]>
Commit | Line | Data |
---|---|---|
1da177e4 LT |
1 | /** |
2 | * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. | |
3 | * | |
9b556248 | 4 | * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc. |
1da177e4 LT |
5 | * Copyright (c) 2002 Richard Russon |
6 | * | |
7 | * This program/include file is free software; you can redistribute it and/or | |
8 | * modify it under the terms of the GNU General Public License as published | |
9 | * by the Free Software Foundation; either version 2 of the License, or | |
10 | * (at your option) any later version. | |
11 | * | |
12 | * This program/include file is distributed in the hope that it will be | |
13 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | |
14 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | * GNU General Public License for more details. | |
16 | * | |
17 | * You should have received a copy of the GNU General Public License | |
18 | * along with this program (in the main directory of the Linux-NTFS | |
19 | * distribution in the file COPYING); if not, write to the Free Software | |
20 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | |
21 | */ | |
22 | ||
23 | #include <linux/buffer_head.h> | |
5a0e3ad6 | 24 | #include <linux/slab.h> |
1da177e4 | 25 | #include <linux/swap.h> |
be297968 | 26 | #include <linux/bio.h> |
1da177e4 LT |
27 | |
28 | #include "attrib.h" | |
29 | #include "aops.h" | |
30 | #include "bitmap.h" | |
31 | #include "debug.h" | |
32 | #include "dir.h" | |
33 | #include "lcnalloc.h" | |
34 | #include "malloc.h" | |
35 | #include "mft.h" | |
36 | #include "ntfs.h" | |
37 | ||
38 | /** | |
39 | * map_mft_record_page - map the page in which a specific mft record resides | |
40 | * @ni: ntfs inode whose mft record page to map | |
41 | * | |
42 | * This maps the page in which the mft record of the ntfs inode @ni is situated | |
43 | * and returns a pointer to the mft record within the mapped page. | |
44 | * | |
45 | * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() | |
46 | * contains the negative error code returned. | |
47 | */ | |
48 | static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) | |
49 | { | |
07a4e2da | 50 | loff_t i_size; |
1da177e4 LT |
51 | ntfs_volume *vol = ni->vol; |
52 | struct inode *mft_vi = vol->mft_ino; | |
53 | struct page *page; | |
69b41e3c AA |
54 | unsigned long index, end_index; |
55 | unsigned ofs; | |
1da177e4 LT |
56 | |
57 | BUG_ON(ni->page); | |
58 | /* | |
59 | * The index into the page cache and the offset within the page cache | |
60 | * page of the wanted mft record. FIXME: We need to check for | |
61 | * overflowing the unsigned long, but I don't think we would ever get | |
62 | * here if the volume was that big... | |
63 | */ | |
c394e458 | 64 | index = (u64)ni->mft_no << vol->mft_record_size_bits >> |
09cbfeaf KS |
65 | PAGE_SHIFT; |
66 | ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; | |
1da177e4 | 67 | |
07a4e2da | 68 | i_size = i_size_read(mft_vi); |
1da177e4 | 69 | /* The maximum valid index into the page cache for $MFT's data. */ |
09cbfeaf | 70 | end_index = i_size >> PAGE_SHIFT; |
1da177e4 LT |
71 | |
72 | /* If the wanted index is out of bounds the mft record doesn't exist. */ | |
73 | if (unlikely(index >= end_index)) { | |
09cbfeaf | 74 | if (index > end_index || (i_size & ~PAGE_MASK) < ofs + |
07a4e2da | 75 | vol->mft_record_size) { |
1da177e4 | 76 | page = ERR_PTR(-ENOENT); |
25985edc | 77 | ntfs_error(vol->sb, "Attempt to read mft record 0x%lx, " |
1da177e4 LT |
78 | "which is beyond the end of the mft. " |
79 | "This is probably a bug in the ntfs " | |
80 | "driver.", ni->mft_no); | |
81 | goto err_out; | |
82 | } | |
83 | } | |
84 | /* Read, map, and pin the page. */ | |
85 | page = ntfs_map_page(mft_vi->i_mapping, index); | |
86 | if (likely(!IS_ERR(page))) { | |
87 | /* Catch multi sector transfer fixup errors. */ | |
88 | if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + | |
89 | ofs)))) { | |
90 | ni->page = page; | |
91 | ni->page_ofs = ofs; | |
92 | return page_address(page) + ofs; | |
93 | } | |
94 | ntfs_error(vol->sb, "Mft record 0x%lx is corrupt. " | |
95 | "Run chkdsk.", ni->mft_no); | |
96 | ntfs_unmap_page(page); | |
97 | page = ERR_PTR(-EIO); | |
f95c4018 | 98 | NVolSetErrors(vol); |
1da177e4 LT |
99 | } |
100 | err_out: | |
101 | ni->page = NULL; | |
102 | ni->page_ofs = 0; | |
103 | return (void*)page; | |
104 | } | |
105 | ||
106 | /** | |
107 | * map_mft_record - map, pin and lock an mft record | |
108 | * @ni: ntfs inode whose MFT record to map | |
109 | * | |
4e5e529a IM |
110 | * First, take the mrec_lock mutex. We might now be sleeping, while waiting |
111 | * for the mutex if it was already locked by someone else. | |
1da177e4 LT |
112 | * |
113 | * The page of the record is mapped using map_mft_record_page() before being | |
114 | * returned to the caller. | |
115 | * | |
116 | * This in turn uses ntfs_map_page() to get the page containing the wanted mft | |
117 | * record (it in turn calls read_cache_page() which reads it in from disk if | |
118 | * necessary, increments the use count on the page so that it cannot disappear | |
119 | * under us and returns a reference to the page cache page). | |
120 | * | |
121 | * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it | |
122 | * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed | |
123 | * and the post-read mst fixups on each mft record in the page have been | |
124 | * performed, the page gets PG_uptodate set and PG_locked cleared (this is done | |
125 | * in our asynchronous I/O completion handler end_buffer_read_mft_async()). | |
126 | * ntfs_map_page() waits for PG_locked to become clear and checks if | |
127 | * PG_uptodate is set and returns an error code if not. This provides | |
128 | * sufficient protection against races when reading/using the page. | |
129 | * | |
130 | * However there is the write mapping to think about. Doing the above described | |
131 | * checking here will be fine, because when initiating the write we will set | |
132 | * PG_locked and clear PG_uptodate making sure nobody is touching the page | |
133 | * contents. Doing the locking this way means that the commit to disk code in | |
134 | * the page cache code paths is automatically sufficiently locked with us as | |
135 | * we will not touch a page that has been locked or is not uptodate. The only | |
136 | * locking problem then is them locking the page while we are accessing it. | |
137 | * | |
138 | * So that code will end up having to own the mrec_lock of all mft | |
139 | * records/inodes present in the page before I/O can proceed. In that case we | |
140 | * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be | |
4e5e529a IM |
141 | * accessing anything without owning the mrec_lock mutex. But we do need to |
142 | * use them because of the read_cache_page() invocation and the code becomes so | |
143 | * much simpler this way that it is well worth it. | |
1da177e4 LT |
144 | * |
145 | * The mft record is now ours and we return a pointer to it. You need to check | |
146 | * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return | |
147 | * the error code. | |
148 | * | |
149 | * NOTE: Caller is responsible for setting the mft record dirty before calling | |
150 | * unmap_mft_record(). This is obviously only necessary if the caller really | |
151 | * modified the mft record... | |
152 | * Q: Do we want to recycle one of the VFS inode state bits instead? | |
153 | * A: No, the inode ones mean we want to change the mft record, not we want to | |
154 | * write it out. | |
155 | */ | |
156 | MFT_RECORD *map_mft_record(ntfs_inode *ni) | |
157 | { | |
158 | MFT_RECORD *m; | |
159 | ||
160 | ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); | |
161 | ||
162 | /* Make sure the ntfs inode doesn't go away. */ | |
163 | atomic_inc(&ni->count); | |
164 | ||
165 | /* Serialize access to this mft record. */ | |
4e5e529a | 166 | mutex_lock(&ni->mrec_lock); |
1da177e4 LT |
167 | |
168 | m = map_mft_record_page(ni); | |
169 | if (likely(!IS_ERR(m))) | |
170 | return m; | |
171 | ||
4e5e529a | 172 | mutex_unlock(&ni->mrec_lock); |
1da177e4 LT |
173 | atomic_dec(&ni->count); |
174 | ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); | |
175 | return m; | |
176 | } | |
177 | ||
178 | /** | |
179 | * unmap_mft_record_page - unmap the page in which a specific mft record resides | |
180 | * @ni: ntfs inode whose mft record page to unmap | |
181 | * | |
182 | * This unmaps the page in which the mft record of the ntfs inode @ni is | |
183 | * situated and returns. This is a NOOP if highmem is not configured. | |
184 | * | |
185 | * The unmap happens via ntfs_unmap_page() which in turn decrements the use | |
186 | * count on the page thus releasing it from the pinned state. | |
187 | * | |
188 | * We do not actually unmap the page from memory of course, as that will be | |
189 | * done by the page cache code itself when memory pressure increases or | |
190 | * whatever. | |
191 | */ | |
192 | static inline void unmap_mft_record_page(ntfs_inode *ni) | |
193 | { | |
194 | BUG_ON(!ni->page); | |
195 | ||
196 | // TODO: If dirty, blah... | |
197 | ntfs_unmap_page(ni->page); | |
198 | ni->page = NULL; | |
199 | ni->page_ofs = 0; | |
200 | return; | |
201 | } | |
202 | ||
203 | /** | |
204 | * unmap_mft_record - release a mapped mft record | |
205 | * @ni: ntfs inode whose MFT record to unmap | |
206 | * | |
207 | * We release the page mapping and the mrec_lock mutex which unmaps the mft | |
208 | * record and releases it for others to get hold of. We also release the ntfs | |
209 | * inode by decrementing the ntfs inode reference count. | |
210 | * | |
211 | * NOTE: If caller has modified the mft record, it is imperative to set the mft | |
212 | * record dirty BEFORE calling unmap_mft_record(). | |
213 | */ | |
214 | void unmap_mft_record(ntfs_inode *ni) | |
215 | { | |
216 | struct page *page = ni->page; | |
217 | ||
218 | BUG_ON(!page); | |
219 | ||
220 | ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); | |
221 | ||
222 | unmap_mft_record_page(ni); | |
4e5e529a | 223 | mutex_unlock(&ni->mrec_lock); |
1da177e4 LT |
224 | atomic_dec(&ni->count); |
225 | /* | |
226 | * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to | |
227 | * ntfs_clear_extent_inode() in the extent inode case, and to the | |
228 | * caller in the non-extent, yet pure ntfs inode case, to do the actual | |
229 | * tear down of all structures and freeing of all allocated memory. | |
230 | */ | |
231 | return; | |
232 | } | |
233 | ||
234 | /** | |
235 | * map_extent_mft_record - load an extent inode and attach it to its base | |
236 | * @base_ni: base ntfs inode | |
237 | * @mref: mft reference of the extent inode to load | |
238 | * @ntfs_ino: on successful return, pointer to the ntfs_inode structure | |
239 | * | |
240 | * Load the extent mft record @mref and attach it to its base inode @base_ni. | |
241 | * Return the mapped extent mft record if IS_ERR(result) is false. Otherwise | |
242 | * PTR_ERR(result) gives the negative error code. | |
243 | * | |
244 | * On successful return, @ntfs_ino contains a pointer to the ntfs_inode | |
245 | * structure of the mapped extent inode. | |
246 | */ | |
247 | MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, | |
248 | ntfs_inode **ntfs_ino) | |
249 | { | |
250 | MFT_RECORD *m; | |
251 | ntfs_inode *ni = NULL; | |
252 | ntfs_inode **extent_nis = NULL; | |
253 | int i; | |
254 | unsigned long mft_no = MREF(mref); | |
255 | u16 seq_no = MSEQNO(mref); | |
c49c3111 | 256 | bool destroy_ni = false; |
1da177e4 LT |
257 | |
258 | ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", | |
259 | mft_no, base_ni->mft_no); | |
260 | /* Make sure the base ntfs inode doesn't go away. */ | |
261 | atomic_inc(&base_ni->count); | |
262 | /* | |
263 | * Check if this extent inode has already been added to the base inode, | |
264 | * in which case just return it. If not found, add it to the base | |
265 | * inode before returning it. | |
266 | */ | |
4e5e529a | 267 | mutex_lock(&base_ni->extent_lock); |
1da177e4 LT |
268 | if (base_ni->nr_extents > 0) { |
269 | extent_nis = base_ni->ext.extent_ntfs_inos; | |
270 | for (i = 0; i < base_ni->nr_extents; i++) { | |
271 | if (mft_no != extent_nis[i]->mft_no) | |
272 | continue; | |
273 | ni = extent_nis[i]; | |
274 | /* Make sure the ntfs inode doesn't go away. */ | |
275 | atomic_inc(&ni->count); | |
276 | break; | |
277 | } | |
278 | } | |
279 | if (likely(ni != NULL)) { | |
4e5e529a | 280 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
281 | atomic_dec(&base_ni->count); |
282 | /* We found the record; just have to map and return it. */ | |
283 | m = map_mft_record(ni); | |
284 | /* map_mft_record() has incremented this on success. */ | |
285 | atomic_dec(&ni->count); | |
286 | if (likely(!IS_ERR(m))) { | |
287 | /* Verify the sequence number. */ | |
288 | if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { | |
289 | ntfs_debug("Done 1."); | |
290 | *ntfs_ino = ni; | |
291 | return m; | |
292 | } | |
293 | unmap_mft_record(ni); | |
294 | ntfs_error(base_ni->vol->sb, "Found stale extent mft " | |
b6ad6c52 | 295 | "reference! Corrupt filesystem. " |
1da177e4 LT |
296 | "Run chkdsk."); |
297 | return ERR_PTR(-EIO); | |
298 | } | |
299 | map_err_out: | |
300 | ntfs_error(base_ni->vol->sb, "Failed to map extent " | |
301 | "mft record, error code %ld.", -PTR_ERR(m)); | |
302 | return m; | |
303 | } | |
304 | /* Record wasn't there. Get a new ntfs inode and initialize it. */ | |
305 | ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); | |
306 | if (unlikely(!ni)) { | |
4e5e529a | 307 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
308 | atomic_dec(&base_ni->count); |
309 | return ERR_PTR(-ENOMEM); | |
310 | } | |
311 | ni->vol = base_ni->vol; | |
312 | ni->seq_no = seq_no; | |
313 | ni->nr_extents = -1; | |
314 | ni->ext.base_ntfs_ino = base_ni; | |
315 | /* Now map the record. */ | |
316 | m = map_mft_record(ni); | |
317 | if (IS_ERR(m)) { | |
4e5e529a | 318 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
319 | atomic_dec(&base_ni->count); |
320 | ntfs_clear_extent_inode(ni); | |
321 | goto map_err_out; | |
322 | } | |
323 | /* Verify the sequence number if it is present. */ | |
324 | if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { | |
325 | ntfs_error(base_ni->vol->sb, "Found stale extent mft " | |
b6ad6c52 | 326 | "reference! Corrupt filesystem. Run chkdsk."); |
c49c3111 | 327 | destroy_ni = true; |
1da177e4 LT |
328 | m = ERR_PTR(-EIO); |
329 | goto unm_err_out; | |
330 | } | |
331 | /* Attach extent inode to base inode, reallocating memory if needed. */ | |
332 | if (!(base_ni->nr_extents & 3)) { | |
333 | ntfs_inode **tmp; | |
334 | int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); | |
335 | ||
f52720ca | 336 | tmp = kmalloc(new_size, GFP_NOFS); |
1da177e4 LT |
337 | if (unlikely(!tmp)) { |
338 | ntfs_error(base_ni->vol->sb, "Failed to allocate " | |
339 | "internal buffer."); | |
c49c3111 | 340 | destroy_ni = true; |
1da177e4 LT |
341 | m = ERR_PTR(-ENOMEM); |
342 | goto unm_err_out; | |
343 | } | |
344 | if (base_ni->nr_extents) { | |
345 | BUG_ON(!base_ni->ext.extent_ntfs_inos); | |
346 | memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - | |
347 | 4 * sizeof(ntfs_inode *)); | |
348 | kfree(base_ni->ext.extent_ntfs_inos); | |
349 | } | |
350 | base_ni->ext.extent_ntfs_inos = tmp; | |
351 | } | |
352 | base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; | |
4e5e529a | 353 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
354 | atomic_dec(&base_ni->count); |
355 | ntfs_debug("Done 2."); | |
356 | *ntfs_ino = ni; | |
357 | return m; | |
358 | unm_err_out: | |
359 | unmap_mft_record(ni); | |
4e5e529a | 360 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
361 | atomic_dec(&base_ni->count); |
362 | /* | |
363 | * If the extent inode was not attached to the base inode we need to | |
364 | * release it or we will leak memory. | |
365 | */ | |
366 | if (destroy_ni) | |
367 | ntfs_clear_extent_inode(ni); | |
368 | return m; | |
369 | } | |
370 | ||
371 | #ifdef NTFS_RW | |
372 | ||
373 | /** | |
374 | * __mark_mft_record_dirty - set the mft record and the page containing it dirty | |
375 | * @ni: ntfs inode describing the mapped mft record | |
376 | * | |
