]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/namespace.c
vfs: new superblock methods to override /proc/*/mount{s,info}
[mirror_ubuntu-jammy-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
155static inline void mnt_set_count(struct vfsmount *mnt, int n)
156{
157#ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159#else
160 mnt->mnt_count = n;
161#endif
162}
163
164/*
165 * vfsmount lock must be held for read
166 */
167static inline void mnt_inc_count(struct vfsmount *mnt)
168{
169 mnt_add_count(mnt, 1);
170}
171
172/*
173 * vfsmount lock must be held for read
174 */
175static inline void mnt_dec_count(struct vfsmount *mnt)
176{
177 mnt_add_count(mnt, -1);
178}
179
180/*
181 * vfsmount lock must be held for write
182 */
183unsigned int mnt_get_count(struct vfsmount *mnt)
184{
185#ifdef CONFIG_SMP
f03c6599 186 unsigned int count = 0;
b3e19d92
NP
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194#else
195 return mnt->mnt_count;
196#endif
197}
198
1da177e4
LT
199struct vfsmount *alloc_vfsmnt(const char *name)
200{
c3762229 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 202 if (mnt) {
73cd49ec
MS
203 int err;
204
205 err = mnt_alloc_id(mnt);
88b38782
LZ
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
73cd49ec
MS
213 }
214
b3e19d92
NP
215#ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
f03c6599 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
221#else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224#endif
225
1da177e4
LT
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 230 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 231 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
234#ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 236#endif
1da177e4
LT
237 }
238 return mnt;
88b38782 239
d3ef3d73
NP
240#ifdef CONFIG_SMP
241out_free_devname:
242 kfree(mnt->mnt_devname);
243#endif
88b38782
LZ
244out_free_id:
245 mnt_free_id(mnt);
246out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
1da177e4
LT
249}
250
3d733633
DH
251/*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259/*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270int __mnt_is_readonly(struct vfsmount *mnt)
271{
2e4b7fcd
DH
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
3d733633
DH
277}
278EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
c6653a83 280static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73
NP
281{
282#ifdef CONFIG_SMP
b3e19d92 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
284#else
285 mnt->mnt_writers++;
286#endif
287}
3d733633 288
c6653a83 289static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 290{
d3ef3d73 291#ifdef CONFIG_SMP
b3e19d92 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73
NP
293#else
294 mnt->mnt_writers--;
295#endif
3d733633 296}
3d733633 297
c6653a83 298static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 299{
d3ef3d73
NP
300#ifdef CONFIG_SMP
301 unsigned int count = 0;
3d733633 302 int cpu;
3d733633
DH
303
304 for_each_possible_cpu(cpu) {
b3e19d92 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 306 }
3d733633 307
d3ef3d73
NP
308 return count;
309#else
310 return mnt->mnt_writers;
311#endif
3d733633
DH
312}
313
8366025e
DH
314/*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322/**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332int mnt_want_write(struct vfsmount *mnt)
333{
3d733633 334 int ret = 0;
3d733633 335
d3ef3d73 336 preempt_disable();
c6653a83 337 mnt_inc_writers(mnt);
d3ef3d73 338 /*
c6653a83 339 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73
NP
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
3d733633 352 if (__mnt_is_readonly(mnt)) {
c6653a83 353 mnt_dec_writers(mnt);
3d733633
DH
354 ret = -EROFS;
355 goto out;
356 }
3d733633 357out:
d3ef3d73 358 preempt_enable();
3d733633 359 return ret;
8366025e
DH
360}
361EXPORT_SYMBOL_GPL(mnt_want_write);
362
96029c4e
NP
363/**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375int mnt_clone_write(struct vfsmount *mnt)
376{
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
c6653a83 381 mnt_inc_writers(mnt);
96029c4e
NP
382 preempt_enable();
383 return 0;
384}
385EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387/**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394int mnt_want_write_file(struct file *file)
395{
2d8dd38a
OH
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e
NP
398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401}
402EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
8366025e
DH
404/**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412void mnt_drop_write(struct vfsmount *mnt)
413{
d3ef3d73 414 preempt_disable();
c6653a83 415 mnt_dec_writers(mnt);
d3ef3d73 416 preempt_enable();
8366025e
DH
417}
418EXPORT_SYMBOL_GPL(mnt_drop_write);
419
2e4b7fcd 420static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 421{
3d733633
DH
422 int ret = 0;
423
99b7db7b 424 br_write_lock(vfsmount_lock);
d3ef3d73 425 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 426 /*
d3ef3d73
NP
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
3d733633 429 */
d3ef3d73
NP
430 smp_mb();
431
3d733633 432 /*
d3ef3d73
NP
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
3d733633 447 */
c6653a83 448 if (mnt_get_writers(mnt) > 0)
d3ef3d73
NP
449 ret = -EBUSY;
450 else
2e4b7fcd 451 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73
NP
452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 458 br_write_unlock(vfsmount_lock);
3d733633 459 return ret;
8366025e 460}
8366025e 461
2e4b7fcd
DH
462static void __mnt_unmake_readonly(struct vfsmount *mnt)
463{
99b7db7b 464 br_write_lock(vfsmount_lock);
2e4b7fcd 465 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 466 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
467}
468
a3ec947c 469void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
470{
471 mnt->mnt_sb = sb;
472 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
473}
474
475EXPORT_SYMBOL(simple_set_mnt);
476
1da177e4
LT
477void free_vfsmnt(struct vfsmount *mnt)
478{
479 kfree(mnt->mnt_devname);
73cd49ec 480 mnt_free_id(mnt);
d3ef3d73 481#ifdef CONFIG_SMP
b3e19d92 482 free_percpu(mnt->mnt_pcp);
d3ef3d73 483#endif
1da177e4
LT
484 kmem_cache_free(mnt_cache, mnt);
485}
486
487/*
a05964f3
RP
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 490 * vfsmount_lock must be held for read or write.
1da177e4 491 */
a05964f3
RP
492struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 int dir)
1da177e4 494{
b58fed8b
RP
495 struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 struct list_head *tmp = head;
1da177e4
LT
497 struct vfsmount *p, *found = NULL;
498
1da177e4 499 for (;;) {
a05964f3 500 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
501 p = NULL;
502 if (tmp == head)
503 break;
504 p = list_entry(tmp, struct vfsmount, mnt_hash);
505 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 506 found = p;
1da177e4
LT
507 break;
508 }
509 }
1da177e4
LT
510 return found;
511}
512
a05964f3
RP
513/*
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
516 */
1c755af4 517struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
518{
519 struct vfsmount *child_mnt;
99b7db7b
NP
520
521 br_read_lock(vfsmount_lock);
1c755af4 522 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 523 mntget(child_mnt);
99b7db7b 524 br_read_unlock(vfsmount_lock);
a05964f3
RP
525 return child_mnt;
526}
527
1da177e4
LT
528static inline int check_mnt(struct vfsmount *mnt)
529{
6b3286ed 530 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
531}
532
99b7db7b
NP
533/*
534 * vfsmount lock must be held for write
535 */
6b3286ed 536static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
537{
538 if (ns) {
539 ns->event = ++event;
540 wake_up_interruptible(&ns->poll);
541 }
542}
543
99b7db7b
NP
544/*
545 * vfsmount lock must be held for write
546 */
6b3286ed 547static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
548{
549 if (ns && ns->event != event) {
550 ns->event = event;
551 wake_up_interruptible(&ns->poll);
552 }
553}
554
5f57cbcc
NP
555/*
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
558 */
559static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560{
561 unsigned u;
562
563 for (u = 0; u < HASH_SIZE; u++) {
564 struct vfsmount *p;
565
566 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 if (p->mnt_mountpoint == dentry)
568 return;
569 }
570 }
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags &= ~DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
574}
575
99b7db7b
NP
576/*
577 * vfsmount lock must be held for write
578 */
