]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/nfs/nfs42xattr.c
NFS: remove redundant initialization of variable result
[mirror_ubuntu-jammy-kernel.git] / fs / nfs / nfs42xattr.c
CommitLineData
95ad37f9
FL
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5 *
6 * User extended attribute client side cache functions.
7 *
8 * Author: Frank van der Linden <fllinden@amazon.com>
9 */
10#include <linux/errno.h>
11#include <linux/nfs_fs.h>
12#include <linux/hashtable.h>
13#include <linux/refcount.h>
14#include <uapi/linux/xattr.h>
15
16#include "nfs4_fs.h"
17#include "internal.h"
18
19/*
20 * User extended attributes client side caching is implemented by having
21 * a cache structure attached to NFS inodes. This structure is allocated
22 * when needed, and freed when the cache is zapped.
23 *
24 * The cache structure contains as hash table of entries, and a pointer
25 * to a special-cased entry for the listxattr cache.
26 *
27 * Accessing and allocating / freeing the caches is done via reference
28 * counting. The cache entries use a similar refcounting scheme.
29 *
30 * This makes freeing a cache, both from the shrinker and from the
31 * zap cache path, easy. It also means that, in current use cases,
32 * the large majority of inodes will not waste any memory, as they
33 * will never have any user extended attributes assigned to them.
34 *
35 * Attribute entries are hashed in to a simple hash table. They are
36 * also part of an LRU.
37 *
38 * There are three shrinkers.
39 *
40 * Two shrinkers deal with the cache entries themselves: one for
41 * large entries (> PAGE_SIZE), and one for smaller entries. The
42 * shrinker for the larger entries works more aggressively than
43 * those for the smaller entries.
44 *
45 * The other shrinker frees the cache structures themselves.
46 */
47
48/*
49 * 64 buckets is a good default. There is likely no reasonable
50 * workload that uses more than even 64 user extended attributes.
51 * You can certainly add a lot more - but you get what you ask for
52 * in those circumstances.
53 */
54#define NFS4_XATTR_HASH_SIZE 64
55
56#define NFSDBG_FACILITY NFSDBG_XATTRCACHE
57
58struct nfs4_xattr_cache;
59struct nfs4_xattr_entry;
60
61struct nfs4_xattr_bucket {
62 spinlock_t lock;
63 struct hlist_head hlist;
64 struct nfs4_xattr_cache *cache;
65 bool draining;
66};
67
68struct nfs4_xattr_cache {
69 struct kref ref;
70 spinlock_t hash_lock; /* protects hashtable and lru */
71 struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
72 struct list_head lru;
73 struct list_head dispose;
74 atomic_long_t nent;
75 spinlock_t listxattr_lock;
76 struct inode *inode;
77 struct nfs4_xattr_entry *listxattr;
78 struct work_struct work;
79};
80
81struct nfs4_xattr_entry {
82 struct kref ref;
83 struct hlist_node hnode;
84 struct list_head lru;
85 struct list_head dispose;
86 char *xattr_name;
87 void *xattr_value;
88 size_t xattr_size;
89 struct nfs4_xattr_bucket *bucket;
90 uint32_t flags;
91};
92
93#define NFS4_XATTR_ENTRY_EXTVAL 0x0001
94
95/*
96 * LRU list of NFS inodes that have xattr caches.
97 */
98static struct list_lru nfs4_xattr_cache_lru;
99static struct list_lru nfs4_xattr_entry_lru;
100static struct list_lru nfs4_xattr_large_entry_lru;
101
102static struct kmem_cache *nfs4_xattr_cache_cachep;
103
104static struct workqueue_struct *nfs4_xattr_cache_wq;
105
106/*
107 * Hashing helper functions.
