]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
fs: fs_struct use seqlock
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
1da177e4
LT
141struct vfsmount *alloc_vfsmnt(const char *name)
142{
c3762229 143 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 144 if (mnt) {
73cd49ec
MS
145 int err;
146
147 err = mnt_alloc_id(mnt);
88b38782
LZ
148 if (err)
149 goto out_free_cache;
150
151 if (name) {
152 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
153 if (!mnt->mnt_devname)
154 goto out_free_id;
73cd49ec
MS
155 }
156
b58fed8b 157 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
158 INIT_LIST_HEAD(&mnt->mnt_hash);
159 INIT_LIST_HEAD(&mnt->mnt_child);
160 INIT_LIST_HEAD(&mnt->mnt_mounts);
161 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 162 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 163 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
164 INIT_LIST_HEAD(&mnt->mnt_slave_list);
165 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
166#ifdef CONFIG_FSNOTIFY
167 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
168#endif
d3ef3d73 169#ifdef CONFIG_SMP
170 mnt->mnt_writers = alloc_percpu(int);
171 if (!mnt->mnt_writers)
172 goto out_free_devname;
173#else
174 mnt->mnt_writers = 0;
175#endif
1da177e4
LT
176 }
177 return mnt;
88b38782 178
d3ef3d73 179#ifdef CONFIG_SMP
180out_free_devname:
181 kfree(mnt->mnt_devname);
182#endif
88b38782
LZ
183out_free_id:
184 mnt_free_id(mnt);
185out_free_cache:
186 kmem_cache_free(mnt_cache, mnt);
187 return NULL;
1da177e4
LT
188}
189
3d733633
DH
190/*
191 * Most r/o checks on a fs are for operations that take
192 * discrete amounts of time, like a write() or unlink().
193 * We must keep track of when those operations start
194 * (for permission checks) and when they end, so that
195 * we can determine when writes are able to occur to
196 * a filesystem.
197 */
198/*
199 * __mnt_is_readonly: check whether a mount is read-only
200 * @mnt: the mount to check for its write status
201 *
202 * This shouldn't be used directly ouside of the VFS.
203 * It does not guarantee that the filesystem will stay
204 * r/w, just that it is right *now*. This can not and
205 * should not be used in place of IS_RDONLY(inode).
206 * mnt_want/drop_write() will _keep_ the filesystem
207 * r/w.
208 */
209int __mnt_is_readonly(struct vfsmount *mnt)
210{
2e4b7fcd
DH
211 if (mnt->mnt_flags & MNT_READONLY)
212 return 1;
213 if (mnt->mnt_sb->s_flags & MS_RDONLY)
214 return 1;
215 return 0;
3d733633
DH
216}
217EXPORT_SYMBOL_GPL(__mnt_is_readonly);
218
d3ef3d73 219static inline void inc_mnt_writers(struct vfsmount *mnt)
220{
221#ifdef CONFIG_SMP
222 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))++;
223#else
224 mnt->mnt_writers++;
225#endif
226}
3d733633 227
d3ef3d73 228static inline void dec_mnt_writers(struct vfsmount *mnt)
3d733633 229{
d3ef3d73 230#ifdef CONFIG_SMP
231 (*per_cpu_ptr(mnt->mnt_writers, smp_processor_id()))--;
232#else
233 mnt->mnt_writers--;
234#endif
3d733633 235}
3d733633 236
d3ef3d73 237static unsigned int count_mnt_writers(struct vfsmount *mnt)
3d733633 238{
d3ef3d73 239#ifdef CONFIG_SMP
240 unsigned int count = 0;
3d733633 241 int cpu;
3d733633
DH
242
243 for_each_possible_cpu(cpu) {
d3ef3d73 244 count += *per_cpu_ptr(mnt->mnt_writers, cpu);
3d733633 245 }
3d733633 246
d3ef3d73 247 return count;
248#else
249 return mnt->mnt_writers;
250#endif
3d733633
DH
251}
252
8366025e
DH
253/*
254 * Most r/o checks on a fs are for operations that take
255 * discrete amounts of time, like a write() or unlink().
256 * We must keep track of when those operations start
257 * (for permission checks) and when they end, so that
258 * we can determine when writes are able to occur to
259 * a filesystem.
260 */
261/**
262 * mnt_want_write - get write access to a mount
263 * @mnt: the mount on which to take a write
264 *
265 * This tells the low-level filesystem that a write is
266 * about to be performed to it, and makes sure that
267 * writes are allowed before returning success. When
268 * the write operation is finished, mnt_drop_write()
269 * must be called. This is effectively a refcount.
270 */
271int mnt_want_write(struct vfsmount *mnt)
272{
3d733633 273 int ret = 0;
3d733633 274
d3ef3d73 275 preempt_disable();
276 inc_mnt_writers(mnt);
277 /*
278 * The store to inc_mnt_writers must be visible before we pass
279 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
280 * incremented count after it has set MNT_WRITE_HOLD.
281 */
282 smp_mb();
283 while (mnt->mnt_flags & MNT_WRITE_HOLD)
284 cpu_relax();
285 /*
286 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
287 * be set to match its requirements. So we must not load that until
288 * MNT_WRITE_HOLD is cleared.
289 */
290 smp_rmb();
3d733633 291 if (__mnt_is_readonly(mnt)) {
d3ef3d73 292 dec_mnt_writers(mnt);
3d733633
DH
293 ret = -EROFS;
294 goto out;
295 }
3d733633 296out:
d3ef3d73 297 preempt_enable();
3d733633 298 return ret;
8366025e
DH
299}
300EXPORT_SYMBOL_GPL(mnt_want_write);
301
96029c4e 302/**
303 * mnt_clone_write - get write access to a mount
304 * @mnt: the mount on which to take a write
305 *
306 * This is effectively like mnt_want_write, except
307 * it must only be used to take an extra write reference
308 * on a mountpoint that we already know has a write reference
309 * on it. This allows some optimisation.
310 *
311 * After finished, mnt_drop_write must be called as usual to
312 * drop the reference.
313 */
314int mnt_clone_write(struct vfsmount *mnt)
315{
316 /* superblock may be r/o */
317 if (__mnt_is_readonly(mnt))
318 return -EROFS;
319 preempt_disable();
320 inc_mnt_writers(mnt);
321 preempt_enable();
322 return 0;
323}
324EXPORT_SYMBOL_GPL(mnt_clone_write);
325
326/**
327 * mnt_want_write_file - get write access to a file's mount
328 * @file: the file who's mount on which to take a write
329 *
330 * This is like mnt_want_write, but it takes a file and can
331 * do some optimisations if the file is open for write already
332 */
333int mnt_want_write_file(struct file *file)
334{
2d8dd38a
OH
335 struct inode *inode = file->f_dentry->d_inode;
336 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 337 return mnt_want_write(file->f_path.mnt);
338 else
339 return mnt_clone_write(file->f_path.mnt);
340}
341EXPORT_SYMBOL_GPL(mnt_want_write_file);
342
8366025e
DH
343/**
344 * mnt_drop_write - give up write access to a mount
345 * @mnt: the mount on which to give up write access
346 *
347 * Tells the low-level filesystem that we are done
348 * performing writes to it. Must be matched with
349 * mnt_want_write() call above.
350 */
351void mnt_drop_write(struct vfsmount *mnt)
352{
d3ef3d73 353 preempt_disable();
354 dec_mnt_writers(mnt);
355 preempt_enable();
8366025e
DH
356}
357EXPORT_SYMBOL_GPL(mnt_drop_write);
358
2e4b7fcd 359static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 360{
3d733633
DH
361 int ret = 0;
362
99b7db7b 363 br_write_lock(vfsmount_lock);
d3ef3d73 364 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 365 /*
d3ef3d73 366 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
367 * should be visible before we do.
3d733633 368 */
d3ef3d73 369 smp_mb();
370
3d733633 371 /*
d3ef3d73 372 * With writers on hold, if this value is zero, then there are
373 * definitely no active writers (although held writers may subsequently
374 * increment the count, they'll have to wait, and decrement it after
375 * seeing MNT_READONLY).
376 *
377 * It is OK to have counter incremented on one CPU and decremented on
378 * another: the sum will add up correctly. The danger would be when we
379 * sum up each counter, if we read a counter before it is incremented,
380 * but then read another CPU's count which it has been subsequently
381 * decremented from -- we would see more decrements than we should.
382 * MNT_WRITE_HOLD protects against this scenario, because
383 * mnt_want_write first increments count, then smp_mb, then spins on
384 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
385 * we're counting up here.
3d733633 386 */
d3ef3d73 387 if (count_mnt_writers(mnt) > 0)
388 ret = -EBUSY;
389 else
2e4b7fcd 390 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 391 /*
392 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
393 * that become unheld will see MNT_READONLY.
394 */
395 smp_wmb();
396 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 397 br_write_unlock(vfsmount_lock);
3d733633 398 return ret;
8366025e 399}
8366025e 400
2e4b7fcd
DH
401static void __mnt_unmake_readonly(struct vfsmount *mnt)
402{
99b7db7b 403 br_write_lock(vfsmount_lock);
2e4b7fcd 404 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 405 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
406}
407
a3ec947c 408void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
409{
410 mnt->mnt_sb = sb;
411 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
412}
413
414EXPORT_SYMBOL(simple_set_mnt);
415
1da177e4
LT
416void free_vfsmnt(struct vfsmount *mnt)
417{
418 kfree(mnt->mnt_devname);
73cd49ec 419 mnt_free_id(mnt);
d3ef3d73 420#ifdef CONFIG_SMP
421 free_percpu(mnt->mnt_writers);
422#endif
1da177e4
LT
423 kmem_cache_free(mnt_cache, mnt);
424}
425
426/*
a05964f3
RP
427 * find the first or last mount at @dentry on vfsmount @mnt depending on
428 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 429 * vfsmount_lock must be held for read or write.
