]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/namespace.c
fix mntput/mntput race
[mirror_ubuntu-bionic-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
0818bf27 26#include <linux/bootmem.h>
9ea459e1 27#include <linux/task_work.h>
9164bb4a
IM
28#include <linux/sched/task.h>
29
07b20889 30#include "pnode.h"
948730b0 31#include "internal.h"
1da177e4 32
d2921684
EB
33/* Maximum number of mounts in a mount namespace */
34unsigned int sysctl_mount_max __read_mostly = 100000;
35
0818bf27
AV
36static unsigned int m_hash_mask __read_mostly;
37static unsigned int m_hash_shift __read_mostly;
38static unsigned int mp_hash_mask __read_mostly;
39static unsigned int mp_hash_shift __read_mostly;
40
41static __initdata unsigned long mhash_entries;
42static int __init set_mhash_entries(char *str)
43{
44 if (!str)
45 return 0;
46 mhash_entries = simple_strtoul(str, &str, 0);
47 return 1;
48}
49__setup("mhash_entries=", set_mhash_entries);
50
51static __initdata unsigned long mphash_entries;
52static int __init set_mphash_entries(char *str)
53{
54 if (!str)
55 return 0;
56 mphash_entries = simple_strtoul(str, &str, 0);
57 return 1;
58}
59__setup("mphash_entries=", set_mphash_entries);
13f14b4d 60
c7999c36 61static u64 event;
73cd49ec 62static DEFINE_IDA(mnt_id_ida);
719f5d7f 63static DEFINE_IDA(mnt_group_ida);
99b7db7b 64static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
65static int mnt_id_start = 0;
66static int mnt_group_start = 1;
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
1da177e4 72
f87fd4c2 73/* /sys/fs */
00d26666
GKH
74struct kobject *fs_kobj;
75EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 76
99b7db7b
NP
77/*
78 * vfsmount lock may be taken for read to prevent changes to the
79 * vfsmount hash, ie. during mountpoint lookups or walking back
80 * up the tree.
81 *
82 * It should be taken for write in all cases where the vfsmount
83 * tree or hash is modified or when a vfsmount structure is modified.
84 */
48a066e7 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 86
38129a13 87static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 88{
b58fed8b
RP
89 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
90 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
91 tmp = tmp + (tmp >> m_hash_shift);
92 return &mount_hashtable[tmp & m_hash_mask];
93}
94
95static inline struct hlist_head *mp_hash(struct dentry *dentry)
96{
97 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
98 tmp = tmp + (tmp >> mp_hash_shift);
99 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
100}
101
b105e270 102static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
103{
104 int res;
105
106retry:
107 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 108 spin_lock(&mnt_id_lock);
15169fe7 109 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 110 if (!res)
15169fe7 111 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 112 spin_unlock(&mnt_id_lock);
73cd49ec
MS
113 if (res == -EAGAIN)
114 goto retry;
115
116 return res;
117}
118
b105e270 119static void mnt_free_id(struct mount *mnt)
73cd49ec 120{
15169fe7 121 int id = mnt->mnt_id;
99b7db7b 122 spin_lock(&mnt_id_lock);
f21f6220
AV
123 ida_remove(&mnt_id_ida, id);
124 if (mnt_id_start > id)
125 mnt_id_start = id;
99b7db7b 126 spin_unlock(&mnt_id_lock);
73cd49ec
MS
127}
128
719f5d7f
MS
129/*
130 * Allocate a new peer group ID
131 *
132 * mnt_group_ida is protected by namespace_sem
133 */
4b8b21f4 134static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 135{
f21f6220
AV
136 int res;
137
719f5d7f
MS
138 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
139 return -ENOMEM;
140
f21f6220
AV
141 res = ida_get_new_above(&mnt_group_ida,
142 mnt_group_start,
15169fe7 143 &mnt->mnt_group_id);
f21f6220 144 if (!res)
15169fe7 145 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
146
147 return res;
719f5d7f
MS
148}
149
150/*
151 * Release a peer group ID
152 */
4b8b21f4 153void mnt_release_group_id(struct mount *mnt)
719f5d7f 154{
15169fe7 155 int id = mnt->mnt_group_id;
f21f6220
AV
156 ida_remove(&mnt_group_ida, id);
157 if (mnt_group_start > id)
158 mnt_group_start = id;
15169fe7 159 mnt->mnt_group_id = 0;
719f5d7f
MS
160}
161
b3e19d92
NP
162/*
163 * vfsmount lock must be held for read
164 */
83adc753 165static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
166{
167#ifdef CONFIG_SMP
68e8a9fe 168 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
169#else
170 preempt_disable();
68e8a9fe 171 mnt->mnt_count += n;
b3e19d92
NP
172 preempt_enable();
173#endif
174}
175
b3e19d92
NP
176/*
177 * vfsmount lock must be held for write
178 */
83adc753 179unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
180{
181#ifdef CONFIG_SMP
f03c6599 182 unsigned int count = 0;
b3e19d92
NP
183 int cpu;
184
185 for_each_possible_cpu(cpu) {
68e8a9fe 186 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
187 }
188
189 return count;
190#else
68e8a9fe 191 return mnt->mnt_count;
b3e19d92
NP
192#endif
193}
194
87b95ce0
AV
195static void drop_mountpoint(struct fs_pin *p)
196{
197 struct mount *m = container_of(p, struct mount, mnt_umount);
198 dput(m->mnt_ex_mountpoint);
199 pin_remove(p);
200 mntput(&m->mnt);
201}
202
b105e270 203static struct mount *alloc_vfsmnt(const char *name)
1da177e4 204{
c63181e6
AV
205 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
206 if (mnt) {
73cd49ec
MS
207 int err;
208
c63181e6 209 err = mnt_alloc_id(mnt);
88b38782
LZ
210 if (err)
211 goto out_free_cache;
212
213 if (name) {
fcc139ae 214 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 215 if (!mnt->mnt_devname)
88b38782 216 goto out_free_id;
73cd49ec
MS
217 }
218
b3e19d92 219#ifdef CONFIG_SMP
c63181e6
AV
220 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
221 if (!mnt->mnt_pcp)
b3e19d92
NP
222 goto out_free_devname;
223
c63181e6 224 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 225#else
c63181e6
AV
226 mnt->mnt_count = 1;
227 mnt->mnt_writers = 0;
b3e19d92
NP
228#endif
229
38129a13 230 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
231 INIT_LIST_HEAD(&mnt->mnt_child);
232 INIT_LIST_HEAD(&mnt->mnt_mounts);
233 INIT_LIST_HEAD(&mnt->mnt_list);
234 INIT_LIST_HEAD(&mnt->mnt_expire);
235 INIT_LIST_HEAD(&mnt->mnt_share);
236 INIT_LIST_HEAD(&mnt->mnt_slave_list);
237 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 238 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 239 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 241 }
c63181e6 242 return mnt;
88b38782 243
d3ef3d73 244#ifdef CONFIG_SMP
245out_free_devname:
fcc139ae 246 kfree_const(mnt->mnt_devname);
d3ef3d73 247#endif
88b38782 248out_free_id:
c63181e6 249 mnt_free_id(mnt);
88b38782 250out_free_cache:
c63181e6 251 kmem_cache_free(mnt_cache, mnt);
88b38782 252 return NULL;
1da177e4
LT
253}
254
3d733633
DH
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
2e4b7fcd
DH
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
bc98a42c 278 if (sb_rdonly(mnt->mnt_sb))
2e4b7fcd
DH
279 return 1;
280 return 0;
3d733633
DH
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
83adc753 284static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 285{
286#ifdef CONFIG_SMP
68e8a9fe 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 288#else
68e8a9fe 289 mnt->mnt_writers++;
d3ef3d73 290#endif
291}
3d733633 292
83adc753 293static inline void mnt_dec_writers(struct mount *mnt)
3d733633 294{
d3ef3d73 295#ifdef CONFIG_SMP
68e8a9fe 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 297#else
68e8a9fe 298 mnt->mnt_writers--;
d3ef3d73 299#endif
3d733633 300}
3d733633 301
83adc753 302static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 303{
d3ef3d73 304#ifdef CONFIG_SMP
305 unsigned int count = 0;
3d733633 306 int cpu;
3d733633
DH
307
308 for_each_possible_cpu(cpu) {
68e8a9fe 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 310 }
3d733633 311
d3ef3d73 312 return count;
313#else
314 return mnt->mnt_writers;
315#endif
3d733633
DH
316}
317
4ed5e82f
MS
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
325}
326
8366025e 327/*
eb04c282
JK
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
8366025e
DH
332 */
333/**
eb04c282 334 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 335 * @m: the mount on which to take a write
8366025e 336 *
eb04c282
JK
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
8366025e 342 */
eb04c282 343int __mnt_want_write(struct vfsmount *m)
8366025e 344{
83adc753 345 struct mount *mnt = real_mount(m);
3d733633 346 int ret = 0;
3d733633 347
d3ef3d73 348 preempt_disable();
c6653a83 349 mnt_inc_writers(mnt);
d3ef3d73 350 /*
c6653a83 351 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
354 */
355 smp_mb();
6aa7de05 356 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 357 cpu_relax();
358 /*
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
362 */
363 smp_rmb();
4ed5e82f 364 if (mnt_is_readonly(m)) {
c6653a83 365 mnt_dec_writers(mnt);
3d733633 366 ret = -EROFS;
3d733633 367 }
d3ef3d73 368 preempt_enable();
eb04c282
JK
369
370 return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384 int ret;
385
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
3d733633 390 return ret;
8366025e
DH
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
96029c4e 394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
83adc753 412 mnt_inc_writers(real_mount(mnt));
96029c4e 413 preempt_enable();
414 return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
eb04c282 419 * __mnt_want_write_file - get write access to a file's mount
96029c4e 420 * @file: the file who's mount on which to take a write
421 *
eb04c282 422 * This is like __mnt_want_write, but it takes a file and can
96029c4e 423 * do some optimisations if the file is open for write already
424 */
eb04c282 425int __mnt_want_write_file(struct file *file)
96029c4e 426{
83f936c7 427 if (!(file->f_mode & FMODE_WRITER))
eb04c282 428 return __mnt_want_write(file->f_path.mnt);
96029c4e 429 else
430 return mnt_clone_write(file->f_path.mnt);
431}
eb04c282
JK
432
433/**
7c6893e3 434 * mnt_want_write_file_path - get write access to a file's mount
eb04c282
JK
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
7c6893e3
MS
439 *
440 * Called by the vfs for cases when we have an open file at hand, but will do an
441 * inode operation on it (important distinction for files opened on overlayfs,
442 * since the file operations will come from the real underlying file, while
443 * inode operations come from the overlay).
eb04c282 444 */
7c6893e3 445int mnt_want_write_file_path(struct file *file)
eb04c282
JK
446{
447 int ret;
448
449 sb_start_write(file->f_path.mnt->mnt_sb);
450 ret = __mnt_want_write_file(file);
451 if (ret)
452 sb_end_write(file->f_path.mnt->mnt_sb);
453 return ret;
454}
7c6893e3
MS
455
456static inline int may_write_real(struct file *file)
457{
458 struct dentry *dentry = file->f_path.dentry;
459 struct dentry *upperdentry;
460
461 /* Writable file? */
462 if (file->f_mode & FMODE_WRITER)
463 return 0;
464
465 /* Not overlayfs? */
466 if (likely(!(dentry->d_flags & DCACHE_OP_REAL)))
467 return 0;
468
469 /* File refers to upper, writable layer? */
470 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
954c736f
AG
471 if (upperdentry &&
472 (file_inode(file) == d_inode(upperdentry) ||
473 file_inode(file) == d_inode(dentry)))
7c6893e3
MS
474 return 0;
475
476 /* Lower layer: can't write to real file, sorry... */
477 return -EPERM;
478}
479
480/**
481 * mnt_want_write_file - get write access to a file's mount
482 * @file: the file who's mount on which to take a write
483 *
484 * This is like mnt_want_write, but it takes a file and can
485 * do some optimisations if the file is open for write already
486 *
487 * Mostly called by filesystems from their ioctl operation before performing
488 * modification. On overlayfs this needs to check if the file is on a read-only
489 * lower layer and deny access in that case.
490 */
491int mnt_want_write_file(struct file *file)
492{
493 int ret;
494
495 ret = may_write_real(file);
496 if (!ret) {
497 sb_start_write(file_inode(file)->i_sb);
498 ret = __mnt_want_write_file(file);
499 if (ret)
500 sb_end_write(file_inode(file)->i_sb);
501 }
502 return ret;
503}
96029c4e 504EXPORT_SYMBOL_GPL(mnt_want_write_file);
505
8366025e 506/**
eb04c282 507 * __mnt_drop_write - give up write access to a mount
8366025e
DH
508 * @mnt: the mount on which to give up write access
509 *
510 * Tells the low-level filesystem that we are done
511 * performing writes to it. Must be matched with
eb04c282 512 * __mnt_want_write() call above.
8366025e 513 */
eb04c282 514void __mnt_drop_write(struct vfsmount *mnt)
8366025e 515{
d3ef3d73 516 preempt_disable();
83adc753 517 mnt_dec_writers(real_mount(mnt));
d3ef3d73 518 preempt_enable();
8366025e 519}
c088e31d 520EXPORT_SYMBOL_GPL(__mnt_drop_write);
eb04c282
JK
521
522/**
523 * mnt_drop_write - give up write access to a mount
524 * @mnt: the mount on which to give up write access
525 *
526 * Tells the low-level filesystem that we are done performing writes to it and
527 * also allows filesystem to be frozen again. Must be matched with
528 * mnt_want_write() call above.
529 */
530void mnt_drop_write(struct vfsmount *mnt)
531{
532 __mnt_drop_write(mnt);
533 sb_end_write(mnt->mnt_sb);
534}
8366025e
DH
535EXPORT_SYMBOL_GPL(mnt_drop_write);
536
eb04c282
JK
537void __mnt_drop_write_file(struct file *file)
538{
539 __mnt_drop_write(file->f_path.mnt);
540}
541
7c6893e3 542void mnt_drop_write_file_path(struct file *file)
2a79f17e
AV
543{
544 mnt_drop_write(file->f_path.mnt);
545}
7c6893e3
MS
546
547void mnt_drop_write_file(struct file *file)
548{
549 __mnt_drop_write(file->f_path.mnt);
550 sb_end_write(file_inode(file)->i_sb);
551}
2a79f17e
AV
552EXPORT_SYMBOL(mnt_drop_write_file);
553
83adc753 554static int mnt_make_readonly(struct mount *mnt)
8366025e 555{
3d733633
DH
556 int ret = 0;
557
719ea2fb 558 lock_mount_hash();
83adc753 559 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 560 /*
d3ef3d73 561 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
562 * should be visible before we do.