377 | * Internal function. Users should call mark_mft_record_dirty() instead. | |
378 | * | |
379 | * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, | |
380 | * as well as the page containing the mft record, dirty. Also, mark the base | |
381 | * vfs inode dirty. This ensures that any changes to the mft record are | |
382 | * written out to disk. | |
383 | * | |
384 | * NOTE: We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) | |
385 | * on the base vfs inode, because even though file data may have been modified, | |
386 | * it is dirty in the inode meta data rather than the data page cache of the | |
387 | * inode, and thus there are no data pages that need writing out. Therefore, a | |
388 | * full mark_inode_dirty() is overkill. A mark_inode_dirty_sync(), on the | |
ebbbf757 JK |
389 | * other hand, is not sufficient, because ->write_inode needs to be called even |
390 | * in case of fdatasync. This needs to happen or the file data would not | |
391 | * necessarily hit the device synchronously, even though the vfs inode has the | |
392 | * O_SYNC flag set. Also, I_DIRTY_DATASYNC simply "feels" better than just | |
393 | * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, | |
394 | * which is not what I_DIRTY_SYNC on its own would suggest. | |
1da177e4 LT |
395 | */ |
396 | void __mark_mft_record_dirty(ntfs_inode *ni) | |
397 | { | |
398 | ntfs_inode *base_ni; | |
399 | ||
400 | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); | |
401 | BUG_ON(NInoAttr(ni)); | |
402 | mark_ntfs_record_dirty(ni->page, ni->page_ofs); | |
403 | /* Determine the base vfs inode and mark it dirty, too. */ | |
4e5e529a | 404 | mutex_lock(&ni->extent_lock); |
1da177e4 LT |
405 | if (likely(ni->nr_extents >= 0)) |
406 | base_ni = ni; | |
407 | else | |
408 | base_ni = ni->ext.base_ntfs_ino; | |
4e5e529a | 409 | mutex_unlock(&ni->extent_lock); |
1da177e4 LT |
410 | __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC); |
411 | } | |
412 | ||
413 | static const char *ntfs_please_email = "Please email " | |
414 | "linux-ntfs-dev@lists.sourceforge.net and say that you saw " | |
415 | "this message. Thank you."; | |
416 | ||
417 | /** | |
418 | * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror | |
419 | * @vol: ntfs volume on which the mft record to synchronize resides | |
420 | * @mft_no: mft record number of mft record to synchronize | |
421 | * @m: mapped, mst protected (extent) mft record to synchronize | |
422 | * | |
423 | * Write the mapped, mst protected (extent) mft record @m with mft record | |
424 | * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, | |
425 | * bypassing the page cache and the $MFTMirr inode itself. | |
426 | * | |
427 | * This function is only for use at umount time when the mft mirror inode has | |
428 | * already been disposed off. We BUG() if we are called while the mft mirror | |
429 | * inode is still attached to the volume. | |
430 | * | |
431 | * On success return 0. On error return -errno. | |
432 | * | |
433 | * NOTE: This function is not implemented yet as I am not convinced it can | |
434 | * actually be triggered considering the sequence of commits we do in super.c:: | |
435 | * ntfs_put_super(). But just in case we provide this place holder as the | |
436 | * alternative would be either to BUG() or to get a NULL pointer dereference | |
437 | * and Oops. | |
438 | */ | |
439 | static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, | |
440 | const unsigned long mft_no, MFT_RECORD *m) | |
441 | { | |
442 | BUG_ON(vol->mftmirr_ino); | |
443 | ntfs_error(vol->sb, "Umount time mft mirror syncing is not " | |
444 | "implemented yet. %s", ntfs_please_email); | |
445 | return -EOPNOTSUPP; | |
446 | } | |
447 | ||
448 | /** | |
449 | * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror | |
450 | * @vol: ntfs volume on which the mft record to synchronize resides | |
451 | * @mft_no: mft record number of mft record to synchronize | |
452 | * @m: mapped, mst protected (extent) mft record to synchronize | |
453 | * @sync: if true, wait for i/o completion | |
454 | * | |
455 | * Write the mapped, mst protected (extent) mft record @m with mft record | |
456 | * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. | |
457 | * | |
458 | * On success return 0. On error return -errno and set the volume errors flag | |
459 | * in the ntfs volume @vol. | |
460 | * | |
461 | * NOTE: We always perform synchronous i/o and ignore the @sync parameter. | |
462 | * | |
463 | * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just | |
464 | * schedule i/o via ->writepage or do it via kntfsd or whatever. | |
465 | */ | |
466 | int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, | |
467 | MFT_RECORD *m, int sync) | |
468 | { | |
469 | struct page *page; | |
470 | unsigned int blocksize = vol->sb->s_blocksize; | |
471 | int max_bhs = vol->mft_record_size / blocksize; | |
472 | struct buffer_head *bhs[max_bhs]; | |
473 | struct buffer_head *bh, *head; | |
474 | u8 *kmirr; | |
475 | runlist_element *rl; | |
476 | unsigned int block_start, block_end, m_start, m_end, page_ofs; | |
477 | int i_bhs, nr_bhs, err = 0; | |
78af34f0 | 478 | unsigned char blocksize_bits = vol->sb->s_blocksize_bits; |
1da177e4 LT |
479 | |
480 | ntfs_debug("Entering for inode 0x%lx.", mft_no); | |
481 | BUG_ON(!max_bhs); | |
482 | if (unlikely(!vol->mftmirr_ino)) { | |
483 | /* This could happen during umount... */ | |
484 | err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); | |
485 | if (likely(!err)) | |
486 | return err; | |
487 | goto err_out; | |
488 | } | |
489 | /* Get the page containing the mirror copy of the mft record @m. */ | |
490 | page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> | |
09cbfeaf | 491 | (PAGE_SHIFT - vol->mft_record_size_bits)); |
1da177e4 LT |
492 | if (IS_ERR(page)) { |
493 | ntfs_error(vol->sb, "Failed to map mft mirror page."); | |
494 | err = PTR_ERR(page); | |
495 | goto err_out; | |
496 | } | |
497 | lock_page(page); | |
498 | BUG_ON(!PageUptodate(page)); | |
499 | ClearPageUptodate(page); | |
500 | /* Offset of the mft mirror record inside the page. */ | |
09cbfeaf | 501 | page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; |
1da177e4 LT |
502 | /* The address in the page of the mirror copy of the mft record @m. */ |
503 | kmirr = page_address(page) + page_ofs; | |
504 | /* Copy the mst protected mft record to the mirror. */ | |
505 | memcpy(kmirr, m, vol->mft_record_size); | |
506 | /* Create uptodate buffers if not present. */ | |
507 | if (unlikely(!page_has_buffers(page))) { | |
508 | struct buffer_head *tail; | |
509 | ||
510 | bh = head = alloc_page_buffers(page, blocksize, 1); | |
511 | do { | |
512 | set_buffer_uptodate(bh); | |
513 | tail = bh; | |
514 | bh = bh->b_this_page; | |
515 | } while (bh); | |
516 | tail->b_this_page = head; | |
517 | attach_page_buffers(page, head); | |
1da177e4 LT |
518 | } |
519 | bh = head = page_buffers(page); | |
520 | BUG_ON(!bh); | |
521 | rl = NULL; | |
522 | nr_bhs = 0; | |
523 | block_start = 0; | |
524 | m_start = kmirr - (u8*)page_address(page); | |
525 | m_end = m_start + vol->mft_record_size; | |
526 | do { | |
527 | block_end = block_start + blocksize; | |
528 | /* If the buffer is outside the mft record, skip it. */ | |
529 | if (block_end <= m_start) | |
530 | continue; | |
531 | if (unlikely(block_start >= m_end)) | |
532 | break; | |
533 | /* Need to map the buffer if it is not mapped already. */ | |
534 | if (unlikely(!buffer_mapped(bh))) { | |
535 | VCN vcn; | |
536 | LCN lcn; | |
537 | unsigned int vcn_ofs; | |
538 | ||
e74589ac | 539 | bh->b_bdev = vol->sb->s_bdev; |
1da177e4 LT |
540 | /* Obtain the vcn and offset of the current block. */ |
541 | vcn = ((VCN)mft_no << vol->mft_record_size_bits) + | |
542 | (block_start - m_start); | |
543 | vcn_ofs = vcn & vol->cluster_size_mask; | |
544 | vcn >>= vol->cluster_size_bits; | |
545 | if (!rl) { | |
546 | down_read(&NTFS_I(vol->mftmirr_ino)-> | |
547 | runlist.lock); | |
548 | rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; | |
549 | /* | |
550 | * $MFTMirr always has the whole of its runlist | |
551 | * in memory. | |
552 | */ | |
553 | BUG_ON(!rl); | |
554 | } | |
555 | /* Seek to element containing target vcn. */ | |
556 | while (rl->length && rl[1].vcn <= vcn) | |
557 | rl++; | |
558 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | |
559 | /* For $MFTMirr, only lcn >= 0 is a successful remap. */ | |
560 | if (likely(lcn >= 0)) { | |
561 | /* Setup buffer head to correct block. */ | |
562 | bh->b_blocknr = ((lcn << | |
563 | vol->cluster_size_bits) + | |
564 | vcn_ofs) >> blocksize_bits; | |
565 | set_buffer_mapped(bh); | |
566 | } else { | |
567 | bh->b_blocknr = -1; | |
568 | ntfs_error(vol->sb, "Cannot write mft mirror " | |
569 | "record 0x%lx because its " | |
570 | "location on disk could not " | |
571 | "be determined (error code " | |
572 | "%lli).", mft_no, | |
573 | (long long)lcn); | |
574 | err = -EIO; | |
575 | } | |
576 | } | |
577 | BUG_ON(!buffer_uptodate(bh)); | |
578 | BUG_ON(!nr_bhs && (m_start != block_start)); | |
579 | BUG_ON(nr_bhs >= max_bhs); | |
580 | bhs[nr_bhs++] = bh; | |
581 | BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); | |
582 | } while (block_start = block_end, (bh = bh->b_this_page) != head); | |
583 | if (unlikely(rl)) | |
584 | up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); | |
585 | if (likely(!err)) { | |
586 | /* Lock buffers and start synchronous write i/o on them. */ | |
587 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | |
588 | struct buffer_head *tbh = bhs[i_bhs]; | |
589 | ||
ca5de404 | 590 | if (!trylock_buffer(tbh)) |
1da177e4 LT |
591 | BUG(); |
592 | BUG_ON(!buffer_uptodate(tbh)); | |
593 | clear_buffer_dirty(tbh); | |
594 | get_bh(tbh); | |
595 | tbh->b_end_io = end_buffer_write_sync; | |
2a222ca9 | 596 | submit_bh(REQ_OP_WRITE, 0, tbh); |
1da177e4 LT |
597 | } |
598 | /* Wait on i/o completion of buffers. */ | |
599 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | |
600 | struct buffer_head *tbh = bhs[i_bhs]; | |
601 | ||
602 | wait_on_buffer(tbh); | |
603 | if (unlikely(!buffer_uptodate(tbh))) { | |
604 | err = -EIO; | |
605 | /* | |
606 | * Set the buffer uptodate so the page and | |
607 | * buffer states do not become out of sync. | |
608 | */ | |
609 | set_buffer_uptodate(tbh); | |
610 | } | |
611 | } | |
612 | } else /* if (unlikely(err)) */ { | |
613 | /* Clean the buffers. */ | |
614 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) | |
615 | clear_buffer_dirty(bhs[i_bhs]); | |
616 | } | |
617 | /* Current state: all buffers are clean, unlocked, and uptodate. */ | |
618 | /* Remove the mst protection fixups again. */ | |
619 | post_write_mst_fixup((NTFS_RECORD*)kmirr); | |
620 | flush_dcache_page(page); | |
621 | SetPageUptodate(page); | |
622 | unlock_page(page); | |
623 | ntfs_unmap_page(page); | |
624 | if (likely(!err)) { | |
625 | ntfs_debug("Done."); | |
626 | } else { | |
627 | ntfs_error(vol->sb, "I/O error while writing mft mirror " | |
628 | "record 0x%lx!", mft_no); | |
629 | err_out: | |
630 | ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " | |
631 | "code %i). Volume will be left marked dirty " | |
632 | "on umount. Run ntfsfix on the partition " | |
633 | "after umounting to correct this.", -err); | |
634 | NVolSetErrors(vol); | |
635 | } | |
636 | return err; | |
637 | } | |
638 | ||
639 | /** | |
640 | * write_mft_record_nolock - write out a mapped (extent) mft record | |
641 | * @ni: ntfs inode describing the mapped (extent) mft record | |
642 | * @m: mapped (extent) mft record to write | |
643 | * @sync: if true, wait for i/o completion | |
644 | * | |
645 | * Write the mapped (extent) mft record @m described by the (regular or extent) | |
646 | * ntfs inode @ni to backing store. If the mft record @m has a counterpart in | |
647 | * the mft mirror, that is also updated. | |
648 | * | |
649 | * We only write the mft record if the ntfs inode @ni is dirty and the first | |
650 | * buffer belonging to its mft record is dirty, too. We ignore the dirty state | |
651 | * of subsequent buffers because we could have raced with | |
652 | * fs/ntfs/aops.c::mark_ntfs_record_dirty(). | |
653 | * | |
654 | * On success, clean the mft record and return 0. On error, leave the mft | |
a778f217 | 655 | * record dirty and return -errno. |
1da177e4 LT |
656 | * |
657 | * NOTE: We always perform synchronous i/o and ignore the @sync parameter. | |
658 | * However, if the mft record has a counterpart in the mft mirror and @sync is | |
659 | * true, we write the mft record, wait for i/o completion, and only then write | |
660 | * the mft mirror copy. This ensures that if the system crashes either the mft | |
661 | * or the mft mirror will contain a self-consistent mft record @m. If @sync is | |
662 | * false on the other hand, we start i/o on both and then wait for completion | |
663 | * on them. This provides a speedup but no longer guarantees that you will end | |
664 | * up with a self-consistent mft record in the case of a crash but if you asked | |
665 | * for asynchronous writing you probably do not care about that anyway. | |
666 | * | |
667 | * TODO: If @sync is false, want to do truly asynchronous i/o, i.e. just | |
668 | * schedule i/o via ->writepage or do it via kntfsd or whatever. | |
669 | */ | |
670 | int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) | |
671 | { | |
672 | ntfs_volume *vol = ni->vol; | |
673 | struct page *page = ni->page; | |
78af34f0 AA |
674 | unsigned int blocksize = vol->sb->s_blocksize; |
675 | unsigned char blocksize_bits = vol->sb->s_blocksize_bits; | |
1da177e4 LT |
676 | int max_bhs = vol->mft_record_size / blocksize; |
677 | struct buffer_head *bhs[max_bhs]; | |
678 | struct buffer_head *bh, *head; | |
679 | runlist_element *rl; | |
680 | unsigned int block_start, block_end, m_start, m_end; | |
681 | int i_bhs, nr_bhs, err = 0; | |
682 | ||
683 | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); | |
684 | BUG_ON(NInoAttr(ni)); | |
685 | BUG_ON(!max_bhs); | |
686 | BUG_ON(!PageLocked(page)); | |
687 | /* | |
688 | * If the ntfs_inode is clean no need to do anything. If it is dirty, | |
689 | * mark it as clean now so that it can be redirtied later on if needed. | |
690 | * There is no danger of races since the caller is holding the locks | |
691 | * for the mft record @m and the page it is in. | |
692 | */ | |
693 | if (!NInoTestClearDirty(ni)) | |
694 | goto done; | |
1da177e4 LT |
695 | bh = head = page_buffers(page); |
696 | BUG_ON(!bh); | |
697 | rl = NULL; | |
698 | nr_bhs = 0; | |
699 | block_start = 0; | |
700 | m_start = ni->page_ofs; | |
701 | m_end = m_start + vol->mft_record_size; | |
702 | do { | |
703 | block_end = block_start + blocksize; | |
704 | /* If the buffer is outside the mft record, skip it. */ | |
705 | if (block_end <= m_start) | |
706 | continue; | |
707 | if (unlikely(block_start >= m_end)) | |
708 | break; | |
709 | /* | |
710 | * If this block is not the first one in the record, we ignore | |
711 | * the buffer's dirty state because we could have raced with a | |
712 | * parallel mark_ntfs_record_dirty(). | |
713 | */ | |
714 | if (block_start == m_start) { | |
715 | /* This block is the first one in the record. */ | |
716 | if (!buffer_dirty(bh)) { | |
717 | BUG_ON(nr_bhs); | |
718 | /* Clean records are not written out. */ | |
719 | break; | |
720 | } | |
721 | } | |
722 | /* Need to map the buffer if it is not mapped already. */ | |
723 | if (unlikely(!buffer_mapped(bh))) { | |
724 | VCN vcn; | |
725 | LCN lcn; | |
726 | unsigned int vcn_ofs; | |
727 | ||
e74589ac | 728 | bh->b_bdev = vol->sb->s_bdev; |
1da177e4 LT |
729 | /* Obtain the vcn and offset of the current block. */ |
730 | vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + | |
731 | (block_start - m_start); | |
732 | vcn_ofs = vcn & vol->cluster_size_mask; | |
733 | vcn >>= vol->cluster_size_bits; | |
734 | if (!rl) { | |
735 | down_read(&NTFS_I(vol->mft_ino)->runlist.lock); | |
736 | rl = NTFS_I(vol->mft_ino)->runlist.rl; | |
737 | BUG_ON(!rl); | |
738 | } | |
739 | /* Seek to element containing target vcn. */ | |
740 | while (rl->length && rl[1].vcn <= vcn) | |
741 | rl++; | |
742 | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | |
743 | /* For $MFT, only lcn >= 0 is a successful remap. */ | |
744 | if (likely(lcn >= 0)) { | |
