]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/namespace.c
mfd: intel-lpss: Remove D3cold delay
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
bc98a42c 278 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
6aa7de05 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
7c6893e3 434 * mnt_want_write_file_path - get write access to a file's mount
eb04c282
JK
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
7c6893e3
MS
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
eb04c282 444 */
7c6893e3 445int mnt_want_write_file_path(struct file *file)
eb04c282
JK
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
7c6893e3
MS
455
456static inline int may_write_real(struct file *file)
457{
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
954c736f
AG
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
7c6893e3
MS
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478}
479
480/**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491int mnt_want_write_file(struct file *file)
492{
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503}
96029c4e 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
8366025e 506/**
eb04c282 507 * __mnt_drop_write - give up write access to a mount
8366025e
DH
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
eb04c282 512 * __mnt_want_write() call above.
8366025e 513 */
eb04c282 514void __mnt_drop_write(struct vfsmount *mnt)
8366025e 515{
d3ef3d73 516 preempt_disable();
83adc753 517 mnt_dec_writers(real_mount(mnt));
d3ef3d73 518 preempt_enable();
8366025e 519}
c088e31d 520EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
521
522/**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530void mnt_drop_write(struct vfsmount *mnt)
531{
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534}
8366025e
DH
535EXPORT_SYMBOL_GPL(mnt_drop_write);
536
eb04c282
JK
537void __mnt_drop_write_file(struct file *file)
538{
539 __mnt_drop_write(file->f_path.mnt);
540}
541
7c6893e3 542void mnt_drop_write_file_path(struct file *file)
2a79f17e
AV
543{
544 mnt_drop_write(file->f_path.mnt);
545}
7c6893e3
MS
546
547void mnt_drop_write_file(struct file *file)
548{
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551}
2a79f17e
AV
552EXPORT_SYMBOL(mnt_drop_write_file);
553
83adc753 554static int mnt_make_readonly(struct mount *mnt)
8366025e 555{
3d733633
DH
556 int ret = 0;
557
719ea2fb 558 lock_mount_hash();
83adc753 559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 560 /*
d3ef3d73 561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
3d733633 563 */
d3ef3d73 564 smp_mb();
565
3d733633 566 /*
d3ef3d73 567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
3d733633 581 */
c6653a83 582 if (mnt_get_writers(mnt) > 0)
d3ef3d73 583 ret = -EBUSY;
584 else
83adc753 585 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
83adc753 591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 592 unlock_mount_hash();
3d733633 593 return ret;
8366025e 594}
8366025e 595
83adc753 596static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 597{
719ea2fb 598 lock_mount_hash();
83adc753 599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 600 unlock_mount_hash();
2e4b7fcd
DH
601}
602
4ed5e82f
MS
603int sb_prepare_remount_readonly(struct super_block *sb)
604{
605 struct mount *mnt;
606 int err = 0;
607
8e8b8796
MS
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
719ea2fb 612 lock_mount_hash();
4ed5e82f
MS
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
8e8b8796
MS
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
4ed5e82f
MS
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
719ea2fb 634 unlock_mount_hash();
4ed5e82f
MS
635
636 return err;
637}
638
b105e270 639static void free_vfsmnt(struct mount *mnt)
1da177e4 640{
fcc139ae 641 kfree_const(mnt->mnt_devname);
d3ef3d73 642#ifdef CONFIG_SMP
68e8a9fe 643 free_percpu(mnt->mnt_pcp);
d3ef3d73 644#endif
b105e270 645 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
646}
647
8ffcb32e
DH
648static void delayed_free_vfsmnt(struct rcu_head *head)
649{
650 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
651}
652
48a066e7 653/* call under rcu_read_lock */
294d71ff 654int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
655{
656 struct mount *mnt;
657 if (read_seqretry(&mount_lock, seq))
294d71ff 658 return 1;
48a066e7 659 if (bastard == NULL)
294d71ff 660 return 0;
48a066e7
AV
661 mnt = real_mount(bastard);
662 mnt_add_count(mnt, 1);
e615efe0 663 smp_mb(); // see mntput_no_expire()
48a066e7 664 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 665 return 0;
48a066e7
AV
666 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
667 mnt_add_count(mnt, -1);
294d71ff
AV
668 return 1;
669 }
e615efe0
AV
670 lock_mount_hash();
671 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
672 mnt_add_count(mnt, -1);
673 unlock_mount_hash();
674 return 1;
675 }
676 unlock_mount_hash();
677 /* caller will mntput() */
294d71ff
AV
678 return -1;
679}
680
681/* call under rcu_read_lock */
682bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
683{
684 int res = __legitimize_mnt(bastard, seq);
685 if (likely(!res))
686 return true;
687 if (unlikely(res < 0)) {
688 rcu_read_unlock();
689 mntput(bastard);
690 rcu_read_lock();
48a066e7 691 }
48a066e7
AV
692 return false;
693}
694
1da177e4 695/*
474279dc 696 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 697 * call under rcu_read_lock()
1da177e4 698 */
474279dc 699struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 700{
38129a13 701 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
702 struct mount *p;
703
38129a13 704 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
705 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
706 return p;
707 return NULL;
708}
709
a05964f3 710/*
f015f126
DH
711 * lookup_mnt - Return the first child mount mounted at path
712 *
713 * "First" means first mounted chronologically. If you create the
714 * following mounts:
715 *
716 * mount /dev/sda1 /mnt
717 * mount /dev/sda2 /mnt
718 * mount /dev/sda3 /mnt
719 *
720 * Then lookup_mnt() on the base /mnt dentry in the root mount will
721 * return successively the root dentry and vfsmount of /dev/sda1, then
722 * /dev/sda2, then /dev/sda3, then NULL.
723 *
724 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 725 */
ca71cf71 726struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 727{
c7105365 728 struct mount *child_mnt;
48a066e7
AV
729 struct vfsmount *m;
730 unsigned seq;
99b7db7b 731
48a066e7
AV
732 rcu_read_lock();
733 do {
734 seq = read_seqbegin(&mount_lock);
735 child_mnt = __lookup_mnt(path->mnt, path->dentry);
736 m = child_mnt ? &child_mnt->mnt : NULL;
737 } while (!legitimize_mnt(m, seq));
738 rcu_read_unlock();
739 return m;
a05964f3
RP
740}
741
7af1364f
EB
742/*
743 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
744 * current mount namespace.
745 *
746 * The common case is dentries are not mountpoints at all and that
747 * test is handled inline. For the slow case when we are actually
748 * dealing with a mountpoint of some kind, walk through all of the
749 * mounts in the current mount namespace and test to see if the dentry
750 * is a mountpoint.
751 *
752 * The mount_hashtable is not usable in the context because we
753 * need to identify all mounts that may be in the current mount
754 * namespace not just a mount that happens to have some specified
755 * parent mount.
756 */
757bool __is_local_mountpoint(struct dentry *dentry)
758{
759 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
760 struct mount *mnt;
761 bool is_covered = false;
762
763 if (!d_mountpoint(dentry))
764 goto out;
765
766 down_read(&namespace_sem);
767 list_for_each_entry(mnt, &ns->list, mnt_list) {
768 is_covered = (mnt->mnt_mountpoint == dentry);
769 if (is_covered)
770 break;
771 }
772 up_read(&namespace_sem);
773out:
774 return is_covered;
775}
776
e2dfa935 777static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 778{
0818bf27 779 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
780 struct mountpoint *mp;
781
0818bf27 782 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 783 if (mp->m_dentry == dentry) {
84d17192
AV
784 mp->m_count++;
785 return mp;
786 }
787 }
e2dfa935
EB
788 return NULL;
789}
790
3895dbf8 791static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 792{
3895dbf8 793 struct mountpoint *mp, *new = NULL;
e2dfa935 794 int ret;
84d17192 795
3895dbf8 796 if (d_mountpoint(dentry)) {
56f8f830
BC
797 /* might be worth a WARN_ON() */
798 if (d_unlinked(dentry))
799 return ERR_PTR(-ENOENT);
3895dbf8
EB
800mountpoint:
801 read_seqlock_excl(&mount_lock);
802 mp = lookup_mountpoint(dentry);
803 read_sequnlock_excl(&mount_lock);
804 if (mp)
805 goto done;
806 }
807
808 if (!new)
809 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
810 if (!new)
84d17192
AV
811 return ERR_PTR(-ENOMEM);
812
3895dbf8
EB
813
814 /* Exactly one processes may set d_mounted */
eed81007 815 ret = d_set_mounted(dentry);
eed81007 816
3895dbf8
EB
817 /* Someone else set d_mounted? */
818 if (ret == -EBUSY)
819 goto mountpoint;
820
821 /* The dentry is not available as a mountpoint? */
822 mp = ERR_PTR(ret);
823 if (ret)
824 goto done;
825
826 /* Add the new mountpoint to the hash table */
827 read_seqlock_excl(&mount_lock);
828 new->m_dentry = dentry;
829 new->m_count = 1;
830 hlist_add_head(&new->m_hash, mp_hash(dentry));
831 INIT_HLIST_HEAD(&new->m_list);
832 read_sequnlock_excl(&mount_lock);
833
834 mp = new;
835 new = NULL;
836done:
837 kfree(new);
84d17192
AV
838 return mp;
839}
840
841static void put_mountpoint(struct mountpoint *mp)
842{
843 if (!--mp->m_count) {
844 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 845 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
846 spin_lock(&dentry->d_lock);
847 dentry->d_flags &= ~DCACHE_MOUNTED;
848 spin_unlock(&dentry->d_lock);
0818bf27 849 hlist_del(&mp->m_hash);
84d17192
AV
850 kfree(mp);
851 }
852}
853
143c8c91 854static inline int check_mnt(struct mount *mnt)
1da177e4 855{
6b3286ed 856 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
857}
858
c088e31d
SF
859/* for aufs, CONFIG_AUFS_BR_FUSE */
860int is_current_mnt_ns(struct vfsmount *mnt)
861{
862 return check_mnt(real_mount(mnt));
863}
864EXPORT_SYMBOL_GPL(is_current_mnt_ns);
865
99b7db7b
NP
866/*
867 * vfsmount lock must be held for write
868 */
6b3286ed 869static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
870{
871 if (ns) {
872 ns->event = ++event;
873 wake_up_interruptible(&ns->poll);
874 }
875}
876
99b7db7b
NP
877/*
878 * vfsmount lock must be held for write
879 */
6b3286ed 880static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
881{
882 if (ns && ns->event != event) {
883 ns->event = event;
884 wake_up_interruptible(&ns->poll);
885 }
886}
887
99b7db7b
NP
888/*
889 * vfsmount lock must be held for write
890 */
7bdb11de 891static void unhash_mnt(struct mount *mnt)
419148da 892{
0714a533 893 mnt->mnt_parent = mnt;
a73324da 894 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 895 list_del_init(&mnt->mnt_child);
38129a13 896 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 897 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
898 put_mountpoint(mnt->mnt_mp);
899 mnt->mnt_mp = NULL;
1da177e4
LT
900}
901
7bdb11de
EB
902/*
903 * vfsmount lock must be held for write
904 */
905static void detach_mnt(struct mount *mnt, struct path *old_path)
906{
907 old_path->dentry = mnt->mnt_mountpoint;
908 old_path->mnt = &mnt->mnt_parent->mnt;
909 unhash_mnt(mnt);
910}
911
6a46c573
EB
912/*
913 * vfsmount lock must be held for write
914 */
915static void umount_mnt(struct mount *mnt)
916{
917 /* old mountpoint will be dropped when we can do that */
918 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
919 unhash_mnt(mnt);
920}
921
99b7db7b
NP
922/*
923 * vfsmount lock must be held for write
924 */
84d17192
AV
925void mnt_set_mountpoint(struct mount *mnt,
926 struct mountpoint *mp,
44d964d6 927 struct mount *child_mnt)
b90fa9ae 928{
84d17192 929 mp->m_count++;
3a2393d7 930 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 931 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 932 child_mnt->mnt_parent = mnt;
84d17192 933 child_mnt->mnt_mp = mp;
0a5eb7c8 934 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
935}
936
1064f874
EB
937static void __attach_mnt(struct mount *mnt, struct mount *parent)
938{
939 hlist_add_head_rcu(&mnt->mnt_hash,
940 m_hash(&parent->mnt, mnt->mnt_mountpoint));
941 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
942}
943
99b7db7b
NP
944/*
945 * vfsmount lock must be held for write
946 */
84d17192
AV
947static void attach_mnt(struct mount *mnt,
948 struct mount *parent,
949 struct mountpoint *mp)
1da177e4 950{
84d17192 951 mnt_set_mountpoint(parent, mp, mnt);
1064f874 952 __attach_mnt(mnt, parent);
b90fa9ae
RP
953}
954
1064f874 955void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 956{
1064f874
EB
957 struct mountpoint *old_mp = mnt->mnt_mp;
958 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
959 struct mount *old_parent = mnt->mnt_parent;
960
961 list_del_init(&mnt->mnt_child);
962 hlist_del_init(&mnt->mnt_mp_list);
963 hlist_del_init_rcu(&mnt->mnt_hash);
964
965 attach_mnt(mnt, parent, mp);
966
967 put_mountpoint(old_mp);
968
969 /*
970 * Safely avoid even the suggestion this code might sleep or
971 * lock the mount hash by taking advantage of the knowledge that
972 * mnt_change_mountpoint will not release the final reference
973 * to a mountpoint.