1da177e4 430 */
a05964f3
RP
431struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
432 int dir)
1da177e4 433{
b58fed8b
RP
434 struct list_head *head = mount_hashtable + hash(mnt, dentry);
435 struct list_head *tmp = head;
1da177e4
LT
436 struct vfsmount *p, *found = NULL;
437
1da177e4 438 for (;;) {
a05964f3 439 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
440 p = NULL;
441 if (tmp == head)
442 break;
443 p = list_entry(tmp, struct vfsmount, mnt_hash);
444 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 445 found = p;
1da177e4
LT
446 break;
447 }
448 }
1da177e4
LT
449 return found;
450}
451
a05964f3
RP
452/*
453 * lookup_mnt increments the ref count before returning
454 * the vfsmount struct.
455 */
1c755af4 456struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
457{
458 struct vfsmount *child_mnt;
99b7db7b
NP
459
460 br_read_lock(vfsmount_lock);
1c755af4 461 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 462 mntget(child_mnt);
99b7db7b 463 br_read_unlock(vfsmount_lock);
a05964f3
RP
464 return child_mnt;
465}
466
1da177e4
LT
467static inline int check_mnt(struct vfsmount *mnt)
468{
6b3286ed 469 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
470}
471
99b7db7b
NP
472/*
473 * vfsmount lock must be held for write
474 */
6b3286ed 475static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
476{
477 if (ns) {
478 ns->event = ++event;
479 wake_up_interruptible(&ns->poll);
480 }
481}
482
99b7db7b
NP
483/*
484 * vfsmount lock must be held for write
485 */
6b3286ed 486static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
487{
488 if (ns && ns->event != event) {
489 ns->event = event;
490 wake_up_interruptible(&ns->poll);
491 }
492}
493
99b7db7b
NP
494/*
495 * vfsmount lock must be held for write
496 */
1a390689 497static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 498{
1a390689
AV
499 old_path->dentry = mnt->mnt_mountpoint;
500 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
501 mnt->mnt_parent = mnt;
502 mnt->mnt_mountpoint = mnt->mnt_root;
503 list_del_init(&mnt->mnt_child);
504 list_del_init(&mnt->mnt_hash);
1a390689 505 old_path->dentry->d_mounted--;
1da177e4
LT
506}
507
99b7db7b
NP
508/*
509 * vfsmount lock must be held for write
510 */
b90fa9ae
RP
511void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
512 struct vfsmount *child_mnt)
513{
514 child_mnt->mnt_parent = mntget(mnt);
515 child_mnt->mnt_mountpoint = dget(dentry);
516 dentry->d_mounted++;
517}
518
99b7db7b
NP
519/*
520 * vfsmount lock must be held for write
521 */
1a390689 522static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 523{
1a390689 524 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 525 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
526 hash(path->mnt, path->dentry));
527 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
528}
529
530/*
99b7db7b 531 * vfsmount lock must be held for write
b90fa9ae
RP
532 */
533static void commit_tree(struct vfsmount *mnt)
534{
535 struct vfsmount *parent = mnt->mnt_parent;
536 struct vfsmount *m;
537 LIST_HEAD(head);
6b3286ed 538 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
539
540 BUG_ON(parent == mnt);
541
542 list_add_tail(&head, &mnt->mnt_list);
543 list_for_each_entry(m, &head, mnt_list)
6b3286ed 544 m->mnt_ns = n;
b90fa9ae
RP
545 list_splice(&head, n->list.prev);
546
547 list_add_tail(&mnt->mnt_hash, mount_hashtable +
548 hash(parent, mnt->mnt_mountpoint));
549 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 550 touch_mnt_namespace(n);
1da177e4
LT
551}
552
553static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
554{
555 struct list_head *next = p->mnt_mounts.next;
556 if (next == &p->mnt_mounts) {
557 while (1) {
558 if (p == root)
559 return NULL;
560 next = p->mnt_child.next;
561 if (next != &p->mnt_parent->mnt_mounts)
562 break;
563 p = p->mnt_parent;
564 }
565 }
566 return list_entry(next, struct vfsmount, mnt_child);
567}
568
9676f0c6
RP
569static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
570{
571 struct list_head *prev = p->mnt_mounts.prev;
572 while (prev != &p->mnt_mounts) {
573 p = list_entry(prev, struct vfsmount, mnt_child);
574 prev = p->mnt_mounts.prev;
575 }
576 return p;
577}
578
36341f64
RP
579static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
580 int flag)
1da177e4
LT
581{
582 struct super_block *sb = old->mnt_sb;
583 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
584
585 if (mnt) {
719f5d7f
MS
586 if (flag & (CL_SLAVE | CL_PRIVATE))
587 mnt->mnt_group_id = 0; /* not a peer of original */
588 else
589 mnt->mnt_group_id = old->mnt_group_id;
590
591 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
592 int err = mnt_alloc_group_id(mnt);
593 if (err)
594 goto out_free;
595 }
596
be1a16a0 597 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
598 atomic_inc(&sb->s_active);
599 mnt->mnt_sb = sb;
600 mnt->mnt_root = dget(root);
601 mnt->mnt_mountpoint = mnt->mnt_root;
602 mnt->mnt_parent = mnt;
b90fa9ae 603
5afe0022
RP
604 if (flag & CL_SLAVE) {
605 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
606 mnt->mnt_master = old;
607 CLEAR_MNT_SHARED(mnt);
8aec0809 608 } else if (!(flag & CL_PRIVATE)) {
796a6b52 609 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
610 list_add(&mnt->mnt_share, &old->mnt_share);
611 if (IS_MNT_SLAVE(old))
612 list_add(&mnt->mnt_slave, &old->mnt_slave);
613 mnt->mnt_master = old->mnt_master;
614 }
b90fa9ae
RP
615 if (flag & CL_MAKE_SHARED)
616 set_mnt_shared(mnt);
1da177e4
LT
617
618 /* stick the duplicate mount on the same expiry list
619 * as the original if that was on one */
36341f64 620 if (flag & CL_EXPIRE) {
36341f64
RP
621 if (!list_empty(&old->mnt_expire))
622 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 623 }
1da177e4
LT
624 }
625 return mnt;
719f5d7f
MS
626
627 out_free:
628 free_vfsmnt(mnt);
629 return NULL;
1da177e4
LT
630}
631
7b7b1ace 632static inline void __mntput(struct vfsmount *mnt)
1da177e4
LT
633{
634 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
635 /*
636 * This probably indicates that somebody messed
637 * up a mnt_want/drop_write() pair. If this
638 * happens, the filesystem was probably unable
639 * to make r/w->r/o transitions.
640 */
d3ef3d73 641 /*
642 * atomic_dec_and_lock() used to deal with ->mnt_count decrements
643 * provides barriers, so count_mnt_writers() below is safe. AV
644 */
645 WARN_ON(count_mnt_writers(mnt));
ca9c726e 646 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
647 dput(mnt->mnt_root);
648 free_vfsmnt(mnt);
649 deactivate_super(sb);
650}
651
7b7b1ace
AV
652void mntput_no_expire(struct vfsmount *mnt)
653{
654repeat:
99b7db7b
NP
655 if (atomic_add_unless(&mnt->mnt_count, -1, 1))
656 return;
657 br_write_lock(vfsmount_lock);
658 if (!atomic_dec_and_test(&mnt->mnt_count)) {
659 br_write_unlock(vfsmount_lock);
660 return;
661 }
662 if (likely(!mnt->mnt_pinned)) {
663 br_write_unlock(vfsmount_lock);
664 __mntput(mnt);
665 return;
7b7b1ace 666 }
99b7db7b
NP
667 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
668 mnt->mnt_pinned = 0;
669 br_write_unlock(vfsmount_lock);
670 acct_auto_close_mnt(mnt);
671 goto repeat;
7b7b1ace 672}
7b7b1ace
AV
673EXPORT_SYMBOL(mntput_no_expire);
674
675void mnt_pin(struct vfsmount *mnt)
676{
99b7db7b 677 br_write_lock(vfsmount_lock);
7b7b1ace 678 mnt->mnt_pinned++;
99b7db7b 679 br_write_unlock(vfsmount_lock);
7b7b1ace
AV
680}
681
682EXPORT_SYMBOL(mnt_pin);
683
684void mnt_unpin(struct vfsmount *mnt)
685{
99b7db7b 686 br_write_lock(vfsmount_lock);
7b7b1ace
AV
687 if (mnt->mnt_pinned) {
688 atomic_inc(&mnt->mnt_count);
689 mnt->mnt_pinned--;
690 }
99b7db7b 691 br_write_unlock(vfsmount_lock);
7b7b1ace
AV
692}
693
694EXPORT_SYMBOL(mnt_unpin);
1da177e4 695
b3b304a2
MS
696static inline void mangle(struct seq_file *m, const char *s)
697{
698 seq_escape(m, s, " \t\n\\");
699}
700
701/*
702 * Simple .show_options callback for filesystems which don't want to
703 * implement more complex mount option showing.
704 *
705 * See also save_mount_options().
