]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/nilfs2/sufile.c
ceph: sync read inline data
[mirror_ubuntu-bionic-kernel.git] / fs / nilfs2 / sufile.c
CommitLineData
6c98cd4e
KS
1/*
2 * sufile.c - NILFS segment usage file.
3 *
4 * Copyright (C) 2006-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 *
20 * Written by Koji Sato <koji@osrg.net>.
7a65004b 21 * Revised by Ryusuke Konishi <ryusuke@osrg.net>.
6c98cd4e
KS
22 */
23
24#include <linux/kernel.h>
25#include <linux/fs.h>
26#include <linux/string.h>
27#include <linux/buffer_head.h>
28#include <linux/errno.h>
29#include <linux/nilfs2_fs.h>
30#include "mdt.h"
31#include "sufile.h"
32
f5974c8f
VD
33/**
34 * struct nilfs_sufile_info - on-memory private data of sufile
35 * @mi: on-memory private data of metadata file
36 * @ncleansegs: number of clean segments
37 * @allocmin: lower limit of allocatable segment range
38 * @allocmax: upper limit of allocatable segment range
39 */
aa474a22
RK
40struct nilfs_sufile_info {
41 struct nilfs_mdt_info mi;
619205da
RK
42 unsigned long ncleansegs;/* number of clean segments */
43 __u64 allocmin; /* lower limit of allocatable segment range */
44 __u64 allocmax; /* upper limit of allocatable segment range */
aa474a22
RK
45};
46
47static inline struct nilfs_sufile_info *NILFS_SUI(struct inode *sufile)
48{
49 return (struct nilfs_sufile_info *)NILFS_MDT(sufile);
50}
51
6c98cd4e
KS
52static inline unsigned long
53nilfs_sufile_segment_usages_per_block(const struct inode *sufile)
54{
55 return NILFS_MDT(sufile)->mi_entries_per_block;
56}
57
58static unsigned long
59nilfs_sufile_get_blkoff(const struct inode *sufile, __u64 segnum)
60{
61 __u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
62 do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
63 return (unsigned long)t;
64}
65
66static unsigned long
67nilfs_sufile_get_offset(const struct inode *sufile, __u64 segnum)
68{
69 __u64 t = segnum + NILFS_MDT(sufile)->mi_first_entry_offset;
70 return do_div(t, nilfs_sufile_segment_usages_per_block(sufile));
71}
72
73static unsigned long
74nilfs_sufile_segment_usages_in_block(const struct inode *sufile, __u64 curr,
75 __u64 max)
76{
77 return min_t(unsigned long,
78 nilfs_sufile_segment_usages_per_block(sufile) -
79 nilfs_sufile_get_offset(sufile, curr),
80 max - curr + 1);
81}
82
6c98cd4e
KS
83static struct nilfs_segment_usage *
84nilfs_sufile_block_get_segment_usage(const struct inode *sufile, __u64 segnum,
85 struct buffer_head *bh, void *kaddr)
86{
87 return kaddr + bh_offset(bh) +
88 nilfs_sufile_get_offset(sufile, segnum) *
89 NILFS_MDT(sufile)->mi_entry_size;
90}
91
92static inline int nilfs_sufile_get_header_block(struct inode *sufile,
93 struct buffer_head **bhp)
94{
95 return nilfs_mdt_get_block(sufile, 0, 0, NULL, bhp);
96}
97
98static inline int
99nilfs_sufile_get_segment_usage_block(struct inode *sufile, __u64 segnum,
100 int create, struct buffer_head **bhp)
101{
102 return nilfs_mdt_get_block(sufile,
103 nilfs_sufile_get_blkoff(sufile, segnum),
104 create, NULL, bhp);
105}
106
78eb64c2
RK
107static int nilfs_sufile_delete_segment_usage_block(struct inode *sufile,
108 __u64 segnum)
109{
110 return nilfs_mdt_delete_block(sufile,
111 nilfs_sufile_get_blkoff(sufile, segnum));
112}
113
a703018f
RK
114static void nilfs_sufile_mod_counter(struct buffer_head *header_bh,
115 u64 ncleanadd, u64 ndirtyadd)
116{
117 struct nilfs_sufile_header *header;
118 void *kaddr;
119
7b9c0976 120 kaddr = kmap_atomic(header_bh->b_page);
a703018f
RK
121 header = kaddr + bh_offset(header_bh);
122 le64_add_cpu(&header->sh_ncleansegs, ncleanadd);
123 le64_add_cpu(&header->sh_ndirtysegs, ndirtyadd);
7b9c0976 124 kunmap_atomic(kaddr);
a703018f 125
5fc7b141 126 mark_buffer_dirty(header_bh);
a703018f
RK
127}
128
ef7d4757
RK
129/**
130 * nilfs_sufile_get_ncleansegs - return the number of clean segments
131 * @sufile: inode of segment usage file
132 */
133unsigned long nilfs_sufile_get_ncleansegs(struct inode *sufile)
134{
135 return NILFS_SUI(sufile)->ncleansegs;
136}
137
dda54f4b
RK
138/**
139 * nilfs_sufile_updatev - modify multiple segment usages at a time
140 * @sufile: inode of segment usage file
141 * @segnumv: array of segment numbers
142 * @nsegs: size of @segnumv array
143 * @create: creation flag
144 * @ndone: place to store number of modified segments on @segnumv
145 * @dofunc: primitive operation for the update
146 *
147 * Description: nilfs_sufile_updatev() repeatedly calls @dofunc
148 * against the given array of segments. The @dofunc is called with
149 * buffers of a header block and the sufile block in which the target
150 * segment usage entry is contained. If @ndone is given, the number
151 * of successfully modified segments from the head is stored in the
152 * place @ndone points to.
153 *
154 * Return Value: On success, zero is returned. On error, one of the
155 * following negative error codes is returned.
156 *
157 * %-EIO - I/O error.
158 *
159 * %-ENOMEM - Insufficient amount of memory available.