974 *
975 * During mounting, the mount passed in as the parent mount will
976 * continue to use the old mountpoint and during unmounting, the
977 * old mountpoint will continue to exist until namespace_unlock,
978 * which happens well after mnt_change_mountpoint.
979 */
980 spin_lock(&old_mountpoint->d_lock);
981 old_mountpoint->d_lockref.count--;
982 spin_unlock(&old_mountpoint->d_lock);
983
984 mnt_add_count(old_parent, -1);
12a5b529
AV
985}
986
b90fa9ae 987/*
99b7db7b 988 * vfsmount lock must be held for write
b90fa9ae 989 */
1064f874 990static void commit_tree(struct mount *mnt)
b90fa9ae 991{
0714a533 992 struct mount *parent = mnt->mnt_parent;
83adc753 993 struct mount *m;
b90fa9ae 994 LIST_HEAD(head);
143c8c91 995 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 996
0714a533 997 BUG_ON(parent == mnt);
b90fa9ae 998
1a4eeaf2 999 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 1000 list_for_each_entry(m, &head, mnt_list)
143c8c91 1001 m->mnt_ns = n;
f03c6599 1002
b90fa9ae
RP
1003 list_splice(&head, n->list.prev);
1004
d2921684
EB
1005 n->mounts += n->pending_mounts;
1006 n->pending_mounts = 0;
1007
1064f874 1008 __attach_mnt(mnt, parent);
6b3286ed 1009 touch_mnt_namespace(n);
1da177e4
LT
1010}
1011
909b0a88 1012static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 1013{
6b41d536
AV
1014 struct list_head *next = p->mnt_mounts.next;
1015 if (next == &p->mnt_mounts) {
1da177e4 1016 while (1) {
909b0a88 1017 if (p == root)
1da177e4 1018 return NULL;
6b41d536
AV
1019 next = p->mnt_child.next;
1020 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 1021 break;
0714a533 1022 p = p->mnt_parent;
1da177e4
LT
1023 }
1024 }
6b41d536 1025 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
1026}
1027
315fc83e 1028static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 1029{
6b41d536
AV
1030 struct list_head *prev = p->mnt_mounts.prev;
1031 while (prev != &p->mnt_mounts) {
1032 p = list_entry(prev, struct mount, mnt_child);
1033 prev = p->mnt_mounts.prev;
9676f0c6
RP
1034 }
1035 return p;
1036}
1037
9d412a43
AV
1038struct vfsmount *
1039vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1040{
b105e270 1041 struct mount *mnt;
9d412a43
AV
1042 struct dentry *root;
1043
1044 if (!type)
1045 return ERR_PTR(-ENODEV);
1046
1047 mnt = alloc_vfsmnt(name);
1048 if (!mnt)
1049 return ERR_PTR(-ENOMEM);
1050
e462ec50 1051 if (flags & SB_KERNMOUNT)
b105e270 1052 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
1053
1054 root = mount_fs(type, flags, name, data);
1055 if (IS_ERR(root)) {
8ffcb32e 1056 mnt_free_id(mnt);
9d412a43
AV
1057 free_vfsmnt(mnt);
1058 return ERR_CAST(root);
1059 }
1060
b105e270
AV
1061 mnt->mnt.mnt_root = root;
1062 mnt->mnt.mnt_sb = root->d_sb;
a73324da 1063 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1064 mnt->mnt_parent = mnt;
719ea2fb 1065 lock_mount_hash();
39f7c4db 1066 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 1067 unlock_mount_hash();
b105e270 1068 return &mnt->mnt;
9d412a43
AV
1069}
1070EXPORT_SYMBOL_GPL(vfs_kern_mount);
1071
93faccbb
EB
1072struct vfsmount *
1073vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1074 const char *name, void *data)
1075{
1076 /* Until it is worked out how to pass the user namespace
1077 * through from the parent mount to the submount don't support
1078 * unprivileged mounts with submounts.
1079 */
1080 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1081 return ERR_PTR(-EPERM);
1082
e462ec50 1083 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1084}
1085EXPORT_SYMBOL_GPL(vfs_submount);
1086
87129cc0 1087static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1088 int flag)
1da177e4 1089{
87129cc0 1090 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1091 struct mount *mnt;
1092 int err;
1da177e4 1093
be34d1a3
DH
1094 mnt = alloc_vfsmnt(old->mnt_devname);
1095 if (!mnt)
1096 return ERR_PTR(-ENOMEM);
719f5d7f 1097
7a472ef4 1098 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1099 mnt->mnt_group_id = 0; /* not a peer of original */
1100 else
1101 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1102
be34d1a3
DH
1103 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1104 err = mnt_alloc_group_id(mnt);
1105 if (err)
1106 goto out_free;
1da177e4 1107 }
be34d1a3 1108
5759c7e2
AV
1109 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1110 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1111 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1112 if (flag & CL_UNPRIVILEGED) {
1113 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1114
1115 if (mnt->mnt.mnt_flags & MNT_READONLY)
1116 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1117
1118 if (mnt->mnt.mnt_flags & MNT_NODEV)
1119 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1120
1121 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1122 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1123
1124 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1125 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1126 }
132c94e3 1127
5ff9d8a6 1128 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1129 if ((flag & CL_UNPRIVILEGED) &&
1130 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1131 mnt->mnt.mnt_flags |= MNT_LOCKED;
1132
be34d1a3
DH
1133 atomic_inc(&sb->s_active);
1134 mnt->mnt.mnt_sb = sb;
1135 mnt->mnt.mnt_root = dget(root);
1136 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1137 mnt->mnt_parent = mnt;
719ea2fb 1138 lock_mount_hash();
be34d1a3 1139 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1140 unlock_mount_hash();
be34d1a3 1141
7a472ef4
EB
1142 if ((flag & CL_SLAVE) ||
1143 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1144 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1145 mnt->mnt_master = old;
1146 CLEAR_MNT_SHARED(mnt);
1147 } else if (!(flag & CL_PRIVATE)) {
1148 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1149 list_add(&mnt->mnt_share, &old->mnt_share);
1150 if (IS_MNT_SLAVE(old))
1151 list_add(&mnt->mnt_slave, &old->mnt_slave);
1152 mnt->mnt_master = old->mnt_master;
5235d448
AV
1153 } else {
1154 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1155 }
1156 if (flag & CL_MAKE_SHARED)
1157 set_mnt_shared(mnt);
1158
1159 /* stick the duplicate mount on the same expiry list
1160 * as the original if that was on one */
1161 if (flag & CL_EXPIRE) {
1162 if (!list_empty(&old->mnt_expire))
1163 list_add(&mnt->mnt_expire, &old->mnt_expire);
1164 }
1165
cb338d06 1166 return mnt;
719f5d7f
MS
1167
1168 out_free:
8ffcb32e 1169 mnt_free_id(mnt);
719f5d7f 1170 free_vfsmnt(mnt);
be34d1a3 1171 return ERR_PTR(err);
1da177e4
LT
1172}
1173
9ea459e1
AV
1174static void cleanup_mnt(struct mount *mnt)
1175{
1176 /*
1177 * This probably indicates that somebody messed
1178 * up a mnt_want/drop_write() pair. If this
1179 * happens, the filesystem was probably unable
1180 * to make r/w->r/o transitions.
1181 */
1182 /*
1183 * The locking used to deal with mnt_count decrement provides barriers,
1184 * so mnt_get_writers() below is safe.
1185 */
1186 WARN_ON(mnt_get_writers(mnt));
1187 if (unlikely(mnt->mnt_pins.first))
1188 mnt_pin_kill(mnt);
1189 fsnotify_vfsmount_delete(&mnt->mnt);
1190 dput(mnt->mnt.mnt_root);
1191 deactivate_super(mnt->mnt.mnt_sb);
1192 mnt_free_id(mnt);
1193 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1194}
1195
1196static void __cleanup_mnt(struct rcu_head *head)
1197{
1198 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1199}
1200
1201static LLIST_HEAD(delayed_mntput_list);
1202static void delayed_mntput(struct work_struct *unused)
1203{
1204 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1205 struct mount *m, *t;
9ea459e1 1206
29785735
BP
1207 llist_for_each_entry_safe(m, t, node, mnt_llist)
1208 cleanup_mnt(m);
9ea459e1
AV
1209}
1210static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1211
900148dc 1212static void mntput_no_expire(struct mount *mnt)
b3e19d92 1213{
48a066e7 1214 rcu_read_lock();
31be12af
AV
1215 if (likely(READ_ONCE(mnt->mnt_ns))) {
1216 /*
1217 * Since we don't do lock_mount_hash() here,
1218 * ->mnt_ns can change under us. However, if it's
1219 * non-NULL, then there's a reference that won't
1220 * be dropped until after an RCU delay done after
1221 * turning ->mnt_ns NULL. So if we observe it
1222 * non-NULL under rcu_read_lock(), the reference
1223 * we are dropping is not the final one.
1224 */
1225 mnt_add_count(mnt, -1);
48a066e7 1226 rcu_read_unlock();
f03c6599 1227 return;
b3e19d92 1228 }
719ea2fb 1229 lock_mount_hash();
e615efe0
AV
1230 /*
1231 * make sure that if __legitimize_mnt() has not seen us grab
1232 * mount_lock, we'll see their refcount increment here.
1233 */
1234 smp_mb();
31be12af 1235 mnt_add_count(mnt, -1);
b3e19d92 1236 if (mnt_get_count(mnt)) {
48a066e7 1237 rcu_read_unlock();
719ea2fb 1238 unlock_mount_hash();
99b7db7b
NP
1239 return;
1240 }
48a066e7
AV
1241 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1242 rcu_read_unlock();
1243 unlock_mount_hash();
1244 return;
1245 }
1246 mnt->mnt.mnt_flags |= MNT_DOOMED;
1247 rcu_read_unlock();
962830df 1248
39f7c4db 1249 list_del(&mnt->mnt_instance);
ce07d891
EB
1250
1251 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1252 struct mount *p, *tmp;
1253 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1254 umount_mnt(p);
1255 }
1256 }
719ea2fb 1257 unlock_mount_hash();
649a795a 1258
9ea459e1
AV
1259 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1260 struct task_struct *task = current;
1261 if (likely(!(task->flags & PF_KTHREAD))) {
1262 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1263 if (!task_work_add(task, &mnt->mnt_rcu, true))
1264 return;
1265 }
1266 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1267 schedule_delayed_work(&delayed_mntput_work, 1);
1268 return;
1269 }
1270 cleanup_mnt(mnt);
b3e19d92 1271}
b3e19d92
NP
1272
1273void mntput(struct vfsmount *mnt)
1274{
1275 if (mnt) {
863d684f 1276 struct mount *m = real_mount(mnt);
b3e19d92 1277 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1278 if (unlikely(m->mnt_expiry_mark))
1279 m->mnt_expiry_mark = 0;
1280 mntput_no_expire(m);
b3e19d92
NP
1281 }
1282}
1283EXPORT_SYMBOL(mntput);
1284
1285struct vfsmount *mntget(struct vfsmount *mnt)
1286{
1287 if (mnt)
83adc753 1288 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1289 return mnt;
1290}
1291EXPORT_SYMBOL(mntget);
1292
c6609c0a
IK
1293/* path_is_mountpoint() - Check if path is a mount in the current
1294 * namespace.
1295 *
1296 * d_mountpoint() can only be used reliably to establish if a dentry is
1297 * not mounted in any namespace and that common case is handled inline.
1298 * d_mountpoint() isn't aware of the possibility there may be multiple
1299 * mounts using a given dentry in a different namespace. This function
1300 * checks if the passed in path is a mountpoint rather than the dentry
1301 * alone.
