]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ntfs/aops.c
NTFS: Stamp the transaction log ($UsnJrnl), aka user space journal, if it
[mirror_ubuntu-artful-kernel.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
267 }
268 /* Hard error, zero out region. */
269 bh->b_blocknr = -1;
270 SetPageError(page);
271 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
272 "attribute type 0x%x, vcn 0x%llx, "
273 "offset 0x%x because its location on "
274 "disk could not be determined%s "
275 "(error code %lli).", ni->mft_no,
276 ni->type, (unsigned long long)vcn,
277 vcn_ofs, is_retry ? " even after "
278 "retrying" : "", (long long)lcn);
279 }
280 /*
281 * Either iblock was outside lblock limits or
282 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
283 * of the page and set the buffer uptodate.
284 */
285handle_hole:
286 bh->b_blocknr = -1UL;
287 clear_buffer_mapped(bh);
288handle_zblock:
289 kaddr = kmap_atomic(page, KM_USER0);
290 memset(kaddr + i * blocksize, 0, blocksize);
291 flush_dcache_page(page);
292 kunmap_atomic(kaddr, KM_USER0);
293 set_buffer_uptodate(bh);
294 } while (i++, iblock++, (bh = bh->b_this_page) != head);
295
296 /* Release the lock if we took it. */
297 if (rl)
298 up_read(&ni->runlist.lock);
299
300 /* Check we have at least one buffer ready for i/o. */
301 if (nr) {
302 struct buffer_head *tbh;
303
304 /* Lock the buffers. */
305 for (i = 0; i < nr; i++) {
306 tbh = arr[i];
307 lock_buffer(tbh);
308 tbh->b_end_io = ntfs_end_buffer_async_read;
309 set_buffer_async_read(tbh);
310 }
311 /* Finally, start i/o on the buffers. */
312 for (i = 0; i < nr; i++) {
313 tbh = arr[i];
314 if (likely(!buffer_uptodate(tbh)))
315 submit_bh(READ, tbh);
316 else
317 ntfs_end_buffer_async_read(tbh, 1);
318 }
319 return 0;
320 }
321 /* No i/o was scheduled on any of the buffers. */
322 if (likely(!PageError(page)))
323 SetPageUptodate(page);
324 else /* Signal synchronous i/o error. */
325 nr = -EIO;
326 unlock_page(page);
327 return nr;
328}
329
330/**
331 * ntfs_readpage - fill a @page of a @file with data from the device
332 * @file: open file to which the page @page belongs or NULL
333 * @page: page cache page to fill with data
334 *
335 * For non-resident attributes, ntfs_readpage() fills the @page of the open
336 * file @file by calling the ntfs version of the generic block_read_full_page()
337 * function, ntfs_read_block(), which in turn creates and reads in the buffers
338 * associated with the page asynchronously.
339 *
340 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
341 * data from the mft record (which at this stage is most likely in memory) and
342 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
343 * even if the mft record is not cached at this point in time, we need to wait
344 * for it to be read in before we can do the copy.
345 *
346 * Return 0 on success and -errno on error.
347 */
348static int ntfs_readpage(struct file *file, struct page *page)
349{
1da177e4
LT
350 ntfs_inode *ni, *base_ni;
351 u8 *kaddr;
352 ntfs_attr_search_ctx *ctx;
353 MFT_RECORD *mrec;
b6ad6c52 354 unsigned long flags;
1da177e4
LT
355 u32 attr_len;
356 int err = 0;
357
905685f6 358retry_readpage:
1da177e4
LT
359 BUG_ON(!PageLocked(page));
360 /*
361 * This can potentially happen because we clear PageUptodate() during
362 * ntfs_writepage() of MstProtected() attributes.
363 */
364 if (PageUptodate(page)) {
365 unlock_page(page);
366 return 0;
367 }
368 ni = NTFS_I(page->mapping->host);
369
370 /* NInoNonResident() == NInoIndexAllocPresent() */
371 if (NInoNonResident(ni)) {
372 /*
373 * Only unnamed $DATA attributes can be compressed or
374 * encrypted.
375 */
376 if (ni->type == AT_DATA && !ni->name_len) {
377 /* If file is encrypted, deny access, just like NT4. */
378 if (NInoEncrypted(ni)) {
379 err = -EACCES;
380 goto err_out;
381 }
382 /* Compressed data streams are handled in compress.c. */
383 if (NInoCompressed(ni))
384 return ntfs_read_compressed_block(page);
385 }
386 /* Normal data stream. */
387 return ntfs_read_block(page);
388 }
389 /*
390 * Attribute is resident, implying it is not compressed or encrypted.
391 * This also means the attribute is smaller than an mft record and
392 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 393 * index above 0.
1da177e4 394 */
b6ad6c52 395 if (unlikely(page->index > 0)) {
1da177e4
LT
396 kaddr = kmap_atomic(page, KM_USER0);
397 memset(kaddr, 0, PAGE_CACHE_SIZE);
398 flush_dcache_page(page);
399 kunmap_atomic(kaddr, KM_USER0);
400 goto done;
401 }
402 if (!NInoAttr(ni))
403 base_ni = ni;
404 else
405 base_ni = ni->ext.base_ntfs_ino;
406 /* Map, pin, and lock the mft record. */
407 mrec = map_mft_record(base_ni);
408 if (IS_ERR(mrec)) {
409 err = PTR_ERR(mrec);
410 goto err_out;
411 }
905685f6
AA
412 /*
413 * If a parallel write made the attribute non-resident, drop the mft
414 * record and retry the readpage.
415 */
416 if (unlikely(NInoNonResident(ni))) {
417 unmap_mft_record(base_ni);
418 goto retry_readpage;
419 }
1da177e4
LT
420 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
421 if (unlikely(!ctx)) {
422 err = -ENOMEM;
423 goto unm_err_out;
424 }
425 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
426 CASE_SENSITIVE, 0, NULL, 0, ctx);
427 if (unlikely(err))
428 goto put_unm_err_out;
429 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
430 read_lock_irqsave(&ni->size_lock, flags);
431 if (unlikely(attr_len > ni->initialized_size))
432 attr_len = ni->initialized_size;
433 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
434 kaddr = kmap_atomic(page, KM_USER0);
435 /* Copy the data to the page. */
436 memcpy(kaddr, (u8*)ctx->attr +
437 le16_to_cpu(ctx->attr->data.resident.value_offset),
438 attr_len);
439 /* Zero the remainder of the page. */
440 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
441 flush_dcache_page(page);
442 kunmap_atomic(kaddr, KM_USER0);
443put_unm_err_out:
444 ntfs_attr_put_search_ctx(ctx);
445unm_err_out:
446 unmap_mft_record(base_ni);
447done:
448 SetPageUptodate(page);
449err_out:
450 unlock_page(page);
451 return err;
452}
453
454#ifdef NTFS_RW
455
456/**
457 * ntfs_write_block - write a @page to the backing store
458 * @page: page cache page to write out
459 * @wbc: writeback control structure
460 *
461 * This function is for writing pages belonging to non-resident, non-mst
462 * protected attributes to their backing store.
463 *
464 * For a page with buffers, map and write the dirty buffers asynchronously
465 * under page writeback. For a page without buffers, create buffers for the
466 * page, then proceed as above.
467 *
468 * If a page doesn't have buffers the page dirty state is definitive. If a page
469 * does have buffers, the page dirty state is just a hint, and the buffer dirty
470 * state is definitive. (A hint which has rules: dirty buffers against a clean
471 * page is illegal. Other combinations are legal and need to be handled. In
472 * particular a dirty page containing clean buffers for example.)
473 *
474 * Return 0 on success and -errno on error.
475 *
476 * Based on ntfs_read_block() and __block_write_full_page().
477 */
478static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
479{
480 VCN vcn;
481 LCN lcn;
07a4e2da
AA
482 s64 initialized_size;
483 loff_t i_size;
1da177e4
LT
484 sector_t block, dblock, iblock;
485 struct inode *vi;
486 ntfs_inode *ni;
487 ntfs_volume *vol;
488 runlist_element *rl;
489 struct buffer_head *bh, *head;
07a4e2da 490 unsigned long flags;
1da177e4
LT
491 unsigned int blocksize, vcn_ofs;
492 int err;
493 BOOL need_end_writeback;
494 unsigned char blocksize_bits;
495
496 vi = page->mapping->host;
497 ni = NTFS_I(vi);
498 vol = ni->vol;
499
500 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
501 "0x%lx.", ni->mft_no, ni->type, page->index);
502
503 BUG_ON(!NInoNonResident(ni));
504 BUG_ON(NInoMstProtected(ni));
505
506 blocksize_bits = vi->i_blkbits;
507 blocksize = 1 << blocksize_bits;
508
509 if (!page_has_buffers(page)) {
510 BUG_ON(!PageUptodate(page));
511 create_empty_buffers(page, blocksize,
512 (1 << BH_Uptodate) | (1 << BH_Dirty));
513 }
514 bh = head = page_buffers(page);
515 if (unlikely(!bh)) {
516 ntfs_warning(vol->sb, "Error allocating page buffers. "
517 "Redirtying page so we try again later.");
518 /*
519 * Put the page back on mapping->dirty_pages, but leave its
520 * buffer's dirty state as-is.
