]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/ntfs/super.c
NTFS: Update attribute definition handling.
[mirror_ubuntu-bionic-kernel.git] / fs / ntfs / super.c
CommitLineData
1da177e4
LT
1/*
2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
3 *
c002f425 4 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
5 * Copyright (c) 2001,2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23#include <linux/stddef.h>
24#include <linux/init.h>
25#include <linux/string.h>
26#include <linux/spinlock.h>
27#include <linux/blkdev.h> /* For bdev_hardsect_size(). */
28#include <linux/backing-dev.h>
29#include <linux/buffer_head.h>
30#include <linux/vfs.h>
31#include <linux/moduleparam.h>
32#include <linux/smp_lock.h>
33
34#include "sysctl.h"
35#include "logfile.h"
36#include "quota.h"
37#include "dir.h"
38#include "debug.h"
39#include "index.h"
40#include "aops.h"
b0d2374d 41#include "layout.h"
1da177e4
LT
42#include "malloc.h"
43#include "ntfs.h"
44
c002f425 45/* Number of mounted filesystems which have compression enabled. */
1da177e4
LT
46static unsigned long ntfs_nr_compression_users;
47
48/* A global default upcase table and a corresponding reference count. */
49static ntfschar *default_upcase = NULL;
50static unsigned long ntfs_nr_upcase_users = 0;
51
52/* Error constants/strings used in inode.c::ntfs_show_options(). */
53typedef enum {
54 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
55 ON_ERRORS_PANIC = 0x01,
56 ON_ERRORS_REMOUNT_RO = 0x02,
57 ON_ERRORS_CONTINUE = 0x04,
58 /* Optional, can be combined with any of the above. */
59 ON_ERRORS_RECOVER = 0x10,
60} ON_ERRORS_ACTIONS;
61
62const option_t on_errors_arr[] = {
63 { ON_ERRORS_PANIC, "panic" },
64 { ON_ERRORS_REMOUNT_RO, "remount-ro", },
65 { ON_ERRORS_CONTINUE, "continue", },
66 { ON_ERRORS_RECOVER, "recover" },
67 { 0, NULL }
68};
69
70/**
71 * simple_getbool -
72 *
73 * Copied from old ntfs driver (which copied from vfat driver).
74 */
75static int simple_getbool(char *s, BOOL *setval)
76{
77 if (s) {
78 if (!strcmp(s, "1") || !strcmp(s, "yes") || !strcmp(s, "true"))
79 *setval = TRUE;
80 else if (!strcmp(s, "0") || !strcmp(s, "no") ||
81 !strcmp(s, "false"))
82 *setval = FALSE;
83 else
84 return 0;
85 } else
86 *setval = TRUE;
87 return 1;
88}
89
90/**
91 * parse_options - parse the (re)mount options
92 * @vol: ntfs volume
93 * @opt: string containing the (re)mount options
94 *
95 * Parse the recognized options in @opt for the ntfs volume described by @vol.
96 */
97static BOOL parse_options(ntfs_volume *vol, char *opt)
98{
99 char *p, *v, *ov;
100 static char *utf8 = "utf8";
101 int errors = 0, sloppy = 0;
102 uid_t uid = (uid_t)-1;
103 gid_t gid = (gid_t)-1;
104 mode_t fmask = (mode_t)-1, dmask = (mode_t)-1;
105 int mft_zone_multiplier = -1, on_errors = -1;
c002f425 106 int show_sys_files = -1, case_sensitive = -1, disable_sparse = -1;
1da177e4
LT
107 struct nls_table *nls_map = NULL, *old_nls;
108
109 /* I am lazy... (-8 */
110#define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
111 if (!strcmp(p, option)) { \
112 if (!v || !*v) \
113 variable = default_value; \
114 else { \
115 variable = simple_strtoul(ov = v, &v, 0); \
116 if (*v) \
117 goto needs_val; \
118 } \
119 }
120#define NTFS_GETOPT(option, variable) \
121 if (!strcmp(p, option)) { \
122 if (!v || !*v) \
123 goto needs_arg; \
124 variable = simple_strtoul(ov = v, &v, 0); \
125 if (*v) \
126 goto needs_val; \
127 }
128#define NTFS_GETOPT_BOOL(option, variable) \
129 if (!strcmp(p, option)) { \
130 BOOL val; \
131 if (!simple_getbool(v, &val)) \
132 goto needs_bool; \
133 variable = val; \
134 }
135#define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
136 if (!strcmp(p, option)) { \
137 int _i; \
138 if (!v || !*v) \
139 goto needs_arg; \
140 ov = v; \
141 if (variable == -1) \
142 variable = 0; \
143 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
144 if (!strcmp(opt_array[_i].str, v)) { \
145 variable |= opt_array[_i].val; \
146 break; \
147 } \
148 if (!opt_array[_i].str || !*opt_array[_i].str) \
149 goto needs_val; \
150 }
151 if (!opt || !*opt)
152 goto no_mount_options;
153 ntfs_debug("Entering with mount options string: %s", opt);
154 while ((p = strsep(&opt, ","))) {
155 if ((v = strchr(p, '=')))
156 *v++ = 0;
157 NTFS_GETOPT("uid", uid)
158 else NTFS_GETOPT("gid", gid)
159 else NTFS_GETOPT("umask", fmask = dmask)
160 else NTFS_GETOPT("fmask", fmask)
161 else NTFS_GETOPT("dmask", dmask)
162 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier)
163 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy, TRUE)
164 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files)
165 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive)
c002f425 166 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse)
1da177e4
LT
167 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors,
168 on_errors_arr)
169 else if (!strcmp(p, "posix") || !strcmp(p, "show_inodes"))
170 ntfs_warning(vol->sb, "Ignoring obsolete option %s.",
171 p);
172 else if (!strcmp(p, "nls") || !strcmp(p, "iocharset")) {
173 if (!strcmp(p, "iocharset"))
174 ntfs_warning(vol->sb, "Option iocharset is "
175 "deprecated. Please use "
176 "option nls=<charsetname> in "
177 "the future.");
178 if (!v || !*v)
179 goto needs_arg;
180use_utf8:
181 old_nls = nls_map;
182 nls_map = load_nls(v);
183 if (!nls_map) {
184 if (!old_nls) {
185 ntfs_error(vol->sb, "NLS character set "
186 "%s not found.", v);
187 return FALSE;
188 }
189 ntfs_error(vol->sb, "NLS character set %s not "
190 "found. Using previous one %s.",
191 v, old_nls->charset);
192 nls_map = old_nls;
193 } else /* nls_map */ {
194 if (old_nls)
195 unload_nls(old_nls);
196 }
197 } else if (!strcmp(p, "utf8")) {
198 BOOL val = FALSE;
199 ntfs_warning(vol->sb, "Option utf8 is no longer "
200 "supported, using option nls=utf8. Please "
201 "use option nls=utf8 in the future and "
202 "make sure utf8 is compiled either as a "
203 "module or into the kernel.");
204 if (!v || !*v)
205 val = TRUE;
206 else if (!simple_getbool(v, &val))
207 goto needs_bool;
208 if (val) {
209 v = utf8;
210 goto use_utf8;
211 }
212 } else {
213 ntfs_error(vol->sb, "Unrecognized mount option %s.", p);
214 if (errors < INT_MAX)
215 errors++;
216 }
217#undef NTFS_GETOPT_OPTIONS_ARRAY
218#undef NTFS_GETOPT_BOOL
219#undef NTFS_GETOPT
220#undef NTFS_GETOPT_WITH_DEFAULT
221 }
222no_mount_options:
223 if (errors && !sloppy)
224 return FALSE;
225 if (sloppy)
226 ntfs_warning(vol->sb, "Sloppy option given. Ignoring "
227 "unrecognized mount option(s) and continuing.");
228 /* Keep this first! */
229 if (on_errors != -1) {
230 if (!on_errors) {
231 ntfs_error(vol->sb, "Invalid errors option argument "
232 "or bug in options parser.");
233 return FALSE;
234 }
235 }
236 if (nls_map) {
237 if (vol->nls_map && vol->nls_map != nls_map) {
238 ntfs_error(vol->sb, "Cannot change NLS character set "
239 "on remount.");
240 return FALSE;
241 } /* else (!vol->nls_map) */
242 ntfs_debug("Using NLS character set %s.", nls_map->charset);
243 vol->nls_map = nls_map;
244 } else /* (!nls_map) */ {
245 if (!vol->nls_map) {
246 vol->nls_map = load_nls_default();
247 if (!vol->nls_map) {
248 ntfs_error(vol->sb, "Failed to load default "
249 "NLS character set.");
250 return FALSE;
251 }
252 ntfs_debug("Using default NLS character set (%s).",
253 vol->nls_map->charset);
254 }
255 }
256 if (mft_zone_multiplier != -1) {
257 if (vol->mft_zone_multiplier && vol->mft_zone_multiplier !=
258 mft_zone_multiplier) {
259 ntfs_error(vol->sb, "Cannot change mft_zone_multiplier "
260 "on remount.");
261 return FALSE;
262 }
263 if (mft_zone_multiplier < 1 || mft_zone_multiplier > 4) {
264 ntfs_error(vol->sb, "Invalid mft_zone_multiplier. "
265 "Using default value, i.e. 1.");
266 mft_zone_multiplier = 1;
267 }
268 vol->mft_zone_multiplier = mft_zone_multiplier;
269 }
270 if (!vol->mft_zone_multiplier)
271 vol->mft_zone_multiplier = 1;
272 if (on_errors != -1)
273 vol->on_errors = on_errors;
274 if (!vol->on_errors || vol->on_errors == ON_ERRORS_RECOVER)
275 vol->on_errors |= ON_ERRORS_CONTINUE;
276 if (uid != (uid_t)-1)
277 vol->uid = uid;
278 if (gid != (gid_t)-1)
279 vol->gid = gid;
280 if (fmask != (mode_t)-1)
281 vol->fmask = fmask;
282 if (dmask != (mode_t)-1)
283 vol->dmask = dmask;
284 if (show_sys_files != -1) {
285 if (show_sys_files)
286 NVolSetShowSystemFiles(vol);
287 else
288 NVolClearShowSystemFiles(vol);
289 }
290 if (case_sensitive != -1) {
291 if (case_sensitive)
292 NVolSetCaseSensitive(vol);
293 else
294 NVolClearCaseSensitive(vol);
295 }
c002f425
AA
296 if (disable_sparse != -1) {
297 if (disable_sparse)
298 NVolClearSparseEnabled(vol);
299 else {
300 if (!NVolSparseEnabled(vol) &&
301 vol->major_ver && vol->major_ver < 3)
302 ntfs_warning(vol->sb, "Not enabling sparse "
303 "support due to NTFS volume "
304 "version %i.%i (need at least "
305 "version 3.0).", vol->major_ver,
306 vol->minor_ver);
307 else
308 NVolSetSparseEnabled(vol);
309 }
310 }
1da177e4
LT
311 return TRUE;
312needs_arg:
313 ntfs_error(vol->sb, "The %s option requires an argument.", p);
314 return FALSE;
315needs_bool:
316 ntfs_error(vol->sb, "The %s option requires a boolean argument.", p);
317 return FALSE;
318needs_val:
319 ntfs_error(vol->sb, "Invalid %s option argument: %s", p, ov);
320 return FALSE;
321}
322
323#ifdef NTFS_RW
324
325/**
326 * ntfs_write_volume_flags - write new flags to the volume information flags
327 * @vol: ntfs volume on which to modify the flags
328 * @flags: new flags value for the volume information flags
329 *
330 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
331 * instead (see below).
332 *
333 * Replace the volume information flags on the volume @vol with the value
334 * supplied in @flags. Note, this overwrites the volume information flags, so
335 * make sure to combine the flags you want to modify with the old flags and use
336 * the result when calling ntfs_write_volume_flags().
337 *
338 * Return 0 on success and -errno on error.
339 */
340static int ntfs_write_volume_flags(ntfs_volume *vol, const VOLUME_FLAGS flags)
341{
342 ntfs_inode *ni = NTFS_I(vol->vol_ino);
343 MFT_RECORD *m;
344 VOLUME_INFORMATION *vi;
345 ntfs_attr_search_ctx *ctx;
346 int err;
347
348 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
349 le16_to_cpu(vol->vol_flags), le16_to_cpu(flags));
350 if (vol->vol_flags == flags)
351 goto done;
352 BUG_ON(!ni);
353 m = map_mft_record(ni);
354 if (IS_ERR(m)) {
355 err = PTR_ERR(m);
356 goto err_out;
357 }
358 ctx = ntfs_attr_get_search_ctx(ni, m);
359 if (!ctx) {
360 err = -ENOMEM;
361 goto put_unm_err_out;
362 }
363 err = ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
364 ctx);
365 if (err)
366 goto put_unm_err_out;
367 vi = (VOLUME_INFORMATION*)((u8*)ctx->attr +
368 le16_to_cpu(ctx->attr->data.resident.value_offset));
369 vol->vol_flags = vi->flags = flags;
370 flush_dcache_mft_record_page(ctx->ntfs_ino);
371 mark_mft_record_dirty(ctx->ntfs_ino);
372 ntfs_attr_put_search_ctx(ctx);
373 unmap_mft_record(ni);
374done:
375 ntfs_debug("Done.");
376 return 0;
377put_unm_err_out:
378 if (ctx)
379 ntfs_attr_put_search_ctx(ctx);
380 unmap_mft_record(ni);
381err_out:
382 ntfs_error(vol->sb, "Failed with error code %i.", -err);
383 return err;
384}
385
386/**
387 * ntfs_set_volume_flags - set bits in the volume information flags
388 * @vol: ntfs volume on which to modify the flags
389 * @flags: flags to set on the volume
390 *
391 * Set the bits in @flags in the volume information flags on the volume @vol.
392 *
393 * Return 0 on success and -errno on error.
394 */
395static inline int ntfs_set_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
396{
397 flags &= VOLUME_FLAGS_MASK;
398 return ntfs_write_volume_flags(vol, vol->vol_flags | flags);
399}
400
401/**
402 * ntfs_clear_volume_flags - clear bits in the volume information flags
403 * @vol: ntfs volume on which to modify the flags
404 * @flags: flags to clear on the volume
405 *
406 * Clear the bits in @flags in the volume information flags on the volume @vol.