1a390689 579static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 580{
1a390689
AV
581 old_path->dentry = mnt->mnt_mountpoint;
582 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
583 mnt->mnt_parent = mnt;
584 mnt->mnt_mountpoint = mnt->mnt_root;
585 list_del_init(&mnt->mnt_child);
586 list_del_init(&mnt->mnt_hash);
5f57cbcc 587 dentry_reset_mounted(old_path->mnt, old_path->dentry);
1da177e4
LT
588}
589
99b7db7b
NP
590/*
591 * vfsmount lock must be held for write
592 */
b90fa9ae
RP
593void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 struct vfsmount *child_mnt)
595{
596 child_mnt->mnt_parent = mntget(mnt);
597 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
598 spin_lock(&dentry->d_lock);
599 dentry->d_flags |= DCACHE_MOUNTED;
600 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
601}
602
99b7db7b
NP
603/*
604 * vfsmount lock must be held for write
605 */
1a390689 606static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 607{
1a390689 608 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 609 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
610 hash(path->mnt, path->dentry));
611 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
612}
613
7e3d0eb0
AV
614static inline void __mnt_make_longterm(struct vfsmount *mnt)
615{
616#ifdef CONFIG_SMP
617 atomic_inc(&mnt->mnt_longterm);
618#endif
619}
620
621/* needs vfsmount lock for write */
622static inline void __mnt_make_shortterm(struct vfsmount *mnt)
623{
624#ifdef CONFIG_SMP
625 atomic_dec(&mnt->mnt_longterm);
626#endif
627}
628
b90fa9ae 629/*
99b7db7b 630 * vfsmount lock must be held for write
b90fa9ae
RP
631 */
632static void commit_tree(struct vfsmount *mnt)
633{
634 struct vfsmount *parent = mnt->mnt_parent;
635 struct vfsmount *m;
636 LIST_HEAD(head);
6b3286ed 637 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
638
639 BUG_ON(parent == mnt);
640
641 list_add_tail(&head, &mnt->mnt_list);
f03c6599 642 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 643 m->mnt_ns = n;
7e3d0eb0 644 __mnt_make_longterm(m);
f03c6599
AV
645 }
646
b90fa9ae
RP
647 list_splice(&head, n->list.prev);
648
649 list_add_tail(&mnt->mnt_hash, mount_hashtable +
650 hash(parent, mnt->mnt_mountpoint));
651 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 652 touch_mnt_namespace(n);
1da177e4
LT
653}
654
655static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
656{
657 struct list_head *next = p->mnt_mounts.next;
658 if (next == &p->mnt_mounts) {
659 while (1) {
660 if (p == root)
661 return NULL;
662 next = p->mnt_child.next;
663 if (next != &p->mnt_parent->mnt_mounts)
664 break;
665 p = p->mnt_parent;
666 }
667 }
668 return list_entry(next, struct vfsmount, mnt_child);
669}
670
9676f0c6
RP
671static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
672{
673 struct list_head *prev = p->mnt_mounts.prev;
674 while (prev != &p->mnt_mounts) {
675 p = list_entry(prev, struct vfsmount, mnt_child);
676 prev = p->mnt_mounts.prev;
677 }
678 return p;
679}
680
36341f64
RP
681static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
682 int flag)
1da177e4
LT
683{
684 struct super_block *sb = old->mnt_sb;
685 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
686
687 if (mnt) {
719f5d7f
MS
688 if (flag & (CL_SLAVE | CL_PRIVATE))
689 mnt->mnt_group_id = 0; /* not a peer of original */
690 else
691 mnt->mnt_group_id = old->mnt_group_id;
692
693 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
694 int err = mnt_alloc_group_id(mnt);
695 if (err)
696 goto out_free;
697 }
698
be1a16a0 699 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
700 atomic_inc(&sb->s_active);
701 mnt->mnt_sb = sb;
702 mnt->mnt_root = dget(root);
703 mnt->mnt_mountpoint = mnt->mnt_root;
704 mnt->mnt_parent = mnt;
b90fa9ae 705
5afe0022
RP
706 if (flag & CL_SLAVE) {
707 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
708 mnt->mnt_master = old;
709 CLEAR_MNT_SHARED(mnt);
8aec0809 710 } else if (!(flag & CL_PRIVATE)) {
796a6b52 711 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
712 list_add(&mnt->mnt_share, &old->mnt_share);
713 if (IS_MNT_SLAVE(old))
714 list_add(&mnt->mnt_slave, &old->mnt_slave);
715 mnt->mnt_master = old->mnt_master;
716 }
b90fa9ae
RP
717 if (flag & CL_MAKE_SHARED)
718 set_mnt_shared(mnt);
1da177e4
LT
719
720 /* stick the duplicate mount on the same expiry list
721 * as the original if that was on one */
36341f64 722 if (flag & CL_EXPIRE) {
36341f64
RP
723 if (!list_empty(&old->mnt_expire))
724 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 725 }
1da177e4
LT
726 }
727 return mnt;
719f5d7f
MS
728
729 out_free:
730 free_vfsmnt(mnt);
731 return NULL;
1da177e4
LT
732}
733
b3e19d92 734static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
735{
736 struct super_block *sb = mnt->mnt_sb;
b3e19d92 737
3d733633
DH
738 /*
739 * This probably indicates that somebody messed
740 * up a mnt_want/drop_write() pair. If this
741 * happens, the filesystem was probably unable
742 * to make r/w->r/o transitions.
743 */
d3ef3d73 744 /*
b3e19d92
NP
745 * The locking used to deal with mnt_count decrement provides barriers,
746 * so mnt_get_writers() below is safe.
d3ef3d73 747 */
c6653a83 748 WARN_ON(mnt_get_writers(mnt));
ca9c726e 749 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
750 dput(mnt->mnt_root);
751 free_vfsmnt(mnt);
752 deactivate_super(sb);
753}
754
f03c6599 755static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 756{
b3e19d92 757put_again:
f03c6599
AV
758#ifdef CONFIG_SMP
759 br_read_lock(vfsmount_lock);
760 if (likely(atomic_read(&mnt->mnt_longterm))) {
761 mnt_dec_count(mnt);
b3e19d92 762 br_read_unlock(vfsmount_lock);
f03c6599 763 return;
b3e19d92 764 }
f03c6599 765 br_read_unlock(vfsmount_lock);
b3e19d92 766
99b7db7b 767 br_write_lock(vfsmount_lock);
f03c6599 768 mnt_dec_count(mnt);
b3e19d92 769 if (mnt_get_count(mnt)) {
99b7db7b
NP
770 br_write_unlock(vfsmount_lock);
771 return;
772 }
b3e19d92 773#else
b3e19d92
NP
774 mnt_dec_count(mnt);
775 if (likely(mnt_get_count(mnt)))
99b7db7b 776 return;
b3e19d92 777 br_write_lock(vfsmount_lock);
f03c6599 778#endif
b3e19d92
NP
779 if (unlikely(mnt->mnt_pinned)) {
780 mnt_add_count(mnt, mnt->mnt_pinned + 1);
781 mnt->mnt_pinned = 0;
782 br_write_unlock(vfsmount_lock);
783 acct_auto_close_mnt(mnt);
784 goto put_again;
7b7b1ace 785 }
99b7db7b 786 br_write_unlock(vfsmount_lock);
b3e19d92
NP
787 mntfree(mnt);
788}
b3e19d92
NP
789
790void mntput(struct vfsmount *mnt)
791{
792 if (mnt) {
793 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
794 if (unlikely(mnt->mnt_expiry_mark))
795 mnt->mnt_expiry_mark = 0;
f03c6599 796 mntput_no_expire(mnt);
b3e19d92
NP
797 }
798}
799EXPORT_SYMBOL(mntput);
800
801struct vfsmount *mntget(struct vfsmount *mnt)
802{
803 if (mnt)
804 mnt_inc_count(mnt);
805 return mnt;
806}
807EXPORT_SYMBOL(mntget);
808
7b7b1ace
AV
809void mnt_pin(struct vfsmount *mnt)
810{
99b7db7b 811 br_write_lock(vfsmount_lock);
7b7b1ace 812 mnt->mnt_pinned++;
99b7db7b 813 br_write_unlock(vfsmount_lock);
7b7b1ace 814}
7b7b1ace
AV
815EXPORT_SYMBOL(mnt_pin);
816
817void mnt_unpin(struct vfsmount *mnt)
818{
99b7db7b 819 br_write_lock(vfsmount_lock);
7b7b1ace 820 if (mnt->mnt_pinned) {
b3e19d92 821 mnt_inc_count(mnt);
7b7b1ace
AV
822 mnt->mnt_pinned--;
823 }
99b7db7b 824 br_write_unlock(vfsmount_lock);
7b7b1ace 825}
7b7b1ace 826EXPORT_SYMBOL(mnt_unpin);
1da177e4 827
b3b304a2
MS
828static inline void mangle(struct seq_file *m, const char *s)
829{
830 seq_escape(m, s, " \t\n\\");
831}
832
833/*
834 * Simple .show_options callback for filesystems which don't want to
835 * implement more complex mount option showing.
836 *
837 * See also save_mount_options().
838 */
839int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
840{
2a32cebd
AV
841 const char *options;
842
843 rcu_read_lock();
844 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
845
846 if (options != NULL && options[0]) {
847 seq_putc(m, ',');
848 mangle(m, options);
849 }
2a32cebd 850 rcu_read_unlock();
b3b304a2
MS
851
852 return 0;
853}
854EXPORT_SYMBOL(generic_show_options);
855
856/*
857 * If filesystem uses generic_show_options(), this function should be
858 * called from the fill_super() callback.
859 *
860 * The .remount_fs callback usually needs to be handled in a special
861 * way, to make sure, that previous options are not overwritten if the
862 * remount fails.
863 *
864 * Also note, that if the filesystem's .remount_fs function doesn't
865 * reset all options to their default value, but changes only newly
866 * given options, then the displayed options will not reflect reality
867 * any more.