160 *
161 * %-ENOENT - Given segment usage is in hole block (may be returned if
162 * @create is zero)
163 *
164 * %-EINVAL - Invalid segment usage number
165 */
166int nilfs_sufile_updatev(struct inode *sufile, __u64 *segnumv, size_t nsegs,
167 int create, size_t *ndone,
168 void (*dofunc)(struct inode *, __u64,
169 struct buffer_head *,
170 struct buffer_head *))
171{
172 struct buffer_head *header_bh, *bh;
173 unsigned long blkoff, prev_blkoff;
174 __u64 *seg;
175 size_t nerr = 0, n = 0;
176 int ret = 0;
177
178 if (unlikely(nsegs == 0))
179 goto out;
180
181 down_write(&NILFS_MDT(sufile)->mi_sem);
182 for (seg = segnumv; seg < segnumv + nsegs; seg++) {
183 if (unlikely(*seg >= nilfs_sufile_get_nsegments(sufile))) {
184 printk(KERN_WARNING
185 "%s: invalid segment number: %llu\n", __func__,
186 (unsigned long long)*seg);
187 nerr++;
188 }
189 }
190 if (nerr > 0) {
191 ret = -EINVAL;
192 goto out_sem;
193 }
194
195 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
196 if (ret < 0)
197 goto out_sem;
198
199 seg = segnumv;
200 blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
201 ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
202 if (ret < 0)
203 goto out_header;
204
205 for (;;) {
206 dofunc(sufile, *seg, header_bh, bh);
207
208 if (++seg >= segnumv + nsegs)
209 break;
210 prev_blkoff = blkoff;
211 blkoff = nilfs_sufile_get_blkoff(sufile, *seg);
212 if (blkoff == prev_blkoff)
213 continue;
214
215 /* get different block */
216 brelse(bh);
217 ret = nilfs_mdt_get_block(sufile, blkoff, create, NULL, &bh);
218 if (unlikely(ret < 0))
219 goto out_header;
220 }
221 brelse(bh);
222
223 out_header:
224 n = seg - segnumv;
225 brelse(header_bh);
226 out_sem:
227 up_write(&NILFS_MDT(sufile)->mi_sem);
228 out:
229 if (ndone)
230 *ndone = n;
231 return ret;
232}
233
a703018f
RK
234int nilfs_sufile_update(struct inode *sufile, __u64 segnum, int create,
235 void (*dofunc)(struct inode *, __u64,
236 struct buffer_head *,
237 struct buffer_head *))
238{
239 struct buffer_head *header_bh, *bh;
240 int ret;
241
242 if (unlikely(segnum >= nilfs_sufile_get_nsegments(sufile))) {
243 printk(KERN_WARNING "%s: invalid segment number: %llu\n",
244 __func__, (unsigned long long)segnum);
245 return -EINVAL;
246 }
247 down_write(&NILFS_MDT(sufile)->mi_sem);
248
249 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
250 if (ret < 0)
251 goto out_sem;
252
253 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, create, &bh);
254 if (!ret) {
255 dofunc(sufile, segnum, header_bh, bh);
256 brelse(bh);
257 }
258 brelse(header_bh);
259
260 out_sem:
261 up_write(&NILFS_MDT(sufile)->mi_sem);
262 return ret;
263}
264
619205da
RK
265/**
266 * nilfs_sufile_set_alloc_range - limit range of segment to be allocated
267 * @sufile: inode of segment usage file
268 * @start: minimum segment number of allocatable region (inclusive)
269 * @end: maximum segment number of allocatable region (inclusive)
270 *
271 * Return Value: On success, 0 is returned. On error, one of the
272 * following negative error codes is returned.
273 *
274 * %-ERANGE - invalid segment region
275 */
276int nilfs_sufile_set_alloc_range(struct inode *sufile, __u64 start, __u64 end)
277{
278 struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
279 __u64 nsegs;
280 int ret = -ERANGE;
281
282 down_write(&NILFS_MDT(sufile)->mi_sem);
283 nsegs = nilfs_sufile_get_nsegments(sufile);
284
285 if (start <= end && end < nsegs) {
286 sui->allocmin = start;
287 sui->allocmax = end;
288 ret = 0;
289 }
290 up_write(&NILFS_MDT(sufile)->mi_sem);
291 return ret;
292}
293
6c98cd4e
KS
294/**
295 * nilfs_sufile_alloc - allocate a segment
296 * @sufile: inode of segment usage file
297 * @segnump: pointer to segment number
298 *
299 * Description: nilfs_sufile_alloc() allocates a clean segment.
300 *
301 * Return Value: On success, 0 is returned and the segment number of the
302 * allocated segment is stored in the place pointed by @segnump. On error, one
303 * of the following negative error codes is returned.
304 *
305 * %-EIO - I/O error.
306 *
307 * %-ENOMEM - Insufficient amount of memory available.
308 *
309 * %-ENOSPC - No clean segment left.
310 */
311int nilfs_sufile_alloc(struct inode *sufile, __u64 *segnump)
312{
313 struct buffer_head *header_bh, *su_bh;
6c98cd4e
KS
314 struct nilfs_sufile_header *header;
315 struct nilfs_segment_usage *su;
619205da 316 struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
6c98cd4e
KS
317 size_t susz = NILFS_MDT(sufile)->mi_entry_size;
318 __u64 segnum, maxsegnum, last_alloc;
319 void *kaddr;
619205da
RK
320 unsigned long nsegments, ncleansegs, nsus, cnt;
321 int ret, j;
6c98cd4e
KS
322
323 down_write(&NILFS_MDT(sufile)->mi_sem);
324
6c98cd4e
KS
325 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
326 if (ret < 0)
327 goto out_sem;
7b9c0976 328 kaddr = kmap_atomic(header_bh->b_page);
7b16c8a2 329 header = kaddr + bh_offset(header_bh);
6c98cd4e
KS
330 ncleansegs = le64_to_cpu(header->sh_ncleansegs);
331 last_alloc = le64_to_cpu(header->sh_last_alloc);
7b9c0976 332 kunmap_atomic(kaddr);
6c98cd4e
KS
333
334 nsegments = nilfs_sufile_get_nsegments(sufile);
619205da 335 maxsegnum = sui->allocmax;
6c98cd4e 336 segnum = last_alloc + 1;
619205da
RK
337 if (segnum < sui->allocmin || segnum > sui->allocmax)
338 segnum = sui->allocmin;
339
340 for (cnt = 0; cnt < nsegments; cnt += nsus) {
341 if (segnum > maxsegnum) {
342 if (cnt < sui->allocmax - sui->allocmin + 1) {
343 /*
344 * wrap around in the limited region.
