]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ntfs/aops.c
NTFS: Fixup handling of sparse, compressed, and encrypted attributes in
[mirror_ubuntu-artful-kernel.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
58 static DEFINE_SPINLOCK(page_uptodate_lock);
59 unsigned long flags;
60 struct buffer_head *tmp;
61 struct page *page;
62 ntfs_inode *ni;
63 int page_uptodate = 1;
64
65 page = bh->b_page;
66 ni = NTFS_I(page->mapping->host);
67
68 if (likely(uptodate)) {
07a4e2da 69 s64 file_ofs, initialized_size;
1da177e4
LT
70
71 set_buffer_uptodate(bh);
72
73 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
74 bh_offset(bh);
07a4e2da
AA
75 read_lock_irqsave(&ni->size_lock, flags);
76 initialized_size = ni->initialized_size;
77 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 78 /* Check for the current buffer head overflowing. */
07a4e2da 79 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
80 char *addr;
81 int ofs = 0;
82
07a4e2da
AA
83 if (file_ofs < initialized_size)
84 ofs = initialized_size - file_ofs;
1da177e4
LT
85 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
86 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
87 flush_dcache_page(page);
88 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
89 }
90 } else {
91 clear_buffer_uptodate(bh);
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
94 SetPageError(page);
95 }
96 spin_lock_irqsave(&page_uptodate_lock, flags);
97 clear_buffer_async_read(bh);
98 unlock_buffer(bh);
99 tmp = bh;
100 do {
101 if (!buffer_uptodate(tmp))
102 page_uptodate = 0;
103 if (buffer_async_read(tmp)) {
104 if (likely(buffer_locked(tmp)))
105 goto still_busy;
106 /* Async buffers must be locked. */
107 BUG();
108 }
109 tmp = tmp->b_this_page;
110 } while (tmp != bh);
111 spin_unlock_irqrestore(&page_uptodate_lock, flags);
112 /*
113 * If none of the buffers had errors then we can set the page uptodate,
114 * but we first have to perform the post read mst fixups, if the
115 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
116 * Note we ignore fixup errors as those are detected when
117 * map_mft_record() is called which gives us per record granularity
118 * rather than per page granularity.
119 */
120 if (!NInoMstProtected(ni)) {
121 if (likely(page_uptodate && !PageError(page)))
122 SetPageUptodate(page);
123 } else {
124 char *addr;
125 unsigned int i, recs;
126 u32 rec_size;
127
128 rec_size = ni->itype.index.block_size;
129 recs = PAGE_CACHE_SIZE / rec_size;
130 /* Should have been verified before we got here... */
131 BUG_ON(!recs);
132 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
133 for (i = 0; i < recs; i++)
134 post_read_mst_fixup((NTFS_RECORD*)(addr +
135 i * rec_size), rec_size);
136 flush_dcache_page(page);
137 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 138 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
139 SetPageUptodate(page);
140 }
141 unlock_page(page);
142 return;
143still_busy:
144 spin_unlock_irqrestore(&page_uptodate_lock, flags);
145 return;
146}
147
148/**
149 * ntfs_read_block - fill a @page of an address space with data
150 * @page: page cache page to fill with data
151 *
152 * Fill the page @page of the address space belonging to the @page->host inode.
153 * We read each buffer asynchronously and when all buffers are read in, our io
154 * completion handler ntfs_end_buffer_read_async(), if required, automatically
155 * applies the mst fixups to the page before finally marking it uptodate and
156 * unlocking it.
157 *
158 * We only enforce allocated_size limit because i_size is checked for in
159 * generic_file_read().
160 *
161 * Return 0 on success and -errno on error.
162 *
163 * Contains an adapted version of fs/buffer.c::block_read_full_page().
164 */
165static int ntfs_read_block(struct page *page)
166{
167 VCN vcn;
168 LCN lcn;
169 ntfs_inode *ni;
170 ntfs_volume *vol;
171 runlist_element *rl;
172 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
173 sector_t iblock, lblock, zblock;
07a4e2da 174 unsigned long flags;
1da177e4
LT
175 unsigned int blocksize, vcn_ofs;
176 int i, nr;
177 unsigned char blocksize_bits;
178
179 ni = NTFS_I(page->mapping->host);
180 vol = ni->vol;
181
182 /* $MFT/$DATA must have its complete runlist in memory at all times. */
183 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
184
185 blocksize_bits = VFS_I(ni)->i_blkbits;
186 blocksize = 1 << blocksize_bits;
187
188 if (!page_has_buffers(page))
189 create_empty_buffers(page, blocksize, 0);
190 bh = head = page_buffers(page);
191 if (unlikely(!bh)) {
192 unlock_page(page);
193 return -ENOMEM;
194 }
195
196 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 197 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
198 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
199 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 200 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
201
202 /* Loop through all the buffers in the page. */
203 rl = NULL;
204 nr = i = 0;
205 do {
206 u8 *kaddr;
207
208 if (unlikely(buffer_uptodate(bh)))
209 continue;
210 if (unlikely(buffer_mapped(bh))) {
211 arr[nr++] = bh;
212 continue;
213 }
214 bh->b_bdev = vol->sb->s_bdev;
215 /* Is the block within the allowed limits? */
216 if (iblock < lblock) {
217 BOOL is_retry = FALSE;
218
219 /* Convert iblock into corresponding vcn and offset. */
220 vcn = (VCN)iblock << blocksize_bits >>
221 vol->cluster_size_bits;
222 vcn_ofs = ((VCN)iblock << blocksize_bits) &
223 vol->cluster_size_mask;
224 if (!rl) {
225lock_retry_remap:
226 down_read(&ni->runlist.lock);
227 rl = ni->runlist.rl;
228 }
229 if (likely(rl != NULL)) {
230 /* Seek to element containing target vcn. */
231 while (rl->length && rl[1].vcn <= vcn)
232 rl++;
233 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
234 } else
235 lcn = LCN_RL_NOT_MAPPED;
236 /* Successful remap. */
237 if (lcn >= 0) {
238 /* Setup buffer head to correct block. */
239 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
240 + vcn_ofs) >> blocksize_bits;
241 set_buffer_mapped(bh);
242 /* Only read initialized data blocks. */
243 if (iblock < zblock) {
244 arr[nr++] = bh;
245 continue;
246 }
247 /* Fully non-initialized data block, zero it. */
248 goto handle_zblock;
249 }
250 /* It is a hole, need to zero it. */
251 if (lcn == LCN_HOLE)
252 goto handle_hole;
253 /* If first try and runlist unmapped, map and retry. */
254 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
255 int err;
256 is_retry = TRUE;
257 /*
258 * Attempt to map runlist, dropping lock for
259 * the duration.
260 */
261 up_read(&ni->runlist.lock);
262 err = ntfs_map_runlist(ni, vcn);
263 if (likely(!err))
264 goto lock_retry_remap;
265 rl = NULL;
266 lcn = err;
9f993fe4
AA
267 } else if (!rl)
268 up_read(&ni->runlist.lock);
1da177e4
LT
269 /* Hard error, zero out region. */
270 bh->b_blocknr = -1;
271 SetPageError(page);
272 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
273 "attribute type 0x%x, vcn 0x%llx, "
274 "offset 0x%x because its location on "
275 "disk could not be determined%s "
276 "(error code %lli).", ni->mft_no,
277 ni->type, (unsigned long long)vcn,
278 vcn_ofs, is_retry ? " even after "
279 "retrying" : "", (long long)lcn);
280 }
281 /*
282 * Either iblock was outside lblock limits or
283 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
284 * of the page and set the buffer uptodate.
285 */
286handle_hole:
287 bh->b_blocknr = -1UL;
288 clear_buffer_mapped(bh);
289handle_zblock:
290 kaddr = kmap_atomic(page, KM_USER0);
291 memset(kaddr + i * blocksize, 0, blocksize);
292 flush_dcache_page(page);
293 kunmap_atomic(kaddr, KM_USER0);
294 set_buffer_uptodate(bh);
295 } while (i++, iblock++, (bh = bh->b_this_page) != head);
296
297 /* Release the lock if we took it. */
298 if (rl)
299 up_read(&ni->runlist.lock);
300
301 /* Check we have at least one buffer ready for i/o. */
302 if (nr) {
303 struct buffer_head *tbh;
304
305 /* Lock the buffers. */
306 for (i = 0; i < nr; i++) {
307 tbh = arr[i];
308 lock_buffer(tbh);
309 tbh->b_end_io = ntfs_end_buffer_async_read;
310 set_buffer_async_read(tbh);
311 }
312 /* Finally, start i/o on the buffers. */
313 for (i = 0; i < nr; i++) {
314 tbh = arr[i];
315 if (likely(!buffer_uptodate(tbh)))
316 submit_bh(READ, tbh);
317 else
318 ntfs_end_buffer_async_read(tbh, 1);
319 }
320 return 0;
321 }
322 /* No i/o was scheduled on any of the buffers. */
323 if (likely(!PageError(page)))
324 SetPageUptodate(page);
325 else /* Signal synchronous i/o error. */
326 nr = -EIO;
327 unlock_page(page);
328 return nr;
329}
330
331/**
332 * ntfs_readpage - fill a @page of a @file with data from the device
333 * @file: open file to which the page @page belongs or NULL
334 * @page: page cache page to fill with data
335 *
336 * For non-resident attributes, ntfs_readpage() fills the @page of the open
337 * file @file by calling the ntfs version of the generic block_read_full_page()
338 * function, ntfs_read_block(), which in turn creates and reads in the buffers
339 * associated with the page asynchronously.
340 *
341 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
342 * data from the mft record (which at this stage is most likely in memory) and
343 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
344 * even if the mft record is not cached at this point in time, we need to wait
345 * for it to be read in before we can do the copy.
346 *
347 * Return 0 on success and -errno on error.
348 */
349static int ntfs_readpage(struct file *file, struct page *page)
350{
1da177e4
LT
351 ntfs_inode *ni, *base_ni;
352 u8 *kaddr;
353 ntfs_attr_search_ctx *ctx;
354 MFT_RECORD *mrec;
b6ad6c52 355 unsigned long flags;
1da177e4
LT
356 u32 attr_len;
357 int err = 0;
358
905685f6 359retry_readpage:
1da177e4
LT
360 BUG_ON(!PageLocked(page));
361 /*
362 * This can potentially happen because we clear PageUptodate() during
363 * ntfs_writepage() of MstProtected() attributes.