868 */
869void save_mount_options(struct super_block *sb, char *options)
870{
2a32cebd
AV
871 BUG_ON(sb->s_options);
872 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
873}
874EXPORT_SYMBOL(save_mount_options);
875
2a32cebd
AV
876void replace_mount_options(struct super_block *sb, char *options)
877{
878 char *old = sb->s_options;
879 rcu_assign_pointer(sb->s_options, options);
880 if (old) {
881 synchronize_rcu();
882 kfree(old);
883 }
884}
885EXPORT_SYMBOL(replace_mount_options);
886
a1a2c409 887#ifdef CONFIG_PROC_FS
1da177e4
LT
888/* iterator */
889static void *m_start(struct seq_file *m, loff_t *pos)
890{
a1a2c409 891 struct proc_mounts *p = m->private;
1da177e4 892
390c6843 893 down_read(&namespace_sem);
a1a2c409 894 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
895}
896
897static void *m_next(struct seq_file *m, void *v, loff_t *pos)
898{
a1a2c409 899 struct proc_mounts *p = m->private;
b0765fb8 900
a1a2c409 901 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
902}
903
904static void m_stop(struct seq_file *m, void *v)
905{
390c6843 906 up_read(&namespace_sem);
1da177e4
LT
907}
908
9f5596af
AV
909int mnt_had_events(struct proc_mounts *p)
910{
911 struct mnt_namespace *ns = p->ns;
912 int res = 0;
913
99b7db7b 914 br_read_lock(vfsmount_lock);
9f5596af
AV
915 if (p->event != ns->event) {
916 p->event = ns->event;
917 res = 1;
918 }
99b7db7b 919 br_read_unlock(vfsmount_lock);
9f5596af
AV
920
921 return res;
922}
923
2d4d4864
RP
924struct proc_fs_info {
925 int flag;
926 const char *str;
927};
928
2069f457 929static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 930{
2d4d4864 931 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
932 { MS_SYNCHRONOUS, ",sync" },
933 { MS_DIRSYNC, ",dirsync" },
934 { MS_MANDLOCK, ",mand" },
1da177e4
LT
935 { 0, NULL }
936 };
2d4d4864
RP
937 const struct proc_fs_info *fs_infop;
938
939 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
940 if (sb->s_flags & fs_infop->flag)
941 seq_puts(m, fs_infop->str);
942 }
2069f457
EP
943
944 return security_sb_show_options(m, sb);
2d4d4864
RP
945}
946
947static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
948{
949 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
950 { MNT_NOSUID, ",nosuid" },
951 { MNT_NODEV, ",nodev" },
952 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
953 { MNT_NOATIME, ",noatime" },
954 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 955 { MNT_RELATIME, ",relatime" },
1da177e4
LT
956 { 0, NULL }
957 };
2d4d4864
RP
958 const struct proc_fs_info *fs_infop;
959
960 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
961 if (mnt->mnt_flags & fs_infop->flag)
962 seq_puts(m, fs_infop->str);
963 }
964}
965
966static void show_type(struct seq_file *m, struct super_block *sb)
967{
968 mangle(m, sb->s_type->name);
969 if (sb->s_subtype && sb->s_subtype[0]) {
970 seq_putc(m, '.');
971 mangle(m, sb->s_subtype);
972 }
973}
974
975static int show_vfsmnt(struct seq_file *m, void *v)
976{
977 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
978 int err = 0;
c32c2f63 979 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 980
c7f404b4
AV
981 if (mnt->mnt_sb->s_op->show_devname) {
982 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
983 if (err)
984 goto out;
985 } else {
986 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
987 }
1da177e4 988 seq_putc(m, ' ');
c32c2f63 989 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 990 seq_putc(m, ' ');
2d4d4864 991 show_type(m, mnt->mnt_sb);
2e4b7fcd 992 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
993 err = show_sb_opts(m, mnt->mnt_sb);
994 if (err)
995 goto out;
2d4d4864 996 show_mnt_opts(m, mnt);
1da177e4
LT
997 if (mnt->mnt_sb->s_op->show_options)
998 err = mnt->mnt_sb->s_op->show_options(m, mnt);
999 seq_puts(m, " 0 0\n");
2069f457 1000out:
1da177e4
LT
1001 return err;
1002}
1003
a1a2c409 1004const struct seq_operations mounts_op = {
1da177e4
LT
1005 .start = m_start,
1006 .next = m_next,
1007 .stop = m_stop,
1008 .show = show_vfsmnt
1009};
1010
93f1c20b
AK
1011static int uuid_is_nil(u8 *uuid)
1012{
1013 int i;
1014 u8 *cp = (u8 *)uuid;
1015
1016 for (i = 0; i < 16; i++) {
1017 if (*cp++)
1018 return 0;
1019 }
1020 return 1;
1021}
1022
2d4d4864
RP
1023static int show_mountinfo(struct seq_file *m, void *v)
1024{
1025 struct proc_mounts *p = m->private;
1026 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1027 struct super_block *sb = mnt->mnt_sb;
1028 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1029 struct path root = p->root;
1030 int err = 0;
1031
1032 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1033 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1034 if (sb->s_op->show_path)
1035 err = sb->s_op->show_path(m, mnt);
1036 else
1037 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1038 if (err)
1039 goto out;
2d4d4864
RP
1040 seq_putc(m, ' ');
1041 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1042 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1043 /*
1044 * Mountpoint is outside root, discard that one. Ugly,
1045 * but less so than trying to do that in iterator in a
1046 * race-free way (due to renames).
1047 */
1048 return SEQ_SKIP;
1049 }
1050 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1051 show_mnt_opts(m, mnt);
1052
1053 /* Tagged fields ("foo:X" or "bar") */
1054 if (IS_MNT_SHARED(mnt))
1055 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1056 if (IS_MNT_SLAVE(mnt)) {
1057 int master = mnt->mnt_master->mnt_group_id;
1058 int dom = get_dominating_id(mnt, &p->root);
1059 seq_printf(m, " master:%i", master);
1060 if (dom && dom != master)
1061 seq_printf(m, " propagate_from:%i", dom);
1062 }
2d4d4864
RP
1063 if (IS_MNT_UNBINDABLE(mnt))
1064 seq_puts(m, " unbindable");
1065
93f1c20b
AK
1066 if (!uuid_is_nil(mnt->mnt_sb->s_uuid))
1067 /* print the uuid */
1068 seq_printf(m, " uuid:%pU", mnt->mnt_sb->s_uuid);
1069
2d4d4864
RP
1070 /* Filesystem specific data */
1071 seq_puts(m, " - ");
1072 show_type(m, sb);
1073 seq_putc(m, ' ');
c7f404b4
AV
1074 if (sb->s_op->show_devname)
1075 err = sb->s_op->show_devname(m, mnt);
1076 else
1077 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1078 if (err)
1079 goto out;
2d4d4864 1080 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1081 err = show_sb_opts(m, sb);
1082 if (err)
1083 goto out;
2d4d4864
RP
1084 if (sb->s_op->show_options)
1085 err = sb->s_op->show_options(m, mnt);
1086 seq_putc(m, '\n');
2069f457 1087out:
2d4d4864
RP
1088 return err;
1089}
1090
1091const struct seq_operations mountinfo_op = {
1092 .start = m_start,
1093 .next = m_next,
1094 .stop = m_stop,
1095 .show = show_mountinfo,
1096};
1097
b4629fe2
CL
1098static int show_vfsstat(struct seq_file *m, void *v)
1099{
b0765fb8 1100 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1101 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1102 int err = 0;
1103
1104 /* device */
c7f404b4
AV
1105 if (mnt->mnt_sb->s_op->show_devname) {
1106 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1107 } else {
1108 if (mnt->mnt_devname) {
1109 seq_puts(m, "device ");
1110 mangle(m, mnt->mnt_devname);
1111 } else
1112 seq_puts(m, "no device");
1113 }
b4629fe2
CL
1114
1115 /* mount point */
1116 seq_puts(m, " mounted on ");
c32c2f63 1117 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1118 seq_putc(m, ' ');
1119
1120 /* file system type */
1121 seq_puts(m, "with fstype ");
2d4d4864 1122 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1123
1124 /* optional statistics */
1125 if (mnt->mnt_sb->s_op->show_stats) {
1126 seq_putc(m, ' ');
c7f404b4
AV
1127 if (!err)
1128 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1129 }
1130
1131 seq_putc(m, '\n');
1132 return err;
1133}
1134
a1a2c409 1135const struct seq_operations mountstats_op = {
b4629fe2
CL
1136 .start = m_start,
1137 .next = m_next,
1138 .stop = m_stop,
1139 .show = show_vfsstat,
1140};
a1a2c409 1141#endif /* CONFIG_PROC_FS */
b4629fe2 1142
1da177e4
LT
1143/**
1144 * may_umount_tree - check if a mount tree is busy
1145 * @mnt: root of mount tree
1146 *
1147 * This is called to check if a tree of mounts has any
1148 * open files, pwds, chroots or sub mounts that are
1149 * busy.
1150 */
1151int may_umount_tree(struct vfsmount *mnt)
1152{
36341f64
RP
1153 int actual_refs = 0;
1154 int minimum_refs = 0;
1155 struct vfsmount *p;
1da177e4 1156
b3e19d92
NP
1157 /* write lock needed for mnt_get_count */
1158 br_write_lock(vfsmount_lock);
36341f64 1159 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1160 actual_refs += mnt_get_count(p);
1da177e4 1161 minimum_refs += 2;
1da177e4 1162 }
b3e19d92 1163 br_write_unlock(vfsmount_lock);
1da177e4
LT
1164
1165 if (actual_refs > minimum_refs)
e3474a8e 1166 return 0;
1da177e4 1167
e3474a8e 1168 return 1;
1da177e4
LT
1169}
1170
1171EXPORT_SYMBOL(may_umount_tree);
1172
1173/**
1174 * may_umount - check if a mount point is busy
1175 * @mnt: root of mount
1176 *
1177 * This is called to check if a mount point has any
1178 * open files, pwds, chroots or sub mounts. If the
1179 * mount has sub mounts this will return busy
1180 * regardless of whether the sub mounts are busy.
1181 *
1182 * Doesn't take quota and stuff into account. IOW, in some cases it will
1183 * give false negatives. The main reason why it's here is that we need
1184 * a non-destructive way to look for easily umountable filesystems.
