]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/namespace.c
timer: Prepare to change all DEFINE_TIMER() callbacks
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
bc98a42c 278 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
1e75529e 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
7c6893e3 434 * mnt_want_write_file_path - get write access to a file's mount
eb04c282
JK
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
7c6893e3
MS
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
eb04c282 444 */
7c6893e3 445int mnt_want_write_file_path(struct file *file)
eb04c282
JK
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
7c6893e3
MS
455
456static inline int may_write_real(struct file *file)
457{
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
471 if (upperdentry && file_inode(file) == d_inode(upperdentry))
472 return 0;
473
474 /* Lower layer: can't write to real file, sorry... */
475 return -EPERM;
476}
477
478/**
479 * mnt_want_write_file - get write access to a file's mount
480 * @file: the file who's mount on which to take a write
481 *
482 * This is like mnt_want_write, but it takes a file and can
483 * do some optimisations if the file is open for write already
484 *
485 * Mostly called by filesystems from their ioctl operation before performing
486 * modification. On overlayfs this needs to check if the file is on a read-only
487 * lower layer and deny access in that case.
488 */
489int mnt_want_write_file(struct file *file)
490{
491 int ret;
492
493 ret = may_write_real(file);
494 if (!ret) {
495 sb_start_write(file_inode(file)->i_sb);
496 ret = __mnt_want_write_file(file);
497 if (ret)
498 sb_end_write(file_inode(file)->i_sb);
499 }
500 return ret;
501}
96029c4e 502EXPORT_SYMBOL_GPL(mnt_want_write_file);
503
8366025e 504/**
eb04c282 505 * __mnt_drop_write - give up write access to a mount
8366025e
DH
506 * @mnt: the mount on which to give up write access
507 *
508 * Tells the low-level filesystem that we are done
509 * performing writes to it. Must be matched with
eb04c282 510 * __mnt_want_write() call above.
8366025e 511 */
eb04c282 512void __mnt_drop_write(struct vfsmount *mnt)
8366025e 513{
d3ef3d73 514 preempt_disable();
83adc753 515 mnt_dec_writers(real_mount(mnt));
d3ef3d73 516 preempt_enable();
8366025e 517}
eb04c282
JK
518
519/**
520 * mnt_drop_write - give up write access to a mount
521 * @mnt: the mount on which to give up write access
522 *
523 * Tells the low-level filesystem that we are done performing writes to it and
524 * also allows filesystem to be frozen again. Must be matched with
525 * mnt_want_write() call above.
526 */
527void mnt_drop_write(struct vfsmount *mnt)
528{
529 __mnt_drop_write(mnt);
530 sb_end_write(mnt->mnt_sb);
531}
8366025e
DH
532EXPORT_SYMBOL_GPL(mnt_drop_write);
533
eb04c282
JK
534void __mnt_drop_write_file(struct file *file)
535{
536 __mnt_drop_write(file->f_path.mnt);
537}
538
7c6893e3 539void mnt_drop_write_file_path(struct file *file)
2a79f17e
AV
540{
541 mnt_drop_write(file->f_path.mnt);
542}
7c6893e3
MS
543
544void mnt_drop_write_file(struct file *file)
545{
546 __mnt_drop_write(file->f_path.mnt);
547 sb_end_write(file_inode(file)->i_sb);
548}
2a79f17e
AV
549EXPORT_SYMBOL(mnt_drop_write_file);
550
83adc753 551static int mnt_make_readonly(struct mount *mnt)
8366025e 552{
3d733633
DH
553 int ret = 0;
554
719ea2fb 555 lock_mount_hash();
83adc753 556 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 557 /*
d3ef3d73 558 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
559 * should be visible before we do.
3d733633 560 */
d3ef3d73 561 smp_mb();
562
3d733633 563 /*
d3ef3d73 564 * With writers on hold, if this value is zero, then there are
565 * definitely no active writers (although held writers may subsequently
566 * increment the count, they'll have to wait, and decrement it after
567 * seeing MNT_READONLY).
568 *
569 * It is OK to have counter incremented on one CPU and decremented on
570 * another: the sum will add up correctly. The danger would be when we
571 * sum up each counter, if we read a counter before it is incremented,
572 * but then read another CPU's count which it has been subsequently
573 * decremented from -- we would see more decrements than we should.
574 * MNT_WRITE_HOLD protects against this scenario, because
575 * mnt_want_write first increments count, then smp_mb, then spins on
576 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
577 * we're counting up here.
3d733633 578 */
c6653a83 579 if (mnt_get_writers(mnt) > 0)
d3ef3d73 580 ret = -EBUSY;
581 else
83adc753 582 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 583 /*
584 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
585 * that become unheld will see MNT_READONLY.
586 */
587 smp_wmb();
83adc753 588 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 589 unlock_mount_hash();
3d733633 590 return ret;
8366025e 591}
8366025e 592
83adc753 593static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 594{
719ea2fb 595 lock_mount_hash();
83adc753 596 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 597 unlock_mount_hash();
2e4b7fcd
DH
598}
599
4ed5e82f
MS
600int sb_prepare_remount_readonly(struct super_block *sb)
601{
602 struct mount *mnt;
603 int err = 0;
604
8e8b8796
MS
605 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
606 if (atomic_long_read(&sb->s_remove_count))
607 return -EBUSY;
608
719ea2fb 609 lock_mount_hash();
4ed5e82f
MS
610 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
611 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
612 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
613 smp_mb();
614 if (mnt_get_writers(mnt) > 0) {
615 err = -EBUSY;
616 break;
617 }
618 }
619 }
8e8b8796
MS
620 if (!err && atomic_long_read(&sb->s_remove_count))
621 err = -EBUSY;
622
4ed5e82f
MS
623 if (!err) {
624 sb->s_readonly_remount = 1;
625 smp_wmb();
626 }
627 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
628 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
629 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
630 }
719ea2fb 631 unlock_mount_hash();
4ed5e82f
MS
632
633 return err;
634}
635
b105e270 636static void free_vfsmnt(struct mount *mnt)
1da177e4 637{
fcc139ae 638 kfree_const(mnt->mnt_devname);
d3ef3d73 639#ifdef CONFIG_SMP
68e8a9fe 640 free_percpu(mnt->mnt_pcp);
d3ef3d73 641#endif
b105e270 642 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
643}
644
8ffcb32e
DH
645static void delayed_free_vfsmnt(struct rcu_head *head)
646{
647 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
648}
649
48a066e7 650/* call under rcu_read_lock */
294d71ff 651int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
652{
653 struct mount *mnt;
654 if (read_seqretry(&mount_lock, seq))
294d71ff 655 return 1;
48a066e7 656 if (bastard == NULL)
294d71ff 657 return 0;
48a066e7
AV
658 mnt = real_mount(bastard);
659 mnt_add_count(mnt, 1);
660 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 661 return 0;
48a066e7
AV
662 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
663 mnt_add_count(mnt, -1);
294d71ff
AV
664 return 1;
665 }
666 return -1;
667}
668
669/* call under rcu_read_lock */
670bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
671{
672 int res = __legitimize_mnt(bastard, seq);
673 if (likely(!res))
674 return true;
675 if (unlikely(res < 0)) {
676 rcu_read_unlock();
677 mntput(bastard);
678 rcu_read_lock();
48a066e7 679 }
48a066e7
AV
680 return false;
681}
682
1da177e4 683/*
474279dc 684 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 685 * call under rcu_read_lock()
1da177e4 686 */
474279dc 687struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 688{
38129a13 689 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
690 struct mount *p;
691
38129a13 692 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
693 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
694 return p;
695 return NULL;
696}
697
a05964f3 698/*
f015f126
DH
699 * lookup_mnt - Return the first child mount mounted at path
700 *
701 * "First" means first mounted chronologically. If you create the
702 * following mounts:
703 *
704 * mount /dev/sda1 /mnt
705 * mount /dev/sda2 /mnt
706 * mount /dev/sda3 /mnt
707 *
708 * Then lookup_mnt() on the base /mnt dentry in the root mount will
709 * return successively the root dentry and vfsmount of /dev/sda1, then
710 * /dev/sda2, then /dev/sda3, then NULL.
711 *
712 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 713 */
ca71cf71 714struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 715{
c7105365 716 struct mount *child_mnt;
48a066e7
AV
717 struct vfsmount *m;
718 unsigned seq;
99b7db7b 719
48a066e7
AV
720 rcu_read_lock();
721 do {
722 seq = read_seqbegin(&mount_lock);
723 child_mnt = __lookup_mnt(path->mnt, path->dentry);
724 m = child_mnt ? &child_mnt->mnt : NULL;
725 } while (!legitimize_mnt(m, seq));
726 rcu_read_unlock();
727 return m;
a05964f3
RP
728}
729
7af1364f
EB
730/*
731 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
732 * current mount namespace.
733 *
734 * The common case is dentries are not mountpoints at all and that
735 * test is handled inline. For the slow case when we are actually
736 * dealing with a mountpoint of some kind, walk through all of the
737 * mounts in the current mount namespace and test to see if the dentry
738 * is a mountpoint.
739 *
740 * The mount_hashtable is not usable in the context because we
741 * need to identify all mounts that may be in the current mount
742 * namespace not just a mount that happens to have some specified
743 * parent mount.
744 */
745bool __is_local_mountpoint(struct dentry *dentry)
746{
747 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
748 struct mount *mnt;
749 bool is_covered = false;
750
751 if (!d_mountpoint(dentry))
752 goto out;
753
754 down_read(&namespace_sem);
755 list_for_each_entry(mnt, &ns->list, mnt_list) {
756 is_covered = (mnt->mnt_mountpoint == dentry);
757 if (is_covered)
758 break;
759 }
760 up_read(&namespace_sem);
761out:
762 return is_covered;
763}
764
e2dfa935 765static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 766{
0818bf27 767 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
768 struct mountpoint *mp;
769
0818bf27 770 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
771 if (mp->m_dentry == dentry) {
772 /* might be worth a WARN_ON() */
773 if (d_unlinked(dentry))
774 return ERR_PTR(-ENOENT);
775 mp->m_count++;
776 return mp;
777 }
778 }
e2dfa935
EB
779 return NULL;
780}
781
3895dbf8 782static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 783{
3895dbf8 784 struct mountpoint *mp, *new = NULL;
e2dfa935 785 int ret;
84d17192 786
3895dbf8
EB
787 if (d_mountpoint(dentry)) {
788mountpoint:
789 read_seqlock_excl(&mount_lock);
790 mp = lookup_mountpoint(dentry);
791 read_sequnlock_excl(&mount_lock);
792 if (mp)
793 goto done;
794 }
795
796 if (!new)
797 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
798 if (!new)
84d17192
AV
799 return ERR_PTR(-ENOMEM);
800
3895dbf8
EB
801
802 /* Exactly one processes may set d_mounted */
eed81007 803 ret = d_set_mounted(dentry);
eed81007 804
3895dbf8
EB
805 /* Someone else set d_mounted? */
806 if (ret == -EBUSY)
807 goto mountpoint;
808
809 /* The dentry is not available as a mountpoint? */
810 mp = ERR_PTR(ret);
811 if (ret)
812 goto done;
813
814 /* Add the new mountpoint to the hash table */
815 read_seqlock_excl(&mount_lock);
816 new->m_dentry = dentry;
817 new->m_count = 1;
818 hlist_add_head(&new->m_hash, mp_hash(dentry));
819 INIT_HLIST_HEAD(&new->m_list);
820 read_sequnlock_excl(&mount_lock);
821
822 mp = new;
823 new = NULL;
824done:
825 kfree(new);
84d17192
AV
826 return mp;
827}
828
829static void put_mountpoint(struct mountpoint *mp)
830{
831 if (!--mp->m_count) {
832 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 833 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
834 spin_lock(&dentry->d_lock);
835 dentry->d_flags &= ~DCACHE_MOUNTED;
836 spin_unlock(&dentry->d_lock);
0818bf27 837 hlist_del(&mp->m_hash);
84d17192
AV
838 kfree(mp);
839 }
840}
841
143c8c91 842static inline int check_mnt(struct mount *mnt)
1da177e4 843{
6b3286ed 844 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
845}
846
99b7db7b
NP
847/*
848 * vfsmount lock must be held for write
849 */
6b3286ed 850static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
851{
852 if (ns) {
853 ns->event = ++event;
854 wake_up_interruptible(&ns->poll);
855 }
856}
857
99b7db7b
NP
858/*
859 * vfsmount lock must be held for write
860 */
6b3286ed 861static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
862{
863 if (ns && ns->event != event) {
864 ns->event = event;
865 wake_up_interruptible(&ns->poll);
866 }
867}
868
99b7db7b
NP
869/*
870 * vfsmount lock must be held for write
871 */
7bdb11de 872static void unhash_mnt(struct mount *mnt)
419148da 873{
0714a533 874 mnt->mnt_parent = mnt;
a73324da 875 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 876 list_del_init(&mnt->mnt_child);
38129a13 877 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 878 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
879 put_mountpoint(mnt->mnt_mp);
880 mnt->mnt_mp = NULL;
1da177e4
LT
881}
882
7bdb11de
EB
883/*
884 * vfsmount lock must be held for write
885 */
886static void detach_mnt(struct mount *mnt, struct path *old_path)
887{
888 old_path->dentry = mnt->mnt_mountpoint;
889 old_path->mnt = &mnt->mnt_parent->mnt;
890 unhash_mnt(mnt);
891}
892
6a46c573
EB
893/*
894 * vfsmount lock must be held for write
895 */
896static void umount_mnt(struct mount *mnt)
897{
898 /* old mountpoint will be dropped when we can do that */
899 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
900 unhash_mnt(mnt);
901}
902
99b7db7b
NP
903/*
904 * vfsmount lock must be held for write
905 */
84d17192
AV
906void mnt_set_mountpoint(struct mount *mnt,
907 struct mountpoint *mp,
44d964d6 908 struct mount *child_mnt)
b90fa9ae 909{
84d17192 910 mp->m_count++;
3a2393d7 911 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 912 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 913 child_mnt->mnt_parent = mnt;
84d17192 914 child_mnt->mnt_mp = mp;
0a5eb7c8 915 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
916}
917
1064f874
EB
918static void __attach_mnt(struct mount *mnt, struct mount *parent)
919{
920 hlist_add_head_rcu(&mnt->mnt_hash,
921 m_hash(&parent->mnt, mnt->mnt_mountpoint));
922 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
923}
924
99b7db7b
NP
925/*
926 * vfsmount lock must be held for write
927 */
84d17192
AV
928static void attach_mnt(struct mount *mnt,
929 struct mount *parent,
930 struct mountpoint *mp)
1da177e4 931{
84d17192 932 mnt_set_mountpoint(parent, mp, mnt);
1064f874 933 __attach_mnt(mnt, parent);
b90fa9ae
RP
934}
935
1064f874 936void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 937{
1064f874
EB
938 struct mountpoint *old_mp = mnt->mnt_mp;
939 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
940 struct mount *old_parent = mnt->mnt_parent;
941
942 list_del_init(&mnt->mnt_child);
943 hlist_del_init(&mnt->mnt_mp_list);
944 hlist_del_init_rcu(&mnt->mnt_hash);
945
946 attach_mnt(mnt, parent, mp);
947
948 put_mountpoint(old_mp);
949
950 /*
951 * Safely avoid even the suggestion this code might sleep or
952 * lock the mount hash by taking advantage of the knowledge that
953 * mnt_change_mountpoint will not release the final reference
954 * to a mountpoint.
