]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/namespace.c
make struct mountpoint bear the dentry reference to mountpoint, not struct mount
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
CommitLineData
59bd9ded 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
1da177e4
LT
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
5b825c3a 18#include <linux/cred.h>
73cd49ec 19#include <linux/idr.h>
57f150a5 20#include <linux/init.h> /* init_rootfs */
d10577a8
AV
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
a07b2000 23#include <linux/file.h>
d10577a8 24#include <linux/uaccess.h>
0bb80f24 25#include <linux/proc_ns.h>
20b4fb48 26#include <linux/magic.h>
57c8a661 27#include <linux/memblock.h>
9ea459e1 28#include <linux/task_work.h>
9164bb4a 29#include <linux/sched/task.h>
e262e32d 30#include <uapi/linux/mount.h>
9bc61ab1 31#include <linux/fs_context.h>
9164bb4a 32
07b20889 33#include "pnode.h"
948730b0 34#include "internal.h"
1da177e4 35
d2921684
EB
36/* Maximum number of mounts in a mount namespace */
37unsigned int sysctl_mount_max __read_mostly = 100000;
38
0818bf27
AV
39static unsigned int m_hash_mask __read_mostly;
40static unsigned int m_hash_shift __read_mostly;
41static unsigned int mp_hash_mask __read_mostly;
42static unsigned int mp_hash_shift __read_mostly;
43
44static __initdata unsigned long mhash_entries;
45static int __init set_mhash_entries(char *str)
46{
47 if (!str)
48 return 0;
49 mhash_entries = simple_strtoul(str, &str, 0);
50 return 1;
51}
52__setup("mhash_entries=", set_mhash_entries);
53
54static __initdata unsigned long mphash_entries;
55static int __init set_mphash_entries(char *str)
56{
57 if (!str)
58 return 0;
59 mphash_entries = simple_strtoul(str, &str, 0);
60 return 1;
61}
62__setup("mphash_entries=", set_mphash_entries);
13f14b4d 63
c7999c36 64static u64 event;
73cd49ec 65static DEFINE_IDA(mnt_id_ida);
719f5d7f 66static DEFINE_IDA(mnt_group_ida);
1da177e4 67
38129a13 68static struct hlist_head *mount_hashtable __read_mostly;
0818bf27 69static struct hlist_head *mountpoint_hashtable __read_mostly;
e18b890b 70static struct kmem_cache *mnt_cache __read_mostly;
59aa0da8 71static DECLARE_RWSEM(namespace_sem);
4edbe133
AV
72static HLIST_HEAD(unmounted); /* protected by namespace_sem */
73static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
1da177e4 74
f87fd4c2 75/* /sys/fs */
00d26666
GKH
76struct kobject *fs_kobj;
77EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 78
99b7db7b
NP
79/*
80 * vfsmount lock may be taken for read to prevent changes to the
81 * vfsmount hash, ie. during mountpoint lookups or walking back
82 * up the tree.
83 *
84 * It should be taken for write in all cases where the vfsmount
85 * tree or hash is modified or when a vfsmount structure is modified.
86 */
48a066e7 87__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
99b7db7b 88
38129a13 89static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 90{
b58fed8b
RP
91 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
92 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
0818bf27
AV
93 tmp = tmp + (tmp >> m_hash_shift);
94 return &mount_hashtable[tmp & m_hash_mask];
95}
96
97static inline struct hlist_head *mp_hash(struct dentry *dentry)
98{
99 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
100 tmp = tmp + (tmp >> mp_hash_shift);
101 return &mountpoint_hashtable[tmp & mp_hash_mask];
1da177e4
LT
102}
103
b105e270 104static int mnt_alloc_id(struct mount *mnt)
73cd49ec 105{
169b480e
MW
106 int res = ida_alloc(&mnt_id_ida, GFP_KERNEL);
107
108 if (res < 0)
109 return res;
110 mnt->mnt_id = res;
111 return 0;
73cd49ec
MS
112}
113
b105e270 114static void mnt_free_id(struct mount *mnt)
73cd49ec 115{
169b480e 116 ida_free(&mnt_id_ida, mnt->mnt_id);
73cd49ec
MS
117}
118
719f5d7f
MS
119/*
120 * Allocate a new peer group ID
719f5d7f 121 */
4b8b21f4 122static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 123{
169b480e 124 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
f21f6220 125
169b480e
MW
126 if (res < 0)
127 return res;
128 mnt->mnt_group_id = res;
129 return 0;
719f5d7f
MS
130}
131
132/*
133 * Release a peer group ID
134 */
4b8b21f4 135void mnt_release_group_id(struct mount *mnt)
719f5d7f 136{
169b480e 137 ida_free(&mnt_group_ida, mnt->mnt_group_id);
15169fe7 138 mnt->mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
83adc753 144static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
145{
146#ifdef CONFIG_SMP
68e8a9fe 147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
148#else
149 preempt_disable();
68e8a9fe 150 mnt->mnt_count += n;
b3e19d92
NP
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
83adc753 158unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
68e8a9fe 165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
166 }
167
168 return count;
169#else
68e8a9fe 170 return mnt->mnt_count;
b3e19d92
NP
171#endif
172}
173
87b95ce0
AV
174static void drop_mountpoint(struct fs_pin *p)
175{
176 struct mount *m = container_of(p, struct mount, mnt_umount);
87b95ce0
AV
177 pin_remove(p);
178 mntput(&m->mnt);
179}
180
b105e270 181static struct mount *alloc_vfsmnt(const char *name)
1da177e4 182{
c63181e6
AV
183 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
184 if (mnt) {
73cd49ec
MS
185 int err;
186
c63181e6 187 err = mnt_alloc_id(mnt);
88b38782
LZ
188 if (err)
189 goto out_free_cache;
190
191 if (name) {
fcc139ae 192 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
c63181e6 193 if (!mnt->mnt_devname)
88b38782 194 goto out_free_id;
73cd49ec
MS
195 }
196
b3e19d92 197#ifdef CONFIG_SMP
c63181e6
AV
198 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
199 if (!mnt->mnt_pcp)
b3e19d92
NP
200 goto out_free_devname;
201
c63181e6 202 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 203#else
c63181e6
AV
204 mnt->mnt_count = 1;
205 mnt->mnt_writers = 0;
b3e19d92
NP
206#endif
207
38129a13 208 INIT_HLIST_NODE(&mnt->mnt_hash);
c63181e6
AV
209 INIT_LIST_HEAD(&mnt->mnt_child);
210 INIT_LIST_HEAD(&mnt->mnt_mounts);
211 INIT_LIST_HEAD(&mnt->mnt_list);
212 INIT_LIST_HEAD(&mnt->mnt_expire);
213 INIT_LIST_HEAD(&mnt->mnt_share);
214 INIT_LIST_HEAD(&mnt->mnt_slave_list);
215 INIT_LIST_HEAD(&mnt->mnt_slave);
0a5eb7c8 216 INIT_HLIST_NODE(&mnt->mnt_mp_list);
99b19d16 217 INIT_LIST_HEAD(&mnt->mnt_umounting);
87b95ce0 218 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
1da177e4 219 }
c63181e6 220 return mnt;
88b38782 221
d3ef3d73
NP
222#ifdef CONFIG_SMP
223out_free_devname:
fcc139ae 224 kfree_const(mnt->mnt_devname);
d3ef3d73 225#endif
88b38782 226out_free_id:
c63181e6 227 mnt_free_id(mnt);
88b38782 228out_free_cache:
c63181e6 229 kmem_cache_free(mnt_cache, mnt);
88b38782 230 return NULL;
1da177e4
LT
231}
232
3d733633
DH
233/*
234 * Most r/o checks on a fs are for operations that take
235 * discrete amounts of time, like a write() or unlink().
236 * We must keep track of when those operations start
237 * (for permission checks) and when they end, so that
238 * we can determine when writes are able to occur to
239 * a filesystem.
240 */
241/*
242 * __mnt_is_readonly: check whether a mount is read-only
243 * @mnt: the mount to check for its write status
244 *
245 * This shouldn't be used directly ouside of the VFS.
246 * It does not guarantee that the filesystem will stay
247 * r/w, just that it is right *now*. This can not and
248 * should not be used in place of IS_RDONLY(inode).
249 * mnt_want/drop_write() will _keep_ the filesystem
250 * r/w.
251 */
43f5e655 252bool __mnt_is_readonly(struct vfsmount *mnt)
3d733633 253{
43f5e655 254 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
3d733633
DH
255}
256EXPORT_SYMBOL_GPL(__mnt_is_readonly);
257
83adc753 258static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73
NP
259{
260#ifdef CONFIG_SMP
68e8a9fe 261 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 262#else
68e8a9fe 263 mnt->mnt_writers++;
d3ef3d73
NP
264#endif
265}
3d733633 266
83adc753 267static inline void mnt_dec_writers(struct mount *mnt)
3d733633 268{
d3ef3d73 269#ifdef CONFIG_SMP
68e8a9fe 270 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 271#else
68e8a9fe 272 mnt->mnt_writers--;
d3ef3d73 273#endif
3d733633 274}
3d733633 275
83adc753 276static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 277{
d3ef3d73
NP
278#ifdef CONFIG_SMP
279 unsigned int count = 0;
3d733633 280 int cpu;
3d733633
DH
281
282 for_each_possible_cpu(cpu) {
68e8a9fe 283 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 284 }
3d733633 285
d3ef3d73
NP
286 return count;
287#else
288 return mnt->mnt_writers;
289#endif
3d733633
DH
290}
291
4ed5e82f
MS
292static int mnt_is_readonly(struct vfsmount *mnt)
293{
294 if (mnt->mnt_sb->s_readonly_remount)
295 return 1;
296 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
297 smp_rmb();
298 return __mnt_is_readonly(mnt);
299}
300
8366025e 301/*
eb04c282
JK
302 * Most r/o & frozen checks on a fs are for operations that take discrete
303 * amounts of time, like a write() or unlink(). We must keep track of when
304 * those operations start (for permission checks) and when they end, so that we
305 * can determine when writes are able to occur to a filesystem.
8366025e
DH
306 */
307/**
eb04c282 308 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 309 * @m: the mount on which to take a write
8366025e 310 *
eb04c282
JK
311 * This tells the low-level filesystem that a write is about to be performed to
312 * it, and makes sure that writes are allowed (mnt it read-write) before
313 * returning success. This operation does not protect against filesystem being
314 * frozen. When the write operation is finished, __mnt_drop_write() must be
315 * called. This is effectively a refcount.
8366025e 316 */
eb04c282 317int __mnt_want_write(struct vfsmount *m)
8366025e 318{
83adc753 319 struct mount *mnt = real_mount(m);
3d733633 320 int ret = 0;
3d733633 321
d3ef3d73 322 preempt_disable();
c6653a83 323 mnt_inc_writers(mnt);
d3ef3d73 324 /*
c6653a83 325 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
326 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
327 * incremented count after it has set MNT_WRITE_HOLD.
328 */
329 smp_mb();
6aa7de05 330 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73
NP
331 cpu_relax();
332 /*
333 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
334 * be set to match its requirements. So we must not load that until
335 * MNT_WRITE_HOLD is cleared.
336 */
337 smp_rmb();
4ed5e82f 338 if (mnt_is_readonly(m)) {
c6653a83 339 mnt_dec_writers(mnt);
3d733633 340 ret = -EROFS;
3d733633 341 }
d3ef3d73 342 preempt_enable();
eb04c282
JK
343
344 return ret;
345}
346
347/**
348 * mnt_want_write - get write access to a mount
349 * @m: the mount on which to take a write
350 *
351 * This tells the low-level filesystem that a write is about to be performed to
352 * it, and makes sure that writes are allowed (mount is read-write, filesystem
353 * is not frozen) before returning success. When the write operation is
354 * finished, mnt_drop_write() must be called. This is effectively a refcount.
355 */
356int mnt_want_write(struct vfsmount *m)
357{
358 int ret;
359
360 sb_start_write(m->mnt_sb);
361 ret = __mnt_want_write(m);
362 if (ret)
363 sb_end_write(m->mnt_sb);
3d733633 364 return ret;
8366025e
DH
365}
366EXPORT_SYMBOL_GPL(mnt_want_write);
367
96029c4e
NP
368/**
369 * mnt_clone_write - get write access to a mount
370 * @mnt: the mount on which to take a write
371 *
372 * This is effectively like mnt_want_write, except
373 * it must only be used to take an extra write reference
374 * on a mountpoint that we already know has a write reference
375 * on it. This allows some optimisation.
376 *
377 * After finished, mnt_drop_write must be called as usual to
378 * drop the reference.
379 */
380int mnt_clone_write(struct vfsmount *mnt)
381{
382 /* superblock may be r/o */
383 if (__mnt_is_readonly(mnt))
384 return -EROFS;
385 preempt_disable();
83adc753 386 mnt_inc_writers(real_mount(mnt));
96029c4e
NP
387 preempt_enable();
388 return 0;
389}
390EXPORT_SYMBOL_GPL(mnt_clone_write);
391
392/**
eb04c282 393 * __mnt_want_write_file - get write access to a file's mount
96029c4e
NP
394 * @file: the file who's mount on which to take a write
395 *
eb04c282 396 * This is like __mnt_want_write, but it takes a file and can
96029c4e
NP
397 * do some optimisations if the file is open for write already
398 */
eb04c282 399int __mnt_want_write_file(struct file *file)
96029c4e 400{
83f936c7 401 if (!(file->f_mode & FMODE_WRITER))
eb04c282 402 return __mnt_want_write(file->f_path.mnt);
96029c4e
NP
403 else
404 return mnt_clone_write(file->f_path.mnt);
405}
eb04c282 406
7c6893e3
MS
407/**
408 * mnt_want_write_file - get write access to a file's mount
409 * @file: the file who's mount on which to take a write
410 *
411 * This is like mnt_want_write, but it takes a file and can
412 * do some optimisations if the file is open for write already
7c6893e3
MS
413 */
414int mnt_want_write_file(struct file *file)
415{
416 int ret;
417
a6795a58 418 sb_start_write(file_inode(file)->i_sb);
eb04c282
JK
419 ret = __mnt_want_write_file(file);
420 if (ret)
a6795a58 421 sb_end_write(file_inode(file)->i_sb);
7c6893e3
MS
422 return ret;
423}
96029c4e
NP
424EXPORT_SYMBOL_GPL(mnt_want_write_file);
425
8366025e 426/**
eb04c282 427 * __mnt_drop_write - give up write access to a mount
8366025e
DH
428 * @mnt: the mount on which to give up write access
429 *
430 * Tells the low-level filesystem that we are done
431 * performing writes to it. Must be matched with
eb04c282 432 * __mnt_want_write() call above.
8366025e 433 */
eb04c282 434void __mnt_drop_write(struct vfsmount *mnt)
8366025e 435{
d3ef3d73 436 preempt_disable();
83adc753 437 mnt_dec_writers(real_mount(mnt));
d3ef3d73 438 preempt_enable();
8366025e 439}
eb04c282
JK
440
441/**
442 * mnt_drop_write - give up write access to a mount
443 * @mnt: the mount on which to give up write access
444 *
445 * Tells the low-level filesystem that we are done performing writes to it and
446 * also allows filesystem to be frozen again. Must be matched with
447 * mnt_want_write() call above.
448 */
449void mnt_drop_write(struct vfsmount *mnt)
450{
451 __mnt_drop_write(mnt);
452 sb_end_write(mnt->mnt_sb);
453}
8366025e
DH
454EXPORT_SYMBOL_GPL(mnt_drop_write);
455
eb04c282
JK
456void __mnt_drop_write_file(struct file *file)
457{
458 __mnt_drop_write(file->f_path.mnt);
459}
460
7c6893e3
MS
461void mnt_drop_write_file(struct file *file)
462{
a6795a58 463 __mnt_drop_write_file(file);
7c6893e3
MS
464 sb_end_write(file_inode(file)->i_sb);
465}
2a79f17e
AV
466EXPORT_SYMBOL(mnt_drop_write_file);
467
83adc753 468static int mnt_make_readonly(struct mount *mnt)
8366025e 469{
3d733633
DH
470 int ret = 0;
471
719ea2fb 472 lock_mount_hash();
83adc753 473 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 474 /*
d3ef3d73
NP
475 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
476 * should be visible before we do.
3d733633 477 */
d3ef3d73
NP
478 smp_mb();
479
3d733633 480 /*
d3ef3d73
NP
481 * With writers on hold, if this value is zero, then there are
482 * definitely no active writers (although held writers may subsequently
483 * increment the count, they'll have to wait, and decrement it after
484 * seeing MNT_READONLY).
485 *
486 * It is OK to have counter incremented on one CPU and decremented on
487 * another: the sum will add up correctly. The danger would be when we
488 * sum up each counter, if we read a counter before it is incremented,
489 * but then read another CPU's count which it has been subsequently
490 * decremented from -- we would see more decrements than we should.
491 * MNT_WRITE_HOLD protects against this scenario, because
492 * mnt_want_write first increments count, then smp_mb, then spins on
493 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
494 * we're counting up here.
3d733633 495 */
c6653a83 496 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
497 ret = -EBUSY;
498 else
83adc753 499 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73
NP
500 /*
501 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
502 * that become unheld will see MNT_READONLY.