407 *
408 * Return 0 on success and -errno on error.
409 */
410static inline int ntfs_clear_volume_flags(ntfs_volume *vol, VOLUME_FLAGS flags)
411{
412 flags &= VOLUME_FLAGS_MASK;
413 flags = vol->vol_flags & cpu_to_le16(~le16_to_cpu(flags));
414 return ntfs_write_volume_flags(vol, flags);
415}
416
417#endif /* NTFS_RW */
418
419/**
420 * ntfs_remount - change the mount options of a mounted ntfs filesystem
421 * @sb: superblock of mounted ntfs filesystem
422 * @flags: remount flags
423 * @opt: remount options string
424 *
425 * Change the mount options of an already mounted ntfs filesystem.
426 *
427 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
428 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
429 * @sb->s_flags are not changed.
430 */
431static int ntfs_remount(struct super_block *sb, int *flags, char *opt)
432{
433 ntfs_volume *vol = NTFS_SB(sb);
434
435 ntfs_debug("Entering with remount options string: %s", opt);
436#ifndef NTFS_RW
437 /* For read-only compiled driver, enforce all read-only flags. */
438 *flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
439#else /* NTFS_RW */
440 /*
441 * For the read-write compiled driver, if we are remounting read-write,
442 * make sure there are no volume errors and that no unsupported volume
443 * flags are set. Also, empty the logfile journal as it would become
444 * stale as soon as something is written to the volume and mark the
445 * volume dirty so that chkdsk is run if the volume is not umounted
446 * cleanly. Finally, mark the quotas out of date so Windows rescans
447 * the volume on boot and updates them.
448 *
449 * When remounting read-only, mark the volume clean if no volume errors
450 * have occured.
451 */
452 if ((sb->s_flags & MS_RDONLY) && !(*flags & MS_RDONLY)) {
453 static const char *es = ". Cannot remount read-write.";
454
455 /* Remounting read-write. */
456 if (NVolErrors(vol)) {
457 ntfs_error(sb, "Volume has errors and is read-only%s",
458 es);
459 return -EROFS;
460 }
461 if (vol->vol_flags & VOLUME_IS_DIRTY) {
462 ntfs_error(sb, "Volume is dirty and read-only%s", es);
463 return -EROFS;
464 }
465 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
466 ntfs_error(sb, "Volume has unsupported flags set and "
467 "is read-only%s", es);
468 return -EROFS;
469 }
470 if (ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
471 ntfs_error(sb, "Failed to set dirty bit in volume "
472 "information flags%s", es);
473 return -EROFS;
474 }
475#if 0
476 // TODO: Enable this code once we start modifying anything that
477 // is different between NTFS 1.2 and 3.x...
478 /* Set NT4 compatibility flag on newer NTFS version volumes. */
479 if ((vol->major_ver > 1)) {
480 if (ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
481 ntfs_error(sb, "Failed to set NT4 "
482 "compatibility flag%s", es);
483 NVolSetErrors(vol);
484 return -EROFS;
485 }
486 }
487#endif
488 if (!ntfs_empty_logfile(vol->logfile_ino)) {
489 ntfs_error(sb, "Failed to empty journal $LogFile%s",
490 es);
491 NVolSetErrors(vol);
492 return -EROFS;
493 }
494 if (!ntfs_mark_quotas_out_of_date(vol)) {
495 ntfs_error(sb, "Failed to mark quotas out of date%s",
496 es);
497 NVolSetErrors(vol);
498 return -EROFS;
499 }
500 } else if (!(sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) {
501 /* Remounting read-only. */
502 if (!NVolErrors(vol)) {
503 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
504 ntfs_warning(sb, "Failed to clear dirty bit "
505 "in volume information "
506 "flags. Run chkdsk.");
507 }
508 }
509#endif /* NTFS_RW */
510
511 // TODO: Deal with *flags.
512
513 if (!parse_options(vol, opt))
514 return -EINVAL;
515 ntfs_debug("Done.");
516 return 0;
517}
518
519/**
520 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
521 * @sb: Super block of the device to which @b belongs.
522 * @b: Boot sector of device @sb to check.
523 * @silent: If TRUE, all output will be silenced.
524 *
525 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
526 * sector. Returns TRUE if it is valid and FALSE if not.
527 *
528 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
529 * is TRUE.
530 */
531static BOOL is_boot_sector_ntfs(const struct super_block *sb,
532 const NTFS_BOOT_SECTOR *b, const BOOL silent)
533{
534 /*
535 * Check that checksum == sum of u32 values from b to the checksum
b0d2374d
AA
536 * field. If checksum is zero, no checking is done. We will work when
537 * the checksum test fails, since some utilities update the boot sector
538 * ignoring the checksum which leaves the checksum out-of-date. We
539 * report a warning if this is the case.
1da177e4 540 */
b0d2374d 541 if ((void*)b < (void*)&b->checksum && b->checksum && !silent) {
1da177e4
LT
542 le32 *u;
543 u32 i;
544
545 for (i = 0, u = (le32*)b; u < (le32*)(&b->checksum); ++u)
546 i += le32_to_cpup(u);
547 if (le32_to_cpu(b->checksum) != i)
b0d2374d 548 ntfs_warning(sb, "Invalid boot sector checksum.");
1da177e4
LT
549 }
550 /* Check OEMidentifier is "NTFS " */
551 if (b->oem_id != magicNTFS)
552 goto not_ntfs;
553 /* Check bytes per sector value is between 256 and 4096. */
554 if (le16_to_cpu(b->bpb.bytes_per_sector) < 0x100 ||
555 le16_to_cpu(b->bpb.bytes_per_sector) > 0x1000)
556 goto not_ntfs;
557 /* Check sectors per cluster value is valid. */
558 switch (b->bpb.sectors_per_cluster) {
559 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
560 break;
561 default:
562 goto not_ntfs;
563 }
564 /* Check the cluster size is not above 65536 bytes. */
565 if ((u32)le16_to_cpu(b->bpb.bytes_per_sector) *
566 b->bpb.sectors_per_cluster > 0x10000)
567 goto not_ntfs;
568 /* Check reserved/unused fields are really zero. */
569 if (le16_to_cpu(b->bpb.reserved_sectors) ||
570 le16_to_cpu(b->bpb.root_entries) ||
571 le16_to_cpu(b->bpb.sectors) ||
572 le16_to_cpu(b->bpb.sectors_per_fat) ||
573 le32_to_cpu(b->bpb.large_sectors) || b->bpb.fats)
574 goto not_ntfs;
575 /* Check clusters per file mft record value is valid. */
576 if ((u8)b->clusters_per_mft_record < 0xe1 ||
577 (u8)b->clusters_per_mft_record > 0xf7)
578 switch (b->clusters_per_mft_record) {
579 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
580 break;
581 default:
582 goto not_ntfs;
583 }
584 /* Check clusters per index block value is valid. */
585 if ((u8)b->clusters_per_index_record < 0xe1 ||
586 (u8)b->clusters_per_index_record > 0xf7)
587 switch (b->clusters_per_index_record) {
588 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
589 break;
590 default:
591 goto not_ntfs;
592 }
593 /*
594 * Check for valid end of sector marker. We will work without it, but
595 * many BIOSes will refuse to boot from a bootsector if the magic is
596 * incorrect, so we emit a warning.
597 */
b0d2374d 598 if (!silent && b->end_of_sector_marker != const_cpu_to_le16(0xaa55))
1da177e4
LT
599 ntfs_warning(sb, "Invalid end of sector marker.");
600 return TRUE;
601not_ntfs:
602 return FALSE;
603}
604
605/**
606 * read_ntfs_boot_sector - read the NTFS boot sector of a device
607 * @sb: super block of device to read the boot sector from
608 * @silent: if true, suppress all output
609 *
610 * Reads the boot sector from the device and validates it. If that fails, tries
611 * to read the backup boot sector, first from the end of the device a-la NT4 and
612 * later and then from the middle of the device a-la NT3.51 and before.
613 *
614 * If a valid boot sector is found but it is not the primary boot sector, we
615 * repair the primary boot sector silently (unless the device is read-only or
616 * the primary boot sector is not accessible).
617 *
618 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
619 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
620 * to their respective values.
621 *
622 * Return the unlocked buffer head containing the boot sector or NULL on error.
623 */
624static struct buffer_head *read_ntfs_boot_sector(struct super_block *sb,
625 const int silent)
626{
627 const char *read_err_str = "Unable to read %s boot sector.";
628 struct buffer_head *bh_primary, *bh_backup;
629 long nr_blocks = NTFS_SB(sb)->nr_blocks;
630
631 /* Try to read primary boot sector. */
632 if ((bh_primary = sb_bread(sb, 0))) {
633 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
634 bh_primary->b_data, silent))
635 return bh_primary;
636 if (!silent)
637 ntfs_error(sb, "Primary boot sector is invalid.");
638 } else if (!silent)
639 ntfs_error(sb, read_err_str, "primary");
640 if (!(NTFS_SB(sb)->on_errors & ON_ERRORS_RECOVER)) {
641 if (bh_primary)
642 brelse(bh_primary);
643 if (!silent)
644 ntfs_error(sb, "Mount option errors=recover not used. "
645 "Aborting without trying to recover.");
646 return NULL;
647 }
648 /* Try to read NT4+ backup boot sector. */
649 if ((bh_backup = sb_bread(sb, nr_blocks - 1))) {
650 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
651 bh_backup->b_data, silent))
652 goto hotfix_primary_boot_sector;
653 brelse(bh_backup);
654 } else if (!silent)
655 ntfs_error(sb, read_err_str, "backup");
656 /* Try to read NT3.51- backup boot sector. */
657 if ((bh_backup = sb_bread(sb, nr_blocks >> 1))) {
658 if (is_boot_sector_ntfs(sb, (NTFS_BOOT_SECTOR*)
659 bh_backup->b_data, silent))
660 goto hotfix_primary_boot_sector;
661 if (!silent)
662 ntfs_error(sb, "Could not find a valid backup boot "
663 "sector.");
664 brelse(bh_backup);
665 } else if (!silent)
666 ntfs_error(sb, read_err_str, "backup");
667 /* We failed. Cleanup and return. */
668 if (bh_primary)
669 brelse(bh_primary);
670 return NULL;
671hotfix_primary_boot_sector:
672 if (bh_primary) {
673 /*
674 * If we managed to read sector zero and the volume is not
675 * read-only, copy the found, valid backup boot sector to the
676 * primary boot sector.
677 */
678 if (!(sb->s_flags & MS_RDONLY)) {
679 ntfs_warning(sb, "Hot-fix: Recovering invalid primary "
680 "boot sector from backup copy.");
681 memcpy(bh_primary->b_data, bh_backup->b_data,
682 sb->s_blocksize);
683 mark_buffer_dirty(bh_primary);
684 sync_dirty_buffer(bh_primary);
685 if (buffer_uptodate(bh_primary)) {
686 brelse(bh_backup);
687 return bh_primary;
688 }
689 ntfs_error(sb, "Hot-fix: Device write error while "
690 "recovering primary boot sector.");
691 } else {
692 ntfs_warning(sb, "Hot-fix: Recovery of primary boot "
693 "sector failed: Read-only mount.");
694 }
695 brelse(bh_primary);
696 }
697 ntfs_warning(sb, "Using backup boot sector.");
698 return bh_backup;
699}
700
701/**
702 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
703 * @vol: volume structure to initialise with data from boot sector
704 * @b: boot sector to parse
705 *
706 * Parse the ntfs boot sector @b and store all imporant information therein in
707 * the ntfs super block @vol. Return TRUE on success and FALSE on error.
708 */
709static BOOL parse_ntfs_boot_sector(ntfs_volume *vol, const NTFS_BOOT_SECTOR *b)
710{
711 unsigned int sectors_per_cluster_bits, nr_hidden_sects;
712 int clusters_per_mft_record, clusters_per_index_record;
713 s64 ll;
714
715 vol->sector_size = le16_to_cpu(b->bpb.bytes_per_sector);
716 vol->sector_size_bits = ffs(vol->sector_size) - 1;
717 ntfs_debug("vol->sector_size = %i (0x%x)", vol->sector_size,
718 vol->sector_size);
719 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol->sector_size_bits,
720 vol->sector_size_bits);
721 if (vol->sector_size != vol->sb->s_blocksize)
722 ntfs_warning(vol->sb, "The boot sector indicates a sector size "
723 "different from the device sector size.");
724 ntfs_debug("sectors_per_cluster = 0x%x", b->bpb.sectors_per_cluster);
725 sectors_per_cluster_bits = ffs(b->bpb.sectors_per_cluster) - 1;
726 ntfs_debug("sectors_per_cluster_bits = 0x%x",
727 sectors_per_cluster_bits);
728 nr_hidden_sects = le32_to_cpu(b->bpb.hidden_sectors);
729 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects);
730 vol->cluster_size = vol->sector_size << sectors_per_cluster_bits;
731 vol->cluster_size_mask = vol->cluster_size - 1;
732 vol->cluster_size_bits = ffs(vol->cluster_size) - 1;
733 ntfs_debug("vol->cluster_size = %i (0x%x)", vol->cluster_size,
734 vol->cluster_size);
735 ntfs_debug("vol->cluster_size_mask = 0x%x", vol->cluster_size_mask);
736 ntfs_debug("vol->cluster_size_bits = %i (0x%x)",
737 vol->cluster_size_bits, vol->cluster_size_bits);
738 if (vol->sector_size > vol->cluster_size) {
739 ntfs_error(vol->sb, "Sector sizes above the cluster size are "
740 "not supported. Sorry.");
741 return FALSE;
742 }
743 if (vol->sb->s_blocksize > vol->cluster_size) {
744 ntfs_error(vol->sb, "Cluster sizes smaller than the device "
745 "sector size are not supported. Sorry.");
746 return FALSE;
747 }
748 clusters_per_mft_record = b->clusters_per_mft_record;
749 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
750 clusters_per_mft_record, clusters_per_mft_record);
751 if (clusters_per_mft_record > 0)
752 vol->mft_record_size = vol->cluster_size <<
753 (ffs(clusters_per_mft_record) - 1);
754 else
755 /*
756 * When mft_record_size < cluster_size, clusters_per_mft_record
757 * = -log2(mft_record_size) bytes. mft_record_size normaly is
758 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
759 */
760 vol->mft_record_size = 1 << -clusters_per_mft_record;
761 vol->mft_record_size_mask = vol->mft_record_size - 1;
762 vol->mft_record_size_bits = ffs(vol->mft_record_size) - 1;
763 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol->mft_record_size,
764 vol->mft_record_size);
765 ntfs_debug("vol->mft_record_size_mask = 0x%x",
766 vol->mft_record_size_mask);
767 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
768 vol->mft_record_size_bits, vol->mft_record_size_bits);
769 /*
770 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
771 * we store $MFT/$DATA, the table of mft records in the page cache.