345 * if allocation started from
346 * sui->allocmin, this never happens.
347 */
348 segnum = sui->allocmin;
349 maxsegnum = last_alloc;
350 } else if (segnum > sui->allocmin &&
351 sui->allocmax + 1 < nsegments) {
352 segnum = sui->allocmax + 1;
353 maxsegnum = nsegments - 1;
354 } else if (sui->allocmin > 0) {
355 segnum = 0;
356 maxsegnum = sui->allocmin - 1;
357 } else {
358 break; /* never happens */
359 }
6c98cd4e
KS
360 }
361 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 1,
362 &su_bh);
363 if (ret < 0)
364 goto out_header;
7b9c0976 365 kaddr = kmap_atomic(su_bh->b_page);
6c98cd4e
KS
366 su = nilfs_sufile_block_get_segment_usage(
367 sufile, segnum, su_bh, kaddr);
368
369 nsus = nilfs_sufile_segment_usages_in_block(
370 sufile, segnum, maxsegnum);
371 for (j = 0; j < nsus; j++, su = (void *)su + susz, segnum++) {
372 if (!nilfs_segment_usage_clean(su))
373 continue;
374 /* found a clean segment */
6c98cd4e 375 nilfs_segment_usage_set_dirty(su);
7b9c0976 376 kunmap_atomic(kaddr);
6c98cd4e 377
7b9c0976 378 kaddr = kmap_atomic(header_bh->b_page);
7b16c8a2 379 header = kaddr + bh_offset(header_bh);
6c98cd4e
KS
380 le64_add_cpu(&header->sh_ncleansegs, -1);
381 le64_add_cpu(&header->sh_ndirtysegs, 1);
382 header->sh_last_alloc = cpu_to_le64(segnum);
7b9c0976 383 kunmap_atomic(kaddr);
6c98cd4e 384
619205da 385 sui->ncleansegs--;
5fc7b141
RK
386 mark_buffer_dirty(header_bh);
387 mark_buffer_dirty(su_bh);
6c98cd4e
KS
388 nilfs_mdt_mark_dirty(sufile);
389 brelse(su_bh);
390 *segnump = segnum;
391 goto out_header;
392 }
393
7b9c0976 394 kunmap_atomic(kaddr);
6c98cd4e
KS
395 brelse(su_bh);
396 }
397
398 /* no segments left */
399 ret = -ENOSPC;
400
401 out_header:
402 brelse(header_bh);
403
404 out_sem:
405 up_write(&NILFS_MDT(sufile)->mi_sem);
406 return ret;
407}
408
a703018f
RK
409void nilfs_sufile_do_cancel_free(struct inode *sufile, __u64 segnum,
410 struct buffer_head *header_bh,
411 struct buffer_head *su_bh)
6c98cd4e 412{
6c98cd4e
KS
413 struct nilfs_segment_usage *su;
414 void *kaddr;
6c98cd4e 415
7b9c0976 416 kaddr = kmap_atomic(su_bh->b_page);
a703018f 417 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
1f5abe7e
RK
418 if (unlikely(!nilfs_segment_usage_clean(su))) {
419 printk(KERN_WARNING "%s: segment %llu must be clean\n",
6c98cd4e 420 __func__, (unsigned long long)segnum);
7b9c0976 421 kunmap_atomic(kaddr);
a703018f 422 return;
6c98cd4e
KS
423 }
424 nilfs_segment_usage_set_dirty(su);
7b9c0976 425 kunmap_atomic(kaddr);
6c98cd4e 426
a703018f 427 nilfs_sufile_mod_counter(header_bh, -1, 1);
aa474a22
RK
428 NILFS_SUI(sufile)->ncleansegs--;
429
5fc7b141 430 mark_buffer_dirty(su_bh);
6c98cd4e 431 nilfs_mdt_mark_dirty(sufile);
6c98cd4e
KS
432}
433
c85399c2
RK
434void nilfs_sufile_do_scrap(struct inode *sufile, __u64 segnum,
435 struct buffer_head *header_bh,
436 struct buffer_head *su_bh)
437{
438 struct nilfs_segment_usage *su;
439 void *kaddr;
440 int clean, dirty;
441
7b9c0976 442 kaddr = kmap_atomic(su_bh->b_page);
c85399c2
RK
443 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
444 if (su->su_flags == cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY) &&
445 su->su_nblocks == cpu_to_le32(0)) {
7b9c0976 446 kunmap_atomic(kaddr);
c85399c2
RK
447 return;
448 }
449 clean = nilfs_segment_usage_clean(su);
450 dirty = nilfs_segment_usage_dirty(su);
451
452 /* make the segment garbage */
453 su->su_lastmod = cpu_to_le64(0);
454 su->su_nblocks = cpu_to_le32(0);
455 su->su_flags = cpu_to_le32(1UL << NILFS_SEGMENT_USAGE_DIRTY);
7b9c0976 456 kunmap_atomic(kaddr);
c85399c2
RK
457
458 nilfs_sufile_mod_counter(header_bh, clean ? (u64)-1 : 0, dirty ? 0 : 1);
aa474a22
RK
459 NILFS_SUI(sufile)->ncleansegs -= clean;
460
5fc7b141 461 mark_buffer_dirty(su_bh);
c85399c2
RK
462 nilfs_mdt_mark_dirty(sufile);
463}
464
a703018f
RK
465void nilfs_sufile_do_free(struct inode *sufile, __u64 segnum,
466 struct buffer_head *header_bh,
467 struct buffer_head *su_bh)
6c98cd4e 468{
6c98cd4e
KS
469 struct nilfs_segment_usage *su;
470 void *kaddr;
a703018f 471 int sudirty;
6c98cd4e 472
7b9c0976 473 kaddr = kmap_atomic(su_bh->b_page);
a703018f
RK
474 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
475 if (nilfs_segment_usage_clean(su)) {
476 printk(KERN_WARNING "%s: segment %llu is already clean\n",
477 __func__, (unsigned long long)segnum);
7b9c0976 478 kunmap_atomic(kaddr);
a703018f 479 return;
6c98cd4e 480 }
a703018f
RK
481 WARN_ON(nilfs_segment_usage_error(su));
482 WARN_ON(!nilfs_segment_usage_dirty(su));
6c98cd4e 483
a703018f
RK
484 sudirty = nilfs_segment_usage_dirty(su);
485 nilfs_segment_usage_set_clean(su);
7b9c0976 486 kunmap_atomic(kaddr);
5fc7b141 487 mark_buffer_dirty(su_bh);
6c98cd4e 488
a703018f 489 nilfs_sufile_mod_counter(header_bh, 1, sudirty ? (u64)-1 : 0);