503 */
504 smp_wmb();
83adc753 505 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
719ea2fb 506 unlock_mount_hash();
3d733633 507 return ret;
8366025e 508}
8366025e 509
43f5e655 510static int __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 511{
719ea2fb 512 lock_mount_hash();
83adc753 513 mnt->mnt.mnt_flags &= ~MNT_READONLY;
719ea2fb 514 unlock_mount_hash();
43f5e655 515 return 0;
2e4b7fcd
DH
516}
517
4ed5e82f
MS
518int sb_prepare_remount_readonly(struct super_block *sb)
519{
520 struct mount *mnt;
521 int err = 0;
522
8e8b8796
MS
523 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
524 if (atomic_long_read(&sb->s_remove_count))
525 return -EBUSY;
526
719ea2fb 527 lock_mount_hash();
4ed5e82f
MS
528 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
529 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
530 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
531 smp_mb();
532 if (mnt_get_writers(mnt) > 0) {
533 err = -EBUSY;
534 break;
535 }
536 }
537 }
8e8b8796
MS
538 if (!err && atomic_long_read(&sb->s_remove_count))
539 err = -EBUSY;
540
4ed5e82f
MS
541 if (!err) {
542 sb->s_readonly_remount = 1;
543 smp_wmb();
544 }
545 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
546 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
547 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
548 }
719ea2fb 549 unlock_mount_hash();
4ed5e82f
MS
550
551 return err;
552}
553
b105e270 554static void free_vfsmnt(struct mount *mnt)
1da177e4 555{
fcc139ae 556 kfree_const(mnt->mnt_devname);
d3ef3d73 557#ifdef CONFIG_SMP
68e8a9fe 558 free_percpu(mnt->mnt_pcp);
d3ef3d73 559#endif
b105e270 560 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
561}
562
8ffcb32e
DH
563static void delayed_free_vfsmnt(struct rcu_head *head)
564{
565 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
566}
567
48a066e7 568/* call under rcu_read_lock */
294d71ff 569int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
48a066e7
AV
570{
571 struct mount *mnt;
572 if (read_seqretry(&mount_lock, seq))
294d71ff 573 return 1;
48a066e7 574 if (bastard == NULL)
294d71ff 575 return 0;
48a066e7
AV
576 mnt = real_mount(bastard);
577 mnt_add_count(mnt, 1);
119e1ef8 578 smp_mb(); // see mntput_no_expire()
48a066e7 579 if (likely(!read_seqretry(&mount_lock, seq)))
294d71ff 580 return 0;
48a066e7
AV
581 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
582 mnt_add_count(mnt, -1);
294d71ff
AV
583 return 1;
584 }
119e1ef8
AV
585 lock_mount_hash();
586 if (unlikely(bastard->mnt_flags & MNT_DOOMED)) {
587 mnt_add_count(mnt, -1);
588 unlock_mount_hash();
589 return 1;
590 }
591 unlock_mount_hash();
592 /* caller will mntput() */
294d71ff
AV
593 return -1;
594}
595
596/* call under rcu_read_lock */
597bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598{
599 int res = __legitimize_mnt(bastard, seq);
600 if (likely(!res))
601 return true;
602 if (unlikely(res < 0)) {
603 rcu_read_unlock();
604 mntput(bastard);
605 rcu_read_lock();
48a066e7 606 }
48a066e7
AV
607 return false;
608}
609
1da177e4 610/*
474279dc 611 * find the first mount at @dentry on vfsmount @mnt.
48a066e7 612 * call under rcu_read_lock()
1da177e4 613 */
474279dc 614struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 615{
38129a13 616 struct hlist_head *head = m_hash(mnt, dentry);
474279dc
AV
617 struct mount *p;
618
38129a13 619 hlist_for_each_entry_rcu(p, head, mnt_hash)
474279dc
AV
620 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
621 return p;
622 return NULL;
623}
624
a05964f3 625/*
f015f126
DH
626 * lookup_mnt - Return the first child mount mounted at path
627 *
628 * "First" means first mounted chronologically. If you create the
629 * following mounts:
630 *
631 * mount /dev/sda1 /mnt
632 * mount /dev/sda2 /mnt
633 * mount /dev/sda3 /mnt
634 *
635 * Then lookup_mnt() on the base /mnt dentry in the root mount will
636 * return successively the root dentry and vfsmount of /dev/sda1, then
637 * /dev/sda2, then /dev/sda3, then NULL.
638 *
639 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 640 */
ca71cf71 641struct vfsmount *lookup_mnt(const struct path *path)
a05964f3 642{
c7105365 643 struct mount *child_mnt;
48a066e7
AV
644 struct vfsmount *m;
645 unsigned seq;
99b7db7b 646
48a066e7
AV
647 rcu_read_lock();
648 do {
649 seq = read_seqbegin(&mount_lock);
650 child_mnt = __lookup_mnt(path->mnt, path->dentry);
651 m = child_mnt ? &child_mnt->mnt : NULL;
652 } while (!legitimize_mnt(m, seq));
653 rcu_read_unlock();
654 return m;
a05964f3
RP
655}
656
7af1364f
EB
657/*
658 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
659 * current mount namespace.
660 *
661 * The common case is dentries are not mountpoints at all and that
662 * test is handled inline. For the slow case when we are actually
663 * dealing with a mountpoint of some kind, walk through all of the
664 * mounts in the current mount namespace and test to see if the dentry
665 * is a mountpoint.
666 *
667 * The mount_hashtable is not usable in the context because we
668 * need to identify all mounts that may be in the current mount
669 * namespace not just a mount that happens to have some specified
670 * parent mount.
671 */
672bool __is_local_mountpoint(struct dentry *dentry)
673{
674 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
675 struct mount *mnt;
676 bool is_covered = false;
677
678 if (!d_mountpoint(dentry))
679 goto out;
680
681 down_read(&namespace_sem);
682 list_for_each_entry(mnt, &ns->list, mnt_list) {
683 is_covered = (mnt->mnt_mountpoint == dentry);
684 if (is_covered)
685 break;
686 }
687 up_read(&namespace_sem);
688out:
689 return is_covered;
690}
691
e2dfa935 692static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
84d17192 693{
0818bf27 694 struct hlist_head *chain = mp_hash(dentry);
84d17192
AV
695 struct mountpoint *mp;
696
0818bf27 697 hlist_for_each_entry(mp, chain, m_hash) {
84d17192 698 if (mp->m_dentry == dentry) {
84d17192
AV
699 mp->m_count++;
700 return mp;
701 }
702 }
e2dfa935
EB
703 return NULL;
704}
705
3895dbf8 706static struct mountpoint *get_mountpoint(struct dentry *dentry)
e2dfa935 707{
3895dbf8 708 struct mountpoint *mp, *new = NULL;
e2dfa935 709 int ret;
84d17192 710
3895dbf8 711 if (d_mountpoint(dentry)) {
1e9c75fb
BC
712 /* might be worth a WARN_ON() */
713 if (d_unlinked(dentry))
714 return ERR_PTR(-ENOENT);
3895dbf8
EB
715mountpoint:
716 read_seqlock_excl(&mount_lock);
717 mp = lookup_mountpoint(dentry);
718 read_sequnlock_excl(&mount_lock);
719 if (mp)
720 goto done;
721 }
722
723 if (!new)
724 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
725 if (!new)
84d17192
AV
726 return ERR_PTR(-ENOMEM);
727
3895dbf8
EB
728
729 /* Exactly one processes may set d_mounted */
eed81007 730 ret = d_set_mounted(dentry);
eed81007 731
3895dbf8
EB
732 /* Someone else set d_mounted? */
733 if (ret == -EBUSY)
734 goto mountpoint;
735
736 /* The dentry is not available as a mountpoint? */
737 mp = ERR_PTR(ret);
738 if (ret)
739 goto done;
740
741 /* Add the new mountpoint to the hash table */
742 read_seqlock_excl(&mount_lock);
4edbe133 743 new->m_dentry = dget(dentry);
3895dbf8
EB
744 new->m_count = 1;
745 hlist_add_head(&new->m_hash, mp_hash(dentry));
746 INIT_HLIST_HEAD(&new->m_list);
747 read_sequnlock_excl(&mount_lock);
748
749 mp = new;
750 new = NULL;
751done:
752 kfree(new);
84d17192
AV
753 return mp;
754}
755
4edbe133
AV
756/*
757 * vfsmount lock must be held. Additionally, the caller is responsible
758 * for serializing calls for given disposal list.
759 */
760static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
84d17192
AV
761{
762 if (!--mp->m_count) {
763 struct dentry *dentry = mp->m_dentry;
0a5eb7c8 764 BUG_ON(!hlist_empty(&mp->m_list));
84d17192
AV
765 spin_lock(&dentry->d_lock);
766 dentry->d_flags &= ~DCACHE_MOUNTED;
767 spin_unlock(&dentry->d_lock);
4edbe133 768 dput_to_list(dentry, list);
0818bf27 769 hlist_del(&mp->m_hash);
84d17192
AV
770 kfree(mp);
771 }
772}
773
4edbe133
AV
774/* called with namespace_lock and vfsmount lock */
775static void put_mountpoint(struct mountpoint *mp)
776{
777 __put_mountpoint(mp, &ex_mountpoints);
778}
779
143c8c91 780static inline int check_mnt(struct mount *mnt)
1da177e4 781{
6b3286ed 782 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
783}
784
99b7db7b
NP
785/*
786 * vfsmount lock must be held for write
787 */
6b3286ed 788static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
789{
790 if (ns) {
791 ns->event = ++event;
792 wake_up_interruptible(&ns->poll);
793 }
794}
795
99b7db7b
NP
796/*
797 * vfsmount lock must be held for write
798 */
6b3286ed 799static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
800{
801 if (ns && ns->event != event) {
802 ns->event = event;
803 wake_up_interruptible(&ns->poll);
804 }
805}
806
99b7db7b
NP
807/*
808 * vfsmount lock must be held for write
809 */
e4e59906 810static struct mountpoint *unhash_mnt(struct mount *mnt)
419148da 811{
e4e59906 812 struct mountpoint *mp;
0714a533 813 mnt->mnt_parent = mnt;
a73324da 814 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 815 list_del_init(&mnt->mnt_child);
38129a13 816 hlist_del_init_rcu(&mnt->mnt_hash);
0a5eb7c8 817 hlist_del_init(&mnt->mnt_mp_list);
e4e59906 818 mp = mnt->mnt_mp;
84d17192 819 mnt->mnt_mp = NULL;
e4e59906 820 return mp;
1da177e4
LT
821}
822
7bdb11de
EB
823/*
824 * vfsmount lock must be held for write
825 */
826static void detach_mnt(struct mount *mnt, struct path *old_path)
827{
4edbe133 828 old_path->dentry = dget(mnt->mnt_mountpoint);
7bdb11de 829 old_path->mnt = &mnt->mnt_parent->mnt;
e4e59906 830 put_mountpoint(unhash_mnt(mnt));
7bdb11de
EB
831}
832
6a46c573
EB
833/*
834 * vfsmount lock must be held for write
835 */
836static void umount_mnt(struct mount *mnt)
837{
e4e59906 838 put_mountpoint(unhash_mnt(mnt));
6a46c573
EB
839}
840
99b7db7b
NP
841/*
842 * vfsmount lock must be held for write
843 */
84d17192
AV
844void mnt_set_mountpoint(struct mount *mnt,
845 struct mountpoint *mp,
44d964d6 846 struct mount *child_mnt)
b90fa9ae 847{
84d17192 848 mp->m_count++;
3a2393d7 849 mnt_add_count(mnt, 1); /* essentially, that's mntget */
4edbe133 850 child_mnt->mnt_mountpoint = mp->m_dentry;
3a2393d7 851 child_mnt->mnt_parent = mnt;
84d17192 852 child_mnt->mnt_mp = mp;
0a5eb7c8 853 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
b90fa9ae
RP
854}
855
1064f874
EB
856static void __attach_mnt(struct mount *mnt, struct mount *parent)
857{
858 hlist_add_head_rcu(&mnt->mnt_hash,
859 m_hash(&parent->mnt, mnt->mnt_mountpoint));
860 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
861}
862
99b7db7b
NP
863/*
864 * vfsmount lock must be held for write
865 */
84d17192
AV
866static void attach_mnt(struct mount *mnt,
867 struct mount *parent,
868 struct mountpoint *mp)
1da177e4 869{
84d17192 870 mnt_set_mountpoint(parent, mp, mnt);
1064f874 871 __attach_mnt(mnt, parent);
b90fa9ae
RP
872}
873
1064f874 874void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
12a5b529 875{
1064f874 876 struct mountpoint *old_mp = mnt->mnt_mp;
1064f874
EB
877 struct mount *old_parent = mnt->mnt_parent;
878
879 list_del_init(&mnt->mnt_child);
880 hlist_del_init(&mnt->mnt_mp_list);
881 hlist_del_init_rcu(&mnt->mnt_hash);
882
883 attach_mnt(mnt, parent, mp);
884
885 put_mountpoint(old_mp);
1064f874 886 mnt_add_count(old_parent, -1);
12a5b529
AV
887}
888
b90fa9ae 889/*
99b7db7b 890 * vfsmount lock must be held for write
b90fa9ae 891 */
1064f874 892static void commit_tree(struct mount *mnt)
b90fa9ae 893{
0714a533 894 struct mount *parent = mnt->mnt_parent;
83adc753 895 struct mount *m;
b90fa9ae 896 LIST_HEAD(head);
143c8c91 897 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 898
0714a533 899 BUG_ON(parent == mnt);
b90fa9ae 900
1a4eeaf2 901 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 902 list_for_each_entry(m, &head, mnt_list)
143c8c91 903 m->mnt_ns = n;
f03c6599 904
b90fa9ae
RP
905 list_splice(&head, n->list.prev);
906
d2921684
EB
907 n->mounts += n->pending_mounts;
908 n->pending_mounts = 0;
909
1064f874 910 __attach_mnt(mnt, parent);
6b3286ed 911 touch_mnt_namespace(n);
1da177e4
LT
912}
913
909b0a88 914static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 915{
6b41d536
AV
916 struct list_head *next = p->mnt_mounts.next;
917 if (next == &p->mnt_mounts) {
1da177e4 918 while (1) {
909b0a88 919 if (p == root)
1da177e4 920 return NULL;
6b41d536
AV
921 next = p->mnt_child.next;
922 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 923 break;
0714a533 924 p = p->mnt_parent;
1da177e4
LT
925 }
926 }
6b41d536 927 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
928}
929
315fc83e 930static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 931{
6b41d536
AV
932 struct list_head *prev = p->mnt_mounts.prev;
933 while (prev != &p->mnt_mounts) {
934 p = list_entry(prev, struct mount, mnt_child);
935 prev = p->mnt_mounts.prev;
9676f0c6
RP
936 }
937 return p;
938}
939
8f291889
AV
940/**
941 * vfs_create_mount - Create a mount for a configured superblock
942 * @fc: The configuration context with the superblock attached
943 *
944 * Create a mount to an already configured superblock. If necessary, the
945 * caller should invoke vfs_get_tree() before calling this.
946 *
947 * Note that this does not attach the mount to anything.
948 */
949struct vfsmount *vfs_create_mount(struct fs_context *fc)
9d412a43 950{
b105e270 951 struct mount *mnt;
9d412a43 952
8f291889
AV
953 if (!fc->root)
954 return ERR_PTR(-EINVAL);
9d412a43 955
8f291889 956 mnt = alloc_vfsmnt(fc->source ?: "none");
9d412a43
AV
957 if (!mnt)
958 return ERR_PTR(-ENOMEM);
959
8f291889 960 if (fc->sb_flags & SB_KERNMOUNT)
b105e270 961 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43 962
8f291889
AV
963 atomic_inc(&fc->root->d_sb->s_active);
964 mnt->mnt.mnt_sb = fc->root->d_sb;
965 mnt->mnt.mnt_root = dget(fc->root);
966 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
967 mnt->mnt_parent = mnt;
9d412a43 968
719ea2fb 969 lock_mount_hash();
8f291889 970 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
719ea2fb 971 unlock_mount_hash();
b105e270 972 return &mnt->mnt;
9d412a43 973}
8f291889
AV
974EXPORT_SYMBOL(vfs_create_mount);
975
976struct vfsmount *fc_mount(struct fs_context *fc)
977{
978 int err = vfs_get_tree(fc);
979 if (!err) {
980 up_write(&fc->root->d_sb->s_umount);
981 return vfs_create_mount(fc);
982 }
983 return ERR_PTR(err);
984}
985EXPORT_SYMBOL(fc_mount);
986
9bc61ab1
DH
987struct vfsmount *vfs_kern_mount(struct file_system_type *type,
988 int flags, const char *name,
989 void *data)
9d412a43 990{
9bc61ab1 991 struct fs_context *fc;
8f291889 992 struct vfsmount *mnt;
9bc61ab1 993 int ret = 0;
9d412a43
AV
994
995 if (!type)
3e1aeb00 996 return ERR_PTR(-EINVAL);
9d412a43 997
9bc61ab1
DH
998 fc = fs_context_for_mount(type, flags);
999 if (IS_ERR(fc))
1000 return ERR_CAST(fc);
1001
3e1aeb00
DH
1002 if (name)
1003 ret = vfs_parse_fs_string(fc, "source",
1004 name, strlen(name));
9bc61ab1
DH
1005 if (!ret)
1006 ret = parse_monolithic_mount_data(fc, data);
1007 if (!ret)
8f291889
AV
1008 mnt = fc_mount(fc);
1009 else
1010 mnt = ERR_PTR(ret);
9d412a43 1011
9bc61ab1 1012 put_fs_context(fc);
8f291889 1013 return mnt;
9d412a43
AV
1014}
1015EXPORT_SYMBOL_GPL(vfs_kern_mount);
1016
93faccbb
EB
1017struct vfsmount *
1018vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1019 const char *name, void *data)
1020{
1021 /* Until it is worked out how to pass the user namespace
1022 * through from the parent mount to the submount don't support
1023 * unprivileged mounts with submounts.