521 */
522 redirty_page_for_writepage(wbc, page);
523 unlock_page(page);
524 return 0;
525 }
526
527 /* NOTE: Different naming scheme to ntfs_read_block()! */
528
529 /* The first block in the page. */
530 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
531
07a4e2da
AA
532 read_lock_irqsave(&ni->size_lock, flags);
533 i_size = i_size_read(vi);
534 initialized_size = ni->initialized_size;
535 read_unlock_irqrestore(&ni->size_lock, flags);
536
1da177e4 537 /* The first out of bounds block for the data size. */
07a4e2da 538 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
539
540 /* The last (fully or partially) initialized block. */
07a4e2da 541 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
542
543 /*
544 * Be very careful. We have no exclusion from __set_page_dirty_buffers
545 * here, and the (potentially unmapped) buffers may become dirty at
546 * any time. If a buffer becomes dirty here after we've inspected it
547 * then we just miss that fact, and the page stays dirty.
548 *
549 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
550 * handle that here by just cleaning them.
551 */
552
553 /*
554 * Loop through all the buffers in the page, mapping all the dirty
555 * buffers to disk addresses and handling any aliases from the
556 * underlying block device's mapping.
557 */
558 rl = NULL;
559 err = 0;
560 do {
561 BOOL is_retry = FALSE;
562
563 if (unlikely(block >= dblock)) {
564 /*
565 * Mapped buffers outside i_size will occur, because
566 * this page can be outside i_size when there is a
567 * truncate in progress. The contents of such buffers
568 * were zeroed by ntfs_writepage().
569 *
570 * FIXME: What about the small race window where
571 * ntfs_writepage() has not done any clearing because
572 * the page was within i_size but before we get here,
573 * vmtruncate() modifies i_size?
574 */
575 clear_buffer_dirty(bh);
576 set_buffer_uptodate(bh);
577 continue;
578 }
579
580 /* Clean buffers are not written out, so no need to map them. */
581 if (!buffer_dirty(bh))
582 continue;
583
584 /* Make sure we have enough initialized size. */
585 if (unlikely((block >= iblock) &&
07a4e2da 586 (initialized_size < i_size))) {
1da177e4
LT
587 /*
588 * If this page is fully outside initialized size, zero
589 * out all pages between the current initialized size
590 * and the current page. Just use ntfs_readpage() to do
591 * the zeroing transparently.
592 */
593 if (block > iblock) {
594 // TODO:
595 // For each page do:
596 // - read_cache_page()
597 // Again for each page do:
598 // - wait_on_page_locked()
599 // - Check (PageUptodate(page) &&
600 // !PageError(page))
601 // Update initialized size in the attribute and
602 // in the inode.
603 // Again, for each page do:
604 // __set_page_dirty_buffers();
605 // page_cache_release()
606 // We don't need to wait on the writes.
607 // Update iblock.
608 }
609 /*
610 * The current page straddles initialized size. Zero
611 * all non-uptodate buffers and set them uptodate (and
612 * dirty?). Note, there aren't any non-uptodate buffers
613 * if the page is uptodate.
614 * FIXME: For an uptodate page, the buffers may need to
615 * be written out because they were not initialized on
616 * disk before.
617 */
618 if (!PageUptodate(page)) {
619 // TODO:
620 // Zero any non-uptodate buffers up to i_size.
621 // Set them uptodate and dirty.
622 }
623 // TODO:
624 // Update initialized size in the attribute and in the
625 // inode (up to i_size).
626 // Update iblock.
627 // FIXME: This is inefficient. Try to batch the two
628 // size changes to happen in one go.
629 ntfs_error(vol->sb, "Writing beyond initialized size "
630 "is not supported yet. Sorry.");
631 err = -EOPNOTSUPP;
632 break;
633 // Do NOT set_buffer_new() BUT DO clear buffer range
634 // outside write request range.
635 // set_buffer_uptodate() on complete buffers as well as
636 // set_buffer_dirty().
637 }
638
639 /* No need to map buffers that are already mapped. */
640 if (buffer_mapped(bh))
641 continue;
642
643 /* Unmapped, dirty buffer. Need to map it. */
644 bh->b_bdev = vol->sb->s_bdev;
645
646 /* Convert block into corresponding vcn and offset. */
647 vcn = (VCN)block << blocksize_bits;
648 vcn_ofs = vcn & vol->cluster_size_mask;
649 vcn >>= vol->cluster_size_bits;
650 if (!rl) {
651lock_retry_remap:
652 down_read(&ni->runlist.lock);
653 rl = ni->runlist.rl;
654 }
655 if (likely(rl != NULL)) {
656 /* Seek to element containing target vcn. */
657 while (rl->length && rl[1].vcn <= vcn)
658 rl++;
659 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
660 } else
661 lcn = LCN_RL_NOT_MAPPED;
662 /* Successful remap. */
663 if (lcn >= 0) {
664 /* Setup buffer head to point to correct block. */
665 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
666 vcn_ofs) >> blocksize_bits;
667 set_buffer_mapped(bh);
668 continue;
669 }
670 /* It is a hole, need to instantiate it. */
671 if (lcn == LCN_HOLE) {
672 // TODO: Instantiate the hole.
673 // clear_buffer_new(bh);
674 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
675 ntfs_error(vol->sb, "Writing into sparse regions is "
676 "not supported yet. Sorry.");
677 err = -EOPNOTSUPP;
678 break;
679 }
680 /* If first try and runlist unmapped, map and retry. */
681 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
682 is_retry = TRUE;
683 /*
684 * Attempt to map runlist, dropping lock for
685 * the duration.
686 */
687 up_read(&ni->runlist.lock);
688 err = ntfs_map_runlist(ni, vcn);
689 if (likely(!err))
690 goto lock_retry_remap;
691 rl = NULL;
692 lcn = err;
693 }
694 /* Failed to map the buffer, even after retrying. */
695 bh->b_blocknr = -1;
696 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
697 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
698 "because its location on disk could not be "
699 "determined%s (error code %lli).", ni->mft_no,
700 ni->type, (unsigned long long)vcn,
701 vcn_ofs, is_retry ? " even after "
702 "retrying" : "", (long long)lcn);
703 if (!err)
704 err = -EIO;
705 break;
706 } while (block++, (bh = bh->b_this_page) != head);
707
708 /* Release the lock if we took it. */
709 if (rl)
710 up_read(&ni->runlist.lock);
711
712 /* For the error case, need to reset bh to the beginning. */
713 bh = head;
714
715 /* Just an optimization, so ->readpage() isn't called later. */
716 if (unlikely(!PageUptodate(page))) {
717 int uptodate = 1;
718 do {
719 if (!buffer_uptodate(bh)) {
720 uptodate = 0;
721 bh = head;
722 break;
723 }
724 } while ((bh = bh->b_this_page) != head);
725 if (uptodate)
726 SetPageUptodate(page);
727 }
728
729 /* Setup all mapped, dirty buffers for async write i/o. */
730 do {
731 get_bh(bh);
732 if (buffer_mapped(bh) && buffer_dirty(bh)) {
733 lock_buffer(bh);
734 if (test_clear_buffer_dirty(bh)) {
735 BUG_ON(!buffer_uptodate(bh));
736 mark_buffer_async_write(bh);
737 } else
738 unlock_buffer(bh);
739 } else if (unlikely(err)) {
740 /*
741 * For the error case. The buffer may have been set
742 * dirty during attachment to a dirty page.
743 */
744 if (err != -ENOMEM)
745 clear_buffer_dirty(bh);
746 }
747 } while ((bh = bh->b_this_page) != head);
748
749 if (unlikely(err)) {
750 // TODO: Remove the -EOPNOTSUPP check later on...
751 if (unlikely(err == -EOPNOTSUPP))
752 err = 0;
753 else if (err == -ENOMEM) {
754 ntfs_warning(vol->sb, "Error allocating memory. "
755 "Redirtying page so we try again "
756 "later.");
757 /*
758 * Put the page back on mapping->dirty_pages, but
759 * leave its buffer's dirty state as-is.
760 */
761 redirty_page_for_writepage(wbc, page);
762 err = 0;
763 } else
764 SetPageError(page);
765 }
766
767 BUG_ON(PageWriteback(page));
768 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
769 unlock_page(page);
770
771 /*
772 * Submit the prepared buffers for i/o. Note the page is unlocked,
773 * and the async write i/o completion handler can end_page_writeback()
774 * at any time after the *first* submit_bh(). So the buffers can then
775 * disappear...
776 */
777 need_end_writeback = TRUE;
778 do {
779 struct buffer_head *next = bh->b_this_page;
780 if (buffer_async_write(bh)) {
781 submit_bh(WRITE, bh);
782 need_end_writeback = FALSE;
783 }
784 put_bh(bh);
785 bh = next;
786 } while (bh != head);
787
788 /* If no i/o was started, need to end_page_writeback(). */
789 if (unlikely(need_end_writeback))
790 end_page_writeback(page);
791
792 ntfs_debug("Done.");
793 return err;
794}
795
796/**
797 * ntfs_write_mst_block - write a @page to the backing store
798 * @page: page cache page to write out
799 * @wbc: writeback control structure
800 *
801 * This function is for writing pages belonging to non-resident, mst protected
802 * attributes to their backing store. The only supported attributes are index
803 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
804 * supported for the index allocation case.