364 */
365 if (PageUptodate(page)) {
366 unlock_page(page);
367 return 0;
368 }
369 ni = NTFS_I(page->mapping->host);
370
371 /* NInoNonResident() == NInoIndexAllocPresent() */
372 if (NInoNonResident(ni)) {
373 /*
374 * Only unnamed $DATA attributes can be compressed or
375 * encrypted.
376 */
377 if (ni->type == AT_DATA && !ni->name_len) {
378 /* If file is encrypted, deny access, just like NT4. */
379 if (NInoEncrypted(ni)) {
380 err = -EACCES;
381 goto err_out;
382 }
383 /* Compressed data streams are handled in compress.c. */
384 if (NInoCompressed(ni))
385 return ntfs_read_compressed_block(page);
386 }
387 /* Normal data stream. */
388 return ntfs_read_block(page);
389 }
390 /*
391 * Attribute is resident, implying it is not compressed or encrypted.
392 * This also means the attribute is smaller than an mft record and
393 * hence smaller than a page, so can simply zero out any pages with
b6ad6c52 394 * index above 0.
1da177e4 395 */
b6ad6c52 396 if (unlikely(page->index > 0)) {
1da177e4
LT
397 kaddr = kmap_atomic(page, KM_USER0);
398 memset(kaddr, 0, PAGE_CACHE_SIZE);
399 flush_dcache_page(page);
400 kunmap_atomic(kaddr, KM_USER0);
401 goto done;
402 }
403 if (!NInoAttr(ni))
404 base_ni = ni;
405 else
406 base_ni = ni->ext.base_ntfs_ino;
407 /* Map, pin, and lock the mft record. */
408 mrec = map_mft_record(base_ni);
409 if (IS_ERR(mrec)) {
410 err = PTR_ERR(mrec);
411 goto err_out;
412 }
905685f6
AA
413 /*
414 * If a parallel write made the attribute non-resident, drop the mft
415 * record and retry the readpage.
416 */
417 if (unlikely(NInoNonResident(ni))) {
418 unmap_mft_record(base_ni);
419 goto retry_readpage;
420 }
1da177e4
LT
421 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
422 if (unlikely(!ctx)) {
423 err = -ENOMEM;
424 goto unm_err_out;
425 }
426 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
427 CASE_SENSITIVE, 0, NULL, 0, ctx);
428 if (unlikely(err))
429 goto put_unm_err_out;
430 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
431 read_lock_irqsave(&ni->size_lock, flags);
432 if (unlikely(attr_len > ni->initialized_size))
433 attr_len = ni->initialized_size;
434 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
435 kaddr = kmap_atomic(page, KM_USER0);
436 /* Copy the data to the page. */
437 memcpy(kaddr, (u8*)ctx->attr +
438 le16_to_cpu(ctx->attr->data.resident.value_offset),
439 attr_len);
440 /* Zero the remainder of the page. */
441 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
442 flush_dcache_page(page);
443 kunmap_atomic(kaddr, KM_USER0);
444put_unm_err_out:
445 ntfs_attr_put_search_ctx(ctx);
446unm_err_out:
447 unmap_mft_record(base_ni);
448done:
449 SetPageUptodate(page);
450err_out:
451 unlock_page(page);
452 return err;
453}
454
455#ifdef NTFS_RW
456
457/**
458 * ntfs_write_block - write a @page to the backing store
459 * @page: page cache page to write out
460 * @wbc: writeback control structure
461 *
462 * This function is for writing pages belonging to non-resident, non-mst
463 * protected attributes to their backing store.
464 *
465 * For a page with buffers, map and write the dirty buffers asynchronously
466 * under page writeback. For a page without buffers, create buffers for the
467 * page, then proceed as above.
468 *
469 * If a page doesn't have buffers the page dirty state is definitive. If a page
470 * does have buffers, the page dirty state is just a hint, and the buffer dirty
471 * state is definitive. (A hint which has rules: dirty buffers against a clean
472 * page is illegal. Other combinations are legal and need to be handled. In
473 * particular a dirty page containing clean buffers for example.)
474 *
475 * Return 0 on success and -errno on error.
476 *
477 * Based on ntfs_read_block() and __block_write_full_page().
478 */
479static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
480{
481 VCN vcn;
482 LCN lcn;
07a4e2da
AA
483 s64 initialized_size;
484 loff_t i_size;
1da177e4
LT
485 sector_t block, dblock, iblock;
486 struct inode *vi;
487 ntfs_inode *ni;
488 ntfs_volume *vol;
489 runlist_element *rl;
490 struct buffer_head *bh, *head;
07a4e2da 491 unsigned long flags;
1da177e4
LT
492 unsigned int blocksize, vcn_ofs;
493 int err;
494 BOOL need_end_writeback;
495 unsigned char blocksize_bits;
496
497 vi = page->mapping->host;
498 ni = NTFS_I(vi);
499 vol = ni->vol;
500
501 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
502 "0x%lx.", ni->mft_no, ni->type, page->index);
503
504 BUG_ON(!NInoNonResident(ni));
505 BUG_ON(NInoMstProtected(ni));
506
507 blocksize_bits = vi->i_blkbits;
508 blocksize = 1 << blocksize_bits;
509
510 if (!page_has_buffers(page)) {
511 BUG_ON(!PageUptodate(page));
512 create_empty_buffers(page, blocksize,
513 (1 << BH_Uptodate) | (1 << BH_Dirty));
514 }
515 bh = head = page_buffers(page);
516 if (unlikely(!bh)) {
517 ntfs_warning(vol->sb, "Error allocating page buffers. "
518 "Redirtying page so we try again later.");
519 /*
520 * Put the page back on mapping->dirty_pages, but leave its
521 * buffer's dirty state as-is.
522 */
523 redirty_page_for_writepage(wbc, page);
524 unlock_page(page);
525 return 0;
526 }
527
528 /* NOTE: Different naming scheme to ntfs_read_block()! */
529
530 /* The first block in the page. */
531 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
532
07a4e2da
AA
533 read_lock_irqsave(&ni->size_lock, flags);
534 i_size = i_size_read(vi);
535 initialized_size = ni->initialized_size;
536 read_unlock_irqrestore(&ni->size_lock, flags);
537
1da177e4 538 /* The first out of bounds block for the data size. */
07a4e2da 539 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
540
541 /* The last (fully or partially) initialized block. */
07a4e2da 542 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
543
544 /*
545 * Be very careful. We have no exclusion from __set_page_dirty_buffers
546 * here, and the (potentially unmapped) buffers may become dirty at
547 * any time. If a buffer becomes dirty here after we've inspected it
548 * then we just miss that fact, and the page stays dirty.
549 *
550 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
551 * handle that here by just cleaning them.
552 */
553
554 /*
555 * Loop through all the buffers in the page, mapping all the dirty
556 * buffers to disk addresses and handling any aliases from the
557 * underlying block device's mapping.
558 */
559 rl = NULL;
560 err = 0;
561 do {
562 BOOL is_retry = FALSE;
563
564 if (unlikely(block >= dblock)) {
565 /*
566 * Mapped buffers outside i_size will occur, because
567 * this page can be outside i_size when there is a
568 * truncate in progress. The contents of such buffers
569 * were zeroed by ntfs_writepage().
570 *
571 * FIXME: What about the small race window where
572 * ntfs_writepage() has not done any clearing because
573 * the page was within i_size but before we get here,
574 * vmtruncate() modifies i_size?
575 */
576 clear_buffer_dirty(bh);
577 set_buffer_uptodate(bh);
578 continue;
579 }
580
581 /* Clean buffers are not written out, so no need to map them. */
582 if (!buffer_dirty(bh))
583 continue;
584
585 /* Make sure we have enough initialized size. */
586 if (unlikely((block >= iblock) &&
07a4e2da 587 (initialized_size < i_size))) {
1da177e4
LT
588 /*
589 * If this page is fully outside initialized size, zero
590 * out all pages between the current initialized size
591 * and the current page. Just use ntfs_readpage() to do
592 * the zeroing transparently.
593 */
594 if (block > iblock) {
595 // TODO:
596 // For each page do:
597 // - read_cache_page()
598 // Again for each page do:
599 // - wait_on_page_locked()
600 // - Check (PageUptodate(page) &&
601 // !PageError(page))
602 // Update initialized size in the attribute and
603 // in the inode.
604 // Again, for each page do:
605 // __set_page_dirty_buffers();
606 // page_cache_release()
607 // We don't need to wait on the writes.
608 // Update iblock.
609 }
610 /*
611 * The current page straddles initialized size. Zero
612 * all non-uptodate buffers and set them uptodate (and
613 * dirty?). Note, there aren't any non-uptodate buffers
614 * if the page is uptodate.
615 * FIXME: For an uptodate page, the buffers may need to
616 * be written out because they were not initialized on
617 * disk before.
618 */
619 if (!PageUptodate(page)) {
620 // TODO:
621 // Zero any non-uptodate buffers up to i_size.
622 // Set them uptodate and dirty.
623 }
624 // TODO:
625 // Update initialized size in the attribute and in the
626 // inode (up to i_size).
627 // Update iblock.
628 // FIXME: This is inefficient. Try to batch the two
629 // size changes to happen in one go.
630 ntfs_error(vol->sb, "Writing beyond initialized size "
631 "is not supported yet. Sorry.");
632 err = -EOPNOTSUPP;
633 break;
634 // Do NOT set_buffer_new() BUT DO clear buffer range
635 // outside write request range.
636 // set_buffer_uptodate() on complete buffers as well as
637 // set_buffer_dirty().