aa474a22
RK
490 NILFS_SUI(sufile)->ncleansegs++;
491
a703018f 492 nilfs_mdt_mark_dirty(sufile);
6c98cd4e
KS
493}
494
61a189e9
RK
495/**
496 * nilfs_sufile_mark_dirty - mark the buffer having a segment usage dirty
497 * @sufile: inode of segment usage file
498 * @segnum: segment number
499 */
500int nilfs_sufile_mark_dirty(struct inode *sufile, __u64 segnum)
501{
502 struct buffer_head *bh;
503 int ret;
504
505 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
506 if (!ret) {
5fc7b141 507 mark_buffer_dirty(bh);
61a189e9
RK
508 nilfs_mdt_mark_dirty(sufile);
509 brelse(bh);
510 }
511 return ret;
512}
513
071ec54d
RK
514/**
515 * nilfs_sufile_set_segment_usage - set usage of a segment
516 * @sufile: inode of segment usage file
517 * @segnum: segment number
518 * @nblocks: number of live blocks in the segment
519 * @modtime: modification time (option)
520 */
521int nilfs_sufile_set_segment_usage(struct inode *sufile, __u64 segnum,
522 unsigned long nblocks, time_t modtime)
523{
524 struct buffer_head *bh;
525 struct nilfs_segment_usage *su;
526 void *kaddr;
527 int ret;
528
529 down_write(&NILFS_MDT(sufile)->mi_sem);
530 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0, &bh);
531 if (ret < 0)
532 goto out_sem;
533
7b9c0976 534 kaddr = kmap_atomic(bh->b_page);
071ec54d
RK
535 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, bh, kaddr);
536 WARN_ON(nilfs_segment_usage_error(su));
537 if (modtime)
538 su->su_lastmod = cpu_to_le64(modtime);
539 su->su_nblocks = cpu_to_le32(nblocks);
7b9c0976 540 kunmap_atomic(kaddr);
071ec54d 541
5fc7b141 542 mark_buffer_dirty(bh);
071ec54d
RK
543 nilfs_mdt_mark_dirty(sufile);
544 brelse(bh);
545
546 out_sem:
547 up_write(&NILFS_MDT(sufile)->mi_sem);
548 return ret;
549}
550
6c98cd4e
KS
551/**
552 * nilfs_sufile_get_stat - get segment usage statistics
553 * @sufile: inode of segment usage file
554 * @stat: pointer to a structure of segment usage statistics
555 *
556 * Description: nilfs_sufile_get_stat() returns information about segment
557 * usage.
558 *
559 * Return Value: On success, 0 is returned, and segment usage information is
560 * stored in the place pointed by @stat. On error, one of the following
561 * negative error codes is returned.
562 *
563 * %-EIO - I/O error.
564 *
565 * %-ENOMEM - Insufficient amount of memory available.
566 */
567int nilfs_sufile_get_stat(struct inode *sufile, struct nilfs_sustat *sustat)
568{
569 struct buffer_head *header_bh;
570 struct nilfs_sufile_header *header;
0ef28f9a 571 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
6c98cd4e
KS
572 void *kaddr;
573 int ret;
574
575 down_read(&NILFS_MDT(sufile)->mi_sem);
576
577 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
578 if (ret < 0)
579 goto out_sem;
580
7b9c0976 581 kaddr = kmap_atomic(header_bh->b_page);
7b16c8a2 582 header = kaddr + bh_offset(header_bh);
6c98cd4e
KS
583 sustat->ss_nsegs = nilfs_sufile_get_nsegments(sufile);
584 sustat->ss_ncleansegs = le64_to_cpu(header->sh_ncleansegs);
585 sustat->ss_ndirtysegs = le64_to_cpu(header->sh_ndirtysegs);
2c2e52fc
RK
586 sustat->ss_ctime = nilfs->ns_ctime;
587 sustat->ss_nongc_ctime = nilfs->ns_nongc_ctime;
588 spin_lock(&nilfs->ns_last_segment_lock);
589 sustat->ss_prot_seq = nilfs->ns_prot_seq;
590 spin_unlock(&nilfs->ns_last_segment_lock);
7b9c0976 591 kunmap_atomic(kaddr);
6c98cd4e
KS
592 brelse(header_bh);
593
594 out_sem:
595 up_read(&NILFS_MDT(sufile)->mi_sem);
596 return ret;
597}
598
a703018f
RK
599void nilfs_sufile_do_set_error(struct inode *sufile, __u64 segnum,
600 struct buffer_head *header_bh,
601 struct buffer_head *su_bh)
6c98cd4e 602{
6c98cd4e 603 struct nilfs_segment_usage *su;
6c98cd4e 604 void *kaddr;
a703018f 605 int suclean;
6c98cd4e 606
7b9c0976 607 kaddr = kmap_atomic(su_bh->b_page);
6c98cd4e
KS
608 su = nilfs_sufile_block_get_segment_usage(sufile, segnum, su_bh, kaddr);
609 if (nilfs_segment_usage_error(su)) {
7b9c0976 610 kunmap_atomic(kaddr);
a703018f 611 return;
6c98cd4e 612 }
88072faf 613 suclean = nilfs_segment_usage_clean(su);
6c98cd4e 614 nilfs_segment_usage_set_error(su);
7b9c0976 615 kunmap_atomic(kaddr);
6c98cd4e 616
aa474a22 617 if (suclean) {
a703018f 618 nilfs_sufile_mod_counter(header_bh, -1, 0);
aa474a22
RK
619 NILFS_SUI(sufile)->ncleansegs--;
620 }
5fc7b141 621 mark_buffer_dirty(su_bh);
6c98cd4e 622 nilfs_mdt_mark_dirty(sufile);
6c98cd4e
KS
623}
624
78eb64c2
RK
625/**
626 * nilfs_sufile_truncate_range - truncate range of segment array
627 * @sufile: inode of segment usage file
628 * @start: start segment number (inclusive)
629 * @end: end segment number (inclusive)
630 *
631 * Return Value: On success, 0 is returned. On error, one of the
632 * following negative error codes is returned.