108 */
109static void
110nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
111{
112 unsigned int i;
113
114 for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
115 INIT_HLIST_HEAD(&cache->buckets[i].hlist);
116 spin_lock_init(&cache->buckets[i].lock);
117 cache->buckets[i].cache = cache;
118 cache->buckets[i].draining = false;
119 }
120}
121
122/*
123 * Locking order:
124 * 1. inode i_lock or bucket lock
125 * 2. list_lru lock (taken by list_lru_* functions)
126 */
127
128/*
129 * Wrapper functions to add a cache entry to the right LRU.
130 */
131static bool
132nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
133{
134 struct list_lru *lru;
135
136 lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
137 &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
138
139 return list_lru_add(lru, &entry->lru);
140}
141
142static bool
143nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
144{
145 struct list_lru *lru;
146
147 lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
148 &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
149
150 return list_lru_del(lru, &entry->lru);
151}
152
153/*
154 * This function allocates cache entries. They are the normal
155 * extended attribute name/value pairs, but may also be a listxattr
156 * cache. Those allocations use the same entry so that they can be
157 * treated as one by the memory shrinker.
158 *
159 * xattr cache entries are allocated together with names. If the
160 * value fits in to one page with the entry structure and the name,
161 * it will also be part of the same allocation (kmalloc). This is
162 * expected to be the vast majority of cases. Larger allocations
163 * have a value pointer that is allocated separately by kvmalloc.
164 *
165 * Parameters:
166 *
167 * @name: Name of the extended attribute. NULL for listxattr cache
168 * entry.
169 * @value: Value of attribute, or listxattr cache. NULL if the
170 * value is to be copied from pages instead.
171 * @pages: Pages to copy the value from, if not NULL. Passed in to
172 * make it easier to copy the value after an RPC, even if
173 * the value will not be passed up to application (e.g.
174 * for a 'query' getxattr with NULL buffer).
175 * @len: Length of the value. Can be 0 for zero-length attribues.
176 * @value and @pages will be NULL if @len is 0.
177 */
178static struct nfs4_xattr_entry *
179nfs4_xattr_alloc_entry(const char *name, const void *value,
180 struct page **pages, size_t len)
181{
182 struct nfs4_xattr_entry *entry;
183 void *valp;
184 char *namep;
185 size_t alloclen, slen;
186 char *buf;
187 uint32_t flags;
188
189 BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
190 XATTR_NAME_MAX + 1 > PAGE_SIZE);
191
192 alloclen = sizeof(struct nfs4_xattr_entry);
193 if (name != NULL) {
194 slen = strlen(name) + 1;
195 alloclen += slen;
196 } else
197 slen = 0;
198
199 if (alloclen + len <= PAGE_SIZE) {
200 alloclen += len;
201 flags = 0;
202 } else {
203 flags = NFS4_XATTR_ENTRY_EXTVAL;
204 }
205
206 buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
207 if (buf == NULL)
208 return NULL;
209 entry = (struct nfs4_xattr_entry *)buf;
210
211 if (name != NULL) {
212 namep = buf + sizeof(struct nfs4_xattr_entry);
213 memcpy(namep, name, slen);
214 } else {
215 namep = NULL;
216 }
217
218
219 if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
220 valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
221 if (valp == NULL) {
222 kfree(buf);
223 return NULL;
224 }
225 } else if (len != 0) {
226 valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
227 } else
228 valp = NULL;
229
230 if (valp != NULL) {
231 if (value != NULL)
232 memcpy(valp, value, len);
233 else
234 _copy_from_pages(valp, pages, 0, len);
235 }
236
237 entry->flags = flags;
238 entry->xattr_value = valp;
239 kref_init(&entry->ref);
240 entry->xattr_name = namep;
241 entry->xattr_size = len;
242 entry->bucket = NULL;
243 INIT_LIST_HEAD(&entry->lru);