3d733633 563 */
d3ef3d73 564 smp_mb();
565
3d733633 566 /*
d3ef3d73 567 * With writers on hold, if this value is zero, then there are
568 * definitely no active writers (although held writers may subsequently
569 * increment the count, they'll have to wait, and decrement it after
570 * seeing MNT_READONLY).
571 *
572 * It is OK to have counter incremented on one CPU and decremented on
573 * another: the sum will add up correctly. The danger would be when we
574 * sum up each counter, if we read a counter before it is incremented,
575 * but then read another CPU's count which it has been subsequently
576 * decremented from -- we would see more decrements than we should.
577 * MNT_WRITE_HOLD protects against this scenario, because
578 * mnt_want_write first increments count, then smp_mb, then spins on
579 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
580 * we're counting up here.
3d733633 581 */
c6653a83 582 if (mnt_get_writers(mnt) > 0)
d3ef3d73 583 ret = -EBUSY;
584 else
83adc753 585 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 586 /*
587 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
588 * that become unheld will see MNT_READONLY.
589 */
590 smp_wmb();
83adc753 591 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 592 unlock_mount_hash();
3d733633 593 return ret;
8366025e 594}
8366025e 595
83adc753 596static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 597{
719ea2fb 598 lock_mount_hash();
83adc753 599 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 600 unlock_mount_hash();
2e4b7fcd
DH
601}
602
4ed5e82f
MS
603int sb_prepare_remount_readonly(struct super_block *sb)
604{
605 struct mount *mnt;
606 int err = 0;
607
8e8b8796
MS
608 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
609 if (atomic_long_read(&sb->s_remove_count))
610 return -EBUSY;
611
719ea2fb 612 lock_mount_hash();
4ed5e82f
MS
613 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
614 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
615 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
616 smp_mb();
617 if (mnt_get_writers(mnt) > 0) {
618 err = -EBUSY;
619 break;
620 }
621 }
622 }
8e8b8796
MS
623 if (!err && atomic_long_read(&sb->s_remove_count))
624 err = -EBUSY;
625
4ed5e82f
MS
626 if (!err) {
627 sb->s_readonly_remount = 1;
628 smp_wmb();
629 }
630 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
631 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
632 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
633 }
719ea2fb 634 unlock_mount_hash();
4ed5e82f
MS
635
636 return err;
637}
638
b105e270 639static void free_vfsmnt(struct mount *mnt)
1da177e4 640{
fcc139ae 641 kfree_const(mnt->mnt_devname);
d3ef3d73 642#ifdef CONFIG_SMP
68e8a9fe 643 free_percpu(mnt->mnt_pcp);
d3ef3d73 644#endif
b105e270 645 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
646}
647
8ffcb32e
DH
648static void delayed_free_vfsmnt(struct rcu_head *head)
649{
650 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
651}
652
48a066e7 653/* call under rcu_read_lock */
294d71ff 654int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
655{
656 struct mount *mnt;
657 if (read_seqretry(&mount_lock, seq))
294d71ff 658 return 1;
48a066e7 659 if (bastard == NULL)
294d71ff 660 return 0;
48a066e7
AV
661 mnt = real_mount(bastard);
662 mnt_add_count(mnt, 1);
663 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 664 return 0;
48a066e7
AV
665 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
666 mnt_add_count(mnt, -1);
294d71ff
AV
667 return 1;
668 }
669 return -1;
670}
671
672/* call under rcu_read_lock */
673bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
674{
675 int res = __legitimize_mnt(bastard, seq);
676 if (likely(!res))
677 return true;
678 if (unlikely(res < 0)) {
679 rcu_read_unlock();
680 mntput(bastard);
681 rcu_read_lock();
48a066e7 682 }
48a066e7
AV
683 return false;
684}
685
1da177e4 686/*
474279dc 687 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 688 * call under rcu_read_lock()
1da177e4 689 */
474279dc 690struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 691{
38129a13 692 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
693 struct mount *p;
694
38129a13 695 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
696 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
697 return p;
698 return NULL;
699}
700
a05964f3 701/*
f015f126
DH
702 * lookup_mnt - Return the first child mount mounted at path
703 *
704 * "First" means first mounted chronologically. If you create the
705 * following mounts:
706 *
707 * mount /dev/sda1 /mnt
708 * mount /dev/sda2 /mnt
709 * mount /dev/sda3 /mnt
710 *
711 * Then lookup_mnt() on the base /mnt dentry in the root mount will
712 * return successively the root dentry and vfsmount of /dev/sda1, then
713 * /dev/sda2, then /dev/sda3, then NULL.
714 *
715 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 716 */
ca71cf71 717struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 718{
c7105365 719 struct mount *child_mnt;
48a066e7
AV
720 struct vfsmount *m;
721 unsigned seq;
99b7db7b 722
48a066e7
AV
723 rcu_read_lock();
724 do {
725 seq = read_seqbegin(&mount_lock);
726 child_mnt = __lookup_mnt(path->mnt, path->dentry);
727 m = child_mnt ? &child_mnt->mnt : NULL;
728 } while (!legitimize_mnt(m, seq));
729 rcu_read_unlock();
730 return m;
a05964f3
RP
731}
732
7af1364f
EB
733/*
734 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
735 * current mount namespace.
736 *
737 * The common case is dentries are not mountpoints at all and that
738 * test is handled inline. For the slow case when we are actually
739 * dealing with a mountpoint of some kind, walk through all of the
740 * mounts in the current mount namespace and test to see if the dentry
741 * is a mountpoint.
742 *
743 * The mount_hashtable is not usable in the context because we
744 * need to identify all mounts that may be in the current mount
745 * namespace not just a mount that happens to have some specified
746 * parent mount.
747 */
748bool __is_local_mountpoint(struct dentry *dentry)
749{
750 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
751 struct mount *mnt;
752 bool is_covered = false;
753
754 if (!d_mountpoint(dentry))
755 goto out;
756
757 down_read(&namespace_sem);
758 list_for_each_entry(mnt, &ns->list, mnt_list) {
759 is_covered = (mnt->mnt_mountpoint == dentry);
760 if (is_covered)
761 break;
762 }
763 up_read(&namespace_sem);
764out:
765 return is_covered;
766}
767
e2dfa935 768static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 769{
0818bf27 770 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
771 struct mountpoint *mp;
772
0818bf27 773 hlist_for_each_entry(mp, chain, m_hash) {
84d17192
AV
774 if (mp->m_dentry == dentry) {
775 /* might be worth a WARN_ON() */
776 if (d_unlinked(dentry))
777 return ERR_PTR(-ENOENT);
778 mp->m_count++;
779 return mp;
780 }
781 }
e2dfa935
EB
782 return NULL;
783}
784
3895dbf8 785static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 786{
3895dbf8 787 struct mountpoint *mp, *new = NULL;
e2dfa935 788 int ret;
84d17192 789
3895dbf8
EB
790 if (d_mountpoint(dentry)) {
791mountpoint:
792 read_seqlock_excl(&mount_lock);
793 mp = lookup_mountpoint(dentry);
794 read_sequnlock_excl(&mount_lock);
795 if (mp)
796 goto done;
797 }
798
799 if (!new)
800 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
801 if (!new)
84d17192
AV
802 return ERR_PTR(-ENOMEM);
803
3895dbf8
EB
804
805 /* Exactly one processes may set d_mounted */
eed81007 806 ret = d_set_mounted(dentry);
eed81007 807
3895dbf8
EB
808 /* Someone else set d_mounted? */
809 if (ret == -EBUSY)
810 goto mountpoint;
811
812 /* The dentry is not available as a mountpoint? */
813 mp = ERR_PTR(ret);
814 if (ret)
815 goto done;
816
817 /* Add the new mountpoint to the hash table */
818 read_seqlock_excl(&mount_lock);
819 new->m_dentry = dentry;
820 new->m_count = 1;
821 hlist_add_head(&new->m_hash, mp_hash(dentry));
822 INIT_HLIST_HEAD(&new->m_list);
823 read_sequnlock_excl(&mount_lock);
824
825 mp = new;
826 new = NULL;
827done:
828 kfree(new);
84d17192
AV
829 return mp;
830}
831
832static void put_mountpoint(struct mountpoint *mp)
833{
834 if (!--mp->m_count) {
835 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 836 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
837 spin_lock(&dentry->d_lock);
838 dentry->d_flags &= ~DCACHE_MOUNTED;
839 spin_unlock(&dentry->d_lock);
0818bf27 840 hlist_del(&mp->m_hash);
84d17192
AV
841 kfree(mp);
842 }
843}
844
143c8c91 845static inline int check_mnt(struct mount *mnt)
1da177e4 846{
6b3286ed 847 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
848}
849
c088e31d
SF
850/* for aufs, CONFIG_AUFS_BR_FUSE */
851int is_current_mnt_ns(struct vfsmount *mnt)
852{
853 return check_mnt(real_mount(mnt));
854}
855EXPORT_SYMBOL_GPL(is_current_mnt_ns);
856
99b7db7b
NP
857/*
858 * vfsmount lock must be held for write
859 */
6b3286ed 860static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
861{
862 if (ns) {
863 ns->event = ++event;
864 wake_up_interruptible(&ns->poll);
865 }
866}
867
99b7db7b
NP
868/*
869 * vfsmount lock must be held for write
870 */
6b3286ed 871static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
872{
873 if (ns && ns->event != event) {
874 ns->event = event;
875 wake_up_interruptible(&ns->poll);
876 }
877}
878
99b7db7b
NP
879/*
880 * vfsmount lock must be held for write
881 */
7bdb11de 882static void unhash_mnt(struct mount *mnt)
419148da 883{
0714a533 884 mnt->mnt_parent = mnt;
a73324da 885 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 886 list_del_init(&mnt->mnt_child);
38129a13 887 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 888 hlist_del_init(&mnt->mnt_mp_list);
84d17192
AV
889 put_mountpoint(mnt->mnt_mp);
890 mnt->mnt_mp = NULL;
1da177e4
LT
891}
892
7bdb11de
EB
893/*
894 * vfsmount lock must be held for write
895 */
896static void detach_mnt(struct mount *mnt, struct path *old_path)
897{
898 old_path->dentry = mnt->mnt_mountpoint;
899 old_path->mnt = &mnt->mnt_parent->mnt;
900 unhash_mnt(mnt);
901}
902
6a46c573
EB
903/*
904 * vfsmount lock must be held for write
905 */
906static void umount_mnt(struct mount *mnt)
907{
908 /* old mountpoint will be dropped when we can do that */
909 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
910 unhash_mnt(mnt);
911}
912
99b7db7b
NP
913/*
914 * vfsmount lock must be held for write
915 */
84d17192
AV
916void mnt_set_mountpoint(struct mount *mnt,
917 struct mountpoint *mp,
44d964d6 918 struct mount *child_mnt)
b90fa9ae 919{
84d17192 920 mp->m_count++;
3a2393d7 921 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 922 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 923 child_mnt->mnt_parent = mnt;
84d17192 924 child_mnt->mnt_mp = mp;
0a5eb7c8 925 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
926}
927
1064f874
EB
928static void __attach_mnt(struct mount *mnt, struct mount *parent)
929{
930 hlist_add_head_rcu(&mnt->mnt_hash,
931 m_hash(&parent->mnt, mnt->mnt_mountpoint));
932 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
933}
934
99b7db7b
NP
935/*
936 * vfsmount lock must be held for write
937 */
84d17192
AV
938static void attach_mnt(struct mount *mnt,
939 struct mount *parent,
940 struct mountpoint *mp)
1da177e4 941{
84d17192 942 mnt_set_mountpoint(parent, mp, mnt);
1064f874 943 __attach_mnt(mnt, parent);
b90fa9ae
RP
944}
945
1064f874 946void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 947{
1064f874
EB
948 struct mountpoint *old_mp = mnt->mnt_mp;
949 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
950 struct mount *old_parent = mnt->mnt_parent;
951
952 list_del_init(&mnt->mnt_child);
953 hlist_del_init(&mnt->mnt_mp_list);
954 hlist_del_init_rcu(&mnt->mnt_hash);
955
956 attach_mnt(mnt, parent, mp);
957
958 put_mountpoint(old_mp);
959
960 /*
961 * Safely avoid even the suggestion this code might sleep or
962 * lock the mount hash by taking advantage of the knowledge that
963 * mnt_change_mountpoint will not release the final reference
964 * to a mountpoint.
965 *
966 * During mounting, the mount passed in as the parent mount will
967 * continue to use the old mountpoint and during unmounting, the
968 * old mountpoint will continue to exist until namespace_unlock,
969 * which happens well after mnt_change_mountpoint.
