]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ntfs3/index.c
fs/ntfs3: Limit binary search table size
[mirror_ubuntu-kernels.git] / fs / ntfs3 / index.c
CommitLineData
82cae269
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
82cae269
KK
11
12#include "debug.h"
13#include "ntfs.h"
14#include "ntfs_fs.h"
15
16static const struct INDEX_NAMES {
17 const __le16 *name;
18 u8 name_len;
19} s_index_names[INDEX_MUTEX_TOTAL] = {
20 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
21 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
22 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
23};
24
25/*
e8b8e97f
KA
26 * cmp_fnames - Compare two names in index.
27 *
82cae269 28 * if l1 != 0
e8b8e97f 29 * Both names are little endian on-disk ATTR_FILE_NAME structs.
82cae269
KK
30 * else
31 * key1 - cpu_str, key2 - ATTR_FILE_NAME
32 */
33static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
34 const void *data)
35{
36 const struct ATTR_FILE_NAME *f2 = key2;
37 const struct ntfs_sb_info *sbi = data;
38 const struct ATTR_FILE_NAME *f1;
39 u16 fsize2;
40 bool both_case;
41
42 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
43 return -1;
44
45 fsize2 = fname_full_size(f2);
46 if (l2 < fsize2)
47 return -1;
48
49 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
50 if (!l1) {
51 const struct le_str *s2 = (struct le_str *)&f2->name_len;
52
53 /*
54 * If names are equal (case insensitive)
e8b8e97f 55 * try to compare it case sensitive.
82cae269
KK
56 */
57 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
58 }
59
60 f1 = key1;
61 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
62 sbi->upcase, both_case);
63}
64
e8b8e97f
KA
65/*
66 * cmp_uint - $SII of $Secure and $Q of Quota
67 */
82cae269
KK
68static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
69 const void *data)
70{
71 const u32 *k1 = key1;
72 const u32 *k2 = key2;
73
74 if (l2 < sizeof(u32))
75 return -1;
76
77 if (*k1 < *k2)
78 return -1;
79 if (*k1 > *k2)
80 return 1;
81 return 0;
82}
83
e8b8e97f
KA
84/*
85 * cmp_sdh - $SDH of $Secure
86 */
82cae269
KK
87static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
88 const void *data)
89{
90 const struct SECURITY_KEY *k1 = key1;
91 const struct SECURITY_KEY *k2 = key2;
92 u32 t1, t2;
93
94 if (l2 < sizeof(struct SECURITY_KEY))
95 return -1;
96
97 t1 = le32_to_cpu(k1->hash);
98 t2 = le32_to_cpu(k2->hash);
99
e8b8e97f 100 /* First value is a hash value itself. */
82cae269
KK
101 if (t1 < t2)
102 return -1;
103 if (t1 > t2)
104 return 1;
105
e8b8e97f 106 /* Second value is security Id. */
82cae269
KK
107 if (data) {
108 t1 = le32_to_cpu(k1->sec_id);
109 t2 = le32_to_cpu(k2->sec_id);
110 if (t1 < t2)
111 return -1;
112 if (t1 > t2)
113 return 1;
114 }
115
116 return 0;
117}
118
e8b8e97f
KA
119/*
120 * cmp_uints - $O of ObjId and "$R" for Reparse.
121 */
82cae269
KK
122static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
123 const void *data)
124{
125 const __le32 *k1 = key1;
126 const __le32 *k2 = key2;
127 size_t count;
128
129 if ((size_t)data == 1) {
130 /*
e8b8e97f
KA
131 * ni_delete_all -> ntfs_remove_reparse ->
132 * delete all with this reference.