244 INIT_LIST_HEAD(&entry->dispose);
245 INIT_HLIST_NODE(&entry->hnode);
246
247 return entry;
248}
249
250static void
251nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
252{
253 if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
254 kvfree(entry->xattr_value);
255 kfree(entry);
256}
257
258static void
259nfs4_xattr_free_entry_cb(struct kref *kref)
260{
261 struct nfs4_xattr_entry *entry;
262
263 entry = container_of(kref, struct nfs4_xattr_entry, ref);
264
265 if (WARN_ON(!list_empty(&entry->lru)))
266 return;
267
268 nfs4_xattr_free_entry(entry);
269}
270
271static void
272nfs4_xattr_free_cache_cb(struct kref *kref)
273{
274 struct nfs4_xattr_cache *cache;
275 int i;
276
277 cache = container_of(kref, struct nfs4_xattr_cache, ref);
278
279 for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
280 if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
281 return;
282 cache->buckets[i].draining = false;
283 }
284
285 cache->listxattr = NULL;
286
287 kmem_cache_free(nfs4_xattr_cache_cachep, cache);
288
289}
290
291static struct nfs4_xattr_cache *
292nfs4_xattr_alloc_cache(void)
293{
294 struct nfs4_xattr_cache *cache;
295
296 cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
297 GFP_KERNEL_ACCOUNT | GFP_NOFS);
298 if (cache == NULL)
299 return NULL;
300
301 kref_init(&cache->ref);
302 atomic_long_set(&cache->nent, 0);
303
304 return cache;
305}
306
307/*
308 * Set the listxattr cache, which is a special-cased cache entry.
309 * The special value ERR_PTR(-ESTALE) is used to indicate that
310 * the cache is being drained - this prevents a new listxattr
311 * cache from being added to what is now a stale cache.
312 */
313static int
314nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
315 struct nfs4_xattr_entry *new)
316{
317 struct nfs4_xattr_entry *old;
318 int ret = 1;
319
320 spin_lock(&cache->listxattr_lock);
321
322 old = cache->listxattr;
323
324 if (old == ERR_PTR(-ESTALE)) {
325 ret = 0;
326 goto out;
327 }
328
329 cache->listxattr = new;
330 if (new != NULL && new != ERR_PTR(-ESTALE))
331 nfs4_xattr_entry_lru_add(new);
332
333 if (old != NULL) {
334 nfs4_xattr_entry_lru_del(old);
335 kref_put(&old->ref, nfs4_xattr_free_entry_cb);
336 }
337out:
338 spin_unlock(&cache->listxattr_lock);
339
340 return ret;
341}
342
343/*
344 * Unlink a cache from its parent inode, clearing out an invalid
345 * cache. Must be called with i_lock held.
346 */
347static struct nfs4_xattr_cache *
348nfs4_xattr_cache_unlink(struct inode *inode)
349{
350 struct nfs_inode *nfsi;
351 struct nfs4_xattr_cache *oldcache;
352
353 nfsi = NFS_I(inode);
354
355 oldcache = nfsi->xattr_cache;
356 if (oldcache != NULL) {
357 list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
358 oldcache->inode = NULL;
359 }
360 nfsi->xattr_cache = NULL;
361 nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
362
363 return oldcache;
364
365}
366
367/*
368 * Discard a cache. Usually called by a worker, since walking all
369 * the entries can take up some cycles that we don't want to waste
370 * in the I/O path. Can also be called from the shrinker callback.
371 *
372 * The cache is dead, it has already been unlinked from its inode,
373 * and no longer appears on the cache LRU list.
374 *
375 * Mark all buckets as draining, so that no new entries are added. This
376 * could still happen in the unlikely, but possible case that another
377 * thread had grabbed a reference before it was unlinked from the inode,
378 * and is still holding it for an add operation.
379 *
380 * Remove all entries from the LRU lists, so that there is no longer
381 * any way to 'find' this cache. Then, remove the entries from the hash
382 * table.
383 *
384 * At that point, the cache will remain empty and can be freed when the final
385 * reference drops, which is very likely the kref_put at the end of
386 * this function, or the one called immediately afterwards in the
387 * shrinker callback.
