]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/namespace.c
vfs: spread struct mount - __propagate_umount() argument
[mirror_ubuntu-hirsute-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
158unsigned int mnt_get_count(struct vfsmount *mnt)
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169#else
170 return mnt->mnt_count;
171#endif
172}
173
9d412a43 174static struct vfsmount *alloc_vfsmnt(const char *name)
1da177e4 175{
7d6fec45
AV
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
73cd49ec
MS
179 int err;
180
181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92
NP
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
f03c6599 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
1da177e4
LT
202 INIT_LIST_HEAD(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 206 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 207 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
210#ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 212#endif
1da177e4 213 }
7d6fec45 214 return &p->mnt;
88b38782 215
d3ef3d73 216#ifdef CONFIG_SMP
217out_free_devname:
7d6fec45 218 kfree(p->mnt.mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
7d6fec45 221 mnt_free_id(&p->mnt);
88b38782 222out_free_cache:
7d6fec45 223 kmem_cache_free(mnt_cache, p);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246int __mnt_is_readonly(struct vfsmount *mnt)
247{
2e4b7fcd
DH
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
c6653a83 256static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73 257{
258#ifdef CONFIG_SMP
b3e19d92 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
261 mnt->mnt_writers++;
262#endif
263}
3d733633 264
c6653a83 265static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
b3e19d92 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
270 mnt->mnt_writers--;
271#endif
3d733633 272}
3d733633 273
c6653a83 274static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 275{
d3ef3d73 276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
b3e19d92 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73 284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
8366025e
DH
290/*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298/**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308int mnt_want_write(struct vfsmount *mnt)
309{
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
3d733633 328 if (__mnt_is_readonly(mnt)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e 339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
c6653a83 357 mnt_inc_writers(mnt);
96029c4e 358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
c6653a83 391 mnt_dec_writers(mnt);
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
2e4b7fcd 402static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
d3ef3d73 407 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73 409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73 412 smp_mb();
413
3d733633 414 /*
d3ef3d73 415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73 431 ret = -EBUSY;
432 else
2e4b7fcd 433 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
2e4b7fcd
DH
444static void __mnt_unmake_readonly(struct vfsmount *mnt)
445{
99b7db7b 446 br_write_lock(vfsmount_lock);
2e4b7fcd 447 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
9d412a43 451static void free_vfsmnt(struct vfsmount *mnt)
1da177e4 452{
7d6fec45 453 struct mount *p = real_mount(mnt);
1da177e4 454 kfree(mnt->mnt_devname);
73cd49ec 455 mnt_free_id(mnt);
d3ef3d73 456#ifdef CONFIG_SMP
b3e19d92 457 free_percpu(mnt->mnt_pcp);
d3ef3d73 458#endif
7d6fec45 459 kmem_cache_free(mnt_cache, p);
1da177e4
LT
460}
461
462/*
a05964f3
RP
463 * find the first or last mount at @dentry on vfsmount @mnt depending on
464 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 465 * vfsmount_lock must be held for read or write.
1da177e4 466 */
c7105365 467struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 468 int dir)
1da177e4 469{
b58fed8b
RP
470 struct list_head *head = mount_hashtable + hash(mnt, dentry);
471 struct list_head *tmp = head;
c7105365 472 struct mount *p, *found = NULL;
1da177e4 473
1da177e4 474 for (;;) {
a05964f3 475 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
476 p = NULL;
477 if (tmp == head)
478 break;
c7105365
AV
479 p = list_entry(tmp, struct mount, mnt.mnt_hash);
480 if (p->mnt.mnt_parent == mnt && p->mnt.mnt_mountpoint == dentry) {
a05964f3 481 found = p;
1da177e4
LT
482 break;
483 }
484 }
1da177e4
LT
485 return found;
486}
487
a05964f3
RP
488/*
489 * lookup_mnt increments the ref count before returning
490 * the vfsmount struct.
491 */
1c755af4 492struct vfsmount *lookup_mnt(struct path *path)
a05964f3 493{
c7105365 494 struct mount *child_mnt;
99b7db7b
NP
495
496 br_read_lock(vfsmount_lock);
c7105365
AV
497 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
498 if (child_mnt) {
499 mnt_add_count(child_mnt, 1);
500 br_read_unlock(vfsmount_lock);
501 return &child_mnt->mnt;
502 } else {
503 br_read_unlock(vfsmount_lock);
504 return NULL;
505 }
a05964f3
RP
506}
507
1da177e4
LT
508static inline int check_mnt(struct vfsmount *mnt)
509{
6b3286ed 510 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
511}
512
99b7db7b
NP
513/*
514 * vfsmount lock must be held for write
515 */
6b3286ed 516static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
517{
518 if (ns) {
519 ns->event = ++event;
520 wake_up_interruptible(&ns->poll);
521 }
522}
523
99b7db7b
NP
524/*
525 * vfsmount lock must be held for write
526 */
6b3286ed 527static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
528{
529 if (ns && ns->event != event) {
530 ns->event = event;
531 wake_up_interruptible(&ns->poll);
532 }
533}
534
5f57cbcc
NP
535/*
536 * Clear dentry's mounted state if it has no remaining mounts.
537 * vfsmount_lock must be held for write.
538 */
aa0a4cf0 539static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
540{
541 unsigned u;
542
543 for (u = 0; u < HASH_SIZE; u++) {
544 struct vfsmount *p;
545
546 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
547 if (p->mnt_mountpoint == dentry)
548 return;
549 }
550 }
551 spin_lock(&dentry->d_lock);
552 dentry->d_flags &= ~DCACHE_MOUNTED;
553 spin_unlock(&dentry->d_lock);
554}
555
99b7db7b
NP
556/*
557 * vfsmount lock must be held for write
558 */
1a390689 559static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 560{
1a390689
AV
561 old_path->dentry = mnt->mnt_mountpoint;
562 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
563 mnt->mnt_parent = mnt;
564 mnt->mnt_mountpoint = mnt->mnt_root;
565 list_del_init(&mnt->mnt_child);
566 list_del_init(&mnt->mnt_hash);
aa0a4cf0 567 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
568}
569
99b7db7b
NP
570/*
571 * vfsmount lock must be held for write
572 */
b90fa9ae
RP
573void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
574 struct vfsmount *child_mnt)
575{
576 child_mnt->mnt_parent = mntget(mnt);
577 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
578 spin_lock(&dentry->d_lock);
579 dentry->d_flags |= DCACHE_MOUNTED;
580 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
581}
582
99b7db7b
NP
583/*
584 * vfsmount lock must be held for write
585 */
1a390689 586static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 587{
1a390689 588 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 589 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
590 hash(path->mnt, path->dentry));
591 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
592}
593
7e3d0eb0
AV
594static inline void __mnt_make_longterm(struct vfsmount *mnt)
595{
596#ifdef CONFIG_SMP
597 atomic_inc(&mnt->mnt_longterm);
598#endif
599}
600
601/* needs vfsmount lock for write */
602static inline void __mnt_make_shortterm(struct vfsmount *mnt)
603{
604#ifdef CONFIG_SMP
605 atomic_dec(&mnt->mnt_longterm);
606#endif
607}
608
b90fa9ae 609/*
99b7db7b 610 * vfsmount lock must be held for write
b90fa9ae
RP
611 */
612static void commit_tree(struct vfsmount *mnt)
613{
614 struct vfsmount *parent = mnt->mnt_parent;
615 struct vfsmount *m;
616 LIST_HEAD(head);
6b3286ed 617 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
618
619 BUG_ON(parent == mnt);
620
621 list_add_tail(&head, &mnt->mnt_list);
f03c6599 622 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 623 m->mnt_ns = n;
7e3d0eb0 624 __mnt_make_longterm(m);
f03c6599
AV
625 }
626
b90fa9ae
RP
627 list_splice(&head, n->list.prev);
628
629 list_add_tail(&mnt->mnt_hash, mount_hashtable +
630 hash(parent, mnt->mnt_mountpoint));
631 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 632 touch_mnt_namespace(n);
1da177e4
LT
633}
634
635static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
636{
637 struct list_head *next = p->mnt_mounts.next;
638 if (next == &p->mnt_mounts) {
639 while (1) {
640 if (p == root)
641 return NULL;
642 next = p->mnt_child.next;
643 if (next != &p->mnt_parent->mnt_mounts)
644 break;
645 p = p->mnt_parent;
646 }
647 }
648 return list_entry(next, struct vfsmount, mnt_child);
649}
650
9676f0c6
RP
651static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
652{
653 struct list_head *prev = p->mnt_mounts.prev;
654 while (prev != &p->mnt_mounts) {
655 p = list_entry(prev, struct vfsmount, mnt_child);
656 prev = p->mnt_mounts.prev;
657 }
658 return p;
659}
660
9d412a43
AV
661struct vfsmount *
662vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
663{
664 struct vfsmount *mnt;
665 struct dentry *root;
666
667 if (!type)
668 return ERR_PTR(-ENODEV);
669
670 mnt = alloc_vfsmnt(name);
671 if (!mnt)
672 return ERR_PTR(-ENOMEM);
673
674 if (flags & MS_KERNMOUNT)
675 mnt->mnt_flags = MNT_INTERNAL;
676
677 root = mount_fs(type, flags, name, data);
678 if (IS_ERR(root)) {
679 free_vfsmnt(mnt);
680 return ERR_CAST(root);
681 }
682
683 mnt->mnt_root = root;
684 mnt->mnt_sb = root->d_sb;
685 mnt->mnt_mountpoint = mnt->mnt_root;
686 mnt->mnt_parent = mnt;
687 return mnt;
688}
689EXPORT_SYMBOL_GPL(vfs_kern_mount);
690
36341f64
RP
691static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
692 int flag)
1da177e4
LT
693{
694 struct super_block *sb = old->mnt_sb;
695 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
696
697 if (mnt) {
719f5d7f
MS
698 if (flag & (CL_SLAVE | CL_PRIVATE))
699 mnt->mnt_group_id = 0; /* not a peer of original */
700 else
701 mnt->mnt_group_id = old->mnt_group_id;
702
703 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
704 int err = mnt_alloc_group_id(mnt);
705 if (err)
706 goto out_free;
707 }
708
be1a16a0 709 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
710 atomic_inc(&sb->s_active);
711 mnt->mnt_sb = sb;
712 mnt->mnt_root = dget(root);
713 mnt->mnt_mountpoint = mnt->mnt_root;
714 mnt->mnt_parent = mnt;
b90fa9ae 715
5afe0022
RP
716 if (flag & CL_SLAVE) {
717 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
718 mnt->mnt_master = old;
719 CLEAR_MNT_SHARED(mnt);
8aec0809 720 } else if (!(flag & CL_PRIVATE)) {
796a6b52 721 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
722 list_add(&mnt->mnt_share, &old->mnt_share);
723 if (IS_MNT_SLAVE(old))
724 list_add(&mnt->mnt_slave, &old->mnt_slave);
725 mnt->mnt_master = old->mnt_master;
726 }
b90fa9ae
RP
727 if (flag & CL_MAKE_SHARED)
728 set_mnt_shared(mnt);
1da177e4
LT
729
730 /* stick the duplicate mount on the same expiry list
731 * as the original if that was on one */
36341f64 732 if (flag & CL_EXPIRE) {
36341f64
RP
733 if (!list_empty(&old->mnt_expire))
734 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 735 }
1da177e4
LT
736 }
737 return mnt;
719f5d7f
MS
738
739 out_free:
740 free_vfsmnt(mnt);
741 return NULL;
1da177e4
LT
742}
743
b3e19d92 744static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
745{
746 struct super_block *sb = mnt->mnt_sb;
b3e19d92 747
3d733633
DH
748 /*
749 * This probably indicates that somebody messed
750 * up a mnt_want/drop_write() pair. If this
751 * happens, the filesystem was probably unable
752 * to make r/w->r/o transitions.