772 */
773 if (vol->mft_record_size > PAGE_CACHE_SIZE) {
774 ntfs_error(vol->sb, "Mft record size %i (0x%x) exceeds the "
775 "page cache size on your system %lu (0x%lx). "
776 "This is not supported. Sorry.",
777 vol->mft_record_size, vol->mft_record_size,
778 PAGE_CACHE_SIZE, PAGE_CACHE_SIZE);
779 return FALSE;
780 }
781 clusters_per_index_record = b->clusters_per_index_record;
782 ntfs_debug("clusters_per_index_record = %i (0x%x)",
783 clusters_per_index_record, clusters_per_index_record);
784 if (clusters_per_index_record > 0)
785 vol->index_record_size = vol->cluster_size <<
786 (ffs(clusters_per_index_record) - 1);
787 else
788 /*
789 * When index_record_size < cluster_size,
790 * clusters_per_index_record = -log2(index_record_size) bytes.
791 * index_record_size normaly equals 4096 bytes, which is
792 * encoded as 0xF4 (-12 in decimal).
793 */
794 vol->index_record_size = 1 << -clusters_per_index_record;
795 vol->index_record_size_mask = vol->index_record_size - 1;
796 vol->index_record_size_bits = ffs(vol->index_record_size) - 1;
797 ntfs_debug("vol->index_record_size = %i (0x%x)",
798 vol->index_record_size, vol->index_record_size);
799 ntfs_debug("vol->index_record_size_mask = 0x%x",
800 vol->index_record_size_mask);
801 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
802 vol->index_record_size_bits,
803 vol->index_record_size_bits);
804 /*
805 * Get the size of the volume in clusters and check for 64-bit-ness.
806 * Windows currently only uses 32 bits to save the clusters so we do
807 * the same as it is much faster on 32-bit CPUs.
808 */
809 ll = sle64_to_cpu(b->number_of_sectors) >> sectors_per_cluster_bits;
810 if ((u64)ll >= 1ULL << 32) {
811 ntfs_error(vol->sb, "Cannot handle 64-bit clusters. Sorry.");
812 return FALSE;
813 }
814 vol->nr_clusters = ll;
815 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol->nr_clusters);
816 /*
817 * On an architecture where unsigned long is 32-bits, we restrict the
818 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
819 * will hopefully optimize the whole check away.
820 */
821 if (sizeof(unsigned long) < 8) {
822 if ((ll << vol->cluster_size_bits) >= (1ULL << 41)) {
823 ntfs_error(vol->sb, "Volume size (%lluTiB) is too "
824 "large for this architecture. "
825 "Maximum supported is 2TiB. Sorry.",
826 (unsigned long long)ll >> (40 -
827 vol->cluster_size_bits));
828 return FALSE;
829 }
830 }
831 ll = sle64_to_cpu(b->mft_lcn);
832 if (ll >= vol->nr_clusters) {
833 ntfs_error(vol->sb, "MFT LCN is beyond end of volume. Weird.");
834 return FALSE;
835 }
836 vol->mft_lcn = ll;
837 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol->mft_lcn);
838 ll = sle64_to_cpu(b->mftmirr_lcn);
839 if (ll >= vol->nr_clusters) {
840 ntfs_error(vol->sb, "MFTMirr LCN is beyond end of volume. "
841 "Weird.");
842 return FALSE;
843 }
844 vol->mftmirr_lcn = ll;
845 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol->mftmirr_lcn);
846#ifdef NTFS_RW
847 /*
848 * Work out the size of the mft mirror in number of mft records. If the
849 * cluster size is less than or equal to the size taken by four mft
850 * records, the mft mirror stores the first four mft records. If the
851 * cluster size is bigger than the size taken by four mft records, the
852 * mft mirror contains as many mft records as will fit into one
853 * cluster.
854 */
855 if (vol->cluster_size <= (4 << vol->mft_record_size_bits))
856 vol->mftmirr_size = 4;
857 else
858 vol->mftmirr_size = vol->cluster_size >>
859 vol->mft_record_size_bits;
860 ntfs_debug("vol->mftmirr_size = %i", vol->mftmirr_size);
861#endif /* NTFS_RW */
862 vol->serial_no = le64_to_cpu(b->volume_serial_number);
863 ntfs_debug("vol->serial_no = 0x%llx",
864 (unsigned long long)vol->serial_no);
865 return TRUE;
866}
867
868/**
869 * ntfs_setup_allocators - initialize the cluster and mft allocators
870 * @vol: volume structure for which to setup the allocators
871 *
872 * Setup the cluster (lcn) and mft allocators to the starting values.
873 */
874static void ntfs_setup_allocators(ntfs_volume *vol)
875{
876#ifdef NTFS_RW
877 LCN mft_zone_size, mft_lcn;
878#endif /* NTFS_RW */
879
880 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
881 vol->mft_zone_multiplier);
882#ifdef NTFS_RW
883 /* Determine the size of the MFT zone. */
884 mft_zone_size = vol->nr_clusters;
885 switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
886 case 4:
887 mft_zone_size >>= 1; /* 50% */
888 break;
889 case 3:
890 mft_zone_size = (mft_zone_size +
891 (mft_zone_size >> 1)) >> 2; /* 37.5% */
892 break;
893 case 2:
894 mft_zone_size >>= 2; /* 25% */
895 break;
896 /* case 1: */
897 default:
898 mft_zone_size >>= 3; /* 12.5% */
899 break;
900 }
901 /* Setup the mft zone. */
902 vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
903 ntfs_debug("vol->mft_zone_pos = 0x%llx",
904 (unsigned long long)vol->mft_zone_pos);
905 /*
906 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
907 * source) and if the actual mft_lcn is in the expected place or even
908 * further to the front of the volume, extend the mft_zone to cover the
909 * beginning of the volume as well. This is in order to protect the
910 * area reserved for the mft bitmap as well within the mft_zone itself.
911 * On non-standard volumes we do not protect it as the overhead would
912 * be higher than the speed increase we would get by doing it.
913 */
914 mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
915 if (mft_lcn * vol->cluster_size < 16 * 1024)
916 mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
917 vol->cluster_size;
918 if (vol->mft_zone_start <= mft_lcn)
919 vol->mft_zone_start = 0;
920 ntfs_debug("vol->mft_zone_start = 0x%llx",
921 (unsigned long long)vol->mft_zone_start);
922 /*
923 * Need to cap the mft zone on non-standard volumes so that it does
924 * not point outside the boundaries of the volume. We do this by
925 * halving the zone size until we are inside the volume.
926 */
927 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
928 while (vol->mft_zone_end >= vol->nr_clusters) {
929 mft_zone_size >>= 1;
930 vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
931 }
932 ntfs_debug("vol->mft_zone_end = 0x%llx",
933 (unsigned long long)vol->mft_zone_end);
934 /*
935 * Set the current position within each data zone to the start of the
936 * respective zone.
937 */
938 vol->data1_zone_pos = vol->mft_zone_end;
939 ntfs_debug("vol->data1_zone_pos = 0x%llx",
940 (unsigned long long)vol->data1_zone_pos);
941 vol->data2_zone_pos = 0;
942 ntfs_debug("vol->data2_zone_pos = 0x%llx",
943 (unsigned long long)vol->data2_zone_pos);
944
945 /* Set the mft data allocation position to mft record 24. */
946 vol->mft_data_pos = 24;
947 ntfs_debug("vol->mft_data_pos = 0x%llx",
948 (unsigned long long)vol->mft_data_pos);
949#endif /* NTFS_RW */
950}
951
952#ifdef NTFS_RW
953
954/**
955 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
956 * @vol: ntfs super block describing device whose mft mirror to load
957 *
958 * Return TRUE on success or FALSE on error.
959 */
960static BOOL load_and_init_mft_mirror(ntfs_volume *vol)
961{
962 struct inode *tmp_ino;
963 ntfs_inode *tmp_ni;
964
965 ntfs_debug("Entering.");
966 /* Get mft mirror inode. */
967 tmp_ino = ntfs_iget(vol->sb, FILE_MFTMirr);
968 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
969 if (!IS_ERR(tmp_ino))
970 iput(tmp_ino);
971 /* Caller will display error message. */
972 return FALSE;
973 }
974 /*
975 * Re-initialize some specifics about $MFTMirr's inode as
976 * ntfs_read_inode() will have set up the default ones.
977 */
978 /* Set uid and gid to root. */
979 tmp_ino->i_uid = tmp_ino->i_gid = 0;
980 /* Regular file. No access for anyone. */
981 tmp_ino->i_mode = S_IFREG;
982 /* No VFS initiated operations allowed for $MFTMirr. */
983 tmp_ino->i_op = &ntfs_empty_inode_ops;
984 tmp_ino->i_fop = &ntfs_empty_file_ops;
985 /* Put in our special address space operations. */
986 tmp_ino->i_mapping->a_ops = &ntfs_mst_aops;
987 tmp_ni = NTFS_I(tmp_ino);
988 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
989 NInoSetMstProtected(tmp_ni);
c002f425 990 NInoSetSparseDisabled(tmp_ni);
1da177e4
LT
991 /*
992 * Set up our little cheat allowing us to reuse the async read io
993 * completion handler for directories.
994 */
995 tmp_ni->itype.index.block_size = vol->mft_record_size;
996 tmp_ni->itype.index.block_size_bits = vol->mft_record_size_bits;
997 vol->mftmirr_ino = tmp_ino;
998 ntfs_debug("Done.");
999 return TRUE;
1000}
1001
1002/**
1003 * check_mft_mirror - compare contents of the mft mirror with the mft
1004 * @vol: ntfs super block describing device whose mft mirror to check
1005 *
1006 * Return TRUE on success or FALSE on error.
1007 *
1008 * Note, this function also results in the mft mirror runlist being completely
1009 * mapped into memory. The mft mirror write code requires this and will BUG()
1010 * should it find an unmapped runlist element.
1011 */
1012static BOOL check_mft_mirror(ntfs_volume *vol)
1013{
1da177e4
LT
1014 struct super_block *sb = vol->sb;
1015 ntfs_inode *mirr_ni;
1016 struct page *mft_page, *mirr_page;
1017 u8 *kmft, *kmirr;
1018 runlist_element *rl, rl2[2];
218357ff 1019 pgoff_t index;
1da177e4
LT
1020 int mrecs_per_page, i;
1021
1022 ntfs_debug("Entering.");
1023 /* Compare contents of $MFT and $MFTMirr. */
1024 mrecs_per_page = PAGE_CACHE_SIZE / vol->mft_record_size;
1025 BUG_ON(!mrecs_per_page);
1026 BUG_ON(!vol->mftmirr_size);
1027 mft_page = mirr_page = NULL;
1028 kmft = kmirr = NULL;
1029 index = i = 0;
1030 do {
1031 u32 bytes;
1032
1033 /* Switch pages if necessary. */
1034 if (!(i % mrecs_per_page)) {
1035 if (index) {
1036 ntfs_unmap_page(mft_page);
1037 ntfs_unmap_page(mirr_page);
1038 }
1039 /* Get the $MFT page. */
1040 mft_page = ntfs_map_page(vol->mft_ino->i_mapping,
1041 index);
1042 if (IS_ERR(mft_page)) {
1043 ntfs_error(sb, "Failed to read $MFT.");
1044 return FALSE;
1045 }
1046 kmft = page_address(mft_page);
1047 /* Get the $MFTMirr page. */
1048 mirr_page = ntfs_map_page(vol->mftmirr_ino->i_mapping,
1049 index);
1050 if (IS_ERR(mirr_page)) {
1051 ntfs_error(sb, "Failed to read $MFTMirr.");
1052 goto mft_unmap_out;
1053 }
1054 kmirr = page_address(mirr_page);
1055 ++index;
1056 }
1057 /* Make sure the record is ok. */
1058 if (ntfs_is_baad_recordp((le32*)kmft)) {
1059 ntfs_error(sb, "Incomplete multi sector transfer "
1060 "detected in mft record %i.", i);
1061mm_unmap_out:
1062 ntfs_unmap_page(mirr_page);
1063mft_unmap_out:
1064 ntfs_unmap_page(mft_page);
1065 return FALSE;
1066 }
1067 if (ntfs_is_baad_recordp((le32*)kmirr)) {
1068 ntfs_error(sb, "Incomplete multi sector transfer "
1069 "detected in mft mirror record %i.", i);
1070 goto mm_unmap_out;
1071 }
1072 /* Get the amount of data in the current record. */
1073 bytes = le32_to_cpu(((MFT_RECORD*)kmft)->bytes_in_use);
1074 if (!bytes || bytes > vol->mft_record_size) {
1075 bytes = le32_to_cpu(((MFT_RECORD*)kmirr)->bytes_in_use);
1076 if (!bytes || bytes > vol->mft_record_size)
1077 bytes = vol->mft_record_size;
1078 }
1079 /* Compare the two records. */
1080 if (memcmp(kmft, kmirr, bytes)) {
1081 ntfs_error(sb, "$MFT and $MFTMirr (record %i) do not "
1082 "match. Run ntfsfix or chkdsk.", i);
1083 goto mm_unmap_out;
1084 }
1085 kmft += vol->mft_record_size;
1086 kmirr += vol->mft_record_size;
1087 } while (++i < vol->mftmirr_size);
1088 /* Release the last pages. */
1089 ntfs_unmap_page(mft_page);
1090 ntfs_unmap_page(mirr_page);
1091
1092 /* Construct the mft mirror runlist by hand. */
1093 rl2[0].vcn = 0;
1094 rl2[0].lcn = vol->mftmirr_lcn;
1095 rl2[0].length = (vol->mftmirr_size * vol->mft_record_size +
1096 vol->cluster_size - 1) / vol->cluster_size;
1097 rl2[1].vcn = rl2[0].length;
1098 rl2[1].lcn = LCN_ENOENT;
1099 rl2[1].length = 0;
1100 /*
1101 * Because we have just read all of the mft mirror, we know we have
1102 * mapped the full runlist for it.