388 */
389static void
390nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
391{
392 unsigned int i;
393 struct nfs4_xattr_entry *entry;
394 struct nfs4_xattr_bucket *bucket;
395 struct hlist_node *n;
396
397 nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
398
399 for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
400 bucket = &cache->buckets[i];
401
402 spin_lock(&bucket->lock);
403 bucket->draining = true;
404 hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
405 nfs4_xattr_entry_lru_del(entry);
406 hlist_del_init(&entry->hnode);
407 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
408 }
409 spin_unlock(&bucket->lock);
410 }
411
412 atomic_long_set(&cache->nent, 0);
413
414 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
415}
416
417static void
418nfs4_xattr_discard_cache_worker(struct work_struct *work)
419{
420 struct nfs4_xattr_cache *cache = container_of(work,
421 struct nfs4_xattr_cache, work);
422
423 nfs4_xattr_discard_cache(cache);
424}
425
426static void
427nfs4_xattr_reap_cache(struct nfs4_xattr_cache *cache)
428{
429 queue_work(nfs4_xattr_cache_wq, &cache->work);
430}
431
432/*
433 * Get a referenced copy of the cache structure. Avoid doing allocs
434 * while holding i_lock. Which means that we do some optimistic allocation,
435 * and might have to free the result in rare cases.
436 *
437 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
438 * and acts accordingly, replacing the cache when needed. For the read case
439 * (!add), this means that the caller must make sure that the cache
440 * is valid before caling this function. getxattr and listxattr call
441 * revalidate_inode to do this. The attribute cache timeout (for the
442 * non-delegated case) is expected to be dealt with in the revalidate
443 * call.
444 */
445
446static struct nfs4_xattr_cache *
447nfs4_xattr_get_cache(struct inode *inode, int add)
448{
449 struct nfs_inode *nfsi;
450 struct nfs4_xattr_cache *cache, *oldcache, *newcache;
451
452 nfsi = NFS_I(inode);
453
454 cache = oldcache = NULL;
455
456 spin_lock(&inode->i_lock);
457
458 if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
459 oldcache = nfs4_xattr_cache_unlink(inode);
460 else
461 cache = nfsi->xattr_cache;
462
463 if (cache != NULL)
464 kref_get(&cache->ref);
465
466 spin_unlock(&inode->i_lock);
467
468 if (add && cache == NULL) {
469 newcache = NULL;
470
471 cache = nfs4_xattr_alloc_cache();
472 if (cache == NULL)
473 goto out;
474
475 spin_lock(&inode->i_lock);
476 if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
477 /*
478 * The cache was invalidated again. Give up,
479 * since what we want to enter is now likely
480 * outdated anyway.
481 */
482 spin_unlock(&inode->i_lock);
483 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
484 cache = NULL;
485 goto out;
486 }
487
488 /*
489 * Check if someone beat us to it.
490 */
491 if (nfsi->xattr_cache != NULL) {
492 newcache = nfsi->xattr_cache;
493 kref_get(&newcache->ref);
494 } else {
495 kref_get(&cache->ref);
496 nfsi->xattr_cache = cache;
497 cache->inode = inode;
498 list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
499 }
500
501 spin_unlock(&inode->i_lock);
502
503 /*
504 * If there was a race, throw away the cache we just
505 * allocated, and use the new one allocated by someone
506 * else.
507 */
508 if (newcache != NULL) {
509 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
510 cache = newcache;
511 }
512 }
513
514out:
515 /*
516 * Discarding an old cache is done via a workqueue.