753 */
d3ef3d73 754 /*
b3e19d92
NP
755 * The locking used to deal with mnt_count decrement provides barriers,
756 * so mnt_get_writers() below is safe.
d3ef3d73 757 */
c6653a83 758 WARN_ON(mnt_get_writers(mnt));
ca9c726e 759 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
760 dput(mnt->mnt_root);
761 free_vfsmnt(mnt);
762 deactivate_super(sb);
763}
764
f03c6599 765static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 766{
b3e19d92 767put_again:
f03c6599
AV
768#ifdef CONFIG_SMP
769 br_read_lock(vfsmount_lock);
770 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 771 mnt_add_count(mnt, -1);
b3e19d92 772 br_read_unlock(vfsmount_lock);
f03c6599 773 return;
b3e19d92 774 }
f03c6599 775 br_read_unlock(vfsmount_lock);
b3e19d92 776
99b7db7b 777 br_write_lock(vfsmount_lock);
aa9c0e07 778 mnt_add_count(mnt, -1);
b3e19d92 779 if (mnt_get_count(mnt)) {
99b7db7b
NP
780 br_write_unlock(vfsmount_lock);
781 return;
782 }
b3e19d92 783#else
aa9c0e07 784 mnt_add_count(mnt, -1);
b3e19d92 785 if (likely(mnt_get_count(mnt)))
99b7db7b 786 return;
b3e19d92 787 br_write_lock(vfsmount_lock);
f03c6599 788#endif
b3e19d92
NP
789 if (unlikely(mnt->mnt_pinned)) {
790 mnt_add_count(mnt, mnt->mnt_pinned + 1);
791 mnt->mnt_pinned = 0;
792 br_write_unlock(vfsmount_lock);
793 acct_auto_close_mnt(mnt);
794 goto put_again;
7b7b1ace 795 }
99b7db7b 796 br_write_unlock(vfsmount_lock);
b3e19d92
NP
797 mntfree(mnt);
798}
b3e19d92
NP
799
800void mntput(struct vfsmount *mnt)
801{
802 if (mnt) {
803 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
804 if (unlikely(mnt->mnt_expiry_mark))
805 mnt->mnt_expiry_mark = 0;
f03c6599 806 mntput_no_expire(mnt);
b3e19d92
NP
807 }
808}
809EXPORT_SYMBOL(mntput);
810
811struct vfsmount *mntget(struct vfsmount *mnt)
812{
813 if (mnt)
aa9c0e07 814 mnt_add_count(mnt, 1);
b3e19d92
NP
815 return mnt;
816}
817EXPORT_SYMBOL(mntget);
818
7b7b1ace
AV
819void mnt_pin(struct vfsmount *mnt)
820{
99b7db7b 821 br_write_lock(vfsmount_lock);
7b7b1ace 822 mnt->mnt_pinned++;
99b7db7b 823 br_write_unlock(vfsmount_lock);
7b7b1ace 824}
7b7b1ace
AV
825EXPORT_SYMBOL(mnt_pin);
826
827void mnt_unpin(struct vfsmount *mnt)
828{
99b7db7b 829 br_write_lock(vfsmount_lock);
7b7b1ace 830 if (mnt->mnt_pinned) {
aa9c0e07 831 mnt_add_count(mnt, 1);
7b7b1ace
AV
832 mnt->mnt_pinned--;
833 }
99b7db7b 834 br_write_unlock(vfsmount_lock);
7b7b1ace 835}
7b7b1ace 836EXPORT_SYMBOL(mnt_unpin);
1da177e4 837
b3b304a2
MS
838static inline void mangle(struct seq_file *m, const char *s)
839{
840 seq_escape(m, s, " \t\n\\");
841}
842
843/*
844 * Simple .show_options callback for filesystems which don't want to
845 * implement more complex mount option showing.
846 *
847 * See also save_mount_options().
848 */
849int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
850{
2a32cebd
AV
851 const char *options;
852
853 rcu_read_lock();
854 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
855
856 if (options != NULL && options[0]) {
857 seq_putc(m, ',');
858 mangle(m, options);
859 }
2a32cebd 860 rcu_read_unlock();
b3b304a2
MS
861
862 return 0;
863}
864EXPORT_SYMBOL(generic_show_options);
865
866/*
867 * If filesystem uses generic_show_options(), this function should be
868 * called from the fill_super() callback.
869 *
870 * The .remount_fs callback usually needs to be handled in a special
871 * way, to make sure, that previous options are not overwritten if the
872 * remount fails.
873 *
874 * Also note, that if the filesystem's .remount_fs function doesn't
875 * reset all options to their default value, but changes only newly
876 * given options, then the displayed options will not reflect reality
877 * any more.
878 */
879void save_mount_options(struct super_block *sb, char *options)
880{
2a32cebd
AV
881 BUG_ON(sb->s_options);
882 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
883}
884EXPORT_SYMBOL(save_mount_options);
885
2a32cebd
AV
886void replace_mount_options(struct super_block *sb, char *options)
887{
888 char *old = sb->s_options;
889 rcu_assign_pointer(sb->s_options, options);
890 if (old) {
891 synchronize_rcu();
892 kfree(old);
893 }
894}
895EXPORT_SYMBOL(replace_mount_options);
896
a1a2c409 897#ifdef CONFIG_PROC_FS
1da177e4
LT
898/* iterator */
899static void *m_start(struct seq_file *m, loff_t *pos)
900{
a1a2c409 901 struct proc_mounts *p = m->private;
1da177e4 902
390c6843 903 down_read(&namespace_sem);
a1a2c409 904 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
905}
906
907static void *m_next(struct seq_file *m, void *v, loff_t *pos)
908{
a1a2c409 909 struct proc_mounts *p = m->private;
b0765fb8 910
a1a2c409 911 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
912}
913
914static void m_stop(struct seq_file *m, void *v)
915{
390c6843 916 up_read(&namespace_sem);
1da177e4
LT
917}
918
9f5596af
AV
919int mnt_had_events(struct proc_mounts *p)
920{
921 struct mnt_namespace *ns = p->ns;
922 int res = 0;
923
99b7db7b 924 br_read_lock(vfsmount_lock);
f1514638
KS
925 if (p->m.poll_event != ns->event) {
926 p->m.poll_event = ns->event;
9f5596af
AV
927 res = 1;
928 }
99b7db7b 929 br_read_unlock(vfsmount_lock);
9f5596af
AV
930
931 return res;
932}
933
2d4d4864
RP
934struct proc_fs_info {
935 int flag;
936 const char *str;
937};
938
2069f457 939static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 940{
2d4d4864 941 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
942 { MS_SYNCHRONOUS, ",sync" },
943 { MS_DIRSYNC, ",dirsync" },
944 { MS_MANDLOCK, ",mand" },
1da177e4
LT
945 { 0, NULL }
946 };
2d4d4864
RP
947 const struct proc_fs_info *fs_infop;
948
949 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
950 if (sb->s_flags & fs_infop->flag)
951 seq_puts(m, fs_infop->str);
952 }
2069f457
EP
953
954 return security_sb_show_options(m, sb);
2d4d4864
RP
955}
956
957static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
958{
959 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
960 { MNT_NOSUID, ",nosuid" },
961 { MNT_NODEV, ",nodev" },
962 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
963 { MNT_NOATIME, ",noatime" },
964 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 965 { MNT_RELATIME, ",relatime" },
1da177e4
LT
966 { 0, NULL }
967 };
2d4d4864
RP
968 const struct proc_fs_info *fs_infop;
969
970 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
971 if (mnt->mnt_flags & fs_infop->flag)
972 seq_puts(m, fs_infop->str);
973 }
974}
975
976static void show_type(struct seq_file *m, struct super_block *sb)
977{
978 mangle(m, sb->s_type->name);
979 if (sb->s_subtype && sb->s_subtype[0]) {
980 seq_putc(m, '.');
981 mangle(m, sb->s_subtype);
982 }
983}
984
985static int show_vfsmnt(struct seq_file *m, void *v)
986{
987 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
988 int err = 0;
c32c2f63 989 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 990
c7f404b4
AV
991 if (mnt->mnt_sb->s_op->show_devname) {
992 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
993 if (err)
994 goto out;
995 } else {
996 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
997 }
1da177e4 998 seq_putc(m, ' ');
c32c2f63 999 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 1000 seq_putc(m, ' ');
2d4d4864 1001 show_type(m, mnt->mnt_sb);
2e4b7fcd 1002 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
1003 err = show_sb_opts(m, mnt->mnt_sb);
1004 if (err)
1005 goto out;
2d4d4864 1006 show_mnt_opts(m, mnt);
1da177e4
LT
1007 if (mnt->mnt_sb->s_op->show_options)
1008 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1009 seq_puts(m, " 0 0\n");
2069f457 1010out:
1da177e4
LT
1011 return err;
1012}
1013
a1a2c409 1014const struct seq_operations mounts_op = {
1da177e4
LT
1015 .start = m_start,
1016 .next = m_next,
1017 .stop = m_stop,
1018 .show = show_vfsmnt
1019};
1020
2d4d4864
RP
1021static int show_mountinfo(struct seq_file *m, void *v)
1022{
1023 struct proc_mounts *p = m->private;
1024 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1025 struct super_block *sb = mnt->mnt_sb;