706 */
707int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
708{
2a32cebd
AV
709 const char *options;
710
711 rcu_read_lock();
712 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
713
714 if (options != NULL && options[0]) {
715 seq_putc(m, ',');
716 mangle(m, options);
717 }
2a32cebd 718 rcu_read_unlock();
b3b304a2
MS
719
720 return 0;
721}
722EXPORT_SYMBOL(generic_show_options);
723
724/*
725 * If filesystem uses generic_show_options(), this function should be
726 * called from the fill_super() callback.
727 *
728 * The .remount_fs callback usually needs to be handled in a special
729 * way, to make sure, that previous options are not overwritten if the
730 * remount fails.
731 *
732 * Also note, that if the filesystem's .remount_fs function doesn't
733 * reset all options to their default value, but changes only newly
734 * given options, then the displayed options will not reflect reality
735 * any more.
736 */
737void save_mount_options(struct super_block *sb, char *options)
738{
2a32cebd
AV
739 BUG_ON(sb->s_options);
740 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
741}
742EXPORT_SYMBOL(save_mount_options);
743
2a32cebd
AV
744void replace_mount_options(struct super_block *sb, char *options)
745{
746 char *old = sb->s_options;
747 rcu_assign_pointer(sb->s_options, options);
748 if (old) {
749 synchronize_rcu();
750 kfree(old);
751 }
752}
753EXPORT_SYMBOL(replace_mount_options);
754
a1a2c409 755#ifdef CONFIG_PROC_FS
1da177e4
LT
756/* iterator */
757static void *m_start(struct seq_file *m, loff_t *pos)
758{
a1a2c409 759 struct proc_mounts *p = m->private;
1da177e4 760
390c6843 761 down_read(&namespace_sem);
a1a2c409 762 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
763}
764
765static void *m_next(struct seq_file *m, void *v, loff_t *pos)
766{
a1a2c409 767 struct proc_mounts *p = m->private;
b0765fb8 768
a1a2c409 769 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
770}
771
772static void m_stop(struct seq_file *m, void *v)
773{
390c6843 774 up_read(&namespace_sem);
1da177e4
LT
775}
776
9f5596af
AV
777int mnt_had_events(struct proc_mounts *p)
778{
779 struct mnt_namespace *ns = p->ns;
780 int res = 0;
781
99b7db7b 782 br_read_lock(vfsmount_lock);
9f5596af
AV
783 if (p->event != ns->event) {
784 p->event = ns->event;
785 res = 1;
786 }
99b7db7b 787 br_read_unlock(vfsmount_lock);
9f5596af
AV
788
789 return res;
790}
791
2d4d4864
RP
792struct proc_fs_info {
793 int flag;
794 const char *str;
795};
796
2069f457 797static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 798{
2d4d4864 799 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
800 { MS_SYNCHRONOUS, ",sync" },
801 { MS_DIRSYNC, ",dirsync" },
802 { MS_MANDLOCK, ",mand" },
1da177e4
LT
803 { 0, NULL }
804 };
2d4d4864
RP
805 const struct proc_fs_info *fs_infop;
806
807 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
808 if (sb->s_flags & fs_infop->flag)
809 seq_puts(m, fs_infop->str);
810 }
2069f457
EP
811
812 return security_sb_show_options(m, sb);
2d4d4864
RP
813}
814
815static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
816{
817 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
818 { MNT_NOSUID, ",nosuid" },
819 { MNT_NODEV, ",nodev" },
820 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
821 { MNT_NOATIME, ",noatime" },
822 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 823 { MNT_RELATIME, ",relatime" },
1da177e4
LT
824 { 0, NULL }
825 };
2d4d4864
RP
826 const struct proc_fs_info *fs_infop;
827
828 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
829 if (mnt->mnt_flags & fs_infop->flag)
830 seq_puts(m, fs_infop->str);
831 }
832}
833
834static void show_type(struct seq_file *m, struct super_block *sb)
835{
836 mangle(m, sb->s_type->name);
837 if (sb->s_subtype && sb->s_subtype[0]) {
838 seq_putc(m, '.');
839 mangle(m, sb->s_subtype);
840 }
841}
842
843static int show_vfsmnt(struct seq_file *m, void *v)
844{
845 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
846 int err = 0;
c32c2f63 847 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
848
849 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
850 seq_putc(m, ' ');
c32c2f63 851 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 852 seq_putc(m, ' ');
2d4d4864 853 show_type(m, mnt->mnt_sb);
2e4b7fcd 854 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
855 err = show_sb_opts(m, mnt->mnt_sb);
856 if (err)
857 goto out;
2d4d4864 858 show_mnt_opts(m, mnt);
1da177e4
LT
859 if (mnt->mnt_sb->s_op->show_options)
860 err = mnt->mnt_sb->s_op->show_options(m, mnt);
861 seq_puts(m, " 0 0\n");
2069f457 862out:
1da177e4
LT
863 return err;
864}
865
a1a2c409 866const struct seq_operations mounts_op = {
1da177e4
LT
867 .start = m_start,
868 .next = m_next,
869 .stop = m_stop,
870 .show = show_vfsmnt
871};
872
2d4d4864
RP
873static int show_mountinfo(struct seq_file *m, void *v)
874{
875 struct proc_mounts *p = m->private;
876 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
877 struct super_block *sb = mnt->mnt_sb;
878 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
879 struct path root = p->root;
880 int err = 0;
881
882 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
883 MAJOR(sb->s_dev), MINOR(sb->s_dev));
884 seq_dentry(m, mnt->mnt_root, " \t\n\\");
885 seq_putc(m, ' ');
886 seq_path_root(m, &mnt_path, &root, " \t\n\\");
887 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
888 /*
889 * Mountpoint is outside root, discard that one. Ugly,
890 * but less so than trying to do that in iterator in a
891 * race-free way (due to renames).
892 */
893 return SEQ_SKIP;
894 }
895 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
896 show_mnt_opts(m, mnt);
897
898 /* Tagged fields ("foo:X" or "bar") */
899 if (IS_MNT_SHARED(mnt))
900 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
901 if (IS_MNT_SLAVE(mnt)) {
902 int master = mnt->mnt_master->mnt_group_id;
903 int dom = get_dominating_id(mnt, &p->root);
904 seq_printf(m, " master:%i", master);
905 if (dom && dom != master)
906 seq_printf(m, " propagate_from:%i", dom);
907 }
2d4d4864
RP
908 if (IS_MNT_UNBINDABLE(mnt))
909 seq_puts(m, " unbindable");
910
911 /* Filesystem specific data */
912 seq_puts(m, " - ");
913 show_type(m, sb);
914 seq_putc(m, ' ');
915 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
916 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
917 err = show_sb_opts(m, sb);
918 if (err)
919 goto out;
2d4d4864
RP
920 if (sb->s_op->show_options)
921 err = sb->s_op->show_options(m, mnt);
922 seq_putc(m, '\n');
2069f457 923out:
2d4d4864
RP
924 return err;
925}
926
927const struct seq_operations mountinfo_op = {
928 .start = m_start,
929 .next = m_next,
930 .stop = m_stop,
931 .show = show_mountinfo,
932};
933
b4629fe2
CL
934static int show_vfsstat(struct seq_file *m, void *v)
935{
b0765fb8 936 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 937 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
938 int err = 0;
939
940 /* device */
941 if (mnt->mnt_devname) {
942 seq_puts(m, "device ");
943 mangle(m, mnt->mnt_devname);
944 } else
945 seq_puts(m, "no device");
946
947 /* mount point */
948 seq_puts(m, " mounted on ");
c32c2f63 949 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
950 seq_putc(m, ' ');
951
952 /* file system type */
953 seq_puts(m, "with fstype ");
2d4d4864 954 show_type(m, mnt->mnt_sb);
b4629fe2
CL
955
956 /* optional statistics */
957 if (mnt->mnt_sb->s_op->show_stats) {
958 seq_putc(m, ' ');
959 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
960 }
961
962 seq_putc(m, '\n');
963 return err;
964}
965
a1a2c409 966const struct seq_operations mountstats_op = {
b4629fe2
CL
967 .start = m_start,
968 .next = m_next,
969 .stop = m_stop,
970 .show = show_vfsstat,
971};
a1a2c409 972#endif /* CONFIG_PROC_FS */
b4629fe2 973
1da177e4
LT
974/**
975 * may_umount_tree - check if a mount tree is busy
976 * @mnt: root of mount tree
977 *
978 * This is called to check if a tree of mounts has any
979 * open files, pwds, chroots or sub mounts that are
980 * busy.
981 */
982int may_umount_tree(struct vfsmount *mnt)
983{
36341f64
RP
984 int actual_refs = 0;
985 int minimum_refs = 0;
986 struct vfsmount *p;
1da177e4 987
99b7db7b 988 br_read_lock(vfsmount_lock);
36341f64 989 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
990 actual_refs += atomic_read(&p->mnt_count);
991 minimum_refs += 2;
1da177e4 992 }
99b7db7b 993 br_read_unlock(vfsmount_lock);
1da177e4
LT
994
995 if (actual_refs > minimum_refs)
e3474a8e 996 return 0;
1da177e4 997
e3474a8e 998 return 1;
1da177e4
LT
999}
1000
1001EXPORT_SYMBOL(may_umount_tree);
1002
1003/**
1004 * may_umount - check if a mount point is busy
1005 * @mnt: root of mount
1006 *
1007 * This is called to check if a mount point has any
1008 * open files, pwds, chroots or sub mounts. If the
1009 * mount has sub mounts this will return busy
1010 * regardless of whether the sub mounts are busy.
1011 *
1012 * Doesn't take quota and stuff into account. IOW, in some cases it will
1013 * give false negatives. The main reason why it's here is that we need
1014 * a non-destructive way to look for easily umountable filesystems.
