
3526 else
3527 fput(file);
3528
3529err_path:
3530 path_put(&newmount);
3531err_unlock:
3532 mutex_unlock(&fc->uapi_mutex);
3533err_fsfd:
3534 fdput(f);
3535 return ret;
3536}
3537
3538/*
3539 * Move a mount from one place to another. In combination with
3540 * fsopen()/fsmount() this is used to install a new mount and in combination
3541 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3542 * a mount subtree.
2db154b3
DH
3543 *
3544 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3545 */
3546SYSCALL_DEFINE5(move_mount,
3547 int, from_dfd, const char *, from_pathname,
3548 int, to_dfd, const char *, to_pathname,
3549 unsigned int, flags)
3550{
3551 struct path from_path, to_path;
3552 unsigned int lflags;
3553 int ret = 0;
3554
3555 if (!may_mount())
3556 return -EPERM;
3557
3558 if (flags & ~MOVE_MOUNT__MASK)
3559 return -EINVAL;
3560
3561 /* If someone gives a pathname, they aren't permitted to move
3562 * from an fd that requires unmount as we can't get at the flag
3563 * to clear it afterwards.
3564 */
3565 lflags = 0;
3566 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3567 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3568 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3569
3570 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3571 if (ret < 0)
3572 return ret;
3573
3574 lflags = 0;
3575 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3576 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3577 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3578
3579 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3580 if (ret < 0)
3581 goto out_from;
3582
3583 ret = security_move_mount(&from_path, &to_path);
3584 if (ret < 0)
3585 goto out_to;
3586
3587 ret = do_move_mount(&from_path, &to_path);
3588
3589out_to:
3590 path_put(&to_path);
3591out_from:
3592 path_put(&from_path);
3593 return ret;
3594}
3595
afac7cba
AV
3596/*
3597 * Return true if path is reachable from root
3598 *
48a066e7 3599 * namespace_sem or mount_lock is held
afac7cba 3600 */
643822b4 3601bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3602 const struct path *root)
3603{
643822b4 3604 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3605 dentry = mnt->mnt_mountpoint;
0714a533 3606 mnt = mnt->mnt_parent;
afac7cba 3607 }
643822b4 3608 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3609}
3610
640eb7e7 3611bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3612{
25ab4c9b 3613 bool res;
48a066e7 3614 read_seqlock_excl(&mount_lock);
643822b4 3615 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3616 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3617 return res;
3618}
3619EXPORT_SYMBOL(path_is_under);
3620
1da177e4
LT
3621/*
3622 * pivot_root Semantics:
3623 * Moves the root file system of the current process to the directory put_old,
3624 * makes new_root as the new root file system of the current process, and sets
3625 * root/cwd of all processes which had them on the current root to new_root.
3626 *
3627 * Restrictions:
3628 * The new_root and put_old must be directories, and must not be on the
3629 * same file system as the current process root. The put_old must be
3630 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3631 * pointed to by put_old must yield the same directory as new_root. No other
3632 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3633 *
4a0d11fa
NB
3634 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3635 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3636 * in this situation.
3637 *
1da177e4
LT
3638 * Notes:
3639 * - we don't move root/cwd if they are not at the root (reason: if something
3640 * cared enough to change them, it's probably wrong to force them elsewhere)
3641 * - it's okay to pick a root that isn't the root of a file system, e.g.
3642 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3643 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3644 * first.