1024 */
1025 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1026 return ERR_PTR(-EPERM);
1027
e462ec50 1028 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
93faccbb
EB
1029}
1030EXPORT_SYMBOL_GPL(vfs_submount);
1031
87129cc0 1032static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 1033 int flag)
1da177e4 1034{
87129cc0 1035 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
1036 struct mount *mnt;
1037 int err;
1da177e4 1038
be34d1a3
DH
1039 mnt = alloc_vfsmnt(old->mnt_devname);
1040 if (!mnt)
1041 return ERR_PTR(-ENOMEM);
719f5d7f 1042
7a472ef4 1043 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
1044 mnt->mnt_group_id = 0; /* not a peer of original */
1045 else
1046 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 1047
be34d1a3
DH
1048 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1049 err = mnt_alloc_group_id(mnt);
1050 if (err)
1051 goto out_free;
1da177e4 1052 }
be34d1a3 1053
16a34adb
AV
1054 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1055 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
5ff9d8a6 1056
be34d1a3
DH
1057 atomic_inc(&sb->s_active);
1058 mnt->mnt.mnt_sb = sb;
1059 mnt->mnt.mnt_root = dget(root);
1060 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1061 mnt->mnt_parent = mnt;
719ea2fb 1062 lock_mount_hash();
be34d1a3 1063 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
719ea2fb 1064 unlock_mount_hash();
be34d1a3 1065
7a472ef4
EB
1066 if ((flag & CL_SLAVE) ||
1067 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
1068 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1069 mnt->mnt_master = old;
1070 CLEAR_MNT_SHARED(mnt);
1071 } else if (!(flag & CL_PRIVATE)) {
1072 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1073 list_add(&mnt->mnt_share, &old->mnt_share);
1074 if (IS_MNT_SLAVE(old))
1075 list_add(&mnt->mnt_slave, &old->mnt_slave);
1076 mnt->mnt_master = old->mnt_master;
5235d448
AV
1077 } else {
1078 CLEAR_MNT_SHARED(mnt);
be34d1a3
DH
1079 }
1080 if (flag & CL_MAKE_SHARED)
1081 set_mnt_shared(mnt);
1082
1083 /* stick the duplicate mount on the same expiry list
1084 * as the original if that was on one */
1085 if (flag & CL_EXPIRE) {
1086 if (!list_empty(&old->mnt_expire))
1087 list_add(&mnt->mnt_expire, &old->mnt_expire);
1088 }
1089
cb338d06 1090 return mnt;
719f5d7f
MS
1091
1092 out_free:
8ffcb32e 1093 mnt_free_id(mnt);
719f5d7f 1094 free_vfsmnt(mnt);
be34d1a3 1095 return ERR_PTR(err);
1da177e4
LT
1096}
1097
9ea459e1
AV
1098static void cleanup_mnt(struct mount *mnt)
1099{
1100 /*
1101 * This probably indicates that somebody messed
1102 * up a mnt_want/drop_write() pair. If this
1103 * happens, the filesystem was probably unable
1104 * to make r/w->r/o transitions.
1105 */
1106 /*
1107 * The locking used to deal with mnt_count decrement provides barriers,
1108 * so mnt_get_writers() below is safe.
1109 */
1110 WARN_ON(mnt_get_writers(mnt));
1111 if (unlikely(mnt->mnt_pins.first))
1112 mnt_pin_kill(mnt);
1113 fsnotify_vfsmount_delete(&mnt->mnt);
1114 dput(mnt->mnt.mnt_root);
1115 deactivate_super(mnt->mnt.mnt_sb);
1116 mnt_free_id(mnt);
1117 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1118}
1119
1120static void __cleanup_mnt(struct rcu_head *head)
1121{
1122 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1123}
1124
1125static LLIST_HEAD(delayed_mntput_list);
1126static void delayed_mntput(struct work_struct *unused)
1127{
1128 struct llist_node *node = llist_del_all(&delayed_mntput_list);
29785735 1129 struct mount *m, *t;
9ea459e1 1130
29785735
BP
1131 llist_for_each_entry_safe(m, t, node, mnt_llist)
1132 cleanup_mnt(m);
9ea459e1
AV
1133}
1134static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1135
900148dc 1136static void mntput_no_expire(struct mount *mnt)
b3e19d92 1137{
4edbe133
AV
1138 LIST_HEAD(list);
1139
48a066e7 1140 rcu_read_lock();
9ea0a46c
AV
1141 if (likely(READ_ONCE(mnt->mnt_ns))) {
1142 /*
1143 * Since we don't do lock_mount_hash() here,
1144 * ->mnt_ns can change under us. However, if it's
1145 * non-NULL, then there's a reference that won't
1146 * be dropped until after an RCU delay done after
1147 * turning ->mnt_ns NULL. So if we observe it
1148 * non-NULL under rcu_read_lock(), the reference
1149 * we are dropping is not the final one.
1150 */
1151 mnt_add_count(mnt, -1);
48a066e7 1152 rcu_read_unlock();
f03c6599 1153 return;
b3e19d92 1154 }
719ea2fb 1155 lock_mount_hash();
119e1ef8
AV
1156 /*
1157 * make sure that if __legitimize_mnt() has not seen us grab
1158 * mount_lock, we'll see their refcount increment here.
1159 */
1160 smp_mb();
9ea0a46c 1161 mnt_add_count(mnt, -1);
b3e19d92 1162 if (mnt_get_count(mnt)) {
48a066e7 1163 rcu_read_unlock();
719ea2fb 1164 unlock_mount_hash();
99b7db7b
NP
1165 return;
1166 }
48a066e7
AV
1167 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1168 rcu_read_unlock();
1169 unlock_mount_hash();
1170 return;
1171 }
1172 mnt->mnt.mnt_flags |= MNT_DOOMED;
1173 rcu_read_unlock();
962830df 1174
39f7c4db 1175 list_del(&mnt->mnt_instance);
ce07d891
EB
1176
1177 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1178 struct mount *p, *tmp;
1179 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
4edbe133 1180 __put_mountpoint(unhash_mnt(p), &list);
ce07d891
EB
1181 }
1182 }
719ea2fb 1183 unlock_mount_hash();
4edbe133 1184 shrink_dentry_list(&list);
649a795a 1185
9ea459e1
AV
1186 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1187 struct task_struct *task = current;
1188 if (likely(!(task->flags & PF_KTHREAD))) {
1189 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1190 if (!task_work_add(task, &mnt->mnt_rcu, true))
1191 return;
1192 }
1193 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1194 schedule_delayed_work(&delayed_mntput_work, 1);
1195 return;
1196 }
1197 cleanup_mnt(mnt);
b3e19d92 1198}
b3e19d92
NP
1199
1200void mntput(struct vfsmount *mnt)
1201{
1202 if (mnt) {
863d684f 1203 struct mount *m = real_mount(mnt);
b3e19d92 1204 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
1205 if (unlikely(m->mnt_expiry_mark))
1206 m->mnt_expiry_mark = 0;
1207 mntput_no_expire(m);
b3e19d92
NP
1208 }
1209}
1210EXPORT_SYMBOL(mntput);
1211
1212struct vfsmount *mntget(struct vfsmount *mnt)
1213{
1214 if (mnt)
83adc753 1215 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
1216 return mnt;
1217}
1218EXPORT_SYMBOL(mntget);
1219
c6609c0a
IK
1220/* path_is_mountpoint() - Check if path is a mount in the current
1221 * namespace.
1222 *
1223 * d_mountpoint() can only be used reliably to establish if a dentry is
1224 * not mounted in any namespace and that common case is handled inline.
1225 * d_mountpoint() isn't aware of the possibility there may be multiple
1226 * mounts using a given dentry in a different namespace. This function
1227 * checks if the passed in path is a mountpoint rather than the dentry
1228 * alone.
1229 */
1230bool path_is_mountpoint(const struct path *path)
1231{
1232 unsigned seq;
1233 bool res;
1234
1235 if (!d_mountpoint(path->dentry))
1236 return false;
1237
1238 rcu_read_lock();
1239 do {
1240 seq = read_seqbegin(&mount_lock);
1241 res = __path_is_mountpoint(path);
1242 } while (read_seqretry(&mount_lock, seq));
1243 rcu_read_unlock();
1244
1245 return res;
1246}
1247EXPORT_SYMBOL(path_is_mountpoint);
1248
ca71cf71 1249struct vfsmount *mnt_clone_internal(const struct path *path)
7b7b1ace 1250{
3064c356
AV
1251 struct mount *p;
1252 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1253 if (IS_ERR(p))
1254 return ERR_CAST(p);
1255 p->mnt.mnt_flags |= MNT_INTERNAL;
1256 return &p->mnt;
7b7b1ace 1257}
1da177e4 1258
a1a2c409 1259#ifdef CONFIG_PROC_FS
0226f492 1260/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1261static void *m_start(struct seq_file *m, loff_t *pos)
1262{
ede1bf0d 1263 struct proc_mounts *p = m->private;
1da177e4 1264
390c6843 1265 down_read(&namespace_sem);
c7999c36
AV
1266 if (p->cached_event == p->ns->event) {
1267 void *v = p->cached_mount;
1268 if (*pos == p->cached_index)
1269 return v;
1270 if (*pos == p->cached_index + 1) {
1271 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1272 return p->cached_mount = v;
1273 }
1274 }
1275
1276 p->cached_event = p->ns->event;
1277 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1278 p->cached_index = *pos;
1279 return p->cached_mount;
1da177e4
LT
1280}
1281
1282static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1283{
ede1bf0d 1284 struct proc_mounts *p = m->private;
b0765fb8 1285
c7999c36
AV
1286 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1287 p->cached_index = *pos;
1288 return p->cached_mount;
1da177e4
LT
1289}
1290
1291static void m_stop(struct seq_file *m, void *v)
1292{
390c6843 1293 up_read(&namespace_sem);
1da177e4
LT
1294}
1295
0226f492 1296static int m_show(struct seq_file *m, void *v)
2d4d4864 1297{
ede1bf0d 1298 struct proc_mounts *p = m->private;
1a4eeaf2 1299 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1300 return p->show(m, &r->mnt);
1da177e4
LT
1301}
1302
a1a2c409 1303const struct seq_operations mounts_op = {
1da177e4
LT
1304 .start = m_start,
1305 .next = m_next,
1306 .stop = m_stop,
0226f492 1307 .show = m_show,
b4629fe2 1308};
a1a2c409 1309#endif /* CONFIG_PROC_FS */
b4629fe2 1310
1da177e4
LT
1311/**
1312 * may_umount_tree - check if a mount tree is busy
1313 * @mnt: root of mount tree
1314 *
1315 * This is called to check if a tree of mounts has any
1316 * open files, pwds, chroots or sub mounts that are
1317 * busy.
1318 */
909b0a88 1319int may_umount_tree(struct vfsmount *m)
1da177e4 1320{
909b0a88 1321 struct mount *mnt = real_mount(m);
36341f64
RP
1322 int actual_refs = 0;
1323 int minimum_refs = 0;
315fc83e 1324 struct mount *p;
909b0a88 1325 BUG_ON(!m);
1da177e4 1326
b3e19d92 1327 /* write lock needed for mnt_get_count */
719ea2fb 1328 lock_mount_hash();
909b0a88 1329 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1330 actual_refs += mnt_get_count(p);
1da177e4 1331 minimum_refs += 2;
1da177e4 1332 }
719ea2fb 1333 unlock_mount_hash();
1da177e4
LT
1334
1335 if (actual_refs > minimum_refs)
e3474a8e 1336 return 0;
1da177e4 1337
e3474a8e 1338 return 1;
1da177e4
LT
1339}
1340
1341EXPORT_SYMBOL(may_umount_tree);
1342
1343/**
1344 * may_umount - check if a mount point is busy
1345 * @mnt: root of mount
1346 *
1347 * This is called to check if a mount point has any
1348 * open files, pwds, chroots or sub mounts. If the
1349 * mount has sub mounts this will return busy
1350 * regardless of whether the sub mounts are busy.
1351 *
1352 * Doesn't take quota and stuff into account. IOW, in some cases it will
1353 * give false negatives. The main reason why it's here is that we need
1354 * a non-destructive way to look for easily umountable filesystems.
1355 */
1356int may_umount(struct vfsmount *mnt)
1357{
e3474a8e 1358 int ret = 1;
8ad08d8a 1359 down_read(&namespace_sem);
719ea2fb 1360 lock_mount_hash();
1ab59738 1361 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1362 ret = 0;
719ea2fb 1363 unlock_mount_hash();
8ad08d8a 1364 up_read(&namespace_sem);
a05964f3 1365 return ret;
1da177e4
LT
1366}
1367
1368EXPORT_SYMBOL(may_umount);
1369
97216be0 1370static void namespace_unlock(void)
70fbcdf4 1371{
a3b3c562 1372 struct hlist_head head;
4edbe133 1373 LIST_HEAD(list);
97216be0 1374
a3b3c562 1375 hlist_move_list(&unmounted, &head);
4edbe133 1376 list_splice_init(&ex_mountpoints, &list);
97216be0 1377
97216be0
AV
1378 up_write(&namespace_sem);
1379
4edbe133
AV
1380 shrink_dentry_list(&list);
1381
a3b3c562
EB
1382 if (likely(hlist_empty(&head)))
1383 return;
1384
22cb7405 1385 synchronize_rcu_expedited();
48a066e7 1386
87b95ce0 1387 group_pin_kill(&head);
70fbcdf4
RP
1388}
1389
97216be0 1390static inline void namespace_lock(void)
e3197d83 1391{
97216be0 1392 down_write(&namespace_sem);
e3197d83
AV
1393}
1394
e819f152
EB
1395enum umount_tree_flags {
1396 UMOUNT_SYNC = 1,
1397 UMOUNT_PROPAGATE = 2,
e0c9c0af 1398 UMOUNT_CONNECTED = 4,
e819f152 1399};
f2d0a123
EB
1400
1401static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1402{
1403 /* Leaving mounts connected is only valid for lazy umounts */
1404 if (how & UMOUNT_SYNC)
1405 return true;
1406
1407 /* A mount without a parent has nothing to be connected to */
1408 if (!mnt_has_parent(mnt))
1409 return true;
1410
1411 /* Because the reference counting rules change when mounts are
1412 * unmounted and connected, umounted mounts may not be
1413 * connected to mounted mounts.
1414 */
1415 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1416 return true;
1417
1418 /* Has it been requested that the mount remain connected? */
1419 if (how & UMOUNT_CONNECTED)
1420 return false;
1421
1422 /* Is the mount locked such that it needs to remain connected? */
1423 if (IS_MNT_LOCKED(mnt))
1424 return false;
1425
1426 /* By default disconnect the mount */
1427 return true;
1428}
1429
99b7db7b 1430/*
48a066e7 1431 * mount_lock must be held
99b7db7b
NP
1432 * namespace_sem must be held for write
1433 */
e819f152 1434static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1da177e4 1435{
c003b26f 1436 LIST_HEAD(tmp_list);
315fc83e 1437 struct mount *p;
1da177e4 1438
5d88457e
EB
1439 if (how & UMOUNT_PROPAGATE)
1440 propagate_mount_unlock(mnt);
1441
c003b26f 1442 /* Gather the mounts to umount */
590ce4bc
EB
1443 for (p = mnt; p; p = next_mnt(p, mnt)) {
1444 p->mnt.mnt_flags |= MNT_UMOUNT;
c003b26f 1445 list_move(&p->mnt_list, &tmp_list);
590ce4bc 1446 }
1da177e4 1447
411a938b 1448 /* Hide the mounts from mnt_mounts */
c003b26f 1449 list_for_each_entry(p, &tmp_list, mnt_list) {
88b368f2 1450 list_del_init(&p->mnt_child);
c003b26f 1451 }
88b368f2 1452
c003b26f 1453 /* Add propogated mounts to the tmp_list */
e819f152 1454 if (how & UMOUNT_PROPAGATE)
7b8a53fd 1455 propagate_umount(&tmp_list);
a05964f3 1456
c003b26f 1457 while (!list_empty(&tmp_list)) {
d2921684 1458 struct mnt_namespace *ns;
ce07d891 1459 bool disconnect;
c003b26f 1460 p = list_first_entry(&tmp_list, struct mount, mnt_list);
6776db3d 1461 list_del_init(&p->mnt_expire);
1a4eeaf2 1462 list_del_init(&p->mnt_list);
d2921684
EB
1463 ns = p->mnt_ns;
1464 if (ns) {
1465 ns->mounts--;
1466 __touch_mnt_namespace(ns);
1467 }
143c8c91 1468 p->mnt_ns = NULL;
e819f152 1469 if (how & UMOUNT_SYNC)
48a066e7 1470 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
87b95ce0 1471
f2d0a123 1472 disconnect = disconnect_mount(p, how);
ce07d891
EB
1473
1474 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1475 disconnect ? &unmounted : NULL);
676da58d 1476 if (mnt_has_parent(p)) {
81b6b061 1477 mnt_add_count(p->mnt_parent, -1);
ce07d891
EB
1478 if (!disconnect) {
1479 /* Don't forget about p */
1480 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1481 } else {
1482 umount_mnt(p);
1483 }
7c4b93d8 1484 }
0f0afb1d 1485 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1486 }
1487}
1488
b54b9be7 1489static void shrink_submounts(struct mount *mnt);
c35038be 1490
8d0347f6
DH
1491static int do_umount_root(struct super_block *sb)
1492{
1493 int ret = 0;
1494
1495 down_write(&sb->s_umount);
1496 if (!sb_rdonly(sb)) {
1497 struct fs_context *fc;
1498
1499 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1500 SB_RDONLY);
1501 if (IS_ERR(fc)) {
1502 ret = PTR_ERR(fc);
1503 } else {
1504 ret = parse_monolithic_mount_data(fc, NULL);
1505 if (!ret)
1506 ret = reconfigure_super(fc);
1507 put_fs_context(fc);
1508 }
1509 }
1510 up_write(&sb->s_umount);
1511 return ret;
1512}
1513
1ab59738 1514static int do_umount(struct mount *mnt, int flags)
1da177e4 1515{
1ab59738 1516 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1517 int retval;
1518
1ab59738 1519 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1520 if (retval)
1521 return retval;
1522
1523 /*
1524 * Allow userspace to request a mountpoint be expired rather than
1525 * unmounting unconditionally. Unmount only happens if:
1526 * (1) the mark is already set (the mark is cleared by mntput())
1527 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1528 */
1529 if (flags & MNT_EXPIRE) {
1ab59738 1530 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1531 flags & (MNT_FORCE | MNT_DETACH))
1532 return -EINVAL;
1533
b3e19d92
NP
1534 /*
1535 * probably don't strictly need the lock here if we examined
1536 * all race cases, but it's a slowpath.