82cae269
KK
133 * k1, k2 - pointers to REPARSE_KEY
134 */
135
e8b8e97f
KA
136 k1 += 1; // Skip REPARSE_KEY.ReparseTag
137 k2 += 1; // Skip REPARSE_KEY.ReparseTag
82cae269
KK
138 if (l2 <= sizeof(int))
139 return -1;
140 l2 -= sizeof(int);
141 if (l1 <= sizeof(int))
142 return 1;
143 l1 -= sizeof(int);
144 }
145
146 if (l2 < sizeof(int))
147 return -1;
148
149 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
150 u32 t1 = le32_to_cpu(*k1);
151 u32 t2 = le32_to_cpu(*k2);
152
153 if (t1 > t2)
154 return 1;
155 if (t1 < t2)
156 return -1;
157 }
158
159 if (l1 > l2)
160 return 1;
161 if (l1 < l2)
162 return -1;
163
164 return 0;
165}
166
167static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
168{
169 switch (root->type) {
170 case ATTR_NAME:
171 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
172 return &cmp_fnames;
173 break;
174 case ATTR_ZERO:
175 switch (root->rule) {
176 case NTFS_COLLATION_TYPE_UINT:
177 return &cmp_uint;
178 case NTFS_COLLATION_TYPE_SECURITY_HASH:
179 return &cmp_sdh;
180 case NTFS_COLLATION_TYPE_UINTS:
181 return &cmp_uints;
182 default:
183 break;
184 }
abfeb2ee 185 break;
82cae269
KK
186 default:
187 break;
188 }
189
190 return NULL;
191}
192
193struct bmp_buf {
194 struct ATTRIB *b;
195 struct mft_inode *mi;
196 struct buffer_head *bh;
197 ulong *buf;
198 size_t bit;
199 u32 nbits;
200 u64 new_valid;
201};
202
203static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
204 size_t bit, struct bmp_buf *bbuf)
205{
206 struct ATTRIB *b;
207 size_t data_size, valid_size, vbo, off = bit >> 3;
208 struct ntfs_sb_info *sbi = ni->mi.sbi;
209 CLST vcn = off >> sbi->cluster_bits;
210 struct ATTR_LIST_ENTRY *le = NULL;
211 struct buffer_head *bh;
212 struct super_block *sb;
213 u32 blocksize;
214 const struct INDEX_NAMES *in = &s_index_names[indx->type];
215
216 bbuf->bh = NULL;
217
218 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
219 &vcn, &bbuf->mi);
220 bbuf->b = b;
221 if (!b)
222 return -EINVAL;
223
224 if (!b->non_res) {
225 data_size = le32_to_cpu(b->res.data_size);
226
227 if (off >= data_size)
228 return -EINVAL;
229
230 bbuf->buf = (ulong *)resident_data(b);
231 bbuf->bit = 0;
232 bbuf->nbits = data_size * 8;
233
234 return 0;
235 }
236
237 data_size = le64_to_cpu(b->nres.data_size);
238 if (WARN_ON(off >= data_size)) {
e8b8e97f 239 /* Looks like filesystem error. */
82cae269
KK
240 return -EINVAL;
241 }
242
243 valid_size = le64_to_cpu(b->nres.valid_size);
244
245 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
246 if (!bh)
247 return -EIO;
248
249 if (IS_ERR(bh))
250 return PTR_ERR(bh);
251
252 bbuf->bh = bh;
253
254 if (buffer_locked(bh))
255 __wait_on_buffer(bh);
256
257 lock_buffer(bh);
258
259 sb = sbi->sb;
260 blocksize = sb->s_blocksize;
261
262 vbo = off & ~(size_t)sbi->block_mask;
263
264 bbuf->new_valid = vbo + blocksize;
265 if (bbuf->new_valid <= valid_size)
266 bbuf->new_valid = 0;
267 else if (bbuf->new_valid > data_size)
268 bbuf->new_valid = data_size;
269
270 if (vbo >= valid_size) {
271 memset(bh->b_data, 0, blocksize);
272 } else if (vbo + blocksize > valid_size) {
273 u32 voff = valid_size & sbi->block_mask;
274
275 memset(bh->b_data + voff, 0, blocksize - voff);
276 }
277
278 bbuf->buf = (ulong *)bh->b_data;
279 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
280 bbuf->nbits = 8 * blocksize;
281
282 return 0;
283}
284
285static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
286{
287 struct buffer_head *bh = bbuf->bh;
288 struct ATTRIB *b = bbuf->b;
289
290 if (!bh) {
291 if (b && !b->non_res && dirty)
292 bbuf->mi->dirty = true;
293 return;
294 }
295
296 if (!dirty)
297 goto out;
298
299 if (bbuf->new_valid) {
300 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
301 bbuf->mi->dirty = true;
302 }
303
304 set_buffer_uptodate(bh);
305 mark_buffer_dirty(bh);
306
307out:
308 unlock_buffer(bh);
309 put_bh(bh);
310}
311
312/*
e8b8e97f 313 * indx_mark_used - Mark the bit @bit as used.