3645 */
3480b257
HC
3646SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3647 const char __user *, put_old)
1da177e4 3648{
2763d119
AV
3649 struct path new, old, root;
3650 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
84d17192 3651 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3652 int error;
3653
9b40bc90 3654 if (!may_mount())
1da177e4
LT
3655 return -EPERM;
3656
ce6595a2
AV
3657 error = user_path_at(AT_FDCWD, new_root,
3658 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
1da177e4
LT
3659 if (error)
3660 goto out0;
1da177e4 3661
ce6595a2
AV
3662 error = user_path_at(AT_FDCWD, put_old,
3663 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
1da177e4
LT
3664 if (error)
3665 goto out1;
3666
2d8f3038 3667 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3668 if (error)
3669 goto out2;
1da177e4 3670
f7ad3c6b 3671 get_fs_root(current->fs, &root);
84d17192
AV
3672 old_mp = lock_mount(&old);
3673 error = PTR_ERR(old_mp);
3674 if (IS_ERR(old_mp))
b12cea91
AV
3675 goto out3;
3676
1da177e4 3677 error = -EINVAL;
419148da
AV
3678 new_mnt = real_mount(new.mnt);
3679 root_mnt = real_mount(root.mnt);
84d17192 3680 old_mnt = real_mount(old.mnt);
2763d119
AV
3681 ex_parent = new_mnt->mnt_parent;
3682 root_parent = root_mnt->mnt_parent;
84d17192 3683 if (IS_MNT_SHARED(old_mnt) ||
2763d119
AV
3684 IS_MNT_SHARED(ex_parent) ||
3685 IS_MNT_SHARED(root_parent))
b12cea91 3686 goto out4;
143c8c91 3687 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3688 goto out4;
5ff9d8a6
EB
3689 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3690 goto out4;
1da177e4 3691 error = -ENOENT;
f3da392e 3692 if (d_unlinked(new.dentry))
b12cea91 3693 goto out4;
1da177e4 3694 error = -EBUSY;
84d17192 3695 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3696 goto out4; /* loop, on the same file system */
1da177e4 3697 error = -EINVAL;
8c3ee42e 3698 if (root.mnt->mnt_root != root.dentry)
b12cea91 3699 goto out4; /* not a mountpoint */
676da58d 3700 if (!mnt_has_parent(root_mnt))
b12cea91 3701 goto out4; /* not attached */
2d8f3038 3702 if (new.mnt->mnt_root != new.dentry)
b12cea91 3703 goto out4; /* not a mountpoint */
676da58d 3704 if (!mnt_has_parent(new_mnt))
b12cea91 3705 goto out4; /* not attached */
4ac91378 3706 /* make sure we can reach put_old from new_root */
84d17192 3707 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3708 goto out4;
0d082601
EB
3709 /* make certain new is below the root */
3710 if (!is_path_reachable(new_mnt, new.dentry, &root))
3711 goto out4;
719ea2fb 3712 lock_mount_hash();
2763d119
AV
3713 umount_mnt(new_mnt);
3714 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
5ff9d8a6
EB
3715 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3716 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3717 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3718 }
4ac91378 3719 /* mount old root on put_old */
84d17192 3720 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3721 /* mount new_root on / */
2763d119
AV
3722 attach_mnt(new_mnt, root_parent, root_mp);
3723 mnt_add_count(root_parent, -1);
6b3286ed 3724 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3725 /* A moved mount should not expire automatically */
3726 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3727 put_mountpoint(root_mp);
719ea2fb 3728 unlock_mount_hash();
2d8f3038 3729 chroot_fs_refs(&root, &new);
1da177e4 3730 error = 0;
b12cea91 3731out4:
84d17192 3732 unlock_mount(old_mp);
2763d119
AV
3733 if (!error)
3734 mntput_no_expire(ex_parent);
b12cea91 3735out3:
8c3ee42e 3736 path_put(&root);
b12cea91 3737out2:
2d8f3038 3738 path_put(&old);
1da177e4 3739out1:
2d8f3038 3740 path_put(&new);
1da177e4 3741out0:
1da177e4 3742 return error;
1da177e4
LT
3743}
3744
3745static void __init init_mount_tree(void)
3746{
3747 struct vfsmount *mnt;
74e83122 3748 struct mount *m;
6b3286ed 3749 struct mnt_namespace *ns;
ac748a09 3750 struct path root;
1da177e4 3751
fd3e007f 3752 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
1da177e4
LT
3753 if (IS_ERR(mnt))
3754 panic("Can't create rootfs");
b3e19d92 3755
74e83122 3756 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3757 if (IS_ERR(ns))
1da177e4 3758 panic("Can't allocate initial namespace");
74e83122
AV
3759 m = real_mount(mnt);
3760 m->mnt_ns = ns;
3761 ns->root = m;
3762 ns->mounts = 1;
3763 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3764 init_task.nsproxy->mnt_ns = ns;
3765 get_mnt_ns(ns);
3766
be08d6d2