633 *
634 * %-EIO - I/O error.
635 *
636 * %-ENOMEM - Insufficient amount of memory available.
637 *
638 * %-EINVAL - Invalid number of segments specified
639 *
640 * %-EBUSY - Dirty or active segments are present in the range
641 */
642static int nilfs_sufile_truncate_range(struct inode *sufile,
643 __u64 start, __u64 end)
644{
645 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
646 struct buffer_head *header_bh;
647 struct buffer_head *su_bh;
648 struct nilfs_segment_usage *su, *su2;
649 size_t susz = NILFS_MDT(sufile)->mi_entry_size;
650 unsigned long segusages_per_block;
651 unsigned long nsegs, ncleaned;
652 __u64 segnum;
653 void *kaddr;
654 ssize_t n, nc;
655 int ret;
656 int j;
657
658 nsegs = nilfs_sufile_get_nsegments(sufile);
659
660 ret = -EINVAL;
661 if (start > end || start >= nsegs)
662 goto out;
663
664 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
665 if (ret < 0)
666 goto out;
667
668 segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
669 ncleaned = 0;
670
671 for (segnum = start; segnum <= end; segnum += n) {
672 n = min_t(unsigned long,
673 segusages_per_block -
674 nilfs_sufile_get_offset(sufile, segnum),
675 end - segnum + 1);
676 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
677 &su_bh);
678 if (ret < 0) {
679 if (ret != -ENOENT)
680 goto out_header;
681 /* hole */
682 continue;
683 }
7b9c0976 684 kaddr = kmap_atomic(su_bh->b_page);
78eb64c2
RK
685 su = nilfs_sufile_block_get_segment_usage(
686 sufile, segnum, su_bh, kaddr);
687 su2 = su;
688 for (j = 0; j < n; j++, su = (void *)su + susz) {
689 if ((le32_to_cpu(su->su_flags) &
690 ~(1UL << NILFS_SEGMENT_USAGE_ERROR)) ||
691 nilfs_segment_is_active(nilfs, segnum + j)) {
692 ret = -EBUSY;
7b9c0976 693 kunmap_atomic(kaddr);
78eb64c2
RK
694 brelse(su_bh);
695 goto out_header;
696 }
697 }
698 nc = 0;
699 for (su = su2, j = 0; j < n; j++, su = (void *)su + susz) {
700 if (nilfs_segment_usage_error(su)) {
701 nilfs_segment_usage_set_clean(su);
702 nc++;
703 }
704 }
7b9c0976 705 kunmap_atomic(kaddr);
78eb64c2 706 if (nc > 0) {
5fc7b141 707 mark_buffer_dirty(su_bh);
78eb64c2
RK
708 ncleaned += nc;
709 }
710 brelse(su_bh);
711
712 if (n == segusages_per_block) {
713 /* make hole */
714 nilfs_sufile_delete_segment_usage_block(sufile, segnum);
715 }
716 }
717 ret = 0;
718
719out_header:
720 if (ncleaned > 0) {
721 NILFS_SUI(sufile)->ncleansegs += ncleaned;
722 nilfs_sufile_mod_counter(header_bh, ncleaned, 0);
723 nilfs_mdt_mark_dirty(sufile);
724 }
725 brelse(header_bh);
726out:
727 return ret;
728}
729
4e33f9ea
RK
730/**
731 * nilfs_sufile_resize - resize segment array
732 * @sufile: inode of segment usage file
733 * @newnsegs: new number of segments
734 *
735 * Return Value: On success, 0 is returned. On error, one of the
736 * following negative error codes is returned.
737 *
738 * %-EIO - I/O error.
739 *
740 * %-ENOMEM - Insufficient amount of memory available.