970 */
971 spin_lock(&old_mountpoint->d_lock);
972 old_mountpoint->d_lockref.count--;
973 spin_unlock(&old_mountpoint->d_lock);
974
975 mnt_add_count(old_parent, -1);
12a5b529
AV
976}
977
b90fa9ae 978/*
99b7db7b 979 * vfsmount lock must be held for write
b90fa9ae 980 */
1064f874 981static void commit_tree(struct mount *mnt)
b90fa9ae 982{
0714a533 983 struct mount *parent = mnt->mnt_parent;
83adc753 984 struct mount *m;
b90fa9ae 985 LIST_HEAD(head);
143c8c91 986 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 987
0714a533 988 BUG_ON(parent == mnt);
b90fa9ae 989
1a4eeaf2 990 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 991 list_for_each_entry(m, &head, mnt_list)
143c8c91 992 m->mnt_ns = n;
f03c6599 993
b90fa9ae
RP
994 list_splice(&head, n->list.prev);
995
d2921684
EB
996 n->mounts += n->pending_mounts;
997 n->pending_mounts = 0;
998
1064f874 999 __attach_mnt(mnt, parent);
6b3286ed 1000 touch_mnt_namespace(n);
1da177e4
LT
1001}
1002
909b0a88 1003static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 1004{
6b41d536
AV
1005 struct list_head *next = p->mnt_mounts.next;
1006 if (next == &p->mnt_mounts) {
1da177e4 1007 while (1) {
909b0a88 1008 if (p == root)
1da177e4 1009 return NULL;
6b41d536
AV
1010 next = p->mnt_child.next;
1011 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 1012 break;
0714a533 1013 p = p->mnt_parent;
1da177e4
LT
1014 }
1015 }
6b41d536 1016 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
1017}
1018
315fc83e 1019static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 1020{
6b41d536
AV
1021 struct list_head *prev = p->mnt_mounts.prev;
1022 while (prev != &p->mnt_mounts) {
1023 p = list_entry(prev, struct mount, mnt_child);
1024 prev = p->mnt_mounts.prev;
9676f0c6
RP
1025 }
1026 return p;
1027}
1028
9d412a43
AV
1029struct vfsmount *
1030vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
1031{
b105e270 1032 struct mount *mnt;
9d412a43
AV
1033 struct dentry *root;
1034
1035 if (!type)
1036 return ERR_PTR(-ENODEV);
1037
1038 mnt = alloc_vfsmnt(name);
1039 if (!mnt)
1040 return ERR_PTR(-ENOMEM);
1041
e462ec50 1042 if (flags & SB_KERNMOUNT)
b105e270 1043 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
1044
1045 root = mount_fs(type, flags, name, data);
1046 if (IS_ERR(root)) {
8ffcb32e 1047 mnt_free_id(mnt);
9d412a43
AV
1048 free_vfsmnt(mnt);
1049 return ERR_CAST(root);
1050 }
1051
b105e270
AV
1052 mnt->mnt.mnt_root = root;
1053 mnt->mnt.mnt_sb = root->d_sb;
a73324da 1054 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1055 mnt->mnt_parent = mnt;
719ea2fb 1056 lock_mount_hash();
39f7c4db 1057 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
719ea2fb 1058 unlock_mount_hash();
b105e270 1059 return &mnt->mnt;
9d412a43
AV
1060}
1061EXPORT_SYMBOL_GPL(vfs_kern_mount);
1062
93faccbb
EB
1063struct vfsmount *
1064vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1065 const char *name, void *data)
1066{
1067 /* Until it is worked out how to pass the user namespace
1068 * through from the parent mount to the submount don't support
1069 * unprivileged mounts with submounts.
1070 */
1071 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1072 return ERR_PTR(-EPERM);
1073
e462ec50 1074 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1075}
1076EXPORT_SYMBOL_GPL(vfs_submount);
1077
87129cc0 1078static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1079 int flag)
1da177e4 1080{
87129cc0 1081 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1082 struct mount *mnt;
1083 int err;
1da177e4 1084
be34d1a3
DH
1085 mnt = alloc_vfsmnt(old->mnt_devname);
1086 if (!mnt)
1087 return ERR_PTR(-ENOMEM);
719f5d7f 1088
7a472ef4 1089 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1090 mnt->mnt_group_id = 0; /* not a peer of original */
1091 else
1092 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1093
be34d1a3
DH
1094 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1095 err = mnt_alloc_group_id(mnt);
1096 if (err)
1097 goto out_free;
1da177e4 1098 }
be34d1a3 1099
5759c7e2
AV
1100 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1101 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
132c94e3 1102 /* Don't allow unprivileged users to change mount flags */
9566d674
EB
1103 if (flag & CL_UNPRIVILEGED) {
1104 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1105
1106 if (mnt->mnt.mnt_flags & MNT_READONLY)
1107 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1108
1109 if (mnt->mnt.mnt_flags & MNT_NODEV)
1110 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1111
1112 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1113 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1114
1115 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1116 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1117 }
132c94e3 1118
5ff9d8a6 1119 /* Don't allow unprivileged users to reveal what is under a mount */
381cacb1
EB
1120 if ((flag & CL_UNPRIVILEGED) &&
1121 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
5ff9d8a6
EB
1122 mnt->mnt.mnt_flags |= MNT_LOCKED;
1123
be34d1a3
DH
1124 atomic_inc(&sb->s_active);
1125 mnt->mnt.mnt_sb = sb;
1126 mnt->mnt.mnt_root = dget(root);
1127 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1128 mnt->mnt_parent = mnt;
719ea2fb 1129 lock_mount_hash();
be34d1a3 1130 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1131 unlock_mount_hash();
be34d1a3 1132
7a472ef4
EB
1133 if ((flag & CL_SLAVE) ||
1134 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1135 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1136 mnt->mnt_master = old;
1137 CLEAR_MNT_SHARED(mnt);
1138 } else if (!(flag & CL_PRIVATE)) {
1139 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1140 list_add(&mnt->mnt_share, &old->mnt_share);
1141 if (IS_MNT_SLAVE(old))
1142 list_add(&mnt->mnt_slave, &old->mnt_slave);
1143 mnt->mnt_master = old->mnt_master;
5235d448
AV
1144 } else {
1145 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1146 }
1147 if (flag & CL_MAKE_SHARED)
1148 set_mnt_shared(mnt);
1149
1150 /* stick the duplicate mount on the same expiry list
1151 * as the original if that was on one */
1152 if (flag & CL_EXPIRE) {
1153 if (!list_empty(&old->mnt_expire))
1154 list_add(&mnt->mnt_expire, &old->mnt_expire);
1155 }
1156
cb338d06 1157 return mnt;
719f5d7f
MS
1158
1159 out_free:
8ffcb32e 1160 mnt_free_id(mnt);
719f5d7f 1161 free_vfsmnt(mnt);
be34d1a3 1162 return ERR_PTR(err);
1da177e4
LT
1163}
1164
9ea459e1
AV
1165static void cleanup_mnt(struct mount *mnt)
1166{
1167 /*
1168 * This probably indicates that somebody messed
1169 * up a mnt_want/drop_write() pair. If this
1170 * happens, the filesystem was probably unable
1171 * to make r/w->r/o transitions.
1172 */
1173 /*
1174 * The locking used to deal with mnt_count decrement provides barriers,
1175 * so mnt_get_writers() below is safe.
1176 */
1177 WARN_ON(mnt_get_writers(mnt));
1178 if (unlikely(mnt->mnt_pins.first))
1179 mnt_pin_kill(mnt);
1180 fsnotify_vfsmount_delete(&mnt->mnt);
1181 dput(mnt->mnt.mnt_root);
1182 deactivate_super(mnt->mnt.mnt_sb);
1183 mnt_free_id(mnt);
1184 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1185}
1186
1187static void __cleanup_mnt(struct rcu_head *head)
1188{
1189 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1190}
1191
1192static LLIST_HEAD(delayed_mntput_list);
1193static void delayed_mntput(struct work_struct *unused)
1194{
1195 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1196 struct mount *m, *t;
9ea459e1 1197
29785735
BP
1198 llist_for_each_entry_safe(m, t, node, mnt_llist)
1199 cleanup_mnt(m);
9ea459e1
AV
1200}
1201static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1202
900148dc 1203static void mntput_no_expire(struct mount *mnt)
b3e19d92 1204{
48a066e7 1205 rcu_read_lock();
31be12af
AV
1206 if (likely(READ_ONCE(mnt->mnt_ns))) {
1207 /*
1208 * Since we don't do lock_mount_hash() here,
1209 * ->mnt_ns can change under us. However, if it's
1210 * non-NULL, then there's a reference that won't
1211 * be dropped until after an RCU delay done after
1212 * turning ->mnt_ns NULL. So if we observe it
1213 * non-NULL under rcu_read_lock(), the reference
1214 * we are dropping is not the final one.
1215 */
1216 mnt_add_count(mnt, -1);
48a066e7 1217 rcu_read_unlock();
f03c6599 1218 return;
b3e19d92 1219 }
719ea2fb 1220 lock_mount_hash();
31be12af 1221 mnt_add_count(mnt, -1);
b3e19d92 1222 if (mnt_get_count(mnt)) {
48a066e7 1223 rcu_read_unlock();
719ea2fb 1224 unlock_mount_hash();
99b7db7b
NP
1225 return;
1226 }
48a066e7
AV
1227 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1228 rcu_read_unlock();
1229 unlock_mount_hash();
1230 return;
1231 }
1232 mnt->mnt.mnt_flags |= MNT_DOOMED;
1233 rcu_read_unlock();
962830df 1234
39f7c4db 1235 list_del(&mnt->mnt_instance);
ce07d891
EB
1236
1237 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1238 struct mount *p, *tmp;
1239 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1240 umount_mnt(p);
1241 }
1242 }
719ea2fb 1243 unlock_mount_hash();
649a795a 1244
9ea459e1
AV
1245 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1246 struct task_struct *task = current;
1247 if (likely(!(task->flags & PF_KTHREAD))) {
1248 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1249 if (!task_work_add(task, &mnt->mnt_rcu, true))
1250 return;
1251 }
1252 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1253 schedule_delayed_work(&delayed_mntput_work, 1);
1254 return;
1255 }
1256 cleanup_mnt(mnt);
b3e19d92 1257}
b3e19d92
NP
1258
1259void mntput(struct vfsmount *mnt)
1260{
1261 if (mnt) {
863d684f 1262 struct mount *m = real_mount(mnt);
b3e19d92 1263 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1264 if (unlikely(m->mnt_expiry_mark))
1265 m->mnt_expiry_mark = 0;
1266 mntput_no_expire(m);
b3e19d92
NP
1267 }
1268}
1269EXPORT_SYMBOL(mntput);
1270
1271struct vfsmount *mntget(struct vfsmount *mnt)
1272{
1273 if (mnt)
83adc753 1274 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1275 return mnt;
1276}
1277EXPORT_SYMBOL(mntget);
1278
c6609c0a
IK
1279/* path_is_mountpoint() - Check if path is a mount in the current
1280 * namespace.
1281 *
1282 * d_mountpoint() can only be used reliably to establish if a dentry is
1283 * not mounted in any namespace and that common case is handled inline.
1284 * d_mountpoint() isn't aware of the possibility there may be multiple
1285 * mounts using a given dentry in a different namespace. This function
1286 * checks if the passed in path is a mountpoint rather than the dentry
1287 * alone.
1288 */
1289bool path_is_mountpoint(const struct path *path)
1290{
1291 unsigned seq;
1292 bool res;
1293
1294 if (!d_mountpoint(path->dentry))
1295 return false;
1296
1297 rcu_read_lock();
1298 do {
1299 seq = read_seqbegin(&mount_lock);
1300 res = __path_is_mountpoint(path);
1301 } while (read_seqretry(&mount_lock, seq));
1302 rcu_read_unlock();
1303
1304 return res;
1305}
1306EXPORT_SYMBOL(path_is_mountpoint);
1307
ca71cf71 1308struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1309{
3064c356
AV
1310 struct mount *p;
1311 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1312 if (IS_ERR(p))
1313 return ERR_CAST(p);
1314 p->mnt.mnt_flags |= MNT_INTERNAL;
1315 return &p->mnt;
7b7b1ace 1316}
1da177e4 1317
a1a2c409 1318#ifdef CONFIG_PROC_FS
0226f492 1319/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1320static void *m_start(struct seq_file *m, loff_t *pos)
1321{
ede1bf0d 1322 struct proc_mounts *p = m->private;
1da177e4 1323
390c6843 1324 down_read(&namespace_sem);
c7999c36
AV
1325 if (p->cached_event == p->ns->event) {
1326 void *v = p->cached_mount;
1327 if (*pos == p->cached_index)
1328 return v;
1329 if (*pos == p->cached_index + 1) {
1330 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1331 return p->cached_mount = v;
1332 }
1333 }
1334
1335 p->cached_event = p->ns->event;
1336 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1337 p->cached_index = *pos;
1338 return p->cached_mount;
1da177e4
LT
1339}
1340
1341static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1342{
ede1bf0d 1343 struct proc_mounts *p = m->private;
b0765fb8 1344
c7999c36
AV
1345 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1346 p->cached_index = *pos;
1347 return p->cached_mount;
1da177e4
LT
1348}
1349
1350static void m_stop(struct seq_file *m, void *v)
1351{
390c6843 1352 up_read(&namespace_sem);
1da177e4
LT
1353}
1354
0226f492 1355static int m_show(struct seq_file *m, void *v)
2d4d4864 1356{
ede1bf0d 1357 struct proc_mounts *p = m->private;
1a4eeaf2 1358 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1359 return p->show(m, &r->mnt);
1da177e4
LT
1360}
1361
a1a2c409 1362const struct seq_operations mounts_op = {
1da177e4
LT
1363 .start = m_start,
1364 .next = m_next,
1365 .stop = m_stop,
0226f492 1366 .show = m_show,
b4629fe2 1367};
a1a2c409 1368#endif /* CONFIG_PROC_FS */
b4629fe2 1369
1da177e4
LT
1370/**
1371 * may_umount_tree - check if a mount tree is busy
1372 * @mnt: root of mount tree
1373 *
1374 * This is called to check if a tree of mounts has any
1375 * open files, pwds, chroots or sub mounts that are
1376 * busy.
1377 */
909b0a88 1378int may_umount_tree(struct vfsmount *m)
1da177e4 1379{
909b0a88 1380 struct mount *mnt = real_mount(m);
36341f64
RP
1381 int actual_refs = 0;
1382 int minimum_refs = 0;
315fc83e 1383 struct mount *p;
909b0a88 1384 BUG_ON(!m);
1da177e4 1385
b3e19d92 1386 /* write lock needed for mnt_get_count */
719ea2fb 1387 lock_mount_hash();
909b0a88 1388 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1389 actual_refs += mnt_get_count(p);
1da177e4 1390 minimum_refs += 2;
1da177e4 1391 }
719ea2fb 1392 unlock_mount_hash();
1da177e4
LT
1393
1394 if (actual_refs > minimum_refs)
e3474a8e 1395 return 0;
1da177e4 1396
e3474a8e 1397 return 1;
1da177e4
LT
1398}
1399
1400EXPORT_SYMBOL(may_umount_tree);
1401
1402/**
1403 * may_umount - check if a mount point is busy
1404 * @mnt: root of mount
1405 *
1406 * This is called to check if a mount point has any
1407 * open files, pwds, chroots or sub mounts. If the
1408 * mount has sub mounts this will return busy
1409 * regardless of whether the sub mounts are busy.
1410 *
1411 * Doesn't take quota and stuff into account. IOW, in some cases it will
1412 * give false negatives. The main reason why it's here is that we need
1413 * a non-destructive way to look for easily umountable filesystems.