638 }
639
640 /* No need to map buffers that are already mapped. */
641 if (buffer_mapped(bh))
642 continue;
643
644 /* Unmapped, dirty buffer. Need to map it. */
645 bh->b_bdev = vol->sb->s_bdev;
646
647 /* Convert block into corresponding vcn and offset. */
648 vcn = (VCN)block << blocksize_bits;
649 vcn_ofs = vcn & vol->cluster_size_mask;
650 vcn >>= vol->cluster_size_bits;
651 if (!rl) {
652lock_retry_remap:
653 down_read(&ni->runlist.lock);
654 rl = ni->runlist.rl;
655 }
656 if (likely(rl != NULL)) {
657 /* Seek to element containing target vcn. */
658 while (rl->length && rl[1].vcn <= vcn)
659 rl++;
660 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
661 } else
662 lcn = LCN_RL_NOT_MAPPED;
663 /* Successful remap. */
664 if (lcn >= 0) {
665 /* Setup buffer head to point to correct block. */
666 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
667 vcn_ofs) >> blocksize_bits;
668 set_buffer_mapped(bh);
669 continue;
670 }
671 /* It is a hole, need to instantiate it. */
672 if (lcn == LCN_HOLE) {
673 // TODO: Instantiate the hole.
674 // clear_buffer_new(bh);
675 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
676 ntfs_error(vol->sb, "Writing into sparse regions is "
677 "not supported yet. Sorry.");
678 err = -EOPNOTSUPP;
679 break;
680 }
681 /* If first try and runlist unmapped, map and retry. */
682 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
683 is_retry = TRUE;
684 /*
685 * Attempt to map runlist, dropping lock for
686 * the duration.
687 */
688 up_read(&ni->runlist.lock);
689 err = ntfs_map_runlist(ni, vcn);
690 if (likely(!err))
691 goto lock_retry_remap;
692 rl = NULL;
693 lcn = err;
9f993fe4
AA
694 } else if (!rl)
695 up_read(&ni->runlist.lock);
1da177e4
LT
696 /* Failed to map the buffer, even after retrying. */
697 bh->b_blocknr = -1;
698 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
699 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
700 "because its location on disk could not be "
701 "determined%s (error code %lli).", ni->mft_no,
702 ni->type, (unsigned long long)vcn,
703 vcn_ofs, is_retry ? " even after "
704 "retrying" : "", (long long)lcn);
705 if (!err)
706 err = -EIO;
707 break;
708 } while (block++, (bh = bh->b_this_page) != head);
709
710 /* Release the lock if we took it. */
711 if (rl)
712 up_read(&ni->runlist.lock);
713
714 /* For the error case, need to reset bh to the beginning. */
715 bh = head;
716
717 /* Just an optimization, so ->readpage() isn't called later. */
718 if (unlikely(!PageUptodate(page))) {
719 int uptodate = 1;
720 do {
721 if (!buffer_uptodate(bh)) {
722 uptodate = 0;
723 bh = head;
724 break;
725 }
726 } while ((bh = bh->b_this_page) != head);
727 if (uptodate)
728 SetPageUptodate(page);
729 }
730
731 /* Setup all mapped, dirty buffers for async write i/o. */
732 do {
733 get_bh(bh);
734 if (buffer_mapped(bh) && buffer_dirty(bh)) {
735 lock_buffer(bh);
736 if (test_clear_buffer_dirty(bh)) {
737 BUG_ON(!buffer_uptodate(bh));
738 mark_buffer_async_write(bh);
739 } else
740 unlock_buffer(bh);
741 } else if (unlikely(err)) {
742 /*
743 * For the error case. The buffer may have been set
744 * dirty during attachment to a dirty page.
745 */
746 if (err != -ENOMEM)
747 clear_buffer_dirty(bh);
748 }
749 } while ((bh = bh->b_this_page) != head);
750
751 if (unlikely(err)) {
752 // TODO: Remove the -EOPNOTSUPP check later on...
753 if (unlikely(err == -EOPNOTSUPP))
754 err = 0;
755 else if (err == -ENOMEM) {
756 ntfs_warning(vol->sb, "Error allocating memory. "
757 "Redirtying page so we try again "
758 "later.");
759 /*
760 * Put the page back on mapping->dirty_pages, but
761 * leave its buffer's dirty state as-is.
762 */
763 redirty_page_for_writepage(wbc, page);
764 err = 0;
765 } else
766 SetPageError(page);
767 }
768
769 BUG_ON(PageWriteback(page));
770 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
771 unlock_page(page);
772
773 /*
774 * Submit the prepared buffers for i/o. Note the page is unlocked,
775 * and the async write i/o completion handler can end_page_writeback()
776 * at any time after the *first* submit_bh(). So the buffers can then
777 * disappear...
778 */
779 need_end_writeback = TRUE;
780 do {
781 struct buffer_head *next = bh->b_this_page;
782 if (buffer_async_write(bh)) {
783 submit_bh(WRITE, bh);
784 need_end_writeback = FALSE;
785 }
786 put_bh(bh);
787 bh = next;
788 } while (bh != head);
789
790 /* If no i/o was started, need to end_page_writeback(). */
791 if (unlikely(need_end_writeback))
792 end_page_writeback(page);
793
794 ntfs_debug("Done.");
795 return err;
796}
797
798/**
799 * ntfs_write_mst_block - write a @page to the backing store
800 * @page: page cache page to write out
801 * @wbc: writeback control structure
802 *
803 * This function is for writing pages belonging to non-resident, mst protected
804 * attributes to their backing store. The only supported attributes are index
805 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
806 * supported for the index allocation case.
807 *
808 * The page must remain locked for the duration of the write because we apply
809 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
810 * page before undoing the fixups, any other user of the page will see the
811 * page contents as corrupt.
812 *
813 * We clear the page uptodate flag for the duration of the function to ensure
814 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
815 * are about to apply the mst fixups to.
816 *
817 * Return 0 on success and -errno on error.
818 *
819 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
820 * write_mft_record_nolock().
821 */
822static int ntfs_write_mst_block(struct page *page,
823 struct writeback_control *wbc)
824{
825 sector_t block, dblock, rec_block;
826 struct inode *vi = page->mapping->host;
827 ntfs_inode *ni = NTFS_I(vi);
828 ntfs_volume *vol = ni->vol;
829 u8 *kaddr;
1da177e4
LT
830 unsigned int rec_size = ni->itype.index.block_size;
831 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
832 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
d53ee322 833 struct buffer_head *bhs[MAX_BUF_PER_PAGE];
1da177e4 834 runlist_element *rl;
d53ee322
AA
835 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
836 unsigned bh_size, rec_size_bits;
1da177e4 837 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
d53ee322 838 unsigned char bh_size_bits;
1da177e4
LT
839
840 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
841 "0x%lx.", vi->i_ino, ni->type, page->index);
842 BUG_ON(!NInoNonResident(ni));
843 BUG_ON(!NInoMstProtected(ni));
844 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
845 /*
846 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
847 * in its page cache were to be marked dirty. However this should
848 * never happen with the current driver and considering we do not
849 * handle this case here we do want to BUG(), at least for now.
850 */
851 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
852 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
d53ee322
AA
853 bh_size_bits = vi->i_blkbits;
854 bh_size = 1 << bh_size_bits;
855 max_bhs = PAGE_CACHE_SIZE / bh_size;
1da177e4 856 BUG_ON(!max_bhs);
d53ee322 857 BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
1da177e4
LT
858
859 /* Were we called for sync purposes? */
860 sync = (wbc->sync_mode == WB_SYNC_ALL);
861
862 /* Make sure we have mapped buffers. */
863 BUG_ON(!page_has_buffers(page));
864 bh = head = page_buffers(page);
865 BUG_ON(!bh);
866
867 rec_size_bits = ni->itype.index.block_size_bits;
868 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
869 bhs_per_rec = rec_size >> bh_size_bits;
870 BUG_ON(!bhs_per_rec);
871
872 /* The first block in the page. */
873 rec_block = block = (sector_t)page->index <<
874 (PAGE_CACHE_SHIFT - bh_size_bits);
875
876 /* The first out of bounds block for the data size. */
07a4e2da 877 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
878
879 rl = NULL;
880 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
881 page_is_dirty = rec_is_dirty = FALSE;
882 rec_start_bh = NULL;
883 do {
884 BOOL is_retry = FALSE;
885
886 if (likely(block < rec_block)) {
887 if (unlikely(block >= dblock)) {
888 clear_buffer_dirty(bh);
946929d8 889 set_buffer_uptodate(bh);
1da177e4
LT
890 continue;
891 }
892 /*
893 * This block is not the first one in the record. We
894 * ignore the buffer's dirty state because we could
895 * have raced with a parallel mark_ntfs_record_dirty().
896 */
897 if (!rec_is_dirty)
898 continue;
899 if (unlikely(err2)) {
900 if (err2 != -ENOMEM)
901 clear_buffer_dirty(bh);
902 continue;
903 }
904 } else /* if (block == rec_block) */ {
905 BUG_ON(block > rec_block);
906 /* This block is the first one in the record. */
907 rec_block += bhs_per_rec;
908 err2 = 0;
909 if (unlikely(block >= dblock)) {
910 clear_buffer_dirty(bh);
911 continue;
912 }
913 if (!buffer_dirty(bh)) {
914 /* Clean records are not written out. */
915 rec_is_dirty = FALSE;
916 continue;
917 }
918 rec_is_dirty = TRUE;
919 rec_start_bh = bh;
920 }
921 /* Need to map the buffer if it is not mapped already. */
922 if (unlikely(!buffer_mapped(bh))) {
923 VCN vcn;
924 LCN lcn;
925 unsigned int vcn_ofs;
926
481d0374 927 bh->b_bdev = vol->sb->s_bdev;
1da177e4
LT
928 /* Obtain the vcn and offset of the current block. */
929 vcn = (VCN)block << bh_size_bits;
930 vcn_ofs = vcn & vol->cluster_size_mask;
931 vcn >>= vol->cluster_size_bits;
932 if (!rl) {
933lock_retry_remap:
934 down_read(&ni->runlist.lock);
935 rl = ni->runlist.rl;
936 }
937 if (likely(rl != NULL)) {
938 /* Seek to element containing target vcn. */
939 while (rl->length && rl[1].vcn <= vcn)
940 rl++;
941 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
942 } else
943 lcn = LCN_RL_NOT_MAPPED;
944 /* Successful remap. */
945 if (likely(lcn >= 0)) {
946 /* Setup buffer head to correct block. */
947 bh->b_blocknr = ((lcn <<
948 vol->cluster_size_bits) +
949 vcn_ofs) >> bh_size_bits;
950 set_buffer_mapped(bh);
951 } else {
952 /*
953 * Remap failed. Retry to map the runlist once
954 * unless we are working on $MFT which always
955 * has the whole of its runlist in memory.