1015 */
1016int may_umount(struct vfsmount *mnt)
1017{
e3474a8e 1018 int ret = 1;
8ad08d8a 1019 down_read(&namespace_sem);
99b7db7b 1020 br_read_lock(vfsmount_lock);
a05964f3 1021 if (propagate_mount_busy(mnt, 2))
e3474a8e 1022 ret = 0;
99b7db7b 1023 br_read_unlock(vfsmount_lock);
8ad08d8a 1024 up_read(&namespace_sem);
a05964f3 1025 return ret;
1da177e4
LT
1026}
1027
1028EXPORT_SYMBOL(may_umount);
1029
b90fa9ae 1030void release_mounts(struct list_head *head)
70fbcdf4
RP
1031{
1032 struct vfsmount *mnt;
bf066c7d 1033 while (!list_empty(head)) {
b5e61818 1034 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1035 list_del_init(&mnt->mnt_hash);
1036 if (mnt->mnt_parent != mnt) {
1037 struct dentry *dentry;
1038 struct vfsmount *m;
99b7db7b
NP
1039
1040 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1041 dentry = mnt->mnt_mountpoint;
1042 m = mnt->mnt_parent;
1043 mnt->mnt_mountpoint = mnt->mnt_root;
1044 mnt->mnt_parent = mnt;
7c4b93d8 1045 m->mnt_ghosts--;
99b7db7b 1046 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1047 dput(dentry);
1048 mntput(m);
1049 }
1050 mntput(mnt);
1051 }
1052}
1053
99b7db7b
NP
1054/*
1055 * vfsmount lock must be held for write
1056 * namespace_sem must be held for write
1057 */
a05964f3 1058void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1059{
1060 struct vfsmount *p;
1da177e4 1061
1bfba4e8
AM
1062 for (p = mnt; p; p = next_mnt(p, mnt))
1063 list_move(&p->mnt_hash, kill);
1da177e4 1064
a05964f3
RP
1065 if (propagate)
1066 propagate_umount(kill);
1067
70fbcdf4
RP
1068 list_for_each_entry(p, kill, mnt_hash) {
1069 list_del_init(&p->mnt_expire);
1070 list_del_init(&p->mnt_list);
6b3286ed
KK
1071 __touch_mnt_namespace(p->mnt_ns);
1072 p->mnt_ns = NULL;
70fbcdf4 1073 list_del_init(&p->mnt_child);
7c4b93d8
AV
1074 if (p->mnt_parent != p) {
1075 p->mnt_parent->mnt_ghosts++;
f30ac319 1076 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1077 }
a05964f3 1078 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1079 }
1080}
1081
c35038be
AV
1082static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1083
1da177e4
LT
1084static int do_umount(struct vfsmount *mnt, int flags)
1085{
b58fed8b 1086 struct super_block *sb = mnt->mnt_sb;
1da177e4 1087 int retval;
70fbcdf4 1088 LIST_HEAD(umount_list);
1da177e4
LT
1089
1090 retval = security_sb_umount(mnt, flags);
1091 if (retval)
1092 return retval;
1093
1094 /*
1095 * Allow userspace to request a mountpoint be expired rather than
1096 * unmounting unconditionally. Unmount only happens if:
1097 * (1) the mark is already set (the mark is cleared by mntput())
1098 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1099 */
1100 if (flags & MNT_EXPIRE) {
6ac08c39 1101 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1102 flags & (MNT_FORCE | MNT_DETACH))
1103 return -EINVAL;
1104
1105 if (atomic_read(&mnt->mnt_count) != 2)
1106 return -EBUSY;
1107
1108 if (!xchg(&mnt->mnt_expiry_mark, 1))
1109 return -EAGAIN;
1110 }
1111
1112 /*
1113 * If we may have to abort operations to get out of this
1114 * mount, and they will themselves hold resources we must
1115 * allow the fs to do things. In the Unix tradition of
1116 * 'Gee thats tricky lets do it in userspace' the umount_begin
1117 * might fail to complete on the first run through as other tasks
1118 * must return, and the like. Thats for the mount program to worry
1119 * about for the moment.
1120 */
1121
42faad99 1122 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1123 sb->s_op->umount_begin(sb);
42faad99 1124 }
1da177e4
LT
1125
1126 /*
1127 * No sense to grab the lock for this test, but test itself looks
1128 * somewhat bogus. Suggestions for better replacement?
1129 * Ho-hum... In principle, we might treat that as umount + switch
1130 * to rootfs. GC would eventually take care of the old vfsmount.
1131 * Actually it makes sense, especially if rootfs would contain a
1132 * /reboot - static binary that would close all descriptors and
1133 * call reboot(9). Then init(8) could umount root and exec /reboot.
1134 */
6ac08c39 1135 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1136 /*
1137 * Special case for "unmounting" root ...
1138 * we just try to remount it readonly.
1139 */
1140 down_write(&sb->s_umount);
4aa98cf7 1141 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1142 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1143 up_write(&sb->s_umount);
1144 return retval;
1145 }
1146
390c6843 1147 down_write(&namespace_sem);
99b7db7b 1148 br_write_lock(vfsmount_lock);
5addc5dd 1149 event++;
1da177e4 1150
c35038be
AV
1151 if (!(flags & MNT_DETACH))
1152 shrink_submounts(mnt, &umount_list);
1153
1da177e4 1154 retval = -EBUSY;
a05964f3 1155 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1156 if (!list_empty(&mnt->mnt_list))
a05964f3 1157 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1158 retval = 0;
1159 }
99b7db7b 1160 br_write_unlock(vfsmount_lock);
390c6843 1161 up_write(&namespace_sem);
70fbcdf4 1162 release_mounts(&umount_list);
1da177e4
LT
1163 return retval;
1164}
1165
1166/*
1167 * Now umount can handle mount points as well as block devices.
1168 * This is important for filesystems which use unnamed block devices.
1169 *
1170 * We now support a flag for forced unmount like the other 'big iron'
1171 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1172 */
1173
bdc480e3 1174SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1175{
2d8f3038 1176 struct path path;
1da177e4 1177 int retval;
db1f05bb 1178 int lookup_flags = 0;
1da177e4 1179
db1f05bb
MS
1180 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1181 return -EINVAL;
1182
1183 if (!(flags & UMOUNT_NOFOLLOW))
1184 lookup_flags |= LOOKUP_FOLLOW;
1185
1186 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1187 if (retval)
1188 goto out;
1189 retval = -EINVAL;
2d8f3038 1190 if (path.dentry != path.mnt->mnt_root)
1da177e4 1191 goto dput_and_out;
2d8f3038 1192 if (!check_mnt(path.mnt))
1da177e4
LT
1193 goto dput_and_out;
1194
1195 retval = -EPERM;
1196 if (!capable(CAP_SYS_ADMIN))
1197 goto dput_and_out;
1198
2d8f3038 1199 retval = do_umount(path.mnt, flags);
1da177e4 1200dput_and_out:
429731b1 1201 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1202 dput(path.dentry);
1203 mntput_no_expire(path.mnt);
1da177e4
LT
1204out:
1205 return retval;
1206}
1207
1208#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1209
1210/*
b58fed8b 1211 * The 2.0 compatible umount. No flags.
1da177e4 1212 */
bdc480e3 1213SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1214{
b58fed8b 1215 return sys_umount(name, 0);
1da177e4
LT
1216}
1217
1218#endif
1219
2d92ab3c 1220static int mount_is_safe(struct path *path)
1da177e4
LT
1221{
1222 if (capable(CAP_SYS_ADMIN))
1223 return 0;
1224 return -EPERM;
1225#ifdef notyet
2d92ab3c 1226 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1227 return -EPERM;
2d92ab3c 1228 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1229 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1230 return -EPERM;
1231 }
2d92ab3c 1232 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1233 return -EPERM;
1234 return 0;
1235#endif
1236}
1237
b90fa9ae 1238struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1239 int flag)
1da177e4
LT
1240{
1241 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1242 struct path path;
1da177e4 1243
9676f0c6
RP
1244 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1245 return NULL;
1246
36341f64 1247 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1248 if (!q)
1249 goto Enomem;
1250 q->mnt_mountpoint = mnt->mnt_mountpoint;
1251
1252 p = mnt;
fdadd65f 1253 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1254 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1255 continue;
1256
1257 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1258 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1259 s = skip_mnt_tree(s);
1260 continue;
1261 }
1da177e4
LT
1262 while (p != s->mnt_parent) {
1263 p = p->mnt_parent;
1264 q = q->mnt_parent;
1265 }
1266 p = s;
1a390689
AV
1267 path.mnt = q;
1268 path.dentry = p->mnt_mountpoint;
36341f64 1269 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1270 if (!q)
1271 goto Enomem;
99b7db7b 1272 br_write_lock(vfsmount_lock);
1da177e4 1273 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1274 attach_mnt(q, &path);
99b7db7b 1275 br_write_unlock(vfsmount_lock);
1da177e4
LT
1276 }
1277 }
1278 return res;
b58fed8b 1279Enomem:
1da177e4 1280 if (res) {
70fbcdf4 1281 LIST_HEAD(umount_list);
99b7db7b 1282 br_write_lock(vfsmount_lock);
a05964f3 1283 umount_tree(res, 0, &umount_list);
99b7db7b 1284 br_write_unlock(vfsmount_lock);
70fbcdf4 1285 release_mounts(&umount_list);
1da177e4
LT
1286 }
1287 return NULL;
1288}
1289
589ff870 1290struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1291{
1292 struct vfsmount *tree;
1a60a280 1293 down_write(&namespace_sem);
589ff870 1294 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1295 up_write(&namespace_sem);
8aec0809
AV
1296 return tree;
1297}
1298
1299void drop_collected_mounts(struct vfsmount *mnt)
1300{
1301 LIST_HEAD(umount_list);
1a60a280 1302 down_write(&namespace_sem);
99b7db7b 1303 br_write_lock(vfsmount_lock);
8aec0809 1304 umount_tree(mnt, 0, &umount_list);
99b7db7b 1305 br_write_unlock(vfsmount_lock);
1a60a280 1306 up_write(&namespace_sem);
8aec0809
AV
1307 release_mounts(&umount_list);
1308}
1309
1f707137
AV
1310int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1311 struct vfsmount *root)
1312{
1313 struct vfsmount *mnt;
1314 int res = f(root, arg);
1315 if (res)
1316 return res;
1317 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1318 res = f(mnt, arg);
1319 if (res)
1320 return res;
1321 }
1322 return 0;
1323}
1324
719f5d7f
MS
1325static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1326{
1327 struct vfsmount *p;
1328
1329 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1330 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1331 mnt_release_group_id(p);
1332 }
1333}
1334
1335static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1336{
1337 struct vfsmount *p;
1338
1339 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1340 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1341 int err = mnt_alloc_group_id(p);
1342 if (err) {
1343 cleanup_group_ids(mnt, p);
1344 return err;
1345 }
1346 }
1347 }
1348
1349 return 0;
1350}
1351
b90fa9ae
RP
1352/*
1353 * @source_mnt : mount tree to be attached
21444403
RP
1354 * @nd : place the mount tree @source_mnt is attached
1355 * @parent_nd : if non-null, detach the source_mnt from its parent and
1356 * store the parent mount and mountpoint dentry.