741 *
742 * %-ENOSPC - Enough free space is not left for shrinking
743 *
744 * %-EBUSY - Dirty or active segments exist in the region to be truncated
745 */
746int nilfs_sufile_resize(struct inode *sufile, __u64 newnsegs)
747{
748 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
749 struct buffer_head *header_bh;
750 struct nilfs_sufile_header *header;
751 struct nilfs_sufile_info *sui = NILFS_SUI(sufile);
752 void *kaddr;
753 unsigned long nsegs, nrsvsegs;
754 int ret = 0;
755
756 down_write(&NILFS_MDT(sufile)->mi_sem);
757
758 nsegs = nilfs_sufile_get_nsegments(sufile);
759 if (nsegs == newnsegs)
760 goto out;
761
762 ret = -ENOSPC;
763 nrsvsegs = nilfs_nrsvsegs(nilfs, newnsegs);
764 if (newnsegs < nsegs && nsegs - newnsegs + nrsvsegs > sui->ncleansegs)
765 goto out;
766
767 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
768 if (ret < 0)
769 goto out;
770
771 if (newnsegs > nsegs) {
772 sui->ncleansegs += newnsegs - nsegs;
773 } else /* newnsegs < nsegs */ {
774 ret = nilfs_sufile_truncate_range(sufile, newnsegs, nsegs - 1);
775 if (ret < 0)
776 goto out_header;
777
778 sui->ncleansegs -= nsegs - newnsegs;
779 }
780
7b9c0976 781 kaddr = kmap_atomic(header_bh->b_page);
4e33f9ea
RK
782 header = kaddr + bh_offset(header_bh);
783 header->sh_ncleansegs = cpu_to_le64(sui->ncleansegs);
7b9c0976 784 kunmap_atomic(kaddr);
4e33f9ea 785
5fc7b141 786 mark_buffer_dirty(header_bh);
4e33f9ea
RK
787 nilfs_mdt_mark_dirty(sufile);
788 nilfs_set_nsegments(nilfs, newnsegs);
789
790out_header:
791 brelse(header_bh);
792out:
793 up_write(&NILFS_MDT(sufile)->mi_sem);
794 return ret;
795}
796
6c98cd4e
KS
797/**
798 * nilfs_sufile_get_suinfo -
799 * @sufile: inode of segment usage file
800 * @segnum: segment number to start looking
003ff182
RK
801 * @buf: array of suinfo
802 * @sisz: byte size of suinfo
6c98cd4e
KS
803 * @nsi: size of suinfo array
804 *
805 * Description:
806 *
807 * Return Value: On success, 0 is returned and .... On error, one of the
808 * following negative error codes is returned.
809 *
810 * %-EIO - I/O error.
811 *
812 * %-ENOMEM - Insufficient amount of memory available.
813 */
003ff182
RK
814ssize_t nilfs_sufile_get_suinfo(struct inode *sufile, __u64 segnum, void *buf,
815 unsigned sisz, size_t nsi)
6c98cd4e
KS
816{
817 struct buffer_head *su_bh;
818 struct nilfs_segment_usage *su;
003ff182 819 struct nilfs_suinfo *si = buf;
6c98cd4e 820 size_t susz = NILFS_MDT(sufile)->mi_entry_size;
0ef28f9a 821 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
6c98cd4e
KS
822 void *kaddr;
823 unsigned long nsegs, segusages_per_block;
824 ssize_t n;
825 int ret, i, j;
826
827 down_read(&NILFS_MDT(sufile)->mi_sem);
828
829 segusages_per_block = nilfs_sufile_segment_usages_per_block(sufile);
830 nsegs = min_t(unsigned long,
831 nilfs_sufile_get_nsegments(sufile) - segnum,
832 nsi);
833 for (i = 0; i < nsegs; i += n, segnum += n) {
834 n = min_t(unsigned long,
835 segusages_per_block -
836 nilfs_sufile_get_offset(sufile, segnum),
837 nsegs - i);
838 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
839 &su_bh);
840 if (ret < 0) {
841 if (ret != -ENOENT)
842 goto out;
843 /* hole */
003ff182
RK
844 memset(si, 0, sisz * n);
845 si = (void *)si + sisz * n;
6c98cd4e
KS
846 continue;
847 }
848
7b9c0976 849 kaddr = kmap_atomic(su_bh->b_page);
6c98cd4e
KS
850 su = nilfs_sufile_block_get_segment_usage(
851 sufile, segnum, su_bh, kaddr);
003ff182
RK
852 for (j = 0; j < n;
853 j++, su = (void *)su + susz, si = (void *)si + sisz) {
854 si->sui_lastmod = le64_to_cpu(su->su_lastmod);
855 si->sui_nblocks = le32_to_cpu(su->su_nblocks);
856 si->sui_flags = le32_to_cpu(su->su_flags) &
cece5520 857 ~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
3efb55b4 858 if (nilfs_segment_is_active(nilfs, segnum + j))
003ff182 859 si->sui_flags |=
cece5520 860 (1UL << NILFS_SEGMENT_USAGE_ACTIVE);
6c98cd4e 861 }
7b9c0976 862 kunmap_atomic(kaddr);
6c98cd4e
KS
863 brelse(su_bh);
864 }
865 ret = nsegs;
866
867 out:
868 up_read(&NILFS_MDT(sufile)->mi_sem);
869 return ret;
870}
79739565 871
00e9ffcd
AR
872/**
873 * nilfs_sufile_set_suinfo - sets segment usage info
874 * @sufile: inode of segment usage file
875 * @buf: array of suinfo_update
876 * @supsz: byte size of suinfo_update
877 * @nsup: size of suinfo_update array
878 *
879 * Description: Takes an array of nilfs_suinfo_update structs and updates
880 * segment usage accordingly. Only the fields indicated by the sup_flags
881 * are updated.
882 *
883 * Return Value: On success, 0 is returned. On error, one of the
884 * following negative error codes is returned.
885 *
886 * %-EIO - I/O error.
887 *
888 * %-ENOMEM - Insufficient amount of memory available.