805 *
806 * The page must remain locked for the duration of the write because we apply
807 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
808 * page before undoing the fixups, any other user of the page will see the
809 * page contents as corrupt.
810 *
811 * We clear the page uptodate flag for the duration of the function to ensure
812 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
813 * are about to apply the mst fixups to.
814 *
815 * Return 0 on success and -errno on error.
816 *
817 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
818 * write_mft_record_nolock().
819 */
820static int ntfs_write_mst_block(struct page *page,
821 struct writeback_control *wbc)
822{
823 sector_t block, dblock, rec_block;
824 struct inode *vi = page->mapping->host;
825 ntfs_inode *ni = NTFS_I(vi);
826 ntfs_volume *vol = ni->vol;
827 u8 *kaddr;
1da177e4
LT
828 unsigned int rec_size = ni->itype.index.block_size;
829 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
830 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
d53ee322 831 struct buffer_head *bhs[MAX_BUF_PER_PAGE];
1da177e4 832 runlist_element *rl;
d53ee322
AA
833 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
834 unsigned bh_size, rec_size_bits;
1da177e4 835 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
d53ee322 836 unsigned char bh_size_bits;
1da177e4
LT
837
838 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
839 "0x%lx.", vi->i_ino, ni->type, page->index);
840 BUG_ON(!NInoNonResident(ni));
841 BUG_ON(!NInoMstProtected(ni));
842 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
843 /*
844 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
845 * in its page cache were to be marked dirty. However this should
846 * never happen with the current driver and considering we do not
847 * handle this case here we do want to BUG(), at least for now.
848 */
849 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
850 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
d53ee322
AA
851 bh_size_bits = vi->i_blkbits;
852 bh_size = 1 << bh_size_bits;
853 max_bhs = PAGE_CACHE_SIZE / bh_size;
1da177e4 854 BUG_ON(!max_bhs);
d53ee322 855 BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
1da177e4
LT
856
857 /* Were we called for sync purposes? */
858 sync = (wbc->sync_mode == WB_SYNC_ALL);
859
860 /* Make sure we have mapped buffers. */
861 BUG_ON(!page_has_buffers(page));
862 bh = head = page_buffers(page);
863 BUG_ON(!bh);
864
865 rec_size_bits = ni->itype.index.block_size_bits;
866 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
867 bhs_per_rec = rec_size >> bh_size_bits;
868 BUG_ON(!bhs_per_rec);
869
870 /* The first block in the page. */
871 rec_block = block = (sector_t)page->index <<
872 (PAGE_CACHE_SHIFT - bh_size_bits);
873
874 /* The first out of bounds block for the data size. */
07a4e2da 875 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
876
877 rl = NULL;
878 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
879 page_is_dirty = rec_is_dirty = FALSE;
880 rec_start_bh = NULL;
881 do {
882 BOOL is_retry = FALSE;
883
884 if (likely(block < rec_block)) {
885 if (unlikely(block >= dblock)) {
886 clear_buffer_dirty(bh);
946929d8 887 set_buffer_uptodate(bh);
1da177e4
LT
888 continue;
889 }
890 /*
891 * This block is not the first one in the record. We
892 * ignore the buffer's dirty state because we could
893 * have raced with a parallel mark_ntfs_record_dirty().
894 */
895 if (!rec_is_dirty)
896 continue;
897 if (unlikely(err2)) {
898 if (err2 != -ENOMEM)
899 clear_buffer_dirty(bh);
900 continue;
901 }
902 } else /* if (block == rec_block) */ {
903 BUG_ON(block > rec_block);
904 /* This block is the first one in the record. */
905 rec_block += bhs_per_rec;
906 err2 = 0;
907 if (unlikely(block >= dblock)) {
908 clear_buffer_dirty(bh);
909 continue;
910 }
911 if (!buffer_dirty(bh)) {
912 /* Clean records are not written out. */
913 rec_is_dirty = FALSE;
914 continue;
915 }
916 rec_is_dirty = TRUE;
917 rec_start_bh = bh;
918 }
919 /* Need to map the buffer if it is not mapped already. */
920 if (unlikely(!buffer_mapped(bh))) {
921 VCN vcn;
922 LCN lcn;
923 unsigned int vcn_ofs;
924
925 /* Obtain the vcn and offset of the current block. */
926 vcn = (VCN)block << bh_size_bits;
927 vcn_ofs = vcn & vol->cluster_size_mask;
928 vcn >>= vol->cluster_size_bits;
929 if (!rl) {
930lock_retry_remap:
931 down_read(&ni->runlist.lock);
932 rl = ni->runlist.rl;
933 }
934 if (likely(rl != NULL)) {
935 /* Seek to element containing target vcn. */
936 while (rl->length && rl[1].vcn <= vcn)
937 rl++;
938 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
939 } else
940 lcn = LCN_RL_NOT_MAPPED;
941 /* Successful remap. */
942 if (likely(lcn >= 0)) {
943 /* Setup buffer head to correct block. */
944 bh->b_blocknr = ((lcn <<
945 vol->cluster_size_bits) +
946 vcn_ofs) >> bh_size_bits;
947 set_buffer_mapped(bh);
948 } else {
949 /*
950 * Remap failed. Retry to map the runlist once
951 * unless we are working on $MFT which always
952 * has the whole of its runlist in memory.
953 */
954 if (!is_mft && !is_retry &&
955 lcn == LCN_RL_NOT_MAPPED) {
956 is_retry = TRUE;
957 /*
958 * Attempt to map runlist, dropping
959 * lock for the duration.
960 */
961 up_read(&ni->runlist.lock);
962 err2 = ntfs_map_runlist(ni, vcn);
963 if (likely(!err2))
964 goto lock_retry_remap;
965 if (err2 == -ENOMEM)
966 page_is_dirty = TRUE;
967 lcn = err2;
968 } else
969 err2 = -EIO;
970 /* Hard error. Abort writing this record. */
971 if (!err || err == -ENOMEM)
972 err = err2;
973 bh->b_blocknr = -1;
974 ntfs_error(vol->sb, "Cannot write ntfs record "
975 "0x%llx (inode 0x%lx, "
976 "attribute type 0x%x) because "
977 "its location on disk could "
978 "not be determined (error "
8907547d
RD
979 "code %lli).",
980 (long long)block <<
1da177e4
LT
981 bh_size_bits >>
982 vol->mft_record_size_bits,
983 ni->mft_no, ni->type,
984 (long long)lcn);
985 /*
986 * If this is not the first buffer, remove the
987 * buffers in this record from the list of
988 * buffers to write and clear their dirty bit
989 * if not error -ENOMEM.
990 */
991 if (rec_start_bh != bh) {
992 while (bhs[--nr_bhs] != rec_start_bh)
993 ;
994 if (err2 != -ENOMEM) {
995 do {
996 clear_buffer_dirty(
997 rec_start_bh);
998 } while ((rec_start_bh =
999 rec_start_bh->
1000 b_this_page) !=
1001 bh);
1002 }
1003 }
1004 continue;
1005 }
1006 }
1007 BUG_ON(!buffer_uptodate(bh));
1008 BUG_ON(nr_bhs >= max_bhs);
1009 bhs[nr_bhs++] = bh;
1010 } while (block++, (bh = bh->b_this_page) != head);
1011 if (unlikely(rl))
1012 up_read(&ni->runlist.lock);
1013 /* If there were no dirty buffers, we are done. */
1014 if (!nr_bhs)
1015 goto done;
1016 /* Map the page so we can access its contents. */
1017 kaddr = kmap(page);
1018 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1019 BUG_ON(!PageUptodate(page));
1020 ClearPageUptodate(page);
1021 for (i = 0; i < nr_bhs; i++) {
1022 unsigned int ofs;
1023
1024 /* Skip buffers which are not at the beginning of records. */
1025 if (i % bhs_per_rec)
1026 continue;
1027 tbh = bhs[i];
1028 ofs = bh_offset(tbh);
1029 if (is_mft) {
1030 ntfs_inode *tni;
1031 unsigned long mft_no;
1032
1033 /* Get the mft record number. */
1034 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1035 >> rec_size_bits;
1036 /* Check whether to write this mft record. */
1037 tni = NULL;
1038 if (!ntfs_may_write_mft_record(vol, mft_no,
1039 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1040 /*
1041 * The record should not be written. This
1042 * means we need to redirty the page before
1043 * returning.
1044 */
1045 page_is_dirty = TRUE;
1046 /*
1047 * Remove the buffers in this mft record from
1048 * the list of buffers to write.
1049 */
1050 do {
1051 bhs[i] = NULL;
1052 } while (++i % bhs_per_rec);
1053 continue;
1054 }
1055 /*
1056 * The record should be written. If a locked ntfs
1057 * inode was returned, add it to the array of locked
1058 * ntfs inodes.
1059 */
1060 if (tni)
1061 locked_nis[nr_locked_nis++] = tni;
1062 }
1063 /* Apply the mst protection fixups. */
1064 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1065 rec_size);
1066 if (unlikely(err2)) {
1067 if (!err || err == -ENOMEM)
1068 err = -EIO;
1069 ntfs_error(vol->sb, "Failed to apply mst fixups "
1070 "(inode 0x%lx, attribute type 0x%x, "
1071 "page index 0x%lx, page offset 0x%x)!"