955 *
956 * During mounting, the mount passed in as the parent mount will
957 * continue to use the old mountpoint and during unmounting, the
958 * old mountpoint will continue to exist until namespace_unlock,
959 * which happens well after mnt_change_mountpoint.
960 */
961 spin_lock(&old_mountpoint->d_lock);
962 old_mountpoint->d_lockref.count--;
963 spin_unlock(&old_mountpoint->d_lock);
964
965 mnt_add_count(old_parent, -1);
12a5b529
AV
966}
967
b90fa9ae 968/*
99b7db7b 969 * vfsmount lock must be held for write
b90fa9ae 970 */
1064f874 971static void commit_tree(struct mount *mnt)
b90fa9ae 972{
0714a533 973 struct mount *parent = mnt->mnt_parent;
83adc753 974 struct mount *m;
b90fa9ae 975 LIST_HEAD(head);
143c8c91 976 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 977
0714a533 978 BUG_ON(parent == mnt);
b90fa9ae 979
1a4eeaf2 980 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 981 list_for_each_entry(m, &head, mnt_list)
143c8c91 982 m->mnt_ns = n;
f03c6599 983
b90fa9ae
RP
984 list_splice(&head, n->list.prev);
985
d2921684
EB
986 n->mounts += n->pending_mounts;
987 n->pending_mounts = 0;
988
1064f874 989 __attach_mnt(mnt, parent);
6b3286ed 990 touch_mnt_namespace(n);
1da177e4
LT
991}
992
909b0a88 993static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 994{
6b41d536
AV
995 struct list_head *next = p->mnt_mounts.next;
996 if (next == &p->mnt_mounts) {
1da177e4 997 while (1) {
909b0a88 998 if (p == root)
1da177e4 999 return NULL;
6b41d536
AV
1000 next = p->mnt_child.next;
1001 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 1002 break;
0714a533 1003 p = p->mnt_parent;
1da177e4
LT
1004 }
1005 }
6b41d536 1006 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
1007}
1008
315fc83e 1009static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 1010{
6b41d536
AV
1011 struct list_head *prev = p->mnt_mounts.prev;
1012 while (prev != &p->mnt_mounts) {
1013 p = list_entry(prev, struct mount, mnt_child);
1014 prev = p->mnt_mounts.prev;
9676f0c6
RP
1015 }
1016 return p;
1017}
1018
9d412a43
AV
1019struct vfsmount *
1020vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1021{
b105e270 1022 struct mount *mnt;
9d412a43
AV
1023 struct dentry *root;
1024
1025 if (!type)
1026 return ERR_PTR(-ENODEV);
1027
1028 mnt = alloc_vfsmnt(name);
1029 if (!mnt)
1030 return ERR_PTR(-ENOMEM);
1031
e462ec50 1032 if (flags & SB_KERNMOUNT)
b105e270 1033 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
1034
1035 root = mount_fs(type, flags, name, data);
1036 if (IS_ERR(root)) {
8ffcb32e 1037 mnt_free_id(mnt);
9d412a43
AV
1038 free_vfsmnt(mnt);
1039 return ERR_CAST(root);
1040 }
1041
b105e270
AV
1042 mnt->mnt.mnt_root = root;
1043 mnt->mnt.mnt_sb = root->d_sb;
a73324da 1044 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1045 mnt->mnt_parent = mnt;
719ea2fb 1046 lock_mount_hash();
39f7c4db 1047 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 1048 unlock_mount_hash();
b105e270 1049 return &mnt->mnt;
9d412a43
AV
1050}
1051EXPORT_SYMBOL_GPL(vfs_kern_mount);
1052
93faccbb
EB
1053struct vfsmount *
1054vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1055 const char *name, void *data)
1056{
1057 /* Until it is worked out how to pass the user namespace
1058 * through from the parent mount to the submount don't support
1059 * unprivileged mounts with submounts.
1060 */
1061 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1062 return ERR_PTR(-EPERM);
1063
e462ec50 1064 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1065}
1066EXPORT_SYMBOL_GPL(vfs_submount);
1067
87129cc0 1068static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1069 int flag)
1da177e4 1070{
87129cc0 1071 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1072 struct mount *mnt;
1073 int err;
1da177e4 1074
be34d1a3
DH
1075 mnt = alloc_vfsmnt(old->mnt_devname);
1076 if (!mnt)
1077 return ERR_PTR(-ENOMEM);
719f5d7f 1078
7a472ef4 1079 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1080 mnt->mnt_group_id = 0; /* not a peer of original */
1081 else
1082 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1083
be34d1a3
DH
1084 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1085 err = mnt_alloc_group_id(mnt);
1086 if (err)
1087 goto out_free;
1da177e4 1088 }
be34d1a3 1089
f2ebb3a9 1090 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
132c94e3 1091 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1092 if (flag & CL_UNPRIVILEGED) {
1093 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1094
1095 if (mnt->mnt.mnt_flags & MNT_READONLY)
1096 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1097
1098 if (mnt->mnt.mnt_flags & MNT_NODEV)
1099 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1100
1101 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1102 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1103
1104 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1105 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1106 }
132c94e3 1107
5ff9d8a6 1108 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1109 if ((flag & CL_UNPRIVILEGED) &&
1110 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1111 mnt->mnt.mnt_flags |= MNT_LOCKED;
1112
be34d1a3
DH
1113 atomic_inc(&sb->s_active);
1114 mnt->mnt.mnt_sb = sb;
1115 mnt->mnt.mnt_root = dget(root);
1116 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1117 mnt->mnt_parent = mnt;
719ea2fb 1118 lock_mount_hash();
be34d1a3 1119 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1120 unlock_mount_hash();
be34d1a3 1121
7a472ef4
EB
1122 if ((flag & CL_SLAVE) ||
1123 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1124 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1125 mnt->mnt_master = old;
1126 CLEAR_MNT_SHARED(mnt);
1127 } else if (!(flag & CL_PRIVATE)) {
1128 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1129 list_add(&mnt->mnt_share, &old->mnt_share);
1130 if (IS_MNT_SLAVE(old))
1131 list_add(&mnt->mnt_slave, &old->mnt_slave);
1132 mnt->mnt_master = old->mnt_master;
5235d448
AV
1133 } else {
1134 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1135 }
1136 if (flag & CL_MAKE_SHARED)
1137 set_mnt_shared(mnt);
1138
1139 /* stick the duplicate mount on the same expiry list
1140 * as the original if that was on one */
1141 if (flag & CL_EXPIRE) {
1142 if (!list_empty(&old->mnt_expire))
1143 list_add(&mnt->mnt_expire, &old->mnt_expire);
1144 }
1145
cb338d06 1146 return mnt;
719f5d7f
MS
1147
1148 out_free:
8ffcb32e 1149 mnt_free_id(mnt);
719f5d7f 1150 free_vfsmnt(mnt);
be34d1a3 1151 return ERR_PTR(err);
1da177e4
LT
1152}
1153
9ea459e1
AV
1154static void cleanup_mnt(struct mount *mnt)
1155{
1156 /*
1157 * This probably indicates that somebody messed
1158 * up a mnt_want/drop_write() pair. If this
1159 * happens, the filesystem was probably unable
1160 * to make r/w->r/o transitions.
1161 */
1162 /*
1163 * The locking used to deal with mnt_count decrement provides barriers,
1164 * so mnt_get_writers() below is safe.
1165 */
1166 WARN_ON(mnt_get_writers(mnt));
1167 if (unlikely(mnt->mnt_pins.first))
1168 mnt_pin_kill(mnt);
1169 fsnotify_vfsmount_delete(&mnt->mnt);
1170 dput(mnt->mnt.mnt_root);
1171 deactivate_super(mnt->mnt.mnt_sb);
1172 mnt_free_id(mnt);
1173 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1174}
1175
1176static void __cleanup_mnt(struct rcu_head *head)
1177{
1178 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1179}
1180
1181static LLIST_HEAD(delayed_mntput_list);
1182static void delayed_mntput(struct work_struct *unused)
1183{
1184 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1185 struct mount *m, *t;
9ea459e1 1186
29785735
BP
1187 llist_for_each_entry_safe(m, t, node, mnt_llist)
1188 cleanup_mnt(m);
9ea459e1
AV
1189}
1190static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1191
900148dc 1192static void mntput_no_expire(struct mount *mnt)
b3e19d92 1193{
48a066e7
AV
1194 rcu_read_lock();
1195 mnt_add_count(mnt, -1);
1196 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1197 rcu_read_unlock();
f03c6599 1198 return;
b3e19d92 1199 }
719ea2fb 1200 lock_mount_hash();
b3e19d92 1201 if (mnt_get_count(mnt)) {
48a066e7 1202 rcu_read_unlock();
719ea2fb 1203 unlock_mount_hash();
99b7db7b
NP
1204 return;
1205 }
48a066e7
AV
1206 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1207 rcu_read_unlock();
1208 unlock_mount_hash();
1209 return;
1210 }
1211 mnt->mnt.mnt_flags |= MNT_DOOMED;
1212 rcu_read_unlock();
962830df 1213
39f7c4db 1214 list_del(&mnt->mnt_instance);
ce07d891
EB
1215
1216 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1217 struct mount *p, *tmp;
1218 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1219 umount_mnt(p);
1220 }
1221 }
719ea2fb 1222 unlock_mount_hash();
649a795a 1223
9ea459e1
AV
1224 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1225 struct task_struct *task = current;
1226 if (likely(!(task->flags & PF_KTHREAD))) {
1227 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1228 if (!task_work_add(task, &mnt->mnt_rcu, true))
1229 return;
1230 }
1231 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1232 schedule_delayed_work(&delayed_mntput_work, 1);
1233 return;
1234 }
1235 cleanup_mnt(mnt);
b3e19d92 1236}
b3e19d92
NP
1237
1238void mntput(struct vfsmount *mnt)
1239{
1240 if (mnt) {
863d684f 1241 struct mount *m = real_mount(mnt);
b3e19d92 1242 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1243 if (unlikely(m->mnt_expiry_mark))
1244 m->mnt_expiry_mark = 0;
1245 mntput_no_expire(m);
b3e19d92
NP
1246 }
1247}
1248EXPORT_SYMBOL(mntput);
1249
1250struct vfsmount *mntget(struct vfsmount *mnt)
1251{
1252 if (mnt)
83adc753 1253 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1254 return mnt;
1255}
1256EXPORT_SYMBOL(mntget);
1257
c6609c0a
IK
1258/* path_is_mountpoint() - Check if path is a mount in the current
1259 * namespace.