AV
3767 root.mnt = mnt;
3768 root.dentry = mnt->mnt_root;
da362b09 3769 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3770
3771 set_fs_pwd(current->fs, &root);
3772 set_fs_root(current->fs, &root);
1da177e4
LT
3773}
3774
74bf17cf 3775void __init mnt_init(void)
1da177e4 3776{
15a67dd8 3777 int err;
1da177e4 3778
7d6fec45 3779 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3780 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3781
0818bf27 3782 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3783 sizeof(struct hlist_head),
0818bf27 3784 mhash_entries, 19,
3d375d78 3785 HASH_ZERO,
0818bf27
AV
3786 &m_hash_shift, &m_hash_mask, 0, 0);
3787 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3788 sizeof(struct hlist_head),
3789 mphash_entries, 19,
3d375d78 3790 HASH_ZERO,
0818bf27 3791 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3792
84d17192 3793 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3794 panic("Failed to allocate mount hash table\n");
3795
4b93dc9b
TH
3796 kernfs_init();
3797
15a67dd8
RD
3798 err = sysfs_init();
3799 if (err)
3800 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3801 __func__, err);
00d26666
GKH
3802 fs_kobj = kobject_create_and_add("fs", NULL);
3803 if (!fs_kobj)
8e24eea7 3804 printk(KERN_WARNING "%s: kobj create error\n", __func__);
037f11b4 3805 shmem_init();
1da177e4
LT
3806 init_rootfs();
3807 init_mount_tree();
3808}
3809
616511d0 3810void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3811{
d498b25a 3812 if (!atomic_dec_and_test(&ns->count))
616511d0 3813 return;
7b00ed6f 3814 drop_collected_mounts(&ns->root->mnt);
771b1371 3815 free_mnt_ns(ns);
1da177e4 3816}
9d412a43 3817
d911b458 3818struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3819{
423e0ab0 3820 struct vfsmount *mnt;
d911b458 3821 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3822 if (!IS_ERR(mnt)) {
3823 /*
3824 * it is a longterm mount, don't release mnt until
3825 * we unmount before file sys is unregistered
3826 */
f7a99c5b 3827 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3828 }
3829 return mnt;
9d412a43 3830}
d911b458 3831EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3832
3833void kern_unmount(struct vfsmount *mnt)
3834{
3835 /* release long term mount so mount point can be released */
3836 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3837 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3838 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3839 mntput(mnt);
3840 }
3841}
3842EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3843
3844bool our_mnt(struct vfsmount *mnt)
3845{
143c8c91 3846 return check_mnt(real_mount(mnt));
02125a82 3847}
8823c079 3848
3151527e
EB
3849bool current_chrooted(void)
3850{
3851 /* Does the current process have a non-standard root */
3852 struct path ns_root;
3853 struct path fs_root;
3854 bool chrooted;
3855
3856 /* Find the namespace root */
3857 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3858 ns_root.dentry = ns_root.mnt->mnt_root;
3859 path_get(&ns_root);
3860 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3861 ;
3862
3863 get_fs_root(current->fs, &fs_root);
3864
3865 chrooted = !path_equal(&fs_root, &ns_root);
3866
3867 path_put(&fs_root);
3868 path_put(&ns_root);
3869
3870 return chrooted;
3871}
3872
132e4608
DH
3873static bool mnt_already_visible(struct mnt_namespace *ns,
3874 const struct super_block *sb,
8654df4e 3875 int *new_mnt_flags)
87a8ebd6 3876{
8c6cf9cc 3877 int new_flags = *new_mnt_flags;
87a8ebd6 3878 struct mount *mnt;
e51db735 3879 bool visible = false;
87a8ebd6 3880
44bb4385 3881 down_read(&namespace_sem);
87a8ebd6 3882 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3883 struct mount *child;
77b1a97d
EB
3884 int mnt_flags;
3885
132e4608 3886 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3887 continue;
3888
7e96c1b0
EB
3889 /* This mount is not fully visible if it's root directory
3890 * is not the root directory of the filesystem.
3891 */
3892 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3893 continue;
3894
a1935c17 3895 /* A local view of the mount flags */
77b1a97d 3896 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3897
695e9df0 3898 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3899 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3900 mnt_flags |= MNT_LOCK_READONLY;
3901
8c6cf9cc
EB
3902 /* Verify the mount flags are equal to or more permissive
3903 * than the proposed new mount.