1072 " Unmount and run chkdsk.", vi->i_ino,
1073 ni->type, page->index, ofs);
1074 /*
1075 * Mark all the buffers in this record clean as we do
1076 * not want to write corrupt data to disk.
1077 */
1078 do {
1079 clear_buffer_dirty(bhs[i]);
1080 bhs[i] = NULL;
1081 } while (++i % bhs_per_rec);
1082 continue;
1083 }
1084 nr_recs++;
1085 }
1086 /* If no records are to be written out, we are done. */
1087 if (!nr_recs)
1088 goto unm_done;
1089 flush_dcache_page(page);
1090 /* Lock buffers and start synchronous write i/o on them. */
1091 for (i = 0; i < nr_bhs; i++) {
1092 tbh = bhs[i];
1093 if (!tbh)
1094 continue;
1095 if (unlikely(test_set_buffer_locked(tbh)))
1096 BUG();
1097 /* The buffer dirty state is now irrelevant, just clean it. */
1098 clear_buffer_dirty(tbh);
1099 BUG_ON(!buffer_uptodate(tbh));
1100 BUG_ON(!buffer_mapped(tbh));
1101 get_bh(tbh);
1102 tbh->b_end_io = end_buffer_write_sync;
1103 submit_bh(WRITE, tbh);
1104 }
1105 /* Synchronize the mft mirror now if not @sync. */
1106 if (is_mft && !sync)
1107 goto do_mirror;
1108do_wait:
1109 /* Wait on i/o completion of buffers. */
1110 for (i = 0; i < nr_bhs; i++) {
1111 tbh = bhs[i];
1112 if (!tbh)
1113 continue;
1114 wait_on_buffer(tbh);
1115 if (unlikely(!buffer_uptodate(tbh))) {
1116 ntfs_error(vol->sb, "I/O error while writing ntfs "
1117 "record buffer (inode 0x%lx, "
1118 "attribute type 0x%x, page index "
1119 "0x%lx, page offset 0x%lx)! Unmount "
1120 "and run chkdsk.", vi->i_ino, ni->type,
1121 page->index, bh_offset(tbh));
1122 if (!err || err == -ENOMEM)
1123 err = -EIO;
1124 /*
1125 * Set the buffer uptodate so the page and buffer
1126 * states do not become out of sync.
1127 */
1128 set_buffer_uptodate(tbh);
1129 }
1130 }
1131 /* If @sync, now synchronize the mft mirror. */
1132 if (is_mft && sync) {
1133do_mirror:
1134 for (i = 0; i < nr_bhs; i++) {
1135 unsigned long mft_no;
1136 unsigned int ofs;
1137
1138 /*
1139 * Skip buffers which are not at the beginning of
1140 * records.
1141 */
1142 if (i % bhs_per_rec)
1143 continue;
1144 tbh = bhs[i];
1145 /* Skip removed buffers (and hence records). */
1146 if (!tbh)
1147 continue;
1148 ofs = bh_offset(tbh);
1149 /* Get the mft record number. */
1150 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1151 >> rec_size_bits;
1152 if (mft_no < vol->mftmirr_size)
1153 ntfs_sync_mft_mirror(vol, mft_no,
1154 (MFT_RECORD*)(kaddr + ofs),
1155 sync);
1156 }
1157 if (!sync)
1158 goto do_wait;
1159 }
1160 /* Remove the mst protection fixups again. */
1161 for (i = 0; i < nr_bhs; i++) {
1162 if (!(i % bhs_per_rec)) {
1163 tbh = bhs[i];
1164 if (!tbh)
1165 continue;
1166 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1167 bh_offset(tbh)));
1168 }
1169 }
1170 flush_dcache_page(page);
1171unm_done:
1172 /* Unlock any locked inodes. */
1173 while (nr_locked_nis-- > 0) {
1174 ntfs_inode *tni, *base_tni;
1175
1176 tni = locked_nis[nr_locked_nis];
1177 /* Get the base inode. */
1178 down(&tni->extent_lock);
1179 if (tni->nr_extents >= 0)
1180 base_tni = tni;
1181 else {
1182 base_tni = tni->ext.base_ntfs_ino;
1183 BUG_ON(!base_tni);
1184 }
1185 up(&tni->extent_lock);
1186 ntfs_debug("Unlocking %s inode 0x%lx.",
1187 tni == base_tni ? "base" : "extent",
1188 tni->mft_no);
1189 up(&tni->mrec_lock);
1190 atomic_dec(&tni->count);
1191 iput(VFS_I(base_tni));
1192 }
1193 SetPageUptodate(page);
1194 kunmap(page);
1195done:
1196 if (unlikely(err && err != -ENOMEM)) {
1197 /*
1198 * Set page error if there is only one ntfs record in the page.
1199 * Otherwise we would loose per-record granularity.
1200 */
1201 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1202 SetPageError(page);
1203 NVolSetErrors(vol);
1204 }
1205 if (page_is_dirty) {
1206 ntfs_debug("Page still contains one or more dirty ntfs "
1207 "records. Redirtying the page starting at "
1208 "record 0x%lx.", page->index <<
1209 (PAGE_CACHE_SHIFT - rec_size_bits));
1210 redirty_page_for_writepage(wbc, page);
1211 unlock_page(page);
1212 } else {
1213 /*
1214 * Keep the VM happy. This must be done otherwise the
1215 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1216 * the page is clean.
1217 */
1218 BUG_ON(PageWriteback(page));
1219 set_page_writeback(page);
1220 unlock_page(page);
1221 end_page_writeback(page);
1222 }
1223 if (likely(!err))
1224 ntfs_debug("Done.");
1225 return err;
1226}
1227
1228/**
1229 * ntfs_writepage - write a @page to the backing store
1230 * @page: page cache page to write out
1231 * @wbc: writeback control structure
1232 *
1233 * This is called from the VM when it wants to have a dirty ntfs page cache
1234 * page cleaned. The VM has already locked the page and marked it clean.
1235 *
1236 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1237 * the ntfs version of the generic block_write_full_page() function,
1238 * ntfs_write_block(), which in turn if necessary creates and writes the
1239 * buffers associated with the page asynchronously.
1240 *
1241 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1242 * the data to the mft record (which at this stage is most likely in memory).
1243 * The mft record is then marked dirty and written out asynchronously via the
1244 * vfs inode dirty code path for the inode the mft record belongs to or via the
1245 * vm page dirty code path for the page the mft record is in.
1246 *
1247 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1248 *
1249 * Return 0 on success and -errno on error.
1250 */
1251static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1252{
1253 loff_t i_size;
149f0c52
AA
1254 struct inode *vi = page->mapping->host;
1255 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1256 char *kaddr;
149f0c52
AA
1257 ntfs_attr_search_ctx *ctx = NULL;
1258 MFT_RECORD *m = NULL;
1da177e4
LT
1259 u32 attr_len;
1260 int err;
1261
905685f6 1262retry_writepage:
1da177e4 1263 BUG_ON(!PageLocked(page));
1da177e4 1264 i_size = i_size_read(vi);
1da177e4
LT
1265 /* Is the page fully outside i_size? (truncate in progress) */
1266 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1267 PAGE_CACHE_SHIFT)) {
1268 /*
1269 * The page may have dirty, unmapped buffers. Make them
1270 * freeable here, so the page does not leak.
1271 */
1272 block_invalidatepage(page, 0);
1273 unlock_page(page);
1274 ntfs_debug("Write outside i_size - truncated?");
1275 return 0;
1276 }
1da177e4
LT
1277 /* NInoNonResident() == NInoIndexAllocPresent() */
1278 if (NInoNonResident(ni)) {
1279 /*
1280 * Only unnamed $DATA attributes can be compressed, encrypted,
1281 * and/or sparse.
1282 */
1283 if (ni->type == AT_DATA && !ni->name_len) {
1284 /* If file is encrypted, deny access, just like NT4. */
1285 if (NInoEncrypted(ni)) {
1286 unlock_page(page);
1287 ntfs_debug("Denying write access to encrypted "
1288 "file.");
1289 return -EACCES;
1290 }
1291 /* Compressed data streams are handled in compress.c. */
1292 if (NInoCompressed(ni)) {
1293 // TODO: Implement and replace this check with
1294 // return ntfs_write_compressed_block(page);
1295 unlock_page(page);
1296 ntfs_error(vi->i_sb, "Writing to compressed "
1297 "files is not supported yet. "
1298 "Sorry.");
1299 return -EOPNOTSUPP;
1300 }
1301 // TODO: Implement and remove this check.
1302 if (NInoSparse(ni)) {
1303 unlock_page(page);
1304 ntfs_error(vi->i_sb, "Writing to sparse files "
1305 "is not supported yet. Sorry.");
1306 return -EOPNOTSUPP;
1307 }
1308 }
1309 /* We have to zero every time due to mmap-at-end-of-file. */
1310 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1311 /* The page straddles i_size. */
1312 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1313 kaddr = kmap_atomic(page, KM_USER0);
1314 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1315 flush_dcache_page(page);
1316 kunmap_atomic(kaddr, KM_USER0);
1317 }
1318 /* Handle mst protected attributes. */
1319 if (NInoMstProtected(ni))
1320 return ntfs_write_mst_block(page, wbc);
1321 /* Normal data stream. */
1322 return ntfs_write_block(page, wbc);
1323 }
1324 /*
1325 * Attribute is resident, implying it is not compressed, encrypted,
1326 * sparse, or mst protected. This also means the attribute is smaller
1327 * than an mft record and hence smaller than a page, so can simply
1328 * return error on any pages with index above 0.