1414 */
1415int may_umount(struct vfsmount *mnt)
1416{
e3474a8e 1417 int ret = 1;
8ad08d8a 1418 down_read(&namespace_sem);
719ea2fb 1419 lock_mount_hash();
1ab59738 1420 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1421 ret = 0;
719ea2fb 1422 unlock_mount_hash();
8ad08d8a 1423 up_read(&namespace_sem);
a05964f3 1424 return ret;
1da177e4
LT
1425}
1426
1427EXPORT_SYMBOL(may_umount);
1428
38129a13 1429static HLIST_HEAD(unmounted); /* protected by namespace_sem */
e3197d83 1430
97216be0 1431static void namespace_unlock(void)
70fbcdf4 1432{
a3b3c562 1433 struct hlist_head head;
97216be0 1434
a3b3c562 1435 hlist_move_list(&unmounted, &head);
97216be0 1436
97216be0
AV
1437 up_write(&namespace_sem);
1438
a3b3c562
EB
1439 if (likely(hlist_empty(&head)))
1440 return;
1441
48a066e7
AV
1442 synchronize_rcu();
1443
87b95ce0 1444 group_pin_kill(&head);
70fbcdf4
RP
1445}
1446
97216be0 1447static inline void namespace_lock(void)
e3197d83 1448{
97216be0 1449 down_write(&namespace_sem);
e3197d83
AV
1450}
1451
e819f152
EB
1452enum umount_tree_flags {
1453 UMOUNT_SYNC = 1,
1454 UMOUNT_PROPAGATE = 2,
e0c9c0af 1455 UMOUNT_CONNECTED = 4,
e819f152 1456};
f2d0a123
EB
1457
1458static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1459{
1460 /* Leaving mounts connected is only valid for lazy umounts */
1461 if (how & UMOUNT_SYNC)
1462 return true;
1463
1464 /* A mount without a parent has nothing to be connected to */
1465 if (!mnt_has_parent(mnt))
1466 return true;
1467
1468 /* Because the reference counting rules change when mounts are
1469 * unmounted and connected, umounted mounts may not be
1470 * connected to mounted mounts.
1471 */
1472 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1473 return true;
1474
1475 /* Has it been requested that the mount remain connected? */
1476 if (how & UMOUNT_CONNECTED)
1477 return false;
1478
1479 /* Is the mount locked such that it needs to remain connected? */
1480 if (IS_MNT_LOCKED(mnt))
1481 return false;
1482
1483 /* By default disconnect the mount */
1484 return true;
1485}
1486
99b7db7b 1487/*
48a066e7 1488 * mount_lock must be held
99b7db7b
NP
1489 * namespace_sem must be held for write
1490 */
e819f152 1491static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1492{
c003b26f 1493 LIST_HEAD(tmp_list);
315fc83e 1494 struct mount *p;
1da177e4 1495
5d88457e
EB
1496 if (how & UMOUNT_PROPAGATE)
1497 propagate_mount_unlock(mnt);
1498
c003b26f 1499 /* Gather the mounts to umount */
590ce4bc
EB
1500 for (p = mnt; p; p = next_mnt(p, mnt)) {
1501 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1502 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1503 }
1da177e4 1504
411a938b 1505 /* Hide the mounts from mnt_mounts */
c003b26f 1506 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1507 list_del_init(&p->mnt_child);
c003b26f 1508 }
88b368f2 1509
c003b26f 1510 /* Add propogated mounts to the tmp_list */
e819f152 1511 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1512 propagate_umount(&tmp_list);
a05964f3 1513
c003b26f 1514 while (!list_empty(&tmp_list)) {
d2921684 1515 struct mnt_namespace *ns;
ce07d891 1516 bool disconnect;
c003b26f 1517 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1518 list_del_init(&p->mnt_expire);
1a4eeaf2 1519 list_del_init(&p->mnt_list);
d2921684
EB
1520 ns = p->mnt_ns;
1521 if (ns) {
1522 ns->mounts--;
1523 __touch_mnt_namespace(ns);
1524 }
143c8c91 1525 p->mnt_ns = NULL;
e819f152 1526 if (how & UMOUNT_SYNC)
48a066e7 1527 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1528
f2d0a123 1529 disconnect = disconnect_mount(p, how);
ce07d891
EB
1530
1531 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1532 disconnect ? &unmounted : NULL);
676da58d 1533 if (mnt_has_parent(p)) {
81b6b061 1534 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1535 if (!disconnect) {
1536 /* Don't forget about p */
1537 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1538 } else {
1539 umount_mnt(p);
1540 }
7c4b93d8 1541 }
0f0afb1d 1542 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1543 }
1544}
1545
b54b9be7 1546static void shrink_submounts(struct mount *mnt);
c35038be 1547
1ab59738 1548static int do_umount(struct mount *mnt, int flags)
1da177e4 1549{
1ab59738 1550 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1551 int retval;
1552
1ab59738 1553 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1554 if (retval)
1555 return retval;
1556
1557 /*
1558 * Allow userspace to request a mountpoint be expired rather than
1559 * unmounting unconditionally. Unmount only happens if:
1560 * (1) the mark is already set (the mark is cleared by mntput())
1561 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1562 */
1563 if (flags & MNT_EXPIRE) {
1ab59738 1564 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1565 flags & (MNT_FORCE | MNT_DETACH))
1566 return -EINVAL;
1567
b3e19d92
NP
1568 /*
1569 * probably don't strictly need the lock here if we examined
1570 * all race cases, but it's a slowpath.
1571 */
719ea2fb 1572 lock_mount_hash();
83adc753 1573 if (mnt_get_count(mnt) != 2) {
719ea2fb 1574 unlock_mount_hash();
1da177e4 1575 return -EBUSY;
b3e19d92 1576 }
719ea2fb 1577 unlock_mount_hash();
1da177e4 1578
863d684f 1579 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1580 return -EAGAIN;
1581 }
1582
1583 /*
1584 * If we may have to abort operations to get out of this
1585 * mount, and they will themselves hold resources we must
1586 * allow the fs to do things. In the Unix tradition of
1587 * 'Gee thats tricky lets do it in userspace' the umount_begin
1588 * might fail to complete on the first run through as other tasks
1589 * must return, and the like. Thats for the mount program to worry
1590 * about for the moment.
1591 */
1592
42faad99 1593 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1594 sb->s_op->umount_begin(sb);
42faad99 1595 }
1da177e4
LT
1596
1597 /*
1598 * No sense to grab the lock for this test, but test itself looks
1599 * somewhat bogus. Suggestions for better replacement?
1600 * Ho-hum... In principle, we might treat that as umount + switch
1601 * to rootfs. GC would eventually take care of the old vfsmount.
1602 * Actually it makes sense, especially if rootfs would contain a
1603 * /reboot - static binary that would close all descriptors and
1604 * call reboot(9). Then init(8) could umount root and exec /reboot.
1605 */
1ab59738 1606 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1607 /*
1608 * Special case for "unmounting" root ...
1609 * we just try to remount it readonly.
1610 */
1db30ec0 1611 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1612 return -EPERM;
1da177e4 1613 down_write(&sb->s_umount);
bc98a42c 1614 if (!sb_rdonly(sb))
e462ec50 1615 retval = do_remount_sb(sb, SB_RDONLY, NULL, 0);
1da177e4
LT
1616 up_write(&sb->s_umount);
1617 return retval;
1618 }
1619
97216be0 1620 namespace_lock();
719ea2fb 1621 lock_mount_hash();
1da177e4 1622
6dd96cc2
EB
1623 /* Recheck MNT_LOCKED with the locks held */
1624 retval = -EINVAL;
1625 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1626 goto out;
1627
1628 event++;
48a066e7 1629 if (flags & MNT_DETACH) {
1a4eeaf2 1630 if (!list_empty(&mnt->mnt_list))
e819f152 1631 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1632 retval = 0;
48a066e7
AV
1633 } else {
1634 shrink_submounts(mnt);
1635 retval = -EBUSY;
1636 if (!propagate_mount_busy(mnt, 2)) {
1637 if (!list_empty(&mnt->mnt_list))
e819f152 1638 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1639 retval = 0;
1640 }
1da177e4 1641 }
6dd96cc2 1642out:
719ea2fb 1643 unlock_mount_hash();
e3197d83 1644 namespace_unlock();
1da177e4
LT
1645 return retval;
1646}
1647
80b5dce8
EB
1648/*
1649 * __detach_mounts - lazily unmount all mounts on the specified dentry
1650 *
1651 * During unlink, rmdir, and d_drop it is possible to loose the path
1652 * to an existing mountpoint, and wind up leaking the mount.
1653 * detach_mounts allows lazily unmounting those mounts instead of
1654 * leaking them.
1655 *
1656 * The caller may hold dentry->d_inode->i_mutex.
1657 */
1658void __detach_mounts(struct dentry *dentry)
1659{
1660 struct mountpoint *mp;
1661 struct mount *mnt;
1662
1663 namespace_lock();
3895dbf8 1664 lock_mount_hash();
80b5dce8 1665 mp = lookup_mountpoint(dentry);
f53e5797 1666 if (IS_ERR_OR_NULL(mp))
80b5dce8
EB
1667 goto out_unlock;
1668
e06b933e 1669 event++;
80b5dce8
EB
1670 while (!hlist_empty(&mp->m_list)) {
1671 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1672 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1673 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1674 umount_mnt(mnt);
ce07d891 1675 }
e0c9c0af 1676 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1677 }
80b5dce8
EB
1678 put_mountpoint(mp);
1679out_unlock:
3895dbf8 1680 unlock_mount_hash();
80b5dce8
EB
1681 namespace_unlock();
1682}
1683
dd111b31 1684/*
9b40bc90
AV
1685 * Is the caller allowed to modify his namespace?
1686 */
1687static inline bool may_mount(void)
1688{
1689 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1690}
1691
9e8925b6
JL
1692static inline bool may_mandlock(void)
1693{
1694#ifndef CONFIG_MANDATORY_FILE_LOCKING
1695 return false;
1696#endif
95ace754 1697 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1698}
1699
1da177e4
LT
1700/*
1701 * Now umount can handle mount points as well as block devices.
1702 * This is important for filesystems which use unnamed block devices.
1703 *
1704 * We now support a flag for forced unmount like the other 'big iron'
1705 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1706 */
1707
bdc480e3 1708SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1709{
2d8f3038 1710 struct path path;
900148dc 1711 struct mount *mnt;
1da177e4 1712 int retval;
db1f05bb 1713 int lookup_flags = 0;
1da177e4 1714
db1f05bb
MS
1715 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1716 return -EINVAL;
1717
9b40bc90
AV
1718 if (!may_mount())
1719 return -EPERM;
1720
db1f05bb
MS
1721 if (!(flags & UMOUNT_NOFOLLOW))
1722 lookup_flags |= LOOKUP_FOLLOW;
1723
197df04c 1724 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1725 if (retval)
1726 goto out;
900148dc 1727 mnt = real_mount(path.mnt);
1da177e4 1728 retval = -EINVAL;
2d8f3038 1729 if (path.dentry != path.mnt->mnt_root)
1da177e4 1730 goto dput_and_out;
143c8c91 1731 if (!check_mnt(mnt))
1da177e4 1732 goto dput_and_out;
6dd96cc2 1733 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1734 goto dput_and_out;
b2f5d4dc
EB
1735 retval = -EPERM;
1736 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1737 goto dput_and_out;
1da177e4 1738
900148dc 1739 retval = do_umount(mnt, flags);
1da177e4 1740dput_and_out:
429731b1 1741 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1742 dput(path.dentry);
900148dc 1743 mntput_no_expire(mnt);
1da177e4
LT
1744out:
1745 return retval;
1746}
1747
1748#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1749
1750/*
b58fed8b 1751 * The 2.0 compatible umount. No flags.
1da177e4 1752 */
bdc480e3 1753SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1754{
b58fed8b 1755 return sys_umount(name, 0);
1da177e4
LT
1756}
1757
1758#endif
1759
4ce5d2b1 1760static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1761{
4ce5d2b1 1762 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1763 return dentry->d_op == &ns_dentry_operations &&
1764 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1765}
1766
58be2825
AV
1767struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1768{
1769 return container_of(ns, struct mnt_namespace, ns);
1770}
1771
4ce5d2b1
EB
1772static bool mnt_ns_loop(struct dentry *dentry)
1773{
1774 /* Could bind mounting the mount namespace inode cause a
1775 * mount namespace loop?
1776 */
1777 struct mnt_namespace *mnt_ns;
1778 if (!is_mnt_ns_file(dentry))
1779 return false;
1780
f77c8014 1781 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1782 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1783}
1784
87129cc0 1785struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1786 int flag)
1da177e4 1787{
84d17192 1788 struct mount *res, *p, *q, *r, *parent;
1da177e4 1789
4ce5d2b1
EB
1790 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1791 return ERR_PTR(-EINVAL);
1792
1793 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1794 return ERR_PTR(-EINVAL);
9676f0c6 1795
36341f64 1796 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1797 if (IS_ERR(q))
1798 return q;
1799
a73324da 1800 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1801
1802 p = mnt;
6b41d536 1803 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1804 struct mount *s;
7ec02ef1 1805 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1806 continue;
1807
909b0a88 1808 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1809 if (!(flag & CL_COPY_UNBINDABLE) &&
1810 IS_MNT_UNBINDABLE(s)) {
d65e713e
EB
1811 if (s->mnt.mnt_flags & MNT_LOCKED) {
1812 /* Both unbindable and locked. */
1813 q = ERR_PTR(-EPERM);
1814 goto out;
1815 } else {
1816 s = skip_mnt_tree(s);
1817 continue;
1818 }
4ce5d2b1
EB
1819 }
1820 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1821 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1822 s = skip_mnt_tree(s);
1823 continue;
1824 }
0714a533
AV
1825 while (p != s->mnt_parent) {
1826 p = p->mnt_parent;
1827 q = q->mnt_parent;
1da177e4 1828 }
87129cc0 1829 p = s;
84d17192 1830 parent = q;
87129cc0 1831 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1832 if (IS_ERR(q))
1833 goto out;
719ea2fb 1834 lock_mount_hash();
1a4eeaf2 1835 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1836 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1837 unlock_mount_hash();
1da177e4
LT
1838 }
1839 }
1840 return res;
be34d1a3 1841out:
1da177e4 1842 if (res) {
719ea2fb 1843 lock_mount_hash();
e819f152 1844 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1845 unlock_mount_hash();
1da177e4 1846 }
be34d1a3 1847 return q;
1da177e4
LT
1848}
1849
be34d1a3
DH
1850/* Caller should check returned pointer for errors */
1851
ca71cf71 1852struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1853{
cb338d06 1854 struct mount *tree;
97216be0 1855 namespace_lock();
cd4a4017
EB
1856 if (!check_mnt(real_mount(path->mnt)))
1857 tree = ERR_PTR(-EINVAL);
1858 else
1859 tree = copy_tree(real_mount(path->mnt), path->dentry,
1860 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1861 namespace_unlock();
be34d1a3 1862 if (IS_ERR(tree))
52e220d3 1863 return ERR_CAST(tree);
be34d1a3 1864 return &tree->mnt;
8aec0809
AV
1865}
1866
1867void drop_collected_mounts(struct vfsmount *mnt)
1868{
97216be0 1869 namespace_lock();
719ea2fb 1870 lock_mount_hash();
e819f152 1871 umount_tree(real_mount(mnt), UMOUNT_SYNC);
719ea2fb 1872 unlock_mount_hash();
3ab6abee 1873 namespace_unlock();
8aec0809
AV
1874}
1875
c771d683
MS
1876/**
1877 * clone_private_mount - create a private clone of a path
1878 *
1879 * This creates a new vfsmount, which will be the clone of @path. The new will
1880 * not be attached anywhere in the namespace and will be private (i.e. changes
1881 * to the originating mount won't be propagated into this).