1357 * (done when source_mnt is moved)
b90fa9ae
RP
1358 *
1359 * NOTE: in the table below explains the semantics when a source mount
1360 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1361 * ---------------------------------------------------------------------------
1362 * | BIND MOUNT OPERATION |
1363 * |**************************************************************************
1364 * | source-->| shared | private | slave | unbindable |
1365 * | dest | | | | |
1366 * | | | | | | |
1367 * | v | | | | |
1368 * |**************************************************************************
1369 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1370 * | | | | | |
1371 * |non-shared| shared (+) | private | slave (*) | invalid |
1372 * ***************************************************************************
b90fa9ae
RP
1373 * A bind operation clones the source mount and mounts the clone on the
1374 * destination mount.
1375 *
1376 * (++) the cloned mount is propagated to all the mounts in the propagation
1377 * tree of the destination mount and the cloned mount is added to
1378 * the peer group of the source mount.
1379 * (+) the cloned mount is created under the destination mount and is marked
1380 * as shared. The cloned mount is added to the peer group of the source
1381 * mount.
5afe0022
RP
1382 * (+++) the mount is propagated to all the mounts in the propagation tree
1383 * of the destination mount and the cloned mount is made slave
1384 * of the same master as that of the source mount. The cloned mount
1385 * is marked as 'shared and slave'.
1386 * (*) the cloned mount is made a slave of the same master as that of the
1387 * source mount.
1388 *
9676f0c6
RP
1389 * ---------------------------------------------------------------------------
1390 * | MOVE MOUNT OPERATION |
1391 * |**************************************************************************
1392 * | source-->| shared | private | slave | unbindable |
1393 * | dest | | | | |
1394 * | | | | | | |
1395 * | v | | | | |
1396 * |**************************************************************************
1397 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1398 * | | | | | |
1399 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1400 * ***************************************************************************
5afe0022
RP
1401 *
1402 * (+) the mount is moved to the destination. And is then propagated to
1403 * all the mounts in the propagation tree of the destination mount.
21444403 1404 * (+*) the mount is moved to the destination.
5afe0022
RP
1405 * (+++) the mount is moved to the destination and is then propagated to
1406 * all the mounts belonging to the destination mount's propagation tree.
1407 * the mount is marked as 'shared and slave'.
1408 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1409 *
1410 * if the source mount is a tree, the operations explained above is
1411 * applied to each mount in the tree.
1412 * Must be called without spinlocks held, since this function can sleep
1413 * in allocations.
1414 */
1415static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1416 struct path *path, struct path *parent_path)
b90fa9ae
RP
1417{
1418 LIST_HEAD(tree_list);
1a390689
AV
1419 struct vfsmount *dest_mnt = path->mnt;
1420 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1421 struct vfsmount *child, *p;
719f5d7f 1422 int err;
b90fa9ae 1423
719f5d7f
MS
1424 if (IS_MNT_SHARED(dest_mnt)) {
1425 err = invent_group_ids(source_mnt, true);
1426 if (err)
1427 goto out;
1428 }
1429 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1430 if (err)
1431 goto out_cleanup_ids;
b90fa9ae 1432
99b7db7b 1433 br_write_lock(vfsmount_lock);
df1a1ad2 1434
b90fa9ae
RP
1435 if (IS_MNT_SHARED(dest_mnt)) {
1436 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1437 set_mnt_shared(p);
1438 }
1a390689
AV
1439 if (parent_path) {
1440 detach_mnt(source_mnt, parent_path);
1441 attach_mnt(source_mnt, path);
e5d67f07 1442 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1443 } else {
1444 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1445 commit_tree(source_mnt);
1446 }
b90fa9ae
RP
1447
1448 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1449 list_del_init(&child->mnt_hash);
1450 commit_tree(child);
1451 }
99b7db7b
NP
1452 br_write_unlock(vfsmount_lock);
1453
b90fa9ae 1454 return 0;
719f5d7f
MS
1455
1456 out_cleanup_ids:
1457 if (IS_MNT_SHARED(dest_mnt))
1458 cleanup_group_ids(source_mnt, NULL);
1459 out:
1460 return err;
b90fa9ae
RP
1461}
1462
8c3ee42e 1463static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1464{
1465 int err;
1466 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1467 return -EINVAL;
1468
8c3ee42e 1469 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1470 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1471 return -ENOTDIR;
1472
1473 err = -ENOENT;
8c3ee42e 1474 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1475 if (cant_mount(path->dentry))
1da177e4
LT
1476 goto out_unlock;
1477
f3da392e 1478 if (!d_unlinked(path->dentry))
8c3ee42e 1479 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1480out_unlock:
8c3ee42e 1481 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1482 return err;
1483}
1484
7a2e8a8f
VA
1485/*
1486 * Sanity check the flags to change_mnt_propagation.
1487 */
1488
1489static int flags_to_propagation_type(int flags)
1490{
1491 int type = flags & ~MS_REC;
1492
1493 /* Fail if any non-propagation flags are set */
1494 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1495 return 0;
1496 /* Only one propagation flag should be set */
1497 if (!is_power_of_2(type))
1498 return 0;
1499 return type;
1500}
1501
07b20889
RP
1502/*
1503 * recursively change the type of the mountpoint.
1504 */
0a0d8a46 1505static int do_change_type(struct path *path, int flag)
07b20889 1506{
2d92ab3c 1507 struct vfsmount *m, *mnt = path->mnt;
07b20889 1508 int recurse = flag & MS_REC;
7a2e8a8f 1509 int type;
719f5d7f 1510 int err = 0;
07b20889 1511
ee6f9582
MS
1512 if (!capable(CAP_SYS_ADMIN))
1513 return -EPERM;
1514
2d92ab3c 1515 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1516 return -EINVAL;
1517
7a2e8a8f
VA
1518 type = flags_to_propagation_type(flag);
1519 if (!type)
1520 return -EINVAL;
1521
07b20889 1522 down_write(&namespace_sem);
719f5d7f
MS
1523 if (type == MS_SHARED) {
1524 err = invent_group_ids(mnt, recurse);
1525 if (err)
1526 goto out_unlock;
1527 }
1528
99b7db7b 1529 br_write_lock(vfsmount_lock);
07b20889
RP
1530 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1531 change_mnt_propagation(m, type);
99b7db7b 1532 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1533
1534 out_unlock:
07b20889 1535 up_write(&namespace_sem);
719f5d7f 1536 return err;
07b20889
RP
1537}
1538
1da177e4
LT
1539/*
1540 * do loopback mount.
1541 */
0a0d8a46 1542static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1543 int recurse)
1da177e4 1544{
2d92ab3c 1545 struct path old_path;
1da177e4 1546 struct vfsmount *mnt = NULL;
2d92ab3c 1547 int err = mount_is_safe(path);
1da177e4
LT
1548 if (err)
1549 return err;
1550 if (!old_name || !*old_name)
1551 return -EINVAL;
2d92ab3c 1552 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1553 if (err)
1554 return err;
1555
390c6843 1556 down_write(&namespace_sem);
1da177e4 1557 err = -EINVAL;
2d92ab3c 1558 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1559 goto out;
9676f0c6 1560
2d92ab3c 1561 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1562 goto out;
1da177e4 1563
ccd48bc7
AV
1564 err = -ENOMEM;
1565 if (recurse)
2d92ab3c 1566 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1567 else
2d92ab3c 1568 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1569
1570 if (!mnt)
1571 goto out;
1572
2d92ab3c 1573 err = graft_tree(mnt, path);
ccd48bc7 1574 if (err) {
70fbcdf4 1575 LIST_HEAD(umount_list);
99b7db7b
NP
1576
1577 br_write_lock(vfsmount_lock);
a05964f3 1578 umount_tree(mnt, 0, &umount_list);
99b7db7b 1579 br_write_unlock(vfsmount_lock);
70fbcdf4 1580 release_mounts(&umount_list);
5b83d2c5 1581 }
1da177e4 1582
ccd48bc7 1583out:
390c6843 1584 up_write(&namespace_sem);
2d92ab3c 1585 path_put(&old_path);
1da177e4
LT
1586 return err;
1587}
1588
2e4b7fcd
DH
1589static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1590{
1591 int error = 0;
1592 int readonly_request = 0;
1593
1594 if (ms_flags & MS_RDONLY)
1595 readonly_request = 1;
1596 if (readonly_request == __mnt_is_readonly(mnt))
1597 return 0;
1598
1599 if (readonly_request)
1600 error = mnt_make_readonly(mnt);
1601 else
1602 __mnt_unmake_readonly(mnt);
1603 return error;
1604}
1605
1da177e4
LT
1606/*
1607 * change filesystem flags. dir should be a physical root of filesystem.