82cae269
KK
314 */
315static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
316 size_t bit)
317{
318 int err;
319 struct bmp_buf bbuf;
320
321 err = bmp_buf_get(indx, ni, bit, &bbuf);
322 if (err)
323 return err;
324
325 __set_bit(bit - bbuf.bit, bbuf.buf);
326
327 bmp_buf_put(&bbuf, true);
328
329 return 0;
330}
331
332/*
e8b8e97f 333 * indx_mark_free - Mark the bit @bit as free.
82cae269
KK
334 */
335static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
336 size_t bit)
337{
338 int err;
339 struct bmp_buf bbuf;
340
341 err = bmp_buf_get(indx, ni, bit, &bbuf);
342 if (err)
343 return err;
344
345 __clear_bit(bit - bbuf.bit, bbuf.buf);
346
347 bmp_buf_put(&bbuf, true);
348
349 return 0;
350}
351
352/*
e8b8e97f
KA
353 * scan_nres_bitmap
354 *
355 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
356 * inode is shared locked and no ni_lock.
357 * Use rw_semaphore for read/write access to bitmap_run.
82cae269
KK
358 */
359static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
360 struct ntfs_index *indx, size_t from,
361 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
362 size_t *ret),
363 size_t *ret)
364{
365 struct ntfs_sb_info *sbi = ni->mi.sbi;
366 struct super_block *sb = sbi->sb;
367 struct runs_tree *run = &indx->bitmap_run;
368 struct rw_semaphore *lock = &indx->run_lock;
369 u32 nbits = sb->s_blocksize * 8;
370 u32 blocksize = sb->s_blocksize;
371 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
372 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
373 sector_t eblock = bytes_to_block(sb, data_size);
374 size_t vbo = from >> 3;
375 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
376 sector_t vblock = vbo >> sb->s_blocksize_bits;
377 sector_t blen, block;
378 CLST lcn, clen, vcn, vcn_next;
379 size_t idx;
380 struct buffer_head *bh;
381 bool ok;
382
383 *ret = MINUS_ONE_T;
384
385 if (vblock >= eblock)
386 return 0;
387
388 from &= nbits - 1;
389 vcn = vbo >> sbi->cluster_bits;
390
391 down_read(lock);
392 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
393 up_read(lock);
394
395next_run:
396 if (!ok) {
397 int err;
398 const struct INDEX_NAMES *name = &s_index_names[indx->type];
399
400 down_write(lock);
401 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
402 name->name_len, run, vcn);
403 up_write(lock);
404 if (err)
405 return err;
406 down_read(lock);
407 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
408 up_read(lock);
409 if (!ok)
410 return -EINVAL;
411 }
412
413 blen = (sector_t)clen * sbi->blocks_per_cluster;
414 block = (sector_t)lcn * sbi->blocks_per_cluster;
415
416 for (; blk < blen; blk++, from = 0) {
417 bh = ntfs_bread(sb, block + blk);
418 if (!bh)
419 return -EIO;
420
421 vbo = (u64)vblock << sb->s_blocksize_bits;
422 if (vbo >= valid_size) {
423 memset(bh->b_data, 0, blocksize);
424 } else if (vbo + blocksize > valid_size) {
425 u32 voff = valid_size & sbi->block_mask;
426
427 memset(bh->b_data + voff, 0, blocksize - voff);
428 }
429
430 if (vbo + blocksize > data_size)
431 nbits = 8 * (data_size - vbo);
432
433 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
434 : false;
435 put_bh(bh);
436
437 if (ok) {
438 *ret += 8 * vbo;
439 return 0;
440 }
441
442 if (++vblock >= eblock) {
443 *ret = MINUS_ONE_T;
444 return 0;
445 }
446 }
447 blk = 0;
448 vcn_next = vcn + clen;
449 down_read(lock);
450 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
451 if (!ok)
452 vcn = vcn_next;
453 up_read(lock);
454 goto next_run;
455}
456
457static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
458{
459 size_t pos = find_next_zero_bit(buf, bits, bit);
460
461 if (pos >= bits)
462 return false;
463 *ret = pos;
464 return true;
465}
466
467/*
e8b8e97f 468 * indx_find_free - Look for free bit.