517 */
518 if (oldcache != NULL)
519 nfs4_xattr_reap_cache(oldcache);
520
521 return cache;
522}
523
524static inline struct nfs4_xattr_bucket *
525nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
526{
527 return &cache->buckets[jhash(name, strlen(name), 0) &
528 (ARRAY_SIZE(cache->buckets) - 1)];
529}
530
531static struct nfs4_xattr_entry *
532nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
533{
534 struct nfs4_xattr_entry *entry;
535
536 entry = NULL;
537
538 hlist_for_each_entry(entry, &bucket->hlist, hnode) {
539 if (!strcmp(entry->xattr_name, name))
540 break;
541 }
542
543 return entry;
544}
545
546static int
547nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
548 struct nfs4_xattr_entry *entry)
549{
550 struct nfs4_xattr_bucket *bucket;
551 struct nfs4_xattr_entry *oldentry = NULL;
552 int ret = 1;
553
554 bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
555 entry->bucket = bucket;
556
557 spin_lock(&bucket->lock);
558
559 if (bucket->draining) {
560 ret = 0;
561 goto out;
562 }
563
564 oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
565 if (oldentry != NULL) {
566 hlist_del_init(&oldentry->hnode);
567 nfs4_xattr_entry_lru_del(oldentry);
568 } else {
569 atomic_long_inc(&cache->nent);
570 }
571
572 hlist_add_head(&entry->hnode, &bucket->hlist);
573 nfs4_xattr_entry_lru_add(entry);
574
575out:
576 spin_unlock(&bucket->lock);
577
578 if (oldentry != NULL)
579 kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
580
581 return ret;
582}
583
584static void
585nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
586{
587 struct nfs4_xattr_bucket *bucket;
588 struct nfs4_xattr_entry *entry;
589
590 bucket = nfs4_xattr_hash_bucket(cache, name);
591
592 spin_lock(&bucket->lock);
593
594 entry = nfs4_xattr_get_entry(bucket, name);
595 if (entry != NULL) {
596 hlist_del_init(&entry->hnode);
597 nfs4_xattr_entry_lru_del(entry);
598 atomic_long_dec(&cache->nent);
599 }
600
601 spin_unlock(&bucket->lock);
602
603 if (entry != NULL)
604 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
605}
606
607static struct nfs4_xattr_entry *
608nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
609{
610 struct nfs4_xattr_bucket *bucket;
611 struct nfs4_xattr_entry *entry;
612
613 bucket = nfs4_xattr_hash_bucket(cache, name);
614
615 spin_lock(&bucket->lock);
616
617 entry = nfs4_xattr_get_entry(bucket, name);
618 if (entry != NULL)
619 kref_get(&entry->ref);
620
621 spin_unlock(&bucket->lock);
622
623 return entry;
624}
625
626/*
627 * Entry point to retrieve an entry from the cache.
628 */
629ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
630 ssize_t buflen)
631{
632 struct nfs4_xattr_cache *cache;
633 struct nfs4_xattr_entry *entry;
634 ssize_t ret;
635
636 cache = nfs4_xattr_get_cache(inode, 0);
637 if (cache == NULL)
638 return -ENOENT;
639
640 ret = 0;
641 entry = nfs4_xattr_hash_find(cache, name);
642
643 if (entry != NULL) {
644 dprintk("%s: cache hit '%s', len %lu\n", __func__,
645 entry->xattr_name, (unsigned long)entry->xattr_size);
646 if (buflen == 0) {
647 /* Length probe only */
648 ret = entry->xattr_size;
649 } else if (buflen < entry->xattr_size)
650 ret = -ERANGE;
651 else {
652 memcpy(buf, entry->xattr_value, entry->xattr_size);
653 ret = entry->xattr_size;
654 }
655 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
656 } else {
657 dprintk("%s: cache miss '%s'\n", __func__, name);
658 ret = -ENOENT;
659 }
660
661 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
662
663 return ret;
664}
665
666/*
667 * Retrieve a cached list of xattrs from the cache.