956 */
957 if (!is_mft && !is_retry &&
958 lcn == LCN_RL_NOT_MAPPED) {
959 is_retry = TRUE;
960 /*
961 * Attempt to map runlist, dropping
962 * lock for the duration.
963 */
964 up_read(&ni->runlist.lock);
965 err2 = ntfs_map_runlist(ni, vcn);
966 if (likely(!err2))
967 goto lock_retry_remap;
968 if (err2 == -ENOMEM)
969 page_is_dirty = TRUE;
970 lcn = err2;
9f993fe4 971 } else {
1da177e4 972 err2 = -EIO;
9f993fe4
AA
973 if (!rl)
974 up_read(&ni->runlist.lock);
975 }
1da177e4
LT
976 /* Hard error. Abort writing this record. */
977 if (!err || err == -ENOMEM)
978 err = err2;
979 bh->b_blocknr = -1;
980 ntfs_error(vol->sb, "Cannot write ntfs record "
981 "0x%llx (inode 0x%lx, "
982 "attribute type 0x%x) because "
983 "its location on disk could "
984 "not be determined (error "
8907547d
RD
985 "code %lli).",
986 (long long)block <<
1da177e4
LT
987 bh_size_bits >>
988 vol->mft_record_size_bits,
989 ni->mft_no, ni->type,
990 (long long)lcn);
991 /*
992 * If this is not the first buffer, remove the
993 * buffers in this record from the list of
994 * buffers to write and clear their dirty bit
995 * if not error -ENOMEM.
996 */
997 if (rec_start_bh != bh) {
998 while (bhs[--nr_bhs] != rec_start_bh)
999 ;
1000 if (err2 != -ENOMEM) {
1001 do {
1002 clear_buffer_dirty(
1003 rec_start_bh);
1004 } while ((rec_start_bh =
1005 rec_start_bh->
1006 b_this_page) !=
1007 bh);
1008 }
1009 }
1010 continue;
1011 }
1012 }
1013 BUG_ON(!buffer_uptodate(bh));
1014 BUG_ON(nr_bhs >= max_bhs);
1015 bhs[nr_bhs++] = bh;
1016 } while (block++, (bh = bh->b_this_page) != head);
1017 if (unlikely(rl))
1018 up_read(&ni->runlist.lock);
1019 /* If there were no dirty buffers, we are done. */
1020 if (!nr_bhs)
1021 goto done;
1022 /* Map the page so we can access its contents. */
1023 kaddr = kmap(page);
1024 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1025 BUG_ON(!PageUptodate(page));
1026 ClearPageUptodate(page);
1027 for (i = 0; i < nr_bhs; i++) {
1028 unsigned int ofs;
1029
1030 /* Skip buffers which are not at the beginning of records. */
1031 if (i % bhs_per_rec)
1032 continue;
1033 tbh = bhs[i];
1034 ofs = bh_offset(tbh);
1035 if (is_mft) {
1036 ntfs_inode *tni;
1037 unsigned long mft_no;
1038
1039 /* Get the mft record number. */
1040 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1041 >> rec_size_bits;
1042 /* Check whether to write this mft record. */
1043 tni = NULL;
1044 if (!ntfs_may_write_mft_record(vol, mft_no,
1045 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1046 /*
1047 * The record should not be written. This
1048 * means we need to redirty the page before
1049 * returning.
1050 */
1051 page_is_dirty = TRUE;
1052 /*
1053 * Remove the buffers in this mft record from
1054 * the list of buffers to write.
1055 */
1056 do {
1057 bhs[i] = NULL;
1058 } while (++i % bhs_per_rec);
1059 continue;
1060 }
1061 /*
1062 * The record should be written. If a locked ntfs
1063 * inode was returned, add it to the array of locked
1064 * ntfs inodes.
1065 */
1066 if (tni)
1067 locked_nis[nr_locked_nis++] = tni;
1068 }
1069 /* Apply the mst protection fixups. */
1070 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1071 rec_size);
1072 if (unlikely(err2)) {
1073 if (!err || err == -ENOMEM)
1074 err = -EIO;
1075 ntfs_error(vol->sb, "Failed to apply mst fixups "
1076 "(inode 0x%lx, attribute type 0x%x, "
1077 "page index 0x%lx, page offset 0x%x)!"
1078 " Unmount and run chkdsk.", vi->i_ino,
1079 ni->type, page->index, ofs);
1080 /*
1081 * Mark all the buffers in this record clean as we do
1082 * not want to write corrupt data to disk.
1083 */
1084 do {
1085 clear_buffer_dirty(bhs[i]);
1086 bhs[i] = NULL;
1087 } while (++i % bhs_per_rec);
1088 continue;
1089 }
1090 nr_recs++;
1091 }
1092 /* If no records are to be written out, we are done. */
1093 if (!nr_recs)
1094 goto unm_done;
1095 flush_dcache_page(page);
1096 /* Lock buffers and start synchronous write i/o on them. */
1097 for (i = 0; i < nr_bhs; i++) {
1098 tbh = bhs[i];
1099 if (!tbh)
1100 continue;
1101 if (unlikely(test_set_buffer_locked(tbh)))
1102 BUG();
1103 /* The buffer dirty state is now irrelevant, just clean it. */
1104 clear_buffer_dirty(tbh);
1105 BUG_ON(!buffer_uptodate(tbh));
1106 BUG_ON(!buffer_mapped(tbh));
1107 get_bh(tbh);
1108 tbh->b_end_io = end_buffer_write_sync;
1109 submit_bh(WRITE, tbh);
1110 }
1111 /* Synchronize the mft mirror now if not @sync. */
1112 if (is_mft && !sync)
1113 goto do_mirror;
1114do_wait:
1115 /* Wait on i/o completion of buffers. */
1116 for (i = 0; i < nr_bhs; i++) {
1117 tbh = bhs[i];
1118 if (!tbh)
1119 continue;
1120 wait_on_buffer(tbh);
1121 if (unlikely(!buffer_uptodate(tbh))) {
1122 ntfs_error(vol->sb, "I/O error while writing ntfs "
1123 "record buffer (inode 0x%lx, "
1124 "attribute type 0x%x, page index "
1125 "0x%lx, page offset 0x%lx)! Unmount "
1126 "and run chkdsk.", vi->i_ino, ni->type,
1127 page->index, bh_offset(tbh));
1128 if (!err || err == -ENOMEM)
1129 err = -EIO;
1130 /*
1131 * Set the buffer uptodate so the page and buffer
1132 * states do not become out of sync.
1133 */
1134 set_buffer_uptodate(tbh);
1135 }
1136 }
1137 /* If @sync, now synchronize the mft mirror. */
1138 if (is_mft && sync) {
1139do_mirror:
1140 for (i = 0; i < nr_bhs; i++) {
1141 unsigned long mft_no;
1142 unsigned int ofs;
1143
1144 /*
1145 * Skip buffers which are not at the beginning of
1146 * records.
1147 */
1148 if (i % bhs_per_rec)
1149 continue;
1150 tbh = bhs[i];
1151 /* Skip removed buffers (and hence records). */
1152 if (!tbh)
1153 continue;
1154 ofs = bh_offset(tbh);
1155 /* Get the mft record number. */
1156 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1157 >> rec_size_bits;
1158 if (mft_no < vol->mftmirr_size)
1159 ntfs_sync_mft_mirror(vol, mft_no,
1160 (MFT_RECORD*)(kaddr + ofs),
1161 sync);
1162 }
1163 if (!sync)
1164 goto do_wait;
1165 }
1166 /* Remove the mst protection fixups again. */
1167 for (i = 0; i < nr_bhs; i++) {
1168 if (!(i % bhs_per_rec)) {
1169 tbh = bhs[i];
1170 if (!tbh)
1171 continue;
1172 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1173 bh_offset(tbh)));
1174 }
1175 }
1176 flush_dcache_page(page);
1177unm_done:
1178 /* Unlock any locked inodes. */
1179 while (nr_locked_nis-- > 0) {
1180 ntfs_inode *tni, *base_tni;
1181
1182 tni = locked_nis[nr_locked_nis];
1183 /* Get the base inode. */
1184 down(&tni->extent_lock);
1185 if (tni->nr_extents >= 0)
1186 base_tni = tni;
1187 else {
1188 base_tni = tni->ext.base_ntfs_ino;
1189 BUG_ON(!base_tni);
1190 }
1191 up(&tni->extent_lock);
1192 ntfs_debug("Unlocking %s inode 0x%lx.",
1193 tni == base_tni ? "base" : "extent",
1194 tni->mft_no);
1195 up(&tni->mrec_lock);
1196 atomic_dec(&tni->count);
1197 iput(VFS_I(base_tni));
1198 }
1199 SetPageUptodate(page);
1200 kunmap(page);
1201done:
1202 if (unlikely(err && err != -ENOMEM)) {
1203 /*
1204 * Set page error if there is only one ntfs record in the page.
1205 * Otherwise we would loose per-record granularity.
1206 */
1207 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1208 SetPageError(page);
1209 NVolSetErrors(vol);
1210 }
1211 if (page_is_dirty) {
1212 ntfs_debug("Page still contains one or more dirty ntfs "
1213 "records. Redirtying the page starting at "
1214 "record 0x%lx.", page->index <<
1215 (PAGE_CACHE_SHIFT - rec_size_bits));
1216 redirty_page_for_writepage(wbc, page);
1217 unlock_page(page);
1218 } else {
1219 /*
1220 * Keep the VM happy. This must be done otherwise the
1221 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1222 * the page is clean.
1223 */
1224 BUG_ON(PageWriteback(page));
1225 set_page_writeback(page);
1226 unlock_page(page);
1227 end_page_writeback(page);
1228 }
1229 if (likely(!err))
1230 ntfs_debug("Done.");
1231 return err;
1232}
1233
1234/**
1235 * ntfs_writepage - write a @page to the backing store
1236 * @page: page cache page to write out
1237 * @wbc: writeback control structure
1238 *
1239 * This is called from the VM when it wants to have a dirty ntfs page cache
1240 * page cleaned. The VM has already locked the page and marked it clean.
1241 *
1242 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1243 * the ntfs version of the generic block_write_full_page() function,
1244 * ntfs_write_block(), which in turn if necessary creates and writes the
1245 * buffers associated with the page asynchronously.