1026 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1027 struct path root = p->root;
1028 int err = 0;
1029
1030 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1031 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1032 if (sb->s_op->show_path)
1033 err = sb->s_op->show_path(m, mnt);
1034 else
1035 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1036 if (err)
1037 goto out;
2d4d4864 1038 seq_putc(m, ' ');
02125a82
AV
1039
1040 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1041 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1042 if (err)
1043 goto out;
1044
2d4d4864
RP
1045 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1046 show_mnt_opts(m, mnt);
1047
1048 /* Tagged fields ("foo:X" or "bar") */
1049 if (IS_MNT_SHARED(mnt))
1050 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1051 if (IS_MNT_SLAVE(mnt)) {
1052 int master = mnt->mnt_master->mnt_group_id;
1053 int dom = get_dominating_id(mnt, &p->root);
1054 seq_printf(m, " master:%i", master);
1055 if (dom && dom != master)
1056 seq_printf(m, " propagate_from:%i", dom);
1057 }
2d4d4864
RP
1058 if (IS_MNT_UNBINDABLE(mnt))
1059 seq_puts(m, " unbindable");
1060
1061 /* Filesystem specific data */
1062 seq_puts(m, " - ");
1063 show_type(m, sb);
1064 seq_putc(m, ' ');
c7f404b4
AV
1065 if (sb->s_op->show_devname)
1066 err = sb->s_op->show_devname(m, mnt);
1067 else
1068 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1069 if (err)
1070 goto out;
2d4d4864 1071 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1072 err = show_sb_opts(m, sb);
1073 if (err)
1074 goto out;
2d4d4864
RP
1075 if (sb->s_op->show_options)
1076 err = sb->s_op->show_options(m, mnt);
1077 seq_putc(m, '\n');
2069f457 1078out:
2d4d4864
RP
1079 return err;
1080}
1081
1082const struct seq_operations mountinfo_op = {
1083 .start = m_start,
1084 .next = m_next,
1085 .stop = m_stop,
1086 .show = show_mountinfo,
1087};
1088
b4629fe2
CL
1089static int show_vfsstat(struct seq_file *m, void *v)
1090{
b0765fb8 1091 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1092 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1093 int err = 0;
1094
1095 /* device */
c7f404b4 1096 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1097 seq_puts(m, "device ");
c7f404b4
AV
1098 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1099 } else {
1100 if (mnt->mnt_devname) {
1101 seq_puts(m, "device ");
1102 mangle(m, mnt->mnt_devname);
1103 } else
1104 seq_puts(m, "no device");
1105 }
b4629fe2
CL
1106
1107 /* mount point */
1108 seq_puts(m, " mounted on ");
c32c2f63 1109 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1110 seq_putc(m, ' ');
1111
1112 /* file system type */
1113 seq_puts(m, "with fstype ");
2d4d4864 1114 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1115
1116 /* optional statistics */
1117 if (mnt->mnt_sb->s_op->show_stats) {
1118 seq_putc(m, ' ');
c7f404b4
AV
1119 if (!err)
1120 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1121 }
1122
1123 seq_putc(m, '\n');
1124 return err;
1125}
1126
a1a2c409 1127const struct seq_operations mountstats_op = {
b4629fe2
CL
1128 .start = m_start,
1129 .next = m_next,
1130 .stop = m_stop,
1131 .show = show_vfsstat,
1132};
a1a2c409 1133#endif /* CONFIG_PROC_FS */
b4629fe2 1134
1da177e4
LT
1135/**
1136 * may_umount_tree - check if a mount tree is busy
1137 * @mnt: root of mount tree
1138 *
1139 * This is called to check if a tree of mounts has any
1140 * open files, pwds, chroots or sub mounts that are
1141 * busy.
1142 */
1143int may_umount_tree(struct vfsmount *mnt)
1144{
36341f64
RP
1145 int actual_refs = 0;
1146 int minimum_refs = 0;
1147 struct vfsmount *p;
1da177e4 1148
b3e19d92
NP
1149 /* write lock needed for mnt_get_count */
1150 br_write_lock(vfsmount_lock);
36341f64 1151 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1152 actual_refs += mnt_get_count(p);
1da177e4 1153 minimum_refs += 2;
1da177e4 1154 }
b3e19d92 1155 br_write_unlock(vfsmount_lock);
1da177e4
LT
1156
1157 if (actual_refs > minimum_refs)
e3474a8e 1158 return 0;
1da177e4 1159
e3474a8e 1160 return 1;
1da177e4
LT
1161}
1162
1163EXPORT_SYMBOL(may_umount_tree);
1164
1165/**
1166 * may_umount - check if a mount point is busy
1167 * @mnt: root of mount
1168 *
1169 * This is called to check if a mount point has any
1170 * open files, pwds, chroots or sub mounts. If the
1171 * mount has sub mounts this will return busy
1172 * regardless of whether the sub mounts are busy.
1173 *
1174 * Doesn't take quota and stuff into account. IOW, in some cases it will
1175 * give false negatives. The main reason why it's here is that we need
1176 * a non-destructive way to look for easily umountable filesystems.
1177 */
1178int may_umount(struct vfsmount *mnt)
1179{
e3474a8e 1180 int ret = 1;
8ad08d8a 1181 down_read(&namespace_sem);
b3e19d92 1182 br_write_lock(vfsmount_lock);
a05964f3 1183 if (propagate_mount_busy(mnt, 2))
e3474a8e 1184 ret = 0;
b3e19d92 1185 br_write_unlock(vfsmount_lock);
8ad08d8a 1186 up_read(&namespace_sem);
a05964f3 1187 return ret;
1da177e4
LT
1188}
1189
1190EXPORT_SYMBOL(may_umount);
1191
b90fa9ae 1192void release_mounts(struct list_head *head)
70fbcdf4
RP
1193{
1194 struct vfsmount *mnt;
bf066c7d 1195 while (!list_empty(head)) {
b5e61818 1196 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4 1197 list_del_init(&mnt->mnt_hash);
b2dba1af 1198 if (mnt_has_parent(mnt)) {
70fbcdf4
RP
1199 struct dentry *dentry;
1200 struct vfsmount *m;
99b7db7b
NP
1201
1202 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1203 dentry = mnt->mnt_mountpoint;
1204 m = mnt->mnt_parent;
1205 mnt->mnt_mountpoint = mnt->mnt_root;
1206 mnt->mnt_parent = mnt;
7c4b93d8 1207 m->mnt_ghosts--;
99b7db7b 1208 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1209 dput(dentry);
1210 mntput(m);
1211 }
f03c6599 1212 mntput(mnt);
70fbcdf4
RP
1213 }
1214}
1215
99b7db7b
NP
1216/*
1217 * vfsmount lock must be held for write
1218 * namespace_sem must be held for write
1219 */
a05964f3 1220void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1221{
7b8a53fd 1222 LIST_HEAD(tmp_list);
1da177e4 1223 struct vfsmount *p;
1da177e4 1224
1bfba4e8 1225 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1226 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1227
a05964f3 1228 if (propagate)
7b8a53fd 1229 propagate_umount(&tmp_list);
a05964f3 1230
7b8a53fd 1231 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1232 list_del_init(&p->mnt_expire);
1233 list_del_init(&p->mnt_list);
6b3286ed
KK
1234 __touch_mnt_namespace(p->mnt_ns);
1235 p->mnt_ns = NULL;
7e3d0eb0 1236 __mnt_make_shortterm(p);
70fbcdf4 1237 list_del_init(&p->mnt_child);
b2dba1af 1238 if (mnt_has_parent(p)) {
7c4b93d8 1239 p->mnt_parent->mnt_ghosts++;
aa0a4cf0 1240 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1241 }
a05964f3 1242 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1243 }
7b8a53fd 1244 list_splice(&tmp_list, kill);
1da177e4
LT
1245}
1246
c35038be
AV
1247static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1248
1da177e4
LT
1249static int do_umount(struct vfsmount *mnt, int flags)
1250{
b58fed8b 1251 struct super_block *sb = mnt->mnt_sb;
1da177e4 1252 int retval;
70fbcdf4 1253 LIST_HEAD(umount_list);
1da177e4
LT
1254
1255 retval = security_sb_umount(mnt, flags);
1256 if (retval)
1257 return retval;
1258
1259 /*
1260 * Allow userspace to request a mountpoint be expired rather than
1261 * unmounting unconditionally. Unmount only happens if:
1262 * (1) the mark is already set (the mark is cleared by mntput())
1263 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1264 */
1265 if (flags & MNT_EXPIRE) {
6ac08c39 1266 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1267 flags & (MNT_FORCE | MNT_DETACH))
1268 return -EINVAL;
1269
b3e19d92
NP
1270 /*
1271 * probably don't strictly need the lock here if we examined
1272 * all race cases, but it's a slowpath.