745 | /* Setup buffer head to correct block. */ | |
746 | bh->b_blocknr = ((lcn << | |
747 | vol->cluster_size_bits) + | |
748 | vcn_ofs) >> blocksize_bits; | |
749 | set_buffer_mapped(bh); | |
750 | } else { | |
751 | bh->b_blocknr = -1; | |
752 | ntfs_error(vol->sb, "Cannot write mft record " | |
753 | "0x%lx because its location " | |
754 | "on disk could not be " | |
755 | "determined (error code %lli).", | |
756 | ni->mft_no, (long long)lcn); | |
757 | err = -EIO; | |
758 | } | |
759 | } | |
760 | BUG_ON(!buffer_uptodate(bh)); | |
761 | BUG_ON(!nr_bhs && (m_start != block_start)); | |
762 | BUG_ON(nr_bhs >= max_bhs); | |
763 | bhs[nr_bhs++] = bh; | |
764 | BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); | |
765 | } while (block_start = block_end, (bh = bh->b_this_page) != head); | |
766 | if (unlikely(rl)) | |
767 | up_read(&NTFS_I(vol->mft_ino)->runlist.lock); | |
768 | if (!nr_bhs) | |
769 | goto done; | |
770 | if (unlikely(err)) | |
771 | goto cleanup_out; | |
772 | /* Apply the mst protection fixups. */ | |
773 | err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); | |
774 | if (err) { | |
775 | ntfs_error(vol->sb, "Failed to apply mst fixups!"); | |
776 | goto cleanup_out; | |
777 | } | |
778 | flush_dcache_mft_record_page(ni); | |
779 | /* Lock buffers and start synchronous write i/o on them. */ | |
780 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | |
781 | struct buffer_head *tbh = bhs[i_bhs]; | |
782 | ||
ca5de404 | 783 | if (!trylock_buffer(tbh)) |
1da177e4 LT |
784 | BUG(); |
785 | BUG_ON(!buffer_uptodate(tbh)); | |
786 | clear_buffer_dirty(tbh); | |
787 | get_bh(tbh); | |
788 | tbh->b_end_io = end_buffer_write_sync; | |
2a222ca9 | 789 | submit_bh(REQ_OP_WRITE, 0, tbh); |
1da177e4 LT |
790 | } |
791 | /* Synchronize the mft mirror now if not @sync. */ | |
792 | if (!sync && ni->mft_no < vol->mftmirr_size) | |
793 | ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); | |
794 | /* Wait on i/o completion of buffers. */ | |
795 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | |
796 | struct buffer_head *tbh = bhs[i_bhs]; | |
797 | ||
798 | wait_on_buffer(tbh); | |
799 | if (unlikely(!buffer_uptodate(tbh))) { | |
800 | err = -EIO; | |
801 | /* | |
802 | * Set the buffer uptodate so the page and buffer | |
803 | * states do not become out of sync. | |
804 | */ | |
805 | if (PageUptodate(page)) | |
806 | set_buffer_uptodate(tbh); | |
807 | } | |
808 | } | |
809 | /* If @sync, now synchronize the mft mirror. */ | |
810 | if (sync && ni->mft_no < vol->mftmirr_size) | |
811 | ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); | |
812 | /* Remove the mst protection fixups again. */ | |
813 | post_write_mst_fixup((NTFS_RECORD*)m); | |
814 | flush_dcache_mft_record_page(ni); | |
815 | if (unlikely(err)) { | |
816 | /* I/O error during writing. This is really bad! */ | |
817 | ntfs_error(vol->sb, "I/O error while writing mft record " | |
818 | "0x%lx! Marking base inode as bad. You " | |
819 | "should unmount the volume and run chkdsk.", | |
820 | ni->mft_no); | |
821 | goto err_out; | |
822 | } | |
823 | done: | |
824 | ntfs_debug("Done."); | |
825 | return 0; | |
826 | cleanup_out: | |
827 | /* Clean the buffers. */ | |
828 | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) | |
829 | clear_buffer_dirty(bhs[i_bhs]); | |
830 | err_out: | |
831 | /* | |
832 | * Current state: all buffers are clean, unlocked, and uptodate. | |
833 | * The caller should mark the base inode as bad so that no more i/o | |
834 | * happens. ->clear_inode() will still be invoked so all extent inodes | |
835 | * and other allocated memory will be freed. | |
836 | */ | |
837 | if (err == -ENOMEM) { | |
838 | ntfs_error(vol->sb, "Not enough memory to write mft record. " | |
839 | "Redirtying so the write is retried later."); | |
840 | mark_mft_record_dirty(ni); | |
841 | err = 0; | |
842 | } else | |
843 | NVolSetErrors(vol); | |
844 | return err; | |
845 | } | |
846 | ||
847 | /** | |
848 | * ntfs_may_write_mft_record - check if an mft record may be written out | |
849 | * @vol: [IN] ntfs volume on which the mft record to check resides | |
850 | * @mft_no: [IN] mft record number of the mft record to check | |
851 | * @m: [IN] mapped mft record to check | |
852 | * @locked_ni: [OUT] caller has to unlock this ntfs inode if one is returned | |
853 | * | |
854 | * Check if the mapped (base or extent) mft record @m with mft record number | |
855 | * @mft_no belonging to the ntfs volume @vol may be written out. If necessary | |
856 | * and possible the ntfs inode of the mft record is locked and the base vfs | |
857 | * inode is pinned. The locked ntfs inode is then returned in @locked_ni. The | |
858 | * caller is responsible for unlocking the ntfs inode and unpinning the base | |
859 | * vfs inode. | |
860 | * | |
c49c3111 | 861 | * Return 'true' if the mft record may be written out and 'false' if not. |
1da177e4 LT |
862 | * |
863 | * The caller has locked the page and cleared the uptodate flag on it which | |
864 | * means that we can safely write out any dirty mft records that do not have | |
865 | * their inodes in icache as determined by ilookup5() as anyone | |
866 | * opening/creating such an inode would block when attempting to map the mft | |
867 | * record in read_cache_page() until we are finished with the write out. | |
868 | * | |
869 | * Here is a description of the tests we perform: | |
870 | * | |
871 | * If the inode is found in icache we know the mft record must be a base mft | |
c49c3111 | 872 | * record. If it is dirty, we do not write it and return 'false' as the vfs |
1da177e4 LT |
873 | * inode write paths will result in the access times being updated which would |
874 | * cause the base mft record to be redirtied and written out again. (We know | |
875 | * the access time update will modify the base mft record because Windows | |
876 | * chkdsk complains if the standard information attribute is not in the base | |
877 | * mft record.) | |
878 | * | |
879 | * If the inode is in icache and not dirty, we attempt to lock the mft record | |
880 | * and if we find the lock was already taken, it is not safe to write the mft | |
c49c3111 | 881 | * record and we return 'false'. |
1da177e4 LT |
882 | * |
883 | * If we manage to obtain the lock we have exclusive access to the mft record, | |
884 | * which also allows us safe writeout of the mft record. We then set | |
c49c3111 | 885 | * @locked_ni to the locked ntfs inode and return 'true'. |
1da177e4 LT |
886 | * |
887 | * Note we cannot just lock the mft record and sleep while waiting for the lock | |
888 | * because this would deadlock due to lock reversal (normally the mft record is | |
889 | * locked before the page is locked but we already have the page locked here | |
890 | * when we try to lock the mft record). | |
891 | * | |
892 | * If the inode is not in icache we need to perform further checks. | |
893 | * | |
894 | * If the mft record is not a FILE record or it is a base mft record, we can | |
c49c3111 | 895 | * safely write it and return 'true'. |
1da177e4 LT |
896 | * |
897 | * We now know the mft record is an extent mft record. We check if the inode | |
898 | * corresponding to its base mft record is in icache and obtain a reference to | |
c49c3111 | 899 | * it if it is. If it is not, we can safely write it and return 'true'. |
1da177e4 LT |
900 | * |
901 | * We now have the base inode for the extent mft record. We check if it has an | |
902 | * ntfs inode for the extent mft record attached and if not it is safe to write | |
c49c3111 | 903 | * the extent mft record and we return 'true'. |
1da177e4 LT |
904 | * |
905 | * The ntfs inode for the extent mft record is attached to the base inode so we | |
906 | * attempt to lock the extent mft record and if we find the lock was already | |
c49c3111 | 907 | * taken, it is not safe to write the extent mft record and we return 'false'. |
1da177e4 LT |
908 | * |
909 | * If we manage to obtain the lock we have exclusive access to the extent mft | |
910 | * record, which also allows us safe writeout of the extent mft record. We | |
911 | * set the ntfs inode of the extent mft record clean and then set @locked_ni to | |
c49c3111 | 912 | * the now locked ntfs inode and return 'true'. |
1da177e4 LT |
913 | * |
914 | * Note, the reason for actually writing dirty mft records here and not just | |
915 | * relying on the vfs inode dirty code paths is that we can have mft records | |
916 | * modified without them ever having actual inodes in memory. Also we can have | |
917 | * dirty mft records with clean ntfs inodes in memory. None of the described | |
918 | * cases would result in the dirty mft records being written out if we only | |
919 | * relied on the vfs inode dirty code paths. And these cases can really occur | |
920 | * during allocation of new mft records and in particular when the | |
921 | * initialized_size of the $MFT/$DATA attribute is extended and the new space | |
922 | * is initialized using ntfs_mft_record_format(). The clean inode can then | |
923 | * appear if the mft record is reused for a new inode before it got written | |
924 | * out. | |
925 | */ | |
c49c3111 | 926 | bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, |
1da177e4 LT |
927 | const MFT_RECORD *m, ntfs_inode **locked_ni) |
928 | { | |
929 | struct super_block *sb = vol->sb; | |
930 | struct inode *mft_vi = vol->mft_ino; | |
931 | struct inode *vi; | |
932 | ntfs_inode *ni, *eni, **extent_nis; | |
933 | int i; | |
934 | ntfs_attr na; | |
935 | ||
936 | ntfs_debug("Entering for inode 0x%lx.", mft_no); | |
937 | /* | |
938 | * Normally we do not return a locked inode so set @locked_ni to NULL. | |
939 | */ | |
940 | BUG_ON(!locked_ni); | |
941 | *locked_ni = NULL; | |
942 | /* | |
943 | * Check if the inode corresponding to this mft record is in the VFS | |
944 | * inode cache and obtain a reference to it if it is. | |
945 | */ | |
946 | ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); | |
947 | na.mft_no = mft_no; | |
948 | na.name = NULL; | |
949 | na.name_len = 0; | |
950 | na.type = AT_UNUSED; | |
951 | /* | |
ba6d2377 AA |
952 | * Optimize inode 0, i.e. $MFT itself, since we have it in memory and |
953 | * we get here for it rather often. | |
1da177e4 LT |
954 | */ |
955 | if (!mft_no) { | |
956 | /* Balance the below iput(). */ | |
957 | vi = igrab(mft_vi); | |
958 | BUG_ON(vi != mft_vi); | |
ba6d2377 AA |
959 | } else { |
960 | /* | |
961 | * Have to use ilookup5_nowait() since ilookup5() waits for the | |
962 | * inode lock which causes ntfs to deadlock when a concurrent | |
963 | * inode write via the inode dirty code paths and the page | |
964 | * dirty code path of the inode dirty code path when writing | |
965 | * $MFT occurs. | |
966 | */ | |
967 | vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na); | |
968 | } | |
1da177e4 LT |
969 | if (vi) { |
970 | ntfs_debug("Base inode 0x%lx is in icache.", mft_no); | |
971 | /* The inode is in icache. */ | |
972 | ni = NTFS_I(vi); | |
973 | /* Take a reference to the ntfs inode. */ | |
974 | atomic_inc(&ni->count); | |
975 | /* If the inode is dirty, do not write this record. */ | |
976 | if (NInoDirty(ni)) { | |
977 | ntfs_debug("Inode 0x%lx is dirty, do not write it.", | |
978 | mft_no); | |
979 | atomic_dec(&ni->count); | |
980 | iput(vi); | |
c49c3111 | 981 | return false; |
1da177e4 LT |
982 | } |
983 | ntfs_debug("Inode 0x%lx is not dirty.", mft_no); | |
984 | /* The inode is not dirty, try to take the mft record lock. */ | |
4e5e529a | 985 | if (unlikely(!mutex_trylock(&ni->mrec_lock))) { |
1da177e4 LT |
986 | ntfs_debug("Mft record 0x%lx is already locked, do " |
987 | "not write it.", mft_no); | |
988 | atomic_dec(&ni->count); | |
989 | iput(vi); | |
c49c3111 | 990 | return false; |
1da177e4 LT |
991 | } |
992 | ntfs_debug("Managed to lock mft record 0x%lx, write it.", | |
993 | mft_no); | |
994 | /* | |
995 | * The write has to occur while we hold the mft record lock so | |
996 | * return the locked ntfs inode. | |
997 | */ | |
998 | *locked_ni = ni; | |
c49c3111 | 999 | return true; |
1da177e4 LT |
1000 | } |
1001 | ntfs_debug("Inode 0x%lx is not in icache.", mft_no); | |
1002 | /* The inode is not in icache. */ | |
1003 | /* Write the record if it is not a mft record (type "FILE"). */ | |
1004 | if (!ntfs_is_mft_record(m->magic)) { | |
1005 | ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", | |
1006 | mft_no); | |
c49c3111 | 1007 | return true; |
1da177e4 LT |
1008 | } |
1009 | /* Write the mft record if it is a base inode. */ | |
1010 | if (!m->base_mft_record) { | |
1011 | ntfs_debug("Mft record 0x%lx is a base record, write it.", | |
1012 | mft_no); | |
c49c3111 | 1013 | return true; |
1da177e4 LT |
1014 | } |
1015 | /* | |
1016 | * This is an extent mft record. Check if the inode corresponding to | |
1017 | * its base mft record is in icache and obtain a reference to it if it | |
1018 | * is. | |
1019 | */ | |
1020 | na.mft_no = MREF_LE(m->base_mft_record); | |
1021 | ntfs_debug("Mft record 0x%lx is an extent record. Looking for base " | |
1022 | "inode 0x%lx in icache.", mft_no, na.mft_no); | |
ba6d2377 AA |
1023 | if (!na.mft_no) { |
1024 | /* Balance the below iput(). */ | |
1025 | vi = igrab(mft_vi); | |
1026 | BUG_ON(vi != mft_vi); | |
1027 | } else | |
1028 | vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode, | |
1029 | &na); | |
1da177e4 LT |
1030 | if (!vi) { |
1031 | /* | |
1032 | * The base inode is not in icache, write this extent mft | |
1033 | * record. | |
1034 | */ | |
1035 | ntfs_debug("Base inode 0x%lx is not in icache, write the " | |
1036 | "extent record.", na.mft_no); | |
c49c3111 | 1037 | return true; |
1da177e4 LT |
1038 | } |
1039 | ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); | |
1040 | /* | |
1041 | * The base inode is in icache. Check if it has the extent inode | |
1042 | * corresponding to this extent mft record attached. | |
1043 | */ | |
1044 | ni = NTFS_I(vi); | |
4e5e529a | 1045 | mutex_lock(&ni->extent_lock); |
1da177e4 LT |
1046 | if (ni->nr_extents <= 0) { |
1047 | /* | |
1048 | * The base inode has no attached extent inodes, write this | |
1049 | * extent mft record. | |
1050 | */ | |
4e5e529a | 1051 | mutex_unlock(&ni->extent_lock); |
1da177e4 LT |
1052 | iput(vi); |
1053 | ntfs_debug("Base inode 0x%lx has no attached extent inodes, " | |
1054 | "write the extent record.", na.mft_no); | |
c49c3111 | 1055 | return true; |
1da177e4 LT |
1056 | } |
1057 | /* Iterate over the attached extent inodes. */ | |
1058 | extent_nis = ni->ext.extent_ntfs_inos; | |
1059 | for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { | |
1060 | if (mft_no == extent_nis[i]->mft_no) { | |
1061 | /* | |
1062 | * Found the extent inode corresponding to this extent | |
1063 | * mft record. | |
1064 | */ | |
1065 | eni = extent_nis[i]; | |
1066 | break; | |
1067 | } | |
1068 | } | |
1069 | /* | |
1070 | * If the extent inode was not attached to the base inode, write this | |
1071 | * extent mft record. | |
1072 | */ | |
1073 | if (!eni) { | |
4e5e529a | 1074 | mutex_unlock(&ni->extent_lock); |
1da177e4 LT |
1075 | iput(vi); |
1076 | ntfs_debug("Extent inode 0x%lx is not attached to its base " | |
1077 | "inode 0x%lx, write the extent record.", | |
1078 | mft_no, na.mft_no); | |
c49c3111 | 1079 | return true; |
1da177e4 LT |
1080 | } |
1081 | ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", | |
1082 | mft_no, na.mft_no); | |
1083 | /* Take a reference to the extent ntfs inode. */ | |
1084 | atomic_inc(&eni->count); | |
4e5e529a | 1085 | mutex_unlock(&ni->extent_lock); |
1da177e4 LT |
1086 | /* |
1087 | * Found the extent inode coresponding to this extent mft record. | |
1088 | * Try to take the mft record lock. | |
1089 | */ | |
4e5e529a | 1090 | if (unlikely(!mutex_trylock(&eni->mrec_lock))) { |
1da177e4 LT |
1091 | atomic_dec(&eni->count); |
1092 | iput(vi); | |
1093 | ntfs_debug("Extent mft record 0x%lx is already locked, do " | |
1094 | "not write it.", mft_no); | |
c49c3111 | 1095 | return false; |
1da177e4 LT |
1096 | } |
1097 | ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", | |
1098 | mft_no); | |
1099 | if (NInoTestClearDirty(eni)) | |
1100 | ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", | |
1101 | mft_no); | |
1102 | /* | |