889 *
890 * %-EINVAL - Invalid values in input (segment number, flags or nblocks)
891 */
892ssize_t nilfs_sufile_set_suinfo(struct inode *sufile, void *buf,
893 unsigned supsz, size_t nsup)
894{
895 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
896 struct buffer_head *header_bh, *bh;
897 struct nilfs_suinfo_update *sup, *supend = buf + supsz * nsup;
898 struct nilfs_segment_usage *su;
899 void *kaddr;
900 unsigned long blkoff, prev_blkoff;
901 int cleansi, cleansu, dirtysi, dirtysu;
902 long ncleaned = 0, ndirtied = 0;
903 int ret = 0;
904
905 if (unlikely(nsup == 0))
906 return ret;
907
908 for (sup = buf; sup < supend; sup = (void *)sup + supsz) {
909 if (sup->sup_segnum >= nilfs->ns_nsegments
910 || (sup->sup_flags &
911 (~0UL << __NR_NILFS_SUINFO_UPDATE_FIELDS))
912 || (nilfs_suinfo_update_nblocks(sup) &&
913 sup->sup_sui.sui_nblocks >
914 nilfs->ns_blocks_per_segment))
915 return -EINVAL;
916 }
917
918 down_write(&NILFS_MDT(sufile)->mi_sem);
919
920 ret = nilfs_sufile_get_header_block(sufile, &header_bh);
921 if (ret < 0)
922 goto out_sem;
923
924 sup = buf;
925 blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
926 ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
927 if (ret < 0)
928 goto out_header;
929
930 for (;;) {
931 kaddr = kmap_atomic(bh->b_page);
932 su = nilfs_sufile_block_get_segment_usage(
933 sufile, sup->sup_segnum, bh, kaddr);
934
935 if (nilfs_suinfo_update_lastmod(sup))
936 su->su_lastmod = cpu_to_le64(sup->sup_sui.sui_lastmod);
937
938 if (nilfs_suinfo_update_nblocks(sup))
939 su->su_nblocks = cpu_to_le32(sup->sup_sui.sui_nblocks);
940
941 if (nilfs_suinfo_update_flags(sup)) {
942 /*
943 * Active flag is a virtual flag projected by running
944 * nilfs kernel code - drop it not to write it to
945 * disk.
946 */
947 sup->sup_sui.sui_flags &=
948 ~(1UL << NILFS_SEGMENT_USAGE_ACTIVE);
949
950 cleansi = nilfs_suinfo_clean(&sup->sup_sui);
951 cleansu = nilfs_segment_usage_clean(su);
952 dirtysi = nilfs_suinfo_dirty(&sup->sup_sui);
953 dirtysu = nilfs_segment_usage_dirty(su);
954
955 if (cleansi && !cleansu)
956 ++ncleaned;
957 else if (!cleansi && cleansu)
958 --ncleaned;
959
960 if (dirtysi && !dirtysu)
961 ++ndirtied;
962 else if (!dirtysi && dirtysu)
963 --ndirtied;
964
965 su->su_flags = cpu_to_le32(sup->sup_sui.sui_flags);
966 }
967
968 kunmap_atomic(kaddr);
969
970 sup = (void *)sup + supsz;
971 if (sup >= supend)
972 break;
973
974 prev_blkoff = blkoff;
975 blkoff = nilfs_sufile_get_blkoff(sufile, sup->sup_segnum);
976 if (blkoff == prev_blkoff)
977 continue;
978
979 /* get different block */
980 mark_buffer_dirty(bh);
981 put_bh(bh);
982 ret = nilfs_mdt_get_block(sufile, blkoff, 1, NULL, &bh);
983 if (unlikely(ret < 0))
984 goto out_mark;
985 }
986 mark_buffer_dirty(bh);
987 put_bh(bh);
988
989 out_mark:
990 if (ncleaned || ndirtied) {
991 nilfs_sufile_mod_counter(header_bh, (u64)ncleaned,
992 (u64)ndirtied);
993 NILFS_SUI(sufile)->ncleansegs += ncleaned;
994 }
995 nilfs_mdt_mark_dirty(sufile);
996 out_header:
997 put_bh(header_bh);
998 out_sem:
999 up_write(&NILFS_MDT(sufile)->mi_sem);
1000 return ret;
1001}
1002
82e11e85
AR
1003/**
1004 * nilfs_sufile_trim_fs() - trim ioctl handle function
1005 * @sufile: inode of segment usage file
1006 * @range: fstrim_range structure
1007 *
1008 * start: First Byte to trim
1009 * len: number of Bytes to trim from start
1010 * minlen: minimum extent length in Bytes
1011 *
1012 * Decription: nilfs_sufile_trim_fs goes through all segments containing bytes
1013 * from start to start+len. start is rounded up to the next block boundary
1014 * and start+len is rounded down. For each clean segment blkdev_issue_discard
1015 * function is invoked.
1016 *
1017 * Return Value: On success, 0 is returned or negative error code, otherwise.
1018 */
1019int nilfs_sufile_trim_fs(struct inode *sufile, struct fstrim_range *range)
1020{
1021 struct the_nilfs *nilfs = sufile->i_sb->s_fs_info;
1022 struct buffer_head *su_bh;
1023 struct nilfs_segment_usage *su;
1024 void *kaddr;
1025 size_t n, i, susz = NILFS_MDT(sufile)->mi_entry_size;
1026 sector_t seg_start, seg_end, start_block, end_block;
1027 sector_t start = 0, nblocks = 0;
1028 u64 segnum, segnum_end, minlen, len, max_blocks, ndiscarded = 0;
1029 int ret = 0;
1030 unsigned int sects_per_block;
1031
1032 sects_per_block = (1 << nilfs->ns_blocksize_bits) /
1033 bdev_logical_block_size(nilfs->ns_bdev);
1034 len = range->len >> nilfs->ns_blocksize_bits;
1035 minlen = range->minlen >> nilfs->ns_blocksize_bits;
1036 max_blocks = ((u64)nilfs->ns_nsegments * nilfs->ns_blocks_per_segment);
1037
1038 if (!len || range->start >= max_blocks << nilfs->ns_blocksize_bits)
1039 return -EINVAL;
1040
1041 start_block = (range->start + nilfs->ns_blocksize - 1) >>
1042 nilfs->ns_blocksize_bits;
1043
1044 /*
1045 * range->len can be very large (actually, it is set to
1046 * ULLONG_MAX by default) - truncate upper end of the range
1047 * carefully so as not to overflow.