1537 */
719ea2fb 1538 lock_mount_hash();
83adc753 1539 if (mnt_get_count(mnt) != 2) {
719ea2fb 1540 unlock_mount_hash();
1da177e4 1541 return -EBUSY;
b3e19d92 1542 }
719ea2fb 1543 unlock_mount_hash();
1da177e4 1544
863d684f 1545 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1546 return -EAGAIN;
1547 }
1548
1549 /*
1550 * If we may have to abort operations to get out of this
1551 * mount, and they will themselves hold resources we must
1552 * allow the fs to do things. In the Unix tradition of
1553 * 'Gee thats tricky lets do it in userspace' the umount_begin
1554 * might fail to complete on the first run through as other tasks
1555 * must return, and the like. Thats for the mount program to worry
1556 * about for the moment.
1557 */
1558
42faad99 1559 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1560 sb->s_op->umount_begin(sb);
42faad99 1561 }
1da177e4
LT
1562
1563 /*
1564 * No sense to grab the lock for this test, but test itself looks
1565 * somewhat bogus. Suggestions for better replacement?
1566 * Ho-hum... In principle, we might treat that as umount + switch
1567 * to rootfs. GC would eventually take care of the old vfsmount.
1568 * Actually it makes sense, especially if rootfs would contain a
1569 * /reboot - static binary that would close all descriptors and
1570 * call reboot(9). Then init(8) could umount root and exec /reboot.
1571 */
1ab59738 1572 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1573 /*
1574 * Special case for "unmounting" root ...
1575 * we just try to remount it readonly.
1576 */
bc6155d1 1577 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
a1480dcc 1578 return -EPERM;
8d0347f6 1579 return do_umount_root(sb);
1da177e4
LT
1580 }
1581
97216be0 1582 namespace_lock();
719ea2fb 1583 lock_mount_hash();
1da177e4 1584
25d202ed
EB
1585 /* Recheck MNT_LOCKED with the locks held */
1586 retval = -EINVAL;
1587 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1588 goto out;
1589
1590 event++;
48a066e7 1591 if (flags & MNT_DETACH) {
1a4eeaf2 1592 if (!list_empty(&mnt->mnt_list))
e819f152 1593 umount_tree(mnt, UMOUNT_PROPAGATE);
1da177e4 1594 retval = 0;
48a066e7
AV
1595 } else {
1596 shrink_submounts(mnt);
1597 retval = -EBUSY;
1598 if (!propagate_mount_busy(mnt, 2)) {
1599 if (!list_empty(&mnt->mnt_list))
e819f152 1600 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
48a066e7
AV
1601 retval = 0;
1602 }
1da177e4 1603 }
25d202ed 1604out:
719ea2fb 1605 unlock_mount_hash();
e3197d83 1606 namespace_unlock();
1da177e4
LT
1607 return retval;
1608}
1609
80b5dce8
EB
1610/*
1611 * __detach_mounts - lazily unmount all mounts on the specified dentry
1612 *
1613 * During unlink, rmdir, and d_drop it is possible to loose the path
1614 * to an existing mountpoint, and wind up leaking the mount.
1615 * detach_mounts allows lazily unmounting those mounts instead of
1616 * leaking them.
1617 *
1618 * The caller may hold dentry->d_inode->i_mutex.
1619 */
1620void __detach_mounts(struct dentry *dentry)
1621{
1622 struct mountpoint *mp;
1623 struct mount *mnt;
1624
1625 namespace_lock();
3895dbf8 1626 lock_mount_hash();
80b5dce8 1627 mp = lookup_mountpoint(dentry);
adc9b5c0 1628 if (!mp)
80b5dce8
EB
1629 goto out_unlock;
1630
e06b933e 1631 event++;
80b5dce8
EB
1632 while (!hlist_empty(&mp->m_list)) {
1633 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
ce07d891 1634 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
fe78fcc8
EB
1635 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1636 umount_mnt(mnt);
ce07d891 1637 }
e0c9c0af 1638 else umount_tree(mnt, UMOUNT_CONNECTED);
80b5dce8 1639 }
80b5dce8
EB
1640 put_mountpoint(mp);
1641out_unlock:
3895dbf8 1642 unlock_mount_hash();
80b5dce8
EB
1643 namespace_unlock();
1644}
1645
dd111b31 1646/*
9b40bc90
AV
1647 * Is the caller allowed to modify his namespace?
1648 */
1649static inline bool may_mount(void)
1650{
1651 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1652}
1653
9e8925b6
JL
1654static inline bool may_mandlock(void)
1655{
1656#ifndef CONFIG_MANDATORY_FILE_LOCKING
1657 return false;
1658#endif
95ace754 1659 return capable(CAP_SYS_ADMIN);
9e8925b6
JL
1660}
1661
1da177e4
LT
1662/*
1663 * Now umount can handle mount points as well as block devices.
1664 * This is important for filesystems which use unnamed block devices.
1665 *
1666 * We now support a flag for forced unmount like the other 'big iron'
1667 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1668 */
1669
3a18ef5c 1670int ksys_umount(char __user *name, int flags)
1da177e4 1671{
2d8f3038 1672 struct path path;
900148dc 1673 struct mount *mnt;
1da177e4 1674 int retval;
db1f05bb 1675 int lookup_flags = 0;
1da177e4 1676
db1f05bb
MS
1677 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1678 return -EINVAL;
1679
9b40bc90
AV
1680 if (!may_mount())
1681 return -EPERM;
1682
db1f05bb
MS
1683 if (!(flags & UMOUNT_NOFOLLOW))
1684 lookup_flags |= LOOKUP_FOLLOW;
1685
57d46577
RGB
1686 lookup_flags |= LOOKUP_NO_EVAL;
1687
197df04c 1688 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1689 if (retval)
1690 goto out;
900148dc 1691 mnt = real_mount(path.mnt);
1da177e4 1692 retval = -EINVAL;
2d8f3038 1693 if (path.dentry != path.mnt->mnt_root)
1da177e4 1694 goto dput_and_out;
143c8c91 1695 if (!check_mnt(mnt))
1da177e4 1696 goto dput_and_out;
25d202ed 1697 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
5ff9d8a6 1698 goto dput_and_out;
b2f5d4dc
EB
1699 retval = -EPERM;
1700 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1701 goto dput_and_out;
1da177e4 1702
900148dc 1703 retval = do_umount(mnt, flags);
1da177e4 1704dput_and_out:
429731b1 1705 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1706 dput(path.dentry);
900148dc 1707 mntput_no_expire(mnt);
1da177e4
LT
1708out:
1709 return retval;
1710}
1711
3a18ef5c
DB
1712SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1713{
1714 return ksys_umount(name, flags);
1715}
1716
1da177e4
LT
1717#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1718
1719/*
b58fed8b 1720 * The 2.0 compatible umount. No flags.
1da177e4 1721 */
bdc480e3 1722SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1723{
3a18ef5c 1724 return ksys_umount(name, 0);
1da177e4
LT
1725}
1726
1727#endif
1728
4ce5d2b1 1729static bool is_mnt_ns_file(struct dentry *dentry)
8823c079 1730{
4ce5d2b1 1731 /* Is this a proxy for a mount namespace? */
e149ed2b
AV
1732 return dentry->d_op == &ns_dentry_operations &&
1733 dentry->d_fsdata == &mntns_operations;
4ce5d2b1
EB
1734}
1735
58be2825
AV
1736struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1737{
1738 return container_of(ns, struct mnt_namespace, ns);
1739}
1740
4ce5d2b1
EB
1741static bool mnt_ns_loop(struct dentry *dentry)
1742{
1743 /* Could bind mounting the mount namespace inode cause a
1744 * mount namespace loop?
1745 */
1746 struct mnt_namespace *mnt_ns;
1747 if (!is_mnt_ns_file(dentry))
1748 return false;
1749
f77c8014 1750 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
8823c079
EB
1751 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1752}
1753
87129cc0 1754struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1755 int flag)
1da177e4 1756{
84d17192 1757 struct mount *res, *p, *q, *r, *parent;
1da177e4 1758
4ce5d2b1
EB
1759 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1760 return ERR_PTR(-EINVAL);
1761
1762 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
be34d1a3 1763 return ERR_PTR(-EINVAL);
9676f0c6 1764
36341f64 1765 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1766 if (IS_ERR(q))
1767 return q;
1768
a73324da 1769 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1770
1771 p = mnt;
6b41d536 1772 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1773 struct mount *s;
7ec02ef1 1774 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1775 continue;
1776
909b0a88 1777 for (s = r; s; s = next_mnt(s, r)) {
4ce5d2b1
EB
1778 if (!(flag & CL_COPY_UNBINDABLE) &&
1779 IS_MNT_UNBINDABLE(s)) {
df7342b2
EB
1780 if (s->mnt.mnt_flags & MNT_LOCKED) {
1781 /* Both unbindable and locked. */
1782 q = ERR_PTR(-EPERM);
1783 goto out;
1784 } else {
1785 s = skip_mnt_tree(s);
1786 continue;
1787 }
4ce5d2b1
EB
1788 }
1789 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1790 is_mnt_ns_file(s->mnt.mnt_root)) {
9676f0c6
RP
1791 s = skip_mnt_tree(s);
1792 continue;
1793 }
0714a533
AV
1794 while (p != s->mnt_parent) {
1795 p = p->mnt_parent;
1796 q = q->mnt_parent;
1da177e4 1797 }
87129cc0 1798 p = s;
84d17192 1799 parent = q;
87129cc0 1800 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1801 if (IS_ERR(q))
1802 goto out;
719ea2fb 1803 lock_mount_hash();
1a4eeaf2 1804 list_add_tail(&q->mnt_list, &res->mnt_list);
1064f874 1805 attach_mnt(q, parent, p->mnt_mp);
719ea2fb 1806 unlock_mount_hash();
1da177e4
LT
1807 }
1808 }
1809 return res;
be34d1a3 1810out:
1da177e4 1811 if (res) {
719ea2fb 1812 lock_mount_hash();
e819f152 1813 umount_tree(res, UMOUNT_SYNC);
719ea2fb 1814 unlock_mount_hash();
1da177e4 1815 }
be34d1a3 1816 return q;
1da177e4
LT
1817}
1818
be34d1a3
DH
1819/* Caller should check returned pointer for errors */
1820
ca71cf71 1821struct vfsmount *collect_mounts(const struct path *path)
8aec0809 1822{
cb338d06 1823 struct mount *tree;
97216be0 1824 namespace_lock();
cd4a4017
EB
1825 if (!check_mnt(real_mount(path->mnt)))
1826 tree = ERR_PTR(-EINVAL);
1827 else
1828 tree = copy_tree(real_mount(path->mnt), path->dentry,
1829 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1830 namespace_unlock();
be34d1a3 1831 if (IS_ERR(tree))
52e220d3 1832 return ERR_CAST(tree);
be34d1a3 1833 return &tree->mnt;
8aec0809
AV
1834}
1835
a07b2000
AV
1836static void free_mnt_ns(struct mnt_namespace *);
1837static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
1838
1839void dissolve_on_fput(struct vfsmount *mnt)
1840{
1841 struct mnt_namespace *ns;
1842 namespace_lock();
1843 lock_mount_hash();
1844 ns = real_mount(mnt)->mnt_ns;
44dfd84a
DH
1845 if (ns) {
1846 if (is_anon_ns(ns))
1847 umount_tree(real_mount(mnt), UMOUNT_CONNECTED);
1848 else
1849 ns = NULL;
1850 }
a07b2000
AV
1851 unlock_mount_hash();
1852 namespace_unlock();
44dfd84a
DH
1853 if (ns)
1854 free_mnt_ns(ns);
a07b2000
AV
1855}
1856
8aec0809
AV
1857void drop_collected_mounts(struct vfsmount *mnt)
1858{
97216be0 1859 namespace_lock();
719ea2fb 1860 lock_mount_hash();
9c8e0a1b 1861 umount_tree(real_mount(mnt), 0);
719ea2fb 1862 unlock_mount_hash();
3ab6abee 1863 namespace_unlock();
8aec0809
AV
1864}
1865
c771d683
MS
1866/**
1867 * clone_private_mount - create a private clone of a path
1868 *
1869 * This creates a new vfsmount, which will be the clone of @path. The new will
1870 * not be attached anywhere in the namespace and will be private (i.e. changes
1871 * to the originating mount won't be propagated into this).
1872 *
1873 * Release with mntput().
1874 */
ca71cf71 1875struct vfsmount *clone_private_mount(const struct path *path)
c771d683
MS
1876{
1877 struct mount *old_mnt = real_mount(path->mnt);
1878 struct mount *new_mnt;
1879
1880 if (IS_MNT_UNBINDABLE(old_mnt))
1881 return ERR_PTR(-EINVAL);
1882
c771d683 1883 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
c771d683
MS
1884 if (IS_ERR(new_mnt))
1885 return ERR_CAST(new_mnt);
1886
1887 return &new_mnt->mnt;
1888}
1889EXPORT_SYMBOL_GPL(clone_private_mount);
1890
1f707137
AV
1891int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1892 struct vfsmount *root)
1893{
1a4eeaf2 1894 struct mount *mnt;
1f707137
AV
1895 int res = f(root, arg);
1896 if (res)
1897 return res;
1a4eeaf2
AV
1898 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1899 res = f(&mnt->mnt, arg);
1f707137
AV
1900 if (res)
1901 return res;
1902 }
1903 return 0;
1904}
1905
3bd045cc
AV
1906static void lock_mnt_tree(struct mount *mnt)
1907{
1908 struct mount *p;
1909
1910 for (p = mnt; p; p = next_mnt(p, mnt)) {
1911 int flags = p->mnt.mnt_flags;
1912 /* Don't allow unprivileged users to change mount flags */
1913 flags |= MNT_LOCK_ATIME;
1914
1915 if (flags & MNT_READONLY)
1916 flags |= MNT_LOCK_READONLY;
1917
1918 if (flags & MNT_NODEV)
1919 flags |= MNT_LOCK_NODEV;
1920
1921 if (flags & MNT_NOSUID)
1922 flags |= MNT_LOCK_NOSUID;
1923
1924 if (flags & MNT_NOEXEC)
1925 flags |= MNT_LOCK_NOEXEC;
1926 /* Don't allow unprivileged users to reveal what is under a mount */
1927 if (list_empty(&p->mnt_expire))
1928 flags |= MNT_LOCKED;
1929 p->mnt.mnt_flags = flags;
1930 }
1931}
1932
4b8b21f4 1933static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1934{
315fc83e 1935 struct mount *p;
719f5d7f 1936
909b0a88 1937 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1938 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1939 mnt_release_group_id(p);
719f5d7f
MS
1940 }
1941}
1942
4b8b21f4 1943static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1944{
315fc83e 1945 struct mount *p;
719f5d7f 1946
909b0a88 1947 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1948 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1949 int err = mnt_alloc_group_id(p);
719f5d7f 1950 if (err) {
4b8b21f4 1951 cleanup_group_ids(mnt, p);
719f5d7f
MS
1952 return err;
1953 }
1954 }
1955 }
1956
1957 return 0;
1958}
1959
d2921684
EB
1960int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1961{
1962 unsigned int max = READ_ONCE(sysctl_mount_max);
1963 unsigned int mounts = 0, old, pending, sum;
1964 struct mount *p;
1965
1966 for (p = mnt; p; p = next_mnt(p, mnt))
1967 mounts++;
1968
1969 old = ns->mounts;
1970 pending = ns->pending_mounts;
1971 sum = old + pending;
1972 if ((old > sum) ||
1973 (pending > sum) ||
1974 (max < sum) ||
1975 (mounts > (max - sum)))
1976 return -ENOSPC;
1977
1978 ns->pending_mounts = pending + mounts;
1979 return 0;
1980}
1981
b90fa9ae
RP
1982/*
1983 * @source_mnt : mount tree to be attached
21444403
RP
1984 * @nd : place the mount tree @source_mnt is attached
1985 * @parent_nd : if non-null, detach the source_mnt from its parent and
1986 * store the parent mount and mountpoint dentry.
1987 * (done when source_mnt is moved)
b90fa9ae
RP
1988 *
1989 * NOTE: in the table below explains the semantics when a source mount
1990 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1991 * ---------------------------------------------------------------------------
1992 * | BIND MOUNT OPERATION |
1993 * |**************************************************************************
1994 * | source-->| shared | private | slave | unbindable |
1995 * | dest | | | | |
1996 * | | | | | | |
1997 * | v | | | | |
1998 * |**************************************************************************
1999 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2000 * | | | | | |
2001 * |non-shared| shared (+) | private | slave (*) | invalid |
2002 * ***************************************************************************
b90fa9ae
RP
2003 * A bind operation clones the source mount and mounts the clone on the
2004 * destination mount.
2005 *
2006 * (++) the cloned mount is propagated to all the mounts in the propagation
2007 * tree of the destination mount and the cloned mount is added to
2008 * the peer group of the source mount.
2009 * (+) the cloned mount is created under the destination mount and is marked
2010 * as shared. The cloned mount is added to the peer group of the source
2011 * mount.
5afe0022
RP
2012 * (+++) the mount is propagated to all the mounts in the propagation tree
2013 * of the destination mount and the cloned mount is made slave
2014 * of the same master as that of the source mount. The cloned mount
2015 * is marked as 'shared and slave'.
2016 * (*) the cloned mount is made a slave of the same master as that of the
2017 * source mount.