1260 *
1261 * d_mountpoint() can only be used reliably to establish if a dentry is
1262 * not mounted in any namespace and that common case is handled inline.
1263 * d_mountpoint() isn't aware of the possibility there may be multiple
1264 * mounts using a given dentry in a different namespace. This function
1265 * checks if the passed in path is a mountpoint rather than the dentry
1266 * alone.
1267 */
1268bool path_is_mountpoint(const struct path *path)
1269{
1270 unsigned seq;
1271 bool res;
1272
1273 if (!d_mountpoint(path->dentry))
1274 return false;
1275
1276 rcu_read_lock();
1277 do {
1278 seq = read_seqbegin(&mount_lock);
1279 res = __path_is_mountpoint(path);
1280 } while (read_seqretry(&mount_lock, seq));
1281 rcu_read_unlock();
1282
1283 return res;
1284}
1285EXPORT_SYMBOL(path_is_mountpoint);
1286
ca71cf71 1287struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1288{
3064c356
AV
1289 struct mount *p;
1290 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1291 if (IS_ERR(p))
1292 return ERR_CAST(p);
1293 p->mnt.mnt_flags |= MNT_INTERNAL;
1294 return &p->mnt;
7b7b1ace 1295}
1da177e4 1296
a1a2c409 1297#ifdef CONFIG_PROC_FS
0226f492 1298/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1299static void *m_start(struct seq_file *m, loff_t *pos)
1300{
ede1bf0d 1301 struct proc_mounts *p = m->private;
1da177e4 1302
390c6843 1303 down_read(&namespace_sem);
c7999c36
AV
1304 if (p->cached_event == p->ns->event) {
1305 void *v = p->cached_mount;
1306 if (*pos == p->cached_index)
1307 return v;
1308 if (*pos == p->cached_index + 1) {
1309 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1310 return p->cached_mount = v;
1311 }
1312 }
1313
1314 p->cached_event = p->ns->event;
1315 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1316 p->cached_index = *pos;
1317 return p->cached_mount;
1da177e4
LT
1318}
1319
1320static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1321{
ede1bf0d 1322 struct proc_mounts *p = m->private;
b0765fb8 1323
c7999c36
AV
1324 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1325 p->cached_index = *pos;
1326 return p->cached_mount;
1da177e4
LT
1327}
1328
1329static void m_stop(struct seq_file *m, void *v)
1330{
390c6843 1331 up_read(&namespace_sem);
1da177e4
LT
1332}
1333
0226f492 1334static int m_show(struct seq_file *m, void *v)
2d4d4864 1335{
ede1bf0d 1336 struct proc_mounts *p = m->private;
1a4eeaf2 1337 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1338 return p->show(m, &r->mnt);
1da177e4
LT
1339}
1340
a1a2c409 1341const struct seq_operations mounts_op = {
1da177e4
LT
1342 .start = m_start,
1343 .next = m_next,
1344 .stop = m_stop,
0226f492 1345 .show = m_show,
b4629fe2 1346};
a1a2c409 1347#endif /* CONFIG_PROC_FS */
b4629fe2 1348
1da177e4
LT
1349/**
1350 * may_umount_tree - check if a mount tree is busy
1351 * @mnt: root of mount tree
1352 *
1353 * This is called to check if a tree of mounts has any
1354 * open files, pwds, chroots or sub mounts that are
1355 * busy.
1356 */
909b0a88 1357int may_umount_tree(struct vfsmount *m)
1da177e4 1358{
909b0a88 1359 struct mount *mnt = real_mount(m);
36341f64
RP
1360 int actual_refs = 0;
1361 int minimum_refs = 0;
315fc83e 1362 struct mount *p;
909b0a88 1363 BUG_ON(!m);
1da177e4 1364
b3e19d92 1365 /* write lock needed for mnt_get_count */
719ea2fb 1366 lock_mount_hash();
909b0a88 1367 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1368 actual_refs += mnt_get_count(p);
1da177e4 1369 minimum_refs += 2;
1da177e4 1370 }
719ea2fb 1371 unlock_mount_hash();
1da177e4
LT
1372
1373 if (actual_refs > minimum_refs)
e3474a8e 1374 return 0;
1da177e4 1375
e3474a8e 1376 return 1;
1da177e4
LT
1377}
1378
1379EXPORT_SYMBOL(may_umount_tree);
1380
1381/**
1382 * may_umount - check if a mount point is busy
1383 * @mnt: root of mount
1384 *
1385 * This is called to check if a mount point has any
1386 * open files, pwds, chroots or sub mounts. If the
1387 * mount has sub mounts this will return busy
1388 * regardless of whether the sub mounts are busy.
1389 *
1390 * Doesn't take quota and stuff into account. IOW, in some cases it will
1391 * give false negatives. The main reason why it's here is that we need
1392 * a non-destructive way to look for easily umountable filesystems.
1393 */
1394int may_umount(struct vfsmount *mnt)
1395{
e3474a8e 1396 int ret = 1;
8ad08d8a 1397 down_read(&namespace_sem);
719ea2fb 1398 lock_mount_hash();
1ab59738 1399 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1400 ret = 0;
719ea2fb 1401 unlock_mount_hash();
8ad08d8a 1402 up_read(&namespace_sem);
a05964f3 1403 return ret;
1da177e4
LT
1404}
1405
1406EXPORT_SYMBOL(may_umount);
1407
38129a13 1408static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1409
97216be0 1410static void namespace_unlock(void)
70fbcdf4 1411{
a3b3c562 1412 struct hlist_head head;
97216be0 1413
a3b3c562 1414 hlist_move_list(&unmounted, &head);
97216be0 1415
97216be0
AV
1416 up_write(&namespace_sem);
1417
a3b3c562
EB
1418 if (likely(hlist_empty(&head)))
1419 return;
1420
48a066e7
AV
1421 synchronize_rcu();
1422
87b95ce0 1423 group_pin_kill(&head);
70fbcdf4
RP
1424}
1425
97216be0 1426static inline void namespace_lock(void)
e3197d83 1427{
97216be0 1428 down_write(&namespace_sem);
e3197d83
AV
1429}
1430
e819f152
EB
1431enum umount_tree_flags {
1432 UMOUNT_SYNC = 1,
1433 UMOUNT_PROPAGATE = 2,
e0c9c0af 1434 UMOUNT_CONNECTED = 4,
e819f152 1435};
f2d0a123
EB
1436
1437static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1438{
1439 /* Leaving mounts connected is only valid for lazy umounts */
1440 if (how & UMOUNT_SYNC)
1441 return true;
1442
1443 /* A mount without a parent has nothing to be connected to */
1444 if (!mnt_has_parent(mnt))
1445 return true;
1446
1447 /* Because the reference counting rules change when mounts are
1448 * unmounted and connected, umounted mounts may not be
1449 * connected to mounted mounts.
1450 */
1451 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1452 return true;
1453
1454 /* Has it been requested that the mount remain connected? */
1455 if (how & UMOUNT_CONNECTED)
1456 return false;
1457
1458 /* Is the mount locked such that it needs to remain connected? */
1459 if (IS_MNT_LOCKED(mnt))
1460 return false;
1461
1462 /* By default disconnect the mount */
1463 return true;
1464}
1465
99b7db7b 1466/*
48a066e7 1467 * mount_lock must be held
99b7db7b
NP
1468 * namespace_sem must be held for write
1469 */
e819f152 1470static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1471{
c003b26f 1472 LIST_HEAD(tmp_list);
315fc83e 1473 struct mount *p;
1da177e4 1474
5d88457e
EB
1475 if (how & UMOUNT_PROPAGATE)
1476 propagate_mount_unlock(mnt);
1477
c003b26f 1478 /* Gather the mounts to umount */
590ce4bc
EB
1479 for (p = mnt; p; p = next_mnt(p, mnt)) {
1480 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1481 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1482 }
1da177e4 1483
411a938b 1484 /* Hide the mounts from mnt_mounts */
c003b26f 1485 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1486 list_del_init(&p->mnt_child);
c003b26f 1487 }
88b368f2 1488
c003b26f 1489 /* Add propogated mounts to the tmp_list */
e819f152 1490 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1491 propagate_umount(&tmp_list);
a05964f3 1492
c003b26f 1493 while (!list_empty(&tmp_list)) {
d2921684 1494 struct mnt_namespace *ns;
ce07d891 1495 bool disconnect;
c003b26f 1496 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1497 list_del_init(&p->mnt_expire);
1a4eeaf2 1498 list_del_init(&p->mnt_list);
d2921684
EB
1499 ns = p->mnt_ns;
1500 if (ns) {
1501 ns->mounts--;
1502 __touch_mnt_namespace(ns);
1503 }
143c8c91 1504 p->mnt_ns = NULL;
e819f152 1505 if (how & UMOUNT_SYNC)
48a066e7 1506 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1507
f2d0a123 1508 disconnect = disconnect_mount(p, how);
ce07d891
EB
1509
1510 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1511 disconnect ? &unmounted : NULL);
676da58d 1512 if (mnt_has_parent(p)) {
81b6b061 1513 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1514 if (!disconnect) {
1515 /* Don't forget about p */
1516 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1517 } else {
1518 umount_mnt(p);
1519 }
7c4b93d8 1520 }
0f0afb1d 1521 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1522 }
1523}
1524
b54b9be7 1525static void shrink_submounts(struct mount *mnt);
c35038be 1526
1ab59738 1527static int do_umount(struct mount *mnt, int flags)
1da177e4 1528{
1ab59738 1529 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1530 int retval;
1531
1ab59738 1532 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1533 if (retval)
1534 return retval;
1535
1536 /*
1537 * Allow userspace to request a mountpoint be expired rather than
1538 * unmounting unconditionally. Unmount only happens if:
1539 * (1) the mark is already set (the mark is cleared by mntput())
1540 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1541 */
1542 if (flags & MNT_EXPIRE) {
1ab59738 1543 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1544 flags & (MNT_FORCE | MNT_DETACH))
1545 return -EINVAL;
1546
b3e19d92
NP
1547 /*
1548 * probably don't strictly need the lock here if we examined
1549 * all race cases, but it's a slowpath.
1550 */
719ea2fb 1551 lock_mount_hash();
83adc753 1552 if (mnt_get_count(mnt) != 2) {
719ea2fb 1553 unlock_mount_hash();
1da177e4 1554 return -EBUSY;
b3e19d92 1555 }
719ea2fb 1556 unlock_mount_hash();
1da177e4 1557
863d684f 1558 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1559 return -EAGAIN;
1560 }
1561
1562 /*
1563 * If we may have to abort operations to get out of this
1564 * mount, and they will themselves hold resources we must
1565 * allow the fs to do things. In the Unix tradition of
1566 * 'Gee thats tricky lets do it in userspace' the umount_begin
1567 * might fail to complete on the first run through as other tasks
1568 * must return, and the like. Thats for the mount program to worry
1569 * about for the moment.
1570 */
1571
42faad99 1572 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1573 sb->s_op->umount_begin(sb);
42faad99 1574 }
1da177e4
LT
1575
1576 /*
1577 * No sense to grab the lock for this test, but test itself looks
1578 * somewhat bogus. Suggestions for better replacement?
1579 * Ho-hum... In principle, we might treat that as umount + switch
1580 * to rootfs. GC would eventually take care of the old vfsmount.
1581 * Actually it makes sense, especially if rootfs would contain a
1582 * /reboot - static binary that would close all descriptors and
1583 * call reboot(9). Then init(8) could umount root and exec /reboot.
1584 */
1ab59738 1585 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1586 /*
1587 * Special case for "unmounting" root ...
1588 * we just try to remount it readonly.