1103 | * The write has to occur while we hold the mft record lock so return | |
1104 | * the locked extent ntfs inode. | |
1105 | */ | |
1106 | *locked_ni = eni; | |
c49c3111 | 1107 | return true; |
1da177e4 LT |
1108 | } |
1109 | ||
1110 | static const char *es = " Leaving inconsistent metadata. Unmount and run " | |
1111 | "chkdsk."; | |
1112 | ||
1113 | /** | |
1114 | * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name | |
1115 | * @vol: volume on which to search for a free mft record | |
1116 | * @base_ni: open base inode if allocating an extent mft record or NULL | |
1117 | * | |
1118 | * Search for a free mft record in the mft bitmap attribute on the ntfs volume | |
1119 | * @vol. | |
1120 | * | |
1121 | * If @base_ni is NULL start the search at the default allocator position. | |
1122 | * | |
1123 | * If @base_ni is not NULL start the search at the mft record after the base | |
1124 | * mft record @base_ni. | |
1125 | * | |
1126 | * Return the free mft record on success and -errno on error. An error code of | |
1127 | * -ENOSPC means that there are no free mft records in the currently | |
1128 | * initialized mft bitmap. | |
1129 | * | |
1130 | * Locking: Caller must hold vol->mftbmp_lock for writing. | |
1131 | */ | |
1132 | static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, | |
1133 | ntfs_inode *base_ni) | |
1134 | { | |
1135 | s64 pass_end, ll, data_pos, pass_start, ofs, bit; | |
07a4e2da | 1136 | unsigned long flags; |
1da177e4 LT |
1137 | struct address_space *mftbmp_mapping; |
1138 | u8 *buf, *byte; | |
1139 | struct page *page; | |
1140 | unsigned int page_ofs, size; | |
1141 | u8 pass, b; | |
1142 | ||
1143 | ntfs_debug("Searching for free mft record in the currently " | |
1144 | "initialized mft bitmap."); | |
1145 | mftbmp_mapping = vol->mftbmp_ino->i_mapping; | |
1146 | /* | |
1147 | * Set the end of the pass making sure we do not overflow the mft | |
1148 | * bitmap. | |
1149 | */ | |
07a4e2da | 1150 | read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); |
1da177e4 LT |
1151 | pass_end = NTFS_I(vol->mft_ino)->allocated_size >> |
1152 | vol->mft_record_size_bits; | |
07a4e2da AA |
1153 | read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); |
1154 | read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); | |
1da177e4 | 1155 | ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; |
07a4e2da | 1156 | read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); |
1da177e4 LT |
1157 | if (pass_end > ll) |
1158 | pass_end = ll; | |
1159 | pass = 1; | |
1160 | if (!base_ni) | |
1161 | data_pos = vol->mft_data_pos; | |
1162 | else | |
1163 | data_pos = base_ni->mft_no + 1; | |
1164 | if (data_pos < 24) | |
1165 | data_pos = 24; | |
1166 | if (data_pos >= pass_end) { | |
1167 | data_pos = 24; | |
1168 | pass = 2; | |
1169 | /* This happens on a freshly formatted volume. */ | |
1170 | if (data_pos >= pass_end) | |
1171 | return -ENOSPC; | |
1172 | } | |
1173 | pass_start = data_pos; | |
1174 | ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " | |
1175 | "pass_end 0x%llx, data_pos 0x%llx.", pass, | |
1176 | (long long)pass_start, (long long)pass_end, | |
1177 | (long long)data_pos); | |
1178 | /* Loop until a free mft record is found. */ | |
1179 | for (; pass <= 2;) { | |
1180 | /* Cap size to pass_end. */ | |
1181 | ofs = data_pos >> 3; | |
09cbfeaf KS |
1182 | page_ofs = ofs & ~PAGE_MASK; |
1183 | size = PAGE_SIZE - page_ofs; | |
1da177e4 LT |
1184 | ll = ((pass_end + 7) >> 3) - ofs; |
1185 | if (size > ll) | |
1186 | size = ll; | |
1187 | size <<= 3; | |
1188 | /* | |
1189 | * If we are still within the active pass, search the next page | |
1190 | * for a zero bit. | |
1191 | */ | |
1192 | if (size) { | |
1193 | page = ntfs_map_page(mftbmp_mapping, | |
09cbfeaf | 1194 | ofs >> PAGE_SHIFT); |
801678c5 | 1195 | if (IS_ERR(page)) { |
1da177e4 LT |
1196 | ntfs_error(vol->sb, "Failed to read mft " |
1197 | "bitmap, aborting."); | |
1198 | return PTR_ERR(page); | |
1199 | } | |
1200 | buf = (u8*)page_address(page) + page_ofs; | |
1201 | bit = data_pos & 7; | |
1202 | data_pos &= ~7ull; | |
1203 | ntfs_debug("Before inner for loop: size 0x%x, " | |
1204 | "data_pos 0x%llx, bit 0x%llx", size, | |
1205 | (long long)data_pos, (long long)bit); | |
1206 | for (; bit < size && data_pos + bit < pass_end; | |
1207 | bit &= ~7ull, bit += 8) { | |
1208 | byte = buf + (bit >> 3); | |
1209 | if (*byte == 0xff) | |
1210 | continue; | |
1211 | b = ffz((unsigned long)*byte); | |
1212 | if (b < 8 && b >= (bit & 7)) { | |
1213 | ll = data_pos + (bit & ~7ull) + b; | |
1214 | if (unlikely(ll > (1ll << 32))) { | |
1215 | ntfs_unmap_page(page); | |
1216 | return -ENOSPC; | |
1217 | } | |
1218 | *byte |= 1 << b; | |
1219 | flush_dcache_page(page); | |
1220 | set_page_dirty(page); | |
1221 | ntfs_unmap_page(page); | |
1222 | ntfs_debug("Done. (Found and " | |
1223 | "allocated mft record " | |
1224 | "0x%llx.)", | |
1225 | (long long)ll); | |
1226 | return ll; | |
1227 | } | |
1228 | } | |
1229 | ntfs_debug("After inner for loop: size 0x%x, " | |
1230 | "data_pos 0x%llx, bit 0x%llx", size, | |
1231 | (long long)data_pos, (long long)bit); | |
1232 | data_pos += size; | |
1233 | ntfs_unmap_page(page); | |
1234 | /* | |
1235 | * If the end of the pass has not been reached yet, | |
1236 | * continue searching the mft bitmap for a zero bit. | |
1237 | */ | |
1238 | if (data_pos < pass_end) | |
1239 | continue; | |
1240 | } | |
1241 | /* Do the next pass. */ | |
1242 | if (++pass == 2) { | |
1243 | /* | |
1244 | * Starting the second pass, in which we scan the first | |
1245 | * part of the zone which we omitted earlier. | |
1246 | */ | |
1247 | pass_end = pass_start; | |
1248 | data_pos = pass_start = 24; | |
1249 | ntfs_debug("pass %i, pass_start 0x%llx, pass_end " | |
1250 | "0x%llx.", pass, (long long)pass_start, | |
1251 | (long long)pass_end); | |
1252 | if (data_pos >= pass_end) | |
1253 | break; | |
1254 | } | |
1255 | } | |
1256 | /* No free mft records in currently initialized mft bitmap. */ | |
1257 | ntfs_debug("Done. (No free mft records left in currently initialized " | |
1258 | "mft bitmap.)"); | |
1259 | return -ENOSPC; | |
1260 | } | |
1261 | ||
1262 | /** | |
1263 | * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster | |
1264 | * @vol: volume on which to extend the mft bitmap attribute | |
1265 | * | |
1266 | * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. | |
1267 | * | |
1268 | * Note: Only changes allocated_size, i.e. does not touch initialized_size or | |
1269 | * data_size. | |
1270 | * | |
1271 | * Return 0 on success and -errno on error. | |
1272 | * | |
1273 | * Locking: - Caller must hold vol->mftbmp_lock for writing. | |
1274 | * - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for | |
1275 | * writing and releases it before returning. | |
1276 | * - This function takes vol->lcnbmp_lock for writing and releases it | |
1277 | * before returning. | |
1278 | */ | |
1279 | static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) | |
1280 | { | |
1281 | LCN lcn; | |
1282 | s64 ll; | |
07a4e2da | 1283 | unsigned long flags; |
1da177e4 LT |
1284 | struct page *page; |
1285 | ntfs_inode *mft_ni, *mftbmp_ni; | |
1286 | runlist_element *rl, *rl2 = NULL; | |
1287 | ntfs_attr_search_ctx *ctx = NULL; | |
1288 | MFT_RECORD *mrec; | |
1289 | ATTR_RECORD *a = NULL; | |
1290 | int ret, mp_size; | |
1291 | u32 old_alen = 0; | |
1292 | u8 *b, tb; | |
1293 | struct { | |
1294 | u8 added_cluster:1; | |
1295 | u8 added_run:1; | |
1296 | u8 mp_rebuilt:1; | |
1297 | } status = { 0, 0, 0 }; | |
1298 | ||
1299 | ntfs_debug("Extending mft bitmap allocation."); | |
1300 | mft_ni = NTFS_I(vol->mft_ino); | |
1301 | mftbmp_ni = NTFS_I(vol->mftbmp_ino); | |
1302 | /* | |
1303 | * Determine the last lcn of the mft bitmap. The allocated size of the | |
1304 | * mft bitmap cannot be zero so we are ok to do this. | |
1da177e4 | 1305 | */ |
b6ad6c52 | 1306 | down_write(&mftbmp_ni->runlist.lock); |
07a4e2da AA |
1307 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
1308 | ll = mftbmp_ni->allocated_size; | |
1309 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | |
c0c1cc0e | 1310 | rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, |
69b41e3c | 1311 | (ll - 1) >> vol->cluster_size_bits, NULL); |
1da177e4 | 1312 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { |
b6ad6c52 | 1313 | up_write(&mftbmp_ni->runlist.lock); |
1da177e4 LT |
1314 | ntfs_error(vol->sb, "Failed to determine last allocated " |
1315 | "cluster of mft bitmap attribute."); | |
b6ad6c52 | 1316 | if (!IS_ERR(rl)) |
1da177e4 | 1317 | ret = -EIO; |
b6ad6c52 | 1318 | else |
1da177e4 LT |
1319 | ret = PTR_ERR(rl); |
1320 | return ret; | |
1321 | } | |
1322 | lcn = rl->lcn + rl->length; | |
1323 | ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", | |
1324 | (long long)lcn); | |
1325 | /* | |
1326 | * Attempt to get the cluster following the last allocated cluster by | |
1327 | * hand as it may be in the MFT zone so the allocator would not give it | |
1328 | * to us. | |
1329 | */ | |
1330 | ll = lcn >> 3; | |
1331 | page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, | |
09cbfeaf | 1332 | ll >> PAGE_SHIFT); |
1da177e4 LT |
1333 | if (IS_ERR(page)) { |
1334 | up_write(&mftbmp_ni->runlist.lock); | |
1335 | ntfs_error(vol->sb, "Failed to read from lcn bitmap."); | |
1336 | return PTR_ERR(page); | |
1337 | } | |
09cbfeaf | 1338 | b = (u8*)page_address(page) + (ll & ~PAGE_MASK); |
1da177e4 LT |
1339 | tb = 1 << (lcn & 7ull); |
1340 | down_write(&vol->lcnbmp_lock); | |
1341 | if (*b != 0xff && !(*b & tb)) { | |
1342 | /* Next cluster is free, allocate it. */ | |
1343 | *b |= tb; | |
1344 | flush_dcache_page(page); | |
1345 | set_page_dirty(page); | |
1346 | up_write(&vol->lcnbmp_lock); | |
1347 | ntfs_unmap_page(page); | |
1348 | /* Update the mft bitmap runlist. */ | |
1349 | rl->length++; | |
1350 | rl[1].vcn++; | |
1351 | status.added_cluster = 1; | |
1352 | ntfs_debug("Appending one cluster to mft bitmap."); | |
1353 | } else { | |
1354 | up_write(&vol->lcnbmp_lock); | |
1355 | ntfs_unmap_page(page); | |
1356 | /* Allocate a cluster from the DATA_ZONE. */ | |
fc0fa7dc | 1357 | rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, |
c49c3111 | 1358 | true); |
1da177e4 LT |
1359 | if (IS_ERR(rl2)) { |
1360 | up_write(&mftbmp_ni->runlist.lock); | |
1361 | ntfs_error(vol->sb, "Failed to allocate a cluster for " | |
1362 | "the mft bitmap."); | |
1363 | return PTR_ERR(rl2); | |
1364 | } | |
1365 | rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); | |
1366 | if (IS_ERR(rl)) { | |
1367 | up_write(&mftbmp_ni->runlist.lock); | |
1368 | ntfs_error(vol->sb, "Failed to merge runlists for mft " | |
1369 | "bitmap."); | |
1370 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | |
9b556248 | 1371 | ntfs_error(vol->sb, "Failed to deallocate " |
1da177e4 LT |
1372 | "allocated cluster.%s", es); |
1373 | NVolSetErrors(vol); | |
1374 | } | |
1375 | ntfs_free(rl2); | |
1376 | return PTR_ERR(rl); | |
1377 | } | |
1378 | mftbmp_ni->runlist.rl = rl; | |
1379 | status.added_run = 1; | |
1380 | ntfs_debug("Adding one run to mft bitmap."); | |
1381 | /* Find the last run in the new runlist. */ | |
1382 | for (; rl[1].length; rl++) | |
1383 | ; | |
1384 | } | |
1385 | /* | |
1386 | * Update the attribute record as well. Note: @rl is the last | |
1387 | * (non-terminator) runlist element of mft bitmap. | |
1388 | */ | |
1389 | mrec = map_mft_record(mft_ni); | |
1390 | if (IS_ERR(mrec)) { | |
1391 | ntfs_error(vol->sb, "Failed to map mft record."); | |
1392 | ret = PTR_ERR(mrec); | |
1393 | goto undo_alloc; | |
1394 | } | |
1395 | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | |
1396 | if (unlikely(!ctx)) { | |
1397 | ntfs_error(vol->sb, "Failed to get search context."); | |
1398 | ret = -ENOMEM; | |
1399 | goto undo_alloc; | |
1400 | } | |
1401 | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | |
1402 | mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, | |
1403 | 0, ctx); | |
1404 | if (unlikely(ret)) { | |
1405 | ntfs_error(vol->sb, "Failed to find last attribute extent of " | |
1406 | "mft bitmap attribute."); | |
1407 | if (ret == -ENOENT) | |
1408 | ret = -EIO; | |
1409 | goto undo_alloc; | |
1410 | } | |
1411 | a = ctx->attr; | |
1412 | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | |
1413 | /* Search back for the previous last allocated cluster of mft bitmap. */ | |
1414 | for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { | |
1415 | if (ll >= rl2->vcn) | |
1416 | break; | |
1417 | } | |
1418 | BUG_ON(ll < rl2->vcn); | |
1419 | BUG_ON(ll >= rl2->vcn + rl2->length); | |
1420 | /* Get the size for the new mapping pairs array for this extent. */ | |
fa3be923 | 1421 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); |
1da177e4 LT |
1422 | if (unlikely(mp_size <= 0)) { |
1423 | ntfs_error(vol->sb, "Get size for mapping pairs failed for " | |
1424 | "mft bitmap attribute extent."); | |
1425 | ret = mp_size; | |
1426 | if (!ret) | |
1427 | ret = -EIO; | |
1428 | goto undo_alloc; | |
1429 | } | |
1430 | /* Expand the attribute record if necessary. */ | |
1431 | old_alen = le32_to_cpu(a->length); | |
1432 | ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + | |
1433 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | |
1434 | if (unlikely(ret)) { | |
1435 | if (ret != -ENOSPC) { | |
1436 | ntfs_error(vol->sb, "Failed to resize attribute " | |
1437 | "record for mft bitmap attribute."); | |
1438 | goto undo_alloc; | |
1439 | } | |
1440 | // TODO: Deal with this by moving this extent to a new mft | |
1441 | // record or by starting a new extent in a new mft record or by | |
1442 | // moving other attributes out of this mft record. | |
b6ad6c52 AA |
1443 | // Note: It will need to be a special mft record and if none of |
1444 | // those are available it gets rather complicated... | |
1da177e4 | 1445 | ntfs_error(vol->sb, "Not enough space in this mft record to " |
25985edc | 1446 | "accommodate extended mft bitmap attribute " |
1da177e4 LT |
1447 | "extent. Cannot handle this yet."); |
1448 | ret = -EOPNOTSUPP; | |
1449 | goto undo_alloc; | |
1450 | } | |
1451 | status.mp_rebuilt = 1; | |
1452 | /* Generate the mapping pairs array directly into the attr record. */ | |
1453 | ret = ntfs_mapping_pairs_build(vol, (u8*)a + | |
1454 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | |
fa3be923 | 1455 | mp_size, rl2, ll, -1, NULL); |
1da177e4 LT |
1456 | if (unlikely(ret)) { |
1457 | ntfs_error(vol->sb, "Failed to build mapping pairs array for " | |
1458 | "mft bitmap attribute."); | |
1459 | goto undo_alloc; | |
1460 | } | |
1461 | /* Update the highest_vcn. */ | |
1462 | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); | |
1463 | /* | |
1464 | * We now have extended the mft bitmap allocated_size by one cluster. | |
1465 | * Reflect this in the ntfs_inode structure and the attribute record. | |
1466 | */ | |
1467 | if (a->data.non_resident.lowest_vcn) { | |
1468 | /* | |
1469 | * We are not in the first attribute extent, switch to it, but | |
1470 | * first ensure the changes will make it to disk later. | |
1471 | */ | |
1472 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1473 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1474 | ntfs_attr_reinit_search_ctx(ctx); | |
1475 | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | |
1476 | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, | |
1477 | 0, ctx); | |
1478 | if (unlikely(ret)) { | |
1479 | ntfs_error(vol->sb, "Failed to find first attribute " | |
1480 | "extent of mft bitmap attribute."); | |
1481 | goto restore_undo_alloc; | |
1482 | } | |
1483 | a = ctx->attr; | |
1484 | } | |
07a4e2da | 1485 | write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1486 | mftbmp_ni->allocated_size += vol->cluster_size; |
1487 | a->data.non_resident.allocated_size = | |
1488 | cpu_to_sle64(mftbmp_ni->allocated_size); | |
07a4e2da | 1489 | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1490 | /* Ensure the changes make it to disk. */ |
1491 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1492 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1493 | ntfs_attr_put_search_ctx(ctx); | |
1494 | unmap_mft_record(mft_ni); | |
1495 | up_write(&mftbmp_ni->runlist.lock); | |
1496 | ntfs_debug("Done."); | |
1497 | return 0; | |
1498 | restore_undo_alloc: | |