1273 */
1274 br_write_lock(vfsmount_lock);
1275 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1276 br_write_unlock(vfsmount_lock);
1da177e4 1277 return -EBUSY;
b3e19d92
NP
1278 }
1279 br_write_unlock(vfsmount_lock);
1da177e4
LT
1280
1281 if (!xchg(&mnt->mnt_expiry_mark, 1))
1282 return -EAGAIN;
1283 }
1284
1285 /*
1286 * If we may have to abort operations to get out of this
1287 * mount, and they will themselves hold resources we must
1288 * allow the fs to do things. In the Unix tradition of
1289 * 'Gee thats tricky lets do it in userspace' the umount_begin
1290 * might fail to complete on the first run through as other tasks
1291 * must return, and the like. Thats for the mount program to worry
1292 * about for the moment.
1293 */
1294
42faad99 1295 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1296 sb->s_op->umount_begin(sb);
42faad99 1297 }
1da177e4
LT
1298
1299 /*
1300 * No sense to grab the lock for this test, but test itself looks
1301 * somewhat bogus. Suggestions for better replacement?
1302 * Ho-hum... In principle, we might treat that as umount + switch
1303 * to rootfs. GC would eventually take care of the old vfsmount.
1304 * Actually it makes sense, especially if rootfs would contain a
1305 * /reboot - static binary that would close all descriptors and
1306 * call reboot(9). Then init(8) could umount root and exec /reboot.
1307 */
6ac08c39 1308 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1309 /*
1310 * Special case for "unmounting" root ...
1311 * we just try to remount it readonly.
1312 */
1313 down_write(&sb->s_umount);
4aa98cf7 1314 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1315 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1316 up_write(&sb->s_umount);
1317 return retval;
1318 }
1319
390c6843 1320 down_write(&namespace_sem);
99b7db7b 1321 br_write_lock(vfsmount_lock);
5addc5dd 1322 event++;
1da177e4 1323
c35038be
AV
1324 if (!(flags & MNT_DETACH))
1325 shrink_submounts(mnt, &umount_list);
1326
1da177e4 1327 retval = -EBUSY;
a05964f3 1328 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1329 if (!list_empty(&mnt->mnt_list))
a05964f3 1330 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1331 retval = 0;
1332 }
99b7db7b 1333 br_write_unlock(vfsmount_lock);
390c6843 1334 up_write(&namespace_sem);
70fbcdf4 1335 release_mounts(&umount_list);
1da177e4
LT
1336 return retval;
1337}
1338
1339/*
1340 * Now umount can handle mount points as well as block devices.
1341 * This is important for filesystems which use unnamed block devices.
1342 *
1343 * We now support a flag for forced unmount like the other 'big iron'
1344 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1345 */
1346
bdc480e3 1347SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1348{
2d8f3038 1349 struct path path;
1da177e4 1350 int retval;
db1f05bb 1351 int lookup_flags = 0;
1da177e4 1352
db1f05bb
MS
1353 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1354 return -EINVAL;
1355
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1360 if (retval)
1361 goto out;
1362 retval = -EINVAL;
2d8f3038 1363 if (path.dentry != path.mnt->mnt_root)
1da177e4 1364 goto dput_and_out;
2d8f3038 1365 if (!check_mnt(path.mnt))
1da177e4
LT
1366 goto dput_and_out;
1367
1368 retval = -EPERM;
1369 if (!capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1371
2d8f3038 1372 retval = do_umount(path.mnt, flags);
1da177e4 1373dput_and_out:
429731b1 1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1375 dput(path.dentry);
1376 mntput_no_expire(path.mnt);
1da177e4
LT
1377out:
1378 return retval;
1379}
1380
1381#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383/*
b58fed8b 1384 * The 2.0 compatible umount. No flags.
1da177e4 1385 */
bdc480e3 1386SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1387{
b58fed8b 1388 return sys_umount(name, 0);
1da177e4
LT
1389}
1390
1391#endif
1392
2d92ab3c 1393static int mount_is_safe(struct path *path)
1da177e4
LT
1394{
1395 if (capable(CAP_SYS_ADMIN))
1396 return 0;
1397 return -EPERM;
1398#ifdef notyet
2d92ab3c 1399 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1400 return -EPERM;
2d92ab3c 1401 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1402 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1403 return -EPERM;
1404 }
2d92ab3c 1405 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1406 return -EPERM;
1407 return 0;
1408#endif
1409}
1410
b90fa9ae 1411struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1412 int flag)
1da177e4
LT
1413{
1414 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1415 struct path path;
1da177e4 1416
9676f0c6
RP
1417 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1418 return NULL;
1419
36341f64 1420 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1421 if (!q)
1422 goto Enomem;
1423 q->mnt_mountpoint = mnt->mnt_mountpoint;
1424
1425 p = mnt;
fdadd65f 1426 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1427 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1428 continue;
1429
1430 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1431 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1432 s = skip_mnt_tree(s);
1433 continue;
1434 }
1da177e4
LT
1435 while (p != s->mnt_parent) {
1436 p = p->mnt_parent;
1437 q = q->mnt_parent;
1438 }
1439 p = s;
1a390689
AV
1440 path.mnt = q;
1441 path.dentry = p->mnt_mountpoint;
36341f64 1442 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1443 if (!q)
1444 goto Enomem;
99b7db7b 1445 br_write_lock(vfsmount_lock);
1da177e4 1446 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1447 attach_mnt(q, &path);
99b7db7b 1448 br_write_unlock(vfsmount_lock);
1da177e4
LT
1449 }
1450 }
1451 return res;
b58fed8b 1452Enomem:
1da177e4 1453 if (res) {
70fbcdf4 1454 LIST_HEAD(umount_list);
99b7db7b 1455 br_write_lock(vfsmount_lock);
a05964f3 1456 umount_tree(res, 0, &umount_list);
99b7db7b 1457 br_write_unlock(vfsmount_lock);
70fbcdf4 1458 release_mounts(&umount_list);
1da177e4
LT
1459 }
1460 return NULL;
1461}
1462
589ff870 1463struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1464{
1465 struct vfsmount *tree;
1a60a280 1466 down_write(&namespace_sem);
589ff870 1467 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1468 up_write(&namespace_sem);
8aec0809
AV
1469 return tree;
1470}
1471
1472void drop_collected_mounts(struct vfsmount *mnt)
1473{
1474 LIST_HEAD(umount_list);
1a60a280 1475 down_write(&namespace_sem);
99b7db7b 1476 br_write_lock(vfsmount_lock);
8aec0809 1477 umount_tree(mnt, 0, &umount_list);
99b7db7b 1478 br_write_unlock(vfsmount_lock);
1a60a280 1479 up_write(&namespace_sem);
8aec0809
AV
1480 release_mounts(&umount_list);
1481}
1482
1f707137
AV
1483int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1484 struct vfsmount *root)
1485{
1486 struct vfsmount *mnt;
1487 int res = f(root, arg);
1488 if (res)
1489 return res;
1490 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1491 res = f(mnt, arg);
1492 if (res)
1493 return res;
1494 }
1495 return 0;
1496}
1497
719f5d7f
MS
1498static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1499{
1500 struct vfsmount *p;
1501
1502 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1503 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1504 mnt_release_group_id(p);
1505 }
1506}
1507
1508static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1509{
1510 struct vfsmount *p;
1511
1512 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1513 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1514 int err = mnt_alloc_group_id(p);
1515 if (err) {
1516 cleanup_group_ids(mnt, p);
1517 return err;
1518 }
1519 }
1520 }
1521
1522 return 0;
1523}
1524
b90fa9ae
RP
1525/*
1526 * @source_mnt : mount tree to be attached
21444403
RP
1527 * @nd : place the mount tree @source_mnt is attached
1528 * @parent_nd : if non-null, detach the source_mnt from its parent and
1529 * store the parent mount and mountpoint dentry.
1530 * (done when source_mnt is moved)
b90fa9ae
RP
1531 *
1532 * NOTE: in the table below explains the semantics when a source mount
1533 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1534 * ---------------------------------------------------------------------------
1535 * | BIND MOUNT OPERATION |
1536 * |**************************************************************************
1537 * | source-->| shared | private | slave | unbindable |
1538 * | dest | | | | |
1539 * | | | | | | |
1540 * | v | | | | |
1541 * |**************************************************************************
1542 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1543 * | | | | | |
1544 * |non-shared| shared (+) | private | slave (*) | invalid |
1545 * ***************************************************************************
b90fa9ae
RP
1546 * A bind operation clones the source mount and mounts the clone on the
1547 * destination mount.
1548 *
1549 * (++) the cloned mount is propagated to all the mounts in the propagation
1550 * tree of the destination mount and the cloned mount is added to
1551 * the peer group of the source mount.
1552 * (+) the cloned mount is created under the destination mount and is marked
1553 * as shared. The cloned mount is added to the peer group of the source
1554 * mount.
5afe0022
RP
1555 * (+++) the mount is propagated to all the mounts in the propagation tree
1556 * of the destination mount and the cloned mount is made slave
1557 * of the same master as that of the source mount. The cloned mount
1558 * is marked as 'shared and slave'.
1559 * (*) the cloned mount is made a slave of the same master as that of the
1560 * source mount.
1561 *
9676f0c6
RP
1562 * ---------------------------------------------------------------------------
1563 * | MOVE MOUNT OPERATION |
1564 * |**************************************************************************
1565 * | source-->| shared | private | slave | unbindable |
1566 * | dest | | | | |
1567 * | | | | | | |
1568 * | v | | | | |
1569 * |**************************************************************************
1570 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1571 * | | | | | |
1572 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1573 * ***************************************************************************
5afe0022
RP
1574 *
1575 * (+) the mount is moved to the destination. And is then propagated to
1576 * all the mounts in the propagation tree of the destination mount.
21444403 1577 * (+*) the mount is moved to the destination.
5afe0022
RP
1578 * (+++) the mount is moved to the destination and is then propagated to
1579 * all the mounts belonging to the destination mount's propagation tree.
1580 * the mount is marked as 'shared and slave'.
1581 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1582 *
1583 * if the source mount is a tree, the operations explained above is
1584 * applied to each mount in the tree.