1589 */
a1480dcc
AL
1590 if (!capable(CAP_SYS_ADMIN))
1591 return -EPERM;
1da177e4 1592 down_write(&sb->s_umount);
bc98a42c 1593 if (!sb_rdonly(sb))
e462ec50 1594 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1595 up_write(&sb->s_umount);
1596 return retval;
1597 }
1598
97216be0 1599 namespace_lock();
719ea2fb 1600 lock_mount_hash();
5addc5dd 1601 event++;
1da177e4 1602
48a066e7 1603 if (flags & MNT_DETACH) {
1a4eeaf2 1604 if (!list_empty(&mnt->mnt_list))
e819f152 1605 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1606 retval = 0;
48a066e7
AV
1607 } else {
1608 shrink_submounts(mnt);
1609 retval = -EBUSY;
1610 if (!propagate_mount_busy(mnt, 2)) {
1611 if (!list_empty(&mnt->mnt_list))
e819f152 1612 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1613 retval = 0;
1614 }
1da177e4 1615 }
719ea2fb 1616 unlock_mount_hash();
e3197d83 1617 namespace_unlock();
1da177e4
LT
1618 return retval;
1619}
1620
80b5dce8
EB
1621/*
1622 * __detach_mounts - lazily unmount all mounts on the specified dentry
1623 *
1624 * During unlink, rmdir, and d_drop it is possible to loose the path
1625 * to an existing mountpoint, and wind up leaking the mount.
1626 * detach_mounts allows lazily unmounting those mounts instead of
1627 * leaking them.
1628 *
1629 * The caller may hold dentry->d_inode->i_mutex.
1630 */
1631void __detach_mounts(struct dentry *dentry)
1632{
1633 struct mountpoint *mp;
1634 struct mount *mnt;
1635
1636 namespace_lock();
3895dbf8 1637 lock_mount_hash();
80b5dce8 1638 mp = lookup_mountpoint(dentry);
f53e5797 1639 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1640 goto out_unlock;
1641
e06b933e 1642 event++;
80b5dce8
EB
1643 while (!hlist_empty(&mp->m_list)) {
1644 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1645 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1646 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1647 umount_mnt(mnt);
ce07d891 1648 }
e0c9c0af 1649 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1650 }
80b5dce8
EB
1651 put_mountpoint(mp);
1652out_unlock:
3895dbf8 1653 unlock_mount_hash();
80b5dce8
EB
1654 namespace_unlock();
1655}
1656
dd111b31 1657/*
9b40bc90
AV
1658 * Is the caller allowed to modify his namespace?
1659 */
1660static inline bool may_mount(void)
1661{
1662 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1663}
1664
9e8925b6
JL
1665static inline bool may_mandlock(void)
1666{
1667#ifndef CONFIG_MANDATORY_FILE_LOCKING
1668 return false;
1669#endif
95ace754 1670 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1671}
1672
1da177e4
LT
1673/*
1674 * Now umount can handle mount points as well as block devices.
1675 * This is important for filesystems which use unnamed block devices.
1676 *
1677 * We now support a flag for forced unmount like the other 'big iron'
1678 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1679 */
1680
bdc480e3 1681SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1682{
2d8f3038 1683 struct path path;
900148dc 1684 struct mount *mnt;
1da177e4 1685 int retval;
db1f05bb 1686 int lookup_flags = 0;
1da177e4 1687
db1f05bb
MS
1688 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1689 return -EINVAL;
1690
9b40bc90
AV
1691 if (!may_mount())
1692 return -EPERM;
1693
db1f05bb
MS
1694 if (!(flags & UMOUNT_NOFOLLOW))
1695 lookup_flags |= LOOKUP_FOLLOW;
1696
197df04c 1697 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1698 if (retval)
1699 goto out;
900148dc 1700 mnt = real_mount(path.mnt);
1da177e4 1701 retval = -EINVAL;
2d8f3038 1702 if (path.dentry != path.mnt->mnt_root)
1da177e4 1703 goto dput_and_out;
143c8c91 1704 if (!check_mnt(mnt))
1da177e4 1705 goto dput_and_out;
5ff9d8a6
EB
1706 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1707 goto dput_and_out;
b2f5d4dc
EB
1708 retval = -EPERM;
1709 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1710 goto dput_and_out;
1da177e4 1711
900148dc 1712 retval = do_umount(mnt, flags);
1da177e4 1713dput_and_out:
429731b1 1714 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1715 dput(path.dentry);
900148dc 1716 mntput_no_expire(mnt);
1da177e4
LT
1717out:
1718 return retval;
1719}
1720
1721#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1722
1723/*
b58fed8b 1724 * The 2.0 compatible umount. No flags.
1da177e4 1725 */
bdc480e3 1726SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1727{
b58fed8b 1728 return sys_umount(name, 0);
1da177e4
LT
1729}
1730
1731#endif
1732
4ce5d2b1 1733static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1734{
4ce5d2b1 1735 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1736 return dentry->d_op == &ns_dentry_operations &&
1737 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1738}
1739
58be2825
AV
1740struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1741{
1742 return container_of(ns, struct mnt_namespace, ns);
1743}
1744
4ce5d2b1
EB
1745static bool mnt_ns_loop(struct dentry *dentry)
1746{
1747 /* Could bind mounting the mount namespace inode cause a
1748 * mount namespace loop?
1749 */
1750 struct mnt_namespace *mnt_ns;
1751 if (!is_mnt_ns_file(dentry))
1752 return false;
1753
f77c8014 1754 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1755 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1756}
1757
87129cc0 1758struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1759 int flag)
1da177e4 1760{
84d17192 1761 struct mount *res, *p, *q, *r, *parent;
1da177e4 1762
4ce5d2b1
EB
1763 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1764 return ERR_PTR(-EINVAL);
1765
1766 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1767 return ERR_PTR(-EINVAL);
9676f0c6 1768
36341f64 1769 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1770 if (IS_ERR(q))
1771 return q;
1772
a73324da 1773 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1774
1775 p = mnt;
6b41d536 1776 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1777 struct mount *s;
7ec02ef1 1778 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1779 continue;
1780
909b0a88 1781 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1782 if (!(flag & CL_COPY_UNBINDABLE) &&
1783 IS_MNT_UNBINDABLE(s)) {
1784 s = skip_mnt_tree(s);
1785 continue;
1786 }
1787 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1788 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1789 s = skip_mnt_tree(s);
1790 continue;
1791 }
0714a533
AV
1792 while (p != s->mnt_parent) {
1793 p = p->mnt_parent;
1794 q = q->mnt_parent;
1da177e4 1795 }
87129cc0 1796 p = s;
84d17192 1797 parent = q;
87129cc0 1798 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1799 if (IS_ERR(q))
1800 goto out;
719ea2fb 1801 lock_mount_hash();
1a4eeaf2 1802 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1803 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1804 unlock_mount_hash();
1da177e4
LT
1805 }
1806 }
1807 return res;
be34d1a3 1808out:
1da177e4 1809 if (res) {
719ea2fb 1810 lock_mount_hash();
e819f152 1811 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1812 unlock_mount_hash();
1da177e4 1813 }
be34d1a3 1814 return q;
1da177e4
LT
1815}
1816
be34d1a3
DH
1817/* Caller should check returned pointer for errors */
1818
ca71cf71 1819struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1820{
cb338d06 1821 struct mount *tree;
97216be0 1822 namespace_lock();
cd4a4017
EB
1823 if (!check_mnt(real_mount(path->mnt)))
1824 tree = ERR_PTR(-EINVAL);
1825 else
1826 tree = copy_tree(real_mount(path->mnt), path->dentry,
1827 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1828 namespace_unlock();
be34d1a3 1829 if (IS_ERR(tree))
52e220d3 1830 return ERR_CAST(tree);
be34d1a3 1831 return &tree->mnt;
8aec0809
AV
1832}
1833
1834void drop_collected_mounts(struct vfsmount *mnt)
1835{
97216be0 1836 namespace_lock();
719ea2fb 1837 lock_mount_hash();
e819f152 1838 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1839 unlock_mount_hash();
3ab6abee 1840 namespace_unlock();
8aec0809
AV
1841}
1842
c771d683
MS
1843/**
1844 * clone_private_mount - create a private clone of a path
1845 *
1846 * This creates a new vfsmount, which will be the clone of @path. The new will
1847 * not be attached anywhere in the namespace and will be private (i.e. changes
1848 * to the originating mount won't be propagated into this).
1849 *
1850 * Release with mntput().
1851 */
ca71cf71 1852struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1853{
1854 struct mount *old_mnt = real_mount(path->mnt);
1855 struct mount *new_mnt;
1856
1857 if (IS_MNT_UNBINDABLE(old_mnt))
1858 return ERR_PTR(-EINVAL);
1859
c771d683 1860 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1861 if (IS_ERR(new_mnt))
1862 return ERR_CAST(new_mnt);
1863
1864 return &new_mnt->mnt;
1865}
1866EXPORT_SYMBOL_GPL(clone_private_mount);
1867
1f707137
AV
1868int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1869 struct vfsmount *root)
1870{
1a4eeaf2 1871 struct mount *mnt;
1f707137
AV
1872 int res = f(root, arg);
1873 if (res)
1874 return res;
1a4eeaf2
AV
1875 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1876 res = f(&mnt->mnt, arg);
1f707137
AV
1877 if (res)
1878 return res;
1879 }
1880 return 0;
1881}
1882
4b8b21f4 1883static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1884{
315fc83e 1885 struct mount *p;
719f5d7f 1886
909b0a88 1887 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1888 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1889 mnt_release_group_id(p);
719f5d7f
MS
1890 }
1891}
1892
4b8b21f4 1893static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1894{
315fc83e 1895 struct mount *p;
719f5d7f 1896
909b0a88 1897 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1898 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1899 int err = mnt_alloc_group_id(p);
719f5d7f 1900 if (err) {
4b8b21f4 1901 cleanup_group_ids(mnt, p);
719f5d7f
MS
1902 return err;
1903 }
1904 }
1905 }
1906
1907 return 0;
1908}
1909
d2921684
EB
1910int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1911{
1912 unsigned int max = READ_ONCE(sysctl_mount_max);
1913 unsigned int mounts = 0, old, pending, sum;
1914 struct mount *p;
1915
1916 for (p = mnt; p; p = next_mnt(p, mnt))
1917 mounts++;
1918
1919 old = ns->mounts;
1920 pending = ns->pending_mounts;
1921 sum = old + pending;
1922 if ((old > sum) ||
1923 (pending > sum) ||
1924 (max < sum) ||
1925 (mounts > (max - sum)))
1926 return -ENOSPC;
1927
1928 ns->pending_mounts = pending + mounts;
1929 return 0;
1930}
1931
b90fa9ae
RP
1932/*
1933 * @source_mnt : mount tree to be attached
21444403
RP
1934 * @nd : place the mount tree @source_mnt is attached
1935 * @parent_nd : if non-null, detach the source_mnt from its parent and
1936 * store the parent mount and mountpoint dentry.
1937 * (done when source_mnt is moved)
b90fa9ae
RP
1938 *
1939 * NOTE: in the table below explains the semantics when a source mount
1940 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1941 * ---------------------------------------------------------------------------
1942 * | BIND MOUNT OPERATION |
1943 * |**************************************************************************
1944 * | source-->| shared | private | slave | unbindable |
1945 * | dest | | | | |
1946 * | | | | | | |
1947 * | v | | | | |
1948 * |**************************************************************************
1949 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1950 * | | | | | |
1951 * |non-shared| shared (+) | private | slave (*) | invalid |
1952 * ***************************************************************************
b90fa9ae
RP
1953 * A bind operation clones the source mount and mounts the clone on the
1954 * destination mount.
1955 *
1956 * (++) the cloned mount is propagated to all the mounts in the propagation
1957 * tree of the destination mount and the cloned mount is added to
1958 * the peer group of the source mount.
1959 * (+) the cloned mount is created under the destination mount and is marked
1960 * as shared. The cloned mount is added to the peer group of the source
1961 * mount.
5afe0022
RP
1962 * (+++) the mount is propagated to all the mounts in the propagation tree
1963 * of the destination mount and the cloned mount is made slave
1964 * of the same master as that of the source mount. The cloned mount
1965 * is marked as 'shared and slave'.
1966 * (*) the cloned mount is made a slave of the same master as that of the
1967 * source mount.
1968 *
9676f0c6
RP
1969 * ---------------------------------------------------------------------------
1970 * | MOVE MOUNT OPERATION |
1971 * |**************************************************************************
1972 * | source-->| shared | private | slave | unbindable |
1973 * | dest | | | | |
1974 * | | | | | | |
1975 * | v | | | | |
1976 * |**************************************************************************
1977 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1978 * | | | | | |
1979 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1980 * ***************************************************************************
5afe0022
RP
1981 *
1982 * (+) the mount is moved to the destination. And is then propagated to
1983 * all the mounts in the propagation tree of the destination mount.