1302 */
1303bool path_is_mountpoint(const struct path *path)
1304{
1305 unsigned seq;
1306 bool res;
1307
1308 if (!d_mountpoint(path->dentry))
1309 return false;
1310
1311 rcu_read_lock();
1312 do {
1313 seq = read_seqbegin(&mount_lock);
1314 res = __path_is_mountpoint(path);
1315 } while (read_seqretry(&mount_lock, seq));
1316 rcu_read_unlock();
1317
1318 return res;
1319}
1320EXPORT_SYMBOL(path_is_mountpoint);
1321
ca71cf71 1322struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1323{
3064c356
AV
1324 struct mount *p;
1325 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1326 if (IS_ERR(p))
1327 return ERR_CAST(p);
1328 p->mnt.mnt_flags |= MNT_INTERNAL;
1329 return &p->mnt;
7b7b1ace 1330}
1da177e4 1331
a1a2c409 1332#ifdef CONFIG_PROC_FS
0226f492 1333/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1334static void *m_start(struct seq_file *m, loff_t *pos)
1335{
ede1bf0d 1336 struct proc_mounts *p = m->private;
1da177e4 1337
390c6843 1338 down_read(&namespace_sem);
c7999c36
AV
1339 if (p->cached_event == p->ns->event) {
1340 void *v = p->cached_mount;
1341 if (*pos == p->cached_index)
1342 return v;
1343 if (*pos == p->cached_index + 1) {
1344 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1345 return p->cached_mount = v;
1346 }
1347 }
1348
1349 p->cached_event = p->ns->event;
1350 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1351 p->cached_index = *pos;
1352 return p->cached_mount;
1da177e4
LT
1353}
1354
1355static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1356{
ede1bf0d 1357 struct proc_mounts *p = m->private;
b0765fb8 1358
c7999c36
AV
1359 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1360 p->cached_index = *pos;
1361 return p->cached_mount;
1da177e4
LT
1362}
1363
1364static void m_stop(struct seq_file *m, void *v)
1365{
390c6843 1366 up_read(&namespace_sem);
1da177e4
LT
1367}
1368
0226f492 1369static int m_show(struct seq_file *m, void *v)
2d4d4864 1370{
ede1bf0d 1371 struct proc_mounts *p = m->private;
1a4eeaf2 1372 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1373 return p->show(m, &r->mnt);
1da177e4
LT
1374}
1375
a1a2c409 1376const struct seq_operations mounts_op = {
1da177e4
LT
1377 .start = m_start,
1378 .next = m_next,
1379 .stop = m_stop,
0226f492 1380 .show = m_show,
b4629fe2 1381};
a1a2c409 1382#endif /* CONFIG_PROC_FS */
b4629fe2 1383
1da177e4
LT
1384/**
1385 * may_umount_tree - check if a mount tree is busy
1386 * @mnt: root of mount tree
1387 *
1388 * This is called to check if a tree of mounts has any
1389 * open files, pwds, chroots or sub mounts that are
1390 * busy.
1391 */
909b0a88 1392int may_umount_tree(struct vfsmount *m)
1da177e4 1393{
909b0a88 1394 struct mount *mnt = real_mount(m);
36341f64
RP
1395 int actual_refs = 0;
1396 int minimum_refs = 0;
315fc83e 1397 struct mount *p;
909b0a88 1398 BUG_ON(!m);
1da177e4 1399
b3e19d92 1400 /* write lock needed for mnt_get_count */
719ea2fb 1401 lock_mount_hash();
909b0a88 1402 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1403 actual_refs += mnt_get_count(p);
1da177e4 1404 minimum_refs += 2;
1da177e4 1405 }
719ea2fb 1406 unlock_mount_hash();
1da177e4
LT
1407
1408 if (actual_refs > minimum_refs)
e3474a8e 1409 return 0;
1da177e4 1410
e3474a8e 1411 return 1;
1da177e4
LT
1412}
1413
1414EXPORT_SYMBOL(may_umount_tree);
1415
1416/**
1417 * may_umount - check if a mount point is busy
1418 * @mnt: root of mount
1419 *
1420 * This is called to check if a mount point has any
1421 * open files, pwds, chroots or sub mounts. If the
1422 * mount has sub mounts this will return busy
1423 * regardless of whether the sub mounts are busy.
1424 *
1425 * Doesn't take quota and stuff into account. IOW, in some cases it will
1426 * give false negatives. The main reason why it's here is that we need
1427 * a non-destructive way to look for easily umountable filesystems.
1428 */
1429int may_umount(struct vfsmount *mnt)
1430{
e3474a8e 1431 int ret = 1;
8ad08d8a 1432 down_read(&namespace_sem);
719ea2fb 1433 lock_mount_hash();
1ab59738 1434 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1435 ret = 0;
719ea2fb 1436 unlock_mount_hash();
8ad08d8a 1437 up_read(&namespace_sem);
a05964f3 1438 return ret;
1da177e4
LT
1439}
1440
1441EXPORT_SYMBOL(may_umount);
1442
38129a13 1443static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1444
97216be0 1445static void namespace_unlock(void)
70fbcdf4 1446{
a3b3c562 1447 struct hlist_head head;
97216be0 1448
a3b3c562 1449 hlist_move_list(&unmounted, &head);
97216be0 1450
97216be0
AV
1451 up_write(&namespace_sem);
1452
a3b3c562
EB
1453 if (likely(hlist_empty(&head)))
1454 return;
1455
48a066e7
AV
1456 synchronize_rcu();
1457
87b95ce0 1458 group_pin_kill(&head);
70fbcdf4
RP
1459}
1460
97216be0 1461static inline void namespace_lock(void)
e3197d83 1462{
97216be0 1463 down_write(&namespace_sem);
e3197d83
AV
1464}
1465
e819f152
EB
1466enum umount_tree_flags {
1467 UMOUNT_SYNC = 1,
1468 UMOUNT_PROPAGATE = 2,
e0c9c0af 1469 UMOUNT_CONNECTED = 4,
e819f152 1470};
f2d0a123
EB
1471
1472static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1473{
1474 /* Leaving mounts connected is only valid for lazy umounts */
1475 if (how & UMOUNT_SYNC)
1476 return true;
1477
1478 /* A mount without a parent has nothing to be connected to */
1479 if (!mnt_has_parent(mnt))
1480 return true;
1481
1482 /* Because the reference counting rules change when mounts are
1483 * unmounted and connected, umounted mounts may not be
1484 * connected to mounted mounts.
1485 */
1486 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1487 return true;
1488
1489 /* Has it been requested that the mount remain connected? */
1490 if (how & UMOUNT_CONNECTED)
1491 return false;
1492
1493 /* Is the mount locked such that it needs to remain connected? */
1494 if (IS_MNT_LOCKED(mnt))
1495 return false;
1496
1497 /* By default disconnect the mount */
1498 return true;
1499}
1500
99b7db7b 1501/*
48a066e7 1502 * mount_lock must be held
99b7db7b
NP
1503 * namespace_sem must be held for write
1504 */
e819f152 1505static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1506{
c003b26f 1507 LIST_HEAD(tmp_list);
315fc83e 1508 struct mount *p;
1da177e4 1509
5d88457e
EB
1510 if (how & UMOUNT_PROPAGATE)
1511 propagate_mount_unlock(mnt);
1512
c003b26f 1513 /* Gather the mounts to umount */
590ce4bc
EB
1514 for (p = mnt; p; p = next_mnt(p, mnt)) {
1515 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1516 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1517 }
1da177e4 1518
411a938b 1519 /* Hide the mounts from mnt_mounts */
c003b26f 1520 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1521 list_del_init(&p->mnt_child);
c003b26f 1522 }
88b368f2 1523
c003b26f 1524 /* Add propogated mounts to the tmp_list */
e819f152 1525 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1526 propagate_umount(&tmp_list);
a05964f3 1527
c003b26f 1528 while (!list_empty(&tmp_list)) {
d2921684 1529 struct mnt_namespace *ns;
ce07d891 1530 bool disconnect;
c003b26f 1531 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1532 list_del_init(&p->mnt_expire);
1a4eeaf2 1533 list_del_init(&p->mnt_list);
d2921684
EB
1534 ns = p->mnt_ns;
1535 if (ns) {
1536 ns->mounts--;
1537 __touch_mnt_namespace(ns);
1538 }
143c8c91 1539 p->mnt_ns = NULL;
e819f152 1540 if (how & UMOUNT_SYNC)
48a066e7 1541 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1542
f2d0a123 1543 disconnect = disconnect_mount(p, how);
ce07d891
EB
1544
1545 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1546 disconnect ? &unmounted : NULL);
676da58d 1547 if (mnt_has_parent(p)) {
81b6b061 1548 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1549 if (!disconnect) {
1550 /* Don't forget about p */
1551 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1552 } else {
1553 umount_mnt(p);
1554 }
7c4b93d8 1555 }
0f0afb1d 1556 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1557 }
1558}
1559
b54b9be7 1560static void shrink_submounts(struct mount *mnt);
c35038be 1561
1ab59738 1562static int do_umount(struct mount *mnt, int flags)
1da177e4 1563{
1ab59738 1564 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1565 int retval;
1566
1ab59738 1567 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1568 if (retval)
1569 return retval;
1570
1571 /*
1572 * Allow userspace to request a mountpoint be expired rather than
1573 * unmounting unconditionally. Unmount only happens if:
1574 * (1) the mark is already set (the mark is cleared by mntput())
1575 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1576 */
1577 if (flags & MNT_EXPIRE) {
1ab59738 1578 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1579 flags & (MNT_FORCE | MNT_DETACH))
1580 return -EINVAL;
1581
b3e19d92
NP
1582 /*
1583 * probably don't strictly need the lock here if we examined
1584 * all race cases, but it's a slowpath.
1585 */
719ea2fb 1586 lock_mount_hash();
83adc753 1587 if (mnt_get_count(mnt) != 2) {
719ea2fb 1588 unlock_mount_hash();
1da177e4 1589 return -EBUSY;
b3e19d92 1590 }
719ea2fb 1591 unlock_mount_hash();
1da177e4 1592
863d684f 1593 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1594 return -EAGAIN;
1595 }
1596
1597 /*
1598 * If we may have to abort operations to get out of this
1599 * mount, and they will themselves hold resources we must
1600 * allow the fs to do things. In the Unix tradition of
1601 * 'Gee thats tricky lets do it in userspace' the umount_begin
1602 * might fail to complete on the first run through as other tasks
1603 * must return, and the like. Thats for the mount program to worry
1604 * about for the moment.
1605 */
1606
42faad99 1607 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1608 sb->s_op->umount_begin(sb);
42faad99 1609 }
1da177e4
LT
1610
1611 /*
1612 * No sense to grab the lock for this test, but test itself looks
1613 * somewhat bogus. Suggestions for better replacement?
1614 * Ho-hum... In principle, we might treat that as umount + switch
1615 * to rootfs. GC would eventually take care of the old vfsmount.
1616 * Actually it makes sense, especially if rootfs would contain a
1617 * /reboot - static binary that would close all descriptors and
1618 * call reboot(9). Then init(8) could umount root and exec /reboot.
1619 */
1ab59738 1620 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1621 /*
1622 * Special case for "unmounting" root ...
1623 * we just try to remount it readonly.
1624 */
1db30ec0 1625 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1626 return -EPERM;
1da177e4 1627 down_write(&sb->s_umount);
bc98a42c 1628 if (!sb_rdonly(sb))
e462ec50 1629 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1630 up_write(&sb->s_umount);
1631 return retval;
1632 }
1633
97216be0 1634 namespace_lock();
719ea2fb 1635 lock_mount_hash();
1da177e4 1636
6dd96cc2
EB
1637 /* Recheck MNT_LOCKED with the locks held */
1638 retval = -EINVAL;
1639 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1640 goto out;
1641
1642 event++;
48a066e7 1643 if (flags & MNT_DETACH) {
1a4eeaf2 1644 if (!list_empty(&mnt->mnt_list))
e819f152 1645 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1646 retval = 0;
48a066e7
AV
1647 } else {
1648 shrink_submounts(mnt);
1649 retval = -EBUSY;
1650 if (!propagate_mount_busy(mnt, 2)) {
1651 if (!list_empty(&mnt->mnt_list))
e819f152 1652 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1653 retval = 0;
1654 }
1da177e4 1655 }
6dd96cc2 1656out:
719ea2fb 1657 unlock_mount_hash();
e3197d83 1658 namespace_unlock();
1da177e4
LT
1659 return retval;
1660}
1661
80b5dce8
EB
1662/*
1663 * __detach_mounts - lazily unmount all mounts on the specified dentry
1664 *
1665 * During unlink, rmdir, and d_drop it is possible to loose the path
1666 * to an existing mountpoint, and wind up leaking the mount.