1585 * Must be called without spinlocks held, since this function can sleep
1586 * in allocations.
1587 */
1588static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1589 struct path *path, struct path *parent_path)
b90fa9ae
RP
1590{
1591 LIST_HEAD(tree_list);
1a390689
AV
1592 struct vfsmount *dest_mnt = path->mnt;
1593 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1594 struct vfsmount *child, *p;
719f5d7f 1595 int err;
b90fa9ae 1596
719f5d7f
MS
1597 if (IS_MNT_SHARED(dest_mnt)) {
1598 err = invent_group_ids(source_mnt, true);
1599 if (err)
1600 goto out;
1601 }
1602 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1603 if (err)
1604 goto out_cleanup_ids;
b90fa9ae 1605
99b7db7b 1606 br_write_lock(vfsmount_lock);
df1a1ad2 1607
b90fa9ae
RP
1608 if (IS_MNT_SHARED(dest_mnt)) {
1609 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1610 set_mnt_shared(p);
1611 }
1a390689
AV
1612 if (parent_path) {
1613 detach_mnt(source_mnt, parent_path);
1614 attach_mnt(source_mnt, path);
e5d67f07 1615 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1616 } else {
1617 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1618 commit_tree(source_mnt);
1619 }
b90fa9ae
RP
1620
1621 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1622 list_del_init(&child->mnt_hash);
1623 commit_tree(child);
1624 }
99b7db7b
NP
1625 br_write_unlock(vfsmount_lock);
1626
b90fa9ae 1627 return 0;
719f5d7f
MS
1628
1629 out_cleanup_ids:
1630 if (IS_MNT_SHARED(dest_mnt))
1631 cleanup_group_ids(source_mnt, NULL);
1632 out:
1633 return err;
b90fa9ae
RP
1634}
1635
b12cea91
AV
1636static int lock_mount(struct path *path)
1637{
1638 struct vfsmount *mnt;
1639retry:
1640 mutex_lock(&path->dentry->d_inode->i_mutex);
1641 if (unlikely(cant_mount(path->dentry))) {
1642 mutex_unlock(&path->dentry->d_inode->i_mutex);
1643 return -ENOENT;
1644 }
1645 down_write(&namespace_sem);
1646 mnt = lookup_mnt(path);
1647 if (likely(!mnt))
1648 return 0;
1649 up_write(&namespace_sem);
1650 mutex_unlock(&path->dentry->d_inode->i_mutex);
1651 path_put(path);
1652 path->mnt = mnt;
1653 path->dentry = dget(mnt->mnt_root);
1654 goto retry;
1655}
1656
1657static void unlock_mount(struct path *path)
1658{
1659 up_write(&namespace_sem);
1660 mutex_unlock(&path->dentry->d_inode->i_mutex);
1661}
1662
8c3ee42e 1663static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4 1664{
1da177e4
LT
1665 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1666 return -EINVAL;
1667
8c3ee42e 1668 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1669 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1670 return -ENOTDIR;
1671
b12cea91
AV
1672 if (d_unlinked(path->dentry))
1673 return -ENOENT;
1da177e4 1674
b12cea91 1675 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1676}
1677
7a2e8a8f
VA
1678/*
1679 * Sanity check the flags to change_mnt_propagation.
1680 */
1681
1682static int flags_to_propagation_type(int flags)
1683{
7c6e984d 1684 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1685
1686 /* Fail if any non-propagation flags are set */
1687 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1688 return 0;
1689 /* Only one propagation flag should be set */
1690 if (!is_power_of_2(type))
1691 return 0;
1692 return type;
1693}
1694
07b20889
RP
1695/*
1696 * recursively change the type of the mountpoint.
1697 */
0a0d8a46 1698static int do_change_type(struct path *path, int flag)
07b20889 1699{
2d92ab3c 1700 struct vfsmount *m, *mnt = path->mnt;
07b20889 1701 int recurse = flag & MS_REC;
7a2e8a8f 1702 int type;
719f5d7f 1703 int err = 0;
07b20889 1704
ee6f9582
MS
1705 if (!capable(CAP_SYS_ADMIN))
1706 return -EPERM;
1707
2d92ab3c 1708 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1709 return -EINVAL;
1710
7a2e8a8f
VA
1711 type = flags_to_propagation_type(flag);
1712 if (!type)
1713 return -EINVAL;
1714
07b20889 1715 down_write(&namespace_sem);
719f5d7f
MS
1716 if (type == MS_SHARED) {
1717 err = invent_group_ids(mnt, recurse);
1718 if (err)
1719 goto out_unlock;
1720 }
1721
99b7db7b 1722 br_write_lock(vfsmount_lock);
07b20889
RP
1723 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1724 change_mnt_propagation(m, type);
99b7db7b 1725 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1726
1727 out_unlock:
07b20889 1728 up_write(&namespace_sem);
719f5d7f 1729 return err;
07b20889
RP
1730}
1731
1da177e4
LT
1732/*
1733 * do loopback mount.
1734 */
0a0d8a46 1735static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1736 int recurse)
1da177e4 1737{
b12cea91 1738 LIST_HEAD(umount_list);
2d92ab3c 1739 struct path old_path;
1da177e4 1740 struct vfsmount *mnt = NULL;
2d92ab3c 1741 int err = mount_is_safe(path);
1da177e4
LT
1742 if (err)
1743 return err;
1744 if (!old_name || !*old_name)
1745 return -EINVAL;
815d405c 1746 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1747 if (err)
1748 return err;
1749
b12cea91
AV
1750 err = lock_mount(path);
1751 if (err)
1752 goto out;
1753
1da177e4 1754 err = -EINVAL;
2d92ab3c 1755 if (IS_MNT_UNBINDABLE(old_path.mnt))
b12cea91 1756 goto out2;
9676f0c6 1757
2d92ab3c 1758 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
b12cea91 1759 goto out2;
1da177e4 1760
ccd48bc7
AV
1761 err = -ENOMEM;
1762 if (recurse)
2d92ab3c 1763 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1764 else
2d92ab3c 1765 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1766
1767 if (!mnt)
b12cea91 1768 goto out2;
ccd48bc7 1769
2d92ab3c 1770 err = graft_tree(mnt, path);
ccd48bc7 1771 if (err) {
99b7db7b 1772 br_write_lock(vfsmount_lock);
a05964f3 1773 umount_tree(mnt, 0, &umount_list);
99b7db7b 1774 br_write_unlock(vfsmount_lock);
5b83d2c5 1775 }
b12cea91
AV
1776out2:
1777 unlock_mount(path);
1778 release_mounts(&umount_list);
ccd48bc7 1779out:
2d92ab3c 1780 path_put(&old_path);
1da177e4
LT
1781 return err;
1782}
1783
2e4b7fcd
DH
1784static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1785{
1786 int error = 0;
1787 int readonly_request = 0;
1788
1789 if (ms_flags & MS_RDONLY)
1790 readonly_request = 1;
1791 if (readonly_request == __mnt_is_readonly(mnt))
1792 return 0;
1793
1794 if (readonly_request)
1795 error = mnt_make_readonly(mnt);
1796 else
1797 __mnt_unmake_readonly(mnt);
1798 return error;
1799}
1800
1da177e4
LT
1801/*
1802 * change filesystem flags. dir should be a physical root of filesystem.
1803 * If you've mounted a non-root directory somewhere and want to do remount
1804 * on it - tough luck.
1805 */
0a0d8a46 1806static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1807 void *data)
1808{
1809 int err;
2d92ab3c 1810 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1811
1812 if (!capable(CAP_SYS_ADMIN))
1813 return -EPERM;
1814
2d92ab3c 1815 if (!check_mnt(path->mnt))
1da177e4
LT
1816 return -EINVAL;
1817
2d92ab3c 1818 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1819 return -EINVAL;
1820
ff36fe2c
EP
1821 err = security_sb_remount(sb, data);
1822 if (err)
1823 return err;
1824
1da177e4 1825 down_write(&sb->s_umount);
2e4b7fcd 1826 if (flags & MS_BIND)
2d92ab3c 1827 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1828 else
2e4b7fcd 1829 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1830 if (!err) {
99b7db7b 1831 br_write_lock(vfsmount_lock);
495d6c9c 1832 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1833 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1834 br_write_unlock(vfsmount_lock);
7b43a79f 1835 }
1da177e4 1836 up_write(&sb->s_umount);
0e55a7cc 1837 if (!err) {
99b7db7b 1838 br_write_lock(vfsmount_lock);
0e55a7cc 1839 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1840 br_write_unlock(vfsmount_lock);
0e55a7cc 1841 }
1da177e4
LT
1842 return err;
1843}
1844
9676f0c6
RP
1845static inline int tree_contains_unbindable(struct vfsmount *mnt)
1846{
1847 struct vfsmount *p;
1848 for (p = mnt; p; p = next_mnt(p, mnt)) {
1849 if (IS_MNT_UNBINDABLE(p))
1850 return 1;
1851 }
1852 return 0;
1853}
1854
0a0d8a46 1855static int do_move_mount(struct path *path, char *old_name)
1da177e4 1856{
2d92ab3c 1857 struct path old_path, parent_path;
1da177e4
LT
1858 struct vfsmount *p;
1859 int err = 0;
1860 if (!capable(CAP_SYS_ADMIN))
1861 return -EPERM;
1862 if (!old_name || !*old_name)
1863 return -EINVAL;
2d92ab3c 1864 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1865 if (err)
1866 return err;
1867
b12cea91 1868 err = lock_mount(path);
cc53ce53
DH
1869 if (err < 0)
1870 goto out;
1871
1da177e4 1872 err = -EINVAL;
2d92ab3c 1873 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1874 goto out1;
1875
f3da392e 1876 if (d_unlinked(path->dentry))
21444403 1877 goto out1;
1da177e4
LT
1878
1879 err = -EINVAL;
2d92ab3c 1880 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1881 goto out1;
1da177e4 1882
b2dba1af 1883 if (!mnt_has_parent(old_path.mnt))
21444403 1884 goto out1;
1da177e4 1885
2d92ab3c
AV
1886 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1887 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1888 goto out1;
1889 /*
1890 * Don't move a mount residing in a shared parent.