1185 */
1186int may_umount(struct vfsmount *mnt)
1187{
e3474a8e 1188 int ret = 1;
8ad08d8a 1189 down_read(&namespace_sem);
b3e19d92 1190 br_write_lock(vfsmount_lock);
a05964f3 1191 if (propagate_mount_busy(mnt, 2))
e3474a8e 1192 ret = 0;
b3e19d92 1193 br_write_unlock(vfsmount_lock);
8ad08d8a 1194 up_read(&namespace_sem);
a05964f3 1195 return ret;
1da177e4
LT
1196}
1197
1198EXPORT_SYMBOL(may_umount);
1199
b90fa9ae 1200void release_mounts(struct list_head *head)
70fbcdf4
RP
1201{
1202 struct vfsmount *mnt;
bf066c7d 1203 while (!list_empty(head)) {
b5e61818 1204 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1205 list_del_init(&mnt->mnt_hash);
1206 if (mnt->mnt_parent != mnt) {
1207 struct dentry *dentry;
1208 struct vfsmount *m;
99b7db7b
NP
1209
1210 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1211 dentry = mnt->mnt_mountpoint;
1212 m = mnt->mnt_parent;
1213 mnt->mnt_mountpoint = mnt->mnt_root;
1214 mnt->mnt_parent = mnt;
7c4b93d8 1215 m->mnt_ghosts--;
99b7db7b 1216 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1217 dput(dentry);
1218 mntput(m);
1219 }
f03c6599 1220 mntput(mnt);
70fbcdf4
RP
1221 }
1222}
1223
99b7db7b
NP
1224/*
1225 * vfsmount lock must be held for write
1226 * namespace_sem must be held for write
1227 */
a05964f3 1228void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1229{
7b8a53fd 1230 LIST_HEAD(tmp_list);
1da177e4 1231 struct vfsmount *p;
1da177e4 1232
1bfba4e8 1233 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1234 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1235
a05964f3 1236 if (propagate)
7b8a53fd 1237 propagate_umount(&tmp_list);
a05964f3 1238
7b8a53fd 1239 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1240 list_del_init(&p->mnt_expire);
1241 list_del_init(&p->mnt_list);
6b3286ed
KK
1242 __touch_mnt_namespace(p->mnt_ns);
1243 p->mnt_ns = NULL;
7e3d0eb0 1244 __mnt_make_shortterm(p);
70fbcdf4 1245 list_del_init(&p->mnt_child);
7c4b93d8
AV
1246 if (p->mnt_parent != p) {
1247 p->mnt_parent->mnt_ghosts++;
5f57cbcc 1248 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
7c4b93d8 1249 }
a05964f3 1250 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1251 }
7b8a53fd 1252 list_splice(&tmp_list, kill);
1da177e4
LT
1253}
1254
c35038be
AV
1255static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1256
1da177e4
LT
1257static int do_umount(struct vfsmount *mnt, int flags)
1258{
b58fed8b 1259 struct super_block *sb = mnt->mnt_sb;
1da177e4 1260 int retval;
70fbcdf4 1261 LIST_HEAD(umount_list);
1da177e4
LT
1262
1263 retval = security_sb_umount(mnt, flags);
1264 if (retval)
1265 return retval;
1266
1267 /*
1268 * Allow userspace to request a mountpoint be expired rather than
1269 * unmounting unconditionally. Unmount only happens if:
1270 * (1) the mark is already set (the mark is cleared by mntput())
1271 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1272 */
1273 if (flags & MNT_EXPIRE) {
6ac08c39 1274 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1275 flags & (MNT_FORCE | MNT_DETACH))
1276 return -EINVAL;
1277
b3e19d92
NP
1278 /*
1279 * probably don't strictly need the lock here if we examined
1280 * all race cases, but it's a slowpath.
1281 */
1282 br_write_lock(vfsmount_lock);
1283 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1284 br_write_unlock(vfsmount_lock);
1da177e4 1285 return -EBUSY;
b3e19d92
NP
1286 }
1287 br_write_unlock(vfsmount_lock);
1da177e4
LT
1288
1289 if (!xchg(&mnt->mnt_expiry_mark, 1))
1290 return -EAGAIN;
1291 }
1292
1293 /*
1294 * If we may have to abort operations to get out of this
1295 * mount, and they will themselves hold resources we must
1296 * allow the fs to do things. In the Unix tradition of
1297 * 'Gee thats tricky lets do it in userspace' the umount_begin
1298 * might fail to complete on the first run through as other tasks
1299 * must return, and the like. Thats for the mount program to worry
1300 * about for the moment.
1301 */
1302
42faad99 1303 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1304 sb->s_op->umount_begin(sb);
42faad99 1305 }
1da177e4
LT
1306
1307 /*
1308 * No sense to grab the lock for this test, but test itself looks
1309 * somewhat bogus. Suggestions for better replacement?
1310 * Ho-hum... In principle, we might treat that as umount + switch
1311 * to rootfs. GC would eventually take care of the old vfsmount.
1312 * Actually it makes sense, especially if rootfs would contain a
1313 * /reboot - static binary that would close all descriptors and
1314 * call reboot(9). Then init(8) could umount root and exec /reboot.
1315 */
6ac08c39 1316 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1317 /*
1318 * Special case for "unmounting" root ...
1319 * we just try to remount it readonly.
1320 */
1321 down_write(&sb->s_umount);
4aa98cf7 1322 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1323 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1324 up_write(&sb->s_umount);
1325 return retval;
1326 }
1327
390c6843 1328 down_write(&namespace_sem);
99b7db7b 1329 br_write_lock(vfsmount_lock);
5addc5dd 1330 event++;
1da177e4 1331
c35038be
AV
1332 if (!(flags & MNT_DETACH))
1333 shrink_submounts(mnt, &umount_list);
1334
1da177e4 1335 retval = -EBUSY;
a05964f3 1336 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1337 if (!list_empty(&mnt->mnt_list))
a05964f3 1338 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1339 retval = 0;
1340 }
99b7db7b 1341 br_write_unlock(vfsmount_lock);
390c6843 1342 up_write(&namespace_sem);
70fbcdf4 1343 release_mounts(&umount_list);
1da177e4
LT
1344 return retval;
1345}
1346
1347/*
1348 * Now umount can handle mount points as well as block devices.
1349 * This is important for filesystems which use unnamed block devices.
1350 *
1351 * We now support a flag for forced unmount like the other 'big iron'
1352 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1353 */
1354
bdc480e3 1355SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1356{
2d8f3038 1357 struct path path;
1da177e4 1358 int retval;
db1f05bb 1359 int lookup_flags = 0;
1da177e4 1360
db1f05bb
MS
1361 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1362 return -EINVAL;
1363
1364 if (!(flags & UMOUNT_NOFOLLOW))
1365 lookup_flags |= LOOKUP_FOLLOW;
1366
1367 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1368 if (retval)
1369 goto out;
1370 retval = -EINVAL;
2d8f3038 1371 if (path.dentry != path.mnt->mnt_root)
1da177e4 1372 goto dput_and_out;
2d8f3038 1373 if (!check_mnt(path.mnt))
1da177e4
LT
1374 goto dput_and_out;
1375
1376 retval = -EPERM;
1377 if (!capable(CAP_SYS_ADMIN))
1378 goto dput_and_out;
1379
2d8f3038 1380 retval = do_umount(path.mnt, flags);
1da177e4 1381dput_and_out:
429731b1 1382 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1383 dput(path.dentry);
1384 mntput_no_expire(path.mnt);
1da177e4
LT
1385out:
1386 return retval;
1387}
1388
1389#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1390
1391/*
b58fed8b 1392 * The 2.0 compatible umount. No flags.
1da177e4 1393 */
bdc480e3 1394SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1395{
b58fed8b 1396 return sys_umount(name, 0);
1da177e4
LT
1397}
1398
1399#endif
1400
2d92ab3c 1401static int mount_is_safe(struct path *path)
1da177e4
LT
1402{
1403 if (capable(CAP_SYS_ADMIN))
1404 return 0;
1405 return -EPERM;
1406#ifdef notyet
2d92ab3c 1407 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1408 return -EPERM;
2d92ab3c 1409 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1410 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1411 return -EPERM;
1412 }
2d92ab3c 1413 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1414 return -EPERM;
1415 return 0;
1416#endif
1417}
1418
b90fa9ae 1419struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1420 int flag)
1da177e4
LT
1421{
1422 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1423 struct path path;
1da177e4 1424
9676f0c6
RP
1425 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1426 return NULL;
1427
36341f64 1428 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1429 if (!q)
1430 goto Enomem;
1431 q->mnt_mountpoint = mnt->mnt_mountpoint;
1432
1433 p = mnt;
fdadd65f 1434 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1435 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1436 continue;
1437
1438 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1439 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1440 s = skip_mnt_tree(s);
1441 continue;
1442 }
1da177e4
LT
1443 while (p != s->mnt_parent) {
1444 p = p->mnt_parent;
1445 q = q->mnt_parent;
1446 }
1447 p = s;
1a390689
AV
1448 path.mnt = q;
1449 path.dentry = p->mnt_mountpoint;
36341f64 1450 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1451 if (!q)
1452 goto Enomem;
99b7db7b 1453 br_write_lock(vfsmount_lock);
1da177e4 1454 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1455 attach_mnt(q, &path);
99b7db7b 1456 br_write_unlock(vfsmount_lock);
1da177e4
LT
1457 }
1458 }
1459 return res;
b58fed8b 1460Enomem:
1da177e4 1461 if (res) {
70fbcdf4 1462 LIST_HEAD(umount_list);
99b7db7b 1463 br_write_lock(vfsmount_lock);
a05964f3 1464 umount_tree(res, 0, &umount_list);
99b7db7b 1465 br_write_unlock(vfsmount_lock);
70fbcdf4 1466 release_mounts(&umount_list);
1da177e4
LT
1467 }
1468 return NULL;
1469}
1470
589ff870 1471struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1472{
1473 struct vfsmount *tree;
1a60a280 1474 down_write(&namespace_sem);
589ff870 1475 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1476 up_write(&namespace_sem);
8aec0809
AV
1477 return tree;
1478}
1479
1480void drop_collected_mounts(struct vfsmount *mnt)
1481{
1482 LIST_HEAD(umount_list);
1a60a280 1483 down_write(&namespace_sem);
99b7db7b 1484 br_write_lock(vfsmount_lock);
8aec0809 1485 umount_tree(mnt, 0, &umount_list);
99b7db7b 1486 br_write_unlock(vfsmount_lock);
1a60a280 1487 up_write(&namespace_sem);
8aec0809
AV
1488 release_mounts(&umount_list);
1489}
1490
1f707137
AV
1491int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1492 struct vfsmount *root)
1493{
1494 struct vfsmount *mnt;
1495 int res = f(root, arg);
1496 if (res)
1497 return res;
1498 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1499 res = f(mnt, arg);
1500 if (res)
1501 return res;
1502 }
1503 return 0;
1504}
1505
719f5d7f
MS
1506static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1507{
1508 struct vfsmount *p;
1509
1510 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1511 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1512 mnt_release_group_id(p);
1513 }
1514}
1515
1516static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1517{
1518 struct vfsmount *p;
1519
1520 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1521 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1522 int err = mnt_alloc_group_id(p);
1523 if (err) {
1524 cleanup_group_ids(mnt, p);
1525 return err;
1526 }
1527 }
1528 }
1529
1530 return 0;
1531}
1532
b90fa9ae
RP
1533/*
1534 * @source_mnt : mount tree to be attached
21444403
RP
1535 * @nd : place the mount tree @source_mnt is attached
1536 * @parent_nd : if non-null, detach the source_mnt from its parent and
1537 * store the parent mount and mountpoint dentry.