1246 *
1247 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1248 * the data to the mft record (which at this stage is most likely in memory).
1249 * The mft record is then marked dirty and written out asynchronously via the
1250 * vfs inode dirty code path for the inode the mft record belongs to or via the
1251 * vm page dirty code path for the page the mft record is in.
1252 *
1253 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1254 *
1255 * Return 0 on success and -errno on error.
1256 */
1257static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1258{
1259 loff_t i_size;
149f0c52
AA
1260 struct inode *vi = page->mapping->host;
1261 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1262 char *kaddr;
149f0c52
AA
1263 ntfs_attr_search_ctx *ctx = NULL;
1264 MFT_RECORD *m = NULL;
1da177e4
LT
1265 u32 attr_len;
1266 int err;
1267
905685f6 1268retry_writepage:
1da177e4 1269 BUG_ON(!PageLocked(page));
1da177e4 1270 i_size = i_size_read(vi);
1da177e4
LT
1271 /* Is the page fully outside i_size? (truncate in progress) */
1272 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1273 PAGE_CACHE_SHIFT)) {
1274 /*
1275 * The page may have dirty, unmapped buffers. Make them
1276 * freeable here, so the page does not leak.
1277 */
1278 block_invalidatepage(page, 0);
1279 unlock_page(page);
1280 ntfs_debug("Write outside i_size - truncated?");
1281 return 0;
1282 }
1da177e4
LT
1283 /* NInoNonResident() == NInoIndexAllocPresent() */
1284 if (NInoNonResident(ni)) {
1285 /*
1286 * Only unnamed $DATA attributes can be compressed, encrypted,
1287 * and/or sparse.
1288 */
1289 if (ni->type == AT_DATA && !ni->name_len) {
1290 /* If file is encrypted, deny access, just like NT4. */
1291 if (NInoEncrypted(ni)) {
1292 unlock_page(page);
1293 ntfs_debug("Denying write access to encrypted "
1294 "file.");
1295 return -EACCES;
1296 }
1297 /* Compressed data streams are handled in compress.c. */
1298 if (NInoCompressed(ni)) {
1299 // TODO: Implement and replace this check with
1300 // return ntfs_write_compressed_block(page);
1301 unlock_page(page);
1302 ntfs_error(vi->i_sb, "Writing to compressed "
1303 "files is not supported yet. "
1304 "Sorry.");
1305 return -EOPNOTSUPP;
1306 }
1307 // TODO: Implement and remove this check.
1308 if (NInoSparse(ni)) {
1309 unlock_page(page);
1310 ntfs_error(vi->i_sb, "Writing to sparse files "
1311 "is not supported yet. Sorry.");
1312 return -EOPNOTSUPP;
1313 }
1314 }
1315 /* We have to zero every time due to mmap-at-end-of-file. */
1316 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1317 /* The page straddles i_size. */
1318 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1319 kaddr = kmap_atomic(page, KM_USER0);
1320 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1321 flush_dcache_page(page);
1322 kunmap_atomic(kaddr, KM_USER0);
1323 }
1324 /* Handle mst protected attributes. */
1325 if (NInoMstProtected(ni))
1326 return ntfs_write_mst_block(page, wbc);
1327 /* Normal data stream. */
1328 return ntfs_write_block(page, wbc);
1329 }
1330 /*
1331 * Attribute is resident, implying it is not compressed, encrypted,
1332 * sparse, or mst protected. This also means the attribute is smaller
1333 * than an mft record and hence smaller than a page, so can simply
1334 * return error on any pages with index above 0.
1335 */
1336 BUG_ON(page_has_buffers(page));
1337 BUG_ON(!PageUptodate(page));
1338 if (unlikely(page->index > 0)) {
1339 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1340 "Aborting write.", page->index);
1341 BUG_ON(PageWriteback(page));
1342 set_page_writeback(page);
1343 unlock_page(page);
1344 end_page_writeback(page);
1345 return -EIO;
1346 }
1347 if (!NInoAttr(ni))
1348 base_ni = ni;
1349 else
1350 base_ni = ni->ext.base_ntfs_ino;
1351 /* Map, pin, and lock the mft record. */
1352 m = map_mft_record(base_ni);
1353 if (IS_ERR(m)) {
1354 err = PTR_ERR(m);
1355 m = NULL;
1356 ctx = NULL;
1357 goto err_out;
1358 }
905685f6
AA
1359 /*
1360 * If a parallel write made the attribute non-resident, drop the mft
1361 * record and retry the writepage.
1362 */
1363 if (unlikely(NInoNonResident(ni))) {
1364 unmap_mft_record(base_ni);
1365 goto retry_writepage;
1366 }
1da177e4
LT
1367 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1368 if (unlikely(!ctx)) {
1369 err = -ENOMEM;
1370 goto err_out;
1371 }
1372 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1373 CASE_SENSITIVE, 0, NULL, 0, ctx);
1374 if (unlikely(err))
1375 goto err_out;
1376 /*
1377 * Keep the VM happy. This must be done otherwise the radix-tree tag
1378 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1379 */
1380 BUG_ON(PageWriteback(page));
1381 set_page_writeback(page);
1382 unlock_page(page);
1383
1384 /*
1385 * Here, we don't need to zero the out of bounds area everytime because
1386 * the below memcpy() already takes care of the mmap-at-end-of-file
1387 * requirements. If the file is converted to a non-resident one, then
1388 * the code path use is switched to the non-resident one where the
1389 * zeroing happens on each ntfs_writepage() invocation.
1390 *
1391 * The above also applies nicely when i_size is decreased.
1392 *
1393 * When i_size is increased, the memory between the old and new i_size
1394 * _must_ be zeroed (or overwritten with new data). Otherwise we will
1395 * expose data to userspace/disk which should never have been exposed.
1396 *
1397 * FIXME: Ensure that i_size increases do the zeroing/overwriting and
1398 * if we cannot guarantee that, then enable the zeroing below. If the
1399 * zeroing below is enabled, we MUST move the unlock_page() from above
1400 * to after the kunmap_atomic(), i.e. just before the
1401 * end_page_writeback().
1402 * UPDATE: ntfs_prepare/commit_write() do the zeroing on i_size
1403 * increases for resident attributes so those are ok.
1404 * TODO: ntfs_truncate(), others?
1405 */
1406
1407 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1408 i_size = i_size_read(vi);
1da177e4 1409 if (unlikely(attr_len > i_size)) {
1da177e4 1410 attr_len = i_size;
f40661be 1411 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1412 }
f40661be 1413 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1414 /* Copy the data from the page to the mft record. */
1415 memcpy((u8*)ctx->attr +
1416 le16_to_cpu(ctx->attr->data.resident.value_offset),
1417 kaddr, attr_len);
1418 flush_dcache_mft_record_page(ctx->ntfs_ino);
1419 /* Zero out of bounds area in the page cache page. */
1420 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1421 flush_dcache_page(page);
1422 kunmap_atomic(kaddr, KM_USER0);
1423
1424 end_page_writeback(page);
1425
1426 /* Mark the mft record dirty, so it gets written back. */
1427 mark_mft_record_dirty(ctx->ntfs_ino);
1428 ntfs_attr_put_search_ctx(ctx);
1429 unmap_mft_record(base_ni);
1430 return 0;
1431err_out:
1432 if (err == -ENOMEM) {
1433 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1434 "page so we try again later.");
1435 /*
1436 * Put the page back on mapping->dirty_pages, but leave its
1437 * buffers' dirty state as-is.
1438 */
1439 redirty_page_for_writepage(wbc, page);
1440 err = 0;
1441 } else {
1442 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1443 "error %i.", err);
1da177e4 1444 SetPageError(page);
149f0c52
AA
1445 NVolSetErrors(ni->vol);
1446 make_bad_inode(vi);
1da177e4
LT
1447 }
1448 unlock_page(page);
1449 if (ctx)
1450 ntfs_attr_put_search_ctx(ctx);
1451 if (m)
1452 unmap_mft_record(base_ni);
1453 return err;
1454}
1455
1456/**
1457 * ntfs_prepare_nonresident_write -
1458 *
1459 */
1460static int ntfs_prepare_nonresident_write(struct page *page,
1461 unsigned from, unsigned to)
1462{
1463 VCN vcn;
1464 LCN lcn;
07a4e2da
AA
1465 s64 initialized_size;
1466 loff_t i_size;
1da177e4
LT
1467 sector_t block, ablock, iblock;
1468 struct inode *vi;
1469 ntfs_inode *ni;
1470 ntfs_volume *vol;
1471 runlist_element *rl;
1472 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1473 unsigned long flags;
1da177e4
LT
1474 unsigned int vcn_ofs, block_start, block_end, blocksize;
1475 int err;
1476 BOOL is_retry;
1477 unsigned char blocksize_bits;
1478
1479 vi = page->mapping->host;
1480 ni = NTFS_I(vi);
1481 vol = ni->vol;
1482
1483 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1484 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1485 page->index, from, to);
1486
1487 BUG_ON(!NInoNonResident(ni));
1488
1489 blocksize_bits = vi->i_blkbits;
1490 blocksize = 1 << blocksize_bits;
1491
1492 /*
1493 * create_empty_buffers() will create uptodate/dirty buffers if the
1494 * page is uptodate/dirty.
1495 */
1496 if (!page_has_buffers(page))
1497 create_empty_buffers(page, blocksize, 0);
1498 bh = head = page_buffers(page);
1499 if (unlikely(!bh))
1500 return -ENOMEM;
1501
1502 /* The first block in the page. */
1503 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1504
07a4e2da 1505 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1506 /*
b6ad6c52 1507 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1508 * round up as allocated_size is in multiples of cluster size and the
1509 * minimum cluster size is 512 bytes, which is equal to the smallest
1510 * blocksize.
1511 */
1512 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1513 i_size = i_size_read(vi);
1514 initialized_size = ni->initialized_size;
1515 read_unlock_irqrestore(&ni->size_lock, flags);
1516
1da177e4 1517 /* The last (fully or partially) initialized block. */
07a4e2da 1518 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1519
1520 /* Loop through all the buffers in the page. */
1521 block_start = 0;
1522 rl = NULL;
1523 err = 0;
1524 do {
1525 block_end = block_start + blocksize;
1526 /*
1527 * If buffer @bh is outside the write, just mark it uptodate
1528 * if the page is uptodate and continue with the next buffer.