1329 */
1330 BUG_ON(page_has_buffers(page));
1331 BUG_ON(!PageUptodate(page));
1332 if (unlikely(page->index > 0)) {
1333 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1334 "Aborting write.", page->index);
1335 BUG_ON(PageWriteback(page));
1336 set_page_writeback(page);
1337 unlock_page(page);
1338 end_page_writeback(page);
1339 return -EIO;
1340 }
1341 if (!NInoAttr(ni))
1342 base_ni = ni;
1343 else
1344 base_ni = ni->ext.base_ntfs_ino;
1345 /* Map, pin, and lock the mft record. */
1346 m = map_mft_record(base_ni);
1347 if (IS_ERR(m)) {
1348 err = PTR_ERR(m);
1349 m = NULL;
1350 ctx = NULL;
1351 goto err_out;
1352 }
905685f6
AA
1353 /*
1354 * If a parallel write made the attribute non-resident, drop the mft
1355 * record and retry the writepage.
1356 */
1357 if (unlikely(NInoNonResident(ni))) {
1358 unmap_mft_record(base_ni);
1359 goto retry_writepage;
1360 }
1da177e4
LT
1361 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1362 if (unlikely(!ctx)) {
1363 err = -ENOMEM;
1364 goto err_out;
1365 }
1366 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1367 CASE_SENSITIVE, 0, NULL, 0, ctx);
1368 if (unlikely(err))
1369 goto err_out;
1370 /*
1371 * Keep the VM happy. This must be done otherwise the radix-tree tag
1372 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1373 */
1374 BUG_ON(PageWriteback(page));
1375 set_page_writeback(page);
1376 unlock_page(page);
1377
1378 /*
1379 * Here, we don't need to zero the out of bounds area everytime because
1380 * the below memcpy() already takes care of the mmap-at-end-of-file
1381 * requirements. If the file is converted to a non-resident one, then
1382 * the code path use is switched to the non-resident one where the
1383 * zeroing happens on each ntfs_writepage() invocation.
1384 *
1385 * The above also applies nicely when i_size is decreased.
1386 *
1387 * When i_size is increased, the memory between the old and new i_size
1388 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1389 * expose data to userspace/disk which should never have been exposed.
1390 *
1391 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1392 * if we cannot guarantee that, then enable the zeroing below. If the
1393 * zeroing below is enabled, we MUST move the unlock_page() from above
1394 * to after the kunmap_atomic(), i.e. just before the
1395 * end_page_writeback().
1396 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1397 * increases for resident attributes so those are ok.
1398 * TODO: ntfs_truncate(), others?
1399 */
1400
1401 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1402 i_size = i_size_read(vi);
1da177e4 1403 if (unlikely(attr_len > i_size)) {
1da177e4 1404 attr_len = i_size;
f40661be 1405 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1406 }
f40661be 1407 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1408 /* Copy the data from the page to the mft record. */
1409 memcpy((u8*)ctx->attr +
1410 le16_to_cpu(ctx->attr->data.resident.value_offset),
1411 kaddr, attr_len);
1412 flush_dcache_mft_record_page(ctx->ntfs_ino);
1413 /* Zero out of bounds area in the page cache page. */
1414 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1415 flush_dcache_page(page);
1416 kunmap_atomic(kaddr, KM_USER0);
1417
1418 end_page_writeback(page);
1419
1420 /* Mark the mft record dirty, so it gets written back. */
1421 mark_mft_record_dirty(ctx->ntfs_ino);
1422 ntfs_attr_put_search_ctx(ctx);
1423 unmap_mft_record(base_ni);
1424 return 0;
1425err_out:
1426 if (err == -ENOMEM) {
1427 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1428 "page so we try again later.");
1429 /*
1430 * Put the page back on mapping->dirty_pages, but leave its
1431 * buffers' dirty state as-is.
1432 */
1433 redirty_page_for_writepage(wbc, page);
1434 err = 0;
1435 } else {
1436 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1437 "error %i.", err);
1da177e4 1438 SetPageError(page);
149f0c52
AA
1439 NVolSetErrors(ni->vol);
1440 make_bad_inode(vi);
1da177e4
LT
1441 }
1442 unlock_page(page);
1443 if (ctx)
1444 ntfs_attr_put_search_ctx(ctx);
1445 if (m)
1446 unmap_mft_record(base_ni);
1447 return err;
1448}
1449
1450/**
1451 * ntfs_prepare_nonresident_write -
1452 *
1453 */
1454static int ntfs_prepare_nonresident_write(struct page *page,
1455 unsigned from, unsigned to)
1456{
1457 VCN vcn;
1458 LCN lcn;
07a4e2da
AA
1459 s64 initialized_size;
1460 loff_t i_size;
1da177e4
LT
1461 sector_t block, ablock, iblock;
1462 struct inode *vi;
1463 ntfs_inode *ni;
1464 ntfs_volume *vol;
1465 runlist_element *rl;
1466 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1467 unsigned long flags;
1da177e4
LT
1468 unsigned int vcn_ofs, block_start, block_end, blocksize;
1469 int err;
1470 BOOL is_retry;
1471 unsigned char blocksize_bits;
1472
1473 vi = page->mapping->host;
1474 ni = NTFS_I(vi);
1475 vol = ni->vol;
1476
1477 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1478 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1479 page->index, from, to);
1480
1481 BUG_ON(!NInoNonResident(ni));
1482
1483 blocksize_bits = vi->i_blkbits;
1484 blocksize = 1 << blocksize_bits;
1485
1486 /*
1487 * create_empty_buffers() will create uptodate/dirty buffers if the
1488 * page is uptodate/dirty.
1489 */
1490 if (!page_has_buffers(page))
1491 create_empty_buffers(page, blocksize, 0);
1492 bh = head = page_buffers(page);
1493 if (unlikely(!bh))
1494 return -ENOMEM;
1495
1496 /* The first block in the page. */
1497 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1498
07a4e2da 1499 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1500 /*
b6ad6c52 1501 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1502 * round up as allocated_size is in multiples of cluster size and the
1503 * minimum cluster size is 512 bytes, which is equal to the smallest
1504 * blocksize.
1505 */
1506 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1507 i_size = i_size_read(vi);
1508 initialized_size = ni->initialized_size;
1509 read_unlock_irqrestore(&ni->size_lock, flags);
1510
1da177e4 1511 /* The last (fully or partially) initialized block. */
07a4e2da 1512 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1513
1514 /* Loop through all the buffers in the page. */
1515 block_start = 0;
1516 rl = NULL;
1517 err = 0;
1518 do {
1519 block_end = block_start + blocksize;
1520 /*
1521 * If buffer @bh is outside the write, just mark it uptodate
1522 * if the page is uptodate and continue with the next buffer.
1523 */
1524 if (block_end <= from || block_start >= to) {
1525 if (PageUptodate(page)) {
1526 if (!buffer_uptodate(bh))
1527 set_buffer_uptodate(bh);
1528 }
1529 continue;
1530 }
1531 /*
1532 * @bh is at least partially being written to.
1533 * Make sure it is not marked as new.
1534 */
1535 //if (buffer_new(bh))
1536 // clear_buffer_new(bh);
1537
1538 if (block >= ablock) {
1539 // TODO: block is above allocated_size, need to
1540 // allocate it. Best done in one go to accommodate not
1541 // only block but all above blocks up to and including:
1542 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1543 // - 1) >> blobksize_bits. Obviously will need to round
1544 // up to next cluster boundary, too. This should be
1545 // done with a helper function, so it can be reused.
1546 ntfs_error(vol->sb, "Writing beyond allocated size "
1547 "is not supported yet. Sorry.");
1548 err = -EOPNOTSUPP;
1549 goto err_out;
1550 // Need to update ablock.
1551 // Need to set_buffer_new() on all block bhs that are
1552 // newly allocated.
1553 }
1554 /*
1555 * Now we have enough allocated size to fulfill the whole
1556 * request, i.e. block < ablock is true.
1557 */
1558 if (unlikely((block >= iblock) &&
07a4e2da 1559 (initialized_size < i_size))) {
1da177e4
LT
1560 /*
1561 * If this page is fully outside initialized size, zero
1562 * out all pages between the current initialized size
1563 * and the current page. Just use ntfs_readpage() to do
1564 * the zeroing transparently.
1565 */
1566 if (block > iblock) {
1567 // TODO:
1568 // For each page do:
1569 // - read_cache_page()
1570 // Again for each page do:
1571 // - wait_on_page_locked()
1572 // - Check (PageUptodate(page) &&
1573 // !PageError(page))
1574 // Update initialized size in the attribute and
1575 // in the inode.
1576 // Again, for each page do:
1577 // __set_page_dirty_buffers();
1578 // page_cache_release()
1579 // We don't need to wait on the writes.
1580 // Update iblock.
1581 }
1582 /*
1583 * The current page straddles initialized size. Zero
1584 * all non-uptodate buffers and set them uptodate (and
1585 * dirty?). Note, there aren't any non-uptodate buffers
1586 * if the page is uptodate.
1587 * FIXME: For an uptodate page, the buffers may need to
1588 * be written out because they were not initialized on
1589 * disk before.