1103 */
1104 mirr_ni = NTFS_I(vol->mftmirr_ino);
1105 down_read(&mirr_ni->runlist.lock);
1106 rl = mirr_ni->runlist.rl;
1107 /* Compare the two runlists. They must be identical. */
1108 i = 0;
1109 do {
1110 if (rl2[i].vcn != rl[i].vcn || rl2[i].lcn != rl[i].lcn ||
1111 rl2[i].length != rl[i].length) {
1112 ntfs_error(sb, "$MFTMirr location mismatch. "
1113 "Run chkdsk.");
1114 up_read(&mirr_ni->runlist.lock);
1115 return FALSE;
1116 }
1117 } while (rl2[i++].length);
1118 up_read(&mirr_ni->runlist.lock);
1119 ntfs_debug("Done.");
1120 return TRUE;
1121}
1122
1123/**
1124 * load_and_check_logfile - load and check the logfile inode for a volume
1125 * @vol: ntfs super block describing device whose logfile to load
1126 *
1127 * Return TRUE on success or FALSE on error.
1128 */
1129static BOOL load_and_check_logfile(ntfs_volume *vol)
1130{
1131 struct inode *tmp_ino;
1132
1133 ntfs_debug("Entering.");
1134 tmp_ino = ntfs_iget(vol->sb, FILE_LogFile);
1135 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1136 if (!IS_ERR(tmp_ino))
1137 iput(tmp_ino);
1138 /* Caller will display error message. */
1139 return FALSE;
1140 }
1141 if (!ntfs_check_logfile(tmp_ino)) {
1142 iput(tmp_ino);
1143 /* ntfs_check_logfile() will have displayed error output. */
1144 return FALSE;
1145 }
c002f425 1146 NInoSetSparseDisabled(NTFS_I(tmp_ino));
1da177e4
LT
1147 vol->logfile_ino = tmp_ino;
1148 ntfs_debug("Done.");
1149 return TRUE;
1150}
1151
1152/**
1153 * load_and_init_quota - load and setup the quota file for a volume if present
1154 * @vol: ntfs super block describing device whose quota file to load
1155 *
1156 * Return TRUE on success or FALSE on error. If $Quota is not present, we
1157 * leave vol->quota_ino as NULL and return success.
1158 */
1159static BOOL load_and_init_quota(ntfs_volume *vol)
1160{
1161 MFT_REF mref;
1162 struct inode *tmp_ino;
1163 ntfs_name *name = NULL;
1164 static const ntfschar Quota[7] = { const_cpu_to_le16('$'),
1165 const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1166 const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1167 const_cpu_to_le16('a'), 0 };
1168 static ntfschar Q[3] = { const_cpu_to_le16('$'),
1169 const_cpu_to_le16('Q'), 0 };
1170
1171 ntfs_debug("Entering.");
1172 /*
1173 * Find the inode number for the quota file by looking up the filename
1174 * $Quota in the extended system files directory $Extend.
1175 */
1176 down(&vol->extend_ino->i_sem);
1177 mref = ntfs_lookup_inode_by_name(NTFS_I(vol->extend_ino), Quota, 6,
1178 &name);
1179 up(&vol->extend_ino->i_sem);
1180 if (IS_ERR_MREF(mref)) {
1181 /*
1182 * If the file does not exist, quotas are disabled and have
1183 * never been enabled on this volume, just return success.
1184 */
1185 if (MREF_ERR(mref) == -ENOENT) {
1186 ntfs_debug("$Quota not present. Volume does not have "
1187 "quotas enabled.");
1188 /*
1189 * No need to try to set quotas out of date if they are
1190 * not enabled.
1191 */
1192 NVolSetQuotaOutOfDate(vol);
1193 return TRUE;
1194 }
1195 /* A real error occured. */
1196 ntfs_error(vol->sb, "Failed to find inode number for $Quota.");
1197 return FALSE;
1198 }
1199 /* We do not care for the type of match that was found. */
251c8427 1200 kfree(name);
1da177e4
LT
1201 /* Get the inode. */
1202 tmp_ino = ntfs_iget(vol->sb, MREF(mref));
1203 if (IS_ERR(tmp_ino) || is_bad_inode(tmp_ino)) {
1204 if (!IS_ERR(tmp_ino))
1205 iput(tmp_ino);
1206 ntfs_error(vol->sb, "Failed to load $Quota.");
1207 return FALSE;
1208 }
1209 vol->quota_ino = tmp_ino;
1210 /* Get the $Q index allocation attribute. */
1211 tmp_ino = ntfs_index_iget(vol->quota_ino, Q, 2);
1212 if (IS_ERR(tmp_ino)) {
1213 ntfs_error(vol->sb, "Failed to load $Quota/$Q index.");
1214 return FALSE;
1215 }
1216 vol->quota_q_ino = tmp_ino;
1217 ntfs_debug("Done.");
1218 return TRUE;
1219}
1220
1221/**
1222 * load_and_init_attrdef - load the attribute definitions table for a volume
1223 * @vol: ntfs super block describing device whose attrdef to load
1224 *
1225 * Return TRUE on success or FALSE on error.
1226 */
1227static BOOL load_and_init_attrdef(ntfs_volume *vol)
1228{
218357ff 1229 loff_t i_size;
1da177e4
LT
1230 struct super_block *sb = vol->sb;
1231 struct inode *ino;
1232 struct page *page;
218357ff 1233 pgoff_t index, max_index;
1da177e4
LT
1234 unsigned int size;
1235
1236 ntfs_debug("Entering.");
1237 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1238 ino = ntfs_iget(sb, FILE_AttrDef);
1239 if (IS_ERR(ino) || is_bad_inode(ino)) {
1240 if (!IS_ERR(ino))
1241 iput(ino);
1242 goto failed;
1243 }
c002f425 1244 NInoSetSparseDisabled(NTFS_I(ino));
1da177e4 1245 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
218357ff
AA
1246 i_size = i_size_read(ino);
1247 if (i_size <= 0 || i_size > 0x7fffffff)
1da177e4 1248 goto iput_failed;
218357ff 1249 vol->attrdef = (ATTR_DEF*)ntfs_malloc_nofs(i_size);
1da177e4
LT
1250 if (!vol->attrdef)
1251 goto iput_failed;
1252 index = 0;
218357ff 1253 max_index = i_size >> PAGE_CACHE_SHIFT;
1da177e4
LT
1254 size = PAGE_CACHE_SIZE;
1255 while (index < max_index) {
1256 /* Read the attrdef table and copy it into the linear buffer. */
1257read_partial_attrdef_page:
1258 page = ntfs_map_page(ino->i_mapping, index);
1259 if (IS_ERR(page))
1260 goto free_iput_failed;
1261 memcpy((u8*)vol->attrdef + (index++ << PAGE_CACHE_SHIFT),
1262 page_address(page), size);
1263 ntfs_unmap_page(page);
1264 };
1265 if (size == PAGE_CACHE_SIZE) {
218357ff 1266 size = i_size & ~PAGE_CACHE_MASK;
1da177e4
LT
1267 if (size)
1268 goto read_partial_attrdef_page;
1269 }
218357ff
AA
1270 vol->attrdef_size = i_size;
1271 ntfs_debug("Read %llu bytes from $AttrDef.", i_size);
1da177e4
LT
1272 iput(ino);
1273 return TRUE;
1274free_iput_failed:
1275 ntfs_free(vol->attrdef);
1276 vol->attrdef = NULL;
1277iput_failed:
1278 iput(ino);
1279failed:
1280 ntfs_error(sb, "Failed to initialize attribute definition table.");
1281 return FALSE;
1282}
1283
1284#endif /* NTFS_RW */
1285
1286/**
1287 * load_and_init_upcase - load the upcase table for an ntfs volume
1288 * @vol: ntfs super block describing device whose upcase to load
1289 *
1290 * Return TRUE on success or FALSE on error.
1291 */
1292static BOOL load_and_init_upcase(ntfs_volume *vol)
1293{
218357ff 1294 loff_t i_size;
1da177e4
LT
1295 struct super_block *sb = vol->sb;
1296 struct inode *ino;
1297 struct page *page;
218357ff 1298 pgoff_t index, max_index;
1da177e4
LT
1299 unsigned int size;
1300 int i, max;
1301
1302 ntfs_debug("Entering.");
1303 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1304 ino = ntfs_iget(sb, FILE_UpCase);
1305 if (IS_ERR(ino) || is_bad_inode(ino)) {
1306 if (!IS_ERR(ino))
1307 iput(ino);
1308 goto upcase_failed;
1309 }
1310 /*
1311 * The upcase size must not be above 64k Unicode characters, must not
1312 * be zero and must be a multiple of sizeof(ntfschar).
1313 */
218357ff
AA
1314 i_size = i_size_read(ino);
1315 if (!i_size || i_size & (sizeof(ntfschar) - 1) ||
1316 i_size > 64ULL * 1024 * sizeof(ntfschar))
1da177e4 1317 goto iput_upcase_failed;
218357ff 1318 vol->upcase = (ntfschar*)ntfs_malloc_nofs(i_size);
1da177e4
LT
1319 if (!vol->upcase)
1320 goto iput_upcase_failed;
1321 index = 0;
218357ff 1322 max_index = i_size >> PAGE_CACHE_SHIFT;
1da177e4
LT
1323 size = PAGE_CACHE_SIZE;
1324 while (index < max_index) {
1325 /* Read the upcase table and copy it into the linear buffer. */
1326read_partial_upcase_page:
1327 page = ntfs_map_page(ino->i_mapping, index);
1328 if (IS_ERR(page))
1329 goto iput_upcase_failed;
1330 memcpy((char*)vol->upcase + (index++ << PAGE_CACHE_SHIFT),
1331 page_address(page), size);
1332 ntfs_unmap_page(page);
1333 };
1334 if (size == PAGE_CACHE_SIZE) {
218357ff 1335 size = i_size & ~PAGE_CACHE_MASK;
1da177e4
LT
1336 if (size)
1337 goto read_partial_upcase_page;
1338 }
218357ff 1339 vol->upcase_len = i_size >> UCHAR_T_SIZE_BITS;
1da177e4 1340 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
218357ff 1341 i_size, 64 * 1024 * sizeof(ntfschar));
1da177e4
LT
1342 iput(ino);
1343 down(&ntfs_lock);
1344 if (!default_upcase) {
1345 ntfs_debug("Using volume specified $UpCase since default is "
1346 "not present.");
1347 up(&ntfs_lock);
1348 return TRUE;
1349 }
1350 max = default_upcase_len;
1351 if (max > vol->upcase_len)
1352 max = vol->upcase_len;
1353 for (i = 0; i < max; i++)
1354 if (vol->upcase[i] != default_upcase[i])
1355 break;
1356 if (i == max) {
1357 ntfs_free(vol->upcase);
1358 vol->upcase = default_upcase;
1359 vol->upcase_len = max;
1360 ntfs_nr_upcase_users++;
1361 up(&ntfs_lock);
1362 ntfs_debug("Volume specified $UpCase matches default. Using "
1363 "default.");
1364 return TRUE;
1365 }
1366 up(&ntfs_lock);
1367 ntfs_debug("Using volume specified $UpCase since it does not match "
1368 "the default.");
1369 return TRUE;
1370iput_upcase_failed:
1371 iput(ino);
1372 ntfs_free(vol->upcase);
1373 vol->upcase = NULL;
1374upcase_failed:
1375 down(&ntfs_lock);
1376 if (default_upcase) {
1377 vol->upcase = default_upcase;
1378 vol->upcase_len = default_upcase_len;
1379 ntfs_nr_upcase_users++;
1380 up(&ntfs_lock);
1381 ntfs_error(sb, "Failed to load $UpCase from the volume. Using "
1382 "default.");
1383 return TRUE;
1384 }
1385 up(&ntfs_lock);
1386 ntfs_error(sb, "Failed to initialize upcase table.");
1387 return FALSE;
1388}
1389
1390/**
1391 * load_system_files - open the system files using normal functions
1392 * @vol: ntfs super block describing device whose system files to load
1393 *
1394 * Open the system files with normal access functions and complete setting up
1395 * the ntfs super block @vol.
1396 *
1397 * Return TRUE on success or FALSE on error.
1398 */
1399static BOOL load_system_files(ntfs_volume *vol)
1400{
1401 struct super_block *sb = vol->sb;
1402 MFT_RECORD *m;
1403 VOLUME_INFORMATION *vi;
1404 ntfs_attr_search_ctx *ctx;
1405
1406 ntfs_debug("Entering.");
1407#ifdef NTFS_RW
1408 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1409 if (!load_and_init_mft_mirror(vol) || !check_mft_mirror(vol)) {
1410 static const char *es1 = "Failed to load $MFTMirr";
1411 static const char *es2 = "$MFTMirr does not match $MFT";
1412 static const char *es3 = ". Run ntfsfix and/or chkdsk.";
1413
1414 /* If a read-write mount, convert it to a read-only mount. */
1415 if (!(sb->s_flags & MS_RDONLY)) {
1416 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1417 ON_ERRORS_CONTINUE))) {
1418 ntfs_error(sb, "%s and neither on_errors="
1419 "continue nor on_errors="
1420 "remount-ro was specified%s",
1421 !vol->mftmirr_ino ? es1 : es2,
1422 es3);
1423 goto iput_mirr_err_out;
1424 }
1425 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1426 ntfs_error(sb, "%s. Mounting read-only%s",
1427 !vol->mftmirr_ino ? es1 : es2, es3);
1428 } else
1429 ntfs_warning(sb, "%s. Will not be able to remount "
1430 "read-write%s",
1431 !vol->mftmirr_ino ? es1 : es2, es3);
1432 /* This will prevent a read-write remount. */
1433 NVolSetErrors(vol);
1434 }
1435#endif /* NTFS_RW */
1436 /* Get mft bitmap attribute inode. */
1437 vol->mftbmp_ino = ntfs_attr_iget(vol->mft_ino, AT_BITMAP, NULL, 0);
1438 if (IS_ERR(vol->mftbmp_ino)) {
1439 ntfs_error(sb, "Failed to load $MFT/$BITMAP attribute.");
1440 goto iput_mirr_err_out;
1441 }
1442 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1443 if (!load_and_init_upcase(vol))
1444 goto iput_mftbmp_err_out;
1445#ifdef NTFS_RW
1446 /*
1447 * Read attribute definitions table and setup @vol->attrdef and
1448 * @vol->attrdef_size.