1608 * If you've mounted a non-root directory somewhere and want to do remount
1609 * on it - tough luck.
1610 */
0a0d8a46 1611static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1612 void *data)
1613{
1614 int err;
2d92ab3c 1615 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1616
1617 if (!capable(CAP_SYS_ADMIN))
1618 return -EPERM;
1619
2d92ab3c 1620 if (!check_mnt(path->mnt))
1da177e4
LT
1621 return -EINVAL;
1622
2d92ab3c 1623 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1624 return -EINVAL;
1625
1626 down_write(&sb->s_umount);
2e4b7fcd 1627 if (flags & MS_BIND)
2d92ab3c 1628 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1629 else
2e4b7fcd 1630 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1631 if (!err) {
99b7db7b 1632 br_write_lock(vfsmount_lock);
495d6c9c 1633 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1634 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1635 br_write_unlock(vfsmount_lock);
7b43a79f 1636 }
1da177e4 1637 up_write(&sb->s_umount);
0e55a7cc 1638 if (!err) {
99b7db7b 1639 br_write_lock(vfsmount_lock);
0e55a7cc 1640 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1641 br_write_unlock(vfsmount_lock);
0e55a7cc 1642 }
1da177e4
LT
1643 return err;
1644}
1645
9676f0c6
RP
1646static inline int tree_contains_unbindable(struct vfsmount *mnt)
1647{
1648 struct vfsmount *p;
1649 for (p = mnt; p; p = next_mnt(p, mnt)) {
1650 if (IS_MNT_UNBINDABLE(p))
1651 return 1;
1652 }
1653 return 0;
1654}
1655
0a0d8a46 1656static int do_move_mount(struct path *path, char *old_name)
1da177e4 1657{
2d92ab3c 1658 struct path old_path, parent_path;
1da177e4
LT
1659 struct vfsmount *p;
1660 int err = 0;
1661 if (!capable(CAP_SYS_ADMIN))
1662 return -EPERM;
1663 if (!old_name || !*old_name)
1664 return -EINVAL;
2d92ab3c 1665 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1666 if (err)
1667 return err;
1668
390c6843 1669 down_write(&namespace_sem);
2d92ab3c 1670 while (d_mountpoint(path->dentry) &&
9393bd07 1671 follow_down(path))
1da177e4
LT
1672 ;
1673 err = -EINVAL;
2d92ab3c 1674 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1675 goto out;
1676
1677 err = -ENOENT;
2d92ab3c 1678 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1679 if (cant_mount(path->dentry))
1da177e4
LT
1680 goto out1;
1681
f3da392e 1682 if (d_unlinked(path->dentry))
21444403 1683 goto out1;
1da177e4
LT
1684
1685 err = -EINVAL;
2d92ab3c 1686 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1687 goto out1;
1da177e4 1688
2d92ab3c 1689 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1690 goto out1;
1da177e4 1691
2d92ab3c
AV
1692 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1693 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1694 goto out1;
1695 /*
1696 * Don't move a mount residing in a shared parent.
1697 */
2d92ab3c
AV
1698 if (old_path.mnt->mnt_parent &&
1699 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1700 goto out1;
9676f0c6
RP
1701 /*
1702 * Don't move a mount tree containing unbindable mounts to a destination
1703 * mount which is shared.
1704 */
2d92ab3c
AV
1705 if (IS_MNT_SHARED(path->mnt) &&
1706 tree_contains_unbindable(old_path.mnt))
9676f0c6 1707 goto out1;
1da177e4 1708 err = -ELOOP;
2d92ab3c
AV
1709 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1710 if (p == old_path.mnt)
21444403 1711 goto out1;
1da177e4 1712
2d92ab3c 1713 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1714 if (err)
21444403 1715 goto out1;
1da177e4
LT
1716
1717 /* if the mount is moved, it should no longer be expire
1718 * automatically */
2d92ab3c 1719 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1720out1:
2d92ab3c 1721 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1722out:
390c6843 1723 up_write(&namespace_sem);
1da177e4 1724 if (!err)
1a390689 1725 path_put(&parent_path);
2d92ab3c 1726 path_put(&old_path);
1da177e4
LT
1727 return err;
1728}
1729
1730/*
1731 * create a new mount for userspace and request it to be added into the
1732 * namespace's tree
1733 */
0a0d8a46 1734static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1735 int mnt_flags, char *name, void *data)
1736{
1737 struct vfsmount *mnt;
1738
eca6f534 1739 if (!type)
1da177e4
LT
1740 return -EINVAL;
1741
1742 /* we need capabilities... */
1743 if (!capable(CAP_SYS_ADMIN))
1744 return -EPERM;
1745
1746 mnt = do_kern_mount(type, flags, name, data);
1747 if (IS_ERR(mnt))
1748 return PTR_ERR(mnt);
1749
2d92ab3c 1750 return do_add_mount(mnt, path, mnt_flags, NULL);
1da177e4
LT
1751}
1752
1753/*
1754 * add a mount into a namespace's mount tree
1755 * - provide the option of adding the new mount to an expiration list
1756 */
8d66bf54 1757int do_add_mount(struct vfsmount *newmnt, struct path *path,
1da177e4
LT
1758 int mnt_flags, struct list_head *fslist)
1759{
1760 int err;
1761
8089352a 1762 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1763
390c6843 1764 down_write(&namespace_sem);
1da177e4 1765 /* Something was mounted here while we slept */
8d66bf54 1766 while (d_mountpoint(path->dentry) &&
9393bd07 1767 follow_down(path))
1da177e4
LT
1768 ;
1769 err = -EINVAL;
dd5cae6e 1770 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1771 goto unlock;
1772
1773 /* Refuse the same filesystem on the same mount point */
1774 err = -EBUSY;
8d66bf54
AV
1775 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1776 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1777 goto unlock;
1778
1779 err = -EINVAL;
1780 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1781 goto unlock;
1782
1783 newmnt->mnt_flags = mnt_flags;
8d66bf54 1784 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1785 goto unlock;
1da177e4 1786
6758f953 1787 if (fslist) /* add to the specified expiration list */
55e700b9 1788 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1789
390c6843 1790 up_write(&namespace_sem);
5b83d2c5 1791 return 0;
1da177e4
LT
1792
1793unlock:
390c6843 1794 up_write(&namespace_sem);
1da177e4
LT
1795 mntput(newmnt);
1796 return err;
1797}
1798
1799EXPORT_SYMBOL_GPL(do_add_mount);
1800
1801/*
1802 * process a list of expirable mountpoints with the intent of discarding any
1803 * mountpoints that aren't in use and haven't been touched since last we came
1804 * here
1805 */
1806void mark_mounts_for_expiry(struct list_head *mounts)
1807{
1da177e4
LT
1808 struct vfsmount *mnt, *next;
1809 LIST_HEAD(graveyard);
bcc5c7d2 1810 LIST_HEAD(umounts);
1da177e4
LT
1811
1812 if (list_empty(mounts))
1813 return;
1814
bcc5c7d2 1815 down_write(&namespace_sem);
99b7db7b 1816 br_write_lock(vfsmount_lock);
1da177e4
LT
1817
1818 /* extract from the expiration list every vfsmount that matches the
1819 * following criteria:
1820 * - only referenced by its parent vfsmount
1821 * - still marked for expiry (marked on the last call here; marks are
1822 * cleared by mntput())
1823 */
55e700b9 1824 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1825 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1826 propagate_mount_busy(mnt, 1))
1da177e4 1827 continue;
55e700b9 1828 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1829 }
bcc5c7d2
AV
1830 while (!list_empty(&graveyard)) {
1831 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1832 touch_mnt_namespace(mnt->mnt_ns);
1833 umount_tree(mnt, 1, &umounts);
1834 }
99b7db7b 1835 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1836 up_write(&namespace_sem);
1837
1838 release_mounts(&umounts);
5528f911
TM
1839}
1840
1841EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1842
1843/*
1844 * Ripoff of 'select_parent()'
1845 *
1846 * search the list of submounts for a given mountpoint, and move any
1847 * shrinkable submounts to the 'graveyard' list.
1848 */
1849static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1850{
1851 struct vfsmount *this_parent = parent;
1852 struct list_head *next;
1853 int found = 0;
1854
1855repeat:
1856 next = this_parent->mnt_mounts.next;
1857resume:
1858 while (next != &this_parent->mnt_mounts) {
1859 struct list_head *tmp = next;
1860 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1861
1862 next = tmp->next;
1863 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1864 continue;
5528f911
TM
1865 /*
1866 * Descend a level if the d_mounts list is non-empty.