1590 */
1591 if (!PageUptodate(page)) {
1592 // TODO:
1593 // Zero any non-uptodate buffers up to i_size.
1594 // Set them uptodate and dirty.
1595 }
1596 // TODO:
1597 // Update initialized size in the attribute and in the
1598 // inode (up to i_size).
1599 // Update iblock.
1600 // FIXME: This is inefficient. Try to batch the two
1601 // size changes to happen in one go.
1602 ntfs_error(vol->sb, "Writing beyond initialized size "
1603 "is not supported yet. Sorry.");
1604 err = -EOPNOTSUPP;
1605 goto err_out;
1606 // Do NOT set_buffer_new() BUT DO clear buffer range
1607 // outside write request range.
1608 // set_buffer_uptodate() on complete buffers as well as
1609 // set_buffer_dirty().
1610 }
1611
1612 /* Need to map unmapped buffers. */
1613 if (!buffer_mapped(bh)) {
1614 /* Unmapped buffer. Need to map it. */
1615 bh->b_bdev = vol->sb->s_bdev;
1616
1617 /* Convert block into corresponding vcn and offset. */
1618 vcn = (VCN)block << blocksize_bits >>
1619 vol->cluster_size_bits;
1620 vcn_ofs = ((VCN)block << blocksize_bits) &
1621 vol->cluster_size_mask;
1622
1623 is_retry = FALSE;
1624 if (!rl) {
1625lock_retry_remap:
1626 down_read(&ni->runlist.lock);
1627 rl = ni->runlist.rl;
1628 }
1629 if (likely(rl != NULL)) {
1630 /* Seek to element containing target vcn. */
1631 while (rl->length && rl[1].vcn <= vcn)
1632 rl++;
1633 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1634 } else
1635 lcn = LCN_RL_NOT_MAPPED;
1636 if (unlikely(lcn < 0)) {
1637 /*
1638 * We extended the attribute allocation above.
1639 * If we hit an ENOENT here it means that the
1640 * allocation was insufficient which is a bug.
1641 */
1642 BUG_ON(lcn == LCN_ENOENT);
1643
1644 /* It is a hole, need to instantiate it. */
1645 if (lcn == LCN_HOLE) {
1646 // TODO: Instantiate the hole.
1647 // clear_buffer_new(bh);
1648 // unmap_underlying_metadata(bh->b_bdev,
1649 // bh->b_blocknr);
1650 // For non-uptodate buffers, need to
1651 // zero out the region outside the
1652 // request in this bh or all bhs,
1653 // depending on what we implemented
1654 // above.
1655 // Need to flush_dcache_page().
1656 // Or could use set_buffer_new()
1657 // instead?
1658 ntfs_error(vol->sb, "Writing into "
1659 "sparse regions is "
1660 "not supported yet. "
1661 "Sorry.");
1662 err = -EOPNOTSUPP;
1663 goto err_out;
1664 } else if (!is_retry &&
1665 lcn == LCN_RL_NOT_MAPPED) {
1666 is_retry = TRUE;
1667 /*
1668 * Attempt to map runlist, dropping
1669 * lock for the duration.
1670 */
1671 up_read(&ni->runlist.lock);
1672 err = ntfs_map_runlist(ni, vcn);
1673 if (likely(!err))
1674 goto lock_retry_remap;
1675 rl = NULL;
1676 lcn = err;
1677 }
1678 /*
1679 * Failed to map the buffer, even after
1680 * retrying.
1681 */
1682 bh->b_blocknr = -1;
1683 ntfs_error(vol->sb, "Failed to write to inode "
1684 "0x%lx, attribute type 0x%x, "
1685 "vcn 0x%llx, offset 0x%x "
1686 "because its location on disk "
1687 "could not be determined%s "
1688 "(error code %lli).",
1689 ni->mft_no, ni->type,
1690 (unsigned long long)vcn,
1691 vcn_ofs, is_retry ? " even "
1692 "after retrying" : "",
1693 (long long)lcn);
1694 if (!err)
1695 err = -EIO;
1696 goto err_out;
1697 }
1698 /* We now have a successful remap, i.e. lcn >= 0. */
1699
1700 /* Setup buffer head to correct block. */
1701 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1702 + vcn_ofs) >> blocksize_bits;
1703 set_buffer_mapped(bh);
1704
1705 // FIXME: Something analogous to this is needed for
1706 // each newly allocated block, i.e. BH_New.
1707 // FIXME: Might need to take this out of the
1708 // if (!buffer_mapped(bh)) {}, depending on how we
1709 // implement things during the allocated_size and
1710 // initialized_size extension code above.
1711 if (buffer_new(bh)) {
1712 clear_buffer_new(bh);
1713 unmap_underlying_metadata(bh->b_bdev,
1714 bh->b_blocknr);
1715 if (PageUptodate(page)) {
1716 set_buffer_uptodate(bh);
1717 continue;
1718 }
1719 /*
1720 * Page is _not_ uptodate, zero surrounding
1721 * region. NOTE: This is how we decide if to
1722 * zero or not!
1723 */
1724 if (block_end > to || block_start < from) {
1725 void *kaddr;
1726
1727 kaddr = kmap_atomic(page, KM_USER0);
1728 if (block_end > to)
1729 memset(kaddr + to, 0,
1730 block_end - to);
1731 if (block_start < from)
1732 memset(kaddr + block_start, 0,
1733 from -
1734 block_start);
1735 flush_dcache_page(page);
1736 kunmap_atomic(kaddr, KM_USER0);
1737 }
1738 continue;
1739 }
1740 }
1741 /* @bh is mapped, set it uptodate if the page is uptodate. */
1742 if (PageUptodate(page)) {
1743 if (!buffer_uptodate(bh))
1744 set_buffer_uptodate(bh);
1745 continue;
1746 }
1747 /*
1748 * The page is not uptodate. The buffer is mapped. If it is not
1749 * uptodate, and it is only partially being written to, we need
1750 * to read the buffer in before the write, i.e. right now.
1751 */
1752 if (!buffer_uptodate(bh) &&
1753 (block_start < from || block_end > to)) {
1754 ll_rw_block(READ, 1, &bh);
1755 *wait_bh++ = bh;
1756 }
1757 } while (block++, block_start = block_end,
1758 (bh = bh->b_this_page) != head);
1759
1760 /* Release the lock if we took it. */
1761 if (rl) {
1762 up_read(&ni->runlist.lock);
1763 rl = NULL;
1764 }
1765
1766 /* If we issued read requests, let them complete. */
1767 while (wait_bh > wait) {
1768 wait_on_buffer(*--wait_bh);
1769 if (!buffer_uptodate(*wait_bh))
1770 return -EIO;
1771 }
1772
1773 ntfs_debug("Done.");
1774 return 0;
1775err_out:
1776 /*
1777 * Zero out any newly allocated blocks to avoid exposing stale data.
1778 * If BH_New is set, we know that the block was newly allocated in the
1779 * above loop.
1780 * FIXME: What about initialized_size increments? Have we done all the
1781 * required zeroing above? If not this error handling is broken, and
1782 * in particular the if (block_end <= from) check is completely bogus.
1783 */
1784 bh = head;
1785 block_start = 0;
1786 is_retry = FALSE;
1787 do {
1788 block_end = block_start + blocksize;
1789 if (block_end <= from)
1790 continue;
1791 if (block_start >= to)
1792 break;
1793 if (buffer_new(bh)) {
1794 void *kaddr;
1795
1796 clear_buffer_new(bh);
1797 kaddr = kmap_atomic(page, KM_USER0);
1798 memset(kaddr + block_start, 0, bh->b_size);
1799 kunmap_atomic(kaddr, KM_USER0);
1800 set_buffer_uptodate(bh);
1801 mark_buffer_dirty(bh);
1802 is_retry = TRUE;
1803 }
1804 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1805 if (is_retry)
1806 flush_dcache_page(page);
1807 if (rl)
1808 up_read(&ni->runlist.lock);
1809 return err;
1810}
1811
1812/**
1813 * ntfs_prepare_write - prepare a page for receiving data
1814 *
1815 * This is called from generic_file_write() with i_sem held on the inode
1816 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1817 * data has not yet been copied into the @page.
1818 *
1819 * Need to extend the attribute/fill in holes if necessary, create blocks and
1820 * make partially overwritten blocks uptodate,
1821 *
1822 * i_size is not to be modified yet.
1823 *
1824 * Return 0 on success or -errno on error.
1825 *
1826 * Should be using block_prepare_write() [support for sparse files] or
1827 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1828 * ntfs specifics but can look at them for implementation guidance.
1829 *
1830 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1831 * the first byte in the page that will be written to and @to is the first byte
1832 * after the last byte that will be written to.
1833 */
1834static int ntfs_prepare_write(struct file *file, struct page *page,
1835 unsigned from, unsigned to)
1836{
1837 s64 new_size;
f40661be 1838 loff_t i_size;
1da177e4
LT
1839 struct inode *vi = page->mapping->host;
1840 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1841 ntfs_volume *vol = ni->vol;
1842 ntfs_attr_search_ctx *ctx = NULL;
1843 MFT_RECORD *m = NULL;
1844 ATTR_RECORD *a;
1845 u8 *kaddr;
1846 u32 attr_len;
1847 int err;
1848
1849 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1850 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1851 page->index, from, to);
1852 BUG_ON(!PageLocked(page));
1853 BUG_ON(from > PAGE_CACHE_SIZE);
1854 BUG_ON(to > PAGE_CACHE_SIZE);
1855 BUG_ON(from > to);
1856 BUG_ON(NInoMstProtected(ni));
1857 /*
1858 * If a previous ntfs_truncate() failed, repeat it and abort if it
1859 * fails again.