82cae269 469 *
e8b8e97f 470 * Return: -1 if no free bits.
82cae269
KK
471 */
472static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
473 size_t *bit, struct ATTRIB **bitmap)
474{
475 struct ATTRIB *b;
476 struct ATTR_LIST_ENTRY *le = NULL;
477 const struct INDEX_NAMES *in = &s_index_names[indx->type];
478 int err;
479
480 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
481 NULL, NULL);
482
483 if (!b)
484 return -ENOENT;
485
486 *bitmap = b;
487 *bit = MINUS_ONE_T;
488
489 if (!b->non_res) {
490 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
491 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
492
493 if (pos < nbits)
494 *bit = pos;
495 } else {
496 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
497
498 if (err)
499 return err;
500 }
501
502 return 0;
503}
504
505static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
506{
507 size_t pos = find_next_bit(buf, bits, bit);
508
509 if (pos >= bits)
510 return false;
511 *ret = pos;
512 return true;
513}
514
515/*
e8b8e97f 516 * indx_used_bit - Look for used bit.
82cae269 517 *
e8b8e97f 518 * Return: MINUS_ONE_T if no used bits.
82cae269
KK
519 */
520int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
521{
522 struct ATTRIB *b;
523 struct ATTR_LIST_ENTRY *le = NULL;
524 size_t from = *bit;
525 const struct INDEX_NAMES *in = &s_index_names[indx->type];
526 int err;
527
528 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
529 NULL, NULL);
530
531 if (!b)
532 return -ENOENT;
533
534 *bit = MINUS_ONE_T;
535
536 if (!b->non_res) {
537 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
538 size_t pos = find_next_bit(resident_data(b), nbits, from);
539
540 if (pos < nbits)
541 *bit = pos;
542 } else {
543 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
544 if (err)
545 return err;
546 }
547
548 return 0;
549}
550
551/*
552 * hdr_find_split
553 *
e8b8e97f
KA
554 * Find a point at which the index allocation buffer would like to be split.
555 * NOTE: This function should never return 'END' entry NULL returns on error.
82cae269
KK
556 */
557static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
558{
559 size_t o;
560 const struct NTFS_DE *e = hdr_first_de(hdr);
561 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
8c83a485 562 u16 esize;
82cae269
KK
563
564 if (!e || de_is_last(e))
565 return NULL;
566
8c83a485 567 esize = le16_to_cpu(e->size);
82cae269
KK
568 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
569 const struct NTFS_DE *p = e;
570
571 e = Add2Ptr(hdr, o);
572
e8b8e97f 573 /* We must not return END entry. */
82cae269
KK
574 if (de_is_last(e))
575 return p;
576
577 esize = le16_to_cpu(e->size);
578 }
579
580 return e;
581}
582
583/*
e8b8e97f 584 * hdr_insert_head - Insert some entries at the beginning of the buffer.
82cae269 585 *
82cae269
KK
586 * It is used to insert entries into a newly-created buffer.