1499 | ntfs_attr_reinit_search_ctx(ctx); | |
1500 | if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | |
1501 | mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, | |
1502 | 0, ctx)) { | |
1503 | ntfs_error(vol->sb, "Failed to find last attribute extent of " | |
1504 | "mft bitmap attribute.%s", es); | |
07a4e2da | 1505 | write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
1da177e4 | 1506 | mftbmp_ni->allocated_size += vol->cluster_size; |
07a4e2da | 1507 | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1508 | ntfs_attr_put_search_ctx(ctx); |
1509 | unmap_mft_record(mft_ni); | |
1510 | up_write(&mftbmp_ni->runlist.lock); | |
1511 | /* | |
1512 | * The only thing that is now wrong is ->allocated_size of the | |
1513 | * base attribute extent which chkdsk should be able to fix. | |
1514 | */ | |
1515 | NVolSetErrors(vol); | |
1516 | return ret; | |
1517 | } | |
1518 | a = ctx->attr; | |
1519 | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); | |
1520 | undo_alloc: | |
1521 | if (status.added_cluster) { | |
1522 | /* Truncate the last run in the runlist by one cluster. */ | |
1523 | rl->length--; | |
1524 | rl[1].vcn--; | |
1525 | } else if (status.added_run) { | |
1526 | lcn = rl->lcn; | |
1527 | /* Remove the last run from the runlist. */ | |
1528 | rl->lcn = rl[1].lcn; | |
1529 | rl->length = 0; | |
1530 | } | |
1531 | /* Deallocate the cluster. */ | |
1532 | down_write(&vol->lcnbmp_lock); | |
1533 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | |
1534 | ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); | |
1535 | NVolSetErrors(vol); | |
1536 | } | |
1537 | up_write(&vol->lcnbmp_lock); | |
1538 | if (status.mp_rebuilt) { | |
1539 | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | |
1540 | a->data.non_resident.mapping_pairs_offset), | |
1541 | old_alen - le16_to_cpu( | |
1542 | a->data.non_resident.mapping_pairs_offset), | |
fa3be923 | 1543 | rl2, ll, -1, NULL)) { |
1da177e4 LT |
1544 | ntfs_error(vol->sb, "Failed to restore mapping pairs " |
1545 | "array.%s", es); | |
1546 | NVolSetErrors(vol); | |
1547 | } | |
1548 | if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { | |
1549 | ntfs_error(vol->sb, "Failed to restore attribute " | |
1550 | "record.%s", es); | |
1551 | NVolSetErrors(vol); | |
1552 | } | |
1553 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1554 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1555 | } | |
1556 | if (ctx) | |
1557 | ntfs_attr_put_search_ctx(ctx); | |
1558 | if (!IS_ERR(mrec)) | |
1559 | unmap_mft_record(mft_ni); | |
1560 | up_write(&mftbmp_ni->runlist.lock); | |
1561 | return ret; | |
1562 | } | |
1563 | ||
1564 | /** | |
1565 | * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data | |
1566 | * @vol: volume on which to extend the mft bitmap attribute | |
1567 | * | |
1568 | * Extend the initialized portion of the mft bitmap attribute on the ntfs | |
1569 | * volume @vol by 8 bytes. | |
1570 | * | |
1571 | * Note: Only changes initialized_size and data_size, i.e. requires that | |
1572 | * allocated_size is big enough to fit the new initialized_size. | |
1573 | * | |
1574 | * Return 0 on success and -error on error. | |
1575 | * | |
1576 | * Locking: Caller must hold vol->mftbmp_lock for writing. | |
1577 | */ | |
1578 | static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) | |
1579 | { | |
1580 | s64 old_data_size, old_initialized_size; | |
07a4e2da | 1581 | unsigned long flags; |
1da177e4 LT |
1582 | struct inode *mftbmp_vi; |
1583 | ntfs_inode *mft_ni, *mftbmp_ni; | |
1584 | ntfs_attr_search_ctx *ctx; | |
1585 | MFT_RECORD *mrec; | |
1586 | ATTR_RECORD *a; | |
1587 | int ret; | |
1588 | ||
1589 | ntfs_debug("Extending mft bitmap initiailized (and data) size."); | |
1590 | mft_ni = NTFS_I(vol->mft_ino); | |
1591 | mftbmp_vi = vol->mftbmp_ino; | |
1592 | mftbmp_ni = NTFS_I(mftbmp_vi); | |
1593 | /* Get the attribute record. */ | |
1594 | mrec = map_mft_record(mft_ni); | |
1595 | if (IS_ERR(mrec)) { | |
1596 | ntfs_error(vol->sb, "Failed to map mft record."); | |
1597 | return PTR_ERR(mrec); | |
1598 | } | |
1599 | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | |
1600 | if (unlikely(!ctx)) { | |
1601 | ntfs_error(vol->sb, "Failed to get search context."); | |
1602 | ret = -ENOMEM; | |
1603 | goto unm_err_out; | |
1604 | } | |
1605 | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | |
1606 | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); | |
1607 | if (unlikely(ret)) { | |
1608 | ntfs_error(vol->sb, "Failed to find first attribute extent of " | |
1609 | "mft bitmap attribute."); | |
1610 | if (ret == -ENOENT) | |
1611 | ret = -EIO; | |
1612 | goto put_err_out; | |
1613 | } | |
1614 | a = ctx->attr; | |
07a4e2da AA |
1615 | write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
1616 | old_data_size = i_size_read(mftbmp_vi); | |
1da177e4 LT |
1617 | old_initialized_size = mftbmp_ni->initialized_size; |
1618 | /* | |
1619 | * We can simply update the initialized_size before filling the space | |
1620 | * with zeroes because the caller is holding the mft bitmap lock for | |
1621 | * writing which ensures that no one else is trying to access the data. | |
1622 | */ | |
1623 | mftbmp_ni->initialized_size += 8; | |
1624 | a->data.non_resident.initialized_size = | |
1625 | cpu_to_sle64(mftbmp_ni->initialized_size); | |
07a4e2da AA |
1626 | if (mftbmp_ni->initialized_size > old_data_size) { |
1627 | i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); | |
1da177e4 | 1628 | a->data.non_resident.data_size = |
07a4e2da | 1629 | cpu_to_sle64(mftbmp_ni->initialized_size); |
1da177e4 | 1630 | } |
07a4e2da | 1631 | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1632 | /* Ensure the changes make it to disk. */ |
1633 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1634 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1635 | ntfs_attr_put_search_ctx(ctx); | |
1636 | unmap_mft_record(mft_ni); | |
1637 | /* Initialize the mft bitmap attribute value with zeroes. */ | |
1638 | ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); | |
1639 | if (likely(!ret)) { | |
1640 | ntfs_debug("Done. (Wrote eight initialized bytes to mft " | |
1641 | "bitmap."); | |
1642 | return 0; | |
1643 | } | |
1644 | ntfs_error(vol->sb, "Failed to write to mft bitmap."); | |
1645 | /* Try to recover from the error. */ | |
1646 | mrec = map_mft_record(mft_ni); | |
1647 | if (IS_ERR(mrec)) { | |
1648 | ntfs_error(vol->sb, "Failed to map mft record.%s", es); | |
1649 | NVolSetErrors(vol); | |
1650 | return ret; | |
1651 | } | |
1652 | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | |
1653 | if (unlikely(!ctx)) { | |
1654 | ntfs_error(vol->sb, "Failed to get search context.%s", es); | |
1655 | NVolSetErrors(vol); | |
1656 | goto unm_err_out; | |
1657 | } | |
1658 | if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | |
1659 | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { | |
1660 | ntfs_error(vol->sb, "Failed to find first attribute extent of " | |
1661 | "mft bitmap attribute.%s", es); | |
1662 | NVolSetErrors(vol); | |
1663 | put_err_out: | |
1664 | ntfs_attr_put_search_ctx(ctx); | |
1665 | unm_err_out: | |
1666 | unmap_mft_record(mft_ni); | |
1667 | goto err_out; | |
1668 | } | |
1669 | a = ctx->attr; | |
07a4e2da | 1670 | write_lock_irqsave(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1671 | mftbmp_ni->initialized_size = old_initialized_size; |
1672 | a->data.non_resident.initialized_size = | |
1673 | cpu_to_sle64(old_initialized_size); | |
07a4e2da AA |
1674 | if (i_size_read(mftbmp_vi) != old_data_size) { |
1675 | i_size_write(mftbmp_vi, old_data_size); | |
1da177e4 LT |
1676 | a->data.non_resident.data_size = cpu_to_sle64(old_data_size); |
1677 | } | |
07a4e2da | 1678 | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
1da177e4 LT |
1679 | flush_dcache_mft_record_page(ctx->ntfs_ino); |
1680 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1681 | ntfs_attr_put_search_ctx(ctx); | |
1682 | unmap_mft_record(mft_ni); | |
07a4e2da AA |
1683 | #ifdef DEBUG |
1684 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | |
1da177e4 LT |
1685 | ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " |
1686 | "data_size 0x%llx, initialized_size 0x%llx.", | |
1687 | (long long)mftbmp_ni->allocated_size, | |
07a4e2da | 1688 | (long long)i_size_read(mftbmp_vi), |
1da177e4 | 1689 | (long long)mftbmp_ni->initialized_size); |
07a4e2da AA |
1690 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
1691 | #endif /* DEBUG */ | |
1da177e4 LT |
1692 | err_out: |
1693 | return ret; | |
1694 | } | |
1695 | ||
1696 | /** | |
1697 | * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute | |
1698 | * @vol: volume on which to extend the mft data attribute | |
1699 | * | |
1700 | * Extend the mft data attribute on the ntfs volume @vol by 16 mft records | |
1701 | * worth of clusters or if not enough space for this by one mft record worth | |
1702 | * of clusters. | |
1703 | * | |
1704 | * Note: Only changes allocated_size, i.e. does not touch initialized_size or | |
1705 | * data_size. | |
1706 | * | |
1707 | * Return 0 on success and -errno on error. | |
1708 | * | |
1709 | * Locking: - Caller must hold vol->mftbmp_lock for writing. | |
1710 | * - This function takes NTFS_I(vol->mft_ino)->runlist.lock for | |
1711 | * writing and releases it before returning. | |
1712 | * - This function calls functions which take vol->lcnbmp_lock for | |
1713 | * writing and release it before returning. | |
1714 | */ | |
1715 | static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) | |
1716 | { | |
1717 | LCN lcn; | |
1718 | VCN old_last_vcn; | |
07a4e2da AA |
1719 | s64 min_nr, nr, ll; |
1720 | unsigned long flags; | |
1da177e4 LT |
1721 | ntfs_inode *mft_ni; |
1722 | runlist_element *rl, *rl2; | |
1723 | ntfs_attr_search_ctx *ctx = NULL; | |
1724 | MFT_RECORD *mrec; | |
1725 | ATTR_RECORD *a = NULL; | |
1726 | int ret, mp_size; | |
1727 | u32 old_alen = 0; | |
c49c3111 | 1728 | bool mp_rebuilt = false; |
1da177e4 LT |
1729 | |
1730 | ntfs_debug("Extending mft data allocation."); | |
1731 | mft_ni = NTFS_I(vol->mft_ino); | |
1732 | /* | |
1733 | * Determine the preferred allocation location, i.e. the last lcn of | |
1734 | * the mft data attribute. The allocated size of the mft data | |
1735 | * attribute cannot be zero so we are ok to do this. | |
1da177e4 | 1736 | */ |
b6ad6c52 | 1737 | down_write(&mft_ni->runlist.lock); |
07a4e2da AA |
1738 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1739 | ll = mft_ni->allocated_size; | |
1740 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
c0c1cc0e | 1741 | rl = ntfs_attr_find_vcn_nolock(mft_ni, |
69b41e3c | 1742 | (ll - 1) >> vol->cluster_size_bits, NULL); |
1da177e4 | 1743 | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { |
b6ad6c52 | 1744 | up_write(&mft_ni->runlist.lock); |
1da177e4 LT |
1745 | ntfs_error(vol->sb, "Failed to determine last allocated " |
1746 | "cluster of mft data attribute."); | |
b6ad6c52 | 1747 | if (!IS_ERR(rl)) |
1da177e4 | 1748 | ret = -EIO; |
b6ad6c52 | 1749 | else |
1da177e4 LT |
1750 | ret = PTR_ERR(rl); |
1751 | return ret; | |
1752 | } | |
1753 | lcn = rl->lcn + rl->length; | |
07a4e2da | 1754 | ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); |
1da177e4 LT |
1755 | /* Minimum allocation is one mft record worth of clusters. */ |
1756 | min_nr = vol->mft_record_size >> vol->cluster_size_bits; | |
1757 | if (!min_nr) | |
1758 | min_nr = 1; | |
1759 | /* Want to allocate 16 mft records worth of clusters. */ | |
1760 | nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; | |
1761 | if (!nr) | |
1762 | nr = min_nr; | |
1763 | /* Ensure we do not go above 2^32-1 mft records. */ | |
07a4e2da AA |
1764 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1765 | ll = mft_ni->allocated_size; | |
1766 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1767 | if (unlikely((ll + (nr << vol->cluster_size_bits)) >> | |
1da177e4 LT |
1768 | vol->mft_record_size_bits >= (1ll << 32))) { |
1769 | nr = min_nr; | |
07a4e2da | 1770 | if (unlikely((ll + (nr << vol->cluster_size_bits)) >> |
1da177e4 LT |
1771 | vol->mft_record_size_bits >= (1ll << 32))) { |
1772 | ntfs_warning(vol->sb, "Cannot allocate mft record " | |
1773 | "because the maximum number of inodes " | |
1774 | "(2^32) has already been reached."); | |
1775 | up_write(&mft_ni->runlist.lock); | |
1776 | return -ENOSPC; | |
1777 | } | |
1778 | } | |
1779 | ntfs_debug("Trying mft data allocation with %s cluster count %lli.", | |
1780 | nr > min_nr ? "default" : "minimal", (long long)nr); | |
1781 | old_last_vcn = rl[1].vcn; | |
1782 | do { | |
fc0fa7dc | 1783 | rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, |
c49c3111 | 1784 | true); |
1da177e4 LT |
1785 | if (likely(!IS_ERR(rl2))) |
1786 | break; | |
1787 | if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { | |
1788 | ntfs_error(vol->sb, "Failed to allocate the minimal " | |
1789 | "number of clusters (%lli) for the " | |
1790 | "mft data attribute.", (long long)nr); | |
1791 | up_write(&mft_ni->runlist.lock); | |
1792 | return PTR_ERR(rl2); | |
1793 | } | |
1794 | /* | |
1795 | * There is not enough space to do the allocation, but there | |
1796 | * might be enough space to do a minimal allocation so try that | |
1797 | * before failing. | |
1798 | */ | |
1799 | nr = min_nr; | |
1800 | ntfs_debug("Retrying mft data allocation with minimal cluster " | |
1801 | "count %lli.", (long long)nr); | |
1802 | } while (1); | |
1803 | rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); | |
1804 | if (IS_ERR(rl)) { | |
1805 | up_write(&mft_ni->runlist.lock); | |
1806 | ntfs_error(vol->sb, "Failed to merge runlists for mft data " | |
1807 | "attribute."); | |
1808 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | |
9b556248 | 1809 | ntfs_error(vol->sb, "Failed to deallocate clusters " |
1da177e4 LT |
1810 | "from the mft data attribute.%s", es); |
1811 | NVolSetErrors(vol); | |
1812 | } | |
1813 | ntfs_free(rl2); | |
1814 | return PTR_ERR(rl); | |
1815 | } | |
1816 | mft_ni->runlist.rl = rl; | |
8907547d | 1817 | ntfs_debug("Allocated %lli clusters.", (long long)nr); |
1da177e4 LT |
1818 | /* Find the last run in the new runlist. */ |
1819 | for (; rl[1].length; rl++) | |
1820 | ; | |
1821 | /* Update the attribute record as well. */ | |
1822 | mrec = map_mft_record(mft_ni); | |
1823 | if (IS_ERR(mrec)) { | |
1824 | ntfs_error(vol->sb, "Failed to map mft record."); | |
1825 | ret = PTR_ERR(mrec); | |
1826 | goto undo_alloc; | |
1827 | } | |
1828 | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | |
1829 | if (unlikely(!ctx)) { | |
1830 | ntfs_error(vol->sb, "Failed to get search context."); | |
1831 | ret = -ENOMEM; | |
1832 | goto undo_alloc; | |
1833 | } | |
1834 | ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | |
1835 | CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); | |
1836 | if (unlikely(ret)) { | |
1837 | ntfs_error(vol->sb, "Failed to find last attribute extent of " | |
1838 | "mft data attribute."); | |
1839 | if (ret == -ENOENT) | |
1840 | ret = -EIO; | |
1841 | goto undo_alloc; | |
1842 | } | |
1843 | a = ctx->attr; | |
1844 | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | |
1845 | /* Search back for the previous last allocated cluster of mft bitmap. */ | |
1846 | for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { | |
1847 | if (ll >= rl2->vcn) | |
1848 | break; | |
1849 | } | |
1850 | BUG_ON(ll < rl2->vcn); | |
1851 | BUG_ON(ll >= rl2->vcn + rl2->length); | |
1852 | /* Get the size for the new mapping pairs array for this extent. */ | |
fa3be923 | 1853 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); |
1da177e4 LT |
1854 | if (unlikely(mp_size <= 0)) { |
1855 | ntfs_error(vol->sb, "Get size for mapping pairs failed for " | |
1856 | "mft data attribute extent."); | |
1857 | ret = mp_size; | |
1858 | if (!ret) | |
1859 | ret = -EIO; | |
1860 | goto undo_alloc; | |
1861 | } | |
1862 | /* Expand the attribute record if necessary. */ | |
1863 | old_alen = le32_to_cpu(a->length); | |
1864 | ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + | |
1865 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | |
1866 | if (unlikely(ret)) { | |
1867 | if (ret != -ENOSPC) { | |
1868 | ntfs_error(vol->sb, "Failed to resize attribute " | |
1869 | "record for mft data attribute."); | |
1870 | goto undo_alloc; | |