21444403 1984 * (+*) the mount is moved to the destination.
5afe0022
RP
1985 * (+++) the mount is moved to the destination and is then propagated to
1986 * all the mounts belonging to the destination mount's propagation tree.
1987 * the mount is marked as 'shared and slave'.
1988 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1989 *
1990 * if the source mount is a tree, the operations explained above is
1991 * applied to each mount in the tree.
1992 * Must be called without spinlocks held, since this function can sleep
1993 * in allocations.
1994 */
0fb54e50 1995static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1996 struct mount *dest_mnt,
1997 struct mountpoint *dest_mp,
1998 struct path *parent_path)
b90fa9ae 1999{
38129a13 2000 HLIST_HEAD(tree_list);
d2921684 2001 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2002 struct mountpoint *smp;
315fc83e 2003 struct mount *child, *p;
38129a13 2004 struct hlist_node *n;
719f5d7f 2005 int err;
b90fa9ae 2006
1064f874
EB
2007 /* Preallocate a mountpoint in case the new mounts need
2008 * to be tucked under other mounts.
2009 */
2010 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2011 if (IS_ERR(smp))
2012 return PTR_ERR(smp);
2013
d2921684
EB
2014 /* Is there space to add these mounts to the mount namespace? */
2015 if (!parent_path) {
2016 err = count_mounts(ns, source_mnt);
2017 if (err)
2018 goto out;
2019 }
2020
fc7be130 2021 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2022 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2023 if (err)
2024 goto out;
0b1b901b 2025 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2026 lock_mount_hash();
0b1b901b
AV
2027 if (err)
2028 goto out_cleanup_ids;
909b0a88 2029 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2030 set_mnt_shared(p);
0b1b901b
AV
2031 } else {
2032 lock_mount_hash();
b90fa9ae 2033 }
1a390689 2034 if (parent_path) {
0fb54e50 2035 detach_mnt(source_mnt, parent_path);
84d17192 2036 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2037 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2038 } else {
84d17192 2039 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2040 commit_tree(source_mnt);
21444403 2041 }
b90fa9ae 2042
38129a13 2043 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2044 struct mount *q;
38129a13 2045 hlist_del_init(&child->mnt_hash);
1064f874
EB
2046 q = __lookup_mnt(&child->mnt_parent->mnt,
2047 child->mnt_mountpoint);
2048 if (q)
2049 mnt_change_mountpoint(child, smp, q);
2050 commit_tree(child);
b90fa9ae 2051 }
1064f874 2052 put_mountpoint(smp);
719ea2fb 2053 unlock_mount_hash();
99b7db7b 2054
b90fa9ae 2055 return 0;
719f5d7f
MS
2056
2057 out_cleanup_ids:
f2ebb3a9
AV
2058 while (!hlist_empty(&tree_list)) {
2059 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2060 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2061 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2062 }
2063 unlock_mount_hash();
0b1b901b 2064 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2065 out:
d2921684 2066 ns->pending_mounts = 0;
1064f874
EB
2067
2068 read_seqlock_excl(&mount_lock);
2069 put_mountpoint(smp);
2070 read_sequnlock_excl(&mount_lock);
2071
719f5d7f 2072 return err;
b90fa9ae
RP
2073}
2074
84d17192 2075static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2076{
2077 struct vfsmount *mnt;
84d17192 2078 struct dentry *dentry = path->dentry;
b12cea91 2079retry:
5955102c 2080 inode_lock(dentry->d_inode);
84d17192 2081 if (unlikely(cant_mount(dentry))) {
5955102c 2082 inode_unlock(dentry->d_inode);
84d17192 2083 return ERR_PTR(-ENOENT);
b12cea91 2084 }
97216be0 2085 namespace_lock();
b12cea91 2086 mnt = lookup_mnt(path);
84d17192 2087 if (likely(!mnt)) {
3895dbf8 2088 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2089 if (IS_ERR(mp)) {
97216be0 2090 namespace_unlock();
5955102c 2091 inode_unlock(dentry->d_inode);
84d17192
AV
2092 return mp;
2093 }
2094 return mp;
2095 }
97216be0 2096 namespace_unlock();
5955102c 2097 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2098 path_put(path);
2099 path->mnt = mnt;
84d17192 2100 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2101 goto retry;
2102}
2103
84d17192 2104static void unlock_mount(struct mountpoint *where)
b12cea91 2105{
84d17192 2106 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2107
2108 read_seqlock_excl(&mount_lock);
84d17192 2109 put_mountpoint(where);
3895dbf8
EB
2110 read_sequnlock_excl(&mount_lock);
2111
328e6d90 2112 namespace_unlock();
5955102c 2113 inode_unlock(dentry->d_inode);
b12cea91
AV
2114}
2115
84d17192 2116static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2117{
e462ec50 2118 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2119 return -EINVAL;
2120
e36cb0b8
DH
2121 if (d_is_dir(mp->m_dentry) !=
2122 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2123 return -ENOTDIR;
2124
84d17192 2125 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2126}
2127
7a2e8a8f
VA
2128/*
2129 * Sanity check the flags to change_mnt_propagation.
2130 */
2131
e462ec50 2132static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2133{
e462ec50 2134 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2135
2136 /* Fail if any non-propagation flags are set */
2137 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2138 return 0;
2139 /* Only one propagation flag should be set */
2140 if (!is_power_of_2(type))
2141 return 0;
2142 return type;
2143}
2144
07b20889
RP
2145/*
2146 * recursively change the type of the mountpoint.
2147 */
e462ec50 2148static int do_change_type(struct path *path, int ms_flags)
07b20889 2149{
315fc83e 2150 struct mount *m;
4b8b21f4 2151 struct mount *mnt = real_mount(path->mnt);
e462ec50 2152 int recurse = ms_flags & MS_REC;
7a2e8a8f 2153 int type;
719f5d7f 2154 int err = 0;
07b20889 2155
2d92ab3c 2156 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2157 return -EINVAL;
2158
e462ec50 2159 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2160 if (!type)
2161 return -EINVAL;
2162
97216be0 2163 namespace_lock();
719f5d7f
MS
2164 if (type == MS_SHARED) {
2165 err = invent_group_ids(mnt, recurse);
2166 if (err)
2167 goto out_unlock;
2168 }
2169
719ea2fb 2170 lock_mount_hash();
909b0a88 2171 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2172 change_mnt_propagation(m, type);
719ea2fb 2173 unlock_mount_hash();
719f5d7f
MS
2174
2175 out_unlock:
97216be0 2176 namespace_unlock();
719f5d7f 2177 return err;
07b20889
RP
2178}
2179
5ff9d8a6
EB
2180static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2181{
2182 struct mount *child;
2183 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2184 if (!is_subdir(child->mnt_mountpoint, dentry))
2185 continue;
2186
2187 if (child->mnt.mnt_flags & MNT_LOCKED)
2188 return true;
2189 }
2190 return false;
2191}
2192
1da177e4
LT
2193/*
2194 * do loopback mount.
2195 */
808d4e3c 2196static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2197 int recurse)
1da177e4 2198{
2d92ab3c 2199 struct path old_path;
84d17192
AV
2200 struct mount *mnt = NULL, *old, *parent;
2201 struct mountpoint *mp;
57eccb83 2202 int err;
1da177e4
LT
2203 if (!old_name || !*old_name)
2204 return -EINVAL;
815d405c 2205 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2206 if (err)
2207 return err;
2208
8823c079 2209 err = -EINVAL;
4ce5d2b1 2210 if (mnt_ns_loop(old_path.dentry))
dd111b31 2211 goto out;
8823c079 2212
84d17192
AV
2213 mp = lock_mount(path);
2214 err = PTR_ERR(mp);
2215 if (IS_ERR(mp))
b12cea91
AV
2216 goto out;
2217
87129cc0 2218 old = real_mount(old_path.mnt);
84d17192 2219 parent = real_mount(path->mnt);
87129cc0 2220
1da177e4 2221 err = -EINVAL;
fc7be130 2222 if (IS_MNT_UNBINDABLE(old))
b12cea91 2223 goto out2;
9676f0c6 2224
e149ed2b
AV
2225 if (!check_mnt(parent))
2226 goto out2;
2227
2228 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2229 goto out2;
1da177e4 2230
5ff9d8a6
EB
2231 if (!recurse && has_locked_children(old, old_path.dentry))
2232 goto out2;
2233
ccd48bc7 2234 if (recurse)
4ce5d2b1 2235 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2236 else
87129cc0 2237 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2238
be34d1a3
DH
2239 if (IS_ERR(mnt)) {
2240 err = PTR_ERR(mnt);
e9c5d8a5 2241 goto out2;
be34d1a3 2242 }
ccd48bc7 2243
5ff9d8a6
EB
2244 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2245
84d17192 2246 err = graft_tree(mnt, parent, mp);
ccd48bc7 2247 if (err) {
719ea2fb 2248 lock_mount_hash();
e819f152 2249 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2250 unlock_mount_hash();
5b83d2c5 2251 }
b12cea91 2252out2:
84d17192 2253 unlock_mount(mp);
ccd48bc7 2254out:
2d92ab3c 2255 path_put(&old_path);
1da177e4
LT
2256 return err;
2257}
2258
2e4b7fcd
DH
2259static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2260{
2261 int error = 0;
2262 int readonly_request = 0;
2263
2264 if (ms_flags & MS_RDONLY)
2265 readonly_request = 1;
2266 if (readonly_request == __mnt_is_readonly(mnt))
2267 return 0;
2268
2269 if (readonly_request)
83adc753 2270 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2271 else
83adc753 2272 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2273 return error;
2274}
2275
1da177e4
LT
2276/*
2277 * change filesystem flags. dir should be a physical root of filesystem.
2278 * If you've mounted a non-root directory somewhere and want to do remount
2279 * on it - tough luck.
2280 */
e462ec50
DH
2281static int do_remount(struct path *path, int ms_flags, int sb_flags,
2282 int mnt_flags, void *data)
1da177e4
LT
2283{
2284 int err;
2d92ab3c 2285 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2286 struct mount *mnt = real_mount(path->mnt);
1da177e4 2287
143c8c91 2288 if (!check_mnt(mnt))
1da177e4
LT
2289 return -EINVAL;
2290
2d92ab3c 2291 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2292 return -EINVAL;
2293
07b64558
EB
2294 /* Don't allow changing of locked mnt flags.
2295 *
2296 * No locks need to be held here while testing the various
2297 * MNT_LOCK flags because those flags can never be cleared
2298 * once they are set.
2299 */
2300 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2301 !(mnt_flags & MNT_READONLY)) {
2302 return -EPERM;
2303 }
9566d674
EB
2304 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2305 !(mnt_flags & MNT_NODEV)) {
67690f93 2306 return -EPERM;
9566d674
EB
2307 }
2308 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2309 !(mnt_flags & MNT_NOSUID)) {
2310 return -EPERM;
2311 }
2312 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2313 !(mnt_flags & MNT_NOEXEC)) {
2314 return -EPERM;
2315 }
2316 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2317 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2318 return -EPERM;
2319 }
2320
ff36fe2c
EP
2321 err = security_sb_remount(sb, data);
2322 if (err)
2323 return err;
2324
1da177e4 2325 down_write(&sb->s_umount);
e462ec50
DH
2326 if (ms_flags & MS_BIND)
2327 err = change_mount_flags(path->mnt, ms_flags);
57eccb83
AV
2328 else if (!capable(CAP_SYS_ADMIN))
2329 err = -EPERM;
4aa98cf7 2330 else
e462ec50 2331 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2332 if (!err) {
719ea2fb 2333 lock_mount_hash();
a6138db8 2334 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2335 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2336 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2337 unlock_mount_hash();
0e55a7cc 2338 }
6339dab8 2339 up_write(&sb->s_umount);
1da177e4
LT
2340 return err;
2341}
2342
cbbe362c 2343static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2344{
315fc83e 2345 struct mount *p;
909b0a88 2346 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2347 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2348 return 1;
2349 }
2350 return 0;
2351}
2352
808d4e3c 2353static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2354{
2d92ab3c 2355 struct path old_path, parent_path;
676da58d 2356 struct mount *p;
0fb54e50 2357 struct mount *old;
84d17192 2358 struct mountpoint *mp;
57eccb83 2359 int err;
1da177e4
LT
2360 if (!old_name || !*old_name)
2361 return -EINVAL;
2d92ab3c 2362 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2363 if (err)
2364 return err;
2365
84d17192
AV
2366 mp = lock_mount(path);
2367 err = PTR_ERR(mp);
2368 if (IS_ERR(mp))
cc53ce53
DH
2369 goto out;
2370
143c8c91 2371 old = real_mount(old_path.mnt);
fc7be130 2372 p = real_mount(path->mnt);
143c8c91 2373
1da177e4 2374 err = -EINVAL;
fc7be130 2375 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2376 goto out1;
2377
5ff9d8a6
EB
2378 if (old->mnt.mnt_flags & MNT_LOCKED)
2379 goto out1;
2380
1da177e4 2381 err = -EINVAL;
2d92ab3c 2382 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2383 goto out1;
1da177e4 2384
676da58d 2385 if (!mnt_has_parent(old))
21444403 2386 goto out1;
1da177e4 2387
e36cb0b8
DH
2388 if (d_is_dir(path->dentry) !=
2389 d_is_dir(old_path.dentry))
21444403
RP
2390 goto out1;
2391 /*
2392 * Don't move a mount residing in a shared parent.