1667 * detach_mounts allows lazily unmounting those mounts instead of
1668 * leaking them.
1669 *
1670 * The caller may hold dentry->d_inode->i_mutex.
1671 */
1672void __detach_mounts(struct dentry *dentry)
1673{
1674 struct mountpoint *mp;
1675 struct mount *mnt;
1676
1677 namespace_lock();
3895dbf8 1678 lock_mount_hash();
80b5dce8 1679 mp = lookup_mountpoint(dentry);
f53e5797 1680 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1681 goto out_unlock;
1682
e06b933e 1683 event++;
80b5dce8
EB
1684 while (!hlist_empty(&mp->m_list)) {
1685 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1686 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1687 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1688 umount_mnt(mnt);
ce07d891 1689 }
e0c9c0af 1690 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1691 }
80b5dce8
EB
1692 put_mountpoint(mp);
1693out_unlock:
3895dbf8 1694 unlock_mount_hash();
80b5dce8
EB
1695 namespace_unlock();
1696}
1697
dd111b31 1698/*
9b40bc90
AV
1699 * Is the caller allowed to modify his namespace?
1700 */
1701static inline bool may_mount(void)
1702{
1703 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1704}
1705
9e8925b6
JL
1706static inline bool may_mandlock(void)
1707{
1708#ifndef CONFIG_MANDATORY_FILE_LOCKING
1709 return false;
1710#endif
95ace754 1711 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1712}
1713
1da177e4
LT
1714/*
1715 * Now umount can handle mount points as well as block devices.
1716 * This is important for filesystems which use unnamed block devices.
1717 *
1718 * We now support a flag for forced unmount like the other 'big iron'
1719 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1720 */
1721
bdc480e3 1722SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1723{
2d8f3038 1724 struct path path;
900148dc 1725 struct mount *mnt;
1da177e4 1726 int retval;
db1f05bb 1727 int lookup_flags = 0;
1da177e4 1728
db1f05bb
MS
1729 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1730 return -EINVAL;
1731
9b40bc90
AV
1732 if (!may_mount())
1733 return -EPERM;
1734
db1f05bb
MS
1735 if (!(flags & UMOUNT_NOFOLLOW))
1736 lookup_flags |= LOOKUP_FOLLOW;
1737
197df04c 1738 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1739 if (retval)
1740 goto out;
900148dc 1741 mnt = real_mount(path.mnt);
1da177e4 1742 retval = -EINVAL;
2d8f3038 1743 if (path.dentry != path.mnt->mnt_root)
1da177e4 1744 goto dput_and_out;
143c8c91 1745 if (!check_mnt(mnt))
1da177e4 1746 goto dput_and_out;
6dd96cc2 1747 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1748 goto dput_and_out;
b2f5d4dc
EB
1749 retval = -EPERM;
1750 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1751 goto dput_and_out;
1da177e4 1752
900148dc 1753 retval = do_umount(mnt, flags);
1da177e4 1754dput_and_out:
429731b1 1755 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1756 dput(path.dentry);
900148dc 1757 mntput_no_expire(mnt);
1da177e4
LT
1758out:
1759 return retval;
1760}
1761
1762#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1763
1764/*
b58fed8b 1765 * The 2.0 compatible umount. No flags.
1da177e4 1766 */
bdc480e3 1767SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1768{
b58fed8b 1769 return sys_umount(name, 0);
1da177e4
LT
1770}
1771
1772#endif
1773
4ce5d2b1 1774static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1775{
4ce5d2b1 1776 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1777 return dentry->d_op == &ns_dentry_operations &&
1778 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1779}
1780
58be2825
AV
1781struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1782{
1783 return container_of(ns, struct mnt_namespace, ns);
1784}
1785
4ce5d2b1
EB
1786static bool mnt_ns_loop(struct dentry *dentry)
1787{
1788 /* Could bind mounting the mount namespace inode cause a
1789 * mount namespace loop?
1790 */
1791 struct mnt_namespace *mnt_ns;
1792 if (!is_mnt_ns_file(dentry))
1793 return false;
1794
f77c8014 1795 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1796 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1797}
1798
87129cc0 1799struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1800 int flag)
1da177e4 1801{
84d17192 1802 struct mount *res, *p, *q, *r, *parent;
1da177e4 1803
4ce5d2b1
EB
1804 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1805 return ERR_PTR(-EINVAL);
1806
1807 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1808 return ERR_PTR(-EINVAL);
9676f0c6 1809
36341f64 1810 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1811 if (IS_ERR(q))
1812 return q;
1813
a73324da 1814 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1815
1816 p = mnt;
6b41d536 1817 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1818 struct mount *s;
7ec02ef1 1819 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1820 continue;
1821
909b0a88 1822 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1823 if (!(flag & CL_COPY_UNBINDABLE) &&
1824 IS_MNT_UNBINDABLE(s)) {
d65e713e
EB
1825 if (s->mnt.mnt_flags & MNT_LOCKED) {
1826 /* Both unbindable and locked. */
1827 q = ERR_PTR(-EPERM);
1828 goto out;
1829 } else {
1830 s = skip_mnt_tree(s);
1831 continue;
1832 }
4ce5d2b1
EB
1833 }
1834 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1835 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1836 s = skip_mnt_tree(s);
1837 continue;
1838 }
0714a533
AV
1839 while (p != s->mnt_parent) {
1840 p = p->mnt_parent;
1841 q = q->mnt_parent;
1da177e4 1842 }
87129cc0 1843 p = s;
84d17192 1844 parent = q;
87129cc0 1845 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1846 if (IS_ERR(q))
1847 goto out;
719ea2fb 1848 lock_mount_hash();
1a4eeaf2 1849 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1850 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1851 unlock_mount_hash();
1da177e4
LT
1852 }
1853 }
1854 return res;
be34d1a3 1855out:
1da177e4 1856 if (res) {
719ea2fb 1857 lock_mount_hash();
e819f152 1858 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1859 unlock_mount_hash();
1da177e4 1860 }
be34d1a3 1861 return q;
1da177e4
LT
1862}
1863
be34d1a3
DH
1864/* Caller should check returned pointer for errors */
1865
ca71cf71 1866struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1867{
cb338d06 1868 struct mount *tree;
97216be0 1869 namespace_lock();
cd4a4017
EB
1870 if (!check_mnt(real_mount(path->mnt)))
1871 tree = ERR_PTR(-EINVAL);
1872 else
1873 tree = copy_tree(real_mount(path->mnt), path->dentry,
1874 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1875 namespace_unlock();
be34d1a3 1876 if (IS_ERR(tree))
52e220d3 1877 return ERR_CAST(tree);
be34d1a3 1878 return &tree->mnt;
8aec0809
AV
1879}
1880
1881void drop_collected_mounts(struct vfsmount *mnt)
1882{
97216be0 1883 namespace_lock();
719ea2fb 1884 lock_mount_hash();
ea4db67d 1885 umount_tree(real_mount(mnt), 0);
719ea2fb 1886 unlock_mount_hash();
3ab6abee 1887 namespace_unlock();
8aec0809
AV
1888}
1889
c771d683
MS
1890/**
1891 * clone_private_mount - create a private clone of a path
1892 *
1893 * This creates a new vfsmount, which will be the clone of @path. The new will
1894 * not be attached anywhere in the namespace and will be private (i.e. changes
1895 * to the originating mount won't be propagated into this).
1896 *
1897 * Release with mntput().
1898 */
ca71cf71 1899struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1900{
1901 struct mount *old_mnt = real_mount(path->mnt);
1902 struct mount *new_mnt;
1903
1904 if (IS_MNT_UNBINDABLE(old_mnt))
1905 return ERR_PTR(-EINVAL);
1906
c771d683 1907 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1908 if (IS_ERR(new_mnt))
1909 return ERR_CAST(new_mnt);
1910
1911 return &new_mnt->mnt;
1912}
1913EXPORT_SYMBOL_GPL(clone_private_mount);
1914
1f707137
AV
1915int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1916 struct vfsmount *root)
1917{
1a4eeaf2 1918 struct mount *mnt;
1f707137
AV
1919 int res = f(root, arg);
1920 if (res)
1921 return res;
1a4eeaf2
AV
1922 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1923 res = f(&mnt->mnt, arg);
1f707137
AV
1924 if (res)
1925 return res;
1926 }
1927 return 0;
1928}
c088e31d 1929EXPORT_SYMBOL_GPL(iterate_mounts);
1f707137 1930
4b8b21f4 1931static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1932{
315fc83e 1933 struct mount *p;
719f5d7f 1934
909b0a88 1935 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1936 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1937 mnt_release_group_id(p);
719f5d7f
MS
1938 }
1939}
1940
4b8b21f4 1941static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1942{
315fc83e 1943 struct mount *p;
719f5d7f 1944
909b0a88 1945 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1946 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1947 int err = mnt_alloc_group_id(p);
719f5d7f 1948 if (err) {
4b8b21f4 1949 cleanup_group_ids(mnt, p);
719f5d7f
MS
1950 return err;
1951 }
1952 }
1953 }
1954
1955 return 0;
1956}
1957
d2921684
EB
1958int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1959{
1960 unsigned int max = READ_ONCE(sysctl_mount_max);
1961 unsigned int mounts = 0, old, pending, sum;
1962 struct mount *p;
1963
1964 for (p = mnt; p; p = next_mnt(p, mnt))
1965 mounts++;
1966
1967 old = ns->mounts;
1968 pending = ns->pending_mounts;
1969 sum = old + pending;
1970 if ((old > sum) ||
1971 (pending > sum) ||
1972 (max < sum) ||
1973 (mounts > (max - sum)))
1974 return -ENOSPC;
1975
1976 ns->pending_mounts = pending + mounts;
1977 return 0;
1978}
1979
b90fa9ae
RP
1980/*
1981 * @source_mnt : mount tree to be attached
21444403
RP
1982 * @nd : place the mount tree @source_mnt is attached
1983 * @parent_nd : if non-null, detach the source_mnt from its parent and
1984 * store the parent mount and mountpoint dentry.
1985 * (done when source_mnt is moved)
b90fa9ae
RP
1986 *
1987 * NOTE: in the table below explains the semantics when a source mount
1988 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1989 * ---------------------------------------------------------------------------
1990 * | BIND MOUNT OPERATION |
1991 * |**************************************************************************
1992 * | source-->| shared | private | slave | unbindable |
1993 * | dest | | | | |
1994 * | | | | | | |
1995 * | v | | | | |
1996 * |**************************************************************************
1997 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1998 * | | | | | |
1999 * |non-shared| shared (+) | private | slave (*) | invalid |
2000 * ***************************************************************************
b90fa9ae
RP
2001 * A bind operation clones the source mount and mounts the clone on the
2002 * destination mount.
2003 *
2004 * (++) the cloned mount is propagated to all the mounts in the propagation
2005 * tree of the destination mount and the cloned mount is added to
2006 * the peer group of the source mount.
2007 * (+) the cloned mount is created under the destination mount and is marked
2008 * as shared. The cloned mount is added to the peer group of the source
2009 * mount.
5afe0022
RP
2010 * (+++) the mount is propagated to all the mounts in the propagation tree
2011 * of the destination mount and the cloned mount is made slave
2012 * of the same master as that of the source mount. The cloned mount
2013 * is marked as 'shared and slave'.
2014 * (*) the cloned mount is made a slave of the same master as that of the
2015 * source mount.
2016 *
9676f0c6
RP
2017 * ---------------------------------------------------------------------------
2018 * | MOVE MOUNT OPERATION |
2019 * |**************************************************************************
2020 * | source-->| shared | private | slave | unbindable |
2021 * | dest | | | | |
2022 * | | | | | | |
2023 * | v | | | | |
2024 * |**************************************************************************
2025 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2026 * | | | | | |
2027 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2028 * ***************************************************************************
5afe0022
RP
2029 *
2030 * (+) the mount is moved to the destination. And is then propagated to
2031 * all the mounts in the propagation tree of the destination mount.
21444403 2032 * (+*) the mount is moved to the destination.
5afe0022
RP
2033 * (+++) the mount is moved to the destination and is then propagated to
2034 * all the mounts belonging to the destination mount's propagation tree.
2035 * the mount is marked as 'shared and slave'.
2036 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2037 *
2038 * if the source mount is a tree, the operations explained above is
2039 * applied to each mount in the tree.