1871 | } | |
1872 | // TODO: Deal with this by moving this extent to a new mft | |
1873 | // record or by starting a new extent in a new mft record or by | |
1874 | // moving other attributes out of this mft record. | |
1875 | // Note: Use the special reserved mft records and ensure that | |
1876 | // this extent is not required to find the mft record in | |
b6ad6c52 AA |
1877 | // question. If no free special records left we would need to |
1878 | // move an existing record away, insert ours in its place, and | |
1879 | // then place the moved record into the newly allocated space | |
1880 | // and we would then need to update all references to this mft | |
1881 | // record appropriately. This is rather complicated... | |
1da177e4 | 1882 | ntfs_error(vol->sb, "Not enough space in this mft record to " |
25985edc | 1883 | "accommodate extended mft data attribute " |
1da177e4 LT |
1884 | "extent. Cannot handle this yet."); |
1885 | ret = -EOPNOTSUPP; | |
1886 | goto undo_alloc; | |
1887 | } | |
c49c3111 | 1888 | mp_rebuilt = true; |
1da177e4 LT |
1889 | /* Generate the mapping pairs array directly into the attr record. */ |
1890 | ret = ntfs_mapping_pairs_build(vol, (u8*)a + | |
1891 | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | |
fa3be923 | 1892 | mp_size, rl2, ll, -1, NULL); |
1da177e4 LT |
1893 | if (unlikely(ret)) { |
1894 | ntfs_error(vol->sb, "Failed to build mapping pairs array of " | |
1895 | "mft data attribute."); | |
1896 | goto undo_alloc; | |
1897 | } | |
1898 | /* Update the highest_vcn. */ | |
1899 | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); | |
1900 | /* | |
1901 | * We now have extended the mft data allocated_size by nr clusters. | |
1902 | * Reflect this in the ntfs_inode structure and the attribute record. | |
1903 | * @rl is the last (non-terminator) runlist element of mft data | |
1904 | * attribute. | |
1905 | */ | |
1906 | if (a->data.non_resident.lowest_vcn) { | |
1907 | /* | |
1908 | * We are not in the first attribute extent, switch to it, but | |
1909 | * first ensure the changes will make it to disk later. | |
1910 | */ | |
1911 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1912 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1913 | ntfs_attr_reinit_search_ctx(ctx); | |
1914 | ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, | |
1915 | mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, | |
1916 | ctx); | |
1917 | if (unlikely(ret)) { | |
1918 | ntfs_error(vol->sb, "Failed to find first attribute " | |
1919 | "extent of mft data attribute."); | |
1920 | goto restore_undo_alloc; | |
1921 | } | |
1922 | a = ctx->attr; | |
1923 | } | |
07a4e2da | 1924 | write_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
1925 | mft_ni->allocated_size += nr << vol->cluster_size_bits; |
1926 | a->data.non_resident.allocated_size = | |
1927 | cpu_to_sle64(mft_ni->allocated_size); | |
07a4e2da | 1928 | write_unlock_irqrestore(&mft_ni->size_lock, flags); |
1da177e4 LT |
1929 | /* Ensure the changes make it to disk. */ |
1930 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1931 | mark_mft_record_dirty(ctx->ntfs_ino); | |
1932 | ntfs_attr_put_search_ctx(ctx); | |
1933 | unmap_mft_record(mft_ni); | |
1934 | up_write(&mft_ni->runlist.lock); | |
1935 | ntfs_debug("Done."); | |
1936 | return 0; | |
1937 | restore_undo_alloc: | |
1938 | ntfs_attr_reinit_search_ctx(ctx); | |
1939 | if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | |
1940 | CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { | |
1941 | ntfs_error(vol->sb, "Failed to find last attribute extent of " | |
1942 | "mft data attribute.%s", es); | |
07a4e2da | 1943 | write_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 | 1944 | mft_ni->allocated_size += nr << vol->cluster_size_bits; |
07a4e2da | 1945 | write_unlock_irqrestore(&mft_ni->size_lock, flags); |
1da177e4 LT |
1946 | ntfs_attr_put_search_ctx(ctx); |
1947 | unmap_mft_record(mft_ni); | |
1948 | up_write(&mft_ni->runlist.lock); | |
1949 | /* | |
1950 | * The only thing that is now wrong is ->allocated_size of the | |
1951 | * base attribute extent which chkdsk should be able to fix. | |
1952 | */ | |
1953 | NVolSetErrors(vol); | |
1954 | return ret; | |
1955 | } | |
511bea5e AA |
1956 | ctx->attr->data.non_resident.highest_vcn = |
1957 | cpu_to_sle64(old_last_vcn - 1); | |
1da177e4 | 1958 | undo_alloc: |
511bea5e | 1959 | if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { |
1da177e4 LT |
1960 | ntfs_error(vol->sb, "Failed to free clusters from mft data " |
1961 | "attribute.%s", es); | |
1962 | NVolSetErrors(vol); | |
1963 | } | |
511bea5e | 1964 | a = ctx->attr; |
1da177e4 LT |
1965 | if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { |
1966 | ntfs_error(vol->sb, "Failed to truncate mft data attribute " | |
1967 | "runlist.%s", es); | |
1968 | NVolSetErrors(vol); | |
1969 | } | |
511bea5e | 1970 | if (mp_rebuilt && !IS_ERR(ctx->mrec)) { |
1da177e4 LT |
1971 | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( |
1972 | a->data.non_resident.mapping_pairs_offset), | |
1973 | old_alen - le16_to_cpu( | |
1974 | a->data.non_resident.mapping_pairs_offset), | |
fa3be923 | 1975 | rl2, ll, -1, NULL)) { |
1da177e4 LT |
1976 | ntfs_error(vol->sb, "Failed to restore mapping pairs " |
1977 | "array.%s", es); | |
1978 | NVolSetErrors(vol); | |
1979 | } | |
1980 | if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { | |
1981 | ntfs_error(vol->sb, "Failed to restore attribute " | |
1982 | "record.%s", es); | |
1983 | NVolSetErrors(vol); | |
1984 | } | |
1985 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
1986 | mark_mft_record_dirty(ctx->ntfs_ino); | |
511bea5e AA |
1987 | } else if (IS_ERR(ctx->mrec)) { |
1988 | ntfs_error(vol->sb, "Failed to restore attribute search " | |
1989 | "context.%s", es); | |
1990 | NVolSetErrors(vol); | |
1da177e4 LT |
1991 | } |
1992 | if (ctx) | |
1993 | ntfs_attr_put_search_ctx(ctx); | |
1994 | if (!IS_ERR(mrec)) | |
1995 | unmap_mft_record(mft_ni); | |
1996 | up_write(&mft_ni->runlist.lock); | |
1997 | return ret; | |
1998 | } | |
1999 | ||
2000 | /** | |
2001 | * ntfs_mft_record_layout - layout an mft record into a memory buffer | |
2002 | * @vol: volume to which the mft record will belong | |
2003 | * @mft_no: mft reference specifying the mft record number | |
2004 | * @m: destination buffer of size >= @vol->mft_record_size bytes | |
2005 | * | |
2006 | * Layout an empty, unused mft record with the mft record number @mft_no into | |
2007 | * the buffer @m. The volume @vol is needed because the mft record structure | |
2008 | * was modified in NTFS 3.1 so we need to know which volume version this mft | |
2009 | * record will be used on. | |
2010 | * | |
2011 | * Return 0 on success and -errno on error. | |
2012 | */ | |
2013 | static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, | |
2014 | MFT_RECORD *m) | |
2015 | { | |
2016 | ATTR_RECORD *a; | |
2017 | ||
2018 | ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); | |
2019 | if (mft_no >= (1ll << 32)) { | |
2020 | ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " | |
2021 | "maximum of 2^32.", (long long)mft_no); | |
2022 | return -ERANGE; | |
2023 | } | |
2024 | /* Start by clearing the whole mft record to gives us a clean slate. */ | |
2025 | memset(m, 0, vol->mft_record_size); | |
2026 | /* Aligned to 2-byte boundary. */ | |
2027 | if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) | |
2028 | m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); | |
2029 | else { | |
2030 | m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); | |
2031 | /* | |
2032 | * Set the NTFS 3.1+ specific fields while we know that the | |
2033 | * volume version is 3.1+. | |
2034 | */ | |
2035 | m->reserved = 0; | |
2036 | m->mft_record_number = cpu_to_le32((u32)mft_no); | |
2037 | } | |
2038 | m->magic = magic_FILE; | |
2039 | if (vol->mft_record_size >= NTFS_BLOCK_SIZE) | |
2040 | m->usa_count = cpu_to_le16(vol->mft_record_size / | |
2041 | NTFS_BLOCK_SIZE + 1); | |
2042 | else { | |
2043 | m->usa_count = cpu_to_le16(1); | |
2044 | ntfs_warning(vol->sb, "Sector size is bigger than mft record " | |
2045 | "size. Setting usa_count to 1. If chkdsk " | |
2046 | "reports this as corruption, please email " | |
2047 | "linux-ntfs-dev@lists.sourceforge.net stating " | |
2048 | "that you saw this message and that the " | |
b6ad6c52 | 2049 | "modified filesystem created was corrupt. " |
1da177e4 LT |
2050 | "Thank you."); |
2051 | } | |
2052 | /* Set the update sequence number to 1. */ | |
2053 | *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); | |
2054 | m->lsn = 0; | |
2055 | m->sequence_number = cpu_to_le16(1); | |
2056 | m->link_count = 0; | |
2057 | /* | |
2058 | * Place the attributes straight after the update sequence array, | |
2059 | * aligned to 8-byte boundary. | |
2060 | */ | |
2061 | m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + | |
2062 | (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); | |
2063 | m->flags = 0; | |
2064 | /* | |
2065 | * Using attrs_offset plus eight bytes (for the termination attribute). | |
2066 | * attrs_offset is already aligned to 8-byte boundary, so no need to | |
2067 | * align again. | |
2068 | */ | |
2069 | m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); | |
2070 | m->bytes_allocated = cpu_to_le32(vol->mft_record_size); | |
2071 | m->base_mft_record = 0; | |
2072 | m->next_attr_instance = 0; | |
2073 | /* Add the termination attribute. */ | |
2074 | a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); | |
2075 | a->type = AT_END; | |
2076 | a->length = 0; | |
2077 | ntfs_debug("Done."); | |
2078 | return 0; | |
2079 | } | |
2080 | ||
2081 | /** | |
2082 | * ntfs_mft_record_format - format an mft record on an ntfs volume | |
2083 | * @vol: volume on which to format the mft record | |
2084 | * @mft_no: mft record number to format | |
2085 | * | |
2086 | * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused | |
2087 | * mft record into the appropriate place of the mft data attribute. This is | |
2088 | * used when extending the mft data attribute. | |
2089 | * | |
2090 | * Return 0 on success and -errno on error. | |
2091 | */ | |
2092 | static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) | |
2093 | { | |
07a4e2da | 2094 | loff_t i_size; |
1da177e4 LT |
2095 | struct inode *mft_vi = vol->mft_ino; |
2096 | struct page *page; | |
2097 | MFT_RECORD *m; | |
2098 | pgoff_t index, end_index; | |
2099 | unsigned int ofs; | |
2100 | int err; | |
2101 | ||
2102 | ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); | |
2103 | /* | |
2104 | * The index into the page cache and the offset within the page cache | |
2105 | * page of the wanted mft record. | |
2106 | */ | |
09cbfeaf KS |
2107 | index = mft_no << vol->mft_record_size_bits >> PAGE_SHIFT; |
2108 | ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_MASK; | |
1da177e4 | 2109 | /* The maximum valid index into the page cache for $MFT's data. */ |
07a4e2da | 2110 | i_size = i_size_read(mft_vi); |
09cbfeaf | 2111 | end_index = i_size >> PAGE_SHIFT; |
1da177e4 LT |
2112 | if (unlikely(index >= end_index)) { |
2113 | if (unlikely(index > end_index || ofs + vol->mft_record_size >= | |
09cbfeaf | 2114 | (i_size & ~PAGE_MASK))) { |
1da177e4 LT |
2115 | ntfs_error(vol->sb, "Tried to format non-existing mft " |
2116 | "record 0x%llx.", (long long)mft_no); | |
2117 | return -ENOENT; | |
2118 | } | |
2119 | } | |
2120 | /* Read, map, and pin the page containing the mft record. */ | |
2121 | page = ntfs_map_page(mft_vi->i_mapping, index); | |
801678c5 | 2122 | if (IS_ERR(page)) { |
1da177e4 LT |
2123 | ntfs_error(vol->sb, "Failed to map page containing mft record " |
2124 | "to format 0x%llx.", (long long)mft_no); | |
2125 | return PTR_ERR(page); | |
2126 | } | |
2127 | lock_page(page); | |
2128 | BUG_ON(!PageUptodate(page)); | |
2129 | ClearPageUptodate(page); | |
2130 | m = (MFT_RECORD*)((u8*)page_address(page) + ofs); | |
2131 | err = ntfs_mft_record_layout(vol, mft_no, m); | |
2132 | if (unlikely(err)) { | |
2133 | ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", | |
2134 | (long long)mft_no); | |
2135 | SetPageUptodate(page); | |
2136 | unlock_page(page); | |
2137 | ntfs_unmap_page(page); | |
2138 | return err; | |
2139 | } | |
2140 | flush_dcache_page(page); | |
2141 | SetPageUptodate(page); | |
2142 | unlock_page(page); | |
2143 | /* | |
2144 | * Make sure the mft record is written out to disk. We could use | |
2145 | * ilookup5() to check if an inode is in icache and so on but this is | |
2146 | * unnecessary as ntfs_writepage() will write the dirty record anyway. | |
2147 | */ | |
2148 | mark_ntfs_record_dirty(page, ofs); | |
2149 | ntfs_unmap_page(page); | |
2150 | ntfs_debug("Done."); | |
2151 | return 0; | |
2152 | } | |
2153 | ||
2154 | /** | |
2155 | * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume | |
2156 | * @vol: [IN] volume on which to allocate the mft record | |
2157 | * @mode: [IN] mode if want a file or directory, i.e. base inode or 0 | |
2158 | * @base_ni: [IN] open base inode if allocating an extent mft record or NULL | |
2159 | * @mrec: [OUT] on successful return this is the mapped mft record | |
2160 | * | |
2161 | * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. | |
2162 | * | |
2163 | * If @base_ni is NULL make the mft record a base mft record, i.e. a file or | |
2164 | * direvctory inode, and allocate it at the default allocator position. In | |
2165 | * this case @mode is the file mode as given to us by the caller. We in | |
2166 | * particular use @mode to distinguish whether a file or a directory is being | |
2167 | * created (S_IFDIR(mode) and S_IFREG(mode), respectively). | |
2168 | * | |
2169 | * If @base_ni is not NULL make the allocated mft record an extent record, | |
2170 | * allocate it starting at the mft record after the base mft record and attach | |
2171 | * the allocated and opened ntfs inode to the base inode @base_ni. In this | |
2172 | * case @mode must be 0 as it is meaningless for extent inodes. | |
2173 | * | |
2174 | * You need to check the return value with IS_ERR(). If false, the function | |
2175 | * was successful and the return value is the now opened ntfs inode of the | |
2176 | * allocated mft record. *@mrec is then set to the allocated, mapped, pinned, | |
2177 | * and locked mft record. If IS_ERR() is true, the function failed and the | |
2178 | * error code is obtained from PTR_ERR(return value). *@mrec is undefined in | |
2179 | * this case. | |
2180 | * | |
2181 | * Allocation strategy: | |
2182 | * | |
2183 | * To find a free mft record, we scan the mft bitmap for a zero bit. To | |
2184 | * optimize this we start scanning at the place specified by @base_ni or if | |
2185 | * @base_ni is NULL we start where we last stopped and we perform wrap around | |
2186 | * when we reach the end. Note, we do not try to allocate mft records below | |
2187 | * number 24 because numbers 0 to 15 are the defined system files anyway and 16 | |
2188 | * to 24 are special in that they are used for storing extension mft records | |
2189 | * for the $DATA attribute of $MFT. This is required to avoid the possibility | |
2190 | * of creating a runlist with a circular dependency which once written to disk | |
2191 | * can never be read in again. Windows will only use records 16 to 24 for | |
2192 | * normal files if the volume is completely out of space. We never use them | |
2193 | * which means that when the volume is really out of space we cannot create any | |
2194 | * more files while Windows can still create up to 8 small files. We can start | |
2195 | * doing this at some later time, it does not matter much for now. | |
2196 | * | |
2197 | * When scanning the mft bitmap, we only search up to the last allocated mft | |
2198 | * record. If there are no free records left in the range 24 to number of | |
2199 | * allocated mft records, then we extend the $MFT/$DATA attribute in order to | |
2200 | * create free mft records. We extend the allocated size of $MFT/$DATA by 16 | |
2201 | * records at a time or one cluster, if cluster size is above 16kiB. If there | |
2202 | * is not sufficient space to do this, we try to extend by a single mft record | |
2203 | * or one cluster, if cluster size is above the mft record size. | |
2204 | * | |