668 */
669ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
670{
671 struct nfs4_xattr_cache *cache;
672 struct nfs4_xattr_entry *entry;
673 ssize_t ret;
674
675 cache = nfs4_xattr_get_cache(inode, 0);
676 if (cache == NULL)
677 return -ENOENT;
678
679 spin_lock(&cache->listxattr_lock);
680
681 entry = cache->listxattr;
682
683 if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
684 if (buflen == 0) {
685 /* Length probe only */
686 ret = entry->xattr_size;
687 } else if (entry->xattr_size > buflen)
688 ret = -ERANGE;
689 else {
690 memcpy(buf, entry->xattr_value, entry->xattr_size);
691 ret = entry->xattr_size;
692 }
693 } else {
694 ret = -ENOENT;
695 }
696
697 spin_unlock(&cache->listxattr_lock);
698
699 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
700
701 return ret;
702}
703
704/*
705 * Add an xattr to the cache.
706 *
707 * This also invalidates the xattr list cache.
708 */
709void nfs4_xattr_cache_add(struct inode *inode, const char *name,
710 const char *buf, struct page **pages, ssize_t buflen)
711{
712 struct nfs4_xattr_cache *cache;
713 struct nfs4_xattr_entry *entry;
714
715 dprintk("%s: add '%s' len %lu\n", __func__,
716 name, (unsigned long)buflen);
717
718 cache = nfs4_xattr_get_cache(inode, 1);
719 if (cache == NULL)
720 return;
721
722 entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
723 if (entry == NULL)
724 goto out;
725
726 (void)nfs4_xattr_set_listcache(cache, NULL);
727
728 if (!nfs4_xattr_hash_add(cache, entry))
729 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
730
731out:
732 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
733}
734
735
736/*
737 * Remove an xattr from the cache.
738 *
739 * This also invalidates the xattr list cache.
740 */
741void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
742{
743 struct nfs4_xattr_cache *cache;
744
745 dprintk("%s: remove '%s'\n", __func__, name);
746
747 cache = nfs4_xattr_get_cache(inode, 0);
748 if (cache == NULL)
749 return;
750
751 (void)nfs4_xattr_set_listcache(cache, NULL);
752 nfs4_xattr_hash_remove(cache, name);
753
754 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
755}
756
757/*
758 * Cache listxattr output, replacing any possible old one.
759 */
760void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
761 ssize_t buflen)
762{
763 struct nfs4_xattr_cache *cache;
764 struct nfs4_xattr_entry *entry;
765
766 cache = nfs4_xattr_get_cache(inode, 1);
767 if (cache == NULL)
768 return;
769
770 entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
771 if (entry == NULL)
772 goto out;
773
774 /*
775 * This is just there to be able to get to bucket->cache,
776 * which is obviously the same for all buckets, so just
777 * use bucket 0.
778 */
779 entry->bucket = &cache->buckets[0];
780
781 if (!nfs4_xattr_set_listcache(cache, entry))
782 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
783
784out:
785 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
786}
787
788/*
789 * Zap the entire cache. Called when an inode is evicted.
790 */
791void nfs4_xattr_cache_zap(struct inode *inode)
792{
793 struct nfs4_xattr_cache *oldcache;
794
795 spin_lock(&inode->i_lock);
796 oldcache = nfs4_xattr_cache_unlink(inode);
797 spin_unlock(&inode->i_lock);
798
799 if (oldcache)
800 nfs4_xattr_discard_cache(oldcache);
801}
802
803/*
804 * The entry LRU is shrunk more aggressively than the cache LRU,
805 * by settings @seeks to 1.
806 *
807 * Cache structures are freed only when they've become empty, after
808 * pruning all but one entry.