1449 */
1450 if (!load_and_init_attrdef(vol))
1451 goto iput_upcase_err_out;
1452#endif /* NTFS_RW */
1453 /*
1454 * Get the cluster allocation bitmap inode and verify the size, no
1455 * need for any locking at this stage as we are already running
1456 * exclusively as we are mount in progress task.
1457 */
1458 vol->lcnbmp_ino = ntfs_iget(sb, FILE_Bitmap);
1459 if (IS_ERR(vol->lcnbmp_ino) || is_bad_inode(vol->lcnbmp_ino)) {
1460 if (!IS_ERR(vol->lcnbmp_ino))
1461 iput(vol->lcnbmp_ino);
1462 goto bitmap_failed;
1463 }
c002f425 1464 NInoSetSparseDisabled(NTFS_I(vol->lcnbmp_ino));
218357ff 1465 if ((vol->nr_clusters + 7) >> 3 > i_size_read(vol->lcnbmp_ino)) {
1da177e4
LT
1466 iput(vol->lcnbmp_ino);
1467bitmap_failed:
1468 ntfs_error(sb, "Failed to load $Bitmap.");
1469 goto iput_attrdef_err_out;
1470 }
1471 /*
1472 * Get the volume inode and setup our cache of the volume flags and
1473 * version.
1474 */
1475 vol->vol_ino = ntfs_iget(sb, FILE_Volume);
1476 if (IS_ERR(vol->vol_ino) || is_bad_inode(vol->vol_ino)) {
1477 if (!IS_ERR(vol->vol_ino))
1478 iput(vol->vol_ino);
1479volume_failed:
1480 ntfs_error(sb, "Failed to load $Volume.");
1481 goto iput_lcnbmp_err_out;
1482 }
1483 m = map_mft_record(NTFS_I(vol->vol_ino));
1484 if (IS_ERR(m)) {
1485iput_volume_failed:
1486 iput(vol->vol_ino);
1487 goto volume_failed;
1488 }
1489 if (!(ctx = ntfs_attr_get_search_ctx(NTFS_I(vol->vol_ino), m))) {
1490 ntfs_error(sb, "Failed to get attribute search context.");
1491 goto get_ctx_vol_failed;
1492 }
1493 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, NULL, 0, 0, 0, NULL, 0,
1494 ctx) || ctx->attr->non_resident || ctx->attr->flags) {
1495err_put_vol:
1496 ntfs_attr_put_search_ctx(ctx);
1497get_ctx_vol_failed:
1498 unmap_mft_record(NTFS_I(vol->vol_ino));
1499 goto iput_volume_failed;
1500 }
1501 vi = (VOLUME_INFORMATION*)((char*)ctx->attr +
1502 le16_to_cpu(ctx->attr->data.resident.value_offset));
1503 /* Some bounds checks. */
1504 if ((u8*)vi < (u8*)ctx->attr || (u8*)vi +
1505 le32_to_cpu(ctx->attr->data.resident.value_length) >
1506 (u8*)ctx->attr + le32_to_cpu(ctx->attr->length))
1507 goto err_put_vol;
1508 /* Copy the volume flags and version to the ntfs_volume structure. */
1509 vol->vol_flags = vi->flags;
1510 vol->major_ver = vi->major_ver;
1511 vol->minor_ver = vi->minor_ver;
1512 ntfs_attr_put_search_ctx(ctx);
1513 unmap_mft_record(NTFS_I(vol->vol_ino));
1514 printk(KERN_INFO "NTFS volume version %i.%i.\n", vol->major_ver,
1515 vol->minor_ver);
c002f425
AA
1516 if (vol->major_ver < 3 && NVolSparseEnabled(vol)) {
1517 ntfs_warning(vol->sb, "Disabling sparse support due to NTFS "
1518 "volume version %i.%i (need at least version "
1519 "3.0).", vol->major_ver, vol->minor_ver);
1520 NVolClearSparseEnabled(vol);
1521 }
1da177e4
LT
1522#ifdef NTFS_RW
1523 /* Make sure that no unsupported volume flags are set. */
1524 if (vol->vol_flags & VOLUME_MUST_MOUNT_RO_MASK) {
1525 static const char *es1a = "Volume is dirty";
1526 static const char *es1b = "Volume has unsupported flags set";
1527 static const char *es2 = ". Run chkdsk and mount in Windows.";
1528 const char *es1;
1529
1530 es1 = vol->vol_flags & VOLUME_IS_DIRTY ? es1a : es1b;
1531 /* If a read-write mount, convert it to a read-only mount. */
1532 if (!(sb->s_flags & MS_RDONLY)) {
1533 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1534 ON_ERRORS_CONTINUE))) {
1535 ntfs_error(sb, "%s and neither on_errors="
1536 "continue nor on_errors="
1537 "remount-ro was specified%s",
1538 es1, es2);
1539 goto iput_vol_err_out;
1540 }
1541 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1542 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1543 } else
1544 ntfs_warning(sb, "%s. Will not be able to remount "
1545 "read-write%s", es1, es2);
1546 /*
1547 * Do not set NVolErrors() because ntfs_remount() re-checks the
1548 * flags which we need to do in case any flags have changed.
1549 */
1550 }
1551 /*
1552 * Get the inode for the logfile, check it and determine if the volume
1553 * was shutdown cleanly.
1554 */
1555 if (!load_and_check_logfile(vol) ||
1556 !ntfs_is_logfile_clean(vol->logfile_ino)) {
1557 static const char *es1a = "Failed to load $LogFile";
1558 static const char *es1b = "$LogFile is not clean";
1559 static const char *es2 = ". Mount in Windows.";
1560 const char *es1;
1561
1562 es1 = !vol->logfile_ino ? es1a : es1b;
1563 /* If a read-write mount, convert it to a read-only mount. */
1564 if (!(sb->s_flags & MS_RDONLY)) {
1565 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1566 ON_ERRORS_CONTINUE))) {
1567 ntfs_error(sb, "%s and neither on_errors="
1568 "continue nor on_errors="
1569 "remount-ro was specified%s",
1570 es1, es2);
1571 goto iput_logfile_err_out;
1572 }
1573 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1574 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1575 } else
1576 ntfs_warning(sb, "%s. Will not be able to remount "
1577 "read-write%s", es1, es2);
1578 /* This will prevent a read-write remount. */
1579 NVolSetErrors(vol);
1580 }
1581 /* If (still) a read-write mount, mark the volume dirty. */
1582 if (!(sb->s_flags & MS_RDONLY) &&
1583 ntfs_set_volume_flags(vol, VOLUME_IS_DIRTY)) {
1584 static const char *es1 = "Failed to set dirty bit in volume "
1585 "information flags";
1586 static const char *es2 = ". Run chkdsk.";
1587
1588 /* Convert to a read-only mount. */
1589 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1590 ON_ERRORS_CONTINUE))) {
1591 ntfs_error(sb, "%s and neither on_errors=continue nor "
1592 "on_errors=remount-ro was specified%s",
1593 es1, es2);
1594 goto iput_logfile_err_out;
1595 }
1596 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1597 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1598 /*
1599 * Do not set NVolErrors() because ntfs_remount() might manage
1600 * to set the dirty flag in which case all would be well.
1601 */
1602 }
1603#if 0
1604 // TODO: Enable this code once we start modifying anything that is
1605 // different between NTFS 1.2 and 3.x...
1606 /*
1607 * If (still) a read-write mount, set the NT4 compatibility flag on
1608 * newer NTFS version volumes.
1609 */
1610 if (!(sb->s_flags & MS_RDONLY) && (vol->major_ver > 1) &&
1611 ntfs_set_volume_flags(vol, VOLUME_MOUNTED_ON_NT4)) {
1612 static const char *es1 = "Failed to set NT4 compatibility flag";
1613 static const char *es2 = ". Run chkdsk.";
1614
1615 /* Convert to a read-only mount. */
1616 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1617 ON_ERRORS_CONTINUE))) {
1618 ntfs_error(sb, "%s and neither on_errors=continue nor "
1619 "on_errors=remount-ro was specified%s",
1620 es1, es2);
1621 goto iput_logfile_err_out;
1622 }
1623 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1624 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1625 NVolSetErrors(vol);
1626 }
1627#endif
1628 /* If (still) a read-write mount, empty the logfile. */
1629 if (!(sb->s_flags & MS_RDONLY) &&
1630 !ntfs_empty_logfile(vol->logfile_ino)) {
1631 static const char *es1 = "Failed to empty $LogFile";
1632 static const char *es2 = ". Mount in Windows.";
1633
1634 /* Convert to a read-only mount. */
1635 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1636 ON_ERRORS_CONTINUE))) {
1637 ntfs_error(sb, "%s and neither on_errors=continue nor "
1638 "on_errors=remount-ro was specified%s",
1639 es1, es2);
1640 goto iput_logfile_err_out;
1641 }
1642 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1643 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1644 NVolSetErrors(vol);
1645 }
1646#endif /* NTFS_RW */
1647 /* Get the root directory inode. */
1648 vol->root_ino = ntfs_iget(sb, FILE_root);
1649 if (IS_ERR(vol->root_ino) || is_bad_inode(vol->root_ino)) {
1650 if (!IS_ERR(vol->root_ino))
1651 iput(vol->root_ino);
1652 ntfs_error(sb, "Failed to load root directory.");
1653 goto iput_logfile_err_out;
1654 }
1655 /* If on NTFS versions before 3.0, we are done. */
1656 if (vol->major_ver < 3)
1657 return TRUE;
1658 /* NTFS 3.0+ specific initialization. */
1659 /* Get the security descriptors inode. */
1660 vol->secure_ino = ntfs_iget(sb, FILE_Secure);
1661 if (IS_ERR(vol->secure_ino) || is_bad_inode(vol->secure_ino)) {
1662 if (!IS_ERR(vol->secure_ino))
1663 iput(vol->secure_ino);
1664 ntfs_error(sb, "Failed to load $Secure.");
1665 goto iput_root_err_out;
1666 }
1667 // FIXME: Initialize security.
1668 /* Get the extended system files' directory inode. */
1669 vol->extend_ino = ntfs_iget(sb, FILE_Extend);
1670 if (IS_ERR(vol->extend_ino) || is_bad_inode(vol->extend_ino)) {
1671 if (!IS_ERR(vol->extend_ino))
1672 iput(vol->extend_ino);
1673 ntfs_error(sb, "Failed to load $Extend.");
1674 goto iput_sec_err_out;
1675 }
1676#ifdef NTFS_RW
1677 /* Find the quota file, load it if present, and set it up. */
1678 if (!load_and_init_quota(vol)) {
1679 static const char *es1 = "Failed to load $Quota";
1680 static const char *es2 = ". Run chkdsk.";
1681
1682 /* If a read-write mount, convert it to a read-only mount. */
1683 if (!(sb->s_flags & MS_RDONLY)) {
1684 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1685 ON_ERRORS_CONTINUE))) {
1686 ntfs_error(sb, "%s and neither on_errors="
1687 "continue nor on_errors="
1688 "remount-ro was specified%s",
1689 es1, es2);
1690 goto iput_quota_err_out;
1691 }
1692 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1693 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1694 } else
1695 ntfs_warning(sb, "%s. Will not be able to remount "
1696 "read-write%s", es1, es2);
1697 /* This will prevent a read-write remount. */
1698 NVolSetErrors(vol);
1699 }
1700 /* If (still) a read-write mount, mark the quotas out of date. */
1701 if (!(sb->s_flags & MS_RDONLY) &&
1702 !ntfs_mark_quotas_out_of_date(vol)) {
1703 static const char *es1 = "Failed to mark quotas out of date";
1704 static const char *es2 = ". Run chkdsk.";
1705
1706 /* Convert to a read-only mount. */
1707 if (!(vol->on_errors & (ON_ERRORS_REMOUNT_RO |
1708 ON_ERRORS_CONTINUE))) {
1709 ntfs_error(sb, "%s and neither on_errors=continue nor "
1710 "on_errors=remount-ro was specified%s",
1711 es1, es2);
1712 goto iput_quota_err_out;
1713 }
1714 ntfs_error(sb, "%s. Mounting read-only%s", es1, es2);
1715 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
1716 NVolSetErrors(vol);
1717 }
1718 // TODO: Delete or checkpoint the $UsnJrnl if it exists.