1882 *
1883 * Release with mntput().
1884 */
ca71cf71 1885struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1886{
1887 struct mount *old_mnt = real_mount(path->mnt);
1888 struct mount *new_mnt;
1889
1890 if (IS_MNT_UNBINDABLE(old_mnt))
1891 return ERR_PTR(-EINVAL);
1892
c771d683 1893 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1894 if (IS_ERR(new_mnt))
1895 return ERR_CAST(new_mnt);
1896
1897 return &new_mnt->mnt;
1898}
1899EXPORT_SYMBOL_GPL(clone_private_mount);
1900
1f707137
AV
1901int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1902 struct vfsmount *root)
1903{
1a4eeaf2 1904 struct mount *mnt;
1f707137
AV
1905 int res = f(root, arg);
1906 if (res)
1907 return res;
1a4eeaf2
AV
1908 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1909 res = f(&mnt->mnt, arg);
1f707137
AV
1910 if (res)
1911 return res;
1912 }
1913 return 0;
1914}
c088e31d 1915EXPORT_SYMBOL_GPL(iterate_mounts);
1f707137 1916
4b8b21f4 1917static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1918{
315fc83e 1919 struct mount *p;
719f5d7f 1920
909b0a88 1921 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1922 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1923 mnt_release_group_id(p);
719f5d7f
MS
1924 }
1925}
1926
4b8b21f4 1927static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1928{
315fc83e 1929 struct mount *p;
719f5d7f 1930
909b0a88 1931 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1932 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1933 int err = mnt_alloc_group_id(p);
719f5d7f 1934 if (err) {
4b8b21f4 1935 cleanup_group_ids(mnt, p);
719f5d7f
MS
1936 return err;
1937 }
1938 }
1939 }
1940
1941 return 0;
1942}
1943
d2921684
EB
1944int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1945{
1946 unsigned int max = READ_ONCE(sysctl_mount_max);
1947 unsigned int mounts = 0, old, pending, sum;
1948 struct mount *p;
1949
1950 for (p = mnt; p; p = next_mnt(p, mnt))
1951 mounts++;
1952
1953 old = ns->mounts;
1954 pending = ns->pending_mounts;
1955 sum = old + pending;
1956 if ((old > sum) ||
1957 (pending > sum) ||
1958 (max < sum) ||
1959 (mounts > (max - sum)))
1960 return -ENOSPC;
1961
1962 ns->pending_mounts = pending + mounts;
1963 return 0;
1964}
1965
b90fa9ae
RP
1966/*
1967 * @source_mnt : mount tree to be attached
21444403
RP
1968 * @nd : place the mount tree @source_mnt is attached
1969 * @parent_nd : if non-null, detach the source_mnt from its parent and
1970 * store the parent mount and mountpoint dentry.
1971 * (done when source_mnt is moved)
b90fa9ae
RP
1972 *
1973 * NOTE: in the table below explains the semantics when a source mount
1974 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1975 * ---------------------------------------------------------------------------
1976 * | BIND MOUNT OPERATION |
1977 * |**************************************************************************
1978 * | source-->| shared | private | slave | unbindable |
1979 * | dest | | | | |
1980 * | | | | | | |
1981 * | v | | | | |
1982 * |**************************************************************************
1983 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1984 * | | | | | |
1985 * |non-shared| shared (+) | private | slave (*) | invalid |
1986 * ***************************************************************************
b90fa9ae
RP
1987 * A bind operation clones the source mount and mounts the clone on the
1988 * destination mount.
1989 *
1990 * (++) the cloned mount is propagated to all the mounts in the propagation
1991 * tree of the destination mount and the cloned mount is added to
1992 * the peer group of the source mount.
1993 * (+) the cloned mount is created under the destination mount and is marked
1994 * as shared. The cloned mount is added to the peer group of the source
1995 * mount.
5afe0022
RP
1996 * (+++) the mount is propagated to all the mounts in the propagation tree
1997 * of the destination mount and the cloned mount is made slave
1998 * of the same master as that of the source mount. The cloned mount
1999 * is marked as 'shared and slave'.
2000 * (*) the cloned mount is made a slave of the same master as that of the
2001 * source mount.
2002 *
9676f0c6
RP
2003 * ---------------------------------------------------------------------------
2004 * | MOVE MOUNT OPERATION |
2005 * |**************************************************************************
2006 * | source-->| shared | private | slave | unbindable |
2007 * | dest | | | | |
2008 * | | | | | | |
2009 * | v | | | | |
2010 * |**************************************************************************
2011 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2012 * | | | | | |
2013 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2014 * ***************************************************************************
5afe0022
RP
2015 *
2016 * (+) the mount is moved to the destination. And is then propagated to
2017 * all the mounts in the propagation tree of the destination mount.
21444403 2018 * (+*) the mount is moved to the destination.
5afe0022
RP
2019 * (+++) the mount is moved to the destination and is then propagated to
2020 * all the mounts belonging to the destination mount's propagation tree.
2021 * the mount is marked as 'shared and slave'.
2022 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2023 *
2024 * if the source mount is a tree, the operations explained above is
2025 * applied to each mount in the tree.
2026 * Must be called without spinlocks held, since this function can sleep
2027 * in allocations.
2028 */
0fb54e50 2029static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2030 struct mount *dest_mnt,
2031 struct mountpoint *dest_mp,
2032 struct path *parent_path)
b90fa9ae 2033{
38129a13 2034 HLIST_HEAD(tree_list);
d2921684 2035 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2036 struct mountpoint *smp;
315fc83e 2037 struct mount *child, *p;
38129a13 2038 struct hlist_node *n;
719f5d7f 2039 int err;
b90fa9ae 2040
1064f874
EB
2041 /* Preallocate a mountpoint in case the new mounts need
2042 * to be tucked under other mounts.
2043 */
2044 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2045 if (IS_ERR(smp))
2046 return PTR_ERR(smp);
2047
d2921684
EB
2048 /* Is there space to add these mounts to the mount namespace? */
2049 if (!parent_path) {
2050 err = count_mounts(ns, source_mnt);
2051 if (err)
2052 goto out;
2053 }
2054
fc7be130 2055 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2056 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2057 if (err)
2058 goto out;
0b1b901b 2059 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2060 lock_mount_hash();
0b1b901b
AV
2061 if (err)
2062 goto out_cleanup_ids;
909b0a88 2063 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2064 set_mnt_shared(p);
0b1b901b
AV
2065 } else {
2066 lock_mount_hash();
b90fa9ae 2067 }
1a390689 2068 if (parent_path) {
0fb54e50 2069 detach_mnt(source_mnt, parent_path);
84d17192 2070 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2071 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2072 } else {
84d17192 2073 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2074 commit_tree(source_mnt);
21444403 2075 }
b90fa9ae 2076
38129a13 2077 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2078 struct mount *q;
38129a13 2079 hlist_del_init(&child->mnt_hash);
1064f874
EB
2080 q = __lookup_mnt(&child->mnt_parent->mnt,
2081 child->mnt_mountpoint);
2082 if (q)
2083 mnt_change_mountpoint(child, smp, q);
2084 commit_tree(child);
b90fa9ae 2085 }
1064f874 2086 put_mountpoint(smp);
719ea2fb 2087 unlock_mount_hash();
99b7db7b 2088
b90fa9ae 2089 return 0;
719f5d7f
MS
2090
2091 out_cleanup_ids:
f2ebb3a9
AV
2092 while (!hlist_empty(&tree_list)) {
2093 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2094 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2095 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2096 }
2097 unlock_mount_hash();
0b1b901b 2098 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2099 out:
d2921684 2100 ns->pending_mounts = 0;
1064f874
EB
2101
2102 read_seqlock_excl(&mount_lock);
2103 put_mountpoint(smp);
2104 read_sequnlock_excl(&mount_lock);
2105
719f5d7f 2106 return err;
b90fa9ae
RP
2107}
2108
84d17192 2109static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2110{
2111 struct vfsmount *mnt;
84d17192 2112 struct dentry *dentry = path->dentry;
b12cea91 2113retry:
5955102c 2114 inode_lock(dentry->d_inode);
84d17192 2115 if (unlikely(cant_mount(dentry))) {
5955102c 2116 inode_unlock(dentry->d_inode);
84d17192 2117 return ERR_PTR(-ENOENT);
b12cea91 2118 }
97216be0 2119 namespace_lock();
b12cea91 2120 mnt = lookup_mnt(path);
84d17192 2121 if (likely(!mnt)) {
3895dbf8 2122 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2123 if (IS_ERR(mp)) {
97216be0 2124 namespace_unlock();
5955102c 2125 inode_unlock(dentry->d_inode);
84d17192
AV
2126 return mp;
2127 }
2128 return mp;
2129 }
97216be0 2130 namespace_unlock();
5955102c 2131 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2132 path_put(path);
2133 path->mnt = mnt;
84d17192 2134 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2135 goto retry;
2136}
2137
84d17192 2138static void unlock_mount(struct mountpoint *where)
b12cea91 2139{
84d17192 2140 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2141
2142 read_seqlock_excl(&mount_lock);
84d17192 2143 put_mountpoint(where);
3895dbf8
EB
2144 read_sequnlock_excl(&mount_lock);
2145
328e6d90 2146 namespace_unlock();
5955102c 2147 inode_unlock(dentry->d_inode);
b12cea91
AV
2148}
2149
84d17192 2150static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2151{
e462ec50 2152 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2153 return -EINVAL;
2154
e36cb0b8
DH
2155 if (d_is_dir(mp->m_dentry) !=
2156 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2157 return -ENOTDIR;
2158
84d17192 2159 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2160}
2161
7a2e8a8f
VA
2162/*
2163 * Sanity check the flags to change_mnt_propagation.
2164 */
2165
e462ec50 2166static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2167{
e462ec50 2168 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2169
2170 /* Fail if any non-propagation flags are set */
2171 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2172 return 0;
2173 /* Only one propagation flag should be set */
2174 if (!is_power_of_2(type))
2175 return 0;
2176 return type;
2177}
2178
07b20889
RP
2179/*
2180 * recursively change the type of the mountpoint.
2181 */
e462ec50 2182static int do_change_type(struct path *path, int ms_flags)
07b20889 2183{
315fc83e 2184 struct mount *m;
4b8b21f4 2185 struct mount *mnt = real_mount(path->mnt);
e462ec50 2186 int recurse = ms_flags & MS_REC;
7a2e8a8f 2187 int type;
719f5d7f 2188 int err = 0;
07b20889 2189
2d92ab3c 2190 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2191 return -EINVAL;
2192
e462ec50 2193 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2194 if (!type)
2195 return -EINVAL;
2196
97216be0 2197 namespace_lock();
719f5d7f
MS
2198 if (type == MS_SHARED) {
2199 err = invent_group_ids(mnt, recurse);
2200 if (err)
2201 goto out_unlock;
2202 }
2203
719ea2fb 2204 lock_mount_hash();
909b0a88 2205 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2206 change_mnt_propagation(m, type);
719ea2fb 2207 unlock_mount_hash();
719f5d7f
MS
2208
2209 out_unlock:
97216be0 2210 namespace_unlock();
719f5d7f 2211 return err;
07b20889
RP
2212}
2213
5ff9d8a6
EB
2214static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2215{
2216 struct mount *child;
2217 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2218 if (!is_subdir(child->mnt_mountpoint, dentry))
2219 continue;
2220
2221 if (child->mnt.mnt_flags & MNT_LOCKED)
2222 return true;
2223 }
2224 return false;
2225}
2226
1da177e4
LT
2227/*
2228 * do loopback mount.