1891 */
afac7cba 1892 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1893 goto out1;
9676f0c6
RP
1894 /*
1895 * Don't move a mount tree containing unbindable mounts to a destination
1896 * mount which is shared.
1897 */
2d92ab3c
AV
1898 if (IS_MNT_SHARED(path->mnt) &&
1899 tree_contains_unbindable(old_path.mnt))
9676f0c6 1900 goto out1;
1da177e4 1901 err = -ELOOP;
b2dba1af 1902 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
2d92ab3c 1903 if (p == old_path.mnt)
21444403 1904 goto out1;
1da177e4 1905
2d92ab3c 1906 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1907 if (err)
21444403 1908 goto out1;
1da177e4
LT
1909
1910 /* if the mount is moved, it should no longer be expire
1911 * automatically */
2d92ab3c 1912 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1913out1:
b12cea91 1914 unlock_mount(path);
1da177e4 1915out:
1da177e4 1916 if (!err)
1a390689 1917 path_put(&parent_path);
2d92ab3c 1918 path_put(&old_path);
1da177e4
LT
1919 return err;
1920}
1921
9d412a43
AV
1922static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1923{
1924 int err;
1925 const char *subtype = strchr(fstype, '.');
1926 if (subtype) {
1927 subtype++;
1928 err = -EINVAL;
1929 if (!subtype[0])
1930 goto err;
1931 } else
1932 subtype = "";
1933
1934 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1935 err = -ENOMEM;
1936 if (!mnt->mnt_sb->s_subtype)
1937 goto err;
1938 return mnt;
1939
1940 err:
1941 mntput(mnt);
1942 return ERR_PTR(err);
1943}
1944
79e801a9 1945static struct vfsmount *
9d412a43
AV
1946do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1947{
1948 struct file_system_type *type = get_fs_type(fstype);
1949 struct vfsmount *mnt;
1950 if (!type)
1951 return ERR_PTR(-ENODEV);
1952 mnt = vfs_kern_mount(type, flags, name, data);
1953 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1954 !mnt->mnt_sb->s_subtype)
1955 mnt = fs_set_subtype(mnt, fstype);
1956 put_filesystem(type);
1957 return mnt;
1958}
9d412a43
AV
1959
1960/*
1961 * add a mount into a namespace's mount tree
1962 */
1963static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1964{
1965 int err;
1966
1967 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1968
b12cea91
AV
1969 err = lock_mount(path);
1970 if (err)
1971 return err;
9d412a43
AV
1972
1973 err = -EINVAL;
1974 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1975 goto unlock;
1976
1977 /* Refuse the same filesystem on the same mount point */
1978 err = -EBUSY;
1979 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1980 path->mnt->mnt_root == path->dentry)
1981 goto unlock;
1982
1983 err = -EINVAL;
1984 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1985 goto unlock;
1986
1987 newmnt->mnt_flags = mnt_flags;
1988 err = graft_tree(newmnt, path);
1989
1990unlock:
b12cea91 1991 unlock_mount(path);
9d412a43
AV
1992 return err;
1993}
b1e75df4 1994
1da177e4
LT
1995/*
1996 * create a new mount for userspace and request it to be added into the
1997 * namespace's tree
1998 */
0a0d8a46 1999static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
2000 int mnt_flags, char *name, void *data)
2001{
2002 struct vfsmount *mnt;
15f9a3f3 2003 int err;
1da177e4 2004
eca6f534 2005 if (!type)
1da177e4
LT
2006 return -EINVAL;
2007
2008 /* we need capabilities... */
2009 if (!capable(CAP_SYS_ADMIN))
2010 return -EPERM;
2011
2012 mnt = do_kern_mount(type, flags, name, data);
2013 if (IS_ERR(mnt))
2014 return PTR_ERR(mnt);
2015
15f9a3f3
AV
2016 err = do_add_mount(mnt, path, mnt_flags);
2017 if (err)
2018 mntput(mnt);
2019 return err;
1da177e4
LT
2020}
2021
19a167af
AV
2022int finish_automount(struct vfsmount *m, struct path *path)
2023{
2024 int err;
2025 /* The new mount record should have at least 2 refs to prevent it being
2026 * expired before we get a chance to add it
2027 */
2028 BUG_ON(mnt_get_count(m) < 2);
2029
2030 if (m->mnt_sb == path->mnt->mnt_sb &&
2031 m->mnt_root == path->dentry) {
b1e75df4
AV
2032 err = -ELOOP;
2033 goto fail;
19a167af
AV
2034 }
2035
19a167af 2036 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2037 if (!err)
2038 return 0;
2039fail:
2040 /* remove m from any expiration list it may be on */
2041 if (!list_empty(&m->mnt_expire)) {
2042 down_write(&namespace_sem);
2043 br_write_lock(vfsmount_lock);
2044 list_del_init(&m->mnt_expire);
2045 br_write_unlock(vfsmount_lock);
2046 up_write(&namespace_sem);
19a167af 2047 }
b1e75df4
AV
2048 mntput(m);
2049 mntput(m);
19a167af
AV
2050 return err;
2051}
2052
ea5b778a
DH
2053/**
2054 * mnt_set_expiry - Put a mount on an expiration list
2055 * @mnt: The mount to list.
2056 * @expiry_list: The list to add the mount to.
2057 */
2058void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2059{
2060 down_write(&namespace_sem);
2061 br_write_lock(vfsmount_lock);
2062
2063 list_add_tail(&mnt->mnt_expire, expiry_list);
2064
2065 br_write_unlock(vfsmount_lock);
2066 up_write(&namespace_sem);
2067}
2068EXPORT_SYMBOL(mnt_set_expiry);
2069
1da177e4
LT
2070/*
2071 * process a list of expirable mountpoints with the intent of discarding any
2072 * mountpoints that aren't in use and haven't been touched since last we came
2073 * here
2074 */
2075void mark_mounts_for_expiry(struct list_head *mounts)
2076{
1da177e4
LT
2077 struct vfsmount *mnt, *next;
2078 LIST_HEAD(graveyard);
bcc5c7d2 2079 LIST_HEAD(umounts);
1da177e4
LT
2080
2081 if (list_empty(mounts))
2082 return;
2083
bcc5c7d2 2084 down_write(&namespace_sem);
99b7db7b 2085 br_write_lock(vfsmount_lock);
1da177e4
LT
2086
2087 /* extract from the expiration list every vfsmount that matches the
2088 * following criteria:
2089 * - only referenced by its parent vfsmount
2090 * - still marked for expiry (marked on the last call here; marks are
2091 * cleared by mntput())
2092 */
55e700b9 2093 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2094 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2095 propagate_mount_busy(mnt, 1))
1da177e4 2096 continue;
55e700b9 2097 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2098 }
bcc5c7d2
AV
2099 while (!list_empty(&graveyard)) {
2100 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2101 touch_mnt_namespace(mnt->mnt_ns);
2102 umount_tree(mnt, 1, &umounts);
2103 }
99b7db7b 2104 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2105 up_write(&namespace_sem);
2106
2107 release_mounts(&umounts);
5528f911
TM
2108}
2109
2110EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2111
2112/*
2113 * Ripoff of 'select_parent()'
2114 *
2115 * search the list of submounts for a given mountpoint, and move any
2116 * shrinkable submounts to the 'graveyard' list.
2117 */
2118static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2119{
2120 struct vfsmount *this_parent = parent;
2121 struct list_head *next;
2122 int found = 0;
2123
2124repeat:
2125 next = this_parent->mnt_mounts.next;
2126resume:
2127 while (next != &this_parent->mnt_mounts) {
2128 struct list_head *tmp = next;
2129 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2130
2131 next = tmp->next;
2132 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2133 continue;
5528f911
TM
2134 /*
2135 * Descend a level if the d_mounts list is non-empty.
2136 */
2137 if (!list_empty(&mnt->mnt_mounts)) {
2138 this_parent = mnt;
2139 goto repeat;
2140 }
1da177e4 2141
5528f911 2142 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2143 list_move_tail(&mnt->mnt_expire, graveyard);
2144 found++;
2145 }
1da177e4 2146 }
5528f911
TM
2147 /*
2148 * All done at this level ... ascend and resume the search
2149 */
2150 if (this_parent != parent) {
2151 next = this_parent->mnt_child.next;
2152 this_parent = this_parent->mnt_parent;
2153 goto resume;
2154 }
2155 return found;
2156}
2157
2158/*
2159 * process a list of expirable mountpoints with the intent of discarding any
2160 * submounts of a specific parent mountpoint
99b7db7b
NP
2161 *
2162 * vfsmount_lock must be held for write
5528f911 2163 */
c35038be 2164static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2165{
2166 LIST_HEAD(graveyard);
c35038be 2167 struct vfsmount *m;
5528f911 2168
5528f911 2169 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2170 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2171 while (!list_empty(&graveyard)) {
c35038be 2172 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2173 mnt_expire);
afef80b3
EB
2174 touch_mnt_namespace(m->mnt_ns);
2175 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2176 }
2177 }
1da177e4
LT
2178}
2179
1da177e4
LT
2180/*
2181 * Some copy_from_user() implementations do not return the exact number of
2182 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2183 * Note that this function differs from copy_from_user() in that it will oops
2184 * on bad values of `to', rather than returning a short copy.
2185 */
b58fed8b
RP
2186static long exact_copy_from_user(void *to, const void __user * from,
2187 unsigned long n)
1da177e4
LT
2188{
2189 char *t = to;
2190 const char __user *f = from;
2191 char c;
2192
2193 if (!access_ok(VERIFY_READ, from, n))
2194 return n;
2195
2196 while (n) {
2197 if (__get_user(c, f)) {
2198 memset(t, 0, n);
2199 break;
2200 }
2201 *t++ = c;
2202 f++;
2203 n--;
2204 }
2205 return n;
2206}
2207
b58fed8b 2208int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2209{
2210 int i;
2211 unsigned long page;
2212 unsigned long size;
b58fed8b 2213
1da177e4
LT
2214 *where = 0;
2215 if (!data)
2216 return 0;
2217
2218 if (!(page = __get_free_page(GFP_KERNEL)))
2219 return -ENOMEM;
2220
2221 /* We only care that *some* data at the address the user
2222 * gave us is valid. Just in case, we'll zero
2223 * the remainder of the page.