1719#endif /* NTFS_RW */
1720 return TRUE;
1721#ifdef NTFS_RW
1722iput_quota_err_out:
1723 if (vol->quota_q_ino)
1724 iput(vol->quota_q_ino);
1725 if (vol->quota_ino)
1726 iput(vol->quota_ino);
1727 iput(vol->extend_ino);
1728#endif /* NTFS_RW */
1729iput_sec_err_out:
1730 iput(vol->secure_ino);
1731iput_root_err_out:
1732 iput(vol->root_ino);
1733iput_logfile_err_out:
1734#ifdef NTFS_RW
1735 if (vol->logfile_ino)
1736 iput(vol->logfile_ino);
1737iput_vol_err_out:
1738#endif /* NTFS_RW */
1739 iput(vol->vol_ino);
1740iput_lcnbmp_err_out:
1741 iput(vol->lcnbmp_ino);
1742iput_attrdef_err_out:
1743 vol->attrdef_size = 0;
1744 if (vol->attrdef) {
1745 ntfs_free(vol->attrdef);
1746 vol->attrdef = NULL;
1747 }
1748#ifdef NTFS_RW
1749iput_upcase_err_out:
1750#endif /* NTFS_RW */
1751 vol->upcase_len = 0;
1752 down(&ntfs_lock);
1753 if (vol->upcase == default_upcase) {
1754 ntfs_nr_upcase_users--;
1755 vol->upcase = NULL;
1756 }
1757 up(&ntfs_lock);
1758 if (vol->upcase) {
1759 ntfs_free(vol->upcase);
1760 vol->upcase = NULL;
1761 }
1762iput_mftbmp_err_out:
1763 iput(vol->mftbmp_ino);
1764iput_mirr_err_out:
1765#ifdef NTFS_RW
1766 if (vol->mftmirr_ino)
1767 iput(vol->mftmirr_ino);
1768#endif /* NTFS_RW */
1769 return FALSE;
1770}
1771
1772/**
1773 * ntfs_put_super - called by the vfs to unmount a volume
1774 * @sb: vfs superblock of volume to unmount
1775 *
1776 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
1777 * the volume is being unmounted (umount system call has been invoked) and it
1778 * releases all inodes and memory belonging to the NTFS specific part of the
1779 * super block.
1780 */
1781static void ntfs_put_super(struct super_block *sb)
1782{
1783 ntfs_volume *vol = NTFS_SB(sb);
1784
1785 ntfs_debug("Entering.");
1786#ifdef NTFS_RW
1787 /*
1788 * Commit all inodes while they are still open in case some of them
1789 * cause others to be dirtied.
1790 */
1791 ntfs_commit_inode(vol->vol_ino);
1792
1793 /* NTFS 3.0+ specific. */
1794 if (vol->major_ver >= 3) {
1795 if (vol->quota_q_ino)
1796 ntfs_commit_inode(vol->quota_q_ino);
1797 if (vol->quota_ino)
1798 ntfs_commit_inode(vol->quota_ino);
1799 if (vol->extend_ino)
1800 ntfs_commit_inode(vol->extend_ino);
1801 if (vol->secure_ino)
1802 ntfs_commit_inode(vol->secure_ino);
1803 }
1804
1805 ntfs_commit_inode(vol->root_ino);
1806
1807 down_write(&vol->lcnbmp_lock);
1808 ntfs_commit_inode(vol->lcnbmp_ino);
1809 up_write(&vol->lcnbmp_lock);
1810
1811 down_write(&vol->mftbmp_lock);
1812 ntfs_commit_inode(vol->mftbmp_ino);
1813 up_write(&vol->mftbmp_lock);
1814
1815 if (vol->logfile_ino)
1816 ntfs_commit_inode(vol->logfile_ino);
1817
1818 if (vol->mftmirr_ino)
1819 ntfs_commit_inode(vol->mftmirr_ino);
1820 ntfs_commit_inode(vol->mft_ino);
1821
1822 /*
1823 * If a read-write mount and no volume errors have occured, mark the
1824 * volume clean. Also, re-commit all affected inodes.
1825 */
1826 if (!(sb->s_flags & MS_RDONLY)) {
1827 if (!NVolErrors(vol)) {
1828 if (ntfs_clear_volume_flags(vol, VOLUME_IS_DIRTY))
1829 ntfs_warning(sb, "Failed to clear dirty bit "
1830 "in volume information "
1831 "flags. Run chkdsk.");
1832 ntfs_commit_inode(vol->vol_ino);
1833 ntfs_commit_inode(vol->root_ino);
1834 if (vol->mftmirr_ino)
1835 ntfs_commit_inode(vol->mftmirr_ino);
1836 ntfs_commit_inode(vol->mft_ino);
1837 } else {
1838 ntfs_warning(sb, "Volume has errors. Leaving volume "
1839 "marked dirty. Run chkdsk.");
1840 }
1841 }
1842#endif /* NTFS_RW */
1843
1844 iput(vol->vol_ino);
1845 vol->vol_ino = NULL;
1846
1847 /* NTFS 3.0+ specific clean up. */
1848 if (vol->major_ver >= 3) {
1849#ifdef NTFS_RW
1850 if (vol->quota_q_ino) {
1851 iput(vol->quota_q_ino);
1852 vol->quota_q_ino = NULL;
1853 }
1854 if (vol->quota_ino) {
1855 iput(vol->quota_ino);
1856 vol->quota_ino = NULL;
1857 }
1858#endif /* NTFS_RW */
1859 if (vol->extend_ino) {
1860 iput(vol->extend_ino);
1861 vol->extend_ino = NULL;
1862 }
1863 if (vol->secure_ino) {
1864 iput(vol->secure_ino);
1865 vol->secure_ino = NULL;
1866 }
1867 }
1868
1869 iput(vol->root_ino);
1870 vol->root_ino = NULL;
1871
1872 down_write(&vol->lcnbmp_lock);
1873 iput(vol->lcnbmp_ino);
1874 vol->lcnbmp_ino = NULL;
1875 up_write(&vol->lcnbmp_lock);
1876
1877 down_write(&vol->mftbmp_lock);
1878 iput(vol->mftbmp_ino);
1879 vol->mftbmp_ino = NULL;
1880 up_write(&vol->mftbmp_lock);
1881
1882#ifdef NTFS_RW
1883 if (vol->logfile_ino) {
1884 iput(vol->logfile_ino);
1885 vol->logfile_ino = NULL;
1886 }
1887 if (vol->mftmirr_ino) {
1888 /* Re-commit the mft mirror and mft just in case. */
1889 ntfs_commit_inode(vol->mftmirr_ino);
1890 ntfs_commit_inode(vol->mft_ino);
1891 iput(vol->mftmirr_ino);
1892 vol->mftmirr_ino = NULL;
1893 }
1894 /*
1895 * If any dirty inodes are left, throw away all mft data page cache
1896 * pages to allow a clean umount. This should never happen any more
1897 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
1898 * the underlying mft records are written out and cleaned. If it does,
1899 * happen anyway, we want to know...
1900 */
1901 ntfs_commit_inode(vol->mft_ino);
1902 write_inode_now(vol->mft_ino, 1);
1903 if (!list_empty(&sb->s_dirty)) {
1904 const char *s1, *s2;
1905
1906 down(&vol->mft_ino->i_sem);
1907 truncate_inode_pages(vol->mft_ino->i_mapping, 0);
1908 up(&vol->mft_ino->i_sem);
1909 write_inode_now(vol->mft_ino, 1);
1910 if (!list_empty(&sb->s_dirty)) {
1911 static const char *_s1 = "inodes";
1912 static const char *_s2 = "";
1913 s1 = _s1;
1914 s2 = _s2;
1915 } else {
1916 static const char *_s1 = "mft pages";
1917 static const char *_s2 = "They have been thrown "
1918 "away. ";
1919 s1 = _s1;
1920 s2 = _s2;
1921 }
1922 ntfs_error(sb, "Dirty %s found at umount time. %sYou should "
1923 "run chkdsk. Please email "
1924 "linux-ntfs-dev@lists.sourceforge.net and say "
1925 "that you saw this message. Thank you.", s1,
1926 s2);
1927 }
1928#endif /* NTFS_RW */
1929
1930 iput(vol->mft_ino);
1931 vol->mft_ino = NULL;
1932
1933 /* Throw away the table of attribute definitions. */
1934 vol->attrdef_size = 0;
1935 if (vol->attrdef) {
1936 ntfs_free(vol->attrdef);
1937 vol->attrdef = NULL;
1938 }
1939 vol->upcase_len = 0;
1940 /*
1941 * Destroy the global default upcase table if necessary. Also decrease
1942 * the number of upcase users if we are a user.
1943 */
1944 down(&ntfs_lock);
1945 if (vol->upcase == default_upcase) {
1946 ntfs_nr_upcase_users--;
1947 vol->upcase = NULL;
1948 }
1949 if (!ntfs_nr_upcase_users && default_upcase) {
1950 ntfs_free(default_upcase);
1951 default_upcase = NULL;
1952 }
1953 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
1954 free_compression_buffers();
1955 up(&ntfs_lock);
1956 if (vol->upcase) {
1957 ntfs_free(vol->upcase);
1958 vol->upcase = NULL;
1959 }
1960 if (vol->nls_map) {
1961 unload_nls(vol->nls_map);
1962 vol->nls_map = NULL;
1963 }
1964 sb->s_fs_info = NULL;
1965 kfree(vol);
1966 return;
1967}
1968
1969/**
1970 * get_nr_free_clusters - return the number of free clusters on a volume
1971 * @vol: ntfs volume for which to obtain free cluster count
1972 *
1973 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
1974 * actually calculate the number of clusters in use instead because this
1975 * allows us to not care about partial pages as these will be just zero filled
1976 * and hence not be counted as allocated clusters.
1977 *
1978 * The only particularity is that clusters beyond the end of the logical ntfs
1979 * volume will be marked as allocated to prevent errors which means we have to
1980 * discount those at the end. This is important as the cluster bitmap always
1981 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
1982 * the logical volume and marked in use when they are not as they do not exist.
1983 *
1984 * If any pages cannot be read we assume all clusters in the erroring pages are
1985 * in use. This means we return an underestimate on errors which is better than
1986 * an overestimate.
1987 */
1988static s64 get_nr_free_clusters(ntfs_volume *vol)
1989{
1990 s64 nr_free = vol->nr_clusters;
1991 u32 *kaddr;
1992 struct address_space *mapping = vol->lcnbmp_ino->i_mapping;
1993 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
1994 struct page *page;
218357ff 1995 pgoff_t index, max_index;
1da177e4
LT
1996
1997 ntfs_debug("Entering.");
1998 /* Serialize accesses to the cluster bitmap. */
1999 down_read(&vol->lcnbmp_lock);
2000 /*
2001 * Convert the number of bits into bytes rounded up, then convert into
2002 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2003 * full and one partial page max_index = 2.
2004 */
2005 max_index = (((vol->nr_clusters + 7) >> 3) + PAGE_CACHE_SIZE - 1) >>
2006 PAGE_CACHE_SHIFT;
218357ff
AA
2007 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2008 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2009 max_index, PAGE_CACHE_SIZE / 4);
2010 for (index = 0; index < max_index; index++) {
1da177e4
LT
2011 unsigned int i;
2012 /*
2013 * Read the page from page cache, getting it from backing store
2014 * if necessary, and increment the use count.
2015 */
2016 page = read_cache_page(mapping, index, (filler_t*)readpage,
2017 NULL);
2018 /* Ignore pages which errored synchronously. */
2019 if (IS_ERR(page)) {
2020 ntfs_debug("Sync read_cache_page() error. Skipping "
2021 "page (index 0x%lx).", index);
2022 nr_free -= PAGE_CACHE_SIZE * 8;
2023 continue;
2024 }
2025 wait_on_page_locked(page);
2026 /* Ignore pages which errored asynchronously. */
2027 if (!PageUptodate(page)) {
2028 ntfs_debug("Async read_cache_page() error. Skipping "
2029 "page (index 0x%lx).", index);
2030 page_cache_release(page);
2031 nr_free -= PAGE_CACHE_SIZE * 8;
2032 continue;
2033 }
2034 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2035 /*
2036 * For each 4 bytes, subtract the number of set bits. If this
2037 * is the last page and it is partial we don't really care as
2038 * it just means we do a little extra work but it won't affect
2039 * the result as all out of range bytes are set to zero by
2040 * ntfs_readpage().
2041 */
218357ff 2042 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
1da177e4
LT
2043 nr_free -= (s64)hweight32(kaddr[i]);
2044 kunmap_atomic(kaddr, KM_USER0);
2045 page_cache_release(page);
2046 }
2047 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index - 1);
2048 /*
2049 * Fixup for eventual bits outside logical ntfs volume (see function
2050 * description above).
2051 */
2052 if (vol->nr_clusters & 63)
2053 nr_free += 64 - (vol->nr_clusters & 63);
2054 up_read(&vol->lcnbmp_lock);
2055 /* If errors occured we may well have gone below zero, fix this. */
2056 if (nr_free < 0)
2057 nr_free = 0;
2058 ntfs_debug("Exiting.");
2059 return nr_free;
2060}
2061
2062/**
2063 * __get_nr_free_mft_records - return the number of free inodes on a volume
2064 * @vol: ntfs volume for which to obtain free inode count
c002f425 2065 * @nr_free: number of mft records in filesystem
218357ff 2066 * @max_index: maximum number of pages containing set bits
1da177e4
LT
2067 *
2068 * Calculate the number of free mft records (inodes) on the mounted NTFS
2069 * volume @vol. We actually calculate the number of mft records in use instead
2070 * because this allows us to not care about partial pages as these will be just
2071 * zero filled and hence not be counted as allocated mft record.
2072 *
2073 * If any pages cannot be read we assume all mft records in the erroring pages
2074 * are in use. This means we return an underestimate on errors which is better
2075 * than an overestimate.
2076 *
2077 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2078 */
218357ff
AA
2079static unsigned long __get_nr_free_mft_records(ntfs_volume *vol,
2080 s64 nr_free, const pgoff_t max_index)
1da177e4 2081{
1da177e4
LT
2082 u32 *kaddr;
2083 struct address_space *mapping = vol->mftbmp_ino->i_mapping;
2084 filler_t *readpage = (filler_t*)mapping->a_ops->readpage;
2085 struct page *page;
218357ff 2086 pgoff_t index;
1da177e4
LT
2087
2088 ntfs_debug("Entering.");
218357ff 2089 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
1da177e4 2090 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
218357ff
AA
2091 "0x%lx.", max_index, PAGE_CACHE_SIZE / 4);
2092 for (index = 0; index < max_index; index++) {
1da177e4
LT
2093 unsigned int i;
2094 /*
2095 * Read the page from page cache, getting it from backing store
2096 * if necessary, and increment the use count.