2229 */
808d4e3c 2230static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2231 int recurse)
1da177e4 2232{
2d92ab3c 2233 struct path old_path;
84d17192
AV
2234 struct mount *mnt = NULL, *old, *parent;
2235 struct mountpoint *mp;
57eccb83 2236 int err;
1da177e4
LT
2237 if (!old_name || !*old_name)
2238 return -EINVAL;
815d405c 2239 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2240 if (err)
2241 return err;
2242
8823c079 2243 err = -EINVAL;
4ce5d2b1 2244 if (mnt_ns_loop(old_path.dentry))
dd111b31 2245 goto out;
8823c079 2246
84d17192
AV
2247 mp = lock_mount(path);
2248 err = PTR_ERR(mp);
2249 if (IS_ERR(mp))
b12cea91
AV
2250 goto out;
2251
87129cc0 2252 old = real_mount(old_path.mnt);
84d17192 2253 parent = real_mount(path->mnt);
87129cc0 2254
1da177e4 2255 err = -EINVAL;
fc7be130 2256 if (IS_MNT_UNBINDABLE(old))
b12cea91 2257 goto out2;
9676f0c6 2258
e149ed2b
AV
2259 if (!check_mnt(parent))
2260 goto out2;
2261
2262 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
b12cea91 2263 goto out2;
1da177e4 2264
5ff9d8a6
EB
2265 if (!recurse && has_locked_children(old, old_path.dentry))
2266 goto out2;
2267
ccd48bc7 2268 if (recurse)
4ce5d2b1 2269 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
ccd48bc7 2270 else
87129cc0 2271 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 2272
be34d1a3
DH
2273 if (IS_ERR(mnt)) {
2274 err = PTR_ERR(mnt);
e9c5d8a5 2275 goto out2;
be34d1a3 2276 }
ccd48bc7 2277
5ff9d8a6
EB
2278 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2279
84d17192 2280 err = graft_tree(mnt, parent, mp);
ccd48bc7 2281 if (err) {
719ea2fb 2282 lock_mount_hash();
e819f152 2283 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2284 unlock_mount_hash();
5b83d2c5 2285 }
b12cea91 2286out2:
84d17192 2287 unlock_mount(mp);
ccd48bc7 2288out:
2d92ab3c 2289 path_put(&old_path);
1da177e4
LT
2290 return err;
2291}
2292
2e4b7fcd
DH
2293static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2294{
2295 int error = 0;
2296 int readonly_request = 0;
2297
2298 if (ms_flags & MS_RDONLY)
2299 readonly_request = 1;
2300 if (readonly_request == __mnt_is_readonly(mnt))
2301 return 0;
2302
2303 if (readonly_request)
83adc753 2304 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 2305 else
83adc753 2306 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
2307 return error;
2308}
2309
1da177e4
LT
2310/*
2311 * change filesystem flags. dir should be a physical root of filesystem.
2312 * If you've mounted a non-root directory somewhere and want to do remount
2313 * on it - tough luck.
2314 */
e462ec50
DH
2315static int do_remount(struct path *path, int ms_flags, int sb_flags,
2316 int mnt_flags, void *data)
1da177e4
LT
2317{
2318 int err;
2d92ab3c 2319 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2320 struct mount *mnt = real_mount(path->mnt);
1da177e4 2321
143c8c91 2322 if (!check_mnt(mnt))
1da177e4
LT
2323 return -EINVAL;
2324
2d92ab3c 2325 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2326 return -EINVAL;
2327
07b64558
EB
2328 /* Don't allow changing of locked mnt flags.
2329 *
2330 * No locks need to be held here while testing the various
2331 * MNT_LOCK flags because those flags can never be cleared
2332 * once they are set.
2333 */
2334 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2335 !(mnt_flags & MNT_READONLY)) {
2336 return -EPERM;
2337 }
9566d674
EB
2338 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2339 !(mnt_flags & MNT_NODEV)) {
67690f93 2340 return -EPERM;
9566d674
EB
2341 }
2342 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2343 !(mnt_flags & MNT_NOSUID)) {
2344 return -EPERM;
2345 }
2346 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2347 !(mnt_flags & MNT_NOEXEC)) {
2348 return -EPERM;
2349 }
2350 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2351 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2352 return -EPERM;
2353 }
2354
ff36fe2c
EP
2355 err = security_sb_remount(sb, data);
2356 if (err)
2357 return err;
2358
1da177e4 2359 down_write(&sb->s_umount);
e462ec50
DH
2360 if (ms_flags & MS_BIND)
2361 err = change_mount_flags(path->mnt, ms_flags);
1db30ec0 2362 else if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
57eccb83 2363 err = -EPERM;
4aa98cf7 2364 else
e462ec50 2365 err = do_remount_sb(sb, sb_flags, data, 0);
7b43a79f 2366 if (!err) {
719ea2fb 2367 lock_mount_hash();
a6138db8 2368 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 2369 mnt->mnt.mnt_flags = mnt_flags;
143c8c91 2370 touch_mnt_namespace(mnt->mnt_ns);
719ea2fb 2371 unlock_mount_hash();
0e55a7cc 2372 }
6339dab8 2373 up_write(&sb->s_umount);
1da177e4
LT
2374 return err;
2375}
2376
cbbe362c 2377static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2378{
315fc83e 2379 struct mount *p;
909b0a88 2380 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2381 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2382 return 1;
2383 }
2384 return 0;
2385}
2386
808d4e3c 2387static int do_move_mount(struct path *path, const char *old_name)
1da177e4 2388{
2d92ab3c 2389 struct path old_path, parent_path;
676da58d 2390 struct mount *p;
0fb54e50 2391 struct mount *old;
84d17192 2392 struct mountpoint *mp;
57eccb83 2393 int err;
1da177e4
LT
2394 if (!old_name || !*old_name)
2395 return -EINVAL;
2d92ab3c 2396 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
2397 if (err)
2398 return err;
2399
84d17192
AV
2400 mp = lock_mount(path);
2401 err = PTR_ERR(mp);
2402 if (IS_ERR(mp))
cc53ce53
DH
2403 goto out;
2404
143c8c91 2405 old = real_mount(old_path.mnt);
fc7be130 2406 p = real_mount(path->mnt);
143c8c91 2407
1da177e4 2408 err = -EINVAL;
fc7be130 2409 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
2410 goto out1;
2411
5ff9d8a6
EB
2412 if (old->mnt.mnt_flags & MNT_LOCKED)
2413 goto out1;
2414
1da177e4 2415 err = -EINVAL;
2d92ab3c 2416 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 2417 goto out1;
1da177e4 2418
676da58d 2419 if (!mnt_has_parent(old))
21444403 2420 goto out1;
1da177e4 2421
e36cb0b8
DH
2422 if (d_is_dir(path->dentry) !=
2423 d_is_dir(old_path.dentry))
21444403
RP
2424 goto out1;
2425 /*
2426 * Don't move a mount residing in a shared parent.
2427 */
fc7be130 2428 if (IS_MNT_SHARED(old->mnt_parent))
21444403 2429 goto out1;
9676f0c6
RP
2430 /*
2431 * Don't move a mount tree containing unbindable mounts to a destination
2432 * mount which is shared.
2433 */
fc7be130 2434 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 2435 goto out1;
1da177e4 2436 err = -ELOOP;
fc7be130 2437 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2438 if (p == old)
21444403 2439 goto out1;
1da177e4 2440
84d17192 2441 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 2442 if (err)
21444403 2443 goto out1;
1da177e4
LT
2444
2445 /* if the mount is moved, it should no longer be expire
2446 * automatically */
6776db3d 2447 list_del_init(&old->mnt_expire);
1da177e4 2448out1:
84d17192 2449 unlock_mount(mp);
1da177e4 2450out:
1da177e4 2451 if (!err)
1a390689 2452 path_put(&parent_path);
2d92ab3c 2453 path_put(&old_path);
1da177e4
LT
2454 return err;
2455}
2456
9d412a43
AV
2457static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2458{
2459 int err;
2460 const char *subtype = strchr(fstype, '.');
2461 if (subtype) {
2462 subtype++;
2463 err = -EINVAL;
2464 if (!subtype[0])
2465 goto err;
2466 } else
2467 subtype = "";
2468
2469 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2470 err = -ENOMEM;
2471 if (!mnt->mnt_sb->s_subtype)
2472 goto err;
2473 return mnt;
2474
2475 err:
2476 mntput(mnt);
2477 return ERR_PTR(err);
2478}
2479
9d412a43
AV
2480/*
2481 * add a mount into a namespace's mount tree
2482 */
95bc5f25 2483static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2484{
84d17192
AV
2485 struct mountpoint *mp;
2486 struct mount *parent;
9d412a43
AV
2487 int err;
2488
f2ebb3a9 2489 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2490
84d17192
AV
2491 mp = lock_mount(path);
2492 if (IS_ERR(mp))
2493 return PTR_ERR(mp);
9d412a43 2494
84d17192 2495 parent = real_mount(path->mnt);
9d412a43 2496 err = -EINVAL;
84d17192 2497 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2498 /* that's acceptable only for automounts done in private ns */
2499 if (!(mnt_flags & MNT_SHRINKABLE))
2500 goto unlock;
2501 /* ... and for those we'd better have mountpoint still alive */
84d17192 2502 if (!parent->mnt_ns)
156cacb1
AV
2503 goto unlock;
2504 }
9d412a43
AV
2505
2506 /* Refuse the same filesystem on the same mount point */
2507 err = -EBUSY;
95bc5f25 2508 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2509 path->mnt->mnt_root == path->dentry)
2510 goto unlock;
2511
2512 err = -EINVAL;
e36cb0b8 2513 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2514 goto unlock;
2515
95bc5f25 2516 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2517 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2518
2519unlock:
84d17192 2520 unlock_mount(mp);
9d412a43
AV
2521 return err;
2522}
b1e75df4 2523
8654df4e 2524static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
1b852bce 2525
1da177e4
LT
2526/*
2527 * create a new mount for userspace and request it to be added into the
2528 * namespace's tree
2529 */
e462ec50 2530static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2531 int mnt_flags, const char *name, void *data)
1da177e4 2532{
0c55cfc4 2533 struct file_system_type *type;
1da177e4 2534 struct vfsmount *mnt;
15f9a3f3 2535 int err;
1da177e4 2536
0c55cfc4 2537 if (!fstype)
1da177e4
LT
2538 return -EINVAL;
2539
0c55cfc4
EB
2540 type = get_fs_type(fstype);
2541 if (!type)
2542 return -ENODEV;
2543
e462ec50 2544 mnt = vfs_kern_mount(type, sb_flags, name, data);
0c55cfc4
EB
2545 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2546 !mnt->mnt_sb->s_subtype)
2547 mnt = fs_set_subtype(mnt, fstype);
2548
2549 put_filesystem(type);
1da177e4
LT
2550 if (IS_ERR(mnt))
2551 return PTR_ERR(mnt);
2552
8654df4e
EB
2553 if (mount_too_revealing(mnt, &mnt_flags)) {
2554 mntput(mnt);
2555 return -EPERM;
2556 }
2557
95bc5f25 2558 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2559 if (err)
2560 mntput(mnt);
2561 return err;
1da177e4
LT
2562}
2563
19a167af
AV
2564int finish_automount(struct vfsmount *m, struct path *path)
2565{
6776db3d 2566 struct mount *mnt = real_mount(m);
19a167af
AV
2567 int err;
2568 /* The new mount record should have at least 2 refs to prevent it being
2569 * expired before we get a chance to add it
2570 */
6776db3d 2571 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2572
2573 if (m->mnt_sb == path->mnt->mnt_sb &&
2574 m->mnt_root == path->dentry) {
b1e75df4
AV
2575 err = -ELOOP;
2576 goto fail;
19a167af
AV
2577 }
2578
95bc5f25 2579 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2580 if (!err)
2581 return 0;
2582fail:
2583 /* remove m from any expiration list it may be on */
6776db3d 2584 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2585 namespace_lock();
6776db3d 2586 list_del_init(&mnt->mnt_expire);
97216be0 2587 namespace_unlock();
19a167af 2588 }
b1e75df4
AV
2589 mntput(m);
2590 mntput(m);
19a167af
AV
2591 return err;
2592}
2593
ea5b778a
DH
2594/**
2595 * mnt_set_expiry - Put a mount on an expiration list
2596 * @mnt: The mount to list.
2597 * @expiry_list: The list to add the mount to.
2598 */
2599void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2600{
97216be0 2601 namespace_lock();
ea5b778a 2602
6776db3d 2603 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2604
97216be0 2605 namespace_unlock();
ea5b778a
DH
2606}
2607EXPORT_SYMBOL(mnt_set_expiry);
2608
1da177e4
LT
2609/*
2610 * process a list of expirable mountpoints with the intent of discarding any
2611 * mountpoints that aren't in use and haven't been touched since last we came
2612 * here
2613 */
2614void mark_mounts_for_expiry(struct list_head *mounts)
2615{
761d5c38 2616 struct mount *mnt, *next;
1da177e4
LT
2617 LIST_HEAD(graveyard);
2618
2619 if (list_empty(mounts))
2620 return;
2621
97216be0 2622 namespace_lock();
719ea2fb 2623 lock_mount_hash();
1da177e4
LT
2624
2625 /* extract from the expiration list every vfsmount that matches the
2626 * following criteria:
2627 * - only referenced by its parent vfsmount
2628 * - still marked for expiry (marked on the last call here; marks are
2629 * cleared by mntput())
2630 */
6776db3d 2631 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2632 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2633 propagate_mount_busy(mnt, 1))
1da177e4 2634 continue;
6776db3d 2635 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2636 }
bcc5c7d2 2637 while (!list_empty(&graveyard)) {
6776db3d 2638 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2639 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2640 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2641 }
719ea2fb 2642 unlock_mount_hash();
3ab6abee 2643 namespace_unlock();
5528f911
TM
2644}
2645
2646EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2647
2648/*
2649 * Ripoff of 'select_parent()'
2650 *
2651 * search the list of submounts for a given mountpoint, and move any
2652 * shrinkable submounts to the 'graveyard' list.
2653 */
692afc31 2654static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2655{
692afc31 2656 struct mount *this_parent = parent;
5528f911
TM
2657 struct list_head *next;
2658 int found = 0;
2659
2660repeat:
6b41d536 2661 next = this_parent->mnt_mounts.next;
5528f911 2662resume:
6b41d536 2663 while (next != &this_parent->mnt_mounts) {
5528f911 2664 struct list_head *tmp = next;
6b41d536 2665 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2666
2667 next = tmp->next;
692afc31 2668 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2669 continue;
5528f911
TM
2670 /*
2671 * Descend a level if the d_mounts list is non-empty.
2672 */
6b41d536 2673 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2674 this_parent = mnt;
2675 goto repeat;
2676 }
1da177e4 2677
1ab59738 2678 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2679 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2680 found++;
2681 }
1da177e4 2682 }
5528f911
TM
2683 /*
2684 * All done at this level ... ascend and resume the search
2685 */
2686 if (this_parent != parent) {
6b41d536 2687 next = this_parent->mnt_child.next;
0714a533 2688 this_parent = this_parent->mnt_parent;
5528f911
TM
2689 goto resume;
2690 }
2691 return found;
2692}
2693
2694/*
2695 * process a list of expirable mountpoints with the intent of discarding any
2696 * submounts of a specific parent mountpoint
99b7db7b 2697 *
48a066e7 2698 * mount_lock must be held for write
5528f911 2699 */
b54b9be7 2700static void shrink_submounts(struct mount *mnt)
5528f911
TM
2701{
2702 LIST_HEAD(graveyard);
761d5c38 2703 struct mount *m;
5528f911 2704
5528f911 2705 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2706 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2707 while (!list_empty(&graveyard)) {
761d5c38 2708 m = list_first_entry(&graveyard, struct mount,
6776db3d 2709 mnt_expire);
143c8c91 2710 touch_mnt_namespace(m->mnt_ns);
e819f152 2711 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2712 }
2713 }
1da177e4
LT
2714}
2715
1da177e4
LT
2716/*
2717 * Some copy_from_user() implementations do not return the exact number of
2718 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2719 * Note that this function differs from copy_from_user() in that it will oops
2720 * on bad values of `to', rather than returning a short copy.