2224 */
2225 /* copy_from_user cannot cross TASK_SIZE ! */
2226 size = TASK_SIZE - (unsigned long)data;
2227 if (size > PAGE_SIZE)
2228 size = PAGE_SIZE;
2229
2230 i = size - exact_copy_from_user((void *)page, data, size);
2231 if (!i) {
b58fed8b 2232 free_page(page);
1da177e4
LT
2233 return -EFAULT;
2234 }
2235 if (i != PAGE_SIZE)
2236 memset((char *)page + i, 0, PAGE_SIZE - i);
2237 *where = page;
2238 return 0;
2239}
2240
eca6f534
VN
2241int copy_mount_string(const void __user *data, char **where)
2242{
2243 char *tmp;
2244
2245 if (!data) {
2246 *where = NULL;
2247 return 0;
2248 }
2249
2250 tmp = strndup_user(data, PAGE_SIZE);
2251 if (IS_ERR(tmp))
2252 return PTR_ERR(tmp);
2253
2254 *where = tmp;
2255 return 0;
2256}
2257
1da177e4
LT
2258/*
2259 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2260 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2261 *
2262 * data is a (void *) that can point to any structure up to
2263 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2264 * information (or be NULL).
2265 *
2266 * Pre-0.97 versions of mount() didn't have a flags word.
2267 * When the flags word was introduced its top half was required
2268 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2269 * Therefore, if this magic number is present, it carries no information
2270 * and must be discarded.
2271 */
b58fed8b 2272long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2273 unsigned long flags, void *data_page)
2274{
2d92ab3c 2275 struct path path;
1da177e4
LT
2276 int retval = 0;
2277 int mnt_flags = 0;
2278
2279 /* Discard magic */
2280 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2281 flags &= ~MS_MGC_MSK;
2282
2283 /* Basic sanity checks */
2284
2285 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2286 return -EINVAL;
1da177e4
LT
2287
2288 if (data_page)
2289 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2290
a27ab9f2
TH
2291 /* ... and get the mountpoint */
2292 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2293 if (retval)
2294 return retval;
2295
2296 retval = security_sb_mount(dev_name, &path,
2297 type_page, flags, data_page);
2298 if (retval)
2299 goto dput_out;
2300
613cbe3d
AK
2301 /* Default to relatime unless overriden */
2302 if (!(flags & MS_NOATIME))
2303 mnt_flags |= MNT_RELATIME;
0a1c01c9 2304
1da177e4
LT
2305 /* Separate the per-mountpoint flags */
2306 if (flags & MS_NOSUID)
2307 mnt_flags |= MNT_NOSUID;
2308 if (flags & MS_NODEV)
2309 mnt_flags |= MNT_NODEV;
2310 if (flags & MS_NOEXEC)
2311 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2312 if (flags & MS_NOATIME)
2313 mnt_flags |= MNT_NOATIME;
2314 if (flags & MS_NODIRATIME)
2315 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2316 if (flags & MS_STRICTATIME)
2317 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2318 if (flags & MS_RDONLY)
2319 mnt_flags |= MNT_READONLY;
fc33a7bb 2320
7a4dec53 2321 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2322 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2323 MS_STRICTATIME);
1da177e4 2324
1da177e4 2325 if (flags & MS_REMOUNT)
2d92ab3c 2326 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2327 data_page);
2328 else if (flags & MS_BIND)
2d92ab3c 2329 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2330 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2331 retval = do_change_type(&path, flags);
1da177e4 2332 else if (flags & MS_MOVE)
2d92ab3c 2333 retval = do_move_mount(&path, dev_name);
1da177e4 2334 else
2d92ab3c 2335 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2336 dev_name, data_page);
2337dput_out:
2d92ab3c 2338 path_put(&path);
1da177e4
LT
2339 return retval;
2340}
2341
cf8d2c11
TM
2342static struct mnt_namespace *alloc_mnt_ns(void)
2343{
2344 struct mnt_namespace *new_ns;
2345
2346 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2347 if (!new_ns)
2348 return ERR_PTR(-ENOMEM);
2349 atomic_set(&new_ns->count, 1);
2350 new_ns->root = NULL;
2351 INIT_LIST_HEAD(&new_ns->list);
2352 init_waitqueue_head(&new_ns->poll);
2353 new_ns->event = 0;
2354 return new_ns;
2355}
2356
f03c6599
AV
2357void mnt_make_longterm(struct vfsmount *mnt)
2358{
7e3d0eb0 2359 __mnt_make_longterm(mnt);
f03c6599
AV
2360}
2361
2362void mnt_make_shortterm(struct vfsmount *mnt)
2363{
7e3d0eb0 2364#ifdef CONFIG_SMP
f03c6599
AV
2365 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2366 return;
2367 br_write_lock(vfsmount_lock);
2368 atomic_dec(&mnt->mnt_longterm);
2369 br_write_unlock(vfsmount_lock);
7e3d0eb0 2370#endif
f03c6599
AV
2371}
2372
741a2951
JD
2373/*
2374 * Allocate a new namespace structure and populate it with contents
2375 * copied from the namespace of the passed in task structure.
2376 */
e3222c4e 2377static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2378 struct fs_struct *fs)
1da177e4 2379{
6b3286ed 2380 struct mnt_namespace *new_ns;
7f2da1e7 2381 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2382 struct vfsmount *p, *q;
2383
cf8d2c11
TM
2384 new_ns = alloc_mnt_ns();
2385 if (IS_ERR(new_ns))
2386 return new_ns;
1da177e4 2387
390c6843 2388 down_write(&namespace_sem);
1da177e4 2389 /* First pass: copy the tree topology */
6b3286ed 2390 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2391 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2392 if (!new_ns->root) {
390c6843 2393 up_write(&namespace_sem);
1da177e4 2394 kfree(new_ns);
5cc4a034 2395 return ERR_PTR(-ENOMEM);
1da177e4 2396 }
99b7db7b 2397 br_write_lock(vfsmount_lock);
1da177e4 2398 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2399 br_write_unlock(vfsmount_lock);
1da177e4
LT
2400
2401 /*
2402 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2403 * as belonging to new namespace. We have already acquired a private
2404 * fs_struct, so tsk->fs->lock is not needed.
2405 */
6b3286ed 2406 p = mnt_ns->root;
1da177e4
LT
2407 q = new_ns->root;
2408 while (p) {
6b3286ed 2409 q->mnt_ns = new_ns;
7e3d0eb0 2410 __mnt_make_longterm(q);
1da177e4 2411 if (fs) {
6ac08c39 2412 if (p == fs->root.mnt) {
f03c6599 2413 fs->root.mnt = mntget(q);
7e3d0eb0 2414 __mnt_make_longterm(q);
f03c6599 2415 mnt_make_shortterm(p);
1da177e4 2416 rootmnt = p;
1da177e4 2417 }
6ac08c39 2418 if (p == fs->pwd.mnt) {
f03c6599 2419 fs->pwd.mnt = mntget(q);
7e3d0eb0 2420 __mnt_make_longterm(q);
f03c6599 2421 mnt_make_shortterm(p);
1da177e4 2422 pwdmnt = p;
1da177e4 2423 }
1da177e4 2424 }
6b3286ed 2425 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2426 q = next_mnt(q, new_ns->root);
2427 }
390c6843 2428 up_write(&namespace_sem);
1da177e4 2429
1da177e4 2430 if (rootmnt)
f03c6599 2431 mntput(rootmnt);
1da177e4 2432 if (pwdmnt)
f03c6599 2433 mntput(pwdmnt);
1da177e4 2434
741a2951
JD
2435 return new_ns;
2436}
2437
213dd266 2438struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2439 struct fs_struct *new_fs)
741a2951 2440{
6b3286ed 2441 struct mnt_namespace *new_ns;
741a2951 2442
e3222c4e 2443 BUG_ON(!ns);
6b3286ed 2444 get_mnt_ns(ns);
741a2951
JD
2445
2446 if (!(flags & CLONE_NEWNS))
e3222c4e 2447 return ns;
741a2951 2448
e3222c4e 2449 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2450
6b3286ed 2451 put_mnt_ns(ns);
e3222c4e 2452 return new_ns;
1da177e4
LT
2453}
2454
cf8d2c11
TM
2455/**
2456 * create_mnt_ns - creates a private namespace and adds a root filesystem
2457 * @mnt: pointer to the new root filesystem mountpoint
2458 */
6c449c8d 2459static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2460{
2461 struct mnt_namespace *new_ns;
2462
2463 new_ns = alloc_mnt_ns();
2464 if (!IS_ERR(new_ns)) {
2465 mnt->mnt_ns = new_ns;
7e3d0eb0 2466 __mnt_make_longterm(mnt);
cf8d2c11
TM
2467 new_ns->root = mnt;
2468 list_add(&new_ns->list, &new_ns->root->mnt_list);
c1334495
AV
2469 } else {
2470 mntput(mnt);
cf8d2c11
TM
2471 }
2472 return new_ns;
2473}
cf8d2c11 2474
ea441d11
AV
2475struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2476{
2477 struct mnt_namespace *ns;
d31da0f0 2478 struct super_block *s;
ea441d11
AV
2479 struct path path;
2480 int err;
2481
2482 ns = create_mnt_ns(mnt);
2483 if (IS_ERR(ns))
2484 return ERR_CAST(ns);
2485
2486 err = vfs_path_lookup(mnt->mnt_root, mnt,
2487 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2488
2489 put_mnt_ns(ns);
2490
2491 if (err)
2492 return ERR_PTR(err);
2493
2494 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2495 s = path.mnt->mnt_sb;
2496 atomic_inc(&s->s_active);
ea441d11
AV
2497 mntput(path.mnt);
2498 /* lock the sucker */
d31da0f0 2499 down_write(&s->s_umount);
ea441d11
AV
2500 /* ... and return the root of (sub)tree on it */
2501 return path.dentry;
2502}
2503EXPORT_SYMBOL(mount_subtree);
2504
bdc480e3
HC
2505SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2506 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2507{
eca6f534
VN
2508 int ret;
2509 char *kernel_type;
2510 char *kernel_dir;
2511 char *kernel_dev;
1da177e4 2512 unsigned long data_page;
1da177e4 2513
eca6f534
VN
2514 ret = copy_mount_string(type, &kernel_type);
2515 if (ret < 0)
2516 goto out_type;
1da177e4 2517
eca6f534
VN
2518 kernel_dir = getname(dir_name);
2519 if (IS_ERR(kernel_dir)) {
2520 ret = PTR_ERR(kernel_dir);
2521 goto out_dir;
2522 }
1da177e4 2523
eca6f534
VN
2524 ret = copy_mount_string(dev_name, &kernel_dev);
2525 if (ret < 0)
2526 goto out_dev;
1da177e4 2527
eca6f534
VN
2528 ret = copy_mount_options(data, &data_page);
2529 if (ret < 0)
2530 goto out_data;
1da177e4 2531
eca6f534
VN
2532 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2533 (void *) data_page);
1da177e4 2534
eca6f534
VN
2535 free_page(data_page);
2536out_data:
2537 kfree(kernel_dev);
2538out_dev:
2539 putname(kernel_dir);
2540out_dir:
2541 kfree(kernel_type);
2542out_type:
2543 return ret;
1da177e4
LT
2544}
2545
afac7cba
AV
2546/*
2547 * Return true if path is reachable from root
2548 *
2549 * namespace_sem or vfsmount_lock is held
2550 */
2551bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2552 const struct path *root)
2553{
2554 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2555 dentry = mnt->mnt_mountpoint;
2556 mnt = mnt->mnt_parent;
2557 }
2558 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2559}
2560
2561int path_is_under(struct path *path1, struct path *path2)
2562{
2563 int res;
2564 br_read_lock(vfsmount_lock);
2565 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2566 br_read_unlock(vfsmount_lock);
2567 return res;
2568}
2569EXPORT_SYMBOL(path_is_under);
2570
1da177e4
LT
2571/*
2572 * pivot_root Semantics:
2573 * Moves the root file system of the current process to the directory put_old,
2574 * makes new_root as the new root file system of the current process, and sets
2575 * root/cwd of all processes which had them on the current root to new_root.