1867 */
1868 if (!list_empty(&mnt->mnt_mounts)) {
1869 this_parent = mnt;
1870 goto repeat;
1871 }
1da177e4 1872
5528f911 1873 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1874 list_move_tail(&mnt->mnt_expire, graveyard);
1875 found++;
1876 }
1da177e4 1877 }
5528f911
TM
1878 /*
1879 * All done at this level ... ascend and resume the search
1880 */
1881 if (this_parent != parent) {
1882 next = this_parent->mnt_child.next;
1883 this_parent = this_parent->mnt_parent;
1884 goto resume;
1885 }
1886 return found;
1887}
1888
1889/*
1890 * process a list of expirable mountpoints with the intent of discarding any
1891 * submounts of a specific parent mountpoint
99b7db7b
NP
1892 *
1893 * vfsmount_lock must be held for write
5528f911 1894 */
c35038be 1895static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1896{
1897 LIST_HEAD(graveyard);
c35038be 1898 struct vfsmount *m;
5528f911 1899
5528f911 1900 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1901 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1902 while (!list_empty(&graveyard)) {
c35038be 1903 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 1904 mnt_expire);
afef80b3
EB
1905 touch_mnt_namespace(m->mnt_ns);
1906 umount_tree(m, 1, umounts);
bcc5c7d2
AV
1907 }
1908 }
1da177e4
LT
1909}
1910
1da177e4
LT
1911/*
1912 * Some copy_from_user() implementations do not return the exact number of
1913 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1914 * Note that this function differs from copy_from_user() in that it will oops
1915 * on bad values of `to', rather than returning a short copy.
1916 */
b58fed8b
RP
1917static long exact_copy_from_user(void *to, const void __user * from,
1918 unsigned long n)
1da177e4
LT
1919{
1920 char *t = to;
1921 const char __user *f = from;
1922 char c;
1923
1924 if (!access_ok(VERIFY_READ, from, n))
1925 return n;
1926
1927 while (n) {
1928 if (__get_user(c, f)) {
1929 memset(t, 0, n);
1930 break;
1931 }
1932 *t++ = c;
1933 f++;
1934 n--;
1935 }
1936 return n;
1937}
1938
b58fed8b 1939int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1940{
1941 int i;
1942 unsigned long page;
1943 unsigned long size;
b58fed8b 1944
1da177e4
LT
1945 *where = 0;
1946 if (!data)
1947 return 0;
1948
1949 if (!(page = __get_free_page(GFP_KERNEL)))
1950 return -ENOMEM;
1951
1952 /* We only care that *some* data at the address the user
1953 * gave us is valid. Just in case, we'll zero
1954 * the remainder of the page.
1955 */
1956 /* copy_from_user cannot cross TASK_SIZE ! */
1957 size = TASK_SIZE - (unsigned long)data;
1958 if (size > PAGE_SIZE)
1959 size = PAGE_SIZE;
1960
1961 i = size - exact_copy_from_user((void *)page, data, size);
1962 if (!i) {
b58fed8b 1963 free_page(page);
1da177e4
LT
1964 return -EFAULT;
1965 }
1966 if (i != PAGE_SIZE)
1967 memset((char *)page + i, 0, PAGE_SIZE - i);
1968 *where = page;
1969 return 0;
1970}
1971
eca6f534
VN
1972int copy_mount_string(const void __user *data, char **where)
1973{
1974 char *tmp;
1975
1976 if (!data) {
1977 *where = NULL;
1978 return 0;
1979 }
1980
1981 tmp = strndup_user(data, PAGE_SIZE);
1982 if (IS_ERR(tmp))
1983 return PTR_ERR(tmp);
1984
1985 *where = tmp;
1986 return 0;
1987}
1988
1da177e4
LT
1989/*
1990 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1991 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1992 *
1993 * data is a (void *) that can point to any structure up to
1994 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1995 * information (or be NULL).
1996 *
1997 * Pre-0.97 versions of mount() didn't have a flags word.
1998 * When the flags word was introduced its top half was required
1999 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2000 * Therefore, if this magic number is present, it carries no information
2001 * and must be discarded.
2002 */
b58fed8b 2003long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2004 unsigned long flags, void *data_page)
2005{
2d92ab3c 2006 struct path path;
1da177e4
LT
2007 int retval = 0;
2008 int mnt_flags = 0;
2009
2010 /* Discard magic */
2011 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2012 flags &= ~MS_MGC_MSK;
2013
2014 /* Basic sanity checks */
2015
2016 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2017 return -EINVAL;
1da177e4
LT
2018
2019 if (data_page)
2020 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2021
a27ab9f2
TH
2022 /* ... and get the mountpoint */
2023 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2024 if (retval)
2025 return retval;
2026
2027 retval = security_sb_mount(dev_name, &path,
2028 type_page, flags, data_page);
2029 if (retval)
2030 goto dput_out;
2031
613cbe3d
AK
2032 /* Default to relatime unless overriden */
2033 if (!(flags & MS_NOATIME))
2034 mnt_flags |= MNT_RELATIME;
0a1c01c9 2035
1da177e4
LT
2036 /* Separate the per-mountpoint flags */
2037 if (flags & MS_NOSUID)
2038 mnt_flags |= MNT_NOSUID;
2039 if (flags & MS_NODEV)
2040 mnt_flags |= MNT_NODEV;
2041 if (flags & MS_NOEXEC)
2042 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2043 if (flags & MS_NOATIME)
2044 mnt_flags |= MNT_NOATIME;
2045 if (flags & MS_NODIRATIME)
2046 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2047 if (flags & MS_STRICTATIME)
2048 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2049 if (flags & MS_RDONLY)
2050 mnt_flags |= MNT_READONLY;
fc33a7bb 2051
7a4dec53 2052 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2053 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2054 MS_STRICTATIME);
1da177e4 2055
1da177e4 2056 if (flags & MS_REMOUNT)
2d92ab3c 2057 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2058 data_page);
2059 else if (flags & MS_BIND)
2d92ab3c 2060 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2061 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2062 retval = do_change_type(&path, flags);
1da177e4 2063 else if (flags & MS_MOVE)
2d92ab3c 2064 retval = do_move_mount(&path, dev_name);
1da177e4 2065 else
2d92ab3c 2066 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2067 dev_name, data_page);
2068dput_out:
2d92ab3c 2069 path_put(&path);
1da177e4
LT
2070 return retval;
2071}
2072
cf8d2c11
TM
2073static struct mnt_namespace *alloc_mnt_ns(void)
2074{
2075 struct mnt_namespace *new_ns;
2076
2077 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2078 if (!new_ns)
2079 return ERR_PTR(-ENOMEM);
2080 atomic_set(&new_ns->count, 1);
2081 new_ns->root = NULL;
2082 INIT_LIST_HEAD(&new_ns->list);
2083 init_waitqueue_head(&new_ns->poll);
2084 new_ns->event = 0;
2085 return new_ns;
2086}
2087
741a2951
JD
2088/*
2089 * Allocate a new namespace structure and populate it with contents
2090 * copied from the namespace of the passed in task structure.
2091 */
e3222c4e 2092static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2093 struct fs_struct *fs)
1da177e4 2094{
6b3286ed 2095 struct mnt_namespace *new_ns;
7f2da1e7 2096 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2097 struct vfsmount *p, *q;
2098
cf8d2c11
TM
2099 new_ns = alloc_mnt_ns();
2100 if (IS_ERR(new_ns))
2101 return new_ns;
1da177e4 2102
390c6843 2103 down_write(&namespace_sem);
1da177e4 2104 /* First pass: copy the tree topology */
6b3286ed 2105 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2106 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2107 if (!new_ns->root) {
390c6843 2108 up_write(&namespace_sem);
1da177e4 2109 kfree(new_ns);
5cc4a034 2110 return ERR_PTR(-ENOMEM);
1da177e4 2111 }
99b7db7b 2112 br_write_lock(vfsmount_lock);
1da177e4 2113 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2114 br_write_unlock(vfsmount_lock);
1da177e4
LT
2115
2116 /*
2117 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2118 * as belonging to new namespace. We have already acquired a private
2119 * fs_struct, so tsk->fs->lock is not needed.