2040 * Must be called without spinlocks held, since this function can sleep
2041 * in allocations.
2042 */
0fb54e50 2043static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2044 struct mount *dest_mnt,
2045 struct mountpoint *dest_mp,
2046 struct path *parent_path)
b90fa9ae 2047{
38129a13 2048 HLIST_HEAD(tree_list);
d2921684 2049 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2050 struct mountpoint *smp;
315fc83e 2051 struct mount *child, *p;
38129a13 2052 struct hlist_node *n;
719f5d7f 2053 int err;
b90fa9ae 2054
1064f874
EB
2055 /* Preallocate a mountpoint in case the new mounts need
2056 * to be tucked under other mounts.
2057 */
2058 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2059 if (IS_ERR(smp))
2060 return PTR_ERR(smp);
2061
d2921684
EB
2062 /* Is there space to add these mounts to the mount namespace? */
2063 if (!parent_path) {
2064 err = count_mounts(ns, source_mnt);
2065 if (err)
2066 goto out;
2067 }
2068
fc7be130 2069 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2070 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2071 if (err)
2072 goto out;
0b1b901b 2073 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2074 lock_mount_hash();
0b1b901b
AV
2075 if (err)
2076 goto out_cleanup_ids;
909b0a88 2077 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2078 set_mnt_shared(p);
0b1b901b
AV
2079 } else {
2080 lock_mount_hash();
b90fa9ae 2081 }
1a390689 2082 if (parent_path) {
0fb54e50 2083 detach_mnt(source_mnt, parent_path);
84d17192 2084 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2085 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2086 } else {
84d17192 2087 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2088 commit_tree(source_mnt);
21444403 2089 }
b90fa9ae 2090
38129a13 2091 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2092 struct mount *q;
38129a13 2093 hlist_del_init(&child->mnt_hash);
1064f874
EB
2094 q = __lookup_mnt(&child->mnt_parent->mnt,
2095 child->mnt_mountpoint);
2096 if (q)
2097 mnt_change_mountpoint(child, smp, q);
2098 commit_tree(child);
b90fa9ae 2099 }
1064f874 2100 put_mountpoint(smp);
719ea2fb 2101 unlock_mount_hash();
99b7db7b 2102
b90fa9ae 2103 return 0;
719f5d7f
MS
2104
2105 out_cleanup_ids:
f2ebb3a9
AV
2106 while (!hlist_empty(&tree_list)) {
2107 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2108 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2109 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2110 }
2111 unlock_mount_hash();
0b1b901b 2112 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2113 out:
d2921684 2114 ns->pending_mounts = 0;
1064f874
EB
2115
2116 read_seqlock_excl(&mount_lock);
2117 put_mountpoint(smp);
2118 read_sequnlock_excl(&mount_lock);
2119
719f5d7f 2120 return err;
b90fa9ae
RP
2121}
2122
84d17192 2123static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2124{
2125 struct vfsmount *mnt;
84d17192 2126 struct dentry *dentry = path->dentry;
b12cea91 2127retry:
5955102c 2128 inode_lock(dentry->d_inode);
84d17192 2129 if (unlikely(cant_mount(dentry))) {
5955102c 2130 inode_unlock(dentry->d_inode);
84d17192 2131 return ERR_PTR(-ENOENT);
b12cea91 2132 }
97216be0 2133 namespace_lock();
b12cea91 2134 mnt = lookup_mnt(path);
84d17192 2135 if (likely(!mnt)) {
3895dbf8 2136 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2137 if (IS_ERR(mp)) {
97216be0 2138 namespace_unlock();
5955102c 2139 inode_unlock(dentry->d_inode);
84d17192
AV
2140 return mp;
2141 }
2142 return mp;
2143 }
97216be0 2144 namespace_unlock();
5955102c 2145 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2146 path_put(path);
2147 path->mnt = mnt;
84d17192 2148 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2149 goto retry;
2150}
2151
84d17192 2152static void unlock_mount(struct mountpoint *where)
b12cea91 2153{
84d17192 2154 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2155
2156 read_seqlock_excl(&mount_lock);
84d17192 2157 put_mountpoint(where);
3895dbf8
EB
2158 read_sequnlock_excl(&mount_lock);
2159
328e6d90 2160 namespace_unlock();
5955102c 2161 inode_unlock(dentry->d_inode);
b12cea91
AV
2162}
2163
84d17192 2164static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2165{
e462ec50 2166 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2167 return -EINVAL;
2168
e36cb0b8
DH
2169 if (d_is_dir(mp->m_dentry) !=
2170 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2171 return -ENOTDIR;
2172
84d17192 2173 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2174}
2175
7a2e8a8f
VA
2176/*
2177 * Sanity check the flags to change_mnt_propagation.
2178 */
2179
e462ec50 2180static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2181{
e462ec50 2182 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2183
2184 /* Fail if any non-propagation flags are set */
2185 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2186 return 0;
2187 /* Only one propagation flag should be set */
2188 if (!is_power_of_2(type))
2189 return 0;
2190 return type;
2191}
2192
07b20889
RP
2193/*
2194 * recursively change the type of the mountpoint.
2195 */
e462ec50 2196static int do_change_type(struct path *path, int ms_flags)
07b20889 2197{
315fc83e 2198 struct mount *m;
4b8b21f4 2199 struct mount *mnt = real_mount(path->mnt);
e462ec50 2200 int recurse = ms_flags & MS_REC;
7a2e8a8f 2201 int type;
719f5d7f 2202 int err = 0;
07b20889 2203
2d92ab3c 2204 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2205 return -EINVAL;
2206
e462ec50 2207 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2208 if (!type)
2209 return -EINVAL;
2210
97216be0 2211 namespace_lock();
719f5d7f
MS
2212 if (type == MS_SHARED) {
2213 err = invent_group_ids(mnt, recurse);
2214 if (err)
2215 goto out_unlock;
2216 }
2217
719ea2fb 2218 lock_mount_hash();
909b0a88 2219 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2220 change_mnt_propagation(m, type);
719ea2fb 2221 unlock_mount_hash();
719f5d7f
MS
2222
2223 out_unlock:
97216be0 2224 namespace_unlock();
719f5d7f 2225 return err;
07b20889
RP
2226}
2227
5ff9d8a6
EB
2228static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2229{
2230 struct mount *child;
2231 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2232 if (!is_subdir(child->mnt_mountpoint, dentry))
2233 continue;
2234
2235 if (child->mnt.mnt_flags & MNT_LOCKED)
2236 return true;
2237 }
2238 return false;
2239}
2240
1da177e4
LT
2241/*
2242 * do loopback mount.
2243 */
808d4e3c 2244static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2245 int recurse)
1da177e4 2246{
2d92ab3c 2247 struct path old_path;
84d17192
AV
2248 struct mount *mnt = NULL, *old, *parent;
2249 struct mountpoint *mp;
57eccb83 2250 int err;
1da177e4
LT
2251 if (!old_name || !*old_name)
2252 return -EINVAL;
815d405c 2253 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2254 if (err)
2255 return err;
2256
8823c079 2257 err = -EINVAL;
4ce5d2b1 2258 if (mnt_ns_loop(old_path.dentry))
dd111b31 2259 goto out;
8823c079 2260
84d17192
AV
2261 mp = lock_mount(path);
2262 err = PTR_ERR(mp);
2263 if (IS_ERR(mp))
b12cea91
AV
2264 goto out;
2265
87129cc0 2266 old = real_mount(old_path.mnt);
84d17192 2267 parent = real_mount(path->mnt);
87129cc0 2268
1da177e4 2269 err = -EINVAL;
fc7be130 2270 if (IS_MNT_UNBINDABLE(old))
b12cea91 2271 goto out2;
9676f0c6 2272
e149ed2b
AV
2273 if (!check_mnt(parent))
2274 goto out2;
2275
2276 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2277 goto out2;
1da177e4 2278
5ff9d8a6
EB
2279 if (!recurse && has_locked_children(old, old_path.dentry))
2280 goto out2;
2281
ccd48bc7 2282 if (recurse)
4ce5d2b1 2283 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2284 else
87129cc0 2285 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2286
be34d1a3
DH
2287 if (IS_ERR(mnt)) {
2288 err = PTR_ERR(mnt);
e9c5d8a5 2289 goto out2;
be34d1a3 2290 }
ccd48bc7 2291
5ff9d8a6
EB
2292 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2293
84d17192 2294 err = graft_tree(mnt, parent, mp);
ccd48bc7 2295 if (err) {
719ea2fb 2296 lock_mount_hash();
e819f152 2297 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2298 unlock_mount_hash();
5b83d2c5 2299 }
b12cea91 2300out2:
84d17192 2301 unlock_mount(mp);
ccd48bc7 2302out:
2d92ab3c 2303 path_put(&old_path);
1da177e4
LT
2304 return err;
2305}
2306
2e4b7fcd
DH
2307static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2308{
2309 int error = 0;
2310 int readonly_request = 0;
2311
2312 if (ms_flags & MS_RDONLY)
2313 readonly_request = 1;
2314 if (readonly_request == __mnt_is_readonly(mnt))
2315 return 0;
2316
2317 if (readonly_request)
83adc753 2318 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2319 else
83adc753 2320 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2321 return error;
2322}
2323
1da177e4
LT
2324/*
2325 * change filesystem flags. dir should be a physical root of filesystem.
2326 * If you've mounted a non-root directory somewhere and want to do remount
2327 * on it - tough luck.
2328 */
e462ec50
DH
2329static int do_remount(struct path *path, int ms_flags, int sb_flags,
2330 int mnt_flags, void *data)
1da177e4
LT
2331{
2332 int err;
2d92ab3c 2333 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2334 struct mount *mnt = real_mount(path->mnt);
1da177e4 2335
143c8c91 2336 if (!check_mnt(mnt))
1da177e4
LT
2337 return -EINVAL;
2338
2d92ab3c 2339 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2340 return -EINVAL;
2341
07b64558
EB
2342 /* Don't allow changing of locked mnt flags.
2343 *
2344 * No locks need to be held here while testing the various
2345 * MNT_LOCK flags because those flags can never be cleared
2346 * once they are set.
2347 */
2348 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2349 !(mnt_flags & MNT_READONLY)) {
2350 return -EPERM;
2351 }
9566d674
EB
2352 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2353 !(mnt_flags & MNT_NODEV)) {
67690f93 2354 return -EPERM;
9566d674
EB
2355 }
2356 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2357 !(mnt_flags & MNT_NOSUID)) {
2358 return -EPERM;
2359 }
2360 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2361 !(mnt_flags & MNT_NOEXEC)) {
2362 return -EPERM;
2363 }
2364 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2365 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2366 return -EPERM;
2367 }
2368
ff36fe2c
EP
2369 err = security_sb_remount(sb, data);
2370 if (err)
2371 return err;
2372
1da177e4 2373 down_write(&sb->s_umount);
e462ec50
DH
2374 if (ms_flags & MS_BIND)
2375 err = change_mount_flags(path->mnt, ms_flags);
1db30ec0 2376 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2377 err = -EPERM;
4aa98cf7 2378 else
e462ec50 2379 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2380 if (!err) {
719ea2fb 2381 lock_mount_hash();
a6138db8 2382 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2383 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2384 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2385 unlock_mount_hash();
0e55a7cc 2386 }
6339dab8 2387 up_write(&sb->s_umount);
1da177e4
LT
2388 return err;
2389}
2390
cbbe362c 2391static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2392{
315fc83e 2393 struct mount *p;
909b0a88 2394 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2395 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2396 return 1;
2397 }
2398 return 0;
2399}
2400
808d4e3c 2401static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2402{
2d92ab3c 2403 struct path old_path, parent_path;
676da58d 2404 struct mount *p;
0fb54e50 2405 struct mount *old;
84d17192 2406 struct mountpoint *mp;
57eccb83 2407 int err;
1da177e4
LT
2408 if (!old_name || !*old_name)
2409 return -EINVAL;
2d92ab3c 2410 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2411 if (err)
2412 return err;
2413
84d17192
AV
2414 mp = lock_mount(path);
2415 err = PTR_ERR(mp);
2416 if (IS_ERR(mp))
cc53ce53
DH
2417 goto out;
2418
143c8c91 2419 old = real_mount(old_path.mnt);
fc7be130 2420 p = real_mount(path->mnt);
143c8c91 2421
1da177e4 2422 err = -EINVAL;
fc7be130 2423 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2424 goto out1;
2425
5ff9d8a6
EB
2426 if (old->mnt.mnt_flags & MNT_LOCKED)
2427 goto out1;
2428
1da177e4 2429 err = -EINVAL;
2d92ab3c 2430 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2431 goto out1;
1da177e4 2432
676da58d 2433 if (!mnt_has_parent(old))
21444403 2434 goto out1;
1da177e4 2435
e36cb0b8
DH
2436 if (d_is_dir(path->dentry) !=
2437 d_is_dir(old_path.dentry))
21444403
RP
2438 goto out1;
2439 /*
2440 * Don't move a mount residing in a shared parent.