2018 *
9676f0c6
RP
2019 * ---------------------------------------------------------------------------
2020 * | MOVE MOUNT OPERATION |
2021 * |**************************************************************************
2022 * | source-->| shared | private | slave | unbindable |
2023 * | dest | | | | |
2024 * | | | | | | |
2025 * | v | | | | |
2026 * |**************************************************************************
2027 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2028 * | | | | | |
2029 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2030 * ***************************************************************************
5afe0022
RP
2031 *
2032 * (+) the mount is moved to the destination. And is then propagated to
2033 * all the mounts in the propagation tree of the destination mount.
21444403 2034 * (+*) the mount is moved to the destination.
5afe0022
RP
2035 * (+++) the mount is moved to the destination and is then propagated to
2036 * all the mounts belonging to the destination mount's propagation tree.
2037 * the mount is marked as 'shared and slave'.
2038 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
2039 *
2040 * if the source mount is a tree, the operations explained above is
2041 * applied to each mount in the tree.
2042 * Must be called without spinlocks held, since this function can sleep
2043 * in allocations.
2044 */
0fb54e50 2045static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
2046 struct mount *dest_mnt,
2047 struct mountpoint *dest_mp,
2048 struct path *parent_path)
b90fa9ae 2049{
3bd045cc 2050 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
38129a13 2051 HLIST_HEAD(tree_list);
d2921684 2052 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1064f874 2053 struct mountpoint *smp;
315fc83e 2054 struct mount *child, *p;
38129a13 2055 struct hlist_node *n;
719f5d7f 2056 int err;
b90fa9ae 2057
1064f874
EB
2058 /* Preallocate a mountpoint in case the new mounts need
2059 * to be tucked under other mounts.
2060 */
2061 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2062 if (IS_ERR(smp))
2063 return PTR_ERR(smp);
2064
d2921684
EB
2065 /* Is there space to add these mounts to the mount namespace? */
2066 if (!parent_path) {
2067 err = count_mounts(ns, source_mnt);
2068 if (err)
2069 goto out;
2070 }
2071
fc7be130 2072 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 2073 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
2074 if (err)
2075 goto out;
0b1b901b 2076 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
f2ebb3a9 2077 lock_mount_hash();
0b1b901b
AV
2078 if (err)
2079 goto out_cleanup_ids;
909b0a88 2080 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 2081 set_mnt_shared(p);
0b1b901b
AV
2082 } else {
2083 lock_mount_hash();
b90fa9ae 2084 }
1a390689 2085 if (parent_path) {
0fb54e50 2086 detach_mnt(source_mnt, parent_path);
84d17192 2087 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 2088 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 2089 } else {
44dfd84a
DH
2090 if (source_mnt->mnt_ns) {
2091 /* move from anon - the caller will destroy */
2092 list_del_init(&source_mnt->mnt_ns->list);
2093 }
84d17192 2094 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1064f874 2095 commit_tree(source_mnt);
21444403 2096 }
b90fa9ae 2097
38129a13 2098 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1d6a32ac 2099 struct mount *q;
38129a13 2100 hlist_del_init(&child->mnt_hash);
1064f874
EB
2101 q = __lookup_mnt(&child->mnt_parent->mnt,
2102 child->mnt_mountpoint);
2103 if (q)
2104 mnt_change_mountpoint(child, smp, q);
3bd045cc
AV
2105 /* Notice when we are propagating across user namespaces */
2106 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2107 lock_mnt_tree(child);
d728cf79 2108 child->mnt.mnt_flags &= ~MNT_LOCKED;
1064f874 2109 commit_tree(child);
b90fa9ae 2110 }
1064f874 2111 put_mountpoint(smp);
719ea2fb 2112 unlock_mount_hash();
99b7db7b 2113
b90fa9ae 2114 return 0;
719f5d7f
MS
2115
2116 out_cleanup_ids:
f2ebb3a9
AV
2117 while (!hlist_empty(&tree_list)) {
2118 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
d2921684 2119 child->mnt_parent->mnt_ns->pending_mounts = 0;
e819f152 2120 umount_tree(child, UMOUNT_SYNC);
f2ebb3a9
AV
2121 }
2122 unlock_mount_hash();
0b1b901b 2123 cleanup_group_ids(source_mnt, NULL);
719f5d7f 2124 out:
d2921684 2125 ns->pending_mounts = 0;
1064f874
EB
2126
2127 read_seqlock_excl(&mount_lock);
2128 put_mountpoint(smp);
2129 read_sequnlock_excl(&mount_lock);
2130
719f5d7f 2131 return err;
b90fa9ae
RP
2132}
2133
84d17192 2134static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
2135{
2136 struct vfsmount *mnt;
84d17192 2137 struct dentry *dentry = path->dentry;
b12cea91 2138retry:
5955102c 2139 inode_lock(dentry->d_inode);
84d17192 2140 if (unlikely(cant_mount(dentry))) {
5955102c 2141 inode_unlock(dentry->d_inode);
84d17192 2142 return ERR_PTR(-ENOENT);
b12cea91 2143 }
97216be0 2144 namespace_lock();
b12cea91 2145 mnt = lookup_mnt(path);
84d17192 2146 if (likely(!mnt)) {
3895dbf8 2147 struct mountpoint *mp = get_mountpoint(dentry);
84d17192 2148 if (IS_ERR(mp)) {
97216be0 2149 namespace_unlock();
5955102c 2150 inode_unlock(dentry->d_inode);
84d17192
AV
2151 return mp;
2152 }
2153 return mp;
2154 }
97216be0 2155 namespace_unlock();
5955102c 2156 inode_unlock(path->dentry->d_inode);
b12cea91
AV
2157 path_put(path);
2158 path->mnt = mnt;
84d17192 2159 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
2160 goto retry;
2161}
2162
84d17192 2163static void unlock_mount(struct mountpoint *where)
b12cea91 2164{
84d17192 2165 struct dentry *dentry = where->m_dentry;
3895dbf8
EB
2166
2167 read_seqlock_excl(&mount_lock);
84d17192 2168 put_mountpoint(where);
3895dbf8
EB
2169 read_sequnlock_excl(&mount_lock);
2170
328e6d90 2171 namespace_unlock();
5955102c 2172 inode_unlock(dentry->d_inode);
b12cea91
AV
2173}
2174
84d17192 2175static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 2176{
e462ec50 2177 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
1da177e4
LT
2178 return -EINVAL;
2179
e36cb0b8
DH
2180 if (d_is_dir(mp->m_dentry) !=
2181 d_is_dir(mnt->mnt.mnt_root))
1da177e4
LT
2182 return -ENOTDIR;
2183
84d17192 2184 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
2185}
2186
7a2e8a8f
VA
2187/*
2188 * Sanity check the flags to change_mnt_propagation.
2189 */
2190
e462ec50 2191static int flags_to_propagation_type(int ms_flags)
7a2e8a8f 2192{
e462ec50 2193 int type = ms_flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
2194
2195 /* Fail if any non-propagation flags are set */
2196 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2197 return 0;
2198 /* Only one propagation flag should be set */
2199 if (!is_power_of_2(type))
2200 return 0;
2201 return type;
2202}
2203
07b20889
RP
2204/*
2205 * recursively change the type of the mountpoint.
2206 */
e462ec50 2207static int do_change_type(struct path *path, int ms_flags)
07b20889 2208{
315fc83e 2209 struct mount *m;
4b8b21f4 2210 struct mount *mnt = real_mount(path->mnt);
e462ec50 2211 int recurse = ms_flags & MS_REC;
7a2e8a8f 2212 int type;
719f5d7f 2213 int err = 0;
07b20889 2214
2d92ab3c 2215 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
2216 return -EINVAL;
2217
e462ec50 2218 type = flags_to_propagation_type(ms_flags);
7a2e8a8f
VA
2219 if (!type)
2220 return -EINVAL;
2221
97216be0 2222 namespace_lock();
719f5d7f
MS
2223 if (type == MS_SHARED) {
2224 err = invent_group_ids(mnt, recurse);
2225 if (err)
2226 goto out_unlock;
2227 }
2228
719ea2fb 2229 lock_mount_hash();
909b0a88 2230 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 2231 change_mnt_propagation(m, type);
719ea2fb 2232 unlock_mount_hash();
719f5d7f
MS
2233
2234 out_unlock:
97216be0 2235 namespace_unlock();
719f5d7f 2236 return err;
07b20889
RP
2237}
2238
5ff9d8a6
EB
2239static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2240{
2241 struct mount *child;
2242 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2243 if (!is_subdir(child->mnt_mountpoint, dentry))
2244 continue;
2245
2246 if (child->mnt.mnt_flags & MNT_LOCKED)
2247 return true;
2248 }
2249 return false;
2250}
2251
a07b2000
AV
2252static struct mount *__do_loopback(struct path *old_path, int recurse)
2253{
2254 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
2255
2256 if (IS_MNT_UNBINDABLE(old))
2257 return mnt;
2258
2259 if (!check_mnt(old) && old_path->dentry->d_op != &ns_dentry_operations)
2260 return mnt;
2261
2262 if (!recurse && has_locked_children(old, old_path->dentry))
2263 return mnt;
2264
2265 if (recurse)
2266 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
2267 else
2268 mnt = clone_mnt(old, old_path->dentry, 0);
2269
2270 if (!IS_ERR(mnt))
2271 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2272
2273 return mnt;
2274}
2275
1da177e4
LT
2276/*
2277 * do loopback mount.
2278 */
808d4e3c 2279static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 2280 int recurse)
1da177e4 2281{
2d92ab3c 2282 struct path old_path;
a07b2000 2283 struct mount *mnt = NULL, *parent;
84d17192 2284 struct mountpoint *mp;
57eccb83 2285 int err;
1da177e4
LT
2286 if (!old_name || !*old_name)
2287 return -EINVAL;
815d405c 2288 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
2289 if (err)
2290 return err;
2291
8823c079 2292 err = -EINVAL;
4ce5d2b1 2293 if (mnt_ns_loop(old_path.dentry))
dd111b31 2294 goto out;
8823c079 2295
84d17192 2296 mp = lock_mount(path);
a07b2000
AV
2297 if (IS_ERR(mp)) {
2298 err = PTR_ERR(mp);
b12cea91 2299 goto out;
a07b2000 2300 }
b12cea91 2301
84d17192 2302 parent = real_mount(path->mnt);
e149ed2b
AV
2303 if (!check_mnt(parent))
2304 goto out2;
2305
a07b2000 2306 mnt = __do_loopback(&old_path, recurse);
be34d1a3
DH
2307 if (IS_ERR(mnt)) {
2308 err = PTR_ERR(mnt);
e9c5d8a5 2309 goto out2;
be34d1a3 2310 }
ccd48bc7 2311
84d17192 2312 err = graft_tree(mnt, parent, mp);
ccd48bc7 2313 if (err) {
719ea2fb 2314 lock_mount_hash();
e819f152 2315 umount_tree(mnt, UMOUNT_SYNC);
719ea2fb 2316 unlock_mount_hash();
5b83d2c5 2317 }
b12cea91 2318out2:
84d17192 2319 unlock_mount(mp);
ccd48bc7 2320out:
2d92ab3c 2321 path_put(&old_path);
1da177e4
LT
2322 return err;
2323}
2324
a07b2000
AV
2325static struct file *open_detached_copy(struct path *path, bool recursive)
2326{
2327 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2328 struct mnt_namespace *ns = alloc_mnt_ns(user_ns, true);
2329 struct mount *mnt, *p;
2330 struct file *file;
2331
2332 if (IS_ERR(ns))
2333 return ERR_CAST(ns);
2334
2335 namespace_lock();
2336 mnt = __do_loopback(path, recursive);
2337 if (IS_ERR(mnt)) {
2338 namespace_unlock();
2339 free_mnt_ns(ns);
2340 return ERR_CAST(mnt);
2341 }
2342
2343 lock_mount_hash();
2344 for (p = mnt; p; p = next_mnt(p, mnt)) {
2345 p->mnt_ns = ns;
2346 ns->mounts++;
2347 }
2348 ns->root = mnt;
2349 list_add_tail(&ns->list, &mnt->mnt_list);
2350 mntget(&mnt->mnt);
2351 unlock_mount_hash();
2352 namespace_unlock();
2353
2354 mntput(path->mnt);
2355 path->mnt = &mnt->mnt;
2356 file = dentry_open(path, O_PATH, current_cred());
2357 if (IS_ERR(file))
2358 dissolve_on_fput(path->mnt);
2359 else
2360 file->f_mode |= FMODE_NEED_UNMOUNT;
2361 return file;
2362}
2363
2364SYSCALL_DEFINE3(open_tree, int, dfd, const char *, filename, unsigned, flags)
2365{
2366 struct file *file;
2367 struct path path;
2368 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
2369 bool detached = flags & OPEN_TREE_CLONE;
2370 int error;
2371 int fd;
2372
2373 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
2374
2375 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
2376 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
2377 OPEN_TREE_CLOEXEC))
2378 return -EINVAL;
2379
2380 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
2381 return -EINVAL;
2382
2383 if (flags & AT_NO_AUTOMOUNT)
2384 lookup_flags &= ~LOOKUP_AUTOMOUNT;
2385 if (flags & AT_SYMLINK_NOFOLLOW)
2386 lookup_flags &= ~LOOKUP_FOLLOW;
2387 if (flags & AT_EMPTY_PATH)
2388 lookup_flags |= LOOKUP_EMPTY;
2389
2390 if (detached && !may_mount())
2391 return -EPERM;
2392
2393 fd = get_unused_fd_flags(flags & O_CLOEXEC);
2394 if (fd < 0)
2395 return fd;
2396
2397 error = user_path_at(dfd, filename, lookup_flags, &path);
2398 if (unlikely(error)) {
2399 file = ERR_PTR(error);
2400 } else {
2401 if (detached)
2402 file = open_detached_copy(&path, flags & AT_RECURSIVE);
2403 else
2404 file = dentry_open(&path, O_PATH, current_cred());
2405 path_put(&path);
2406 }
2407 if (IS_ERR(file)) {
2408 put_unused_fd(fd);
2409 return PTR_ERR(file);
2410 }
2411 fd_install(fd, file);
2412 return fd;
2413}
2414
43f5e655
DH
2415/*
2416 * Don't allow locked mount flags to be cleared.
2417 *
2418 * No locks need to be held here while testing the various MNT_LOCK
2419 * flags because those flags can never be cleared once they are set.
2420 */
2421static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2422{
43f5e655
DH
2423 unsigned int fl = mnt->mnt.mnt_flags;
2424
2425 if ((fl & MNT_LOCK_READONLY) &&
2426 !(mnt_flags & MNT_READONLY))
2427 return false;
2428
2429 if ((fl & MNT_LOCK_NODEV) &&
2430 !(mnt_flags & MNT_NODEV))
2431 return false;
2432
2433 if ((fl & MNT_LOCK_NOSUID) &&
2434 !(mnt_flags & MNT_NOSUID))
2435 return false;
2436
2437 if ((fl & MNT_LOCK_NOEXEC) &&
2438 !(mnt_flags & MNT_NOEXEC))
2439 return false;
2440
2441 if ((fl & MNT_LOCK_ATIME) &&
2442 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
2443 return false;
2e4b7fcd 2444
43f5e655
DH
2445 return true;
2446}
2447
2448static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
2e4b7fcd 2449{
43f5e655 2450 bool readonly_request = (mnt_flags & MNT_READONLY);
2e4b7fcd 2451
43f5e655 2452 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
2e4b7fcd
DH
2453 return 0;
2454
2455 if (readonly_request)
43f5e655
DH
2456 return mnt_make_readonly(mnt);
2457
2458 return __mnt_unmake_readonly(mnt);
2459}
2460
2461/*
2462 * Update the user-settable attributes on a mount. The caller must hold
2463 * sb->s_umount for writing.
2464 */
2465static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
2466{
2467 lock_mount_hash();
2468 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2469 mnt->mnt.mnt_flags = mnt_flags;
2470 touch_mnt_namespace(mnt->mnt_ns);
2471 unlock_mount_hash();
2472}
2473
2474/*
2475 * Handle reconfiguration of the mountpoint only without alteration of the
2476 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
2477 * to mount(2).
2478 */
2479static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
2480{
2481 struct super_block *sb = path->mnt->mnt_sb;
2482 struct mount *mnt = real_mount(path->mnt);
2483 int ret;
2484
2485 if (!check_mnt(mnt))
2486 return -EINVAL;
2487
2488 if (path->dentry != mnt->mnt.mnt_root)
2489 return -EINVAL;
2490
2491 if (!can_change_locked_flags(mnt, mnt_flags))
2492 return -EPERM;
2493
2494 down_write(&sb->s_umount);
2495 ret = change_mount_ro_state(mnt, mnt_flags);
2496 if (ret == 0)
2497 set_mount_attributes(mnt, mnt_flags);
2498 up_write(&sb->s_umount);
2499 return ret;
2e4b7fcd
DH
2500}
2501
1da177e4
LT
2502/*
2503 * change filesystem flags. dir should be a physical root of filesystem.
2504 * If you've mounted a non-root directory somewhere and want to do remount
2505 * on it - tough luck.