2393 */
fc7be130 2394 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2395 goto out1;
9676f0c6
RP
2396 /*
2397 * Don't move a mount tree containing unbindable mounts to a destination
2398 * mount which is shared.
2399 */
fc7be130 2400 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2401 goto out1;
1da177e4 2402 err = -ELOOP;
fc7be130 2403 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2404 if (p == old)
21444403 2405 goto out1;
1da177e4 2406
84d17192 2407 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2408 if (err)
21444403 2409 goto out1;
1da177e4
LT
2410
2411 /* if the mount is moved, it should no longer be expire
2412 * automatically */
6776db3d 2413 list_del_init(&old->mnt_expire);
1da177e4 2414out1:
84d17192 2415 unlock_mount(mp);
1da177e4 2416out:
1da177e4 2417 if (!err)
1a390689 2418 path_put(&parent_path);
2d92ab3c 2419 path_put(&old_path);
1da177e4
LT
2420 return err;
2421}
2422
9d412a43
AV
2423static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2424{
2425 int err;
2426 const char *subtype = strchr(fstype, '.');
2427 if (subtype) {
2428 subtype++;
2429 err = -EINVAL;
2430 if (!subtype[0])
2431 goto err;
2432 } else
2433 subtype = "";
2434
2435 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2436 err = -ENOMEM;
2437 if (!mnt->mnt_sb->s_subtype)
2438 goto err;
2439 return mnt;
2440
2441 err:
2442 mntput(mnt);
2443 return ERR_PTR(err);
2444}
2445
9d412a43
AV
2446/*
2447 * add a mount into a namespace's mount tree
2448 */
95bc5f25 2449static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2450{
84d17192
AV
2451 struct mountpoint *mp;
2452 struct mount *parent;
9d412a43
AV
2453 int err;
2454
f2ebb3a9 2455 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2456
84d17192
AV
2457 mp = lock_mount(path);
2458 if (IS_ERR(mp))
2459 return PTR_ERR(mp);
9d412a43 2460
84d17192 2461 parent = real_mount(path->mnt);
9d412a43 2462 err = -EINVAL;
84d17192 2463 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2464 /* that's acceptable only for automounts done in private ns */
2465 if (!(mnt_flags & MNT_SHRINKABLE))
2466 goto unlock;
2467 /* ... and for those we'd better have mountpoint still alive */
84d17192 2468 if (!parent->mnt_ns)
156cacb1
AV
2469 goto unlock;
2470 }
9d412a43
AV
2471
2472 /* Refuse the same filesystem on the same mount point */
2473 err = -EBUSY;
95bc5f25 2474 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2475 path->mnt->mnt_root == path->dentry)
2476 goto unlock;
2477
2478 err = -EINVAL;
e36cb0b8 2479 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2480 goto unlock;
2481
95bc5f25 2482 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2483 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2484
2485unlock:
84d17192 2486 unlock_mount(mp);
9d412a43
AV
2487 return err;
2488}
b1e75df4 2489
8654df4e 2490static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2491
1da177e4
LT
2492/*
2493 * create a new mount for userspace and request it to be added into the
2494 * namespace's tree
2495 */
e462ec50 2496static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2497 int mnt_flags, const char *name, void *data)
1da177e4 2498{
0c55cfc4 2499 struct file_system_type *type;
1da177e4 2500 struct vfsmount *mnt;
15f9a3f3 2501 int err;
1da177e4 2502
0c55cfc4 2503 if (!fstype)
1da177e4
LT
2504 return -EINVAL;
2505
0c55cfc4
EB
2506 type = get_fs_type(fstype);
2507 if (!type)
2508 return -ENODEV;
2509
e462ec50 2510 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2511 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2512 !mnt->mnt_sb->s_subtype)
2513 mnt = fs_set_subtype(mnt, fstype);
2514
2515 put_filesystem(type);
1da177e4
LT
2516 if (IS_ERR(mnt))
2517 return PTR_ERR(mnt);
2518
8654df4e
EB
2519 if (mount_too_revealing(mnt, &mnt_flags)) {
2520 mntput(mnt);
2521 return -EPERM;
2522 }
2523
95bc5f25 2524 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2525 if (err)
2526 mntput(mnt);
2527 return err;
1da177e4
LT
2528}
2529
19a167af
AV
2530int finish_automount(struct vfsmount *m, struct path *path)
2531{
6776db3d 2532 struct mount *mnt = real_mount(m);
19a167af
AV
2533 int err;
2534 /* The new mount record should have at least 2 refs to prevent it being
2535 * expired before we get a chance to add it
2536 */
6776db3d 2537 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2538
2539 if (m->mnt_sb == path->mnt->mnt_sb &&
2540 m->mnt_root == path->dentry) {
b1e75df4
AV
2541 err = -ELOOP;
2542 goto fail;
19a167af
AV
2543 }
2544
95bc5f25 2545 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2546 if (!err)
2547 return 0;
2548fail:
2549 /* remove m from any expiration list it may be on */
6776db3d 2550 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2551 namespace_lock();
6776db3d 2552 list_del_init(&mnt->mnt_expire);
97216be0 2553 namespace_unlock();
19a167af 2554 }
b1e75df4
AV
2555 mntput(m);
2556 mntput(m);
19a167af
AV
2557 return err;
2558}
2559
ea5b778a
DH
2560/**
2561 * mnt_set_expiry - Put a mount on an expiration list
2562 * @mnt: The mount to list.
2563 * @expiry_list: The list to add the mount to.
2564 */
2565void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2566{
97216be0 2567 namespace_lock();
ea5b778a 2568
6776db3d 2569 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2570
97216be0 2571 namespace_unlock();
ea5b778a
DH
2572}
2573EXPORT_SYMBOL(mnt_set_expiry);
2574
1da177e4
LT
2575/*
2576 * process a list of expirable mountpoints with the intent of discarding any
2577 * mountpoints that aren't in use and haven't been touched since last we came
2578 * here
2579 */
2580void mark_mounts_for_expiry(struct list_head *mounts)
2581{
761d5c38 2582 struct mount *mnt, *next;
1da177e4
LT
2583 LIST_HEAD(graveyard);
2584
2585 if (list_empty(mounts))
2586 return;
2587
97216be0 2588 namespace_lock();
719ea2fb 2589 lock_mount_hash();
1da177e4
LT
2590
2591 /* extract from the expiration list every vfsmount that matches the
2592 * following criteria:
2593 * - only referenced by its parent vfsmount
2594 * - still marked for expiry (marked on the last call here; marks are
2595 * cleared by mntput())
2596 */
6776db3d 2597 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2598 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2599 propagate_mount_busy(mnt, 1))
1da177e4 2600 continue;
6776db3d 2601 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2602 }
bcc5c7d2 2603 while (!list_empty(&graveyard)) {
6776db3d 2604 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2605 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2606 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2607 }
719ea2fb 2608 unlock_mount_hash();
3ab6abee 2609 namespace_unlock();
5528f911
TM
2610}
2611
2612EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2613
2614/*
2615 * Ripoff of 'select_parent()'
2616 *
2617 * search the list of submounts for a given mountpoint, and move any
2618 * shrinkable submounts to the 'graveyard' list.
2619 */
692afc31 2620static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2621{
692afc31 2622 struct mount *this_parent = parent;
5528f911
TM
2623 struct list_head *next;
2624 int found = 0;
2625
2626repeat:
6b41d536 2627 next = this_parent->mnt_mounts.next;
5528f911 2628resume:
6b41d536 2629 while (next != &this_parent->mnt_mounts) {
5528f911 2630 struct list_head *tmp = next;
6b41d536 2631 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2632
2633 next = tmp->next;
692afc31 2634 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2635 continue;
5528f911
TM
2636 /*
2637 * Descend a level if the d_mounts list is non-empty.
2638 */
6b41d536 2639 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2640 this_parent = mnt;
2641 goto repeat;
2642 }
1da177e4 2643
1ab59738 2644 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2645 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2646 found++;
2647 }
1da177e4 2648 }
5528f911
TM
2649 /*
2650 * All done at this level ... ascend and resume the search
2651 */
2652 if (this_parent != parent) {
6b41d536 2653 next = this_parent->mnt_child.next;
0714a533 2654 this_parent = this_parent->mnt_parent;
5528f911
TM
2655 goto resume;
2656 }
2657 return found;
2658}
2659
2660/*
2661 * process a list of expirable mountpoints with the intent of discarding any
2662 * submounts of a specific parent mountpoint
99b7db7b 2663 *
48a066e7 2664 * mount_lock must be held for write
5528f911 2665 */
b54b9be7 2666static void shrink_submounts(struct mount *mnt)
5528f911
TM
2667{
2668 LIST_HEAD(graveyard);
761d5c38 2669 struct mount *m;
5528f911 2670
5528f911 2671 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2672 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2673 while (!list_empty(&graveyard)) {
761d5c38 2674 m = list_first_entry(&graveyard, struct mount,
6776db3d 2675 mnt_expire);
143c8c91 2676 touch_mnt_namespace(m->mnt_ns);
e819f152 2677 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2678 }
2679 }
1da177e4
LT
2680}
2681
1da177e4
LT
2682/*
2683 * Some copy_from_user() implementations do not return the exact number of
2684 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2685 * Note that this function differs from copy_from_user() in that it will oops
2686 * on bad values of `to', rather than returning a short copy.
2687 */
b58fed8b
RP
2688static long exact_copy_from_user(void *to, const void __user * from,
2689 unsigned long n)
1da177e4
LT
2690{
2691 char *t = to;
2692 const char __user *f = from;
2693 char c;
2694
2695 if (!access_ok(VERIFY_READ, from, n))
2696 return n;
2697
2698 while (n) {
2699 if (__get_user(c, f)) {
2700 memset(t, 0, n);
2701 break;
2702 }
2703 *t++ = c;
2704 f++;
2705 n--;
2706 }
2707 return n;
2708}
2709
b40ef869 2710void *copy_mount_options(const void __user * data)
1da177e4
LT
2711{
2712 int i;
1da177e4 2713 unsigned long size;
b40ef869 2714 char *copy;
b58fed8b 2715
1da177e4 2716 if (!data)
b40ef869 2717 return NULL;
1da177e4 2718
b40ef869
AV
2719 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2720 if (!copy)
2721 return ERR_PTR(-ENOMEM);
1da177e4
LT
2722
2723 /* We only care that *some* data at the address the user
2724 * gave us is valid. Just in case, we'll zero
2725 * the remainder of the page.
2726 */
2727 /* copy_from_user cannot cross TASK_SIZE ! */
2728 size = TASK_SIZE - (unsigned long)data;
2729 if (size > PAGE_SIZE)
2730 size = PAGE_SIZE;
2731
b40ef869 2732 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2733 if (!i) {
b40ef869
AV
2734 kfree(copy);
2735 return ERR_PTR(-EFAULT);
1da177e4
LT
2736 }
2737 if (i != PAGE_SIZE)
b40ef869
AV
2738 memset(copy + i, 0, PAGE_SIZE - i);
2739 return copy;
1da177e4
LT
2740}
2741
b8850d1f 2742char *copy_mount_string(const void __user *data)
eca6f534 2743{
b8850d1f 2744 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2745}
2746
1da177e4
LT
2747/*
2748 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2749 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2750 *
2751 * data is a (void *) that can point to any structure up to
2752 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2753 * information (or be NULL).
2754 *
2755 * Pre-0.97 versions of mount() didn't have a flags word.
2756 * When the flags word was introduced its top half was required
2757 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2758 * Therefore, if this magic number is present, it carries no information
2759 * and must be discarded.