809 */
810
811static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
812 struct shrink_control *sc);
813static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
814 struct shrink_control *sc);
815static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
816 struct shrink_control *sc);
817static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
818 struct shrink_control *sc);
819
820static struct shrinker nfs4_xattr_cache_shrinker = {
821 .count_objects = nfs4_xattr_cache_count,
822 .scan_objects = nfs4_xattr_cache_scan,
823 .seeks = DEFAULT_SEEKS,
824 .flags = SHRINKER_MEMCG_AWARE,
825};
826
827static struct shrinker nfs4_xattr_entry_shrinker = {
828 .count_objects = nfs4_xattr_entry_count,
829 .scan_objects = nfs4_xattr_entry_scan,
830 .seeks = DEFAULT_SEEKS,
831 .batch = 512,
832 .flags = SHRINKER_MEMCG_AWARE,
833};
834
835static struct shrinker nfs4_xattr_large_entry_shrinker = {
836 .count_objects = nfs4_xattr_entry_count,
837 .scan_objects = nfs4_xattr_entry_scan,
838 .seeks = 1,
839 .batch = 512,
840 .flags = SHRINKER_MEMCG_AWARE,
841};
842
843static enum lru_status
844cache_lru_isolate(struct list_head *item,
845 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
846{
847 struct list_head *dispose = arg;
848 struct inode *inode;
849 struct nfs4_xattr_cache *cache = container_of(item,
850 struct nfs4_xattr_cache, lru);
851
852 if (atomic_long_read(&cache->nent) > 1)
853 return LRU_SKIP;
854
855 /*
856 * If a cache structure is on the LRU list, we know that
857 * its inode is valid. Try to lock it to break the link.
858 * Since we're inverting the lock order here, only try.
859 */
860 inode = cache->inode;
861
862 if (!spin_trylock(&inode->i_lock))
863 return LRU_SKIP;
864
865 kref_get(&cache->ref);
866
867 cache->inode = NULL;
868 NFS_I(inode)->xattr_cache = NULL;
869 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
870 list_lru_isolate(lru, &cache->lru);
871
872 spin_unlock(&inode->i_lock);
873
874 list_add_tail(&cache->dispose, dispose);
875 return LRU_REMOVED;
876}
877
878static unsigned long
879nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
880{
881 LIST_HEAD(dispose);
882 unsigned long freed;
883 struct nfs4_xattr_cache *cache;
884
885 freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
886 cache_lru_isolate, &dispose);
887 while (!list_empty(&dispose)) {
888 cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
889 dispose);
890 list_del_init(&cache->dispose);
891 nfs4_xattr_discard_cache(cache);
892 kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
893 }
894
895 return freed;
896}
897
898
899static unsigned long
900nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
901{
902 unsigned long count;
903
904 count = list_lru_count(&nfs4_xattr_cache_lru);
905 return vfs_pressure_ratio(count);
906}
907
908static enum lru_status
909entry_lru_isolate(struct list_head *item,
910 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
911{
912 struct list_head *dispose = arg;
913 struct nfs4_xattr_bucket *bucket;
914 struct nfs4_xattr_cache *cache;
915 struct nfs4_xattr_entry *entry = container_of(item,
916 struct nfs4_xattr_entry, lru);
917
918 bucket = entry->bucket;
919 cache = bucket->cache;
920
921 /*
922 * Unhook the entry from its parent (either a cache bucket
923 * or a cache structure if it's a listxattr buf), so that
924 * it's no longer found. Then add it to the isolate list,
925 * to be freed later.
926 *
927 * In both cases, we're reverting lock order, so use
928 * trylock and skip the entry if we can't get the lock.