2506 */
e462ec50
DH
2507static int do_remount(struct path *path, int ms_flags, int sb_flags,
2508 int mnt_flags, void *data)
1da177e4
LT
2509{
2510 int err;
2d92ab3c 2511 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 2512 struct mount *mnt = real_mount(path->mnt);
8d0347f6 2513 struct fs_context *fc;
1da177e4 2514
143c8c91 2515 if (!check_mnt(mnt))
1da177e4
LT
2516 return -EINVAL;
2517
2d92ab3c 2518 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
2519 return -EINVAL;
2520
43f5e655 2521 if (!can_change_locked_flags(mnt, mnt_flags))
9566d674 2522 return -EPERM;
9566d674 2523
8d0347f6
DH
2524 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
2525 if (IS_ERR(fc))
2526 return PTR_ERR(fc);
ff36fe2c 2527
8d0347f6
DH
2528 err = parse_monolithic_mount_data(fc, data);
2529 if (!err) {
2530 down_write(&sb->s_umount);
2531 err = -EPERM;
2532 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
2533 err = reconfigure_super(fc);
2534 if (!err)
2535 set_mount_attributes(mnt, mnt_flags);
2536 }
2537 up_write(&sb->s_umount);
0e55a7cc 2538 }
8d0347f6 2539 put_fs_context(fc);
1da177e4
LT
2540 return err;
2541}
2542
cbbe362c 2543static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 2544{
315fc83e 2545 struct mount *p;
909b0a88 2546 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 2547 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
2548 return 1;
2549 }
2550 return 0;
2551}
2552
44dfd84a
DH
2553/*
2554 * Check that there aren't references to earlier/same mount namespaces in the
2555 * specified subtree. Such references can act as pins for mount namespaces
2556 * that aren't checked by the mount-cycle checking code, thereby allowing
2557 * cycles to be made.
2558 */
2559static bool check_for_nsfs_mounts(struct mount *subtree)
2560{
2561 struct mount *p;
2562 bool ret = false;
2563
2564 lock_mount_hash();
2565 for (p = subtree; p; p = next_mnt(p, subtree))
2566 if (mnt_ns_loop(p->mnt.mnt_root))
2567 goto out;
2568
2569 ret = true;
2570out:
2571 unlock_mount_hash();
2572 return ret;
2573}
2574
2db154b3 2575static int do_move_mount(struct path *old_path, struct path *new_path)
1da177e4 2576{
2db154b3 2577 struct path parent_path = {.mnt = NULL, .dentry = NULL};
44dfd84a 2578 struct mnt_namespace *ns;
676da58d 2579 struct mount *p;
0fb54e50 2580 struct mount *old;
84d17192 2581 struct mountpoint *mp;
57eccb83 2582 int err;
44dfd84a 2583 bool attached;
1da177e4 2584
2db154b3 2585 mp = lock_mount(new_path);
84d17192 2586 if (IS_ERR(mp))
2db154b3 2587 return PTR_ERR(mp);
cc53ce53 2588
2db154b3
DH
2589 old = real_mount(old_path->mnt);
2590 p = real_mount(new_path->mnt);
44dfd84a
DH
2591 attached = mnt_has_parent(old);
2592 ns = old->mnt_ns;
143c8c91 2593
1da177e4 2594 err = -EINVAL;
44dfd84a
DH
2595 /* The mountpoint must be in our namespace. */
2596 if (!check_mnt(p))
2db154b3 2597 goto out;
1da177e4 2598
570d7a98
EB
2599 /* The thing moved must be mounted... */
2600 if (!is_mounted(&old->mnt))
44dfd84a
DH
2601 goto out;
2602
570d7a98
EB
2603 /* ... and either ours or the root of anon namespace */
2604 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
2db154b3 2605 goto out;
5ff9d8a6 2606
2db154b3
DH
2607 if (old->mnt.mnt_flags & MNT_LOCKED)
2608 goto out;
1da177e4 2609
2db154b3
DH
2610 if (old_path->dentry != old_path->mnt->mnt_root)
2611 goto out;
1da177e4 2612
2db154b3
DH
2613 if (d_is_dir(new_path->dentry) !=
2614 d_is_dir(old_path->dentry))
2615 goto out;
21444403
RP
2616 /*
2617 * Don't move a mount residing in a shared parent.
2618 */
44dfd84a 2619 if (attached && IS_MNT_SHARED(old->mnt_parent))
2db154b3 2620 goto out;
9676f0c6
RP
2621 /*
2622 * Don't move a mount tree containing unbindable mounts to a destination
2623 * mount which is shared.
2624 */
fc7be130 2625 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2db154b3 2626 goto out;
1da177e4 2627 err = -ELOOP;
44dfd84a
DH
2628 if (!check_for_nsfs_mounts(old))
2629 goto out;
fc7be130 2630 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 2631 if (p == old)
2db154b3 2632 goto out;
1da177e4 2633
2db154b3 2634 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp,
44dfd84a 2635 attached ? &parent_path : NULL);
4ac91378 2636 if (err)
2db154b3 2637 goto out;
1da177e4
LT
2638
2639 /* if the mount is moved, it should no longer be expire
2640 * automatically */
6776db3d 2641 list_del_init(&old->mnt_expire);
1da177e4 2642out:
2db154b3 2643 unlock_mount(mp);
44dfd84a 2644 if (!err) {
1a390689 2645 path_put(&parent_path);
44dfd84a
DH
2646 if (!attached)
2647 free_mnt_ns(ns);
2648 }
2db154b3
DH
2649 return err;
2650}
2651
2652static int do_move_mount_old(struct path *path, const char *old_name)
2653{
2654 struct path old_path;
2655 int err;
2656
2657 if (!old_name || !*old_name)
2658 return -EINVAL;
2659
2660 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2661 if (err)
2662 return err;
2663
2664 err = do_move_mount(&old_path, path);
2d92ab3c 2665 path_put(&old_path);
1da177e4
LT
2666 return err;
2667}
2668
9d412a43
AV
2669/*
2670 * add a mount into a namespace's mount tree
2671 */
95bc5f25 2672static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 2673{
84d17192
AV
2674 struct mountpoint *mp;
2675 struct mount *parent;
9d412a43
AV
2676 int err;
2677
f2ebb3a9 2678 mnt_flags &= ~MNT_INTERNAL_FLAGS;
9d412a43 2679
84d17192
AV
2680 mp = lock_mount(path);
2681 if (IS_ERR(mp))
2682 return PTR_ERR(mp);
9d412a43 2683
84d17192 2684 parent = real_mount(path->mnt);
9d412a43 2685 err = -EINVAL;
84d17192 2686 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
2687 /* that's acceptable only for automounts done in private ns */
2688 if (!(mnt_flags & MNT_SHRINKABLE))
2689 goto unlock;
2690 /* ... and for those we'd better have mountpoint still alive */
84d17192 2691 if (!parent->mnt_ns)
156cacb1
AV
2692 goto unlock;
2693 }
9d412a43
AV
2694
2695 /* Refuse the same filesystem on the same mount point */
2696 err = -EBUSY;
95bc5f25 2697 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
2698 path->mnt->mnt_root == path->dentry)
2699 goto unlock;
2700
2701 err = -EINVAL;
e36cb0b8 2702 if (d_is_symlink(newmnt->mnt.mnt_root))
9d412a43
AV
2703 goto unlock;
2704
95bc5f25 2705 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 2706 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
2707
2708unlock:
84d17192 2709 unlock_mount(mp);
9d412a43
AV
2710 return err;
2711}
b1e75df4 2712
132e4608
DH
2713static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
2714
2715/*
2716 * Create a new mount using a superblock configuration and request it
2717 * be added to the namespace tree.
2718 */
2719static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
2720 unsigned int mnt_flags)
2721{
2722 struct vfsmount *mnt;
2723 struct super_block *sb = fc->root->d_sb;
2724 int error;
2725
c9ce29ed
AV
2726 error = security_sb_kern_mount(sb);
2727 if (!error && mount_too_revealing(sb, &mnt_flags))
2728 error = -EPERM;
2729
2730 if (unlikely(error)) {
2731 fc_drop_locked(fc);
2732 return error;
132e4608
DH
2733 }
2734
2735 up_write(&sb->s_umount);
2736
2737 mnt = vfs_create_mount(fc);
2738 if (IS_ERR(mnt))
2739 return PTR_ERR(mnt);
2740
2741 error = do_add_mount(real_mount(mnt), mountpoint, mnt_flags);
2742 if (error < 0)
2743 mntput(mnt);
2744 return error;
2745}
1b852bce 2746
1da177e4
LT
2747/*
2748 * create a new mount for userspace and request it to be added into the
2749 * namespace's tree
2750 */
e462ec50 2751static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
808d4e3c 2752 int mnt_flags, const char *name, void *data)
1da177e4 2753{
0c55cfc4 2754 struct file_system_type *type;
a0c9a8b8
AV
2755 struct fs_context *fc;
2756 const char *subtype = NULL;
2757 int err = 0;
1da177e4 2758
0c55cfc4 2759 if (!fstype)
1da177e4
LT
2760 return -EINVAL;
2761
0c55cfc4
EB
2762 type = get_fs_type(fstype);
2763 if (!type)
2764 return -ENODEV;
2765
a0c9a8b8
AV
2766 if (type->fs_flags & FS_HAS_SUBTYPE) {
2767 subtype = strchr(fstype, '.');
2768 if (subtype) {
2769 subtype++;
2770 if (!*subtype) {
2771 put_filesystem(type);
2772 return -EINVAL;
2773 }
2774 } else {
2775 subtype = "";
2776 }
2777 }
0c55cfc4 2778
a0c9a8b8 2779 fc = fs_context_for_mount(type, sb_flags);
0c55cfc4 2780 put_filesystem(type);
a0c9a8b8
AV
2781 if (IS_ERR(fc))
2782 return PTR_ERR(fc);
2783
3e1aeb00
DH
2784 if (subtype)
2785 err = vfs_parse_fs_string(fc, "subtype",
2786 subtype, strlen(subtype));
2787 if (!err && name)
2788 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
a0c9a8b8
AV
2789 if (!err)
2790 err = parse_monolithic_mount_data(fc, data);
2791 if (!err)
2792 err = vfs_get_tree(fc);
132e4608
DH
2793 if (!err)
2794 err = do_new_mount_fc(fc, path, mnt_flags);
8654df4e 2795
a0c9a8b8 2796 put_fs_context(fc);
15f9a3f3 2797 return err;
1da177e4
LT
2798}
2799
19a167af
AV
2800int finish_automount(struct vfsmount *m, struct path *path)
2801{
6776db3d 2802 struct mount *mnt = real_mount(m);
19a167af
AV
2803 int err;
2804 /* The new mount record should have at least 2 refs to prevent it being
2805 * expired before we get a chance to add it
2806 */
6776db3d 2807 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2808
2809 if (m->mnt_sb == path->mnt->mnt_sb &&
2810 m->mnt_root == path->dentry) {
b1e75df4
AV
2811 err = -ELOOP;
2812 goto fail;
19a167af
AV
2813 }
2814
95bc5f25 2815 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2816 if (!err)
2817 return 0;
2818fail:
2819 /* remove m from any expiration list it may be on */
6776db3d 2820 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2821 namespace_lock();
6776db3d 2822 list_del_init(&mnt->mnt_expire);
97216be0 2823 namespace_unlock();
19a167af 2824 }
b1e75df4
AV
2825 mntput(m);
2826 mntput(m);
19a167af
AV
2827 return err;
2828}
2829
ea5b778a
DH
2830/**
2831 * mnt_set_expiry - Put a mount on an expiration list
2832 * @mnt: The mount to list.
2833 * @expiry_list: The list to add the mount to.
2834 */
2835void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2836{
97216be0 2837 namespace_lock();
ea5b778a 2838
6776db3d 2839 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2840
97216be0 2841 namespace_unlock();
ea5b778a
DH
2842}
2843EXPORT_SYMBOL(mnt_set_expiry);
2844
1da177e4
LT
2845/*
2846 * process a list of expirable mountpoints with the intent of discarding any
2847 * mountpoints that aren't in use and haven't been touched since last we came
2848 * here
2849 */
2850void mark_mounts_for_expiry(struct list_head *mounts)
2851{
761d5c38 2852 struct mount *mnt, *next;
1da177e4
LT
2853 LIST_HEAD(graveyard);
2854
2855 if (list_empty(mounts))
2856 return;
2857
97216be0 2858 namespace_lock();
719ea2fb 2859 lock_mount_hash();
1da177e4
LT
2860
2861 /* extract from the expiration list every vfsmount that matches the
2862 * following criteria:
2863 * - only referenced by its parent vfsmount
2864 * - still marked for expiry (marked on the last call here; marks are
2865 * cleared by mntput())
2866 */
6776db3d 2867 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2868 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2869 propagate_mount_busy(mnt, 1))
1da177e4 2870 continue;
6776db3d 2871 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2872 }
bcc5c7d2 2873 while (!list_empty(&graveyard)) {
6776db3d 2874 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2875 touch_mnt_namespace(mnt->mnt_ns);
e819f152 2876 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2 2877 }
719ea2fb 2878 unlock_mount_hash();
3ab6abee 2879 namespace_unlock();
5528f911
TM
2880}
2881
2882EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2883
2884/*
2885 * Ripoff of 'select_parent()'
2886 *
2887 * search the list of submounts for a given mountpoint, and move any
2888 * shrinkable submounts to the 'graveyard' list.
2889 */
692afc31 2890static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2891{
692afc31 2892 struct mount *this_parent = parent;
5528f911
TM
2893 struct list_head *next;
2894 int found = 0;
2895
2896repeat:
6b41d536 2897 next = this_parent->mnt_mounts.next;
5528f911 2898resume:
6b41d536 2899 while (next != &this_parent->mnt_mounts) {
5528f911 2900 struct list_head *tmp = next;
6b41d536 2901 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2902
2903 next = tmp->next;
692afc31 2904 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2905 continue;
5528f911
TM
2906 /*
2907 * Descend a level if the d_mounts list is non-empty.
2908 */
6b41d536 2909 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2910 this_parent = mnt;
2911 goto repeat;
2912 }
1da177e4 2913
1ab59738 2914 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2915 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2916 found++;
2917 }
1da177e4 2918 }
5528f911
TM
2919 /*
2920 * All done at this level ... ascend and resume the search
2921 */
2922 if (this_parent != parent) {
6b41d536 2923 next = this_parent->mnt_child.next;
0714a533 2924 this_parent = this_parent->mnt_parent;
5528f911
TM
2925 goto resume;
2926 }
2927 return found;
2928}
2929
2930/*
2931 * process a list of expirable mountpoints with the intent of discarding any
2932 * submounts of a specific parent mountpoint
99b7db7b 2933 *
48a066e7 2934 * mount_lock must be held for write
5528f911 2935 */
b54b9be7 2936static void shrink_submounts(struct mount *mnt)
5528f911
TM
2937{
2938 LIST_HEAD(graveyard);
761d5c38 2939 struct mount *m;
5528f911 2940
5528f911 2941 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2942 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2943 while (!list_empty(&graveyard)) {
761d5c38 2944 m = list_first_entry(&graveyard, struct mount,
6776db3d 2945 mnt_expire);
143c8c91 2946 touch_mnt_namespace(m->mnt_ns);
e819f152 2947 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
bcc5c7d2
AV
2948 }
2949 }
1da177e4
LT
2950}
2951
1da177e4
LT
2952/*
2953 * Some copy_from_user() implementations do not return the exact number of
2954 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2955 * Note that this function differs from copy_from_user() in that it will oops
2956 * on bad values of `to', rather than returning a short copy.
2957 */
b58fed8b
RP
2958static long exact_copy_from_user(void *to, const void __user * from,
2959 unsigned long n)
1da177e4
LT
2960{
2961 char *t = to;
2962 const char __user *f = from;
2963 char c;
2964
96d4f267 2965 if (!access_ok(from, n))
1da177e4
LT
2966 return n;
2967
2968 while (n) {
2969 if (__get_user(c, f)) {
2970 memset(t, 0, n);
2971 break;
2972 }
2973 *t++ = c;
2974 f++;
2975 n--;
2976 }
2977 return n;
2978}
2979
b40ef869 2980void *copy_mount_options(const void __user * data)
1da177e4
LT
2981{
2982 int i;
1da177e4 2983 unsigned long size;
b40ef869 2984 char *copy;
b58fed8b 2985
1da177e4 2986 if (!data)
b40ef869 2987 return NULL;
1da177e4 2988
b40ef869
AV
2989 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2990 if (!copy)
2991 return ERR_PTR(-ENOMEM);
1da177e4
LT
2992
2993 /* We only care that *some* data at the address the user
2994 * gave us is valid. Just in case, we'll zero
2995 * the remainder of the page.
2996 */
2997 /* copy_from_user cannot cross TASK_SIZE ! */
2998 size = TASK_SIZE - (unsigned long)data;
2999 if (size > PAGE_SIZE)
3000 size = PAGE_SIZE;
3001
b40ef869 3002 i = size - exact_copy_from_user(copy, data, size);
1da177e4 3003 if (!i) {
b40ef869
AV
3004 kfree(copy);
3005 return ERR_PTR(-EFAULT);
1da177e4
LT
3006 }
3007 if (i != PAGE_SIZE)
b40ef869
AV
3008 memset(copy + i, 0, PAGE_SIZE - i);
3009 return copy;
1da177e4
LT
3010}
3011
b8850d1f 3012char *copy_mount_string(const void __user *data)
eca6f534 3013{
fbdb4401 3014 return data ? strndup_user(data, PATH_MAX) : NULL;
eca6f534
VN
3015}
3016
1da177e4
LT
3017/*
3018 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
3019 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
3020 *
3021 * data is a (void *) that can point to any structure up to
3022 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
3023 * information (or be NULL).
3024 *
3025 * Pre-0.97 versions of mount() didn't have a flags word.
3026 * When the flags word was introduced its top half was required
3027 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
3028 * Therefore, if this magic number is present, it carries no information
3029 * and must be discarded.