1538 * (done when source_mnt is moved)
b90fa9ae
RP
1539 *
1540 * NOTE: in the table below explains the semantics when a source mount
1541 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1542 * ---------------------------------------------------------------------------
1543 * | BIND MOUNT OPERATION |
1544 * |**************************************************************************
1545 * | source-->| shared | private | slave | unbindable |
1546 * | dest | | | | |
1547 * | | | | | | |
1548 * | v | | | | |
1549 * |**************************************************************************
1550 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1551 * | | | | | |
1552 * |non-shared| shared (+) | private | slave (*) | invalid |
1553 * ***************************************************************************
b90fa9ae
RP
1554 * A bind operation clones the source mount and mounts the clone on the
1555 * destination mount.
1556 *
1557 * (++) the cloned mount is propagated to all the mounts in the propagation
1558 * tree of the destination mount and the cloned mount is added to
1559 * the peer group of the source mount.
1560 * (+) the cloned mount is created under the destination mount and is marked
1561 * as shared. The cloned mount is added to the peer group of the source
1562 * mount.
5afe0022
RP
1563 * (+++) the mount is propagated to all the mounts in the propagation tree
1564 * of the destination mount and the cloned mount is made slave
1565 * of the same master as that of the source mount. The cloned mount
1566 * is marked as 'shared and slave'.
1567 * (*) the cloned mount is made a slave of the same master as that of the
1568 * source mount.
1569 *
9676f0c6
RP
1570 * ---------------------------------------------------------------------------
1571 * | MOVE MOUNT OPERATION |
1572 * |**************************************************************************
1573 * | source-->| shared | private | slave | unbindable |
1574 * | dest | | | | |
1575 * | | | | | | |
1576 * | v | | | | |
1577 * |**************************************************************************
1578 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1579 * | | | | | |
1580 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1581 * ***************************************************************************
5afe0022
RP
1582 *
1583 * (+) the mount is moved to the destination. And is then propagated to
1584 * all the mounts in the propagation tree of the destination mount.
21444403 1585 * (+*) the mount is moved to the destination.
5afe0022
RP
1586 * (+++) the mount is moved to the destination and is then propagated to
1587 * all the mounts belonging to the destination mount's propagation tree.
1588 * the mount is marked as 'shared and slave'.
1589 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1590 *
1591 * if the source mount is a tree, the operations explained above is
1592 * applied to each mount in the tree.
1593 * Must be called without spinlocks held, since this function can sleep
1594 * in allocations.
1595 */
1596static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1597 struct path *path, struct path *parent_path)
b90fa9ae
RP
1598{
1599 LIST_HEAD(tree_list);
1a390689
AV
1600 struct vfsmount *dest_mnt = path->mnt;
1601 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1602 struct vfsmount *child, *p;
719f5d7f 1603 int err;
b90fa9ae 1604
719f5d7f
MS
1605 if (IS_MNT_SHARED(dest_mnt)) {
1606 err = invent_group_ids(source_mnt, true);
1607 if (err)
1608 goto out;
1609 }
1610 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1611 if (err)
1612 goto out_cleanup_ids;
b90fa9ae 1613
99b7db7b 1614 br_write_lock(vfsmount_lock);
df1a1ad2 1615
b90fa9ae
RP
1616 if (IS_MNT_SHARED(dest_mnt)) {
1617 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1618 set_mnt_shared(p);
1619 }
1a390689
AV
1620 if (parent_path) {
1621 detach_mnt(source_mnt, parent_path);
1622 attach_mnt(source_mnt, path);
e5d67f07 1623 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1624 } else {
1625 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1626 commit_tree(source_mnt);
1627 }
b90fa9ae
RP
1628
1629 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1630 list_del_init(&child->mnt_hash);
1631 commit_tree(child);
1632 }
99b7db7b
NP
1633 br_write_unlock(vfsmount_lock);
1634
b90fa9ae 1635 return 0;
719f5d7f
MS
1636
1637 out_cleanup_ids:
1638 if (IS_MNT_SHARED(dest_mnt))
1639 cleanup_group_ids(source_mnt, NULL);
1640 out:
1641 return err;
b90fa9ae
RP
1642}
1643
8c3ee42e 1644static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1645{
1646 int err;
1647 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1648 return -EINVAL;
1649
8c3ee42e 1650 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1651 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1652 return -ENOTDIR;
1653
1654 err = -ENOENT;
8c3ee42e 1655 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1656 if (cant_mount(path->dentry))
1da177e4
LT
1657 goto out_unlock;
1658
f3da392e 1659 if (!d_unlinked(path->dentry))
8c3ee42e 1660 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1661out_unlock:
8c3ee42e 1662 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1663 return err;
1664}
1665
7a2e8a8f
VA
1666/*
1667 * Sanity check the flags to change_mnt_propagation.
1668 */
1669
1670static int flags_to_propagation_type(int flags)
1671{
1672 int type = flags & ~MS_REC;
1673
1674 /* Fail if any non-propagation flags are set */
1675 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1676 return 0;
1677 /* Only one propagation flag should be set */
1678 if (!is_power_of_2(type))
1679 return 0;
1680 return type;
1681}
1682
07b20889
RP
1683/*
1684 * recursively change the type of the mountpoint.
1685 */
0a0d8a46 1686static int do_change_type(struct path *path, int flag)
07b20889 1687{
2d92ab3c 1688 struct vfsmount *m, *mnt = path->mnt;
07b20889 1689 int recurse = flag & MS_REC;
7a2e8a8f 1690 int type;
719f5d7f 1691 int err = 0;
07b20889 1692
ee6f9582
MS
1693 if (!capable(CAP_SYS_ADMIN))
1694 return -EPERM;
1695
2d92ab3c 1696 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1697 return -EINVAL;
1698
7a2e8a8f
VA
1699 type = flags_to_propagation_type(flag);
1700 if (!type)
1701 return -EINVAL;
1702
07b20889 1703 down_write(&namespace_sem);
719f5d7f
MS
1704 if (type == MS_SHARED) {
1705 err = invent_group_ids(mnt, recurse);
1706 if (err)
1707 goto out_unlock;
1708 }
1709
99b7db7b 1710 br_write_lock(vfsmount_lock);
07b20889
RP
1711 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1712 change_mnt_propagation(m, type);
99b7db7b 1713 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1714
1715 out_unlock:
07b20889 1716 up_write(&namespace_sem);
719f5d7f 1717 return err;
07b20889
RP
1718}
1719
1da177e4
LT
1720/*
1721 * do loopback mount.
1722 */
0a0d8a46 1723static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1724 int recurse)
1da177e4 1725{
2d92ab3c 1726 struct path old_path;
1da177e4 1727 struct vfsmount *mnt = NULL;
2d92ab3c 1728 int err = mount_is_safe(path);
1da177e4
LT
1729 if (err)
1730 return err;
1731 if (!old_name || !*old_name)
1732 return -EINVAL;
2d92ab3c 1733 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1734 if (err)
1735 return err;
1736
390c6843 1737 down_write(&namespace_sem);
1da177e4 1738 err = -EINVAL;
2d92ab3c 1739 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1740 goto out;
9676f0c6 1741
2d92ab3c 1742 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1743 goto out;
1da177e4 1744
ccd48bc7
AV
1745 err = -ENOMEM;
1746 if (recurse)
2d92ab3c 1747 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1748 else
2d92ab3c 1749 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1750
1751 if (!mnt)
1752 goto out;
1753
2d92ab3c 1754 err = graft_tree(mnt, path);
ccd48bc7 1755 if (err) {
70fbcdf4 1756 LIST_HEAD(umount_list);
99b7db7b
NP
1757
1758 br_write_lock(vfsmount_lock);
a05964f3 1759 umount_tree(mnt, 0, &umount_list);
99b7db7b 1760 br_write_unlock(vfsmount_lock);
70fbcdf4 1761 release_mounts(&umount_list);
5b83d2c5 1762 }
1da177e4 1763
ccd48bc7 1764out:
390c6843 1765 up_write(&namespace_sem);
2d92ab3c 1766 path_put(&old_path);
1da177e4
LT
1767 return err;
1768}
1769
2e4b7fcd
DH
1770static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1771{
1772 int error = 0;
1773 int readonly_request = 0;
1774
1775 if (ms_flags & MS_RDONLY)
1776 readonly_request = 1;
1777 if (readonly_request == __mnt_is_readonly(mnt))
1778 return 0;
1779
1780 if (readonly_request)
1781 error = mnt_make_readonly(mnt);
1782 else
1783 __mnt_unmake_readonly(mnt);
1784 return error;
1785}
1786
1da177e4
LT
1787/*
1788 * change filesystem flags. dir should be a physical root of filesystem.
1789 * If you've mounted a non-root directory somewhere and want to do remount
1790 * on it - tough luck.