2576 *
2577 * Restrictions:
2578 * The new_root and put_old must be directories, and must not be on the
2579 * same file system as the current process root. The put_old must be
2580 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2581 * pointed to by put_old must yield the same directory as new_root. No other
2582 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2583 *
4a0d11fa
NB
2584 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2585 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2586 * in this situation.
2587 *
1da177e4
LT
2588 * Notes:
2589 * - we don't move root/cwd if they are not at the root (reason: if something
2590 * cared enough to change them, it's probably wrong to force them elsewhere)
2591 * - it's okay to pick a root that isn't the root of a file system, e.g.
2592 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2593 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2594 * first.
2595 */
3480b257
HC
2596SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2597 const char __user *, put_old)
1da177e4 2598{
2d8f3038 2599 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2600 int error;
2601
2602 if (!capable(CAP_SYS_ADMIN))
2603 return -EPERM;
2604
2d8f3038 2605 error = user_path_dir(new_root, &new);
1da177e4
LT
2606 if (error)
2607 goto out0;
1da177e4 2608
2d8f3038 2609 error = user_path_dir(put_old, &old);
1da177e4
LT
2610 if (error)
2611 goto out1;
2612
2d8f3038 2613 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2614 if (error)
2615 goto out2;
1da177e4 2616
f7ad3c6b 2617 get_fs_root(current->fs, &root);
b12cea91
AV
2618 error = lock_mount(&old);
2619 if (error)
2620 goto out3;
2621
1da177e4 2622 error = -EINVAL;
2d8f3038
AV
2623 if (IS_MNT_SHARED(old.mnt) ||
2624 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2625 IS_MNT_SHARED(root.mnt->mnt_parent))
b12cea91 2626 goto out4;
27cb1572 2627 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
b12cea91 2628 goto out4;
1da177e4 2629 error = -ENOENT;
f3da392e 2630 if (d_unlinked(new.dentry))
b12cea91 2631 goto out4;
f3da392e 2632 if (d_unlinked(old.dentry))
b12cea91 2633 goto out4;
1da177e4 2634 error = -EBUSY;
2d8f3038
AV
2635 if (new.mnt == root.mnt ||
2636 old.mnt == root.mnt)
b12cea91 2637 goto out4; /* loop, on the same file system */
1da177e4 2638 error = -EINVAL;
8c3ee42e 2639 if (root.mnt->mnt_root != root.dentry)
b12cea91 2640 goto out4; /* not a mountpoint */
b2dba1af 2641 if (!mnt_has_parent(root.mnt))
b12cea91 2642 goto out4; /* not attached */
2d8f3038 2643 if (new.mnt->mnt_root != new.dentry)
b12cea91 2644 goto out4; /* not a mountpoint */
b2dba1af 2645 if (!mnt_has_parent(new.mnt))
b12cea91 2646 goto out4; /* not attached */
4ac91378 2647 /* make sure we can reach put_old from new_root */
afac7cba 2648 if (!is_path_reachable(old.mnt, old.dentry, &new))
b12cea91 2649 goto out4;
27cb1572 2650 br_write_lock(vfsmount_lock);
2d8f3038 2651 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2652 detach_mnt(root.mnt, &root_parent);
4ac91378 2653 /* mount old root on put_old */
2d8f3038 2654 attach_mnt(root.mnt, &old);
4ac91378 2655 /* mount new_root on / */
2d8f3038 2656 attach_mnt(new.mnt, &root_parent);
6b3286ed 2657 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2658 br_write_unlock(vfsmount_lock);
2d8f3038 2659 chroot_fs_refs(&root, &new);
1da177e4 2660 error = 0;
b12cea91
AV
2661out4:
2662 unlock_mount(&old);
2663 if (!error) {
2664 path_put(&root_parent);
2665 path_put(&parent_path);
2666 }
2667out3:
8c3ee42e 2668 path_put(&root);
b12cea91 2669out2:
2d8f3038 2670 path_put(&old);
1da177e4 2671out1:
2d8f3038 2672 path_put(&new);
1da177e4 2673out0:
1da177e4 2674 return error;
1da177e4
LT
2675}
2676
2677static void __init init_mount_tree(void)
2678{
2679 struct vfsmount *mnt;
6b3286ed 2680 struct mnt_namespace *ns;
ac748a09 2681 struct path root;
1da177e4
LT
2682
2683 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2684 if (IS_ERR(mnt))
2685 panic("Can't create rootfs");
b3e19d92 2686
3b22edc5
TM
2687 ns = create_mnt_ns(mnt);
2688 if (IS_ERR(ns))
1da177e4 2689 panic("Can't allocate initial namespace");
6b3286ed
KK
2690
2691 init_task.nsproxy->mnt_ns = ns;
2692 get_mnt_ns(ns);
2693
ac748a09
JB
2694 root.mnt = ns->root;
2695 root.dentry = ns->root->mnt_root;
2696
2697 set_fs_pwd(current->fs, &root);
2698 set_fs_root(current->fs, &root);
1da177e4
LT
2699}
2700
74bf17cf 2701void __init mnt_init(void)
1da177e4 2702{
13f14b4d 2703 unsigned u;
15a67dd8 2704 int err;
1da177e4 2705
390c6843
RP
2706 init_rwsem(&namespace_sem);
2707
7d6fec45 2708 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2709 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2710
b58fed8b 2711 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2712
2713 if (!mount_hashtable)
2714 panic("Failed to allocate mount hash table\n");
2715
80cdc6da 2716 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2717
2718 for (u = 0; u < HASH_SIZE; u++)
2719 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2720
99b7db7b
NP
2721 br_lock_init(vfsmount_lock);
2722
15a67dd8
RD
2723 err = sysfs_init();
2724 if (err)
2725 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2726 __func__, err);
00d26666
GKH
2727 fs_kobj = kobject_create_and_add("fs", NULL);
2728 if (!fs_kobj)
8e24eea7 2729 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2730 init_rootfs();
2731 init_mount_tree();
2732}
2733
616511d0 2734void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2735{
70fbcdf4 2736 LIST_HEAD(umount_list);
616511d0 2737
d498b25a 2738 if (!atomic_dec_and_test(&ns->count))
616511d0 2739 return;
390c6843 2740 down_write(&namespace_sem);
99b7db7b 2741 br_write_lock(vfsmount_lock);
d498b25a 2742 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2743 br_write_unlock(vfsmount_lock);
390c6843 2744 up_write(&namespace_sem);
70fbcdf4 2745 release_mounts(&umount_list);
6b3286ed 2746 kfree(ns);
1da177e4 2747}
9d412a43
AV
2748
2749struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2750{
423e0ab0
TC
2751 struct vfsmount *mnt;
2752 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2753 if (!IS_ERR(mnt)) {
2754 /*
2755 * it is a longterm mount, don't release mnt until
2756 * we unmount before file sys is unregistered
2757 */
2758 mnt_make_longterm(mnt);
2759 }
2760 return mnt;
9d412a43
AV
2761}
2762EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2763
2764void kern_unmount(struct vfsmount *mnt)
2765{
2766 /* release long term mount so mount point can be released */
2767 if (!IS_ERR_OR_NULL(mnt)) {
2768 mnt_make_shortterm(mnt);
2769 mntput(mnt);
2770 }
2771}
2772EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2773
2774bool our_mnt(struct vfsmount *mnt)
2775{
2776 return check_mnt(mnt);
2777}