2760 */
5e6123f3 2761long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2762 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2763{
2d92ab3c 2764 struct path path;
e462ec50 2765 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2766 int retval = 0;
1da177e4
LT
2767
2768 /* Discard magic */
2769 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2770 flags &= ~MS_MGC_MSK;
2771
2772 /* Basic sanity checks */
1da177e4
LT
2773 if (data_page)
2774 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2775
e462ec50
DH
2776 if (flags & MS_NOUSER)
2777 return -EINVAL;
2778
a27ab9f2 2779 /* ... and get the mountpoint */
5e6123f3 2780 retval = user_path(dir_name, &path);
a27ab9f2
TH
2781 if (retval)
2782 return retval;
2783
2784 retval = security_sb_mount(dev_name, &path,
2785 type_page, flags, data_page);
0d5cadb8
AV
2786 if (!retval && !may_mount())
2787 retval = -EPERM;
e462ec50 2788 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2789 retval = -EPERM;
a27ab9f2
TH
2790 if (retval)
2791 goto dput_out;
2792
613cbe3d
AK
2793 /* Default to relatime unless overriden */
2794 if (!(flags & MS_NOATIME))
2795 mnt_flags |= MNT_RELATIME;
0a1c01c9 2796
1da177e4
LT
2797 /* Separate the per-mountpoint flags */
2798 if (flags & MS_NOSUID)
2799 mnt_flags |= MNT_NOSUID;
2800 if (flags & MS_NODEV)
2801 mnt_flags |= MNT_NODEV;
2802 if (flags & MS_NOEXEC)
2803 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2804 if (flags & MS_NOATIME)
2805 mnt_flags |= MNT_NOATIME;
2806 if (flags & MS_NODIRATIME)
2807 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2808 if (flags & MS_STRICTATIME)
2809 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
e462ec50 2810 if (flags & SB_RDONLY)
2e4b7fcd 2811 mnt_flags |= MNT_READONLY;
fc33a7bb 2812
ffbc6f0e
EB
2813 /* The default atime for remount is preservation */
2814 if ((flags & MS_REMOUNT) &&
2815 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2816 MS_STRICTATIME)) == 0)) {
2817 mnt_flags &= ~MNT_ATIME_MASK;
2818 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2819 }
2820
e462ec50
DH
2821 sb_flags = flags & (SB_RDONLY |
2822 SB_SYNCHRONOUS |
2823 SB_MANDLOCK |
2824 SB_DIRSYNC |
2825 SB_SILENT |
2826 SB_POSIXACL);
1da177e4 2827
1da177e4 2828 if (flags & MS_REMOUNT)
e462ec50 2829 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2830 data_page);
2831 else if (flags & MS_BIND)
2d92ab3c 2832 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2833 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2834 retval = do_change_type(&path, flags);
1da177e4 2835 else if (flags & MS_MOVE)
2d92ab3c 2836 retval = do_move_mount(&path, dev_name);
1da177e4 2837 else
e462ec50 2838 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2839 dev_name, data_page);
2840dput_out:
2d92ab3c 2841 path_put(&path);
1da177e4
LT
2842 return retval;
2843}
2844
537f7ccb
EB
2845static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2846{
2847 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2848}
2849
2850static void dec_mnt_namespaces(struct ucounts *ucounts)
2851{
2852 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2853}
2854
771b1371
EB
2855static void free_mnt_ns(struct mnt_namespace *ns)
2856{
6344c433 2857 ns_free_inum(&ns->ns);
537f7ccb 2858 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2859 put_user_ns(ns->user_ns);
2860 kfree(ns);
2861}
2862
8823c079
EB
2863/*
2864 * Assign a sequence number so we can detect when we attempt to bind
2865 * mount a reference to an older mount namespace into the current
2866 * mount namespace, preventing reference counting loops. A 64bit
2867 * number incrementing at 10Ghz will take 12,427 years to wrap which
2868 * is effectively never, so we can ignore the possibility.
2869 */
2870static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2871
771b1371 2872static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2873{
2874 struct mnt_namespace *new_ns;
537f7ccb 2875 struct ucounts *ucounts;
98f842e6 2876 int ret;
cf8d2c11 2877
537f7ccb
EB
2878 ucounts = inc_mnt_namespaces(user_ns);
2879 if (!ucounts)
df75e774 2880 return ERR_PTR(-ENOSPC);
537f7ccb 2881
cf8d2c11 2882 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2883 if (!new_ns) {
2884 dec_mnt_namespaces(ucounts);
cf8d2c11 2885 return ERR_PTR(-ENOMEM);
537f7ccb 2886 }
6344c433 2887 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2888 if (ret) {
2889 kfree(new_ns);
537f7ccb 2890 dec_mnt_namespaces(ucounts);
98f842e6
EB
2891 return ERR_PTR(ret);
2892 }
33c42940 2893 new_ns->ns.ops = &mntns_operations;
8823c079 2894 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2895 atomic_set(&new_ns->count, 1);
2896 new_ns->root = NULL;
2897 INIT_LIST_HEAD(&new_ns->list);
2898 init_waitqueue_head(&new_ns->poll);
2899 new_ns->event = 0;
771b1371 2900 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2901 new_ns->ucounts = ucounts;
d2921684
EB
2902 new_ns->mounts = 0;
2903 new_ns->pending_mounts = 0;
cf8d2c11
TM
2904 return new_ns;
2905}
2906
0766f788 2907__latent_entropy
9559f689
AV
2908struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2909 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2910{
6b3286ed 2911 struct mnt_namespace *new_ns;
7f2da1e7 2912 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2913 struct mount *p, *q;
9559f689 2914 struct mount *old;
cb338d06 2915 struct mount *new;
7a472ef4 2916 int copy_flags;
1da177e4 2917
9559f689
AV
2918 BUG_ON(!ns);
2919
2920 if (likely(!(flags & CLONE_NEWNS))) {
2921 get_mnt_ns(ns);
2922 return ns;
2923 }
2924
2925 old = ns->root;
2926
771b1371 2927 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2928 if (IS_ERR(new_ns))
2929 return new_ns;
1da177e4 2930
97216be0 2931 namespace_lock();
1da177e4 2932 /* First pass: copy the tree topology */
4ce5d2b1 2933 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2934 if (user_ns != ns->user_ns)
132c94e3 2935 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2936 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2937 if (IS_ERR(new)) {
328e6d90 2938 namespace_unlock();
771b1371 2939 free_mnt_ns(new_ns);
be34d1a3 2940 return ERR_CAST(new);
1da177e4 2941 }
be08d6d2 2942 new_ns->root = new;
1a4eeaf2 2943 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2944
2945 /*
2946 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2947 * as belonging to new namespace. We have already acquired a private
2948 * fs_struct, so tsk->fs->lock is not needed.
2949 */
909b0a88 2950 p = old;
cb338d06 2951 q = new;
1da177e4 2952 while (p) {
143c8c91 2953 q->mnt_ns = new_ns;
d2921684 2954 new_ns->mounts++;
9559f689
AV
2955 if (new_fs) {
2956 if (&p->mnt == new_fs->root.mnt) {
2957 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2958 rootmnt = &p->mnt;
1da177e4 2959 }
9559f689
AV
2960 if (&p->mnt == new_fs->pwd.mnt) {
2961 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2962 pwdmnt = &p->mnt;
1da177e4 2963 }
1da177e4 2964 }
909b0a88
AV
2965 p = next_mnt(p, old);
2966 q = next_mnt(q, new);
4ce5d2b1
EB
2967 if (!q)
2968 break;
2969 while (p->mnt.mnt_root != q->mnt.mnt_root)
2970 p = next_mnt(p, old);
1da177e4 2971 }
328e6d90 2972 namespace_unlock();
1da177e4 2973
1da177e4 2974 if (rootmnt)
f03c6599 2975 mntput(rootmnt);
1da177e4 2976 if (pwdmnt)
f03c6599 2977 mntput(pwdmnt);
1da177e4 2978
741a2951 2979 return new_ns;
1da177e4
LT
2980}
2981
cf8d2c11
TM
2982/**
2983 * create_mnt_ns - creates a private namespace and adds a root filesystem
2984 * @mnt: pointer to the new root filesystem mountpoint
2985 */
1a4eeaf2 2986static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2987{
771b1371 2988 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2989 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2990 struct mount *mnt = real_mount(m);
2991 mnt->mnt_ns = new_ns;
be08d6d2 2992 new_ns->root = mnt;
d2921684 2993 new_ns->mounts++;
b1983cd8 2994 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2995 } else {
1a4eeaf2 2996 mntput(m);
cf8d2c11
TM
2997 }
2998 return new_ns;
2999}
cf8d2c11 3000
ea441d11
AV
3001struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3002{
3003 struct mnt_namespace *ns;
d31da0f0 3004 struct super_block *s;
ea441d11
AV
3005 struct path path;
3006 int err;
3007
3008 ns = create_mnt_ns(mnt);
3009 if (IS_ERR(ns))
3010 return ERR_CAST(ns);
3011
3012 err = vfs_path_lookup(mnt->mnt_root, mnt,
3013 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3014
3015 put_mnt_ns(ns);
3016
3017 if (err)
3018 return ERR_PTR(err);
3019
3020 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3021 s = path.mnt->mnt_sb;
3022 atomic_inc(&s->s_active);
ea441d11
AV
3023 mntput(path.mnt);
3024 /* lock the sucker */
d31da0f0 3025 down_write(&s->s_umount);
ea441d11
AV
3026 /* ... and return the root of (sub)tree on it */
3027 return path.dentry;
3028}
3029EXPORT_SYMBOL(mount_subtree);
3030
bdc480e3
HC
3031SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3032 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3033{
eca6f534
VN
3034 int ret;
3035 char *kernel_type;
eca6f534 3036 char *kernel_dev;
b40ef869 3037 void *options;
1da177e4 3038
b8850d1f
TG
3039 kernel_type = copy_mount_string(type);
3040 ret = PTR_ERR(kernel_type);
3041 if (IS_ERR(kernel_type))
eca6f534 3042 goto out_type;
1da177e4 3043
b8850d1f
TG
3044 kernel_dev = copy_mount_string(dev_name);
3045 ret = PTR_ERR(kernel_dev);
3046 if (IS_ERR(kernel_dev))
eca6f534 3047 goto out_dev;
1da177e4 3048
b40ef869
AV
3049 options = copy_mount_options(data);
3050 ret = PTR_ERR(options);
3051 if (IS_ERR(options))
eca6f534 3052 goto out_data;
1da177e4 3053
b40ef869 3054 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3055
b40ef869 3056 kfree(options);
eca6f534
VN
3057out_data:
3058 kfree(kernel_dev);
3059out_dev:
eca6f534
VN
3060 kfree(kernel_type);
3061out_type:
3062 return ret;
1da177e4
LT
3063}
3064
afac7cba
AV
3065/*
3066 * Return true if path is reachable from root
3067 *
48a066e7 3068 * namespace_sem or mount_lock is held
afac7cba 3069 */
643822b4 3070bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3071 const struct path *root)
3072{
643822b4 3073 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3074 dentry = mnt->mnt_mountpoint;
0714a533 3075 mnt = mnt->mnt_parent;
afac7cba 3076 }
643822b4 3077 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3078}
3079
640eb7e7 3080bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3081{
25ab4c9b 3082 bool res;
48a066e7 3083 read_seqlock_excl(&mount_lock);
643822b4 3084 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3085 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3086 return res;
3087}
3088EXPORT_SYMBOL(path_is_under);
3089
1da177e4
LT
3090/*
3091 * pivot_root Semantics:
3092 * Moves the root file system of the current process to the directory put_old,
3093 * makes new_root as the new root file system of the current process, and sets
3094 * root/cwd of all processes which had them on the current root to new_root.
3095 *
3096 * Restrictions:
3097 * The new_root and put_old must be directories, and must not be on the
3098 * same file system as the current process root. The put_old must be
3099 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3100 * pointed to by put_old must yield the same directory as new_root. No other
3101 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3102 *
4a0d11fa
NB
3103 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3104 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3105 * in this situation.
3106 *
1da177e4
LT
3107 * Notes:
3108 * - we don't move root/cwd if they are not at the root (reason: if something
3109 * cared enough to change them, it's probably wrong to force them elsewhere)
3110 * - it's okay to pick a root that isn't the root of a file system, e.g.
3111 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3112 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3113 * first.