1048 */
1049 if (max_blocks - start_block < len)
1050 end_block = max_blocks - 1;
1051 else
1052 end_block = start_block + len - 1;
1053
1054 segnum = nilfs_get_segnum_of_block(nilfs, start_block);
1055 segnum_end = nilfs_get_segnum_of_block(nilfs, end_block);
1056
1057 down_read(&NILFS_MDT(sufile)->mi_sem);
1058
1059 while (segnum <= segnum_end) {
1060 n = nilfs_sufile_segment_usages_in_block(sufile, segnum,
1061 segnum_end);
1062
1063 ret = nilfs_sufile_get_segment_usage_block(sufile, segnum, 0,
1064 &su_bh);
1065 if (ret < 0) {
1066 if (ret != -ENOENT)
1067 goto out_sem;
1068 /* hole */
1069 segnum += n;
1070 continue;
1071 }
1072
1073 kaddr = kmap_atomic(su_bh->b_page);
1074 su = nilfs_sufile_block_get_segment_usage(sufile, segnum,
1075 su_bh, kaddr);
1076 for (i = 0; i < n; ++i, ++segnum, su = (void *)su + susz) {
1077 if (!nilfs_segment_usage_clean(su))
1078 continue;
1079
1080 nilfs_get_segment_range(nilfs, segnum, &seg_start,
1081 &seg_end);
1082
1083 if (!nblocks) {
1084 /* start new extent */
1085 start = seg_start;
1086 nblocks = seg_end - seg_start + 1;
1087 continue;
1088 }
1089
1090 if (start + nblocks == seg_start) {
1091 /* add to previous extent */
1092 nblocks += seg_end - seg_start + 1;
1093 continue;
1094 }
1095
1096 /* discard previous extent */
1097 if (start < start_block) {
1098 nblocks -= start_block - start;
1099 start = start_block;
1100 }
1101
1102 if (nblocks >= minlen) {
1103 kunmap_atomic(kaddr);
1104
1105 ret = blkdev_issue_discard(nilfs->ns_bdev,
1106 start * sects_per_block,
1107 nblocks * sects_per_block,
1108 GFP_NOFS, 0);
1109 if (ret < 0) {
1110 put_bh(su_bh);
1111 goto out_sem;
1112 }
1113
1114 ndiscarded += nblocks;
1115 kaddr = kmap_atomic(su_bh->b_page);
1116 su = nilfs_sufile_block_get_segment_usage(
1117 sufile, segnum, su_bh, kaddr);
1118 }
1119
1120 /* start new extent */
1121 start = seg_start;
1122 nblocks = seg_end - seg_start + 1;
1123 }
1124 kunmap_atomic(kaddr);
1125 put_bh(su_bh);
1126 }
1127
1128
1129 if (nblocks) {
1130 /* discard last extent */
1131 if (start < start_block) {
1132 nblocks -= start_block - start;
1133 start = start_block;
1134 }
1135 if (start + nblocks > end_block + 1)
1136 nblocks = end_block - start + 1;
1137
1138 if (nblocks >= minlen) {
1139 ret = blkdev_issue_discard(nilfs->ns_bdev,
1140 start * sects_per_block,
1141 nblocks * sects_per_block,
1142 GFP_NOFS, 0);
1143 if (!ret)
1144 ndiscarded += nblocks;
1145 }
1146 }
1147
1148out_sem:
1149 up_read(&NILFS_MDT(sufile)->mi_sem);
1150
1151 range->len = ndiscarded << nilfs->ns_blocksize_bits;
1152 return ret;
1153}
1154
8707df38 1155/**
f1e89c86
RK
1156 * nilfs_sufile_read - read or get sufile inode
1157 * @sb: super block instance
1158 * @susize: size of a segment usage entry
8707df38 1159 * @raw_inode: on-disk sufile inode
f1e89c86 1160 * @inodep: buffer to store the inode
8707df38 1161 */
f1e89c86
RK
1162int nilfs_sufile_read(struct super_block *sb, size_t susize,
1163 struct nilfs_inode *raw_inode, struct inode **inodep)
8707df38 1164{
f1e89c86
RK
1165 struct inode *sufile;
1166 struct nilfs_sufile_info *sui;
aa474a22
RK
1167 struct buffer_head *header_bh;
1168 struct nilfs_sufile_header *header;
1169 void *kaddr;
f1e89c86 1170 int err;
aa474a22 1171
0ec060d1
RK
1172 if (susize > sb->s_blocksize) {
1173 printk(KERN_ERR
1174 "NILFS: too large segment usage size: %zu bytes.\n",
1175 susize);
1176 return -EINVAL;
1177 } else if (susize < NILFS_MIN_SEGMENT_USAGE_SIZE) {
1178 printk(KERN_ERR
1179 "NILFS: too small segment usage size: %zu bytes.\n",
1180 susize);
1181 return -EINVAL;
1182 }
1183
f1e89c86
RK
1184 sufile = nilfs_iget_locked(sb, NULL, NILFS_SUFILE_INO);
1185 if (unlikely(!sufile))
1186 return -ENOMEM;
1187 if (!(sufile->i_state & I_NEW))
1188 goto out;
aa474a22 1189
f1e89c86
RK
1190 err = nilfs_mdt_init(sufile, NILFS_MDT_GFP, sizeof(*sui));
1191 if (err)
1192 goto failed;
8707df38 1193
f1e89c86
RK
1194 nilfs_mdt_set_entry_size(sufile, susize,
1195 sizeof(struct nilfs_sufile_header));
1196
1197 err = nilfs_read_inode_common(sufile, raw_inode);
1198 if (err)
1199 goto failed;
1200
1201 err = nilfs_sufile_get_header_block(sufile, &header_bh);
1202 if (err)
1203 goto failed;
79739565 1204
f1e89c86 1205 sui = NILFS_SUI(sufile);
7b9c0976 1206 kaddr = kmap_atomic(header_bh->b_page);
f1e89c86
RK
1207 header = kaddr + bh_offset(header_bh);
1208 sui->ncleansegs = le64_to_cpu(header->sh_ncleansegs);
7b9c0976 1209 kunmap_atomic(kaddr);
f1e89c86
RK
1210 brelse(header_bh);
1211
619205da
RK
1212 sui->allocmax = nilfs_sufile_get_nsegments(sufile) - 1;
1213 sui->allocmin = 0;
1214
f1e89c86
RK
1215 unlock_new_inode(sufile);
1216 out:
1217 *inodep = sufile;
1218 return 0;
1219 failed:
1220 iget_failed(sufile);
1221 return err;
79739565 1222}