1529 */
1530 if (block_end <= from || block_start >= to) {
1531 if (PageUptodate(page)) {
1532 if (!buffer_uptodate(bh))
1533 set_buffer_uptodate(bh);
1534 }
1535 continue;
1536 }
1537 /*
1538 * @bh is at least partially being written to.
1539 * Make sure it is not marked as new.
1540 */
1541 //if (buffer_new(bh))
1542 // clear_buffer_new(bh);
1543
1544 if (block >= ablock) {
1545 // TODO: block is above allocated_size, need to
1546 // allocate it. Best done in one go to accommodate not
1547 // only block but all above blocks up to and including:
1548 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1549 // - 1) >> blobksize_bits. Obviously will need to round
1550 // up to next cluster boundary, too. This should be
1551 // done with a helper function, so it can be reused.
1552 ntfs_error(vol->sb, "Writing beyond allocated size "
1553 "is not supported yet. Sorry.");
1554 err = -EOPNOTSUPP;
1555 goto err_out;
1556 // Need to update ablock.
1557 // Need to set_buffer_new() on all block bhs that are
1558 // newly allocated.
1559 }
1560 /*
1561 * Now we have enough allocated size to fulfill the whole
1562 * request, i.e. block < ablock is true.
1563 */
1564 if (unlikely((block >= iblock) &&
07a4e2da 1565 (initialized_size < i_size))) {
1da177e4
LT
1566 /*
1567 * If this page is fully outside initialized size, zero
1568 * out all pages between the current initialized size
1569 * and the current page. Just use ntfs_readpage() to do
1570 * the zeroing transparently.
1571 */
1572 if (block > iblock) {
1573 // TODO:
1574 // For each page do:
1575 // - read_cache_page()
1576 // Again for each page do:
1577 // - wait_on_page_locked()
1578 // - Check (PageUptodate(page) &&
1579 // !PageError(page))
1580 // Update initialized size in the attribute and
1581 // in the inode.
1582 // Again, for each page do:
1583 // __set_page_dirty_buffers();
1584 // page_cache_release()
1585 // We don't need to wait on the writes.
1586 // Update iblock.
1587 }
1588 /*
1589 * The current page straddles initialized size. Zero
1590 * all non-uptodate buffers and set them uptodate (and
1591 * dirty?). Note, there aren't any non-uptodate buffers
1592 * if the page is uptodate.
1593 * FIXME: For an uptodate page, the buffers may need to
1594 * be written out because they were not initialized on
1595 * disk before.
1596 */
1597 if (!PageUptodate(page)) {
1598 // TODO:
1599 // Zero any non-uptodate buffers up to i_size.
1600 // Set them uptodate and dirty.
1601 }
1602 // TODO:
1603 // Update initialized size in the attribute and in the
1604 // inode (up to i_size).
1605 // Update iblock.
1606 // FIXME: This is inefficient. Try to batch the two
1607 // size changes to happen in one go.
1608 ntfs_error(vol->sb, "Writing beyond initialized size "
1609 "is not supported yet. Sorry.");
1610 err = -EOPNOTSUPP;
1611 goto err_out;
1612 // Do NOT set_buffer_new() BUT DO clear buffer range
1613 // outside write request range.
1614 // set_buffer_uptodate() on complete buffers as well as
1615 // set_buffer_dirty().
1616 }
1617
1618 /* Need to map unmapped buffers. */
1619 if (!buffer_mapped(bh)) {
1620 /* Unmapped buffer. Need to map it. */
1621 bh->b_bdev = vol->sb->s_bdev;
1622
1623 /* Convert block into corresponding vcn and offset. */
1624 vcn = (VCN)block << blocksize_bits >>
1625 vol->cluster_size_bits;
1626 vcn_ofs = ((VCN)block << blocksize_bits) &
1627 vol->cluster_size_mask;
1628
1629 is_retry = FALSE;
1630 if (!rl) {
1631lock_retry_remap:
1632 down_read(&ni->runlist.lock);
1633 rl = ni->runlist.rl;
1634 }
1635 if (likely(rl != NULL)) {
1636 /* Seek to element containing target vcn. */
1637 while (rl->length && rl[1].vcn <= vcn)
1638 rl++;
1639 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1640 } else
1641 lcn = LCN_RL_NOT_MAPPED;
1642 if (unlikely(lcn < 0)) {
1643 /*
1644 * We extended the attribute allocation above.
1645 * If we hit an ENOENT here it means that the
1646 * allocation was insufficient which is a bug.
1647 */
1648 BUG_ON(lcn == LCN_ENOENT);
1649
1650 /* It is a hole, need to instantiate it. */
1651 if (lcn == LCN_HOLE) {
1652 // TODO: Instantiate the hole.
1653 // clear_buffer_new(bh);
1654 // unmap_underlying_metadata(bh->b_bdev,
1655 // bh->b_blocknr);
1656 // For non-uptodate buffers, need to
1657 // zero out the region outside the
1658 // request in this bh or all bhs,
1659 // depending on what we implemented
1660 // above.
1661 // Need to flush_dcache_page().
1662 // Or could use set_buffer_new()
1663 // instead?
1664 ntfs_error(vol->sb, "Writing into "
1665 "sparse regions is "
1666 "not supported yet. "
1667 "Sorry.");
1668 err = -EOPNOTSUPP;
9f993fe4
AA
1669 if (!rl)
1670 up_read(&ni->runlist.lock);
1da177e4
LT
1671 goto err_out;
1672 } else if (!is_retry &&
1673 lcn == LCN_RL_NOT_MAPPED) {
1674 is_retry = TRUE;
1675 /*
1676 * Attempt to map runlist, dropping
1677 * lock for the duration.
1678 */
1679 up_read(&ni->runlist.lock);
1680 err = ntfs_map_runlist(ni, vcn);
1681 if (likely(!err))
1682 goto lock_retry_remap;
1683 rl = NULL;
1684 lcn = err;
9f993fe4
AA
1685 } else if (!rl)
1686 up_read(&ni->runlist.lock);
1da177e4
LT
1687 /*
1688 * Failed to map the buffer, even after
1689 * retrying.
1690 */
1691 bh->b_blocknr = -1;
1692 ntfs_error(vol->sb, "Failed to write to inode "
1693 "0x%lx, attribute type 0x%x, "
1694 "vcn 0x%llx, offset 0x%x "
1695 "because its location on disk "
1696 "could not be determined%s "
1697 "(error code %lli).",
1698 ni->mft_no, ni->type,
1699 (unsigned long long)vcn,
1700 vcn_ofs, is_retry ? " even "
1701 "after retrying" : "",
1702 (long long)lcn);
1703 if (!err)
1704 err = -EIO;
1705 goto err_out;
1706 }
1707 /* We now have a successful remap, i.e. lcn >= 0. */
1708
1709 /* Setup buffer head to correct block. */
1710 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1711 + vcn_ofs) >> blocksize_bits;
1712 set_buffer_mapped(bh);
1713
1714 // FIXME: Something analogous to this is needed for
1715 // each newly allocated block, i.e. BH_New.
1716 // FIXME: Might need to take this out of the
1717 // if (!buffer_mapped(bh)) {}, depending on how we
1718 // implement things during the allocated_size and
1719 // initialized_size extension code above.
1720 if (buffer_new(bh)) {
1721 clear_buffer_new(bh);
1722 unmap_underlying_metadata(bh->b_bdev,
1723 bh->b_blocknr);
1724 if (PageUptodate(page)) {
1725 set_buffer_uptodate(bh);
1726 continue;
1727 }
1728 /*
1729 * Page is _not_ uptodate, zero surrounding
1730 * region. NOTE: This is how we decide if to
1731 * zero or not!
1732 */
1733 if (block_end > to || block_start < from) {
1734 void *kaddr;
1735
1736 kaddr = kmap_atomic(page, KM_USER0);
1737 if (block_end > to)
1738 memset(kaddr + to, 0,
1739 block_end - to);
1740 if (block_start < from)
1741 memset(kaddr + block_start, 0,
1742 from -
1743 block_start);
1744 flush_dcache_page(page);
1745 kunmap_atomic(kaddr, KM_USER0);
1746 }
1747 continue;
1748 }
1749 }
1750 /* @bh is mapped, set it uptodate if the page is uptodate. */
1751 if (PageUptodate(page)) {
1752 if (!buffer_uptodate(bh))
1753 set_buffer_uptodate(bh);
1754 continue;
1755 }
1756 /*
1757 * The page is not uptodate. The buffer is mapped. If it is not
1758 * uptodate, and it is only partially being written to, we need
1759 * to read the buffer in before the write, i.e. right now.
1760 */
1761 if (!buffer_uptodate(bh) &&
1762 (block_start < from || block_end > to)) {
1763 ll_rw_block(READ, 1, &bh);
1764 *wait_bh++ = bh;
1765 }
1766 } while (block++, block_start = block_end,
1767 (bh = bh->b_this_page) != head);
1768
1769 /* Release the lock if we took it. */
1770 if (rl) {
1771 up_read(&ni->runlist.lock);
1772 rl = NULL;
1773 }
1774
1775 /* If we issued read requests, let them complete. */
1776 while (wait_bh > wait) {
1777 wait_on_buffer(*--wait_bh);
1778 if (!buffer_uptodate(*wait_bh))
1779 return -EIO;
1780 }
1781
1782 ntfs_debug("Done.");
1783 return 0;
1784err_out:
1785 /*
1786 * Zero out any newly allocated blocks to avoid exposing stale data.
1787 * If BH_New is set, we know that the block was newly allocated in the
1788 * above loop.
1789 * FIXME: What about initialized_size increments? Have we done all the
1790 * required zeroing above? If not this error handling is broken, and
1791 * in particular the if (block_end <= from) check is completely bogus.