3114 */
3480b257
HC
3115SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3116 const char __user *, put_old)
1da177e4 3117{
2d8f3038 3118 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3119 struct mount *new_mnt, *root_mnt, *old_mnt;
3120 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3121 int error;
3122
9b40bc90 3123 if (!may_mount())
1da177e4
LT
3124 return -EPERM;
3125
2d8f3038 3126 error = user_path_dir(new_root, &new);
1da177e4
LT
3127 if (error)
3128 goto out0;
1da177e4 3129
2d8f3038 3130 error = user_path_dir(put_old, &old);
1da177e4
LT
3131 if (error)
3132 goto out1;
3133
2d8f3038 3134 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3135 if (error)
3136 goto out2;
1da177e4 3137
f7ad3c6b 3138 get_fs_root(current->fs, &root);
84d17192
AV
3139 old_mp = lock_mount(&old);
3140 error = PTR_ERR(old_mp);
3141 if (IS_ERR(old_mp))
b12cea91
AV
3142 goto out3;
3143
1da177e4 3144 error = -EINVAL;
419148da
AV
3145 new_mnt = real_mount(new.mnt);
3146 root_mnt = real_mount(root.mnt);
84d17192
AV
3147 old_mnt = real_mount(old.mnt);
3148 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3149 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3150 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3151 goto out4;
143c8c91 3152 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3153 goto out4;
5ff9d8a6
EB
3154 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3155 goto out4;
1da177e4 3156 error = -ENOENT;
f3da392e 3157 if (d_unlinked(new.dentry))
b12cea91 3158 goto out4;
1da177e4 3159 error = -EBUSY;
84d17192 3160 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3161 goto out4; /* loop, on the same file system */
1da177e4 3162 error = -EINVAL;
8c3ee42e 3163 if (root.mnt->mnt_root != root.dentry)
b12cea91 3164 goto out4; /* not a mountpoint */
676da58d 3165 if (!mnt_has_parent(root_mnt))
b12cea91 3166 goto out4; /* not attached */
84d17192 3167 root_mp = root_mnt->mnt_mp;
2d8f3038 3168 if (new.mnt->mnt_root != new.dentry)
b12cea91 3169 goto out4; /* not a mountpoint */
676da58d 3170 if (!mnt_has_parent(new_mnt))
b12cea91 3171 goto out4; /* not attached */
4ac91378 3172 /* make sure we can reach put_old from new_root */
84d17192 3173 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3174 goto out4;
0d082601
EB
3175 /* make certain new is below the root */
3176 if (!is_path_reachable(new_mnt, new.dentry, &root))
3177 goto out4;
84d17192 3178 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3179 lock_mount_hash();
419148da
AV
3180 detach_mnt(new_mnt, &parent_path);
3181 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3182 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3183 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3184 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3185 }
4ac91378 3186 /* mount old root on put_old */
84d17192 3187 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3188 /* mount new_root on / */
84d17192 3189 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3190 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3191 /* A moved mount should not expire automatically */
3192 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3193 put_mountpoint(root_mp);
719ea2fb 3194 unlock_mount_hash();
2d8f3038 3195 chroot_fs_refs(&root, &new);
1da177e4 3196 error = 0;
b12cea91 3197out4:
84d17192 3198 unlock_mount(old_mp);
b12cea91
AV
3199 if (!error) {
3200 path_put(&root_parent);
3201 path_put(&parent_path);
3202 }
3203out3:
8c3ee42e 3204 path_put(&root);
b12cea91 3205out2:
2d8f3038 3206 path_put(&old);
1da177e4 3207out1:
2d8f3038 3208 path_put(&new);
1da177e4 3209out0:
1da177e4 3210 return error;
1da177e4
LT
3211}
3212
3213static void __init init_mount_tree(void)
3214{
3215 struct vfsmount *mnt;
6b3286ed 3216 struct mnt_namespace *ns;
ac748a09 3217 struct path root;
0c55cfc4 3218 struct file_system_type *type;
1da177e4 3219
0c55cfc4
EB
3220 type = get_fs_type("rootfs");
3221 if (!type)
3222 panic("Can't find rootfs type");
3223 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3224 put_filesystem(type);
1da177e4
LT
3225 if (IS_ERR(mnt))
3226 panic("Can't create rootfs");
b3e19d92 3227
3b22edc5
TM
3228 ns = create_mnt_ns(mnt);
3229 if (IS_ERR(ns))
1da177e4 3230 panic("Can't allocate initial namespace");
6b3286ed
KK
3231
3232 init_task.nsproxy->mnt_ns = ns;
3233 get_mnt_ns(ns);
3234
be08d6d2
AV
3235 root.mnt = mnt;
3236 root.dentry = mnt->mnt_root;
da362b09 3237 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3238
3239 set_fs_pwd(current->fs, &root);
3240 set_fs_root(current->fs, &root);
1da177e4
LT
3241}
3242
74bf17cf 3243void __init mnt_init(void)
1da177e4 3244{
15a67dd8 3245 int err;
1da177e4 3246
7d6fec45 3247 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3248 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3249
0818bf27 3250 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3251 sizeof(struct hlist_head),
0818bf27 3252 mhash_entries, 19,
3d375d78 3253 HASH_ZERO,
0818bf27
AV
3254 &m_hash_shift, &m_hash_mask, 0, 0);
3255 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3256 sizeof(struct hlist_head),
3257 mphash_entries, 19,
3d375d78 3258 HASH_ZERO,
0818bf27 3259 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3260
84d17192 3261 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3262 panic("Failed to allocate mount hash table\n");
3263
4b93dc9b
TH
3264 kernfs_init();
3265
15a67dd8
RD
3266 err = sysfs_init();
3267 if (err)
3268 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3269 __func__, err);
00d26666
GKH
3270 fs_kobj = kobject_create_and_add("fs", NULL);
3271 if (!fs_kobj)
8e24eea7 3272 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3273 init_rootfs();
3274 init_mount_tree();
3275}
3276
616511d0 3277void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3278{
d498b25a 3279 if (!atomic_dec_and_test(&ns->count))
616511d0 3280 return;
7b00ed6f 3281 drop_collected_mounts(&ns->root->mnt);
771b1371 3282 free_mnt_ns(ns);
1da177e4 3283}
9d412a43
AV
3284
3285struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3286{
423e0ab0 3287 struct vfsmount *mnt;
e462ec50 3288 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3289 if (!IS_ERR(mnt)) {
3290 /*
3291 * it is a longterm mount, don't release mnt until
3292 * we unmount before file sys is unregistered
3293 */
f7a99c5b 3294 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3295 }
3296 return mnt;
9d412a43
AV
3297}
3298EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3299
3300void kern_unmount(struct vfsmount *mnt)
3301{
3302 /* release long term mount so mount point can be released */
3303 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3304 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3305 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3306 mntput(mnt);
3307 }
3308}
3309EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3310
3311bool our_mnt(struct vfsmount *mnt)
3312{
143c8c91 3313 return check_mnt(real_mount(mnt));
02125a82 3314}
8823c079 3315
3151527e
EB
3316bool current_chrooted(void)
3317{
3318 /* Does the current process have a non-standard root */
3319 struct path ns_root;
3320 struct path fs_root;
3321 bool chrooted;
3322
3323 /* Find the namespace root */
3324 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3325 ns_root.dentry = ns_root.mnt->mnt_root;
3326 path_get(&ns_root);
3327 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3328 ;
3329
3330 get_fs_root(current->fs, &fs_root);
3331
3332 chrooted = !path_equal(&fs_root, &ns_root);
3333
3334 path_put(&fs_root);
3335 path_put(&ns_root);
3336
3337 return chrooted;
3338}
3339
8654df4e
EB
3340static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3341 int *new_mnt_flags)
87a8ebd6 3342{
8c6cf9cc 3343 int new_flags = *new_mnt_flags;
87a8ebd6 3344 struct mount *mnt;
e51db735 3345 bool visible = false;
87a8ebd6 3346
44bb4385 3347 down_read(&namespace_sem);
87a8ebd6 3348 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3349 struct mount *child;
77b1a97d
EB
3350 int mnt_flags;
3351
8654df4e 3352 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3353 continue;
3354
7e96c1b0
EB
3355 /* This mount is not fully visible if it's root directory
3356 * is not the root directory of the filesystem.
3357 */
3358 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3359 continue;
3360
a1935c17 3361 /* A local view of the mount flags */
77b1a97d 3362 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3363
695e9df0 3364 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3365 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3366 mnt_flags |= MNT_LOCK_READONLY;
3367
8c6cf9cc
EB
3368 /* Verify the mount flags are equal to or more permissive
3369 * than the proposed new mount.
3370 */
77b1a97d 3371 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3372 !(new_flags & MNT_READONLY))
3373 continue;
77b1a97d
EB
3374 if ((mnt_flags & MNT_LOCK_ATIME) &&
3375 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3376 continue;
3377
ceeb0e5d
EB
3378 /* This mount is not fully visible if there are any
3379 * locked child mounts that cover anything except for
3380 * empty directories.
e51db735
EB
3381 */
3382 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3383 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3384 /* Only worry about locked mounts */
d71ed6c9 3385 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3386 continue;
7236c85e
EB
3387 /* Is the directory permanetly empty? */
3388 if (!is_empty_dir_inode(inode))
e51db735 3389 goto next;
87a8ebd6 3390 }
8c6cf9cc 3391 /* Preserve the locked attributes */
77b1a97d 3392 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3393 MNT_LOCK_ATIME);
e51db735
EB
3394 visible = true;
3395 goto found;
3396 next: ;
87a8ebd6 3397 }
e51db735 3398found:
44bb4385 3399 up_read(&namespace_sem);
e51db735 3400 return visible;
87a8ebd6
EB
3401}
3402
8654df4e
EB
3403static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3404{
a1935c17 3405 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3406 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3407 unsigned long s_iflags;
3408
3409 if (ns->user_ns == &init_user_ns)
3410 return false;
3411
3412 /* Can this filesystem be too revealing? */
3413 s_iflags = mnt->mnt_sb->s_iflags;
3414 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3415 return false;
3416
a1935c17
EB
3417 if ((s_iflags & required_iflags) != required_iflags) {
3418 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3419 required_iflags);
3420 return true;
3421 }
3422
8654df4e
EB
3423 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3424}
3425
380cf5ba
AL
3426bool mnt_may_suid(struct vfsmount *mnt)
3427{
3428 /*
3429 * Foreign mounts (accessed via fchdir or through /proc
3430 * symlinks) are always treated as if they are nosuid. This
3431 * prevents namespaces from trusting potentially unsafe
3432 * suid/sgid bits, file caps, or security labels that originate
3433 * in other namespaces.
3434 */
3435 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3436 current_in_userns(mnt->mnt_sb->s_user_ns);
3437}
3438
64964528 3439static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3440{
58be2825 3441 struct ns_common *ns = NULL;
8823c079
EB
3442 struct nsproxy *nsproxy;
3443
728dba3a
EB
3444 task_lock(task);
3445 nsproxy = task->nsproxy;
8823c079 3446 if (nsproxy) {
58be2825
AV
3447 ns = &nsproxy->mnt_ns->ns;
3448 get_mnt_ns(to_mnt_ns(ns));
8823c079 3449 }
728dba3a 3450 task_unlock(task);
8823c079
EB
3451
3452 return ns;
3453}
3454
64964528 3455static void mntns_put(struct ns_common *ns)
8823c079 3456{
58be2825 3457 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3458}
3459
64964528 3460static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3461{
3462 struct fs_struct *fs = current->fs;
4f757f3c 3463 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3464 struct path root;
4f757f3c 3465 int err;
8823c079 3466
0c55cfc4 3467 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3468 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3469 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3470 return -EPERM;
8823c079
EB
3471
3472 if (fs->users != 1)
3473 return -EINVAL;
3474
3475 get_mnt_ns(mnt_ns);
4f757f3c 3476 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3477 nsproxy->mnt_ns = mnt_ns;
3478
3479 /* Find the root */
4f757f3c
AV
3480 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3481 "/", LOOKUP_DOWN, &root);
3482 if (err) {
3483 /* revert to old namespace */
3484 nsproxy->mnt_ns = old_mnt_ns;
3485 put_mnt_ns(mnt_ns);
3486 return err;
3487 }
8823c079 3488
4068367c
AV
3489 put_mnt_ns(old_mnt_ns);
3490
8823c079
EB
3491 /* Update the pwd and root */
3492 set_fs_pwd(fs, &root);
3493 set_fs_root(fs, &root);
3494
3495 path_put(&root);
3496 return 0;
3497}
3498
bcac25a5
AV
3499static struct user_namespace *mntns_owner(struct ns_common *ns)
3500{
3501 return to_mnt_ns(ns)->user_ns;
3502}
3503
8823c079
EB
3504const struct proc_ns_operations mntns_operations = {
3505 .name = "mnt",
3506 .type = CLONE_NEWNS,
3507 .get = mntns_get,
3508 .put = mntns_put,
3509 .install = mntns_install,
bcac25a5 3510 .owner = mntns_owner,
8823c079 3511};