1860 */
1861 if (unlikely(NInoTruncateFailed(ni))) {
1862 down_write(&vi->i_alloc_sem);
1863 err = ntfs_truncate(vi);
1864 up_write(&vi->i_alloc_sem);
1865 if (err || NInoTruncateFailed(ni)) {
1866 if (!err)
1867 err = -EIO;
1868 goto err_out;
1869 }
1870 }
1871 /* If the attribute is not resident, deal with it elsewhere. */
1872 if (NInoNonResident(ni)) {
1873 /*
1874 * Only unnamed $DATA attributes can be compressed, encrypted,
1875 * and/or sparse.
1876 */
1877 if (ni->type == AT_DATA && !ni->name_len) {
1878 /* If file is encrypted, deny access, just like NT4. */
1879 if (NInoEncrypted(ni)) {
1880 ntfs_debug("Denying write access to encrypted "
1881 "file.");
1882 return -EACCES;
1883 }
1884 /* Compressed data streams are handled in compress.c. */
1885 if (NInoCompressed(ni)) {
1886 // TODO: Implement and replace this check with
1887 // return ntfs_write_compressed_block(page);
1888 ntfs_error(vi->i_sb, "Writing to compressed "
1889 "files is not supported yet. "
1890 "Sorry.");
1891 return -EOPNOTSUPP;
1892 }
1893 // TODO: Implement and remove this check.
1894 if (NInoSparse(ni)) {
1895 ntfs_error(vi->i_sb, "Writing to sparse files "
1896 "is not supported yet. Sorry.");
1897 return -EOPNOTSUPP;
1898 }
1899 }
1900 /* Normal data stream. */
1901 return ntfs_prepare_nonresident_write(page, from, to);
1902 }
1903 /*
1904 * Attribute is resident, implying it is not compressed, encrypted, or
1905 * sparse.
1906 */
1907 BUG_ON(page_has_buffers(page));
1908 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1909 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1910 if (new_size <= i_size_read(vi))
1da177e4 1911 goto done;
1da177e4
LT
1912 /* Map, pin, and lock the (base) mft record. */
1913 if (!NInoAttr(ni))
1914 base_ni = ni;
1915 else
1916 base_ni = ni->ext.base_ntfs_ino;
1917 m = map_mft_record(base_ni);
1918 if (IS_ERR(m)) {
1919 err = PTR_ERR(m);
1920 m = NULL;
1921 ctx = NULL;
1922 goto err_out;
1923 }
1924 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1925 if (unlikely(!ctx)) {
1926 err = -ENOMEM;
1927 goto err_out;
1928 }
1929 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1930 CASE_SENSITIVE, 0, NULL, 0, ctx);
1931 if (unlikely(err)) {
1932 if (err == -ENOENT)
1933 err = -EIO;
1934 goto err_out;
1935 }
1936 m = ctx->mrec;
1937 a = ctx->attr;
1938 /* The total length of the attribute value. */
1939 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1940 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1941 i_size = i_size_read(vi);
1942 if (unlikely(attr_len > i_size)) {
1943 attr_len = i_size;
946929d8 1944 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1945 }
946929d8
AA
1946 /* If we do not need to resize the attribute allocation we are done. */
1947 if (new_size <= attr_len)
1948 goto done_unm;
1da177e4
LT
1949 /* Check if new size is allowed in $AttrDef. */
1950 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1951 if (unlikely(err)) {
1952 if (err == -ERANGE) {
1953 ntfs_error(vol->sb, "Write would cause the inode "
1954 "0x%lx to exceed the maximum size for "
1955 "its attribute type (0x%x). Aborting "
1956 "write.", vi->i_ino,
1957 le32_to_cpu(ni->type));
1958 } else {
1959 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1960 "attribute type 0x%x. Aborting "
1961 "write.", vi->i_ino,
1962 le32_to_cpu(ni->type));
1963 err = -EIO;
1964 }
1965 goto err_out2;
1966 }
1967 /*
1968 * Extend the attribute record to be able to store the new attribute
1969 * size.
1970 */
1971 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1972 le16_to_cpu(a->data.resident.value_offset) +
1973 new_size)) {
1974 /* Not enough space in the mft record. */
1975 ntfs_error(vol->sb, "Not enough space in the mft record for "
1976 "the resized attribute value. This is not "
1977 "supported yet. Aborting write.");
1978 err = -EOPNOTSUPP;
1979 goto err_out2;
1980 }
1981 /*
1982 * We have enough space in the mft record to fit the write. This
1983 * implies the attribute is smaller than the mft record and hence the
1984 * attribute must be in a single page and hence page->index must be 0.
1985 */
1986 BUG_ON(page->index);
1987 /*
1988 * If the beginning of the write is past the old size, enlarge the
1989 * attribute value up to the beginning of the write and fill it with
1990 * zeroes.
1991 */
1992 if (from > attr_len) {
1993 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1994 attr_len, 0, from - attr_len);
1995 a->data.resident.value_length = cpu_to_le32(from);
1996 /* Zero the corresponding area in the page as well. */
1997 if (PageUptodate(page)) {
1998 kaddr = kmap_atomic(page, KM_USER0);
1999 memset(kaddr + attr_len, 0, from - attr_len);
2000 kunmap_atomic(kaddr, KM_USER0);
2001 flush_dcache_page(page);
2002 }
2003 }
2004 flush_dcache_mft_record_page(ctx->ntfs_ino);
2005 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2006done_unm:
1da177e4
LT
2007 ntfs_attr_put_search_ctx(ctx);
2008 unmap_mft_record(base_ni);
2009 /*
2010 * Because resident attributes are handled by memcpy() to/from the
2011 * corresponding MFT record, and because this form of i/o is byte
2012 * aligned rather than block aligned, there is no need to bring the
2013 * page uptodate here as in the non-resident case where we need to
2014 * bring the buffers straddled by the write uptodate before
2015 * generic_file_write() does the copying from userspace.
2016 *
2017 * We thus defer the uptodate bringing of the page region outside the
2018 * region written to to ntfs_commit_write(), which makes the code
2019 * simpler and saves one atomic kmap which is good.
2020 */
2021done:
2022 ntfs_debug("Done.");
2023 return 0;
2024err_out:
2025 if (err == -ENOMEM)
2026 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2027 "prepare the write.");
2028 else {
2029 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2030 "with error %i.", err);
2031 NVolSetErrors(vol);
2032 make_bad_inode(vi);
2033 }
2034err_out2:
2035 if (ctx)
2036 ntfs_attr_put_search_ctx(ctx);
2037 if (m)
2038 unmap_mft_record(base_ni);
2039 return err;
2040}
2041
2042/**
2043 * ntfs_commit_nonresident_write -
2044 *
2045 */
2046static int ntfs_commit_nonresident_write(struct page *page,
2047 unsigned from, unsigned to)
2048{
2049 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2050 struct inode *vi = page->mapping->host;
2051 struct buffer_head *bh, *head;
2052 unsigned int block_start, block_end, blocksize;
2053 BOOL partial;
2054
2055 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2056 "0x%lx, from = %u, to = %u.", vi->i_ino,
2057 NTFS_I(vi)->type, page->index, from, to);
2058 blocksize = 1 << vi->i_blkbits;
2059
2060 // FIXME: We need a whole slew of special cases in here for compressed
2061 // files for example...
2062 // For now, we know ntfs_prepare_write() would have failed so we can't
2063 // get here in any of the cases which we have to special case, so we
2064 // are just a ripped off, unrolled generic_commit_write().
2065
2066 bh = head = page_buffers(page);
2067 block_start = 0;
2068 partial = FALSE;
2069 do {
2070 block_end = block_start + blocksize;
2071 if (block_end <= from || block_start >= to) {
2072 if (!buffer_uptodate(bh))
2073 partial = TRUE;
2074 } else {
2075 set_buffer_uptodate(bh);
2076 mark_buffer_dirty(bh);
2077 }
2078 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2079 /*
2080 * If this is a partial write which happened to make all buffers
2081 * uptodate then we can optimize away a bogus ->readpage() for the next
2082 * read(). Here we 'discover' whether the page went uptodate as a
2083 * result of this (potentially partial) write.
2084 */
2085 if (!partial)
2086 SetPageUptodate(page);
2087 /*
2088 * Not convinced about this at all. See disparity comment above. For
2089 * now we know ntfs_prepare_write() would have failed in the write
2090 * exceeds i_size case, so this will never trigger which is fine.
2091 */
07a4e2da 2092 if (pos > i_size_read(vi)) {
1da177e4
LT
2093 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2094 "not supported yet. Sorry.");
2095 return -EOPNOTSUPP;
2096 // vi->i_size = pos;
2097 // mark_inode_dirty(vi);
2098 }
2099 ntfs_debug("Done.");
2100 return 0;
2101}
2102
2103/**
2104 * ntfs_commit_write - commit the received data
2105 *
2106 * This is called from generic_file_write() with i_sem held on the inode
2107 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2108 * data has already been copied into the @page. ntfs_prepare_write() has been
2109 * called before the data copied and it returned success so we can take the
2110 * results of various BUG checks and some error handling for granted.