3030 */
5e6123f3 3031long do_mount(const char *dev_name, const char __user *dir_name,
808d4e3c 3032 const char *type_page, unsigned long flags, void *data_page)
1da177e4 3033{
2d92ab3c 3034 struct path path;
e462ec50 3035 unsigned int mnt_flags = 0, sb_flags;
1da177e4 3036 int retval = 0;
1da177e4
LT
3037
3038 /* Discard magic */
3039 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
3040 flags &= ~MS_MGC_MSK;
3041
3042 /* Basic sanity checks */
1da177e4
LT
3043 if (data_page)
3044 ((char *)data_page)[PAGE_SIZE - 1] = 0;
3045
e462ec50
DH
3046 if (flags & MS_NOUSER)
3047 return -EINVAL;
3048
a27ab9f2 3049 /* ... and get the mountpoint */
5e6123f3 3050 retval = user_path(dir_name, &path);
a27ab9f2
TH
3051 if (retval)
3052 return retval;
3053
3054 retval = security_sb_mount(dev_name, &path,
3055 type_page, flags, data_page);
0d5cadb8
AV
3056 if (!retval && !may_mount())
3057 retval = -EPERM;
e462ec50 3058 if (!retval && (flags & SB_MANDLOCK) && !may_mandlock())
9e8925b6 3059 retval = -EPERM;
a27ab9f2
TH
3060 if (retval)
3061 goto dput_out;
3062
613cbe3d
AK
3063 /* Default to relatime unless overriden */
3064 if (!(flags & MS_NOATIME))
3065 mnt_flags |= MNT_RELATIME;
0a1c01c9 3066
1da177e4
LT
3067 /* Separate the per-mountpoint flags */
3068 if (flags & MS_NOSUID)
3069 mnt_flags |= MNT_NOSUID;
3070 if (flags & MS_NODEV)
3071 mnt_flags |= MNT_NODEV;
3072 if (flags & MS_NOEXEC)
3073 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
3074 if (flags & MS_NOATIME)
3075 mnt_flags |= MNT_NOATIME;
3076 if (flags & MS_NODIRATIME)
3077 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
3078 if (flags & MS_STRICTATIME)
3079 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
a9e5b732 3080 if (flags & MS_RDONLY)
2e4b7fcd 3081 mnt_flags |= MNT_READONLY;
fc33a7bb 3082
ffbc6f0e
EB
3083 /* The default atime for remount is preservation */
3084 if ((flags & MS_REMOUNT) &&
3085 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
3086 MS_STRICTATIME)) == 0)) {
3087 mnt_flags &= ~MNT_ATIME_MASK;
3088 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
3089 }
3090
e462ec50
DH
3091 sb_flags = flags & (SB_RDONLY |
3092 SB_SYNCHRONOUS |
3093 SB_MANDLOCK |
3094 SB_DIRSYNC |
3095 SB_SILENT |
917086ff 3096 SB_POSIXACL |
d7ee9469 3097 SB_LAZYTIME |
917086ff 3098 SB_I_VERSION);
1da177e4 3099
43f5e655
DH
3100 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
3101 retval = do_reconfigure_mnt(&path, mnt_flags);
3102 else if (flags & MS_REMOUNT)
e462ec50 3103 retval = do_remount(&path, flags, sb_flags, mnt_flags,
1da177e4
LT
3104 data_page);
3105 else if (flags & MS_BIND)
2d92ab3c 3106 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 3107 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 3108 retval = do_change_type(&path, flags);
1da177e4 3109 else if (flags & MS_MOVE)
2db154b3 3110 retval = do_move_mount_old(&path, dev_name);
1da177e4 3111 else
e462ec50 3112 retval = do_new_mount(&path, type_page, sb_flags, mnt_flags,
1da177e4
LT
3113 dev_name, data_page);
3114dput_out:
2d92ab3c 3115 path_put(&path);
1da177e4
LT
3116 return retval;
3117}
3118
537f7ccb
EB
3119static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
3120{
3121 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
3122}
3123
3124static void dec_mnt_namespaces(struct ucounts *ucounts)
3125{
3126 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
3127}
3128
771b1371
EB
3129static void free_mnt_ns(struct mnt_namespace *ns)
3130{
74e83122
AV
3131 if (!is_anon_ns(ns))
3132 ns_free_inum(&ns->ns);
537f7ccb 3133 dec_mnt_namespaces(ns->ucounts);
771b1371
EB
3134 put_user_ns(ns->user_ns);
3135 kfree(ns);
3136}
3137
8823c079
EB
3138/*
3139 * Assign a sequence number so we can detect when we attempt to bind
3140 * mount a reference to an older mount namespace into the current
3141 * mount namespace, preventing reference counting loops. A 64bit
3142 * number incrementing at 10Ghz will take 12,427 years to wrap which
3143 * is effectively never, so we can ignore the possibility.
3144 */
3145static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
3146
74e83122 3147static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
cf8d2c11
TM
3148{
3149 struct mnt_namespace *new_ns;
537f7ccb 3150 struct ucounts *ucounts;
98f842e6 3151 int ret;
cf8d2c11 3152
537f7ccb
EB
3153 ucounts = inc_mnt_namespaces(user_ns);
3154 if (!ucounts)
df75e774 3155 return ERR_PTR(-ENOSPC);
537f7ccb 3156
74e83122 3157 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
537f7ccb
EB
3158 if (!new_ns) {
3159 dec_mnt_namespaces(ucounts);
cf8d2c11 3160 return ERR_PTR(-ENOMEM);
537f7ccb 3161 }
74e83122
AV
3162 if (!anon) {
3163 ret = ns_alloc_inum(&new_ns->ns);
3164 if (ret) {
3165 kfree(new_ns);
3166 dec_mnt_namespaces(ucounts);
3167 return ERR_PTR(ret);
3168 }
98f842e6 3169 }
33c42940 3170 new_ns->ns.ops = &mntns_operations;
74e83122
AV
3171 if (!anon)
3172 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11 3173 atomic_set(&new_ns->count, 1);
cf8d2c11
TM
3174 INIT_LIST_HEAD(&new_ns->list);
3175 init_waitqueue_head(&new_ns->poll);
771b1371 3176 new_ns->user_ns = get_user_ns(user_ns);
537f7ccb 3177 new_ns->ucounts = ucounts;
cf8d2c11
TM
3178 return new_ns;
3179}
3180
0766f788 3181__latent_entropy
9559f689
AV
3182struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
3183 struct user_namespace *user_ns, struct fs_struct *new_fs)
1da177e4 3184{
6b3286ed 3185 struct mnt_namespace *new_ns;
7f2da1e7 3186 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 3187 struct mount *p, *q;
9559f689 3188 struct mount *old;
cb338d06 3189 struct mount *new;
7a472ef4 3190 int copy_flags;
1da177e4 3191
9559f689
AV
3192 BUG_ON(!ns);
3193
3194 if (likely(!(flags & CLONE_NEWNS))) {
3195 get_mnt_ns(ns);
3196 return ns;
3197 }
3198
3199 old = ns->root;
3200
74e83122 3201 new_ns = alloc_mnt_ns(user_ns, false);
cf8d2c11
TM
3202 if (IS_ERR(new_ns))
3203 return new_ns;
1da177e4 3204
97216be0 3205 namespace_lock();
1da177e4 3206 /* First pass: copy the tree topology */
4ce5d2b1 3207 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
9559f689 3208 if (user_ns != ns->user_ns)
3bd045cc 3209 copy_flags |= CL_SHARED_TO_SLAVE;
7a472ef4 3210 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 3211 if (IS_ERR(new)) {
328e6d90 3212 namespace_unlock();
771b1371 3213 free_mnt_ns(new_ns);
be34d1a3 3214 return ERR_CAST(new);
1da177e4 3215 }
3bd045cc
AV
3216 if (user_ns != ns->user_ns) {
3217 lock_mount_hash();
3218 lock_mnt_tree(new);
3219 unlock_mount_hash();
3220 }
be08d6d2 3221 new_ns->root = new;
1a4eeaf2 3222 list_add_tail(&new_ns->list, &new->mnt_list);
1da177e4
LT
3223
3224 /*
3225 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
3226 * as belonging to new namespace. We have already acquired a private
3227 * fs_struct, so tsk->fs->lock is not needed.
3228 */
909b0a88 3229 p = old;
cb338d06 3230 q = new;
1da177e4 3231 while (p) {
143c8c91 3232 q->mnt_ns = new_ns;
d2921684 3233 new_ns->mounts++;
9559f689
AV
3234 if (new_fs) {
3235 if (&p->mnt == new_fs->root.mnt) {
3236 new_fs->root.mnt = mntget(&q->mnt);
315fc83e 3237 rootmnt = &p->mnt;
1da177e4 3238 }
9559f689
AV
3239 if (&p->mnt == new_fs->pwd.mnt) {
3240 new_fs->pwd.mnt = mntget(&q->mnt);
315fc83e 3241 pwdmnt = &p->mnt;
1da177e4 3242 }
1da177e4 3243 }
909b0a88
AV
3244 p = next_mnt(p, old);
3245 q = next_mnt(q, new);
4ce5d2b1
EB
3246 if (!q)
3247 break;
3248 while (p->mnt.mnt_root != q->mnt.mnt_root)
3249 p = next_mnt(p, old);
1da177e4 3250 }
328e6d90 3251 namespace_unlock();
1da177e4 3252
1da177e4 3253 if (rootmnt)
f03c6599 3254 mntput(rootmnt);
1da177e4 3255 if (pwdmnt)
f03c6599 3256 mntput(pwdmnt);
1da177e4 3257
741a2951 3258 return new_ns;
1da177e4
LT
3259}
3260
74e83122 3261struct dentry *mount_subtree(struct vfsmount *m, const char *name)
ea441d11 3262{
74e83122 3263 struct mount *mnt = real_mount(m);
ea441d11 3264 struct mnt_namespace *ns;
d31da0f0 3265 struct super_block *s;
ea441d11
AV
3266 struct path path;
3267 int err;
3268
74e83122
AV
3269 ns = alloc_mnt_ns(&init_user_ns, true);
3270 if (IS_ERR(ns)) {
3271 mntput(m);
ea441d11 3272 return ERR_CAST(ns);
74e83122
AV
3273 }
3274 mnt->mnt_ns = ns;
3275 ns->root = mnt;
3276 ns->mounts++;
3277 list_add(&mnt->mnt_list, &ns->list);
ea441d11 3278
74e83122 3279 err = vfs_path_lookup(m->mnt_root, m,
ea441d11
AV
3280 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
3281
3282 put_mnt_ns(ns);
3283
3284 if (err)
3285 return ERR_PTR(err);
3286
3287 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
3288 s = path.mnt->mnt_sb;
3289 atomic_inc(&s->s_active);
ea441d11
AV
3290 mntput(path.mnt);
3291 /* lock the sucker */
d31da0f0 3292 down_write(&s->s_umount);
ea441d11
AV
3293 /* ... and return the root of (sub)tree on it */
3294 return path.dentry;
3295}
3296EXPORT_SYMBOL(mount_subtree);
3297
312db1aa
DB
3298int ksys_mount(char __user *dev_name, char __user *dir_name, char __user *type,
3299 unsigned long flags, void __user *data)
1da177e4 3300{
eca6f534
VN
3301 int ret;
3302 char *kernel_type;
eca6f534 3303 char *kernel_dev;
b40ef869 3304 void *options;
1da177e4 3305
b8850d1f
TG
3306 kernel_type = copy_mount_string(type);
3307 ret = PTR_ERR(kernel_type);
3308 if (IS_ERR(kernel_type))
eca6f534 3309 goto out_type;
1da177e4 3310
b8850d1f
TG
3311 kernel_dev = copy_mount_string(dev_name);
3312 ret = PTR_ERR(kernel_dev);
3313 if (IS_ERR(kernel_dev))
eca6f534 3314 goto out_dev;
1da177e4 3315
b40ef869
AV
3316 options = copy_mount_options(data);
3317 ret = PTR_ERR(options);
3318 if (IS_ERR(options))
eca6f534 3319 goto out_data;
1da177e4 3320
b40ef869 3321 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
1da177e4 3322
b40ef869 3323 kfree(options);
eca6f534
VN
3324out_data:
3325 kfree(kernel_dev);
3326out_dev:
eca6f534
VN
3327 kfree(kernel_type);
3328out_type:
3329 return ret;
1da177e4
LT
3330}
3331
312db1aa
DB
3332SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3333 char __user *, type, unsigned long, flags, void __user *, data)
3334{
3335 return ksys_mount(dev_name, dir_name, type, flags, data);
3336}
3337
2db154b3 3338/*
93766fbd
DH
3339 * Create a kernel mount representation for a new, prepared superblock
3340 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
3341 */
3342SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
3343 unsigned int, attr_flags)
3344{
3345 struct mnt_namespace *ns;
3346 struct fs_context *fc;
3347 struct file *file;
3348 struct path newmount;
3349 struct mount *mnt;
3350 struct fd f;
3351 unsigned int mnt_flags = 0;
3352 long ret;
3353
3354 if (!may_mount())
3355 return -EPERM;
3356
3357 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
3358 return -EINVAL;
3359
3360 if (attr_flags & ~(MOUNT_ATTR_RDONLY |
3361 MOUNT_ATTR_NOSUID |
3362 MOUNT_ATTR_NODEV |
3363 MOUNT_ATTR_NOEXEC |
3364 MOUNT_ATTR__ATIME |
3365 MOUNT_ATTR_NODIRATIME))
3366 return -EINVAL;
3367
3368 if (attr_flags & MOUNT_ATTR_RDONLY)
3369 mnt_flags |= MNT_READONLY;
3370 if (attr_flags & MOUNT_ATTR_NOSUID)
3371 mnt_flags |= MNT_NOSUID;
3372 if (attr_flags & MOUNT_ATTR_NODEV)
3373 mnt_flags |= MNT_NODEV;
3374 if (attr_flags & MOUNT_ATTR_NOEXEC)
3375 mnt_flags |= MNT_NOEXEC;
3376 if (attr_flags & MOUNT_ATTR_NODIRATIME)
3377 mnt_flags |= MNT_NODIRATIME;
3378
3379 switch (attr_flags & MOUNT_ATTR__ATIME) {
3380 case MOUNT_ATTR_STRICTATIME:
3381 break;
3382 case MOUNT_ATTR_NOATIME:
3383 mnt_flags |= MNT_NOATIME;
3384 break;
3385 case MOUNT_ATTR_RELATIME:
3386 mnt_flags |= MNT_RELATIME;
3387 break;
3388 default:
3389 return -EINVAL;
3390 }
3391
3392 f = fdget(fs_fd);
3393 if (!f.file)
3394 return -EBADF;
3395
3396 ret = -EINVAL;
3397 if (f.file->f_op != &fscontext_fops)
3398 goto err_fsfd;
3399
3400 fc = f.file->private_data;
3401
3402 ret = mutex_lock_interruptible(&fc->uapi_mutex);
3403 if (ret < 0)
3404 goto err_fsfd;
3405
3406 /* There must be a valid superblock or we can't mount it */
3407 ret = -EINVAL;
3408 if (!fc->root)
3409 goto err_unlock;
3410
3411 ret = -EPERM;
3412 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
3413 pr_warn("VFS: Mount too revealing\n");
3414 goto err_unlock;
3415 }
3416
3417 ret = -EBUSY;
3418 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
3419 goto err_unlock;
3420
3421 ret = -EPERM;
3422 if ((fc->sb_flags & SB_MANDLOCK) && !may_mandlock())
3423 goto err_unlock;
3424
3425 newmount.mnt = vfs_create_mount(fc);
3426 if (IS_ERR(newmount.mnt)) {
3427 ret = PTR_ERR(newmount.mnt);
3428 goto err_unlock;
3429 }
3430 newmount.dentry = dget(fc->root);
3431 newmount.mnt->mnt_flags = mnt_flags;
3432
3433 /* We've done the mount bit - now move the file context into more or
3434 * less the same state as if we'd done an fspick(). We don't want to
3435 * do any memory allocation or anything like that at this point as we
3436 * don't want to have to handle any errors incurred.
3437 */
3438 vfs_clean_context(fc);
3439
3440 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
3441 if (IS_ERR(ns)) {
3442 ret = PTR_ERR(ns);
3443 goto err_path;
3444 }
3445 mnt = real_mount(newmount.mnt);
3446 mnt->mnt_ns = ns;
3447 ns->root = mnt;
3448 ns->mounts = 1;
3449 list_add(&mnt->mnt_list, &ns->list);
1b0b9cc8 3450 mntget(newmount.mnt);
93766fbd
DH
3451
3452 /* Attach to an apparent O_PATH fd with a note that we need to unmount
3453 * it, not just simply put it.
3454 */
3455 file = dentry_open(&newmount, O_PATH, fc->cred);
3456 if (IS_ERR(file)) {
3457 dissolve_on_fput(newmount.mnt);
3458 ret = PTR_ERR(file);
3459 goto err_path;
3460 }
3461 file->f_mode |= FMODE_NEED_UNMOUNT;
3462
3463 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
3464 if (ret >= 0)
3465 fd_install(ret, file);
3466 else
3467 fput(file);
3468
3469err_path:
3470 path_put(&newmount);
3471err_unlock:
3472 mutex_unlock(&fc->uapi_mutex);
3473err_fsfd:
3474 fdput(f);
3475 return ret;
3476}
3477
3478/*
3479 * Move a mount from one place to another. In combination with
3480 * fsopen()/fsmount() this is used to install a new mount and in combination
3481 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
3482 * a mount subtree.
2db154b3
DH
3483 *
3484 * Note the flags value is a combination of MOVE_MOUNT_* flags.
3485 */
3486SYSCALL_DEFINE5(move_mount,
3487 int, from_dfd, const char *, from_pathname,
3488 int, to_dfd, const char *, to_pathname,
3489 unsigned int, flags)
3490{
3491 struct path from_path, to_path;
3492 unsigned int lflags;
3493 int ret = 0;
3494
3495 if (!may_mount())
3496 return -EPERM;
3497
3498 if (flags & ~MOVE_MOUNT__MASK)
3499 return -EINVAL;
3500
3501 /* If someone gives a pathname, they aren't permitted to move
3502 * from an fd that requires unmount as we can't get at the flag
3503 * to clear it afterwards.