2441 */
fc7be130 2442 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2443 goto out1;
9676f0c6
RP
2444 /*
2445 * Don't move a mount tree containing unbindable mounts to a destination
2446 * mount which is shared.
2447 */
fc7be130 2448 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2449 goto out1;
1da177e4 2450 err = -ELOOP;
fc7be130 2451 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2452 if (p == old)
21444403 2453 goto out1;
1da177e4 2454
84d17192 2455 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2456 if (err)
21444403 2457 goto out1;
1da177e4
LT
2458
2459 /* if the mount is moved, it should no longer be expire
2460 * automatically */
6776db3d 2461 list_del_init(&old->mnt_expire);
1da177e4 2462out1:
84d17192 2463 unlock_mount(mp);
1da177e4 2464out:
1da177e4 2465 if (!err)
1a390689 2466 path_put(&parent_path);
2d92ab3c 2467 path_put(&old_path);
1da177e4
LT
2468 return err;
2469}
2470
9d412a43
AV
2471static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2472{
2473 int err;
2474 const char *subtype = strchr(fstype, '.');
2475 if (subtype) {
2476 subtype++;
2477 err = -EINVAL;
2478 if (!subtype[0])
2479 goto err;
2480 } else
2481 subtype = "";
2482
2483 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2484 err = -ENOMEM;
2485 if (!mnt->mnt_sb->s_subtype)
2486 goto err;
2487 return mnt;
2488
2489 err:
2490 mntput(mnt);
2491 return ERR_PTR(err);
2492}
2493
9d412a43
AV
2494/*
2495 * add a mount into a namespace's mount tree
2496 */
95bc5f25 2497static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2498{
84d17192
AV
2499 struct mountpoint *mp;
2500 struct mount *parent;
9d412a43
AV
2501 int err;
2502
f2ebb3a9 2503 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2504
84d17192
AV
2505 mp = lock_mount(path);
2506 if (IS_ERR(mp))
2507 return PTR_ERR(mp);
9d412a43 2508
84d17192 2509 parent = real_mount(path->mnt);
9d412a43 2510 err = -EINVAL;
84d17192 2511 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2512 /* that's acceptable only for automounts done in private ns */
2513 if (!(mnt_flags & MNT_SHRINKABLE))
2514 goto unlock;
2515 /* ... and for those we'd better have mountpoint still alive */
84d17192 2516 if (!parent->mnt_ns)
156cacb1
AV
2517 goto unlock;
2518 }
9d412a43
AV
2519
2520 /* Refuse the same filesystem on the same mount point */
2521 err = -EBUSY;
95bc5f25 2522 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2523 path->mnt->mnt_root == path->dentry)
2524 goto unlock;
2525
2526 err = -EINVAL;
e36cb0b8 2527 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2528 goto unlock;
2529
95bc5f25 2530 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2531 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2532
2533unlock:
84d17192 2534 unlock_mount(mp);
9d412a43
AV
2535 return err;
2536}
b1e75df4 2537
8654df4e 2538static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2539
1da177e4
LT
2540/*
2541 * create a new mount for userspace and request it to be added into the
2542 * namespace's tree
2543 */
e462ec50 2544static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2545 int mnt_flags, const char *name, void *data)
1da177e4 2546{
0c55cfc4 2547 struct file_system_type *type;
1da177e4 2548 struct vfsmount *mnt;
15f9a3f3 2549 int err;
1da177e4 2550
0c55cfc4 2551 if (!fstype)
1da177e4
LT
2552 return -EINVAL;
2553
0c55cfc4
EB
2554 type = get_fs_type(fstype);
2555 if (!type)
2556 return -ENODEV;
2557
e462ec50 2558 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2559 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2560 !mnt->mnt_sb->s_subtype)
2561 mnt = fs_set_subtype(mnt, fstype);
2562
2563 put_filesystem(type);
1da177e4
LT
2564 if (IS_ERR(mnt))
2565 return PTR_ERR(mnt);
2566
8654df4e
EB
2567 if (mount_too_revealing(mnt, &mnt_flags)) {
2568 mntput(mnt);
2569 return -EPERM;
2570 }
2571
95bc5f25 2572 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2573 if (err)
2574 mntput(mnt);
2575 return err;
1da177e4
LT
2576}
2577
19a167af
AV
2578int finish_automount(struct vfsmount *m, struct path *path)
2579{
6776db3d 2580 struct mount *mnt = real_mount(m);
19a167af
AV
2581 int err;
2582 /* The new mount record should have at least 2 refs to prevent it being
2583 * expired before we get a chance to add it
2584 */
6776db3d 2585 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2586
2587 if (m->mnt_sb == path->mnt->mnt_sb &&
2588 m->mnt_root == path->dentry) {
b1e75df4
AV
2589 err = -ELOOP;
2590 goto fail;
19a167af
AV
2591 }
2592
95bc5f25 2593 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2594 if (!err)
2595 return 0;
2596fail:
2597 /* remove m from any expiration list it may be on */
6776db3d 2598 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2599 namespace_lock();
6776db3d 2600 list_del_init(&mnt->mnt_expire);
97216be0 2601 namespace_unlock();
19a167af 2602 }
b1e75df4
AV
2603 mntput(m);
2604 mntput(m);
19a167af
AV
2605 return err;
2606}
2607
ea5b778a
DH
2608/**
2609 * mnt_set_expiry - Put a mount on an expiration list
2610 * @mnt: The mount to list.
2611 * @expiry_list: The list to add the mount to.
2612 */
2613void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2614{
97216be0 2615 namespace_lock();
ea5b778a 2616
6776db3d 2617 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2618
97216be0 2619 namespace_unlock();
ea5b778a
DH
2620}
2621EXPORT_SYMBOL(mnt_set_expiry);
2622
1da177e4
LT
2623/*
2624 * process a list of expirable mountpoints with the intent of discarding any
2625 * mountpoints that aren't in use and haven't been touched since last we came
2626 * here
2627 */
2628void mark_mounts_for_expiry(struct list_head *mounts)
2629{
761d5c38 2630 struct mount *mnt, *next;
1da177e4
LT
2631 LIST_HEAD(graveyard);
2632
2633 if (list_empty(mounts))
2634 return;
2635
97216be0 2636 namespace_lock();
719ea2fb 2637 lock_mount_hash();
1da177e4
LT
2638
2639 /* extract from the expiration list every vfsmount that matches the
2640 * following criteria:
2641 * - only referenced by its parent vfsmount
2642 * - still marked for expiry (marked on the last call here; marks are
2643 * cleared by mntput())
2644 */
6776db3d 2645 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2646 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2647 propagate_mount_busy(mnt, 1))
1da177e4 2648 continue;
6776db3d 2649 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2650 }
bcc5c7d2 2651 while (!list_empty(&graveyard)) {
6776db3d 2652 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2653 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2654 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2655 }
719ea2fb 2656 unlock_mount_hash();
3ab6abee 2657 namespace_unlock();
5528f911
TM
2658}
2659
2660EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2661
2662/*
2663 * Ripoff of 'select_parent()'
2664 *
2665 * search the list of submounts for a given mountpoint, and move any
2666 * shrinkable submounts to the 'graveyard' list.
2667 */
692afc31 2668static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2669{
692afc31 2670 struct mount *this_parent = parent;
5528f911
TM
2671 struct list_head *next;
2672 int found = 0;
2673
2674repeat:
6b41d536 2675 next = this_parent->mnt_mounts.next;
5528f911 2676resume:
6b41d536 2677 while (next != &this_parent->mnt_mounts) {
5528f911 2678 struct list_head *tmp = next;
6b41d536 2679 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2680
2681 next = tmp->next;
692afc31 2682 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2683 continue;
5528f911
TM
2684 /*
2685 * Descend a level if the d_mounts list is non-empty.
2686 */
6b41d536 2687 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2688 this_parent = mnt;
2689 goto repeat;
2690 }
1da177e4 2691
1ab59738 2692 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2693 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2694 found++;
2695 }
1da177e4 2696 }
5528f911
TM
2697 /*
2698 * All done at this level ... ascend and resume the search
2699 */
2700 if (this_parent != parent) {
6b41d536 2701 next = this_parent->mnt_child.next;
0714a533 2702 this_parent = this_parent->mnt_parent;
5528f911
TM
2703 goto resume;
2704 }
2705 return found;
2706}
2707
2708/*
2709 * process a list of expirable mountpoints with the intent of discarding any
2710 * submounts of a specific parent mountpoint
99b7db7b 2711 *
48a066e7 2712 * mount_lock must be held for write
5528f911 2713 */
b54b9be7 2714static void shrink_submounts(struct mount *mnt)
5528f911
TM
2715{
2716 LIST_HEAD(graveyard);
761d5c38 2717 struct mount *m;
5528f911 2718
5528f911 2719 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2720 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2721 while (!list_empty(&graveyard)) {
761d5c38 2722 m = list_first_entry(&graveyard, struct mount,
6776db3d 2723 mnt_expire);
143c8c91 2724 touch_mnt_namespace(m->mnt_ns);
e819f152 2725 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2726 }
2727 }
1da177e4
LT
2728}
2729
1da177e4
LT
2730/*
2731 * Some copy_from_user() implementations do not return the exact number of
2732 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2733 * Note that this function differs from copy_from_user() in that it will oops
2734 * on bad values of `to', rather than returning a short copy.
2735 */
b58fed8b
RP
2736static long exact_copy_from_user(void *to, const void __user * from,
2737 unsigned long n)
1da177e4
LT
2738{
2739 char *t = to;
2740 const char __user *f = from;
2741 char c;
2742
2743 if (!access_ok(VERIFY_READ, from, n))
2744 return n;
2745
2746 while (n) {
2747 if (__get_user(c, f)) {
2748 memset(t, 0, n);
2749 break;
2750 }
2751 *t++ = c;
2752 f++;
2753 n--;
2754 }
2755 return n;
2756}
2757
b40ef869 2758void *copy_mount_options(const void __user * data)
1da177e4
LT
2759{
2760 int i;
1da177e4 2761 unsigned long size;
b40ef869 2762 char *copy;
b58fed8b 2763
1da177e4 2764 if (!data)
b40ef869 2765 return NULL;
1da177e4 2766
b40ef869
AV
2767 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2768 if (!copy)
2769 return ERR_PTR(-ENOMEM);
1da177e4
LT
2770
2771 /* We only care that *some* data at the address the user
2772 * gave us is valid. Just in case, we'll zero
2773 * the remainder of the page.
2774 */
2775 /* copy_from_user cannot cross TASK_SIZE ! */
2776 size = TASK_SIZE - (unsigned long)data;
2777 if (size > PAGE_SIZE)
2778 size = PAGE_SIZE;
2779
b40ef869 2780 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2781 if (!i) {
b40ef869
AV
2782 kfree(copy);
2783 return ERR_PTR(-EFAULT);
1da177e4
LT
2784 }
2785 if (i != PAGE_SIZE)
b40ef869
AV
2786 memset(copy + i, 0, PAGE_SIZE - i);
2787 return copy;
1da177e4
LT
2788}
2789
b8850d1f 2790char *copy_mount_string(const void __user *data)
eca6f534 2791{
b8850d1f 2792 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2793}
2794
1da177e4
LT
2795/*
2796 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2797 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2798 *
2799 * data is a (void *) that can point to any structure up to
2800 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2801 * information (or be NULL).
2802 *
2803 * Pre-0.97 versions of mount() didn't have a flags word.
2804 * When the flags word was introduced its top half was required
2805 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2806 * Therefore, if this magic number is present, it carries no information
2807 * and must be discarded.