1792 */
1793 bh = head;
1794 block_start = 0;
1795 is_retry = FALSE;
1796 do {
1797 block_end = block_start + blocksize;
1798 if (block_end <= from)
1799 continue;
1800 if (block_start >= to)
1801 break;
1802 if (buffer_new(bh)) {
1803 void *kaddr;
1804
1805 clear_buffer_new(bh);
1806 kaddr = kmap_atomic(page, KM_USER0);
1807 memset(kaddr + block_start, 0, bh->b_size);
1808 kunmap_atomic(kaddr, KM_USER0);
1809 set_buffer_uptodate(bh);
1810 mark_buffer_dirty(bh);
1811 is_retry = TRUE;
1812 }
1813 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1814 if (is_retry)
1815 flush_dcache_page(page);
1816 if (rl)
1817 up_read(&ni->runlist.lock);
1818 return err;
1819}
1820
1821/**
1822 * ntfs_prepare_write - prepare a page for receiving data
1823 *
1824 * This is called from generic_file_write() with i_sem held on the inode
1825 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1826 * data has not yet been copied into the @page.
1827 *
1828 * Need to extend the attribute/fill in holes if necessary, create blocks and
1829 * make partially overwritten blocks uptodate,
1830 *
1831 * i_size is not to be modified yet.
1832 *
1833 * Return 0 on success or -errno on error.
1834 *
1835 * Should be using block_prepare_write() [support for sparse files] or
1836 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1837 * ntfs specifics but can look at them for implementation guidance.
1838 *
1839 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1840 * the first byte in the page that will be written to and @to is the first byte
1841 * after the last byte that will be written to.
1842 */
1843static int ntfs_prepare_write(struct file *file, struct page *page,
1844 unsigned from, unsigned to)
1845{
1846 s64 new_size;
f40661be 1847 loff_t i_size;
1da177e4
LT
1848 struct inode *vi = page->mapping->host;
1849 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1850 ntfs_volume *vol = ni->vol;
1851 ntfs_attr_search_ctx *ctx = NULL;
1852 MFT_RECORD *m = NULL;
1853 ATTR_RECORD *a;
1854 u8 *kaddr;
1855 u32 attr_len;
1856 int err;
1857
1858 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1859 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1860 page->index, from, to);
1861 BUG_ON(!PageLocked(page));
1862 BUG_ON(from > PAGE_CACHE_SIZE);
1863 BUG_ON(to > PAGE_CACHE_SIZE);
1864 BUG_ON(from > to);
1865 BUG_ON(NInoMstProtected(ni));
1866 /*
1867 * If a previous ntfs_truncate() failed, repeat it and abort if it
1868 * fails again.
1869 */
1870 if (unlikely(NInoTruncateFailed(ni))) {
1871 down_write(&vi->i_alloc_sem);
1872 err = ntfs_truncate(vi);
1873 up_write(&vi->i_alloc_sem);
1874 if (err || NInoTruncateFailed(ni)) {
1875 if (!err)
1876 err = -EIO;
1877 goto err_out;
1878 }
1879 }
1880 /* If the attribute is not resident, deal with it elsewhere. */
1881 if (NInoNonResident(ni)) {
1882 /*
1883 * Only unnamed $DATA attributes can be compressed, encrypted,
1884 * and/or sparse.
1885 */
1886 if (ni->type == AT_DATA && !ni->name_len) {
1887 /* If file is encrypted, deny access, just like NT4. */
1888 if (NInoEncrypted(ni)) {
1889 ntfs_debug("Denying write access to encrypted "
1890 "file.");
1891 return -EACCES;
1892 }
1893 /* Compressed data streams are handled in compress.c. */
1894 if (NInoCompressed(ni)) {
1895 // TODO: Implement and replace this check with
1896 // return ntfs_write_compressed_block(page);
1897 ntfs_error(vi->i_sb, "Writing to compressed "
1898 "files is not supported yet. "
1899 "Sorry.");
1900 return -EOPNOTSUPP;
1901 }
1902 // TODO: Implement and remove this check.
1903 if (NInoSparse(ni)) {
1904 ntfs_error(vi->i_sb, "Writing to sparse files "
1905 "is not supported yet. Sorry.");
1906 return -EOPNOTSUPP;
1907 }
1908 }
1909 /* Normal data stream. */
1910 return ntfs_prepare_nonresident_write(page, from, to);
1911 }
1912 /*
1913 * Attribute is resident, implying it is not compressed, encrypted, or
1914 * sparse.
1915 */
1916 BUG_ON(page_has_buffers(page));
1917 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1918 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1919 if (new_size <= i_size_read(vi))
1da177e4 1920 goto done;
1da177e4
LT
1921 /* Map, pin, and lock the (base) mft record. */
1922 if (!NInoAttr(ni))
1923 base_ni = ni;
1924 else
1925 base_ni = ni->ext.base_ntfs_ino;
1926 m = map_mft_record(base_ni);
1927 if (IS_ERR(m)) {
1928 err = PTR_ERR(m);
1929 m = NULL;
1930 ctx = NULL;
1931 goto err_out;
1932 }
1933 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1934 if (unlikely(!ctx)) {
1935 err = -ENOMEM;
1936 goto err_out;
1937 }
1938 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1939 CASE_SENSITIVE, 0, NULL, 0, ctx);
1940 if (unlikely(err)) {
1941 if (err == -ENOENT)
1942 err = -EIO;
1943 goto err_out;
1944 }
1945 m = ctx->mrec;
1946 a = ctx->attr;
1947 /* The total length of the attribute value. */
1948 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1949 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1950 i_size = i_size_read(vi);
1951 if (unlikely(attr_len > i_size)) {
1952 attr_len = i_size;
946929d8 1953 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1954 }
946929d8
AA
1955 /* If we do not need to resize the attribute allocation we are done. */
1956 if (new_size <= attr_len)
1957 goto done_unm;
1da177e4
LT
1958 /* Check if new size is allowed in $AttrDef. */
1959 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
1960 if (unlikely(err)) {
1961 if (err == -ERANGE) {
1962 ntfs_error(vol->sb, "Write would cause the inode "
1963 "0x%lx to exceed the maximum size for "
1964 "its attribute type (0x%x). Aborting "
1965 "write.", vi->i_ino,
1966 le32_to_cpu(ni->type));
1967 } else {
1968 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
1969 "attribute type 0x%x. Aborting "
1970 "write.", vi->i_ino,
1971 le32_to_cpu(ni->type));
1972 err = -EIO;
1973 }
1974 goto err_out2;
1975 }
1976 /*
1977 * Extend the attribute record to be able to store the new attribute
1978 * size.
1979 */
1980 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
1981 le16_to_cpu(a->data.resident.value_offset) +
1982 new_size)) {
1983 /* Not enough space in the mft record. */
1984 ntfs_error(vol->sb, "Not enough space in the mft record for "
1985 "the resized attribute value. This is not "
1986 "supported yet. Aborting write.");
1987 err = -EOPNOTSUPP;
1988 goto err_out2;
1989 }
1990 /*
1991 * We have enough space in the mft record to fit the write. This
1992 * implies the attribute is smaller than the mft record and hence the
1993 * attribute must be in a single page and hence page->index must be 0.
1994 */
1995 BUG_ON(page->index);
1996 /*
1997 * If the beginning of the write is past the old size, enlarge the
1998 * attribute value up to the beginning of the write and fill it with
1999 * zeroes.
2000 */
2001 if (from > attr_len) {
2002 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
2003 attr_len, 0, from - attr_len);
2004 a->data.resident.value_length = cpu_to_le32(from);
2005 /* Zero the corresponding area in the page as well. */
2006 if (PageUptodate(page)) {
2007 kaddr = kmap_atomic(page, KM_USER0);
2008 memset(kaddr + attr_len, 0, from - attr_len);
2009 kunmap_atomic(kaddr, KM_USER0);
2010 flush_dcache_page(page);
2011 }
2012 }
2013 flush_dcache_mft_record_page(ctx->ntfs_ino);
2014 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2015done_unm:
1da177e4
LT
2016 ntfs_attr_put_search_ctx(ctx);
2017 unmap_mft_record(base_ni);
2018 /*
2019 * Because resident attributes are handled by memcpy() to/from the
2020 * corresponding MFT record, and because this form of i/o is byte
2021 * aligned rather than block aligned, there is no need to bring the
2022 * page uptodate here as in the non-resident case where we need to
2023 * bring the buffers straddled by the write uptodate before
2024 * generic_file_write() does the copying from userspace.
2025 *
2026 * We thus defer the uptodate bringing of the page region outside the
2027 * region written to to ntfs_commit_write(), which makes the code
2028 * simpler and saves one atomic kmap which is good.
2029 */
2030done:
2031 ntfs_debug("Done.");
2032 return 0;
2033err_out:
2034 if (err == -ENOMEM)
2035 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2036 "prepare the write.");
2037 else {
2038 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2039 "with error %i.", err);
2040 NVolSetErrors(vol);
2041 make_bad_inode(vi);
2042 }
2043err_out2:
2044 if (ctx)
2045 ntfs_attr_put_search_ctx(ctx);
2046 if (m)
2047 unmap_mft_record(base_ni);
2048 return err;
2049}
2050
2051/**
2052 * ntfs_commit_nonresident_write -
2053 *
2054 */
2055static int ntfs_commit_nonresident_write(struct page *page,
2056 unsigned from, unsigned to)
2057{
2058 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2059 struct inode *vi = page->mapping->host;
2060 struct buffer_head *bh, *head;
2061 unsigned int block_start, block_end, blocksize;
2062 BOOL partial;
2063
2064 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2065 "0x%lx, from = %u, to = %u.", vi->i_ino,
2066 NTFS_I(vi)->type, page->index, from, to);
2067 blocksize = 1 << vi->i_blkbits;
2068
2069 // FIXME: We need a whole slew of special cases in here for compressed
2070 // files for example...
2071 // For now, we know ntfs_prepare_write() would have failed so we can't
2072 // get here in any of the cases which we have to special case, so we
2073 // are just a ripped off, unrolled generic_commit_write().
2074
2075 bh = head = page_buffers(page);
2076 block_start = 0;
2077 partial = FALSE;
2078 do {
2079 block_end = block_start + blocksize;
2080 if (block_end <= from || block_start >= to) {
2081 if (!buffer_uptodate(bh))
2082 partial = TRUE;
2083 } else {
2084 set_buffer_uptodate(bh);
2085 mark_buffer_dirty(bh);
2086 }
2087 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2088 /*
2089 * If this is a partial write which happened to make all buffers
2090 * uptodate then we can optimize away a bogus ->readpage() for the next
2091 * read(). Here we 'discover' whether the page went uptodate as a
2092 * result of this (potentially partial) write.