2097 */
2098 page = read_cache_page(mapping, index, (filler_t*)readpage,
2099 NULL);
2100 /* Ignore pages which errored synchronously. */
2101 if (IS_ERR(page)) {
2102 ntfs_debug("Sync read_cache_page() error. Skipping "
2103 "page (index 0x%lx).", index);
2104 nr_free -= PAGE_CACHE_SIZE * 8;
2105 continue;
2106 }
2107 wait_on_page_locked(page);
2108 /* Ignore pages which errored asynchronously. */
2109 if (!PageUptodate(page)) {
2110 ntfs_debug("Async read_cache_page() error. Skipping "
2111 "page (index 0x%lx).", index);
2112 page_cache_release(page);
2113 nr_free -= PAGE_CACHE_SIZE * 8;
2114 continue;
2115 }
2116 kaddr = (u32*)kmap_atomic(page, KM_USER0);
2117 /*
2118 * For each 4 bytes, subtract the number of set bits. If this
2119 * is the last page and it is partial we don't really care as
2120 * it just means we do a little extra work but it won't affect
2121 * the result as all out of range bytes are set to zero by
2122 * ntfs_readpage().
2123 */
218357ff 2124 for (i = 0; i < PAGE_CACHE_SIZE / 4; i++)
1da177e4
LT
2125 nr_free -= (s64)hweight32(kaddr[i]);
2126 kunmap_atomic(kaddr, KM_USER0);
2127 page_cache_release(page);
2128 }
2129 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2130 index - 1);
2131 /* If errors occured we may well have gone below zero, fix this. */
2132 if (nr_free < 0)
2133 nr_free = 0;
2134 ntfs_debug("Exiting.");
2135 return nr_free;
2136}
2137
2138/**
2139 * ntfs_statfs - return information about mounted NTFS volume
2140 * @sb: super block of mounted volume
2141 * @sfs: statfs structure in which to return the information
2142 *
2143 * Return information about the mounted NTFS volume @sb in the statfs structure
2144 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2145 * called). We interpret the values to be correct of the moment in time at
2146 * which we are called. Most values are variable otherwise and this isn't just
2147 * the free values but the totals as well. For example we can increase the
2148 * total number of file nodes if we run out and we can keep doing this until
2149 * there is no more space on the volume left at all.
2150 *
2151 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2152 * ustat system calls.
2153 *
2154 * Return 0 on success or -errno on error.
2155 */
2156static int ntfs_statfs(struct super_block *sb, struct kstatfs *sfs)
2157{
1da177e4 2158 s64 size;
218357ff
AA
2159 ntfs_volume *vol = NTFS_SB(sb);
2160 ntfs_inode *mft_ni = NTFS_I(vol->mft_ino);
2161 pgoff_t max_index;
2162 unsigned long flags;
1da177e4
LT
2163
2164 ntfs_debug("Entering.");
2165 /* Type of filesystem. */
2166 sfs->f_type = NTFS_SB_MAGIC;
2167 /* Optimal transfer block size. */
2168 sfs->f_bsize = PAGE_CACHE_SIZE;
2169 /*
c002f425 2170 * Total data blocks in filesystem in units of f_bsize and since
1da177e4
LT
2171 * inodes are also stored in data blocs ($MFT is a file) this is just
2172 * the total clusters.
2173 */
2174 sfs->f_blocks = vol->nr_clusters << vol->cluster_size_bits >>
2175 PAGE_CACHE_SHIFT;
c002f425 2176 /* Free data blocks in filesystem in units of f_bsize. */
1da177e4
LT
2177 size = get_nr_free_clusters(vol) << vol->cluster_size_bits >>
2178 PAGE_CACHE_SHIFT;
2179 if (size < 0LL)
2180 size = 0LL;
2181 /* Free blocks avail to non-superuser, same as above on NTFS. */
2182 sfs->f_bavail = sfs->f_bfree = size;
2183 /* Serialize accesses to the inode bitmap. */
2184 down_read(&vol->mftbmp_lock);
218357ff
AA
2185 read_lock_irqsave(&mft_ni->size_lock, flags);
2186 size = i_size_read(vol->mft_ino) >> vol->mft_record_size_bits;
2187 /*
2188 * Convert the maximum number of set bits into bytes rounded up, then
2189 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2190 * have one full and one partial page max_index = 2.
2191 */
2192 max_index = ((((mft_ni->initialized_size >> vol->mft_record_size_bits)
2193 + 7) >> 3) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
2194 read_unlock_irqrestore(&mft_ni->size_lock, flags);
c002f425 2195 /* Number of inodes in filesystem (at this point in time). */
218357ff 2196 sfs->f_files = size;
1da177e4 2197 /* Free inodes in fs (based on current total count). */
218357ff 2198 sfs->f_ffree = __get_nr_free_mft_records(vol, size, max_index);
1da177e4
LT
2199 up_read(&vol->mftbmp_lock);
2200 /*
2201 * File system id. This is extremely *nix flavour dependent and even
2202 * within Linux itself all fs do their own thing. I interpret this to
2203 * mean a unique id associated with the mounted fs and not the id
c002f425
AA
2204 * associated with the filesystem driver, the latter is already given
2205 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
1da177e4
LT
2206 * volume serial number splitting it into two 32-bit parts. We enter
2207 * the least significant 32-bits in f_fsid[0] and the most significant
2208 * 32-bits in f_fsid[1].
2209 */
2210 sfs->f_fsid.val[0] = vol->serial_no & 0xffffffff;
2211 sfs->f_fsid.val[1] = (vol->serial_no >> 32) & 0xffffffff;
2212 /* Maximum length of filenames. */
2213 sfs->f_namelen = NTFS_MAX_NAME_LEN;
2214 return 0;
2215}
2216
2217/**
2218 * The complete super operations.
2219 */
2220static struct super_operations ntfs_sops = {
2221 .alloc_inode = ntfs_alloc_big_inode, /* VFS: Allocate new inode. */
2222 .destroy_inode = ntfs_destroy_big_inode, /* VFS: Deallocate inode. */
2223 .put_inode = ntfs_put_inode, /* VFS: Called just before
2224 the inode reference count
2225 is decreased. */
2226#ifdef NTFS_RW
2227 //.dirty_inode = NULL, /* VFS: Called from
2228 // __mark_inode_dirty(). */
2229 .write_inode = ntfs_write_inode, /* VFS: Write dirty inode to
2230 disk. */
2231 //.drop_inode = NULL, /* VFS: Called just after the
2232 // inode reference count has
2233 // been decreased to zero.
2234 // NOTE: The inode lock is
2235 // held. See fs/inode.c::
2236 // generic_drop_inode(). */
2237 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2238 // Called when i_count becomes
2239 // 0 and i_nlink is also 0. */
2240 //.write_super = NULL, /* Flush dirty super block to
2241 // disk. */
2242 //.sync_fs = NULL, /* ? */
2243 //.write_super_lockfs = NULL, /* ? */
2244 //.unlockfs = NULL, /* ? */
2245#endif /* NTFS_RW */
2246 .put_super = ntfs_put_super, /* Syscall: umount. */
2247 .statfs = ntfs_statfs, /* Syscall: statfs */
2248 .remount_fs = ntfs_remount, /* Syscall: mount -o remount. */
2249 .clear_inode = ntfs_clear_big_inode, /* VFS: Called when an inode is
2250 removed from memory. */
2251 //.umount_begin = NULL, /* Forced umount. */
2252 .show_options = ntfs_show_options, /* Show mount options in
2253 proc. */
2254};
2255
1da177e4 2256/**
c002f425
AA
2257 * ntfs_fill_super - mount an ntfs filesystem
2258 * @sb: super block of ntfs filesystem to mount
1da177e4
LT
2259 * @opt: string containing the mount options
2260 * @silent: silence error output
2261 *
2262 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
c002f425 2263 * with the mount otions in @data with the NTFS filesystem.
1da177e4
LT
2264 *
2265 * If @silent is true, remain silent even if errors are detected. This is used
c002f425
AA
2266 * during bootup, when the kernel tries to mount the root filesystem with all
2267 * registered filesystems one after the other until one succeeds. This implies
2268 * that all filesystems except the correct one will quite correctly and
1da177e4
LT
2269 * expectedly return an error, but nobody wants to see error messages when in
2270 * fact this is what is supposed to happen.
2271 *
2272 * NOTE: @sb->s_flags contains the mount options flags.
2273 */
2274static int ntfs_fill_super(struct super_block *sb, void *opt, const int silent)
2275{
2276 ntfs_volume *vol;
2277 struct buffer_head *bh;
2278 struct inode *tmp_ino;
2279 int result;
2280
2281 ntfs_debug("Entering.");
2282#ifndef NTFS_RW
2283 sb->s_flags |= MS_RDONLY | MS_NOATIME | MS_NODIRATIME;
2284#endif /* ! NTFS_RW */
2285 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2286 sb->s_fs_info = kmalloc(sizeof(ntfs_volume), GFP_NOFS);
2287 vol = NTFS_SB(sb);
2288 if (!vol) {
2289 if (!silent)
2290 ntfs_error(sb, "Allocation of NTFS volume structure "
2291 "failed. Aborting mount...");
2292 return -ENOMEM;
2293 }
2294 /* Initialize ntfs_volume structure. */
2295 memset(vol, 0, sizeof(ntfs_volume));
2296 vol->sb = sb;
2297 vol->upcase = NULL;
2298 vol->attrdef = NULL;
2299 vol->mft_ino = NULL;
2300 vol->mftbmp_ino = NULL;
2301 init_rwsem(&vol->mftbmp_lock);
2302#ifdef NTFS_RW
2303 vol->mftmirr_ino = NULL;
2304 vol->logfile_ino = NULL;
2305#endif /* NTFS_RW */
2306 vol->lcnbmp_ino = NULL;
2307 init_rwsem(&vol->lcnbmp_lock);
2308 vol->vol_ino = NULL;
2309 vol->root_ino = NULL;
2310 vol->secure_ino = NULL;
2311 vol->extend_ino = NULL;
2312#ifdef NTFS_RW
2313 vol->quota_ino = NULL;
2314 vol->quota_q_ino = NULL;
2315#endif /* NTFS_RW */
2316 vol->nls_map = NULL;
2317
2318 /*
2319 * Default is group and other don't have any access to files or
2320 * directories while owner has full access. Further, files by default
2321 * are not executable but directories are of course browseable.
2322 */
2323 vol->fmask = 0177;
2324 vol->dmask = 0077;
2325
2326 unlock_kernel();
2327
c002f425
AA
2328 /* By default, enable sparse support. */
2329 NVolSetSparseEnabled(vol);
2330
1da177e4
LT
2331 /* Important to get the mount options dealt with now. */
2332 if (!parse_options(vol, (char*)opt))
2333 goto err_out_now;
2334
2335 /*
2336 * TODO: Fail safety check. In the future we should really be able to
2337 * cope with this being the case, but for now just bail out.
2338 */
2339 if (bdev_hardsect_size(sb->s_bdev) > NTFS_BLOCK_SIZE) {
2340 if (!silent)
2341 ntfs_error(sb, "Device has unsupported hardsect_size.");
2342 goto err_out_now;
2343 }
2344
2345 /* Setup the device access block size to NTFS_BLOCK_SIZE. */
2346 if (sb_set_blocksize(sb, NTFS_BLOCK_SIZE) != NTFS_BLOCK_SIZE) {
2347 if (!silent)
2348 ntfs_error(sb, "Unable to set block size.");
2349 goto err_out_now;
2350 }
2351
2352 /* Get the size of the device in units of NTFS_BLOCK_SIZE bytes. */
218357ff
AA
2353 vol->nr_blocks = i_size_read(sb->s_bdev->bd_inode) >>
2354 NTFS_BLOCK_SIZE_BITS;
1da177e4
LT
2355
2356 /* Read the boot sector and return unlocked buffer head to it. */
2357 if (!(bh = read_ntfs_boot_sector(sb, silent))) {
2358 if (!silent)
2359 ntfs_error(sb, "Not an NTFS volume.");
2360 goto err_out_now;
2361 }
2362
2363 /*
2364 * Extract the data from the boot sector and setup the ntfs super block
2365 * using it.
2366 */
2367 result = parse_ntfs_boot_sector(vol, (NTFS_BOOT_SECTOR*)bh->b_data);
2368
2369 /* Initialize the cluster and mft allocators. */
2370 ntfs_setup_allocators(vol);
2371
2372 brelse(bh);
2373
2374 if (!result) {
2375 if (!silent)
2376 ntfs_error(sb, "Unsupported NTFS filesystem.");
2377 goto err_out_now;
2378 }
2379
2380 /*
2381 * TODO: When we start coping with sector sizes different from
2382 * NTFS_BLOCK_SIZE, we now probably need to set the blocksize of the
2383 * device (probably to NTFS_BLOCK_SIZE).
2384 */
2385
2386 /* Setup remaining fields in the super block. */
2387 sb->s_magic = NTFS_SB_MAGIC;
2388
2389 /*
2390 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2391 * sb->s_maxbytes = ~0ULL >> 1;
2392 * But the kernel uses a long as the page cache page index which on
2393 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2394 * defined to the maximum the page cache page index can cope with
2395 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2396 */
2397 sb->s_maxbytes = MAX_LFS_FILESIZE;
2398
2399 sb->s_time_gran = 100;
2400
2401 /*
2402 * Now load the metadata required for the page cache and our address
2403 * space operations to function. We do this by setting up a specialised
2404 * read_inode method and then just calling the normal iget() to obtain
2405 * the inode for $MFT which is sufficient to allow our normal inode
2406 * operations and associated address space operations to function.
2407 */
2408 sb->s_op = &ntfs_sops;
2409 tmp_ino = new_inode(sb);
2410 if (!tmp_ino) {
2411 if (!silent)
2412 ntfs_error(sb, "Failed to load essential metadata.");
2413 goto err_out_now;
2414 }
2415 tmp_ino->i_ino = FILE_MFT;
2416 insert_inode_hash(tmp_ino);
2417 if (ntfs_read_inode_mount(tmp_ino) < 0) {
2418 if (!silent)
2419 ntfs_error(sb, "Failed to load essential metadata.");
2420 goto iput_tmp_ino_err_out_now;
2421 }
2422 down(&ntfs_lock);
2423 /*
2424 * The current mount is a compression user if the cluster size is
2425 * less than or equal 4kiB.