1791 */
0a0d8a46 1792static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1793 void *data)
1794{
1795 int err;
2d92ab3c 1796 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1797
1798 if (!capable(CAP_SYS_ADMIN))
1799 return -EPERM;
1800
2d92ab3c 1801 if (!check_mnt(path->mnt))
1da177e4
LT
1802 return -EINVAL;
1803
2d92ab3c 1804 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1805 return -EINVAL;
1806
1807 down_write(&sb->s_umount);
2e4b7fcd 1808 if (flags & MS_BIND)
2d92ab3c 1809 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1810 else
2e4b7fcd 1811 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1812 if (!err) {
99b7db7b 1813 br_write_lock(vfsmount_lock);
495d6c9c 1814 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1815 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1816 br_write_unlock(vfsmount_lock);
7b43a79f 1817 }
1da177e4 1818 up_write(&sb->s_umount);
0e55a7cc 1819 if (!err) {
99b7db7b 1820 br_write_lock(vfsmount_lock);
0e55a7cc 1821 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1822 br_write_unlock(vfsmount_lock);
0e55a7cc 1823 }
1da177e4
LT
1824 return err;
1825}
1826
9676f0c6
RP
1827static inline int tree_contains_unbindable(struct vfsmount *mnt)
1828{
1829 struct vfsmount *p;
1830 for (p = mnt; p; p = next_mnt(p, mnt)) {
1831 if (IS_MNT_UNBINDABLE(p))
1832 return 1;
1833 }
1834 return 0;
1835}
1836
0a0d8a46 1837static int do_move_mount(struct path *path, char *old_name)
1da177e4 1838{
2d92ab3c 1839 struct path old_path, parent_path;
1da177e4
LT
1840 struct vfsmount *p;
1841 int err = 0;
1842 if (!capable(CAP_SYS_ADMIN))
1843 return -EPERM;
1844 if (!old_name || !*old_name)
1845 return -EINVAL;
2d92ab3c 1846 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1847 if (err)
1848 return err;
1849
390c6843 1850 down_write(&namespace_sem);
cc53ce53
DH
1851 err = follow_down(path, true);
1852 if (err < 0)
1853 goto out;
1854
1da177e4 1855 err = -EINVAL;
2d92ab3c 1856 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1857 goto out;
1858
1859 err = -ENOENT;
2d92ab3c 1860 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1861 if (cant_mount(path->dentry))
1da177e4
LT
1862 goto out1;
1863
f3da392e 1864 if (d_unlinked(path->dentry))
21444403 1865 goto out1;
1da177e4
LT
1866
1867 err = -EINVAL;
2d92ab3c 1868 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1869 goto out1;
1da177e4 1870
2d92ab3c 1871 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1872 goto out1;
1da177e4 1873
2d92ab3c
AV
1874 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1875 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1876 goto out1;
1877 /*
1878 * Don't move a mount residing in a shared parent.
1879 */
2d92ab3c
AV
1880 if (old_path.mnt->mnt_parent &&
1881 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1882 goto out1;
9676f0c6
RP
1883 /*
1884 * Don't move a mount tree containing unbindable mounts to a destination
1885 * mount which is shared.
1886 */
2d92ab3c
AV
1887 if (IS_MNT_SHARED(path->mnt) &&
1888 tree_contains_unbindable(old_path.mnt))
9676f0c6 1889 goto out1;
1da177e4 1890 err = -ELOOP;
2d92ab3c
AV
1891 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1892 if (p == old_path.mnt)
21444403 1893 goto out1;
1da177e4 1894
2d92ab3c 1895 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1896 if (err)
21444403 1897 goto out1;
1da177e4
LT
1898
1899 /* if the mount is moved, it should no longer be expire
1900 * automatically */
2d92ab3c 1901 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1902out1:
2d92ab3c 1903 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1904out:
390c6843 1905 up_write(&namespace_sem);
1da177e4 1906 if (!err)
1a390689 1907 path_put(&parent_path);
2d92ab3c 1908 path_put(&old_path);
1da177e4
LT
1909 return err;
1910}
1911
b1e75df4
AV
1912static int do_add_mount(struct vfsmount *, struct path *, int);
1913
1da177e4
LT
1914/*
1915 * create a new mount for userspace and request it to be added into the
1916 * namespace's tree
1917 */
0a0d8a46 1918static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1919 int mnt_flags, char *name, void *data)
1920{
1921 struct vfsmount *mnt;
15f9a3f3 1922 int err;
1da177e4 1923
eca6f534 1924 if (!type)
1da177e4
LT
1925 return -EINVAL;
1926
1927 /* we need capabilities... */
1928 if (!capable(CAP_SYS_ADMIN))
1929 return -EPERM;
1930
1931 mnt = do_kern_mount(type, flags, name, data);
1932 if (IS_ERR(mnt))
1933 return PTR_ERR(mnt);
1934
15f9a3f3
AV
1935 err = do_add_mount(mnt, path, mnt_flags);
1936 if (err)
1937 mntput(mnt);
1938 return err;
1da177e4
LT
1939}
1940
19a167af
AV
1941int finish_automount(struct vfsmount *m, struct path *path)
1942{
1943 int err;
1944 /* The new mount record should have at least 2 refs to prevent it being
1945 * expired before we get a chance to add it
1946 */
1947 BUG_ON(mnt_get_count(m) < 2);
1948
1949 if (m->mnt_sb == path->mnt->mnt_sb &&
1950 m->mnt_root == path->dentry) {
b1e75df4
AV
1951 err = -ELOOP;
1952 goto fail;
19a167af
AV
1953 }
1954
19a167af 1955 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1956 if (!err)
1957 return 0;
1958fail:
1959 /* remove m from any expiration list it may be on */
1960 if (!list_empty(&m->mnt_expire)) {
1961 down_write(&namespace_sem);
1962 br_write_lock(vfsmount_lock);
1963 list_del_init(&m->mnt_expire);
1964 br_write_unlock(vfsmount_lock);
1965 up_write(&namespace_sem);
19a167af 1966 }
b1e75df4
AV
1967 mntput(m);
1968 mntput(m);
19a167af
AV
1969 return err;
1970}
1971
1da177e4
LT
1972/*
1973 * add a mount into a namespace's mount tree
1da177e4 1974 */
b1e75df4 1975static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1da177e4
LT
1976{
1977 int err;
1978
8089352a 1979 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1980
390c6843 1981 down_write(&namespace_sem);
1da177e4 1982 /* Something was mounted here while we slept */
cc53ce53
DH
1983 err = follow_down(path, true);
1984 if (err < 0)
1985 goto unlock;
1986
1da177e4 1987 err = -EINVAL;
dd5cae6e 1988 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1989 goto unlock;
1990
1991 /* Refuse the same filesystem on the same mount point */
1992 err = -EBUSY;
8d66bf54
AV
1993 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1994 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1995 goto unlock;
1996
1997 err = -EINVAL;
1998 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1999 goto unlock;
2000
2001 newmnt->mnt_flags = mnt_flags;
b1e75df4 2002 err = graft_tree(newmnt, path);
1da177e4
LT
2003
2004unlock:
390c6843 2005 up_write(&namespace_sem);
1da177e4
LT
2006 return err;
2007}
2008
ea5b778a
DH
2009/**
2010 * mnt_set_expiry - Put a mount on an expiration list
2011 * @mnt: The mount to list.
2012 * @expiry_list: The list to add the mount to.
2013 */
2014void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2015{
2016 down_write(&namespace_sem);
2017 br_write_lock(vfsmount_lock);
2018
2019 list_add_tail(&mnt->mnt_expire, expiry_list);
2020
2021 br_write_unlock(vfsmount_lock);
2022 up_write(&namespace_sem);
2023}
2024EXPORT_SYMBOL(mnt_set_expiry);
2025
1da177e4
LT
2026/*
2027 * process a list of expirable mountpoints with the intent of discarding any
2028 * mountpoints that aren't in use and haven't been touched since last we came
2029 * here
2030 */
2031void mark_mounts_for_expiry(struct list_head *mounts)
2032{
1da177e4
LT
2033 struct vfsmount *mnt, *next;
2034 LIST_HEAD(graveyard);
bcc5c7d2 2035 LIST_HEAD(umounts);
1da177e4
LT
2036
2037 if (list_empty(mounts))
2038 return;
2039
bcc5c7d2 2040 down_write(&namespace_sem);
99b7db7b 2041 br_write_lock(vfsmount_lock);
1da177e4
LT
2042
2043 /* extract from the expiration list every vfsmount that matches the
2044 * following criteria:
2045 * - only referenced by its parent vfsmount
2046 * - still marked for expiry (marked on the last call here; marks are
2047 * cleared by mntput())
2048 */
55e700b9 2049 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2050 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2051 propagate_mount_busy(mnt, 1))
1da177e4 2052 continue;
55e700b9 2053 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2054 }
bcc5c7d2
AV
2055 while (!list_empty(&graveyard)) {
2056 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2057 touch_mnt_namespace(mnt->mnt_ns);
2058 umount_tree(mnt, 1, &umounts);
2059 }
99b7db7b 2060 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2061 up_write(&namespace_sem);
2062
2063 release_mounts(&umounts);
5528f911
TM
2064}
2065
2066EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2067
2068/*
2069 * Ripoff of 'select_parent()'
2070 *
2071 * search the list of submounts for a given mountpoint, and move any
2072 * shrinkable submounts to the 'graveyard' list.
2073 */
2074static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2075{
2076 struct vfsmount *this_parent = parent;
2077 struct list_head *next;
2078 int found = 0;
2079
2080repeat:
2081 next = this_parent->mnt_mounts.next;
2082resume:
2083 while (next != &this_parent->mnt_mounts) {
2084 struct list_head *tmp = next;
2085 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2086
2087 next = tmp->next;
2088 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2089 continue;
5528f911
TM
2090 /*
2091 * Descend a level if the d_mounts list is non-empty.