2093 */
2094 if (!partial)
2095 SetPageUptodate(page);
2096 /*
2097 * Not convinced about this at all. See disparity comment above. For
2098 * now we know ntfs_prepare_write() would have failed in the write
2099 * exceeds i_size case, so this will never trigger which is fine.
2100 */
07a4e2da 2101 if (pos > i_size_read(vi)) {
1da177e4
LT
2102 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2103 "not supported yet. Sorry.");
2104 return -EOPNOTSUPP;
2105 // vi->i_size = pos;
2106 // mark_inode_dirty(vi);
2107 }
2108 ntfs_debug("Done.");
2109 return 0;
2110}
2111
2112/**
2113 * ntfs_commit_write - commit the received data
2114 *
2115 * This is called from generic_file_write() with i_sem held on the inode
2116 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2117 * data has already been copied into the @page. ntfs_prepare_write() has been
2118 * called before the data copied and it returned success so we can take the
2119 * results of various BUG checks and some error handling for granted.
2120 *
2121 * Need to mark modified blocks dirty so they get written out later when
2122 * ntfs_writepage() is invoked by the VM.
2123 *
2124 * Return 0 on success or -errno on error.
2125 *
2126 * Should be using generic_commit_write(). This marks buffers uptodate and
2127 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2128 * updates i_size if the end of io is beyond i_size. In that case, it also
2129 * marks the inode dirty.
2130 *
2131 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2132 * it for implementation guidance.
2133 *
2134 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2135 * need to do any page content modifications here at all, except in the write
2136 * to resident attribute case, where we need to do the uptodate bringing here
2137 * which we combine with the copying into the mft record which means we save
2138 * one atomic kmap.
2139 */
2140static int ntfs_commit_write(struct file *file, struct page *page,
2141 unsigned from, unsigned to)
2142{
2143 struct inode *vi = page->mapping->host;
2144 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2145 char *kaddr, *kattr;
2146 ntfs_attr_search_ctx *ctx;
2147 MFT_RECORD *m;
2148 ATTR_RECORD *a;
2149 u32 attr_len;
2150 int err;
2151
2152 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2153 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2154 page->index, from, to);
2155 /* If the attribute is not resident, deal with it elsewhere. */
2156 if (NInoNonResident(ni)) {
2157 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2158 if (ni->type == AT_DATA && !ni->name_len) {
2159 /* Encrypted files need separate handling. */
2160 if (NInoEncrypted(ni)) {
2161 // We never get here at present!
2162 BUG();
2163 }
2164 /* Compressed data streams are handled in compress.c. */
2165 if (NInoCompressed(ni)) {
2166 // TODO: Implement this!
2167 // return ntfs_write_compressed_block(page);
2168 // We never get here at present!
2169 BUG();
2170 }
2171 }
2172 /* Normal data stream. */
2173 return ntfs_commit_nonresident_write(page, from, to);
2174 }
2175 /*
2176 * Attribute is resident, implying it is not compressed, encrypted, or
2177 * sparse.
2178 */
2179 if (!NInoAttr(ni))
2180 base_ni = ni;
2181 else
2182 base_ni = ni->ext.base_ntfs_ino;
2183 /* Map, pin, and lock the mft record. */
2184 m = map_mft_record(base_ni);
2185 if (IS_ERR(m)) {
2186 err = PTR_ERR(m);
2187 m = NULL;
2188 ctx = NULL;
2189 goto err_out;
2190 }
2191 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2192 if (unlikely(!ctx)) {
2193 err = -ENOMEM;
2194 goto err_out;
2195 }
2196 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2197 CASE_SENSITIVE, 0, NULL, 0, ctx);
2198 if (unlikely(err)) {
2199 if (err == -ENOENT)
2200 err = -EIO;
2201 goto err_out;
2202 }
2203 a = ctx->attr;
2204 /* The total length of the attribute value. */
2205 attr_len = le32_to_cpu(a->data.resident.value_length);
2206 BUG_ON(from > attr_len);
2207 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2208 kaddr = kmap_atomic(page, KM_USER0);
2209 /* Copy the received data from the page to the mft record. */
2210 memcpy(kattr + from, kaddr + from, to - from);
2211 /* Update the attribute length if necessary. */
2212 if (to > attr_len) {
2213 attr_len = to;
2214 a->data.resident.value_length = cpu_to_le32(attr_len);
2215 }
2216 /*
2217 * If the page is not uptodate, bring the out of bounds area(s)
2218 * uptodate by copying data from the mft record to the page.
2219 */
2220 if (!PageUptodate(page)) {
2221 if (from > 0)
2222 memcpy(kaddr, kattr, from);
2223 if (to < attr_len)
2224 memcpy(kaddr + to, kattr + to, attr_len - to);
2225 /* Zero the region outside the end of the attribute value. */
2226 if (attr_len < PAGE_CACHE_SIZE)
2227 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2228 /*
2229 * The probability of not having done any of the above is
2230 * extremely small, so we just flush unconditionally.
2231 */
2232 flush_dcache_page(page);
2233 SetPageUptodate(page);
2234 }
2235 kunmap_atomic(kaddr, KM_USER0);
2236 /* Update i_size if necessary. */
07a4e2da
AA
2237 if (i_size_read(vi) < attr_len) {
2238 unsigned long flags;
2239
2240 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2241 ni->allocated_size = ni->initialized_size = attr_len;
2242 i_size_write(vi, attr_len);
07a4e2da 2243 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2244 }
2245 /* Mark the mft record dirty, so it gets written back. */
2246 flush_dcache_mft_record_page(ctx->ntfs_ino);
2247 mark_mft_record_dirty(ctx->ntfs_ino);
2248 ntfs_attr_put_search_ctx(ctx);
2249 unmap_mft_record(base_ni);
2250 ntfs_debug("Done.");
2251 return 0;
2252err_out:
2253 if (err == -ENOMEM) {
2254 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2255 "commit the write.");
2256 if (PageUptodate(page)) {
2257 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2258 "dirty so the write will be retried "
2259 "later on by the VM.");
2260 /*
2261 * Put the page on mapping->dirty_pages, but leave its
2262 * buffers' dirty state as-is.
2263 */
2264 __set_page_dirty_nobuffers(page);
2265 err = 0;
2266 } else
2267 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2268 "data has been lost.");
2269 } else {
2270 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2271 "with error %i.", err);
2272 NVolSetErrors(ni->vol);
2273 make_bad_inode(vi);
2274 }
2275 if (ctx)
2276 ntfs_attr_put_search_ctx(ctx);
2277 if (m)
2278 unmap_mft_record(base_ni);
2279 return err;
2280}
2281
2282#endif /* NTFS_RW */
2283
2284/**
2285 * ntfs_aops - general address space operations for inodes and attributes
2286 */
2287struct address_space_operations ntfs_aops = {
2288 .readpage = ntfs_readpage, /* Fill page with data. */
2289 .sync_page = block_sync_page, /* Currently, just unplugs the
2290 disk request queue. */
2291#ifdef NTFS_RW
2292 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2293 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2294 ready to receive data. */
2295 .commit_write = ntfs_commit_write, /* Commit received data. */
2296#endif /* NTFS_RW */
2297};
2298
2299/**
2300 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2301 * and attributes
2302 */
2303struct address_space_operations ntfs_mst_aops = {
2304 .readpage = ntfs_readpage, /* Fill page with data. */
2305 .sync_page = block_sync_page, /* Currently, just unplugs the
2306 disk request queue. */
2307#ifdef NTFS_RW
2308 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2309 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2310 without touching the buffers
2311 belonging to the page. */
2312#endif /* NTFS_RW */
2313};
2314
2315#ifdef NTFS_RW
2316
2317/**
2318 * mark_ntfs_record_dirty - mark an ntfs record dirty
2319 * @page: page containing the ntfs record to mark dirty
2320 * @ofs: byte offset within @page at which the ntfs record begins
2321 *
2322 * Set the buffers and the page in which the ntfs record is located dirty.
2323 *
2324 * The latter also marks the vfs inode the ntfs record belongs to dirty
2325 * (I_DIRTY_PAGES only).
2326 *
2327 * If the page does not have buffers, we create them and set them uptodate.
2328 * The page may not be locked which is why we need to handle the buffers under
2329 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2330 * need the lock since try_to_free_buffers() does not free dirty buffers.
2331 */
2332void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2333 struct address_space *mapping = page->mapping;
2334 ntfs_inode *ni = NTFS_I(mapping->host);
2335 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2336 unsigned int end, bh_size, bh_ofs;
2337
2338 BUG_ON(!PageUptodate(page));
2339 end = ofs + ni->itype.index.block_size;
2340 bh_size = 1 << VFS_I(ni)->i_blkbits;
2341 spin_lock(&mapping->private_lock);
2342 if (unlikely(!page_has_buffers(page))) {
2343 spin_unlock(&mapping->private_lock);
2344 bh = head = alloc_page_buffers(page, bh_size, 1);
2345 spin_lock(&mapping->private_lock);
2346 if (likely(!page_has_buffers(page))) {
2347 struct buffer_head *tail;
2348
2349 do {
2350 set_buffer_uptodate(bh);
2351 tail = bh;
2352 bh = bh->b_this_page;
2353 } while (bh);
2354 tail->b_this_page = head;
2355 attach_page_buffers(page, head);
2356 } else
2357 buffers_to_free = bh;
2358 }
2359 bh = head = page_buffers(page);
2360 do {
2361 bh_ofs = bh_offset(bh);
2362 if (bh_ofs + bh_size <= ofs)
2363 continue;
2364 if (unlikely(bh_ofs >= end))
2365 break;
2366 set_buffer_dirty(bh);
2367 } while ((bh = bh->b_this_page) != head);
2368 spin_unlock(&mapping->private_lock);
2369 __set_page_dirty_nobuffers(page);
2370 if (unlikely(buffers_to_free)) {
2371 do {
2372 bh = buffers_to_free->b_this_page;
2373 free_buffer_head(buffers_to_free);
2374 buffers_to_free = bh;
2375 } while (buffers_to_free);
2376 }
2377}
2378
2379#endif /* NTFS_RW */