3504 */
3505 lflags = 0;
3506 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3507 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3508 if (flags & MOVE_MOUNT_F_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3509
3510 ret = user_path_at(from_dfd, from_pathname, lflags, &from_path);
3511 if (ret < 0)
3512 return ret;
3513
3514 lflags = 0;
3515 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
3516 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
3517 if (flags & MOVE_MOUNT_T_EMPTY_PATH) lflags |= LOOKUP_EMPTY;
3518
3519 ret = user_path_at(to_dfd, to_pathname, lflags, &to_path);
3520 if (ret < 0)
3521 goto out_from;
3522
3523 ret = security_move_mount(&from_path, &to_path);
3524 if (ret < 0)
3525 goto out_to;
3526
3527 ret = do_move_mount(&from_path, &to_path);
3528
3529out_to:
3530 path_put(&to_path);
3531out_from:
3532 path_put(&from_path);
3533 return ret;
3534}
3535
afac7cba
AV
3536/*
3537 * Return true if path is reachable from root
3538 *
48a066e7 3539 * namespace_sem or mount_lock is held
afac7cba 3540 */
643822b4 3541bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
3542 const struct path *root)
3543{
643822b4 3544 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 3545 dentry = mnt->mnt_mountpoint;
0714a533 3546 mnt = mnt->mnt_parent;
afac7cba 3547 }
643822b4 3548 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
3549}
3550
640eb7e7 3551bool path_is_under(const struct path *path1, const struct path *path2)
afac7cba 3552{
25ab4c9b 3553 bool res;
48a066e7 3554 read_seqlock_excl(&mount_lock);
643822b4 3555 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
48a066e7 3556 read_sequnlock_excl(&mount_lock);
afac7cba
AV
3557 return res;
3558}
3559EXPORT_SYMBOL(path_is_under);
3560
1da177e4
LT
3561/*
3562 * pivot_root Semantics:
3563 * Moves the root file system of the current process to the directory put_old,
3564 * makes new_root as the new root file system of the current process, and sets
3565 * root/cwd of all processes which had them on the current root to new_root.
3566 *
3567 * Restrictions:
3568 * The new_root and put_old must be directories, and must not be on the
3569 * same file system as the current process root. The put_old must be
3570 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3571 * pointed to by put_old must yield the same directory as new_root. No other
3572 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3573 *
4a0d11fa
NB
3574 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3575 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3576 * in this situation.
3577 *
1da177e4
LT
3578 * Notes:
3579 * - we don't move root/cwd if they are not at the root (reason: if something
3580 * cared enough to change them, it's probably wrong to force them elsewhere)
3581 * - it's okay to pick a root that isn't the root of a file system, e.g.
3582 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3583 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3584 * first.
3585 */
3480b257
HC
3586SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3587 const char __user *, put_old)
1da177e4 3588{
2d8f3038 3589 struct path new, old, parent_path, root_parent, root;
84d17192
AV
3590 struct mount *new_mnt, *root_mnt, *old_mnt;
3591 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
3592 int error;
3593
9b40bc90 3594 if (!may_mount())
1da177e4
LT
3595 return -EPERM;
3596
2d8f3038 3597 error = user_path_dir(new_root, &new);
1da177e4
LT
3598 if (error)
3599 goto out0;
1da177e4 3600
2d8f3038 3601 error = user_path_dir(put_old, &old);
1da177e4
LT
3602 if (error)
3603 goto out1;
3604
2d8f3038 3605 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
3606 if (error)
3607 goto out2;
1da177e4 3608
f7ad3c6b 3609 get_fs_root(current->fs, &root);
84d17192
AV
3610 old_mp = lock_mount(&old);
3611 error = PTR_ERR(old_mp);
3612 if (IS_ERR(old_mp))
b12cea91
AV
3613 goto out3;
3614
1da177e4 3615 error = -EINVAL;
419148da
AV
3616 new_mnt = real_mount(new.mnt);
3617 root_mnt = real_mount(root.mnt);
84d17192
AV
3618 old_mnt = real_mount(old.mnt);
3619 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
3620 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3621 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 3622 goto out4;
143c8c91 3623 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 3624 goto out4;
5ff9d8a6
EB
3625 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3626 goto out4;
1da177e4 3627 error = -ENOENT;
f3da392e 3628 if (d_unlinked(new.dentry))
b12cea91 3629 goto out4;
1da177e4 3630 error = -EBUSY;
84d17192 3631 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 3632 goto out4; /* loop, on the same file system */
1da177e4 3633 error = -EINVAL;
8c3ee42e 3634 if (root.mnt->mnt_root != root.dentry)
b12cea91 3635 goto out4; /* not a mountpoint */
676da58d 3636 if (!mnt_has_parent(root_mnt))
b12cea91 3637 goto out4; /* not attached */
84d17192 3638 root_mp = root_mnt->mnt_mp;
2d8f3038 3639 if (new.mnt->mnt_root != new.dentry)
b12cea91 3640 goto out4; /* not a mountpoint */
676da58d 3641 if (!mnt_has_parent(new_mnt))
b12cea91 3642 goto out4; /* not attached */
4ac91378 3643 /* make sure we can reach put_old from new_root */
84d17192 3644 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 3645 goto out4;
0d082601
EB
3646 /* make certain new is below the root */
3647 if (!is_path_reachable(new_mnt, new.dentry, &root))
3648 goto out4;
84d17192 3649 root_mp->m_count++; /* pin it so it won't go away */
719ea2fb 3650 lock_mount_hash();
419148da
AV
3651 detach_mnt(new_mnt, &parent_path);
3652 detach_mnt(root_mnt, &root_parent);
5ff9d8a6
EB
3653 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3654 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3655 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3656 }
4ac91378 3657 /* mount old root on put_old */
84d17192 3658 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 3659 /* mount new_root on / */
84d17192 3660 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 3661 touch_mnt_namespace(current->nsproxy->mnt_ns);
4fed655c
EB
3662 /* A moved mount should not expire automatically */
3663 list_del_init(&new_mnt->mnt_expire);
3895dbf8 3664 put_mountpoint(root_mp);
719ea2fb 3665 unlock_mount_hash();
2d8f3038 3666 chroot_fs_refs(&root, &new);
1da177e4 3667 error = 0;
b12cea91 3668out4:
84d17192 3669 unlock_mount(old_mp);
b12cea91
AV
3670 if (!error) {
3671 path_put(&root_parent);
3672 path_put(&parent_path);
3673 }
3674out3:
8c3ee42e 3675 path_put(&root);
b12cea91 3676out2:
2d8f3038 3677 path_put(&old);
1da177e4 3678out1:
2d8f3038 3679 path_put(&new);
1da177e4 3680out0:
1da177e4 3681 return error;
1da177e4
LT
3682}
3683
3684static void __init init_mount_tree(void)
3685{
3686 struct vfsmount *mnt;
74e83122 3687 struct mount *m;
6b3286ed 3688 struct mnt_namespace *ns;
ac748a09 3689 struct path root;
0c55cfc4 3690 struct file_system_type *type;
1da177e4 3691
0c55cfc4
EB
3692 type = get_fs_type("rootfs");
3693 if (!type)
3694 panic("Can't find rootfs type");
3695 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3696 put_filesystem(type);
1da177e4
LT
3697 if (IS_ERR(mnt))
3698 panic("Can't create rootfs");
b3e19d92 3699
74e83122 3700 ns = alloc_mnt_ns(&init_user_ns, false);
3b22edc5 3701 if (IS_ERR(ns))
1da177e4 3702 panic("Can't allocate initial namespace");
74e83122
AV
3703 m = real_mount(mnt);
3704 m->mnt_ns = ns;
3705 ns->root = m;
3706 ns->mounts = 1;
3707 list_add(&m->mnt_list, &ns->list);
6b3286ed
KK
3708 init_task.nsproxy->mnt_ns = ns;
3709 get_mnt_ns(ns);
3710
be08d6d2
AV
3711 root.mnt = mnt;
3712 root.dentry = mnt->mnt_root;
da362b09 3713 mnt->mnt_flags |= MNT_LOCKED;
ac748a09
JB
3714
3715 set_fs_pwd(current->fs, &root);
3716 set_fs_root(current->fs, &root);
1da177e4
LT
3717}
3718
74bf17cf 3719void __init mnt_init(void)
1da177e4 3720{
15a67dd8 3721 int err;
1da177e4 3722
7d6fec45 3723 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 3724 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 3725
0818bf27 3726 mount_hashtable = alloc_large_system_hash("Mount-cache",
38129a13 3727 sizeof(struct hlist_head),
0818bf27 3728 mhash_entries, 19,
3d375d78 3729 HASH_ZERO,
0818bf27
AV
3730 &m_hash_shift, &m_hash_mask, 0, 0);
3731 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3732 sizeof(struct hlist_head),
3733 mphash_entries, 19,
3d375d78 3734 HASH_ZERO,
0818bf27 3735 &mp_hash_shift, &mp_hash_mask, 0, 0);
1da177e4 3736
84d17192 3737 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
3738 panic("Failed to allocate mount hash table\n");
3739
4b93dc9b
TH
3740 kernfs_init();
3741
15a67dd8
RD
3742 err = sysfs_init();
3743 if (err)
3744 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 3745 __func__, err);
00d26666
GKH
3746 fs_kobj = kobject_create_and_add("fs", NULL);
3747 if (!fs_kobj)
8e24eea7 3748 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
3749 init_rootfs();
3750 init_mount_tree();
3751}
3752
616511d0 3753void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 3754{
d498b25a 3755 if (!atomic_dec_and_test(&ns->count))
616511d0 3756 return;
7b00ed6f 3757 drop_collected_mounts(&ns->root->mnt);
771b1371 3758 free_mnt_ns(ns);
1da177e4 3759}
9d412a43 3760
d911b458 3761struct vfsmount *kern_mount(struct file_system_type *type)
9d412a43 3762{
423e0ab0 3763 struct vfsmount *mnt;
d911b458 3764 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
423e0ab0
TC
3765 if (!IS_ERR(mnt)) {
3766 /*
3767 * it is a longterm mount, don't release mnt until
3768 * we unmount before file sys is unregistered
3769 */
f7a99c5b 3770 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
3771 }
3772 return mnt;
9d412a43 3773}
d911b458 3774EXPORT_SYMBOL_GPL(kern_mount);
423e0ab0
TC
3775
3776void kern_unmount(struct vfsmount *mnt)
3777{
3778 /* release long term mount so mount point can be released */
3779 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b 3780 real_mount(mnt)->mnt_ns = NULL;
48a066e7 3781 synchronize_rcu(); /* yecchhh... */
423e0ab0
TC
3782 mntput(mnt);
3783 }
3784}
3785EXPORT_SYMBOL(kern_unmount);
02125a82
AV
3786
3787bool our_mnt(struct vfsmount *mnt)
3788{
143c8c91 3789 return check_mnt(real_mount(mnt));
02125a82 3790}
8823c079 3791
3151527e
EB
3792bool current_chrooted(void)
3793{
3794 /* Does the current process have a non-standard root */
3795 struct path ns_root;
3796 struct path fs_root;
3797 bool chrooted;
3798
3799 /* Find the namespace root */
3800 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3801 ns_root.dentry = ns_root.mnt->mnt_root;
3802 path_get(&ns_root);
3803 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3804 ;
3805
3806 get_fs_root(current->fs, &fs_root);
3807
3808 chrooted = !path_equal(&fs_root, &ns_root);
3809
3810 path_put(&fs_root);
3811 path_put(&ns_root);
3812
3813 return chrooted;
3814}
3815
132e4608
DH
3816static bool mnt_already_visible(struct mnt_namespace *ns,
3817 const struct super_block *sb,
8654df4e 3818 int *new_mnt_flags)
87a8ebd6 3819{
8c6cf9cc 3820 int new_flags = *new_mnt_flags;
87a8ebd6 3821 struct mount *mnt;
e51db735 3822 bool visible = false;
87a8ebd6 3823
44bb4385 3824 down_read(&namespace_sem);
87a8ebd6 3825 list_for_each_entry(mnt, &ns->list, mnt_list) {
e51db735 3826 struct mount *child;
77b1a97d
EB
3827 int mnt_flags;
3828
132e4608 3829 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
e51db735
EB
3830 continue;
3831
7e96c1b0
EB
3832 /* This mount is not fully visible if it's root directory
3833 * is not the root directory of the filesystem.
3834 */
3835 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3836 continue;
3837
a1935c17 3838 /* A local view of the mount flags */
77b1a97d 3839 mnt_flags = mnt->mnt.mnt_flags;
77b1a97d 3840
695e9df0 3841 /* Don't miss readonly hidden in the superblock flags */
bc98a42c 3842 if (sb_rdonly(mnt->mnt.mnt_sb))
695e9df0
EB
3843 mnt_flags |= MNT_LOCK_READONLY;
3844
8c6cf9cc
EB
3845 /* Verify the mount flags are equal to or more permissive
3846 * than the proposed new mount.
3847 */
77b1a97d 3848 if ((mnt_flags & MNT_LOCK_READONLY) &&
8c6cf9cc
EB
3849 !(new_flags & MNT_READONLY))
3850 continue;
77b1a97d
EB
3851 if ((mnt_flags & MNT_LOCK_ATIME) &&
3852 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
8c6cf9cc
EB
3853 continue;
3854
ceeb0e5d
EB
3855 /* This mount is not fully visible if there are any
3856 * locked child mounts that cover anything except for
3857 * empty directories.
e51db735
EB
3858 */
3859 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3860 struct inode *inode = child->mnt_mountpoint->d_inode;
ceeb0e5d 3861 /* Only worry about locked mounts */
d71ed6c9 3862 if (!(child->mnt.mnt_flags & MNT_LOCKED))
ceeb0e5d 3863 continue;
7236c85e
EB
3864 /* Is the directory permanetly empty? */
3865 if (!is_empty_dir_inode(inode))
e51db735 3866 goto next;
87a8ebd6 3867 }
8c6cf9cc 3868 /* Preserve the locked attributes */
77b1a97d 3869 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
77b1a97d 3870 MNT_LOCK_ATIME);
e51db735
EB
3871 visible = true;
3872 goto found;
3873 next: ;
87a8ebd6 3874 }
e51db735 3875found:
44bb4385 3876 up_read(&namespace_sem);
e51db735 3877 return visible;
87a8ebd6
EB
3878}
3879
132e4608 3880static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
8654df4e 3881{
a1935c17 3882 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
8654df4e
EB
3883 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3884 unsigned long s_iflags;
3885
3886 if (ns->user_ns == &init_user_ns)
3887 return false;
3888
3889 /* Can this filesystem be too revealing? */
132e4608 3890 s_iflags = sb->s_iflags;
8654df4e
EB
3891 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3892 return false;
3893
a1935c17
EB
3894 if ((s_iflags & required_iflags) != required_iflags) {
3895 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3896 required_iflags);
3897 return true;
3898 }
3899
132e4608 3900 return !mnt_already_visible(ns, sb, new_mnt_flags);
8654df4e
EB
3901}
3902
380cf5ba
AL
3903bool mnt_may_suid(struct vfsmount *mnt)
3904{
3905 /*
3906 * Foreign mounts (accessed via fchdir or through /proc
3907 * symlinks) are always treated as if they are nosuid. This
3908 * prevents namespaces from trusting potentially unsafe
3909 * suid/sgid bits, file caps, or security labels that originate
3910 * in other namespaces.
3911 */
3912 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3913 current_in_userns(mnt->mnt_sb->s_user_ns);
3914}
3915
64964528 3916static struct ns_common *mntns_get(struct task_struct *task)
8823c079 3917{
58be2825 3918 struct ns_common *ns = NULL;
8823c079
EB
3919 struct nsproxy *nsproxy;
3920
728dba3a
EB
3921 task_lock(task);
3922 nsproxy = task->nsproxy;
8823c079 3923 if (nsproxy) {
58be2825
AV
3924 ns = &nsproxy->mnt_ns->ns;
3925 get_mnt_ns(to_mnt_ns(ns));
8823c079 3926 }
728dba3a 3927 task_unlock(task);
8823c079
EB
3928
3929 return ns;
3930}
3931
64964528 3932static void mntns_put(struct ns_common *ns)
8823c079 3933{
58be2825 3934 put_mnt_ns(to_mnt_ns(ns));
8823c079
EB
3935}
3936
64964528 3937static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
8823c079
EB
3938{
3939 struct fs_struct *fs = current->fs;
4f757f3c 3940 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
8823c079 3941 struct path root;
4f757f3c 3942 int err;
8823c079 3943
0c55cfc4 3944 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
c7b96acf
EB
3945 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3946 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
ae11e0f1 3947 return -EPERM;
8823c079 3948
74e83122
AV
3949 if (is_anon_ns(mnt_ns))
3950 return -EINVAL;
3951
8823c079
EB
3952 if (fs->users != 1)
3953 return -EINVAL;
3954
3955 get_mnt_ns(mnt_ns);
4f757f3c 3956 old_mnt_ns = nsproxy->mnt_ns;
8823c079
EB
3957 nsproxy->mnt_ns = mnt_ns;
3958
3959 /* Find the root */
4f757f3c
AV
3960 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
3961 "/", LOOKUP_DOWN, &root);
3962 if (err) {
3963 /* revert to old namespace */
3964 nsproxy->mnt_ns = old_mnt_ns;
3965 put_mnt_ns(mnt_ns);
3966 return err;
3967 }
8823c079 3968
4068367c
AV
3969 put_mnt_ns(old_mnt_ns);
3970
8823c079
EB
3971 /* Update the pwd and root */
3972 set_fs_pwd(fs, &root);
3973 set_fs_root(fs, &root);
3974
3975 path_put(&root);
3976 return 0;
3977}
3978
bcac25a5
AV
3979static struct user_namespace *mntns_owner(struct ns_common *ns)
3980{
3981 return to_mnt_ns(ns)->user_ns;
3982}
3983
8823c079
EB
3984const struct proc_ns_operations mntns_operations = {
3985 .name = "mnt",
3986 .type = CLONE_NEWNS,
3987 .get = mntns_get,
3988 .put = mntns_put,
3989 .install = mntns_install,
bcac25a5 3990 .owner = mntns_owner,
8823c079 3991};