2092 */
2093 if (!list_empty(&mnt->mnt_mounts)) {
2094 this_parent = mnt;
2095 goto repeat;
2096 }
1da177e4 2097
5528f911 2098 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2099 list_move_tail(&mnt->mnt_expire, graveyard);
2100 found++;
2101 }
1da177e4 2102 }
5528f911
TM
2103 /*
2104 * All done at this level ... ascend and resume the search
2105 */
2106 if (this_parent != parent) {
2107 next = this_parent->mnt_child.next;
2108 this_parent = this_parent->mnt_parent;
2109 goto resume;
2110 }
2111 return found;
2112}
2113
2114/*
2115 * process a list of expirable mountpoints with the intent of discarding any
2116 * submounts of a specific parent mountpoint
99b7db7b
NP
2117 *
2118 * vfsmount_lock must be held for write
5528f911 2119 */
c35038be 2120static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2121{
2122 LIST_HEAD(graveyard);
c35038be 2123 struct vfsmount *m;
5528f911 2124
5528f911 2125 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2126 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2127 while (!list_empty(&graveyard)) {
c35038be 2128 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2129 mnt_expire);
afef80b3
EB
2130 touch_mnt_namespace(m->mnt_ns);
2131 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2132 }
2133 }
1da177e4
LT
2134}
2135
1da177e4
LT
2136/*
2137 * Some copy_from_user() implementations do not return the exact number of
2138 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2139 * Note that this function differs from copy_from_user() in that it will oops
2140 * on bad values of `to', rather than returning a short copy.
2141 */
b58fed8b
RP
2142static long exact_copy_from_user(void *to, const void __user * from,
2143 unsigned long n)
1da177e4
LT
2144{
2145 char *t = to;
2146 const char __user *f = from;
2147 char c;
2148
2149 if (!access_ok(VERIFY_READ, from, n))
2150 return n;
2151
2152 while (n) {
2153 if (__get_user(c, f)) {
2154 memset(t, 0, n);
2155 break;
2156 }
2157 *t++ = c;
2158 f++;
2159 n--;
2160 }
2161 return n;
2162}
2163
b58fed8b 2164int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2165{
2166 int i;
2167 unsigned long page;
2168 unsigned long size;
b58fed8b 2169
1da177e4
LT
2170 *where = 0;
2171 if (!data)
2172 return 0;
2173
2174 if (!(page = __get_free_page(GFP_KERNEL)))
2175 return -ENOMEM;
2176
2177 /* We only care that *some* data at the address the user
2178 * gave us is valid. Just in case, we'll zero
2179 * the remainder of the page.
2180 */
2181 /* copy_from_user cannot cross TASK_SIZE ! */
2182 size = TASK_SIZE - (unsigned long)data;
2183 if (size > PAGE_SIZE)
2184 size = PAGE_SIZE;
2185
2186 i = size - exact_copy_from_user((void *)page, data, size);
2187 if (!i) {
b58fed8b 2188 free_page(page);
1da177e4
LT
2189 return -EFAULT;
2190 }
2191 if (i != PAGE_SIZE)
2192 memset((char *)page + i, 0, PAGE_SIZE - i);
2193 *where = page;
2194 return 0;
2195}
2196
eca6f534
VN
2197int copy_mount_string(const void __user *data, char **where)
2198{
2199 char *tmp;
2200
2201 if (!data) {
2202 *where = NULL;
2203 return 0;
2204 }
2205
2206 tmp = strndup_user(data, PAGE_SIZE);
2207 if (IS_ERR(tmp))
2208 return PTR_ERR(tmp);
2209
2210 *where = tmp;
2211 return 0;
2212}
2213
1da177e4
LT
2214/*
2215 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2216 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2217 *
2218 * data is a (void *) that can point to any structure up to
2219 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2220 * information (or be NULL).
2221 *
2222 * Pre-0.97 versions of mount() didn't have a flags word.
2223 * When the flags word was introduced its top half was required
2224 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2225 * Therefore, if this magic number is present, it carries no information
2226 * and must be discarded.
2227 */
b58fed8b 2228long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2229 unsigned long flags, void *data_page)
2230{
2d92ab3c 2231 struct path path;
1da177e4
LT
2232 int retval = 0;
2233 int mnt_flags = 0;
2234
2235 /* Discard magic */
2236 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2237 flags &= ~MS_MGC_MSK;
2238
2239 /* Basic sanity checks */
2240
2241 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2242 return -EINVAL;
1da177e4
LT
2243
2244 if (data_page)
2245 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2246
a27ab9f2
TH
2247 /* ... and get the mountpoint */
2248 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2249 if (retval)
2250 return retval;
2251
2252 retval = security_sb_mount(dev_name, &path,
2253 type_page, flags, data_page);
2254 if (retval)
2255 goto dput_out;
2256
613cbe3d
AK
2257 /* Default to relatime unless overriden */
2258 if (!(flags & MS_NOATIME))
2259 mnt_flags |= MNT_RELATIME;
0a1c01c9 2260
1da177e4
LT
2261 /* Separate the per-mountpoint flags */
2262 if (flags & MS_NOSUID)
2263 mnt_flags |= MNT_NOSUID;
2264 if (flags & MS_NODEV)
2265 mnt_flags |= MNT_NODEV;
2266 if (flags & MS_NOEXEC)
2267 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2268 if (flags & MS_NOATIME)
2269 mnt_flags |= MNT_NOATIME;
2270 if (flags & MS_NODIRATIME)
2271 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2272 if (flags & MS_STRICTATIME)
2273 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2274 if (flags & MS_RDONLY)
2275 mnt_flags |= MNT_READONLY;
fc33a7bb 2276
7a4dec53 2277 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2278 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2279 MS_STRICTATIME);
1da177e4 2280
1da177e4 2281 if (flags & MS_REMOUNT)
2d92ab3c 2282 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2283 data_page);
2284 else if (flags & MS_BIND)
2d92ab3c 2285 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2286 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2287 retval = do_change_type(&path, flags);
1da177e4 2288 else if (flags & MS_MOVE)
2d92ab3c 2289 retval = do_move_mount(&path, dev_name);
1da177e4 2290 else
2d92ab3c 2291 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2292 dev_name, data_page);
2293dput_out:
2d92ab3c 2294 path_put(&path);
1da177e4
LT
2295 return retval;
2296}
2297
cf8d2c11
TM
2298static struct mnt_namespace *alloc_mnt_ns(void)
2299{
2300 struct mnt_namespace *new_ns;
2301
2302 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2303 if (!new_ns)
2304 return ERR_PTR(-ENOMEM);
2305 atomic_set(&new_ns->count, 1);
2306 new_ns->root = NULL;
2307 INIT_LIST_HEAD(&new_ns->list);
2308 init_waitqueue_head(&new_ns->poll);
2309 new_ns->event = 0;
2310 return new_ns;
2311}
2312
f03c6599
AV
2313void mnt_make_longterm(struct vfsmount *mnt)
2314{
7e3d0eb0 2315 __mnt_make_longterm(mnt);
f03c6599
AV
2316}
2317
2318void mnt_make_shortterm(struct vfsmount *mnt)
2319{
7e3d0eb0 2320#ifdef CONFIG_SMP
f03c6599
AV
2321 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2322 return;
2323 br_write_lock(vfsmount_lock);
2324 atomic_dec(&mnt->mnt_longterm);
2325 br_write_unlock(vfsmount_lock);
7e3d0eb0 2326#endif
f03c6599
AV
2327}
2328
741a2951
JD
2329/*
2330 * Allocate a new namespace structure and populate it with contents
2331 * copied from the namespace of the passed in task structure.
2332 */
e3222c4e 2333static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2334 struct fs_struct *fs)
1da177e4 2335{
6b3286ed 2336 struct mnt_namespace *new_ns;
7f2da1e7 2337 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2338 struct vfsmount *p, *q;
2339
cf8d2c11
TM
2340 new_ns = alloc_mnt_ns();
2341 if (IS_ERR(new_ns))
2342 return new_ns;
1da177e4 2343
390c6843 2344 down_write(&namespace_sem);
1da177e4 2345 /* First pass: copy the tree topology */
6b3286ed 2346 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2347 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2348 if (!new_ns->root) {
390c6843 2349 up_write(&namespace_sem);
1da177e4 2350 kfree(new_ns);
5cc4a034 2351 return ERR_PTR(-ENOMEM);
1da177e4 2352 }
99b7db7b 2353 br_write_lock(vfsmount_lock);
1da177e4 2354 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2355 br_write_unlock(vfsmount_lock);
1da177e4
LT
2356
2357 /*
2358 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2359 * as belonging to new namespace. We have already acquired a private
2360 * fs_struct, so tsk->fs->lock is not needed.