2808 */
5e6123f3 2809long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2810 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2811{
2d92ab3c 2812 struct path path;
e462ec50 2813 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2814 int retval = 0;
1da177e4
LT
2815
2816 /* Discard magic */
2817 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2818 flags &= ~MS_MGC_MSK;
2819
2820 /* Basic sanity checks */
1da177e4
LT
2821 if (data_page)
2822 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2823
e462ec50
DH
2824 if (flags & MS_NOUSER)
2825 return -EINVAL;
2826
a27ab9f2 2827 /* ... and get the mountpoint */
5e6123f3 2828 retval = user_path(dir_name, &path);
a27ab9f2
TH
2829 if (retval)
2830 return retval;
2831
2832 retval = security_sb_mount(dev_name, &path,
2833 type_page, flags, data_page);
0d5cadb8
AV
2834 if (!retval && !may_mount())
2835 retval = -EPERM;
e462ec50 2836 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2837 retval = -EPERM;
a27ab9f2
TH
2838 if (retval)
2839 goto dput_out;
2840
613cbe3d
AK
2841 /* Default to relatime unless overriden */
2842 if (!(flags & MS_NOATIME))
2843 mnt_flags |= MNT_RELATIME;
0a1c01c9 2844
1da177e4
LT
2845 /* Separate the per-mountpoint flags */
2846 if (flags & MS_NOSUID)
2847 mnt_flags |= MNT_NOSUID;
2848 if (flags & MS_NODEV)
2849 mnt_flags |= MNT_NODEV;
2850 if (flags & MS_NOEXEC)
2851 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2852 if (flags & MS_NOATIME)
2853 mnt_flags |= MNT_NOATIME;
2854 if (flags & MS_NODIRATIME)
2855 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2856 if (flags & MS_STRICTATIME)
2857 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
9c720612 2858 if (flags & MS_RDONLY)
2e4b7fcd 2859 mnt_flags |= MNT_READONLY;
fc33a7bb 2860
ffbc6f0e
EB
2861 /* The default atime for remount is preservation */
2862 if ((flags & MS_REMOUNT) &&
2863 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2864 MS_STRICTATIME)) == 0)) {
2865 mnt_flags &= ~MNT_ATIME_MASK;
2866 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2867 }
2868
e462ec50
DH
2869 sb_flags = flags & (SB_RDONLY |
2870 SB_SYNCHRONOUS |
2871 SB_MANDLOCK |
2872 SB_DIRSYNC |
2873 SB_SILENT |
917086ff 2874 SB_POSIXACL |
d7ee9469 2875 SB_LAZYTIME |
917086ff 2876 SB_I_VERSION);
1da177e4 2877
1da177e4 2878 if (flags & MS_REMOUNT)
e462ec50 2879 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2880 data_page);
2881 else if (flags & MS_BIND)
2d92ab3c 2882 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2883 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2884 retval = do_change_type(&path, flags);
1da177e4 2885 else if (flags & MS_MOVE)
2d92ab3c 2886 retval = do_move_mount(&path, dev_name);
1da177e4 2887 else
e462ec50 2888 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2889 dev_name, data_page);
2890dput_out:
2d92ab3c 2891 path_put(&path);
1da177e4
LT
2892 return retval;
2893}
2894
537f7ccb
EB
2895static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2896{
2897 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2898}
2899
2900static void dec_mnt_namespaces(struct ucounts *ucounts)
2901{
2902 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2903}
2904
771b1371
EB
2905static void free_mnt_ns(struct mnt_namespace *ns)
2906{
6344c433 2907 ns_free_inum(&ns->ns);
537f7ccb 2908 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2909 put_user_ns(ns->user_ns);
2910 kfree(ns);
2911}
2912
8823c079
EB
2913/*
2914 * Assign a sequence number so we can detect when we attempt to bind
2915 * mount a reference to an older mount namespace into the current
2916 * mount namespace, preventing reference counting loops. A 64bit
2917 * number incrementing at 10Ghz will take 12,427 years to wrap which
2918 * is effectively never, so we can ignore the possibility.
2919 */
2920static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2921
771b1371 2922static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2923{
2924 struct mnt_namespace *new_ns;
537f7ccb 2925 struct ucounts *ucounts;
98f842e6 2926 int ret;
cf8d2c11 2927
537f7ccb
EB
2928 ucounts = inc_mnt_namespaces(user_ns);
2929 if (!ucounts)
df75e774 2930 return ERR_PTR(-ENOSPC);
537f7ccb 2931
cf8d2c11 2932 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2933 if (!new_ns) {
2934 dec_mnt_namespaces(ucounts);
cf8d2c11 2935 return ERR_PTR(-ENOMEM);
537f7ccb 2936 }
6344c433 2937 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2938 if (ret) {
2939 kfree(new_ns);
537f7ccb 2940 dec_mnt_namespaces(ucounts);
98f842e6
EB
2941 return ERR_PTR(ret);
2942 }
33c42940 2943 new_ns->ns.ops = &mntns_operations;
8823c079 2944 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2945 atomic_set(&new_ns->count, 1);
2946 new_ns->root = NULL;
2947 INIT_LIST_HEAD(&new_ns->list);
2948 init_waitqueue_head(&new_ns->poll);
2949 new_ns->event = 0;
771b1371 2950 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2951 new_ns->ucounts = ucounts;
d2921684
EB
2952 new_ns->mounts = 0;
2953 new_ns->pending_mounts = 0;
cf8d2c11
TM
2954 return new_ns;
2955}
2956
0766f788 2957__latent_entropy
9559f689
AV
2958struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2959 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2960{
6b3286ed 2961 struct mnt_namespace *new_ns;
7f2da1e7 2962 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2963 struct mount *p, *q;
9559f689 2964 struct mount *old;
cb338d06 2965 struct mount *new;
7a472ef4 2966 int copy_flags;
1da177e4 2967
9559f689
AV
2968 BUG_ON(!ns);
2969
2970 if (likely(!(flags & CLONE_NEWNS))) {
2971 get_mnt_ns(ns);
2972 return ns;
2973 }
2974
2975 old = ns->root;
2976
771b1371 2977 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2978 if (IS_ERR(new_ns))
2979 return new_ns;
1da177e4 2980
97216be0 2981 namespace_lock();
1da177e4 2982 /* First pass: copy the tree topology */
4ce5d2b1 2983 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2984 if (user_ns != ns->user_ns)
132c94e3 2985 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2986 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2987 if (IS_ERR(new)) {
328e6d90 2988 namespace_unlock();
771b1371 2989 free_mnt_ns(new_ns);
be34d1a3 2990 return ERR_CAST(new);
1da177e4 2991 }
be08d6d2 2992 new_ns->root = new;
1a4eeaf2 2993 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2994
2995 /*
2996 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2997 * as belonging to new namespace. We have already acquired a private
2998 * fs_struct, so tsk->fs->lock is not needed.
2999 */
909b0a88 3000 p = old;
cb338d06 3001 q = new;
1da177e4 3002 while (p) {
143c8c91 3003 q->mnt_ns = new_ns;
d2921684 3004 new_ns->mounts++;
9559f689
AV
3005 if (new_fs) {
3006 if (&p->mnt == new_fs->root.mnt) {
3007 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3008 rootmnt = &p->mnt;
1da177e4 3009 }
9559f689
AV
3010 if (&p->mnt == new_fs->pwd.mnt) {
3011 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3012 pwdmnt = &p->mnt;
1da177e4 3013 }
1da177e4 3014 }
909b0a88
AV
3015 p = next_mnt(p, old);
3016 q = next_mnt(q, new);
4ce5d2b1
EB
3017 if (!q)
3018 break;
3019 while (p->mnt.mnt_root != q->mnt.mnt_root)
3020 p = next_mnt(p, old);
1da177e4 3021 }
328e6d90 3022 namespace_unlock();
1da177e4 3023
1da177e4 3024 if (rootmnt)
f03c6599 3025 mntput(rootmnt);
1da177e4 3026 if (pwdmnt)
f03c6599 3027 mntput(pwdmnt);
1da177e4 3028
741a2951 3029 return new_ns;
1da177e4
LT
3030}
3031
cf8d2c11
TM
3032/**
3033 * create_mnt_ns - creates a private namespace and adds a root filesystem
3034 * @mnt: pointer to the new root filesystem mountpoint
3035 */
1a4eeaf2 3036static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 3037{
771b1371 3038 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 3039 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
3040 struct mount *mnt = real_mount(m);
3041 mnt->mnt_ns = new_ns;
be08d6d2 3042 new_ns->root = mnt;
d2921684 3043 new_ns->mounts++;
b1983cd8 3044 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 3045 } else {
1a4eeaf2 3046 mntput(m);
cf8d2c11
TM
3047 }
3048 return new_ns;
3049}
cf8d2c11 3050
ea441d11
AV
3051struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3052{
3053 struct mnt_namespace *ns;
d31da0f0 3054 struct super_block *s;
ea441d11
AV
3055 struct path path;
3056 int err;
3057
3058 ns = create_mnt_ns(mnt);
3059 if (IS_ERR(ns))
3060 return ERR_CAST(ns);
3061
3062 err = vfs_path_lookup(mnt->mnt_root, mnt,
3063 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3064
3065 put_mnt_ns(ns);
3066
3067 if (err)
3068 return ERR_PTR(err);
3069
3070 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3071 s = path.mnt->mnt_sb;
3072 atomic_inc(&s->s_active);
ea441d11
AV
3073 mntput(path.mnt);
3074 /* lock the sucker */
d31da0f0 3075 down_write(&s->s_umount);
ea441d11
AV
3076 /* ... and return the root of (sub)tree on it */
3077 return path.dentry;
3078}
3079EXPORT_SYMBOL(mount_subtree);
3080
bdc480e3
HC
3081SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3082 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3083{
eca6f534
VN
3084 int ret;
3085 char *kernel_type;
eca6f534 3086 char *kernel_dev;
b40ef869 3087 void *options;
1da177e4 3088
b8850d1f
TG
3089 kernel_type = copy_mount_string(type);
3090 ret = PTR_ERR(kernel_type);
3091 if (IS_ERR(kernel_type))
eca6f534 3092 goto out_type;
1da177e4 3093
b8850d1f
TG
3094 kernel_dev = copy_mount_string(dev_name);
3095 ret = PTR_ERR(kernel_dev);
3096 if (IS_ERR(kernel_dev))
eca6f534 3097 goto out_dev;
1da177e4 3098
b40ef869
AV
3099 options = copy_mount_options(data);
3100 ret = PTR_ERR(options);
3101 if (IS_ERR(options))
eca6f534 3102 goto out_data;
1da177e4 3103
b40ef869 3104 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3105
b40ef869 3106 kfree(options);
eca6f534
VN
3107out_data:
3108 kfree(kernel_dev);
3109out_dev:
eca6f534
VN
3110 kfree(kernel_type);
3111out_type:
3112 return ret;
1da177e4
LT
3113}
3114
afac7cba
AV
3115/*
3116 * Return true if path is reachable from root
3117 *
48a066e7 3118 * namespace_sem or mount_lock is held
afac7cba 3119 */
643822b4 3120bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3121 const struct path *root)
3122{
643822b4 3123 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3124 dentry = mnt->mnt_mountpoint;
0714a533 3125 mnt = mnt->mnt_parent;
afac7cba 3126 }
643822b4 3127 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3128}
3129
640eb7e7 3130bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3131{
25ab4c9b 3132 bool res;
48a066e7 3133 read_seqlock_excl(&mount_lock);
643822b4 3134 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3135 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3136 return res;
3137}
3138EXPORT_SYMBOL(path_is_under);
3139
1da177e4
LT
3140/*
3141 * pivot_root Semantics:
3142 * Moves the root file system of the current process to the directory put_old,
3143 * makes new_root as the new root file system of the current process, and sets
3144 * root/cwd of all processes which had them on the current root to new_root.
3145 *
3146 * Restrictions:
3147 * The new_root and put_old must be directories, and must not be on the
3148 * same file system as the current process root. The put_old must be
3149 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3150 * pointed to by put_old must yield the same directory as new_root. No other
3151 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3152 *
4a0d11fa
NB
3153 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3154 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3155 * in this situation.
3156 *
1da177e4
LT
3157 * Notes:
3158 * - we don't move root/cwd if they are not at the root (reason: if something
3159 * cared enough to change them, it's probably wrong to force them elsewhere)
3160 * - it's okay to pick a root that isn't the root of a file system, e.g.
3161 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3162 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3163 * first.