2120 */
6b3286ed 2121 p = mnt_ns->root;
1da177e4
LT
2122 q = new_ns->root;
2123 while (p) {
6b3286ed 2124 q->mnt_ns = new_ns;
1da177e4 2125 if (fs) {
6ac08c39 2126 if (p == fs->root.mnt) {
1da177e4 2127 rootmnt = p;
6ac08c39 2128 fs->root.mnt = mntget(q);
1da177e4 2129 }
6ac08c39 2130 if (p == fs->pwd.mnt) {
1da177e4 2131 pwdmnt = p;
6ac08c39 2132 fs->pwd.mnt = mntget(q);
1da177e4 2133 }
1da177e4 2134 }
6b3286ed 2135 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2136 q = next_mnt(q, new_ns->root);
2137 }
390c6843 2138 up_write(&namespace_sem);
1da177e4 2139
1da177e4
LT
2140 if (rootmnt)
2141 mntput(rootmnt);
2142 if (pwdmnt)
2143 mntput(pwdmnt);
1da177e4 2144
741a2951
JD
2145 return new_ns;
2146}
2147
213dd266 2148struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2149 struct fs_struct *new_fs)
741a2951 2150{
6b3286ed 2151 struct mnt_namespace *new_ns;
741a2951 2152
e3222c4e 2153 BUG_ON(!ns);
6b3286ed 2154 get_mnt_ns(ns);
741a2951
JD
2155
2156 if (!(flags & CLONE_NEWNS))
e3222c4e 2157 return ns;
741a2951 2158
e3222c4e 2159 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2160
6b3286ed 2161 put_mnt_ns(ns);
e3222c4e 2162 return new_ns;
1da177e4
LT
2163}
2164
cf8d2c11
TM
2165/**
2166 * create_mnt_ns - creates a private namespace and adds a root filesystem
2167 * @mnt: pointer to the new root filesystem mountpoint
2168 */
a2770d86 2169struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2170{
2171 struct mnt_namespace *new_ns;
2172
2173 new_ns = alloc_mnt_ns();
2174 if (!IS_ERR(new_ns)) {
2175 mnt->mnt_ns = new_ns;
2176 new_ns->root = mnt;
2177 list_add(&new_ns->list, &new_ns->root->mnt_list);
2178 }
2179 return new_ns;
2180}
a2770d86 2181EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2182
bdc480e3
HC
2183SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2184 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2185{
eca6f534
VN
2186 int ret;
2187 char *kernel_type;
2188 char *kernel_dir;
2189 char *kernel_dev;
1da177e4 2190 unsigned long data_page;
1da177e4 2191
eca6f534
VN
2192 ret = copy_mount_string(type, &kernel_type);
2193 if (ret < 0)
2194 goto out_type;
1da177e4 2195
eca6f534
VN
2196 kernel_dir = getname(dir_name);
2197 if (IS_ERR(kernel_dir)) {
2198 ret = PTR_ERR(kernel_dir);
2199 goto out_dir;
2200 }
1da177e4 2201
eca6f534
VN
2202 ret = copy_mount_string(dev_name, &kernel_dev);
2203 if (ret < 0)
2204 goto out_dev;
1da177e4 2205
eca6f534
VN
2206 ret = copy_mount_options(data, &data_page);
2207 if (ret < 0)
2208 goto out_data;
1da177e4 2209
eca6f534
VN
2210 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2211 (void *) data_page);
1da177e4 2212
eca6f534
VN
2213 free_page(data_page);
2214out_data:
2215 kfree(kernel_dev);
2216out_dev:
2217 putname(kernel_dir);
2218out_dir:
2219 kfree(kernel_type);
2220out_type:
2221 return ret;
1da177e4
LT
2222}
2223
1da177e4
LT
2224/*
2225 * pivot_root Semantics:
2226 * Moves the root file system of the current process to the directory put_old,
2227 * makes new_root as the new root file system of the current process, and sets
2228 * root/cwd of all processes which had them on the current root to new_root.
2229 *
2230 * Restrictions:
2231 * The new_root and put_old must be directories, and must not be on the
2232 * same file system as the current process root. The put_old must be
2233 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2234 * pointed to by put_old must yield the same directory as new_root. No other
2235 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2236 *
4a0d11fa
NB
2237 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2238 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2239 * in this situation.
2240 *
1da177e4
LT
2241 * Notes:
2242 * - we don't move root/cwd if they are not at the root (reason: if something
2243 * cared enough to change them, it's probably wrong to force them elsewhere)
2244 * - it's okay to pick a root that isn't the root of a file system, e.g.
2245 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2246 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2247 * first.
2248 */
3480b257
HC
2249SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2250 const char __user *, put_old)
1da177e4
LT
2251{
2252 struct vfsmount *tmp;
2d8f3038 2253 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2254 int error;
2255
2256 if (!capable(CAP_SYS_ADMIN))
2257 return -EPERM;
2258
2d8f3038 2259 error = user_path_dir(new_root, &new);
1da177e4
LT
2260 if (error)
2261 goto out0;
2262 error = -EINVAL;
2d8f3038 2263 if (!check_mnt(new.mnt))
1da177e4
LT
2264 goto out1;
2265
2d8f3038 2266 error = user_path_dir(put_old, &old);
1da177e4
LT
2267 if (error)
2268 goto out1;
2269
2d8f3038 2270 error = security_sb_pivotroot(&old, &new);
1da177e4 2271 if (error) {
2d8f3038 2272 path_put(&old);
1da177e4
LT
2273 goto out1;
2274 }
2275
f7ad3c6b 2276 get_fs_root(current->fs, &root);
390c6843 2277 down_write(&namespace_sem);
2d8f3038 2278 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2279 error = -EINVAL;
2d8f3038
AV
2280 if (IS_MNT_SHARED(old.mnt) ||
2281 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2282 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2283 goto out2;
8c3ee42e 2284 if (!check_mnt(root.mnt))
1da177e4
LT
2285 goto out2;
2286 error = -ENOENT;
d83c49f3 2287 if (cant_mount(old.dentry))
1da177e4 2288 goto out2;
f3da392e 2289 if (d_unlinked(new.dentry))
1da177e4 2290 goto out2;
f3da392e 2291 if (d_unlinked(old.dentry))
1da177e4
LT
2292 goto out2;
2293 error = -EBUSY;
2d8f3038
AV
2294 if (new.mnt == root.mnt ||
2295 old.mnt == root.mnt)
1da177e4
LT
2296 goto out2; /* loop, on the same file system */
2297 error = -EINVAL;
8c3ee42e 2298 if (root.mnt->mnt_root != root.dentry)
1da177e4 2299 goto out2; /* not a mountpoint */
8c3ee42e 2300 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2301 goto out2; /* not attached */
2d8f3038 2302 if (new.mnt->mnt_root != new.dentry)
1da177e4 2303 goto out2; /* not a mountpoint */
2d8f3038 2304 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2305 goto out2; /* not attached */
4ac91378 2306 /* make sure we can reach put_old from new_root */
2d8f3038 2307 tmp = old.mnt;
99b7db7b 2308 br_write_lock(vfsmount_lock);
2d8f3038 2309 if (tmp != new.mnt) {
1da177e4
LT
2310 for (;;) {
2311 if (tmp->mnt_parent == tmp)
2312 goto out3; /* already mounted on put_old */
2d8f3038 2313 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2314 break;
2315 tmp = tmp->mnt_parent;
2316 }
2d8f3038 2317 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2318 goto out3;
2d8f3038 2319 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2320 goto out3;
2d8f3038 2321 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2322 detach_mnt(root.mnt, &root_parent);
4ac91378 2323 /* mount old root on put_old */
2d8f3038 2324 attach_mnt(root.mnt, &old);
4ac91378 2325 /* mount new_root on / */
2d8f3038 2326 attach_mnt(new.mnt, &root_parent);
6b3286ed 2327 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2328 br_write_unlock(vfsmount_lock);
2d8f3038 2329 chroot_fs_refs(&root, &new);
1da177e4 2330 error = 0;
1a390689
AV
2331 path_put(&root_parent);
2332 path_put(&parent_path);
1da177e4 2333out2:
2d8f3038 2334 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2335 up_write(&namespace_sem);
8c3ee42e 2336 path_put(&root);
2d8f3038 2337 path_put(&old);
1da177e4 2338out1:
2d8f3038 2339 path_put(&new);
1da177e4 2340out0:
1da177e4
LT
2341 return error;
2342out3:
99b7db7b 2343 br_write_unlock(vfsmount_lock);
1da177e4
LT
2344 goto out2;
2345}
2346
2347static void __init init_mount_tree(void)
2348{
2349 struct vfsmount *mnt;
6b3286ed 2350 struct mnt_namespace *ns;
ac748a09 2351 struct path root;
1da177e4
LT
2352
2353 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2354 if (IS_ERR(mnt))
2355 panic("Can't create rootfs");
3b22edc5
TM
2356 ns = create_mnt_ns(mnt);
2357 if (IS_ERR(ns))
1da177e4 2358 panic("Can't allocate initial namespace");
6b3286ed
KK
2359
2360 init_task.nsproxy->mnt_ns = ns;
2361 get_mnt_ns(ns);
2362
ac748a09
JB
2363 root.mnt = ns->root;
2364 root.dentry = ns->root->mnt_root;
2365
2366 set_fs_pwd(current->fs, &root);
2367 set_fs_root(current->fs, &root);
1da177e4
LT
2368}
2369
74bf17cf 2370void __init mnt_init(void)
1da177e4 2371{
13f14b4d 2372 unsigned u;
15a67dd8 2373 int err;
1da177e4 2374
390c6843
RP
2375 init_rwsem(&namespace_sem);
2376
1da177e4 2377 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2378 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2379
b58fed8b 2380 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2381
2382 if (!mount_hashtable)
2383 panic("Failed to allocate mount hash table\n");
2384
13f14b4d
ED
2385 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2386
2387 for (u = 0; u < HASH_SIZE; u++)
2388 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2389
99b7db7b
NP
2390 br_lock_init(vfsmount_lock);
2391
15a67dd8
RD
2392 err = sysfs_init();
2393 if (err)
2394 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2395 __func__, err);
00d26666
GKH
2396 fs_kobj = kobject_create_and_add("fs", NULL);
2397 if (!fs_kobj)
8e24eea7 2398 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2399 init_rootfs();
2400 init_mount_tree();
2401}
2402
616511d0 2403void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2404{
70fbcdf4 2405 LIST_HEAD(umount_list);
616511d0 2406
d498b25a 2407 if (!atomic_dec_and_test(&ns->count))
616511d0 2408 return;
390c6843 2409 down_write(&namespace_sem);
99b7db7b 2410 br_write_lock(vfsmount_lock);
d498b25a 2411 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2412 br_write_unlock(vfsmount_lock);
390c6843 2413 up_write(&namespace_sem);
70fbcdf4 2414 release_mounts(&umount_list);
6b3286ed 2415 kfree(ns);
1da177e4 2416}
cf8d2c11 2417EXPORT_SYMBOL(put_mnt_ns);