2361 */
6b3286ed 2362 p = mnt_ns->root;
1da177e4
LT
2363 q = new_ns->root;
2364 while (p) {
6b3286ed 2365 q->mnt_ns = new_ns;
7e3d0eb0 2366 __mnt_make_longterm(q);
1da177e4 2367 if (fs) {
6ac08c39 2368 if (p == fs->root.mnt) {
f03c6599 2369 fs->root.mnt = mntget(q);
7e3d0eb0 2370 __mnt_make_longterm(q);
f03c6599 2371 mnt_make_shortterm(p);
1da177e4 2372 rootmnt = p;
1da177e4 2373 }
6ac08c39 2374 if (p == fs->pwd.mnt) {
f03c6599 2375 fs->pwd.mnt = mntget(q);
7e3d0eb0 2376 __mnt_make_longterm(q);
f03c6599 2377 mnt_make_shortterm(p);
1da177e4 2378 pwdmnt = p;
1da177e4 2379 }
1da177e4 2380 }
6b3286ed 2381 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2382 q = next_mnt(q, new_ns->root);
2383 }
390c6843 2384 up_write(&namespace_sem);
1da177e4 2385
1da177e4 2386 if (rootmnt)
f03c6599 2387 mntput(rootmnt);
1da177e4 2388 if (pwdmnt)
f03c6599 2389 mntput(pwdmnt);
1da177e4 2390
741a2951
JD
2391 return new_ns;
2392}
2393
213dd266 2394struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2395 struct fs_struct *new_fs)
741a2951 2396{
6b3286ed 2397 struct mnt_namespace *new_ns;
741a2951 2398
e3222c4e 2399 BUG_ON(!ns);
6b3286ed 2400 get_mnt_ns(ns);
741a2951
JD
2401
2402 if (!(flags & CLONE_NEWNS))
e3222c4e 2403 return ns;
741a2951 2404
e3222c4e 2405 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2406
6b3286ed 2407 put_mnt_ns(ns);
e3222c4e 2408 return new_ns;
1da177e4
LT
2409}
2410
cf8d2c11
TM
2411/**
2412 * create_mnt_ns - creates a private namespace and adds a root filesystem
2413 * @mnt: pointer to the new root filesystem mountpoint
2414 */
a2770d86 2415struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2416{
2417 struct mnt_namespace *new_ns;
2418
2419 new_ns = alloc_mnt_ns();
2420 if (!IS_ERR(new_ns)) {
2421 mnt->mnt_ns = new_ns;
7e3d0eb0 2422 __mnt_make_longterm(mnt);
cf8d2c11
TM
2423 new_ns->root = mnt;
2424 list_add(&new_ns->list, &new_ns->root->mnt_list);
2425 }
2426 return new_ns;
2427}
a2770d86 2428EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2429
bdc480e3
HC
2430SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2431 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2432{
eca6f534
VN
2433 int ret;
2434 char *kernel_type;
2435 char *kernel_dir;
2436 char *kernel_dev;
1da177e4 2437 unsigned long data_page;
1da177e4 2438
eca6f534
VN
2439 ret = copy_mount_string(type, &kernel_type);
2440 if (ret < 0)
2441 goto out_type;
1da177e4 2442
eca6f534
VN
2443 kernel_dir = getname(dir_name);
2444 if (IS_ERR(kernel_dir)) {
2445 ret = PTR_ERR(kernel_dir);
2446 goto out_dir;
2447 }
1da177e4 2448
eca6f534
VN
2449 ret = copy_mount_string(dev_name, &kernel_dev);
2450 if (ret < 0)
2451 goto out_dev;
1da177e4 2452
eca6f534
VN
2453 ret = copy_mount_options(data, &data_page);
2454 if (ret < 0)
2455 goto out_data;
1da177e4 2456
eca6f534
VN
2457 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2458 (void *) data_page);
1da177e4 2459
eca6f534
VN
2460 free_page(data_page);
2461out_data:
2462 kfree(kernel_dev);
2463out_dev:
2464 putname(kernel_dir);
2465out_dir:
2466 kfree(kernel_type);
2467out_type:
2468 return ret;
1da177e4
LT
2469}
2470
1da177e4
LT
2471/*
2472 * pivot_root Semantics:
2473 * Moves the root file system of the current process to the directory put_old,
2474 * makes new_root as the new root file system of the current process, and sets
2475 * root/cwd of all processes which had them on the current root to new_root.
2476 *
2477 * Restrictions:
2478 * The new_root and put_old must be directories, and must not be on the
2479 * same file system as the current process root. The put_old must be
2480 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2481 * pointed to by put_old must yield the same directory as new_root. No other
2482 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2483 *
4a0d11fa
NB
2484 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2485 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2486 * in this situation.
2487 *
1da177e4
LT
2488 * Notes:
2489 * - we don't move root/cwd if they are not at the root (reason: if something
2490 * cared enough to change them, it's probably wrong to force them elsewhere)
2491 * - it's okay to pick a root that isn't the root of a file system, e.g.
2492 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2493 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2494 * first.
2495 */
3480b257
HC
2496SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2497 const char __user *, put_old)
1da177e4
LT
2498{
2499 struct vfsmount *tmp;
2d8f3038 2500 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2501 int error;
2502
2503 if (!capable(CAP_SYS_ADMIN))
2504 return -EPERM;
2505
2d8f3038 2506 error = user_path_dir(new_root, &new);
1da177e4
LT
2507 if (error)
2508 goto out0;
2509 error = -EINVAL;
2d8f3038 2510 if (!check_mnt(new.mnt))
1da177e4
LT
2511 goto out1;
2512
2d8f3038 2513 error = user_path_dir(put_old, &old);
1da177e4
LT
2514 if (error)
2515 goto out1;
2516
2d8f3038 2517 error = security_sb_pivotroot(&old, &new);
1da177e4 2518 if (error) {
2d8f3038 2519 path_put(&old);
1da177e4
LT
2520 goto out1;
2521 }
2522
f7ad3c6b 2523 get_fs_root(current->fs, &root);
390c6843 2524 down_write(&namespace_sem);
2d8f3038 2525 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2526 error = -EINVAL;
2d8f3038
AV
2527 if (IS_MNT_SHARED(old.mnt) ||
2528 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2529 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2530 goto out2;
8c3ee42e 2531 if (!check_mnt(root.mnt))
1da177e4
LT
2532 goto out2;
2533 error = -ENOENT;
d83c49f3 2534 if (cant_mount(old.dentry))
1da177e4 2535 goto out2;
f3da392e 2536 if (d_unlinked(new.dentry))
1da177e4 2537 goto out2;
f3da392e 2538 if (d_unlinked(old.dentry))
1da177e4
LT
2539 goto out2;
2540 error = -EBUSY;
2d8f3038
AV
2541 if (new.mnt == root.mnt ||
2542 old.mnt == root.mnt)
1da177e4
LT
2543 goto out2; /* loop, on the same file system */
2544 error = -EINVAL;
8c3ee42e 2545 if (root.mnt->mnt_root != root.dentry)
1da177e4 2546 goto out2; /* not a mountpoint */
8c3ee42e 2547 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2548 goto out2; /* not attached */
2d8f3038 2549 if (new.mnt->mnt_root != new.dentry)
1da177e4 2550 goto out2; /* not a mountpoint */
2d8f3038 2551 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2552 goto out2; /* not attached */
4ac91378 2553 /* make sure we can reach put_old from new_root */
2d8f3038 2554 tmp = old.mnt;
99b7db7b 2555 br_write_lock(vfsmount_lock);
2d8f3038 2556 if (tmp != new.mnt) {
1da177e4
LT
2557 for (;;) {
2558 if (tmp->mnt_parent == tmp)
2559 goto out3; /* already mounted on put_old */
2d8f3038 2560 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2561 break;
2562 tmp = tmp->mnt_parent;
2563 }
2d8f3038 2564 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2565 goto out3;
2d8f3038 2566 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2567 goto out3;
2d8f3038 2568 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2569 detach_mnt(root.mnt, &root_parent);
4ac91378 2570 /* mount old root on put_old */
2d8f3038 2571 attach_mnt(root.mnt, &old);
4ac91378 2572 /* mount new_root on / */
2d8f3038 2573 attach_mnt(new.mnt, &root_parent);
6b3286ed 2574 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2575 br_write_unlock(vfsmount_lock);
2d8f3038 2576 chroot_fs_refs(&root, &new);
b3e19d92 2577
1da177e4 2578 error = 0;
1a390689
AV
2579 path_put(&root_parent);
2580 path_put(&parent_path);
1da177e4 2581out2:
2d8f3038 2582 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2583 up_write(&namespace_sem);
8c3ee42e 2584 path_put(&root);
2d8f3038 2585 path_put(&old);
1da177e4 2586out1:
2d8f3038 2587 path_put(&new);
1da177e4 2588out0:
1da177e4
LT
2589 return error;
2590out3:
99b7db7b 2591 br_write_unlock(vfsmount_lock);
1da177e4
LT
2592 goto out2;
2593}
2594
2595static void __init init_mount_tree(void)
2596{
2597 struct vfsmount *mnt;
6b3286ed 2598 struct mnt_namespace *ns;
ac748a09 2599 struct path root;
1da177e4
LT
2600
2601 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2602 if (IS_ERR(mnt))
2603 panic("Can't create rootfs");
b3e19d92 2604
3b22edc5
TM
2605 ns = create_mnt_ns(mnt);
2606 if (IS_ERR(ns))
1da177e4 2607 panic("Can't allocate initial namespace");
6b3286ed
KK
2608
2609 init_task.nsproxy->mnt_ns = ns;
2610 get_mnt_ns(ns);
2611
ac748a09
JB
2612 root.mnt = ns->root;
2613 root.dentry = ns->root->mnt_root;
2614
2615 set_fs_pwd(current->fs, &root);
2616 set_fs_root(current->fs, &root);
1da177e4
LT
2617}
2618
74bf17cf 2619void __init mnt_init(void)
1da177e4 2620{
13f14b4d 2621 unsigned u;
15a67dd8 2622 int err;
1da177e4 2623
390c6843
RP
2624 init_rwsem(&namespace_sem);
2625
1da177e4 2626 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2627 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2628
b58fed8b 2629 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2630
2631 if (!mount_hashtable)
2632 panic("Failed to allocate mount hash table\n");
2633
13f14b4d
ED
2634 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2635
2636 for (u = 0; u < HASH_SIZE; u++)
2637 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2638
99b7db7b
NP
2639 br_lock_init(vfsmount_lock);
2640
15a67dd8
RD
2641 err = sysfs_init();
2642 if (err)
2643 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2644 __func__, err);
00d26666
GKH
2645 fs_kobj = kobject_create_and_add("fs", NULL);
2646 if (!fs_kobj)
8e24eea7 2647 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2648 init_rootfs();
2649 init_mount_tree();
2650}
2651
616511d0 2652void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2653{
70fbcdf4 2654 LIST_HEAD(umount_list);
616511d0 2655
d498b25a 2656 if (!atomic_dec_and_test(&ns->count))
616511d0 2657 return;
390c6843 2658 down_write(&namespace_sem);
99b7db7b 2659 br_write_lock(vfsmount_lock);
d498b25a 2660 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2661 br_write_unlock(vfsmount_lock);
390c6843 2662 up_write(&namespace_sem);
70fbcdf4 2663 release_mounts(&umount_list);
6b3286ed 2664 kfree(ns);
1da177e4 2665}
cf8d2c11 2666EXPORT_SYMBOL(put_mnt_ns);