2721 */
b58fed8b
RP
2722static long exact_copy_from_user(void *to, const void __user * from,
2723 unsigned long n)
1da177e4
LT
2724{
2725 char *t = to;
2726 const char __user *f = from;
2727 char c;
2728
2729 if (!access_ok(VERIFY_READ, from, n))
2730 return n;
2731
2732 while (n) {
2733 if (__get_user(c, f)) {
2734 memset(t, 0, n);
2735 break;
2736 }
2737 *t++ = c;
2738 f++;
2739 n--;
2740 }
2741 return n;
2742}
2743
b40ef869 2744void *copy_mount_options(const void __user * data)
1da177e4
LT
2745{
2746 int i;
1da177e4 2747 unsigned long size;
b40ef869 2748 char *copy;
b58fed8b 2749
1da177e4 2750 if (!data)
b40ef869 2751 return NULL;
1da177e4 2752
b40ef869
AV
2753 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2754 if (!copy)
2755 return ERR_PTR(-ENOMEM);
1da177e4
LT
2756
2757 /* We only care that *some* data at the address the user
2758 * gave us is valid. Just in case, we'll zero
2759 * the remainder of the page.
2760 */
2761 /* copy_from_user cannot cross TASK_SIZE ! */
2762 size = TASK_SIZE - (unsigned long)data;
2763 if (size > PAGE_SIZE)
2764 size = PAGE_SIZE;
2765
b40ef869 2766 i = size - exact_copy_from_user(copy, data, size);
1da177e4 2767 if (!i) {
b40ef869
AV
2768 kfree(copy);
2769 return ERR_PTR(-EFAULT);
1da177e4
LT
2770 }
2771 if (i != PAGE_SIZE)
b40ef869
AV
2772 memset(copy + i, 0, PAGE_SIZE - i);
2773 return copy;
1da177e4
LT
2774}
2775
b8850d1f 2776char *copy_mount_string(const void __user *data)
eca6f534 2777{
b8850d1f 2778 return data ? strndup_user(data, PAGE_SIZE) : NULL;
eca6f534
VN
2779}
2780
1da177e4
LT
2781/*
2782 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2783 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2784 *
2785 * data is a (void *) that can point to any structure up to
2786 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2787 * information (or be NULL).
2788 *
2789 * Pre-0.97 versions of mount() didn't have a flags word.
2790 * When the flags word was introduced its top half was required
2791 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2792 * Therefore, if this magic number is present, it carries no information
2793 * and must be discarded.
2794 */
5e6123f3 2795long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 2796 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2797{
2d92ab3c 2798 struct path path;
e462ec50 2799 unsigned int mnt_flags = 0, sb_flags;
1da177e4 2800 int retval = 0;
1da177e4
LT
2801
2802 /* Discard magic */
2803 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2804 flags &= ~MS_MGC_MSK;
2805
2806 /* Basic sanity checks */
1da177e4
LT
2807 if (data_page)
2808 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2809
e462ec50
DH
2810 if (flags & MS_NOUSER)
2811 return -EINVAL;
2812
a27ab9f2 2813 /* ... and get the mountpoint */
5e6123f3 2814 retval = user_path(dir_name, &path);
a27ab9f2
TH
2815 if (retval)
2816 return retval;
2817
2818 retval = security_sb_mount(dev_name, &path,
2819 type_page, flags, data_page);
0d5cadb8
AV
2820 if (!retval && !may_mount())
2821 retval = -EPERM;
e462ec50 2822 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 2823 retval = -EPERM;
a27ab9f2
TH
2824 if (retval)
2825 goto dput_out;
2826
613cbe3d
AK
2827 /* Default to relatime unless overriden */
2828 if (!(flags & MS_NOATIME))
2829 mnt_flags |= MNT_RELATIME;
0a1c01c9 2830
1da177e4
LT
2831 /* Separate the per-mountpoint flags */
2832 if (flags & MS_NOSUID)
2833 mnt_flags |= MNT_NOSUID;
2834 if (flags & MS_NODEV)
2835 mnt_flags |= MNT_NODEV;
2836 if (flags & MS_NOEXEC)
2837 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2838 if (flags & MS_NOATIME)
2839 mnt_flags |= MNT_NOATIME;
2840 if (flags & MS_NODIRATIME)
2841 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2842 if (flags & MS_STRICTATIME)
2843 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
9c720612 2844 if (flags & MS_RDONLY)
2e4b7fcd 2845 mnt_flags |= MNT_READONLY;
fc33a7bb 2846
ffbc6f0e
EB
2847 /* The default atime for remount is preservation */
2848 if ((flags & MS_REMOUNT) &&
2849 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2850 MS_STRICTATIME)) == 0)) {
2851 mnt_flags &= ~MNT_ATIME_MASK;
2852 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2853 }
2854
e462ec50
DH
2855 sb_flags = flags & (SB_RDONLY |
2856 SB_SYNCHRONOUS |
2857 SB_MANDLOCK |
2858 SB_DIRSYNC |
2859 SB_SILENT |
917086ff 2860 SB_POSIXACL |
d7ee9469 2861 SB_LAZYTIME |
917086ff 2862 SB_I_VERSION);
1da177e4 2863
1da177e4 2864 if (flags & MS_REMOUNT)
e462ec50 2865 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
2866 data_page);
2867 else if (flags & MS_BIND)
2d92ab3c 2868 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2869 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2870 retval = do_change_type(&path, flags);
1da177e4 2871 else if (flags & MS_MOVE)
2d92ab3c 2872 retval = do_move_mount(&path, dev_name);
1da177e4 2873 else
e462ec50 2874 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
2875 dev_name, data_page);
2876dput_out:
2d92ab3c 2877 path_put(&path);
1da177e4
LT
2878 return retval;
2879}
2880
537f7ccb
EB
2881static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2882{
2883 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2884}
2885
2886static void dec_mnt_namespaces(struct ucounts *ucounts)
2887{
2888 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2889}
2890
771b1371
EB
2891static void free_mnt_ns(struct mnt_namespace *ns)
2892{
6344c433 2893 ns_free_inum(&ns->ns);
537f7ccb 2894 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
2895 put_user_ns(ns->user_ns);
2896 kfree(ns);
2897}
2898
8823c079
EB
2899/*
2900 * Assign a sequence number so we can detect when we attempt to bind
2901 * mount a reference to an older mount namespace into the current
2902 * mount namespace, preventing reference counting loops. A 64bit
2903 * number incrementing at 10Ghz will take 12,427 years to wrap which
2904 * is effectively never, so we can ignore the possibility.
2905 */
2906static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2907
771b1371 2908static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2909{
2910 struct mnt_namespace *new_ns;
537f7ccb 2911 struct ucounts *ucounts;
98f842e6 2912 int ret;
cf8d2c11 2913
537f7ccb
EB
2914 ucounts = inc_mnt_namespaces(user_ns);
2915 if (!ucounts)
df75e774 2916 return ERR_PTR(-ENOSPC);
537f7ccb 2917
cf8d2c11 2918 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
2919 if (!new_ns) {
2920 dec_mnt_namespaces(ucounts);
cf8d2c11 2921 return ERR_PTR(-ENOMEM);
537f7ccb 2922 }
6344c433 2923 ret = ns_alloc_inum(&new_ns->ns);
98f842e6
EB
2924 if (ret) {
2925 kfree(new_ns);
537f7ccb 2926 dec_mnt_namespaces(ucounts);
98f842e6
EB
2927 return ERR_PTR(ret);
2928 }
33c42940 2929 new_ns->ns.ops = &mntns_operations;
8823c079 2930 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2931 atomic_set(&new_ns->count, 1);
2932 new_ns->root = NULL;
2933 INIT_LIST_HEAD(&new_ns->list);
2934 init_waitqueue_head(&new_ns->poll);
2935 new_ns->event = 0;
771b1371 2936 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 2937 new_ns->ucounts = ucounts;
d2921684
EB
2938 new_ns->mounts = 0;
2939 new_ns->pending_mounts = 0;
cf8d2c11
TM
2940 return new_ns;
2941}
2942
0766f788 2943__latent_entropy
9559f689
AV
2944struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2945 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 2946{
6b3286ed 2947 struct mnt_namespace *new_ns;
7f2da1e7 2948 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2949 struct mount *p, *q;
9559f689 2950 struct mount *old;
cb338d06 2951 struct mount *new;
7a472ef4 2952 int copy_flags;
1da177e4 2953
9559f689
AV
2954 BUG_ON(!ns);
2955
2956 if (likely(!(flags & CLONE_NEWNS))) {
2957 get_mnt_ns(ns);
2958 return ns;
2959 }
2960
2961 old = ns->root;
2962
771b1371 2963 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2964 if (IS_ERR(new_ns))
2965 return new_ns;
1da177e4 2966
97216be0 2967 namespace_lock();
1da177e4 2968 /* First pass: copy the tree topology */
4ce5d2b1 2969 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 2970 if (user_ns != ns->user_ns)
132c94e3 2971 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2972 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2973 if (IS_ERR(new)) {
328e6d90 2974 namespace_unlock();
771b1371 2975 free_mnt_ns(new_ns);
be34d1a3 2976 return ERR_CAST(new);
1da177e4 2977 }
be08d6d2 2978 new_ns->root = new;
1a4eeaf2 2979 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
2980
2981 /*
2982 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2983 * as belonging to new namespace. We have already acquired a private
2984 * fs_struct, so tsk->fs->lock is not needed.
2985 */
909b0a88 2986 p = old;
cb338d06 2987 q = new;
1da177e4 2988 while (p) {
143c8c91 2989 q->mnt_ns = new_ns;
d2921684 2990 new_ns->mounts++;
9559f689
AV
2991 if (new_fs) {
2992 if (&p->mnt == new_fs->root.mnt) {
2993 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 2994 rootmnt = &p->mnt;
1da177e4 2995 }
9559f689
AV
2996 if (&p->mnt == new_fs->pwd.mnt) {
2997 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2998 pwdmnt = &p->mnt;
1da177e4 2999 }
1da177e4 3000 }
909b0a88
AV
3001 p = next_mnt(p, old);
3002 q = next_mnt(q, new);
4ce5d2b1
EB
3003 if (!q)
3004 break;
3005 while (p->mnt.mnt_root != q->mnt.mnt_root)
3006 p = next_mnt(p, old);
1da177e4 3007 }
328e6d90 3008 namespace_unlock();
1da177e4 3009
1da177e4 3010 if (rootmnt)
f03c6599 3011 mntput(rootmnt);
1da177e4 3012 if (pwdmnt)
f03c6599 3013 mntput(pwdmnt);
1da177e4 3014
741a2951 3015 return new_ns;
1da177e4
LT
3016}
3017
cf8d2c11
TM
3018/**
3019 * create_mnt_ns - creates a private namespace and adds a root filesystem
3020 * @mnt: pointer to the new root filesystem mountpoint
3021 */
1a4eeaf2 3022static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 3023{
771b1371 3024 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 3025 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
3026 struct mount *mnt = real_mount(m);
3027 mnt->mnt_ns = new_ns;
be08d6d2 3028 new_ns->root = mnt;
d2921684 3029 new_ns->mounts++;
b1983cd8 3030 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 3031 } else {
1a4eeaf2 3032 mntput(m);
cf8d2c11
TM
3033 }
3034 return new_ns;
3035}
cf8d2c11 3036
ea441d11
AV
3037struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
3038{
3039 struct mnt_namespace *ns;
d31da0f0 3040 struct super_block *s;
ea441d11
AV
3041 struct path path;
3042 int err;
3043
3044 ns = create_mnt_ns(mnt);
3045 if (IS_ERR(ns))
3046 return ERR_CAST(ns);
3047
3048 err = vfs_path_lookup(mnt->mnt_root, mnt,
3049 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3050
3051 put_mnt_ns(ns);
3052
3053 if (err)
3054 return ERR_PTR(err);
3055
3056 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3057 s = path.mnt->mnt_sb;
3058 atomic_inc(&s->s_active);
ea441d11
AV
3059 mntput(path.mnt);
3060 /* lock the sucker */
d31da0f0 3061 down_write(&s->s_umount);
ea441d11
AV
3062 /* ... and return the root of (sub)tree on it */
3063 return path.dentry;
3064}
3065EXPORT_SYMBOL(mount_subtree);
3066
bdc480e3
HC
3067SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3068 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 3069{
eca6f534
VN
3070 int ret;
3071 char *kernel_type;
eca6f534 3072 char *kernel_dev;
b40ef869 3073 void *options;
1da177e4 3074
b8850d1f
TG
3075 kernel_type = copy_mount_string(type);
3076 ret = PTR_ERR(kernel_type);
3077 if (IS_ERR(kernel_type))
eca6f534 3078 goto out_type;
1da177e4 3079
b8850d1f
TG
3080 kernel_dev = copy_mount_string(dev_name);
3081 ret = PTR_ERR(kernel_dev);
3082 if (IS_ERR(kernel_dev))
eca6f534 3083 goto out_dev;
1da177e4 3084
b40ef869
AV
3085 options = copy_mount_options(data);
3086 ret = PTR_ERR(options);
3087 if (IS_ERR(options))
eca6f534 3088 goto out_data;
1da177e4 3089
b40ef869 3090 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3091
b40ef869 3092 kfree(options);
eca6f534
VN
3093out_data:
3094 kfree(kernel_dev);
3095out_dev:
eca6f534
VN
3096 kfree(kernel_type);
3097out_type:
3098 return ret;
1da177e4
LT
3099}
3100
afac7cba
AV
3101/*
3102 * Return true if path is reachable from root
3103 *
48a066e7 3104 * namespace_sem or mount_lock is held
afac7cba 3105 */
643822b4 3106bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3107 const struct path *root)
3108{
643822b4 3109 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3110 dentry = mnt->mnt_mountpoint;
0714a533 3111 mnt = mnt->mnt_parent;
afac7cba 3112 }
643822b4 3113 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3114}
3115
640eb7e7 3116bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3117{
25ab4c9b 3118 bool res;
48a066e7 3119 read_seqlock_excl(&mount_lock);
643822b4 3120 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3121 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3122 return res;
3123}
3124EXPORT_SYMBOL(path_is_under);
3125
1da177e4
LT
3126/*
3127 * pivot_root Semantics:
3128 * Moves the root file system of the current process to the directory put_old,
3129 * makes new_root as the new root file system of the current process, and sets
3130 * root/cwd of all processes which had them on the current root to new_root.