3904 */
77b1a97d 3905 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3906 !(new_flags & MNT_READONLY))
3907 continue;
77b1a97d
EB
3908 if ((mnt_flags & MNT_LOCK_ATIME) &&
3909 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3910 continue;
3911
ceeb0e5d
EB
3912 /* This mount is not fully visible if there are any
3913 * locked child mounts that cover anything except for
3914 * empty directories.
e51db735
EB
3915 */
3916 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3917 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3918 /* Only worry about locked mounts */
d71ed6c9 3919 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3920 continue;
7236c85e
EB
3921 /* Is the directory permanetly empty? */
3922 if (!is_empty_dir_inode(inode))
e51db735 3923 goto next;
87a8ebd6 3924 }
8c6cf9cc 3925 /* Preserve the locked attributes */
77b1a97d 3926 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3927 MNT_LOCK_ATIME);
e51db735
EB
3928 visible = true;
3929 goto found;
3930 next: ;
87a8ebd6 3931 }
e51db735 3932found:
44bb4385 3933 up_read(&namespace_sem);
e51db735 3934 return visible;
87a8ebd6
EB
3935}
3936
132e4608 3937static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3938{
a1935c17 3939 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3940 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3941 unsigned long s_iflags;
3942
3943 if (ns->user_ns == &init_user_ns)
3944 return false;
3945
3946 /* Can this filesystem be too revealing? */
132e4608 3947 s_iflags = sb->s_iflags;
8654df4e
EB
3948 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3949 return false;
3950
a1935c17
EB
3951 if ((s_iflags & required_iflags) != required_iflags) {
3952 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3953 required_iflags);
3954 return true;
3955 }
3956
132e4608 3957 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3958}
3959
380cf5ba
AL
3960bool mnt_may_suid(struct vfsmount *mnt)
3961{
3962 /*
3963 * Foreign mounts (accessed via fchdir or through /proc
3964 * symlinks) are always treated as if they are nosuid. This
3965 * prevents namespaces from trusting potentially unsafe
3966 * suid/sgid bits, file caps, or security labels that originate
3967 * in other namespaces.
3968 */
3969 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3970 current_in_userns(mnt->mnt_sb->s_user_ns);
3971}
3972
64964528 3973static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3974{
58be2825 3975 struct ns_common *ns = NULL;
8823c079
EB
3976 struct nsproxy *nsproxy;
3977
728dba3a
EB
3978 task_lock(task);
3979 nsproxy = task->nsproxy;
8823c079 3980 if (nsproxy) {
58be2825
AV
3981 ns = &nsproxy->mnt_ns->ns;
3982 get_mnt_ns(to_mnt_ns(ns));
8823c079 3983 }
728dba3a 3984 task_unlock(task);
8823c079
EB
3985
3986 return ns;
3987}
3988
64964528 3989static void mntns_put(struct ns_common *ns)
8823c079 3990{
58be2825 3991 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3992}
3993
64964528 3994static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3995{
3996 struct fs_struct *fs = current->fs;
4f757f3c 3997 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3998 struct path root;
4f757f3c 3999 int err;
8823c079 4000
0c55cfc4 4001 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
4002 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
4003 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 4004 return -EPERM;
8823c079 4005
74e83122
AV
4006 if (is_anon_ns(mnt_ns))
4007 return -EINVAL;
4008
8823c079
EB
4009 if (fs->users != 1)
4010 return -EINVAL;
4011
4012 get_mnt_ns(mnt_ns);
4f757f3c 4013 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
4014 nsproxy->mnt_ns = mnt_ns;
4015
4016 /* Find the root */
4f757f3c
AV
4017 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
4018 "/", LOOKUP_DOWN, &root);
4019 if (err) {
4020 /* revert to old namespace */
4021 nsproxy->mnt_ns = old_mnt_ns;
4022 put_mnt_ns(mnt_ns);
4023 return err;
4024 }
8823c079 4025
4068367c
AV
4026 put_mnt_ns(old_mnt_ns);
4027
8823c079
EB
4028 /* Update the pwd and root */
4029 set_fs_pwd(fs, &root);
4030 set_fs_root(fs, &root);
4031
4032 path_put(&root);
4033 return 0;
4034}
4035
bcac25a5
AV
4036static struct user_namespace *mntns_owner(struct ns_common *ns)
4037{
4038 return to_mnt_ns(ns)->user_ns;
4039}
4040
8823c079
EB
4041const struct proc_ns_operations mntns_operations = {
4042 .name = "mnt",
4043 .type = CLONE_NEWNS,
4044 .get = mntns_get,
4045 .put = mntns_put,
4046 .install = mntns_install,
bcac25a5 4047 .owner = mntns_owner,
8823c079 4048};