3164 */
3480b257
HC
3165SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3166 const char __user *, put_old)
1da177e4 3167{
2d8f3038 3168 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3169 struct mount *new_mnt, *root_mnt, *old_mnt;
3170 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3171 int error;
3172
9b40bc90 3173 if (!may_mount())
1da177e4
LT
3174 return -EPERM;
3175
2d8f3038 3176 error = user_path_dir(new_root, &new);
1da177e4
LT
3177 if (error)
3178 goto out0;
1da177e4 3179
2d8f3038 3180 error = user_path_dir(put_old, &old);
1da177e4
LT
3181 if (error)
3182 goto out1;
3183
2d8f3038 3184 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3185 if (error)
3186 goto out2;
1da177e4 3187
f7ad3c6b 3188 get_fs_root(current->fs, &root);
84d17192
AV
3189 old_mp = lock_mount(&old);
3190 error = PTR_ERR(old_mp);
3191 if (IS_ERR(old_mp))
b12cea91
AV
3192 goto out3;
3193
1da177e4 3194 error = -EINVAL;
419148da
AV
3195 new_mnt = real_mount(new.mnt);
3196 root_mnt = real_mount(root.mnt);
84d17192
AV
3197 old_mnt = real_mount(old.mnt);
3198 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3199 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3200 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3201 goto out4;
143c8c91 3202 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3203 goto out4;
5ff9d8a6
EB
3204 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3205 goto out4;
1da177e4 3206 error = -ENOENT;
f3da392e 3207 if (d_unlinked(new.dentry))
b12cea91 3208 goto out4;
1da177e4 3209 error = -EBUSY;
84d17192 3210 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3211 goto out4; /* loop, on the same file system */
1da177e4 3212 error = -EINVAL;
8c3ee42e 3213 if (root.mnt->mnt_root != root.dentry)
b12cea91 3214 goto out4; /* not a mountpoint */
676da58d 3215 if (!mnt_has_parent(root_mnt))
b12cea91 3216 goto out4; /* not attached */
84d17192 3217 root_mp = root_mnt->mnt_mp;
2d8f3038 3218 if (new.mnt->mnt_root != new.dentry)
b12cea91 3219 goto out4; /* not a mountpoint */
676da58d 3220 if (!mnt_has_parent(new_mnt))
b12cea91 3221 goto out4; /* not attached */
4ac91378 3222 /* make sure we can reach put_old from new_root */
84d17192 3223 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3224 goto out4;
0d082601
EB
3225 /* make certain new is below the root */
3226 if (!is_path_reachable(new_mnt, new.dentry, &root))
3227 goto out4;
84d17192 3228 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3229 lock_mount_hash();
419148da
AV
3230 detach_mnt(new_mnt, &parent_path);
3231 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3232 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3233 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3234 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3235 }
4ac91378 3236 /* mount old root on put_old */
84d17192 3237 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3238 /* mount new_root on / */
84d17192 3239 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3240 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3241 /* A moved mount should not expire automatically */
3242 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3243 put_mountpoint(root_mp);
719ea2fb 3244 unlock_mount_hash();
2d8f3038 3245 chroot_fs_refs(&root, &new);
1da177e4 3246 error = 0;
b12cea91 3247out4:
84d17192 3248 unlock_mount(old_mp);
b12cea91
AV
3249 if (!error) {
3250 path_put(&root_parent);
3251 path_put(&parent_path);
3252 }
3253out3:
8c3ee42e 3254 path_put(&root);
b12cea91 3255out2:
2d8f3038 3256 path_put(&old);
1da177e4 3257out1:
2d8f3038 3258 path_put(&new);
1da177e4 3259out0:
1da177e4 3260 return error;
1da177e4
LT
3261}
3262
3263static void __init init_mount_tree(void)
3264{
3265 struct vfsmount *mnt;
6b3286ed 3266 struct mnt_namespace *ns;
ac748a09 3267 struct path root;
0c55cfc4 3268 struct file_system_type *type;
1da177e4 3269
0c55cfc4
EB
3270 type = get_fs_type("rootfs");
3271 if (!type)
3272 panic("Can't find rootfs type");
3273 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3274 put_filesystem(type);
1da177e4
LT
3275 if (IS_ERR(mnt))
3276 panic("Can't create rootfs");
b3e19d92 3277
3b22edc5
TM
3278 ns = create_mnt_ns(mnt);
3279 if (IS_ERR(ns))
1da177e4 3280 panic("Can't allocate initial namespace");
6b3286ed
KK
3281
3282 init_task.nsproxy->mnt_ns = ns;
3283 get_mnt_ns(ns);
3284
be08d6d2
AV
3285 root.mnt = mnt;
3286 root.dentry = mnt->mnt_root;
da362b09 3287 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3288
3289 set_fs_pwd(current->fs, &root);
3290 set_fs_root(current->fs, &root);
1da177e4
LT
3291}
3292
74bf17cf 3293void __init mnt_init(void)
1da177e4 3294{
15a67dd8 3295 int err;
1da177e4 3296
7d6fec45 3297 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3298 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3299
0818bf27 3300 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3301 sizeof(struct hlist_head),
0818bf27 3302 mhash_entries, 19,
3d375d78 3303 HASH_ZERO,
0818bf27
AV
3304 &m_hash_shift, &m_hash_mask, 0, 0);
3305 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3306 sizeof(struct hlist_head),
3307 mphash_entries, 19,
3d375d78 3308 HASH_ZERO,
0818bf27 3309 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3310
84d17192 3311 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3312 panic("Failed to allocate mount hash table\n");
3313
4b93dc9b
TH
3314 kernfs_init();
3315
15a67dd8
RD
3316 err = sysfs_init();
3317 if (err)
3318 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3319 __func__, err);
00d26666
GKH
3320 fs_kobj = kobject_create_and_add("fs", NULL);
3321 if (!fs_kobj)
8e24eea7 3322 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3323 init_rootfs();
3324 init_mount_tree();
3325}
3326
616511d0 3327void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3328{
d498b25a 3329 if (!atomic_dec_and_test(&ns->count))
616511d0 3330 return;
7b00ed6f 3331 drop_collected_mounts(&ns->root->mnt);
771b1371 3332 free_mnt_ns(ns);
1da177e4 3333}
9d412a43
AV
3334
3335struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3336{
423e0ab0 3337 struct vfsmount *mnt;
e462ec50 3338 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3339 if (!IS_ERR(mnt)) {
3340 /*
3341 * it is a longterm mount, don't release mnt until
3342 * we unmount before file sys is unregistered
3343 */
f7a99c5b 3344 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3345 }
3346 return mnt;
9d412a43
AV
3347}
3348EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3349
3350void kern_unmount(struct vfsmount *mnt)
3351{
3352 /* release long term mount so mount point can be released */
3353 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3354 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3355 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3356 mntput(mnt);
3357 }
3358}
3359EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3360
3361bool our_mnt(struct vfsmount *mnt)
3362{
143c8c91 3363 return check_mnt(real_mount(mnt));
02125a82 3364}
8823c079 3365
3151527e
EB
3366bool current_chrooted(void)
3367{
3368 /* Does the current process have a non-standard root */
3369 struct path ns_root;
3370 struct path fs_root;
3371 bool chrooted;
3372
3373 /* Find the namespace root */
3374 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3375 ns_root.dentry = ns_root.mnt->mnt_root;
3376 path_get(&ns_root);
3377 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3378 ;
3379
3380 get_fs_root(current->fs, &fs_root);
3381
3382 chrooted = !path_equal(&fs_root, &ns_root);
3383
3384 path_put(&fs_root);
3385 path_put(&ns_root);
3386
3387 return chrooted;
3388}
3389
8654df4e
EB
3390static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3391 int *new_mnt_flags)
87a8ebd6 3392{
8c6cf9cc 3393 int new_flags = *new_mnt_flags;
87a8ebd6 3394 struct mount *mnt;
e51db735 3395 bool visible = false;
87a8ebd6 3396
44bb4385 3397 down_read(&namespace_sem);
87a8ebd6 3398 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3399 struct mount *child;
77b1a97d
EB
3400 int mnt_flags;
3401
8654df4e 3402 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3403 continue;
3404
7e96c1b0
EB
3405 /* This mount is not fully visible if it's root directory
3406 * is not the root directory of the filesystem.
3407 */
3408 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3409 continue;
3410
a1935c17 3411 /* A local view of the mount flags */
77b1a97d 3412 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3413
695e9df0 3414 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3415 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3416 mnt_flags |= MNT_LOCK_READONLY;
3417
8c6cf9cc
EB
3418 /* Verify the mount flags are equal to or more permissive
3419 * than the proposed new mount.
3420 */
77b1a97d 3421 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3422 !(new_flags & MNT_READONLY))
3423 continue;
77b1a97d
EB
3424 if ((mnt_flags & MNT_LOCK_ATIME) &&
3425 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3426 continue;
3427
ceeb0e5d
EB
3428 /* This mount is not fully visible if there are any
3429 * locked child mounts that cover anything except for
3430 * empty directories.
e51db735
EB
3431 */
3432 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3433 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3434 /* Only worry about locked mounts */
d71ed6c9 3435 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3436 continue;
7236c85e
EB
3437 /* Is the directory permanetly empty? */
3438 if (!is_empty_dir_inode(inode))
e51db735 3439 goto next;
87a8ebd6 3440 }
8c6cf9cc 3441 /* Preserve the locked attributes */
77b1a97d 3442 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3443 MNT_LOCK_ATIME);
e51db735
EB
3444 visible = true;
3445 goto found;
3446 next: ;
87a8ebd6 3447 }
e51db735 3448found:
44bb4385 3449 up_read(&namespace_sem);
e51db735 3450 return visible;
87a8ebd6
EB
3451}
3452
8654df4e
EB
3453static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3454{
a1935c17 3455 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3456 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3457 unsigned long s_iflags;
3458
3459 if (ns->user_ns == &init_user_ns)
3460 return false;
3461
3462 /* Can this filesystem be too revealing? */
3463 s_iflags = mnt->mnt_sb->s_iflags;
3464 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3465 return false;
3466
a1935c17
EB
3467 if ((s_iflags & required_iflags) != required_iflags) {
3468 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3469 required_iflags);
3470 return true;
3471 }
3472
8654df4e
EB
3473 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3474}
3475
380cf5ba
AL
3476bool mnt_may_suid(struct vfsmount *mnt)
3477{
3478 /*
3479 * Foreign mounts (accessed via fchdir or through /proc
3480 * symlinks) are always treated as if they are nosuid. This
3481 * prevents namespaces from trusting potentially unsafe
3482 * suid/sgid bits, file caps, or security labels that originate
3483 * in other namespaces.
3484 */
3485 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3486 current_in_userns(mnt->mnt_sb->s_user_ns);
3487}
3488
64964528 3489static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3490{
58be2825 3491 struct ns_common *ns = NULL;
8823c079
EB
3492 struct nsproxy *nsproxy;
3493
728dba3a
EB
3494 task_lock(task);
3495 nsproxy = task->nsproxy;
8823c079 3496 if (nsproxy) {
58be2825
AV
3497 ns = &nsproxy->mnt_ns->ns;
3498 get_mnt_ns(to_mnt_ns(ns));
8823c079 3499 }
728dba3a 3500 task_unlock(task);
8823c079
EB
3501
3502 return ns;
3503}
3504
64964528 3505static void mntns_put(struct ns_common *ns)
8823c079 3506{
58be2825 3507 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3508}
3509
64964528 3510static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3511{
3512 struct fs_struct *fs = current->fs;
4f757f3c 3513 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3514 struct path root;
4f757f3c 3515 int err;
8823c079 3516
0c55cfc4 3517 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3518 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3519 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3520 return -EPERM;
8823c079
EB
3521
3522 if (fs->users != 1)
3523 return -EINVAL;
3524
3525 get_mnt_ns(mnt_ns);
4f757f3c 3526 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3527 nsproxy->mnt_ns = mnt_ns;
3528
3529 /* Find the root */
4f757f3c
AV
3530 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3531 "/", LOOKUP_DOWN, &root);
3532 if (err) {
3533 /* revert to old namespace */
3534 nsproxy->mnt_ns = old_mnt_ns;
3535 put_mnt_ns(mnt_ns);
3536 return err;
3537 }
8823c079 3538
4068367c
AV
3539 put_mnt_ns(old_mnt_ns);
3540
8823c079
EB
3541 /* Update the pwd and root */
3542 set_fs_pwd(fs, &root);
3543 set_fs_root(fs, &root);
3544
3545 path_put(&root);
3546 return 0;
3547}
3548
bcac25a5
AV
3549static struct user_namespace *mntns_owner(struct ns_common *ns)
3550{
3551 return to_mnt_ns(ns)->user_ns;
3552}
3553
8823c079
EB
3554const struct proc_ns_operations mntns_operations = {
3555 .name = "mnt",
3556 .type = CLONE_NEWNS,
3557 .get = mntns_get,
3558 .put = mntns_put,
3559 .install = mntns_install,
bcac25a5 3560 .owner = mntns_owner,
8823c079 3561};