2111 *
2112 * Need to mark modified blocks dirty so they get written out later when
2113 * ntfs_writepage() is invoked by the VM.
2114 *
2115 * Return 0 on success or -errno on error.
2116 *
2117 * Should be using generic_commit_write(). This marks buffers uptodate and
2118 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2119 * updates i_size if the end of io is beyond i_size. In that case, it also
2120 * marks the inode dirty.
2121 *
2122 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2123 * it for implementation guidance.
2124 *
2125 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2126 * need to do any page content modifications here at all, except in the write
2127 * to resident attribute case, where we need to do the uptodate bringing here
2128 * which we combine with the copying into the mft record which means we save
2129 * one atomic kmap.
2130 */
2131static int ntfs_commit_write(struct file *file, struct page *page,
2132 unsigned from, unsigned to)
2133{
2134 struct inode *vi = page->mapping->host;
2135 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2136 char *kaddr, *kattr;
2137 ntfs_attr_search_ctx *ctx;
2138 MFT_RECORD *m;
2139 ATTR_RECORD *a;
2140 u32 attr_len;
2141 int err;
2142
2143 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2144 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2145 page->index, from, to);
2146 /* If the attribute is not resident, deal with it elsewhere. */
2147 if (NInoNonResident(ni)) {
2148 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2149 if (ni->type == AT_DATA && !ni->name_len) {
2150 /* Encrypted files need separate handling. */
2151 if (NInoEncrypted(ni)) {
2152 // We never get here at present!
2153 BUG();
2154 }
2155 /* Compressed data streams are handled in compress.c. */
2156 if (NInoCompressed(ni)) {
2157 // TODO: Implement this!
2158 // return ntfs_write_compressed_block(page);
2159 // We never get here at present!
2160 BUG();
2161 }
2162 }
2163 /* Normal data stream. */
2164 return ntfs_commit_nonresident_write(page, from, to);
2165 }
2166 /*
2167 * Attribute is resident, implying it is not compressed, encrypted, or
2168 * sparse.
2169 */
2170 if (!NInoAttr(ni))
2171 base_ni = ni;
2172 else
2173 base_ni = ni->ext.base_ntfs_ino;
2174 /* Map, pin, and lock the mft record. */
2175 m = map_mft_record(base_ni);
2176 if (IS_ERR(m)) {
2177 err = PTR_ERR(m);
2178 m = NULL;
2179 ctx = NULL;
2180 goto err_out;
2181 }
2182 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2183 if (unlikely(!ctx)) {
2184 err = -ENOMEM;
2185 goto err_out;
2186 }
2187 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2188 CASE_SENSITIVE, 0, NULL, 0, ctx);
2189 if (unlikely(err)) {
2190 if (err == -ENOENT)
2191 err = -EIO;
2192 goto err_out;
2193 }
2194 a = ctx->attr;
2195 /* The total length of the attribute value. */
2196 attr_len = le32_to_cpu(a->data.resident.value_length);
2197 BUG_ON(from > attr_len);
2198 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2199 kaddr = kmap_atomic(page, KM_USER0);
2200 /* Copy the received data from the page to the mft record. */
2201 memcpy(kattr + from, kaddr + from, to - from);
2202 /* Update the attribute length if necessary. */
2203 if (to > attr_len) {
2204 attr_len = to;
2205 a->data.resident.value_length = cpu_to_le32(attr_len);
2206 }
2207 /*
2208 * If the page is not uptodate, bring the out of bounds area(s)
2209 * uptodate by copying data from the mft record to the page.
2210 */
2211 if (!PageUptodate(page)) {
2212 if (from > 0)
2213 memcpy(kaddr, kattr, from);
2214 if (to < attr_len)
2215 memcpy(kaddr + to, kattr + to, attr_len - to);
2216 /* Zero the region outside the end of the attribute value. */
2217 if (attr_len < PAGE_CACHE_SIZE)
2218 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2219 /*
2220 * The probability of not having done any of the above is
2221 * extremely small, so we just flush unconditionally.
2222 */
2223 flush_dcache_page(page);
2224 SetPageUptodate(page);
2225 }
2226 kunmap_atomic(kaddr, KM_USER0);
2227 /* Update i_size if necessary. */
07a4e2da
AA
2228 if (i_size_read(vi) < attr_len) {
2229 unsigned long flags;
2230
2231 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2232 ni->allocated_size = ni->initialized_size = attr_len;
2233 i_size_write(vi, attr_len);
07a4e2da 2234 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2235 }
2236 /* Mark the mft record dirty, so it gets written back. */
2237 flush_dcache_mft_record_page(ctx->ntfs_ino);
2238 mark_mft_record_dirty(ctx->ntfs_ino);
2239 ntfs_attr_put_search_ctx(ctx);
2240 unmap_mft_record(base_ni);
2241 ntfs_debug("Done.");
2242 return 0;
2243err_out:
2244 if (err == -ENOMEM) {
2245 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2246 "commit the write.");
2247 if (PageUptodate(page)) {
2248 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2249 "dirty so the write will be retried "
2250 "later on by the VM.");
2251 /*
2252 * Put the page on mapping->dirty_pages, but leave its
2253 * buffers' dirty state as-is.
2254 */
2255 __set_page_dirty_nobuffers(page);
2256 err = 0;
2257 } else
2258 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2259 "data has been lost.");
2260 } else {
2261 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2262 "with error %i.", err);
2263 NVolSetErrors(ni->vol);
2264 make_bad_inode(vi);
2265 }
2266 if (ctx)
2267 ntfs_attr_put_search_ctx(ctx);
2268 if (m)
2269 unmap_mft_record(base_ni);
2270 return err;
2271}
2272
2273#endif /* NTFS_RW */
2274
2275/**
2276 * ntfs_aops - general address space operations for inodes and attributes
2277 */
2278struct address_space_operations ntfs_aops = {
2279 .readpage = ntfs_readpage, /* Fill page with data. */
2280 .sync_page = block_sync_page, /* Currently, just unplugs the
2281 disk request queue. */
2282#ifdef NTFS_RW
2283 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2284 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2285 ready to receive data. */
2286 .commit_write = ntfs_commit_write, /* Commit received data. */
2287#endif /* NTFS_RW */
2288};
2289
2290/**
2291 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2292 * and attributes
2293 */
2294struct address_space_operations ntfs_mst_aops = {
2295 .readpage = ntfs_readpage, /* Fill page with data. */
2296 .sync_page = block_sync_page, /* Currently, just unplugs the
2297 disk request queue. */
2298#ifdef NTFS_RW
2299 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2300 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2301 without touching the buffers
2302 belonging to the page. */
2303#endif /* NTFS_RW */
2304};
2305
2306#ifdef NTFS_RW
2307
2308/**
2309 * mark_ntfs_record_dirty - mark an ntfs record dirty
2310 * @page: page containing the ntfs record to mark dirty
2311 * @ofs: byte offset within @page at which the ntfs record begins
2312 *
2313 * Set the buffers and the page in which the ntfs record is located dirty.
2314 *
2315 * The latter also marks the vfs inode the ntfs record belongs to dirty
2316 * (I_DIRTY_PAGES only).
2317 *
2318 * If the page does not have buffers, we create them and set them uptodate.
2319 * The page may not be locked which is why we need to handle the buffers under
2320 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2321 * need the lock since try_to_free_buffers() does not free dirty buffers.
2322 */
2323void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2324 struct address_space *mapping = page->mapping;
2325 ntfs_inode *ni = NTFS_I(mapping->host);
2326 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2327 unsigned int end, bh_size, bh_ofs;
2328
2329 BUG_ON(!PageUptodate(page));
2330 end = ofs + ni->itype.index.block_size;
2331 bh_size = 1 << VFS_I(ni)->i_blkbits;
2332 spin_lock(&mapping->private_lock);
2333 if (unlikely(!page_has_buffers(page))) {
2334 spin_unlock(&mapping->private_lock);
2335 bh = head = alloc_page_buffers(page, bh_size, 1);
2336 spin_lock(&mapping->private_lock);
2337 if (likely(!page_has_buffers(page))) {
2338 struct buffer_head *tail;
2339
2340 do {
2341 set_buffer_uptodate(bh);
2342 tail = bh;
2343 bh = bh->b_this_page;
2344 } while (bh);
2345 tail->b_this_page = head;
2346 attach_page_buffers(page, head);
2347 } else
2348 buffers_to_free = bh;
2349 }
2350 bh = head = page_buffers(page);
2351 do {
2352 bh_ofs = bh_offset(bh);
2353 if (bh_ofs + bh_size <= ofs)
2354 continue;
2355 if (unlikely(bh_ofs >= end))
2356 break;
2357 set_buffer_dirty(bh);
2358 } while ((bh = bh->b_this_page) != head);
2359 spin_unlock(&mapping->private_lock);
2360 __set_page_dirty_nobuffers(page);
2361 if (unlikely(buffers_to_free)) {
2362 do {
2363 bh = buffers_to_free->b_this_page;
2364 free_buffer_head(buffers_to_free);
2365 buffers_to_free = bh;
2366 } while (buffers_to_free);
2367 }
2368}
2369
2370#endif /* NTFS_RW */