2205 | * No matter how many mft records we allocate, we initialize only the first | |
2206 | * allocated mft record, incrementing mft data size and initialized size | |
2207 | * accordingly, open an ntfs_inode for it and return it to the caller, unless | |
2208 | * there are less than 24 mft records, in which case we allocate and initialize | |
2209 | * mft records until we reach record 24 which we consider as the first free mft | |
2210 | * record for use by normal files. | |
2211 | * | |
2212 | * If during any stage we overflow the initialized data in the mft bitmap, we | |
2213 | * extend the initialized size (and data size) by 8 bytes, allocating another | |
2214 | * cluster if required. The bitmap data size has to be at least equal to the | |
2215 | * number of mft records in the mft, but it can be bigger, in which case the | |
2216 | * superflous bits are padded with zeroes. | |
2217 | * | |
2218 | * Thus, when we return successfully (IS_ERR() is false), we will have: | |
2219 | * - initialized / extended the mft bitmap if necessary, | |
2220 | * - initialized / extended the mft data if necessary, | |
2221 | * - set the bit corresponding to the mft record being allocated in the | |
2222 | * mft bitmap, | |
2223 | * - opened an ntfs_inode for the allocated mft record, and we will have | |
2224 | * - returned the ntfs_inode as well as the allocated mapped, pinned, and | |
2225 | * locked mft record. | |
2226 | * | |
2227 | * On error, the volume will be left in a consistent state and no record will | |
2228 | * be allocated. If rolling back a partial operation fails, we may leave some | |
2229 | * inconsistent metadata in which case we set NVolErrors() so the volume is | |
2230 | * left dirty when unmounted. | |
2231 | * | |
2232 | * Note, this function cannot make use of most of the normal functions, like | |
2233 | * for example for attribute resizing, etc, because when the run list overflows | |
2234 | * the base mft record and an attribute list is used, it is very important that | |
2235 | * the extension mft records used to store the $DATA attribute of $MFT can be | |
2236 | * reached without having to read the information contained inside them, as | |
2237 | * this would make it impossible to find them in the first place after the | |
2238 | * volume is unmounted. $MFT/$BITMAP probably does not need to follow this | |
2239 | * rule because the bitmap is not essential for finding the mft records, but on | |
2240 | * the other hand, handling the bitmap in this special way would make life | |
2241 | * easier because otherwise there might be circular invocations of functions | |
2242 | * when reading the bitmap. | |
2243 | */ | |
2244 | ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, | |
2245 | ntfs_inode *base_ni, MFT_RECORD **mrec) | |
2246 | { | |
2247 | s64 ll, bit, old_data_initialized, old_data_size; | |
07a4e2da | 2248 | unsigned long flags; |
1da177e4 LT |
2249 | struct inode *vi; |
2250 | struct page *page; | |
2251 | ntfs_inode *mft_ni, *mftbmp_ni, *ni; | |
2252 | ntfs_attr_search_ctx *ctx; | |
2253 | MFT_RECORD *m; | |
2254 | ATTR_RECORD *a; | |
2255 | pgoff_t index; | |
2256 | unsigned int ofs; | |
2257 | int err; | |
2258 | le16 seq_no, usn; | |
c49c3111 | 2259 | bool record_formatted = false; |
1da177e4 LT |
2260 | |
2261 | if (base_ni) { | |
2262 | ntfs_debug("Entering (allocating an extent mft record for " | |
2263 | "base mft record 0x%llx).", | |
2264 | (long long)base_ni->mft_no); | |
2265 | /* @mode and @base_ni are mutually exclusive. */ | |
2266 | BUG_ON(mode); | |
2267 | } else | |
2268 | ntfs_debug("Entering (allocating a base mft record)."); | |
2269 | if (mode) { | |
2270 | /* @mode and @base_ni are mutually exclusive. */ | |
2271 | BUG_ON(base_ni); | |
2272 | /* We only support creation of normal files and directories. */ | |
2273 | if (!S_ISREG(mode) && !S_ISDIR(mode)) | |
2274 | return ERR_PTR(-EOPNOTSUPP); | |
2275 | } | |
2276 | BUG_ON(!mrec); | |
2277 | mft_ni = NTFS_I(vol->mft_ino); | |
2278 | mftbmp_ni = NTFS_I(vol->mftbmp_ino); | |
2279 | down_write(&vol->mftbmp_lock); | |
2280 | bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); | |
2281 | if (bit >= 0) { | |
2282 | ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", | |
2283 | (long long)bit); | |
2284 | goto have_alloc_rec; | |
2285 | } | |
2286 | if (bit != -ENOSPC) { | |
2287 | up_write(&vol->mftbmp_lock); | |
2288 | return ERR_PTR(bit); | |
2289 | } | |
2290 | /* | |
2291 | * No free mft records left. If the mft bitmap already covers more | |
2292 | * than the currently used mft records, the next records are all free, | |
2293 | * so we can simply allocate the first unused mft record. | |
2294 | * Note: We also have to make sure that the mft bitmap at least covers | |
2295 | * the first 24 mft records as they are special and whilst they may not | |
2296 | * be in use, we do not allocate from them. | |
2297 | */ | |
07a4e2da | 2298 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 | 2299 | ll = mft_ni->initialized_size >> vol->mft_record_size_bits; |
07a4e2da AA |
2300 | read_unlock_irqrestore(&mft_ni->size_lock, flags); |
2301 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | |
2302 | old_data_initialized = mftbmp_ni->initialized_size; | |
2303 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | |
2304 | if (old_data_initialized << 3 > ll && old_data_initialized > 3) { | |
1da177e4 LT |
2305 | bit = ll; |
2306 | if (bit < 24) | |
2307 | bit = 24; | |
2308 | if (unlikely(bit >= (1ll << 32))) | |
2309 | goto max_err_out; | |
2310 | ntfs_debug("Found free record (#2), bit 0x%llx.", | |
2311 | (long long)bit); | |
2312 | goto found_free_rec; | |
2313 | } | |
2314 | /* | |
2315 | * The mft bitmap needs to be expanded until it covers the first unused | |
2316 | * mft record that we can allocate. | |
2317 | * Note: The smallest mft record we allocate is mft record 24. | |
2318 | */ | |
07a4e2da | 2319 | bit = old_data_initialized << 3; |
1da177e4 LT |
2320 | if (unlikely(bit >= (1ll << 32))) |
2321 | goto max_err_out; | |
07a4e2da AA |
2322 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); |
2323 | old_data_size = mftbmp_ni->allocated_size; | |
1da177e4 LT |
2324 | ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " |
2325 | "data_size 0x%llx, initialized_size 0x%llx.", | |
07a4e2da AA |
2326 | (long long)old_data_size, |
2327 | (long long)i_size_read(vol->mftbmp_ino), | |
2328 | (long long)old_data_initialized); | |
2329 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | |
2330 | if (old_data_initialized + 8 > old_data_size) { | |
1da177e4 LT |
2331 | /* Need to extend bitmap by one more cluster. */ |
2332 | ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); | |
2333 | err = ntfs_mft_bitmap_extend_allocation_nolock(vol); | |
2334 | if (unlikely(err)) { | |
2335 | up_write(&vol->mftbmp_lock); | |
2336 | goto err_out; | |
2337 | } | |
07a4e2da AA |
2338 | #ifdef DEBUG |
2339 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | |
1da177e4 LT |
2340 | ntfs_debug("Status of mftbmp after allocation extension: " |
2341 | "allocated_size 0x%llx, data_size 0x%llx, " | |
2342 | "initialized_size 0x%llx.", | |
2343 | (long long)mftbmp_ni->allocated_size, | |
07a4e2da | 2344 | (long long)i_size_read(vol->mftbmp_ino), |
1da177e4 | 2345 | (long long)mftbmp_ni->initialized_size); |
07a4e2da AA |
2346 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
2347 | #endif /* DEBUG */ | |
1da177e4 LT |
2348 | } |
2349 | /* | |
2350 | * We now have sufficient allocated space, extend the initialized_size | |
2351 | * as well as the data_size if necessary and fill the new space with | |
2352 | * zeroes. | |
2353 | */ | |
2354 | err = ntfs_mft_bitmap_extend_initialized_nolock(vol); | |
2355 | if (unlikely(err)) { | |
2356 | up_write(&vol->mftbmp_lock); | |
2357 | goto err_out; | |
2358 | } | |
07a4e2da AA |
2359 | #ifdef DEBUG |
2360 | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | |
25985edc | 2361 | ntfs_debug("Status of mftbmp after initialized extension: " |
1da177e4 LT |
2362 | "allocated_size 0x%llx, data_size 0x%llx, " |
2363 | "initialized_size 0x%llx.", | |
2364 | (long long)mftbmp_ni->allocated_size, | |
07a4e2da | 2365 | (long long)i_size_read(vol->mftbmp_ino), |
1da177e4 | 2366 | (long long)mftbmp_ni->initialized_size); |
07a4e2da AA |
2367 | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); |
2368 | #endif /* DEBUG */ | |
1da177e4 LT |
2369 | ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); |
2370 | found_free_rec: | |
2371 | /* @bit is the found free mft record, allocate it in the mft bitmap. */ | |
2372 | ntfs_debug("At found_free_rec."); | |
2373 | err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); | |
2374 | if (unlikely(err)) { | |
2375 | ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); | |
2376 | up_write(&vol->mftbmp_lock); | |
2377 | goto err_out; | |
2378 | } | |
2379 | ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); | |
2380 | have_alloc_rec: | |
2381 | /* | |
2382 | * The mft bitmap is now uptodate. Deal with mft data attribute now. | |
2383 | * Note, we keep hold of the mft bitmap lock for writing until all | |
2384 | * modifications to the mft data attribute are complete, too, as they | |
2385 | * will impact decisions for mft bitmap and mft record allocation done | |
2386 | * by a parallel allocation and if the lock is not maintained a | |
2387 | * parallel allocation could allocate the same mft record as this one. | |
2388 | */ | |
2389 | ll = (bit + 1) << vol->mft_record_size_bits; | |
07a4e2da AA |
2390 | read_lock_irqsave(&mft_ni->size_lock, flags); |
2391 | old_data_initialized = mft_ni->initialized_size; | |
2392 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
2393 | if (ll <= old_data_initialized) { | |
1da177e4 LT |
2394 | ntfs_debug("Allocated mft record already initialized."); |
2395 | goto mft_rec_already_initialized; | |
2396 | } | |
2397 | ntfs_debug("Initializing allocated mft record."); | |
2398 | /* | |
2399 | * The mft record is outside the initialized data. Extend the mft data | |
2400 | * attribute until it covers the allocated record. The loop is only | |
2401 | * actually traversed more than once when a freshly formatted volume is | |
2402 | * first written to so it optimizes away nicely in the common case. | |
2403 | */ | |
07a4e2da | 2404 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2405 | ntfs_debug("Status of mft data before extension: " |
2406 | "allocated_size 0x%llx, data_size 0x%llx, " | |
2407 | "initialized_size 0x%llx.", | |
3834c3f2 | 2408 | (long long)mft_ni->allocated_size, |
07a4e2da | 2409 | (long long)i_size_read(vol->mft_ino), |
1da177e4 | 2410 | (long long)mft_ni->initialized_size); |
3834c3f2 AA |
2411 | while (ll > mft_ni->allocated_size) { |
2412 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1da177e4 LT |
2413 | err = ntfs_mft_data_extend_allocation_nolock(vol); |
2414 | if (unlikely(err)) { | |
2415 | ntfs_error(vol->sb, "Failed to extend mft data " | |
2416 | "allocation."); | |
2417 | goto undo_mftbmp_alloc_nolock; | |
2418 | } | |
07a4e2da | 2419 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2420 | ntfs_debug("Status of mft data after allocation extension: " |
2421 | "allocated_size 0x%llx, data_size 0x%llx, " | |
2422 | "initialized_size 0x%llx.", | |
2423 | (long long)mft_ni->allocated_size, | |
07a4e2da | 2424 | (long long)i_size_read(vol->mft_ino), |
1da177e4 LT |
2425 | (long long)mft_ni->initialized_size); |
2426 | } | |
3834c3f2 | 2427 | read_unlock_irqrestore(&mft_ni->size_lock, flags); |
1da177e4 LT |
2428 | /* |
2429 | * Extend mft data initialized size (and data size of course) to reach | |
2430 | * the allocated mft record, formatting the mft records allong the way. | |
2431 | * Note: We only modify the ntfs_inode structure as that is all that is | |
2432 | * needed by ntfs_mft_record_format(). We will update the attribute | |
2433 | * record itself in one fell swoop later on. | |
2434 | */ | |
07a4e2da | 2435 | write_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2436 | old_data_initialized = mft_ni->initialized_size; |
2437 | old_data_size = vol->mft_ino->i_size; | |
2438 | while (ll > mft_ni->initialized_size) { | |
2439 | s64 new_initialized_size, mft_no; | |
2440 | ||
2441 | new_initialized_size = mft_ni->initialized_size + | |
2442 | vol->mft_record_size; | |
2443 | mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; | |
07a4e2da AA |
2444 | if (new_initialized_size > i_size_read(vol->mft_ino)) |
2445 | i_size_write(vol->mft_ino, new_initialized_size); | |
2446 | write_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1da177e4 LT |
2447 | ntfs_debug("Initializing mft record 0x%llx.", |
2448 | (long long)mft_no); | |
2449 | err = ntfs_mft_record_format(vol, mft_no); | |
2450 | if (unlikely(err)) { | |
2451 | ntfs_error(vol->sb, "Failed to format mft record."); | |
2452 | goto undo_data_init; | |
2453 | } | |
07a4e2da | 2454 | write_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2455 | mft_ni->initialized_size = new_initialized_size; |
2456 | } | |
07a4e2da | 2457 | write_unlock_irqrestore(&mft_ni->size_lock, flags); |
c49c3111 | 2458 | record_formatted = true; |
1da177e4 LT |
2459 | /* Update the mft data attribute record to reflect the new sizes. */ |
2460 | m = map_mft_record(mft_ni); | |
2461 | if (IS_ERR(m)) { | |
2462 | ntfs_error(vol->sb, "Failed to map mft record."); | |
2463 | err = PTR_ERR(m); | |
2464 | goto undo_data_init; | |
2465 | } | |
2466 | ctx = ntfs_attr_get_search_ctx(mft_ni, m); | |
2467 | if (unlikely(!ctx)) { | |
2468 | ntfs_error(vol->sb, "Failed to get search context."); | |
2469 | err = -ENOMEM; | |
2470 | unmap_mft_record(mft_ni); | |
2471 | goto undo_data_init; | |
2472 | } | |
2473 | err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | |
2474 | CASE_SENSITIVE, 0, NULL, 0, ctx); | |
2475 | if (unlikely(err)) { | |
2476 | ntfs_error(vol->sb, "Failed to find first attribute extent of " | |
2477 | "mft data attribute."); | |
2478 | ntfs_attr_put_search_ctx(ctx); | |
2479 | unmap_mft_record(mft_ni); | |
2480 | goto undo_data_init; | |
2481 | } | |
2482 | a = ctx->attr; | |
07a4e2da | 2483 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2484 | a->data.non_resident.initialized_size = |
2485 | cpu_to_sle64(mft_ni->initialized_size); | |
07a4e2da AA |
2486 | a->data.non_resident.data_size = |
2487 | cpu_to_sle64(i_size_read(vol->mft_ino)); | |
2488 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1da177e4 LT |
2489 | /* Ensure the changes make it to disk. */ |
2490 | flush_dcache_mft_record_page(ctx->ntfs_ino); | |
2491 | mark_mft_record_dirty(ctx->ntfs_ino); | |
2492 | ntfs_attr_put_search_ctx(ctx); | |
2493 | unmap_mft_record(mft_ni); | |
07a4e2da | 2494 | read_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 LT |
2495 | ntfs_debug("Status of mft data after mft record initialization: " |
2496 | "allocated_size 0x%llx, data_size 0x%llx, " | |
2497 | "initialized_size 0x%llx.", | |
2498 | (long long)mft_ni->allocated_size, | |
07a4e2da | 2499 | (long long)i_size_read(vol->mft_ino), |
1da177e4 | 2500 | (long long)mft_ni->initialized_size); |
07a4e2da AA |
2501 | BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); |
2502 | BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); | |
2503 | read_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1da177e4 LT |
2504 | mft_rec_already_initialized: |
2505 | /* | |
2506 | * We can finally drop the mft bitmap lock as the mft data attribute | |
2507 | * has been fully updated. The only disparity left is that the | |
2508 | * allocated mft record still needs to be marked as in use to match the | |
2509 | * set bit in the mft bitmap but this is actually not a problem since | |
2510 | * this mft record is not referenced from anywhere yet and the fact | |
2511 | * that it is allocated in the mft bitmap means that no-one will try to | |
2512 | * allocate it either. | |
2513 | */ | |
2514 | up_write(&vol->mftbmp_lock); | |
2515 | /* | |
2516 | * We now have allocated and initialized the mft record. Calculate the | |
2517 | * index of and the offset within the page cache page the record is in. | |
2518 | */ | |
09cbfeaf KS |
2519 | index = bit << vol->mft_record_size_bits >> PAGE_SHIFT; |
2520 | ofs = (bit << vol->mft_record_size_bits) & ~PAGE_MASK; | |
1da177e4 LT |
2521 | /* Read, map, and pin the page containing the mft record. */ |