3131 *
3132 * Restrictions:
3133 * The new_root and put_old must be directories, and must not be on the
3134 * same file system as the current process root. The put_old must be
3135 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3136 * pointed to by put_old must yield the same directory as new_root. No other
3137 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3138 *
4a0d11fa
NB
3139 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3140 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3141 * in this situation.
3142 *
1da177e4
LT
3143 * Notes:
3144 * - we don't move root/cwd if they are not at the root (reason: if something
3145 * cared enough to change them, it's probably wrong to force them elsewhere)
3146 * - it's okay to pick a root that isn't the root of a file system, e.g.
3147 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3148 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3149 * first.
3150 */
3480b257
HC
3151SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3152 const char __user *, put_old)
1da177e4 3153{
2d8f3038 3154 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3155 struct mount *new_mnt, *root_mnt, *old_mnt;
3156 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3157 int error;
3158
9b40bc90 3159 if (!may_mount())
1da177e4
LT
3160 return -EPERM;
3161
2d8f3038 3162 error = user_path_dir(new_root, &new);
1da177e4
LT
3163 if (error)
3164 goto out0;
1da177e4 3165
2d8f3038 3166 error = user_path_dir(put_old, &old);
1da177e4
LT
3167 if (error)
3168 goto out1;
3169
2d8f3038 3170 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3171 if (error)
3172 goto out2;
1da177e4 3173
f7ad3c6b 3174 get_fs_root(current->fs, &root);
84d17192
AV
3175 old_mp = lock_mount(&old);
3176 error = PTR_ERR(old_mp);
3177 if (IS_ERR(old_mp))
b12cea91
AV
3178 goto out3;
3179
1da177e4 3180 error = -EINVAL;
419148da
AV
3181 new_mnt = real_mount(new.mnt);
3182 root_mnt = real_mount(root.mnt);
84d17192
AV
3183 old_mnt = real_mount(old.mnt);
3184 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3185 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3186 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3187 goto out4;
143c8c91 3188 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3189 goto out4;
5ff9d8a6
EB
3190 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3191 goto out4;
1da177e4 3192 error = -ENOENT;
f3da392e 3193 if (d_unlinked(new.dentry))
b12cea91 3194 goto out4;
1da177e4 3195 error = -EBUSY;
84d17192 3196 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3197 goto out4; /* loop, on the same file system */
1da177e4 3198 error = -EINVAL;
8c3ee42e 3199 if (root.mnt->mnt_root != root.dentry)
b12cea91 3200 goto out4; /* not a mountpoint */
676da58d 3201 if (!mnt_has_parent(root_mnt))
b12cea91 3202 goto out4; /* not attached */
84d17192 3203 root_mp = root_mnt->mnt_mp;
2d8f3038 3204 if (new.mnt->mnt_root != new.dentry)
b12cea91 3205 goto out4; /* not a mountpoint */
676da58d 3206 if (!mnt_has_parent(new_mnt))
b12cea91 3207 goto out4; /* not attached */
4ac91378 3208 /* make sure we can reach put_old from new_root */
84d17192 3209 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3210 goto out4;
0d082601
EB
3211 /* make certain new is below the root */
3212 if (!is_path_reachable(new_mnt, new.dentry, &root))
3213 goto out4;
84d17192 3214 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3215 lock_mount_hash();
419148da
AV
3216 detach_mnt(new_mnt, &parent_path);
3217 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3218 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3219 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3220 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3221 }
4ac91378 3222 /* mount old root on put_old */
84d17192 3223 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3224 /* mount new_root on / */
84d17192 3225 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3226 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3227 /* A moved mount should not expire automatically */
3228 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3229 put_mountpoint(root_mp);
719ea2fb 3230 unlock_mount_hash();
2d8f3038 3231 chroot_fs_refs(&root, &new);
1da177e4 3232 error = 0;
b12cea91 3233out4:
84d17192 3234 unlock_mount(old_mp);
b12cea91
AV
3235 if (!error) {
3236 path_put(&root_parent);
3237 path_put(&parent_path);
3238 }
3239out3:
8c3ee42e 3240 path_put(&root);
b12cea91 3241out2:
2d8f3038 3242 path_put(&old);
1da177e4 3243out1:
2d8f3038 3244 path_put(&new);
1da177e4 3245out0:
1da177e4 3246 return error;
1da177e4
LT
3247}
3248
3249static void __init init_mount_tree(void)
3250{
3251 struct vfsmount *mnt;
6b3286ed 3252 struct mnt_namespace *ns;
ac748a09 3253 struct path root;
0c55cfc4 3254 struct file_system_type *type;
1da177e4 3255
0c55cfc4
EB
3256 type = get_fs_type("rootfs");
3257 if (!type)
3258 panic("Can't find rootfs type");
3259 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3260 put_filesystem(type);
1da177e4
LT
3261 if (IS_ERR(mnt))
3262 panic("Can't create rootfs");
b3e19d92 3263
3b22edc5
TM
3264 ns = create_mnt_ns(mnt);
3265 if (IS_ERR(ns))
1da177e4 3266 panic("Can't allocate initial namespace");
6b3286ed
KK
3267
3268 init_task.nsproxy->mnt_ns = ns;
3269 get_mnt_ns(ns);
3270
be08d6d2
AV
3271 root.mnt = mnt;
3272 root.dentry = mnt->mnt_root;
da362b09 3273 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3274
3275 set_fs_pwd(current->fs, &root);
3276 set_fs_root(current->fs, &root);
1da177e4
LT
3277}
3278
74bf17cf 3279void __init mnt_init(void)
1da177e4 3280{
15a67dd8 3281 int err;
1da177e4 3282
7d6fec45 3283 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3284 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3285
0818bf27 3286 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3287 sizeof(struct hlist_head),
0818bf27 3288 mhash_entries, 19,
3d375d78 3289 HASH_ZERO,
0818bf27
AV
3290 &m_hash_shift, &m_hash_mask, 0, 0);
3291 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3292 sizeof(struct hlist_head),
3293 mphash_entries, 19,
3d375d78 3294 HASH_ZERO,
0818bf27 3295 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3296
84d17192 3297 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3298 panic("Failed to allocate mount hash table\n");
3299
4b93dc9b
TH
3300 kernfs_init();
3301
15a67dd8
RD
3302 err = sysfs_init();
3303 if (err)
3304 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3305 __func__, err);
00d26666
GKH
3306 fs_kobj = kobject_create_and_add("fs", NULL);
3307 if (!fs_kobj)
8e24eea7 3308 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3309 init_rootfs();
3310 init_mount_tree();
3311}
3312
616511d0 3313void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3314{
d498b25a 3315 if (!atomic_dec_and_test(&ns->count))
616511d0 3316 return;
7b00ed6f 3317 drop_collected_mounts(&ns->root->mnt);
771b1371 3318 free_mnt_ns(ns);
1da177e4 3319}
9d412a43
AV
3320
3321struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3322{
423e0ab0 3323 struct vfsmount *mnt;
e462ec50 3324 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, data);
423e0ab0
TC
3325 if (!IS_ERR(mnt)) {
3326 /*
3327 * it is a longterm mount, don't release mnt until
3328 * we unmount before file sys is unregistered
3329 */
f7a99c5b 3330 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3331 }
3332 return mnt;
9d412a43
AV
3333}
3334EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
3335
3336void kern_unmount(struct vfsmount *mnt)
3337{
3338 /* release long term mount so mount point can be released */
3339 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3340 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3341 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3342 mntput(mnt);
3343 }
3344}
3345EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3346
3347bool our_mnt(struct vfsmount *mnt)
3348{
143c8c91 3349 return check_mnt(real_mount(mnt));
02125a82 3350}
8823c079 3351
3151527e
EB
3352bool current_chrooted(void)
3353{
3354 /* Does the current process have a non-standard root */
3355 struct path ns_root;
3356 struct path fs_root;
3357 bool chrooted;
3358
3359 /* Find the namespace root */
3360 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3361 ns_root.dentry = ns_root.mnt->mnt_root;
3362 path_get(&ns_root);
3363 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3364 ;
3365
3366 get_fs_root(current->fs, &fs_root);
3367
3368 chrooted = !path_equal(&fs_root, &ns_root);
3369
3370 path_put(&fs_root);
3371 path_put(&ns_root);
3372
3373 return chrooted;
3374}
3375
8654df4e
EB
3376static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3377 int *new_mnt_flags)
87a8ebd6 3378{
8c6cf9cc 3379 int new_flags = *new_mnt_flags;
87a8ebd6 3380 struct mount *mnt;
e51db735 3381 bool visible = false;
87a8ebd6 3382
44bb4385 3383 down_read(&namespace_sem);
87a8ebd6 3384 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3385 struct mount *child;
77b1a97d
EB
3386 int mnt_flags;
3387
8654df4e 3388 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
e51db735
EB
3389 continue;
3390
7e96c1b0
EB
3391 /* This mount is not fully visible if it's root directory
3392 * is not the root directory of the filesystem.
3393 */
3394 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3395 continue;
3396
a1935c17 3397 /* A local view of the mount flags */
77b1a97d 3398 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3399
695e9df0 3400 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3401 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3402 mnt_flags |= MNT_LOCK_READONLY;
3403
8c6cf9cc
EB
3404 /* Verify the mount flags are equal to or more permissive
3405 * than the proposed new mount.
3406 */
77b1a97d 3407 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3408 !(new_flags & MNT_READONLY))
3409 continue;
77b1a97d
EB
3410 if ((mnt_flags & MNT_LOCK_ATIME) &&
3411 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3412 continue;
3413
ceeb0e5d
EB
3414 /* This mount is not fully visible if there are any
3415 * locked child mounts that cover anything except for
3416 * empty directories.
e51db735
EB
3417 */
3418 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3419 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3420 /* Only worry about locked mounts */
d71ed6c9 3421 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3422 continue;
7236c85e
EB
3423 /* Is the directory permanetly empty? */
3424 if (!is_empty_dir_inode(inode))
e51db735 3425 goto next;
87a8ebd6 3426 }
8c6cf9cc 3427 /* Preserve the locked attributes */
77b1a97d 3428 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3429 MNT_LOCK_ATIME);
e51db735
EB
3430 visible = true;
3431 goto found;
3432 next: ;
87a8ebd6 3433 }
e51db735 3434found:
44bb4385 3435 up_read(&namespace_sem);
e51db735 3436 return visible;
87a8ebd6
EB
3437}
3438
8654df4e
EB
3439static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3440{
a1935c17 3441 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3442 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3443 unsigned long s_iflags;
3444
3445 if (ns->user_ns == &init_user_ns)
3446 return false;
3447
3448 /* Can this filesystem be too revealing? */
3449 s_iflags = mnt->mnt_sb->s_iflags;
3450 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3451 return false;
3452
a1935c17
EB
3453 if ((s_iflags & required_iflags) != required_iflags) {
3454 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3455 required_iflags);
3456 return true;
3457 }
3458
8654df4e
EB
3459 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3460}
3461
380cf5ba
AL
3462bool mnt_may_suid(struct vfsmount *mnt)
3463{
3464 /*
3465 * Foreign mounts (accessed via fchdir or through /proc
3466 * symlinks) are always treated as if they are nosuid. This
3467 * prevents namespaces from trusting potentially unsafe
3468 * suid/sgid bits, file caps, or security labels that originate
3469 * in other namespaces.
3470 */
3471 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3472 current_in_userns(mnt->mnt_sb->s_user_ns);
3473}
3474
64964528 3475static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3476{
58be2825 3477 struct ns_common *ns = NULL;
8823c079
EB
3478 struct nsproxy *nsproxy;
3479
728dba3a
EB
3480 task_lock(task);
3481 nsproxy = task->nsproxy;
8823c079 3482 if (nsproxy) {
58be2825
AV
3483 ns = &nsproxy->mnt_ns->ns;
3484 get_mnt_ns(to_mnt_ns(ns));
8823c079 3485 }
728dba3a 3486 task_unlock(task);
8823c079
EB
3487
3488 return ns;
3489}
3490
64964528 3491static void mntns_put(struct ns_common *ns)
8823c079 3492{
58be2825 3493 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3494}
3495
64964528 3496static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3497{
3498 struct fs_struct *fs = current->fs;
4f757f3c 3499 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3500 struct path root;
4f757f3c 3501 int err;
8823c079 3502
0c55cfc4 3503 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3504 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3505 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3506 return -EPERM;
8823c079
EB
3507
3508 if (fs->users != 1)
3509 return -EINVAL;
3510
3511 get_mnt_ns(mnt_ns);
4f757f3c 3512 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3513 nsproxy->mnt_ns = mnt_ns;
3514
3515 /* Find the root */
4f757f3c
AV
3516 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3517 "/", LOOKUP_DOWN, &root);
3518 if (err) {
3519 /* revert to old namespace */
3520 nsproxy->mnt_ns = old_mnt_ns;
3521 put_mnt_ns(mnt_ns);
3522 return err;
3523 }
8823c079 3524
4068367c
AV
3525 put_mnt_ns(old_mnt_ns);
3526
8823c079
EB
3527 /* Update the pwd and root */
3528 set_fs_pwd(fs, &root);
3529 set_fs_root(fs, &root);
3530
3531 path_put(&root);
3532 return 0;
3533}
3534
bcac25a5
AV
3535static struct user_namespace *mntns_owner(struct ns_common *ns)
3536{
3537 return to_mnt_ns(ns)->user_ns;
3538}
3539
8823c079
EB
3540const struct proc_ns_operations mntns_operations = {
3541 .name = "mnt",
3542 .type = CLONE_NEWNS,
3543 .get = mntns_get,
3544 .put = mntns_put,
3545 .install = mntns_install,
bcac25a5 3546 .owner = mntns_owner,
8823c079 3547};