2426 */
2427 if (vol->cluster_size <= 4096 && !ntfs_nr_compression_users++) {
2428 result = allocate_compression_buffers();
2429 if (result) {
2430 ntfs_error(NULL, "Failed to allocate buffers "
2431 "for compression engine.");
2432 ntfs_nr_compression_users--;
2433 up(&ntfs_lock);
2434 goto iput_tmp_ino_err_out_now;
2435 }
2436 }
2437 /*
2438 * Generate the global default upcase table if necessary. Also
2439 * temporarily increment the number of upcase users to avoid race
2440 * conditions with concurrent (u)mounts.
2441 */
2442 if (!default_upcase)
2443 default_upcase = generate_default_upcase();
2444 ntfs_nr_upcase_users++;
2445 up(&ntfs_lock);
2446 /*
2447 * From now on, ignore @silent parameter. If we fail below this line,
2448 * it will be due to a corrupt fs or a system error, so we report it.
2449 */
2450 /*
2451 * Open the system files with normal access functions and complete
2452 * setting up the ntfs super block.
2453 */
2454 if (!load_system_files(vol)) {
2455 ntfs_error(sb, "Failed to load system files.");
2456 goto unl_upcase_iput_tmp_ino_err_out_now;
2457 }
2458 if ((sb->s_root = d_alloc_root(vol->root_ino))) {
2459 /* We increment i_count simulating an ntfs_iget(). */
2460 atomic_inc(&vol->root_ino->i_count);
2461 ntfs_debug("Exiting, status successful.");
2462 /* Release the default upcase if it has no users. */
2463 down(&ntfs_lock);
2464 if (!--ntfs_nr_upcase_users && default_upcase) {
2465 ntfs_free(default_upcase);
2466 default_upcase = NULL;
2467 }
2468 up(&ntfs_lock);
2469 sb->s_export_op = &ntfs_export_ops;
2470 lock_kernel();
2471 return 0;
2472 }
2473 ntfs_error(sb, "Failed to allocate root directory.");
2474 /* Clean up after the successful load_system_files() call from above. */
2475 // TODO: Use ntfs_put_super() instead of repeating all this code...
2476 // FIXME: Should mark the volume clean as the error is most likely
2477 // -ENOMEM.
2478 iput(vol->vol_ino);
2479 vol->vol_ino = NULL;
2480 /* NTFS 3.0+ specific clean up. */
2481 if (vol->major_ver >= 3) {
2482#ifdef NTFS_RW
2483 if (vol->quota_q_ino) {
2484 iput(vol->quota_q_ino);
2485 vol->quota_q_ino = NULL;
2486 }
2487 if (vol->quota_ino) {
2488 iput(vol->quota_ino);
2489 vol->quota_ino = NULL;
2490 }
2491#endif /* NTFS_RW */
2492 if (vol->extend_ino) {
2493 iput(vol->extend_ino);
2494 vol->extend_ino = NULL;
2495 }
2496 if (vol->secure_ino) {
2497 iput(vol->secure_ino);
2498 vol->secure_ino = NULL;
2499 }
2500 }
2501 iput(vol->root_ino);
2502 vol->root_ino = NULL;
2503 iput(vol->lcnbmp_ino);
2504 vol->lcnbmp_ino = NULL;
2505 iput(vol->mftbmp_ino);
2506 vol->mftbmp_ino = NULL;
2507#ifdef NTFS_RW
2508 if (vol->logfile_ino) {
2509 iput(vol->logfile_ino);
2510 vol->logfile_ino = NULL;
2511 }
2512 if (vol->mftmirr_ino) {
2513 iput(vol->mftmirr_ino);
2514 vol->mftmirr_ino = NULL;
2515 }
2516#endif /* NTFS_RW */
2517 /* Throw away the table of attribute definitions. */
2518 vol->attrdef_size = 0;
2519 if (vol->attrdef) {
2520 ntfs_free(vol->attrdef);
2521 vol->attrdef = NULL;
2522 }
2523 vol->upcase_len = 0;
2524 down(&ntfs_lock);
2525 if (vol->upcase == default_upcase) {
2526 ntfs_nr_upcase_users--;
2527 vol->upcase = NULL;
2528 }
2529 up(&ntfs_lock);
2530 if (vol->upcase) {
2531 ntfs_free(vol->upcase);
2532 vol->upcase = NULL;
2533 }
2534 if (vol->nls_map) {
2535 unload_nls(vol->nls_map);
2536 vol->nls_map = NULL;
2537 }
2538 /* Error exit code path. */
2539unl_upcase_iput_tmp_ino_err_out_now:
2540 /*
2541 * Decrease the number of upcase users and destroy the global default
2542 * upcase table if necessary.
2543 */
2544 down(&ntfs_lock);
2545 if (!--ntfs_nr_upcase_users && default_upcase) {
2546 ntfs_free(default_upcase);
2547 default_upcase = NULL;
2548 }
2549 if (vol->cluster_size <= 4096 && !--ntfs_nr_compression_users)
2550 free_compression_buffers();
2551 up(&ntfs_lock);
2552iput_tmp_ino_err_out_now:
2553 iput(tmp_ino);
2554 if (vol->mft_ino && vol->mft_ino != tmp_ino)
2555 iput(vol->mft_ino);
2556 vol->mft_ino = NULL;
2557 /*
2558 * This is needed to get ntfs_clear_extent_inode() called for each
2559 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
2560 * leak resources and B) a subsequent mount fails automatically due to
2561 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
2562 * method again... FIXME: Do we need to do this twice now because of
2563 * attribute inodes? I think not, so leave as is for now... (AIA)
2564 */
2565 if (invalidate_inodes(sb)) {
2566 ntfs_error(sb, "Busy inodes left. This is most likely a NTFS "
2567 "driver bug.");
2568 /* Copied from fs/super.c. I just love this message. (-; */
2569 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
2570 "seconds. Have a nice day...\n");
2571 }
2572 /* Errors at this stage are irrelevant. */
2573err_out_now:
2574 lock_kernel();
2575 sb->s_fs_info = NULL;
2576 kfree(vol);
2577 ntfs_debug("Failed, returning -EINVAL.");
2578 return -EINVAL;
2579}
2580
2581/*
2582 * This is a slab cache to optimize allocations and deallocations of Unicode
2583 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
2584 * (255) Unicode characters + a terminating NULL Unicode character.
2585 */
2586kmem_cache_t *ntfs_name_cache;
2587
2588/* Slab caches for efficient allocation/deallocation of of inodes. */
2589kmem_cache_t *ntfs_inode_cache;
2590kmem_cache_t *ntfs_big_inode_cache;
2591
2592/* Init once constructor for the inode slab cache. */
2593static void ntfs_big_inode_init_once(void *foo, kmem_cache_t *cachep,
2594 unsigned long flags)
2595{
2596 ntfs_inode *ni = (ntfs_inode *)foo;
2597
2598 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2599 SLAB_CTOR_CONSTRUCTOR)
2600 inode_init_once(VFS_I(ni));
2601}
2602
2603/*
2604 * Slab caches to optimize allocations and deallocations of attribute search
2605 * contexts and index contexts, respectively.
2606 */
2607kmem_cache_t *ntfs_attr_ctx_cache;
2608kmem_cache_t *ntfs_index_ctx_cache;
2609
2610/* Driver wide semaphore. */
2611DECLARE_MUTEX(ntfs_lock);
2612
2613static struct super_block *ntfs_get_sb(struct file_system_type *fs_type,
2614 int flags, const char *dev_name, void *data)
2615{
2616 return get_sb_bdev(fs_type, flags, dev_name, data, ntfs_fill_super);
2617}
2618
2619static struct file_system_type ntfs_fs_type = {
2620 .owner = THIS_MODULE,
2621 .name = "ntfs",
2622 .get_sb = ntfs_get_sb,
2623 .kill_sb = kill_block_super,
2624 .fs_flags = FS_REQUIRES_DEV,
2625};
2626
2627/* Stable names for the slab caches. */
2628static const char ntfs_index_ctx_cache_name[] = "ntfs_index_ctx_cache";
2629static const char ntfs_attr_ctx_cache_name[] = "ntfs_attr_ctx_cache";
2630static const char ntfs_name_cache_name[] = "ntfs_name_cache";
2631static const char ntfs_inode_cache_name[] = "ntfs_inode_cache";
2632static const char ntfs_big_inode_cache_name[] = "ntfs_big_inode_cache";
2633
2634static int __init init_ntfs_fs(void)
2635{
2636 int err = 0;
2637
2638 /* This may be ugly but it results in pretty output so who cares. (-8 */
2639 printk(KERN_INFO "NTFS driver " NTFS_VERSION " [Flags: R/"
2640#ifdef NTFS_RW
2641 "W"
2642#else
2643 "O"
2644#endif
2645#ifdef DEBUG
2646 " DEBUG"
2647#endif
2648#ifdef MODULE
2649 " MODULE"
2650#endif
2651 "].\n");
2652
2653 ntfs_debug("Debug messages are enabled.");
2654
2655 ntfs_index_ctx_cache = kmem_cache_create(ntfs_index_ctx_cache_name,
2656 sizeof(ntfs_index_context), 0 /* offset */,
2657 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
2658 if (!ntfs_index_ctx_cache) {
2659 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
2660 ntfs_index_ctx_cache_name);
2661 goto ictx_err_out;
2662 }
2663 ntfs_attr_ctx_cache = kmem_cache_create(ntfs_attr_ctx_cache_name,
2664 sizeof(ntfs_attr_search_ctx), 0 /* offset */,
2665 SLAB_HWCACHE_ALIGN, NULL /* ctor */, NULL /* dtor */);
2666 if (!ntfs_attr_ctx_cache) {
2667 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
2668 ntfs_attr_ctx_cache_name);
2669 goto actx_err_out;
2670 }
2671
2672 ntfs_name_cache = kmem_cache_create(ntfs_name_cache_name,
2673 (NTFS_MAX_NAME_LEN+1) * sizeof(ntfschar), 0,
2674 SLAB_HWCACHE_ALIGN, NULL, NULL);
2675 if (!ntfs_name_cache) {
2676 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
2677 ntfs_name_cache_name);
2678 goto name_err_out;
2679 }
2680
2681 ntfs_inode_cache = kmem_cache_create(ntfs_inode_cache_name,
2682 sizeof(ntfs_inode), 0,
2683 SLAB_RECLAIM_ACCOUNT, NULL, NULL);
2684 if (!ntfs_inode_cache) {
2685 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
2686 ntfs_inode_cache_name);
2687 goto inode_err_out;
2688 }
2689
2690 ntfs_big_inode_cache = kmem_cache_create(ntfs_big_inode_cache_name,
2691 sizeof(big_ntfs_inode), 0,
2692 SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
2693 ntfs_big_inode_init_once, NULL);
2694 if (!ntfs_big_inode_cache) {
2695 printk(KERN_CRIT "NTFS: Failed to create %s!\n",
2696 ntfs_big_inode_cache_name);
2697 goto big_inode_err_out;
2698 }
2699
2700 /* Register the ntfs sysctls. */
2701 err = ntfs_sysctl(1);
2702 if (err) {
2703 printk(KERN_CRIT "NTFS: Failed to register NTFS sysctls!\n");
2704 goto sysctl_err_out;
2705 }
2706
2707 err = register_filesystem(&ntfs_fs_type);
2708 if (!err) {
2709 ntfs_debug("NTFS driver registered successfully.");
2710 return 0; /* Success! */
2711 }
c002f425 2712 printk(KERN_CRIT "NTFS: Failed to register NTFS filesystem driver!\n");
1da177e4
LT
2713
2714sysctl_err_out:
2715 kmem_cache_destroy(ntfs_big_inode_cache);
2716big_inode_err_out:
2717 kmem_cache_destroy(ntfs_inode_cache);
2718inode_err_out:
2719 kmem_cache_destroy(ntfs_name_cache);
2720name_err_out:
2721 kmem_cache_destroy(ntfs_attr_ctx_cache);
2722actx_err_out:
2723 kmem_cache_destroy(ntfs_index_ctx_cache);
2724ictx_err_out:
2725 if (!err) {
c002f425 2726 printk(KERN_CRIT "NTFS: Aborting NTFS filesystem driver "
1da177e4
LT
2727 "registration...\n");
2728 err = -ENOMEM;
2729 }
2730 return err;
2731}
2732
2733static void __exit exit_ntfs_fs(void)
2734{
2735 int err = 0;
2736
2737 ntfs_debug("Unregistering NTFS driver.");
2738
2739 unregister_filesystem(&ntfs_fs_type);
2740
2741 if (kmem_cache_destroy(ntfs_big_inode_cache) && (err = 1))
2742 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
2743 ntfs_big_inode_cache_name);
2744 if (kmem_cache_destroy(ntfs_inode_cache) && (err = 1))
2745 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
2746 ntfs_inode_cache_name);
2747 if (kmem_cache_destroy(ntfs_name_cache) && (err = 1))
2748 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
2749 ntfs_name_cache_name);
2750 if (kmem_cache_destroy(ntfs_attr_ctx_cache) && (err = 1))
2751 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
2752 ntfs_attr_ctx_cache_name);
2753 if (kmem_cache_destroy(ntfs_index_ctx_cache) && (err = 1))
2754 printk(KERN_CRIT "NTFS: Failed to destory %s.\n",
2755 ntfs_index_ctx_cache_name);
2756 if (err)
2757 printk(KERN_CRIT "NTFS: This causes memory to leak! There is "
2758 "probably a BUG in the driver! Please report "
2759 "you saw this message to "
2760 "linux-ntfs-dev@lists.sourceforge.net\n");
2761 /* Unregister the ntfs sysctls. */
2762 ntfs_sysctl(0);
2763}
2764
2765MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
c002f425 2766MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2005 Anton Altaparmakov");
1da177e4
LT
2767MODULE_VERSION(NTFS_VERSION);
2768MODULE_LICENSE("GPL");
2769#ifdef DEBUG
2770module_param(debug_msgs, bool, 0);
2771MODULE_PARM_DESC(debug_msgs, "Enable debug messages.");
2772#endif
2773
2774module_init(init_ntfs_fs)
2775module_exit(exit_ntfs_fs)