929 */
930 if (entry->xattr_name != NULL) {
931 /* Regular cache entry */
932 if (!spin_trylock(&bucket->lock))
933 return LRU_SKIP;
934
935 kref_get(&entry->ref);
936
937 hlist_del_init(&entry->hnode);
938 atomic_long_dec(&cache->nent);
939 list_lru_isolate(lru, &entry->lru);
940
941 spin_unlock(&bucket->lock);
942 } else {
943 /* Listxattr cache entry */
944 if (!spin_trylock(&cache->listxattr_lock))
945 return LRU_SKIP;
946
947 kref_get(&entry->ref);
948
949 cache->listxattr = NULL;
950 list_lru_isolate(lru, &entry->lru);
951
952 spin_unlock(&cache->listxattr_lock);
953 }
954
955 list_add_tail(&entry->dispose, dispose);
956 return LRU_REMOVED;
957}
958
959static unsigned long
960nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
961{
962 LIST_HEAD(dispose);
963 unsigned long freed;
964 struct nfs4_xattr_entry *entry;
965 struct list_lru *lru;
966
967 lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
968 &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
969
970 freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
971
972 while (!list_empty(&dispose)) {
973 entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
974 dispose);
975 list_del_init(&entry->dispose);
976
977 /*
978 * Drop two references: the one that we just grabbed
979 * in entry_lru_isolate, and the one that was set
980 * when the entry was first allocated.
981 */
982 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
983 kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
984 }
985
986 return freed;
987}
988
989static unsigned long
990nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
991{
992 unsigned long count;
993 struct list_lru *lru;
994
995 lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
996 &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
997
998 count = list_lru_count(lru);
999 return vfs_pressure_ratio(count);
1000}
1001
1002
1003static void nfs4_xattr_cache_init_once(void *p)
1004{
1005 struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
1006
1007 spin_lock_init(&cache->listxattr_lock);
1008 atomic_long_set(&cache->nent, 0);
1009 nfs4_xattr_hash_init(cache);
1010 cache->listxattr = NULL;
1011 INIT_WORK(&cache->work, nfs4_xattr_discard_cache_worker);
1012 INIT_LIST_HEAD(&cache->lru);
1013 INIT_LIST_HEAD(&cache->dispose);
1014}
1015
1016int __init nfs4_xattr_cache_init(void)
1017{
1018 int ret = 0;
1019
1020 nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1021 sizeof(struct nfs4_xattr_cache), 0,
1022 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1023 nfs4_xattr_cache_init_once);
1024 if (nfs4_xattr_cache_cachep == NULL)
1025 return -ENOMEM;
1026
1027 ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1028 &nfs4_xattr_large_entry_shrinker);
1029 if (ret)
1030 goto out4;
1031
1032 ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1033 &nfs4_xattr_entry_shrinker);
1034 if (ret)
1035 goto out3;
1036
1037 ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1038 &nfs4_xattr_cache_shrinker);
1039 if (ret)
1040 goto out2;
1041
1042 nfs4_xattr_cache_wq = alloc_workqueue("nfs4_xattr", WQ_MEM_RECLAIM, 0);
1043 if (nfs4_xattr_cache_wq == NULL)
1044 goto out1;
1045
1046 ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1047 if (ret)
1048 goto out0;
1049
1050 ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1051 if (ret)
1052 goto out;
1053
1054 ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1055 if (!ret)
1056 return 0;
1057
1058 unregister_shrinker(&nfs4_xattr_entry_shrinker);
1059out:
1060 unregister_shrinker(&nfs4_xattr_cache_shrinker);
1061out0:
1062 destroy_workqueue(nfs4_xattr_cache_wq);
1063out1:
1064 list_lru_destroy(&nfs4_xattr_cache_lru);
1065out2:
1066 list_lru_destroy(&nfs4_xattr_entry_lru);
1067out3:
1068 list_lru_destroy(&nfs4_xattr_large_entry_lru);
1069out4:
1070 kmem_cache_destroy(nfs4_xattr_cache_cachep);
1071
1072 return ret;
1073}
1074
1075void nfs4_xattr_cache_exit(void)
1076{
1077 unregister_shrinker(&nfs4_xattr_entry_shrinker);
1078 unregister_shrinker(&nfs4_xattr_cache_shrinker);
1079 list_lru_destroy(&nfs4_xattr_entry_lru);
1080 list_lru_destroy(&nfs4_xattr_cache_lru);
1081 kmem_cache_destroy(nfs4_xattr_cache_cachep);
1082 destroy_workqueue(nfs4_xattr_cache_wq);
1083}