2522 | page = ntfs_map_page(vol->mft_ino->i_mapping, index); | |
801678c5 | 2523 | if (IS_ERR(page)) { |
1da177e4 LT |
2524 | ntfs_error(vol->sb, "Failed to map page containing allocated " |
2525 | "mft record 0x%llx.", (long long)bit); | |
2526 | err = PTR_ERR(page); | |
2527 | goto undo_mftbmp_alloc; | |
2528 | } | |
2529 | lock_page(page); | |
2530 | BUG_ON(!PageUptodate(page)); | |
2531 | ClearPageUptodate(page); | |
2532 | m = (MFT_RECORD*)((u8*)page_address(page) + ofs); | |
2533 | /* If we just formatted the mft record no need to do it again. */ | |
2534 | if (!record_formatted) { | |
2535 | /* Sanity check that the mft record is really not in use. */ | |
2536 | if (ntfs_is_file_record(m->magic) && | |
2537 | (m->flags & MFT_RECORD_IN_USE)) { | |
2538 | ntfs_error(vol->sb, "Mft record 0x%llx was marked " | |
2539 | "free in mft bitmap but is marked " | |
2540 | "used itself. Corrupt filesystem. " | |
2541 | "Unmount and run chkdsk.", | |
2542 | (long long)bit); | |
2543 | err = -EIO; | |
2544 | SetPageUptodate(page); | |
2545 | unlock_page(page); | |
2546 | ntfs_unmap_page(page); | |
2547 | NVolSetErrors(vol); | |
2548 | goto undo_mftbmp_alloc; | |
2549 | } | |
2550 | /* | |
2551 | * We need to (re-)format the mft record, preserving the | |
2552 | * sequence number if it is not zero as well as the update | |
2553 | * sequence number if it is not zero or -1 (0xffff). This | |
2554 | * means we do not need to care whether or not something went | |
2555 | * wrong with the previous mft record. | |
2556 | */ | |
2557 | seq_no = m->sequence_number; | |
2558 | usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); | |
2559 | err = ntfs_mft_record_layout(vol, bit, m); | |
2560 | if (unlikely(err)) { | |
2561 | ntfs_error(vol->sb, "Failed to layout allocated mft " | |
2562 | "record 0x%llx.", (long long)bit); | |
2563 | SetPageUptodate(page); | |
2564 | unlock_page(page); | |
2565 | ntfs_unmap_page(page); | |
2566 | goto undo_mftbmp_alloc; | |
2567 | } | |
2568 | if (seq_no) | |
2569 | m->sequence_number = seq_no; | |
2570 | if (usn && le16_to_cpu(usn) != 0xffff) | |
2571 | *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; | |
2572 | } | |
2573 | /* Set the mft record itself in use. */ | |
2574 | m->flags |= MFT_RECORD_IN_USE; | |
2575 | if (S_ISDIR(mode)) | |
2576 | m->flags |= MFT_RECORD_IS_DIRECTORY; | |
2577 | flush_dcache_page(page); | |
2578 | SetPageUptodate(page); | |
2579 | if (base_ni) { | |
af5eb745 AA |
2580 | MFT_RECORD *m_tmp; |
2581 | ||
1da177e4 LT |
2582 | /* |
2583 | * Setup the base mft record in the extent mft record. This | |
2584 | * completes initialization of the allocated extent mft record | |
2585 | * and we can simply use it with map_extent_mft_record(). | |
2586 | */ | |
2587 | m->base_mft_record = MK_LE_MREF(base_ni->mft_no, | |
2588 | base_ni->seq_no); | |
2589 | /* | |
2590 | * Allocate an extent inode structure for the new mft record, | |
2591 | * attach it to the base inode @base_ni and map, pin, and lock | |
2592 | * its, i.e. the allocated, mft record. | |
2593 | */ | |
af5eb745 AA |
2594 | m_tmp = map_extent_mft_record(base_ni, bit, &ni); |
2595 | if (IS_ERR(m_tmp)) { | |
1da177e4 LT |
2596 | ntfs_error(vol->sb, "Failed to map allocated extent " |
2597 | "mft record 0x%llx.", (long long)bit); | |
af5eb745 | 2598 | err = PTR_ERR(m_tmp); |
1da177e4 LT |
2599 | /* Set the mft record itself not in use. */ |
2600 | m->flags &= cpu_to_le16( | |
2601 | ~le16_to_cpu(MFT_RECORD_IN_USE)); | |
2602 | flush_dcache_page(page); | |
2603 | /* Make sure the mft record is written out to disk. */ | |
2604 | mark_ntfs_record_dirty(page, ofs); | |
2605 | unlock_page(page); | |
2606 | ntfs_unmap_page(page); | |
2607 | goto undo_mftbmp_alloc; | |
2608 | } | |
af5eb745 | 2609 | BUG_ON(m != m_tmp); |
1da177e4 LT |
2610 | /* |
2611 | * Make sure the allocated mft record is written out to disk. | |
2612 | * No need to set the inode dirty because the caller is going | |
2613 | * to do that anyway after finishing with the new extent mft | |
2614 | * record (e.g. at a minimum a new attribute will be added to | |
2615 | * the mft record. | |
2616 | */ | |
2617 | mark_ntfs_record_dirty(page, ofs); | |
2618 | unlock_page(page); | |
2619 | /* | |
2620 | * Need to unmap the page since map_extent_mft_record() mapped | |
2621 | * it as well so we have it mapped twice at the moment. | |
2622 | */ | |
2623 | ntfs_unmap_page(page); | |
2624 | } else { | |
2625 | /* | |
2626 | * Allocate a new VFS inode and set it up. NOTE: @vi->i_nlink | |
2627 | * is set to 1 but the mft record->link_count is 0. The caller | |
2628 | * needs to bear this in mind. | |
2629 | */ | |
2630 | vi = new_inode(vol->sb); | |
2631 | if (unlikely(!vi)) { | |
2632 | err = -ENOMEM; | |
2633 | /* Set the mft record itself not in use. */ | |
2634 | m->flags &= cpu_to_le16( | |
2635 | ~le16_to_cpu(MFT_RECORD_IN_USE)); | |
2636 | flush_dcache_page(page); | |
2637 | /* Make sure the mft record is written out to disk. */ | |
2638 | mark_ntfs_record_dirty(page, ofs); | |
2639 | unlock_page(page); | |
2640 | ntfs_unmap_page(page); | |
2641 | goto undo_mftbmp_alloc; | |
2642 | } | |
2643 | vi->i_ino = bit; | |
1da177e4 LT |
2644 | /* |
2645 | * This is for checking whether an inode has changed w.r.t. a | |
2646 | * file so that the file can be updated if necessary (compare | |
2647 | * with f_version). | |
2648 | */ | |
2649 | vi->i_version = 1; | |
2650 | ||
2651 | /* The owner and group come from the ntfs volume. */ | |
2652 | vi->i_uid = vol->uid; | |
2653 | vi->i_gid = vol->gid; | |
2654 | ||
2655 | /* Initialize the ntfs specific part of @vi. */ | |
2656 | ntfs_init_big_inode(vi); | |
2657 | ni = NTFS_I(vi); | |
2658 | /* | |
2659 | * Set the appropriate mode, attribute type, and name. For | |
2660 | * directories, also setup the index values to the defaults. | |
2661 | */ | |
2662 | if (S_ISDIR(mode)) { | |
2663 | vi->i_mode = S_IFDIR | S_IRWXUGO; | |
2664 | vi->i_mode &= ~vol->dmask; | |
2665 | ||
2666 | NInoSetMstProtected(ni); | |
2667 | ni->type = AT_INDEX_ALLOCATION; | |
2668 | ni->name = I30; | |
2669 | ni->name_len = 4; | |
2670 | ||
2671 | ni->itype.index.block_size = 4096; | |
b9a2838c | 2672 | ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; |
1da177e4 LT |
2673 | ni->itype.index.collation_rule = COLLATION_FILE_NAME; |
2674 | if (vol->cluster_size <= ni->itype.index.block_size) { | |
2675 | ni->itype.index.vcn_size = vol->cluster_size; | |
2676 | ni->itype.index.vcn_size_bits = | |
2677 | vol->cluster_size_bits; | |
2678 | } else { | |
2679 | ni->itype.index.vcn_size = vol->sector_size; | |
2680 | ni->itype.index.vcn_size_bits = | |
2681 | vol->sector_size_bits; | |
2682 | } | |
2683 | } else { | |
2684 | vi->i_mode = S_IFREG | S_IRWXUGO; | |
2685 | vi->i_mode &= ~vol->fmask; | |
2686 | ||
2687 | ni->type = AT_DATA; | |
2688 | ni->name = NULL; | |
2689 | ni->name_len = 0; | |
2690 | } | |
2691 | if (IS_RDONLY(vi)) | |
2692 | vi->i_mode &= ~S_IWUGO; | |
2693 | ||
2694 | /* Set the inode times to the current time. */ | |
2695 | vi->i_atime = vi->i_mtime = vi->i_ctime = | |
c2050a45 | 2696 | current_time(vi); |
1da177e4 LT |
2697 | /* |
2698 | * Set the file size to 0, the ntfs inode sizes are set to 0 by | |
2699 | * the call to ntfs_init_big_inode() below. | |
2700 | */ | |
2701 | vi->i_size = 0; | |
2702 | vi->i_blocks = 0; | |
2703 | ||
2704 | /* Set the sequence number. */ | |
2705 | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); | |
2706 | /* | |
2707 | * Manually map, pin, and lock the mft record as we already | |
2708 | * have its page mapped and it is very easy to do. | |
2709 | */ | |
2710 | atomic_inc(&ni->count); | |
4e5e529a | 2711 | mutex_lock(&ni->mrec_lock); |
1da177e4 LT |
2712 | ni->page = page; |
2713 | ni->page_ofs = ofs; | |
2714 | /* | |
2715 | * Make sure the allocated mft record is written out to disk. | |
2716 | * NOTE: We do not set the ntfs inode dirty because this would | |
2717 | * fail in ntfs_write_inode() because the inode does not have a | |
2718 | * standard information attribute yet. Also, there is no need | |
2719 | * to set the inode dirty because the caller is going to do | |
2720 | * that anyway after finishing with the new mft record (e.g. at | |
2721 | * a minimum some new attributes will be added to the mft | |
2722 | * record. | |
2723 | */ | |
2724 | mark_ntfs_record_dirty(page, ofs); | |
2725 | unlock_page(page); | |
2726 | ||
2727 | /* Add the inode to the inode hash for the superblock. */ | |
2728 | insert_inode_hash(vi); | |
2729 | ||
2730 | /* Update the default mft allocation position. */ | |
2731 | vol->mft_data_pos = bit + 1; | |
2732 | } | |
2733 | /* | |
2734 | * Return the opened, allocated inode of the allocated mft record as | |
2735 | * well as the mapped, pinned, and locked mft record. | |
2736 | */ | |
2737 | ntfs_debug("Returning opened, allocated %sinode 0x%llx.", | |
2738 | base_ni ? "extent " : "", (long long)bit); | |
2739 | *mrec = m; | |
2740 | return ni; | |
2741 | undo_data_init: | |
07a4e2da | 2742 | write_lock_irqsave(&mft_ni->size_lock, flags); |
1da177e4 | 2743 | mft_ni->initialized_size = old_data_initialized; |
07a4e2da AA |
2744 | i_size_write(vol->mft_ino, old_data_size); |
2745 | write_unlock_irqrestore(&mft_ni->size_lock, flags); | |
1da177e4 LT |
2746 | goto undo_mftbmp_alloc_nolock; |
2747 | undo_mftbmp_alloc: | |
2748 | down_write(&vol->mftbmp_lock); | |
2749 | undo_mftbmp_alloc_nolock: | |
2750 | if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { | |
2751 | ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); | |
2752 | NVolSetErrors(vol); | |
2753 | } | |
2754 | up_write(&vol->mftbmp_lock); | |
2755 | err_out: | |
2756 | return ERR_PTR(err); | |
2757 | max_err_out: | |
2758 | ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " | |
2759 | "number of inodes (2^32) has already been reached."); | |
2760 | up_write(&vol->mftbmp_lock); | |
2761 | return ERR_PTR(-ENOSPC); | |
2762 | } | |
2763 | ||
2764 | /** | |
2765 | * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume | |
2766 | * @ni: ntfs inode of the mapped extent mft record to free | |
2767 | * @m: mapped extent mft record of the ntfs inode @ni | |
2768 | * | |
2769 | * Free the mapped extent mft record @m of the extent ntfs inode @ni. | |
2770 | * | |
2771 | * Note that this function unmaps the mft record and closes and destroys @ni | |
2772 | * internally and hence you cannot use either @ni nor @m any more after this | |
2773 | * function returns success. | |
2774 | * | |
2775 | * On success return 0 and on error return -errno. @ni and @m are still valid | |
2776 | * in this case and have not been freed. | |
2777 | * | |
2778 | * For some errors an error message is displayed and the success code 0 is | |
2779 | * returned and the volume is then left dirty on umount. This makes sense in | |
2780 | * case we could not rollback the changes that were already done since the | |
2781 | * caller no longer wants to reference this mft record so it does not matter to | |
2782 | * the caller if something is wrong with it as long as it is properly detached | |
2783 | * from the base inode. | |
2784 | */ | |
2785 | int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) | |
2786 | { | |
2787 | unsigned long mft_no = ni->mft_no; | |
2788 | ntfs_volume *vol = ni->vol; | |
2789 | ntfs_inode *base_ni; | |
2790 | ntfs_inode **extent_nis; | |
2791 | int i, err; | |
2792 | le16 old_seq_no; | |
2793 | u16 seq_no; | |
2794 | ||
2795 | BUG_ON(NInoAttr(ni)); | |
2796 | BUG_ON(ni->nr_extents != -1); | |
2797 | ||
4e5e529a | 2798 | mutex_lock(&ni->extent_lock); |
1da177e4 | 2799 | base_ni = ni->ext.base_ntfs_ino; |
4e5e529a | 2800 | mutex_unlock(&ni->extent_lock); |
1da177e4 LT |
2801 | |
2802 | BUG_ON(base_ni->nr_extents <= 0); | |
2803 | ||
2804 | ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", | |
2805 | mft_no, base_ni->mft_no); | |
2806 | ||
4e5e529a | 2807 | mutex_lock(&base_ni->extent_lock); |
1da177e4 LT |
2808 | |
2809 | /* Make sure we are holding the only reference to the extent inode. */ | |
2810 | if (atomic_read(&ni->count) > 2) { | |
2811 | ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " | |
2812 | "not freeing.", base_ni->mft_no); | |
4e5e529a | 2813 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
2814 | return -EBUSY; |
2815 | } | |
2816 | ||
2817 | /* Dissociate the ntfs inode from the base inode. */ | |
2818 | extent_nis = base_ni->ext.extent_ntfs_inos; | |
2819 | err = -ENOENT; | |
2820 | for (i = 0; i < base_ni->nr_extents; i++) { | |
2821 | if (ni != extent_nis[i]) | |
2822 | continue; | |
2823 | extent_nis += i; | |
2824 | base_ni->nr_extents--; | |
2825 | memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * | |
2826 | sizeof(ntfs_inode*)); | |
2827 | err = 0; | |
2828 | break; | |
2829 | } | |
2830 | ||
4e5e529a | 2831 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
2832 | |
2833 | if (unlikely(err)) { | |
2834 | ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " | |
2835 | "its base inode 0x%lx.", mft_no, | |
2836 | base_ni->mft_no); | |
2837 | BUG(); | |
2838 | } | |
2839 | ||
2840 | /* | |
2841 | * The extent inode is no longer attached to the base inode so no one | |
2842 | * can get a reference to it any more. | |
2843 | */ | |
2844 | ||
2845 | /* Mark the mft record as not in use. */ | |
63cd8854 | 2846 | m->flags &= ~MFT_RECORD_IN_USE; |
1da177e4 LT |
2847 | |
2848 | /* Increment the sequence number, skipping zero, if it is not zero. */ | |
2849 | old_seq_no = m->sequence_number; | |
2850 | seq_no = le16_to_cpu(old_seq_no); | |
2851 | if (seq_no == 0xffff) | |
2852 | seq_no = 1; | |
2853 | else if (seq_no) | |
2854 | seq_no++; | |
2855 | m->sequence_number = cpu_to_le16(seq_no); | |
2856 | ||
2857 | /* | |
2858 | * Set the ntfs inode dirty and write it out. We do not need to worry | |
2859 | * about the base inode here since whatever caused the extent mft | |
2860 | * record to be freed is guaranteed to do it already. | |
2861 | */ | |
2862 | NInoSetDirty(ni); | |
2863 | err = write_mft_record(ni, m, 0); | |
2864 | if (unlikely(err)) { | |
2865 | ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " | |
2866 | "freeing.", mft_no); | |
2867 | goto rollback; | |
2868 | } | |
2869 | rollback_error: | |
2870 | /* Unmap and throw away the now freed extent inode. */ | |
2871 | unmap_extent_mft_record(ni); | |
2872 | ntfs_clear_extent_inode(ni); | |
2873 | ||
2874 | /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ | |
2875 | down_write(&vol->mftbmp_lock); | |
2876 | err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); | |
2877 | up_write(&vol->mftbmp_lock); | |
2878 | if (unlikely(err)) { | |
2879 | /* | |
2880 | * The extent inode is gone but we failed to deallocate it in | |
2881 | * the mft bitmap. Just emit a warning and leave the volume | |
2882 | * dirty on umount. | |
2883 | */ | |
2884 | ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); | |
2885 | NVolSetErrors(vol); | |
2886 | } | |
2887 | return 0; | |
2888 | rollback: | |
2889 | /* Rollback what we did... */ | |
4e5e529a | 2890 | mutex_lock(&base_ni->extent_lock); |
1da177e4 LT |
2891 | extent_nis = base_ni->ext.extent_ntfs_inos; |
2892 | if (!(base_ni->nr_extents & 3)) { | |
2893 | int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); | |
2894 | ||
f52720ca | 2895 | extent_nis = kmalloc(new_size, GFP_NOFS); |
1da177e4 LT |
2896 | if (unlikely(!extent_nis)) { |
2897 | ntfs_error(vol->sb, "Failed to allocate internal " | |
2898 | "buffer during rollback.%s", es); | |
4e5e529a | 2899 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
2900 | NVolSetErrors(vol); |
2901 | goto rollback_error; | |
2902 | } | |
2903 | if (base_ni->nr_extents) { | |
2904 | BUG_ON(!base_ni->ext.extent_ntfs_inos); | |
2905 | memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, | |
2906 | new_size - 4 * sizeof(ntfs_inode*)); | |
2907 | kfree(base_ni->ext.extent_ntfs_inos); | |
2908 | } | |
2909 | base_ni->ext.extent_ntfs_inos = extent_nis; | |
2910 | } | |
2911 | m->flags |= MFT_RECORD_IN_USE; | |
2912 | m->sequence_number = old_seq_no; | |
2913 | extent_nis[base_ni->nr_extents++] = ni; | |
4e5e529a | 2914 | mutex_unlock(&base_ni->extent_lock); |
1da177e4 LT |
2915 | mark_mft_record_dirty(ni); |
2916 | return err; | |
2917 | } | |
2918 | #endif /* NTFS_RW */ |