587 */
588static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
589 const void *ins, u32 ins_bytes)
590{
591 u32 to_move;
592 struct NTFS_DE *e = hdr_first_de(hdr);
593 u32 used = le32_to_cpu(hdr->used);
594
595 if (!e)
596 return NULL;
597
598 /* Now we just make room for the inserted entries and jam it in. */
599 to_move = used - le32_to_cpu(hdr->de_off);
600 memmove(Add2Ptr(e, ins_bytes), e, to_move);
601 memcpy(e, ins, ins_bytes);
602 hdr->used = cpu_to_le32(used + ins_bytes);
603
604 return e;
605}
606
607void fnd_clear(struct ntfs_fnd *fnd)
608{
609 int i;
610
611 for (i = 0; i < fnd->level; i++) {
612 struct indx_node *n = fnd->nodes[i];
613
614 if (!n)
615 continue;
616
617 put_indx_node(n);
618 fnd->nodes[i] = NULL;
619 }
620 fnd->level = 0;
621 fnd->root_de = NULL;
622}
623
624static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
625 struct NTFS_DE *e)
626{
627 int i;
628
629 i = fnd->level;
630 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
631 return -EINVAL;
632 fnd->nodes[i] = n;
633 fnd->de[i] = e;
634 fnd->level += 1;
635 return 0;
636}
637
638static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
639{
640 struct indx_node *n;
641 int i = fnd->level;
642
643 i -= 1;
644 n = fnd->nodes[i];
645 fnd->nodes[i] = NULL;
646 fnd->level = i;
647
648 return n;
649}
650
651static bool fnd_is_empty(struct ntfs_fnd *fnd)
652{
653 if (!fnd->level)
654 return !fnd->root_de;
655
656 return !fnd->de[fnd->level - 1];
657}
658
659/*
e8b8e97f 660 * hdr_find_e - Locate an entry the index buffer.
82cae269 661 *
82cae269
KK
662 * If no matching entry is found, it returns the first entry which is greater
663 * than the desired entry If the search key is greater than all the entries the
664 * buffer, it returns the 'end' entry. This function does a binary search of the
e8b8e97f
KA
665 * current index buffer, for the first entry that is <= to the search value.
666 *
667 * Return: NULL if error.
82cae269
KK
668 */
669static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
670 const struct INDEX_HDR *hdr, const void *key,
671 size_t key_len, const void *ctx, int *diff)
672{
673 struct NTFS_DE *e;
674 NTFS_CMP_FUNC cmp = indx->cmp;
675 u32 e_size, e_key_len;
676 u32 end = le32_to_cpu(hdr->used);
677 u32 off = le32_to_cpu(hdr->de_off);
678
679#ifdef NTFS3_INDEX_BINARY_SEARCH
162333ef
KA
680 struct NTFS_DE *found = NULL;
681 int min_idx = 0, mid_idx, max_idx = 0;
682 int diff2;
683 u16 offs[64];
82cae269
KK
684
685 if (end > 0x10000)
686 goto next;
687
162333ef
KA
688fill_table:
689 if (off + sizeof(struct NTFS_DE) > end)
690 return NULL;
82cae269 691
82cae269
KK
692 e = Add2Ptr(hdr, off);
693 e_size = le16_to_cpu(e->size);
694
162333ef
KA
695 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
696 return NULL;
82cae269
KK
697
698 if (!de_is_last(e)) {
162333ef 699 offs[max_idx] = off;
82cae269 700 off += e_size;
82cae269 701
162333ef
KA
702 max_idx++;
703 if (max_idx < ARRAY_SIZE(offs))
704 goto fill_table;
82cae269 705
162333ef
KA
706 max_idx--;
707 }
82cae269 708
162333ef
KA
709binary_search:
710 e_key_len = le16_to_cpu(e->key_size);
82cae269 711
162333ef
KA
712 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
713 if (diff2 > 0) {
714 if (found) {
715 min_idx = mid_idx + 1;
716 } else {
717 if (de_is_last(e))
718 return NULL;
82cae269 719
162333ef
KA
720 max_idx = 0;
721 goto fill_table;
82cae269 722 }
162333ef
KA
723 } else if (diff2 < 0) {
724 if (found)
82cae269 725 max_idx = mid_idx - 1;
162333ef
KA
726 else
727 max_idx--;
82cae269 728
162333ef
KA
729 found = e;
730 } else {
731 *diff = 0;
732 return e;
82cae269
KK
733 }
734
162333ef
KA
735 if (min_idx > max_idx) {
736 *diff = -1;
737 return found;
738 }
82cae269 739
162333ef
KA
740 mid_idx = (min_idx + max_idx) >> 1;
741 e = Add2Ptr(hdr, offs[mid_idx]);
82cae269 742
162333ef 743 goto binary_search;
82cae269
KK
744#endif
745
746next:
747 /*
e8b8e97f
KA
748 * Entries index are sorted.
749 * Enumerate all entries until we find entry
750 * that is <= to the search value.
82cae269
KK
751 */
752 if (off + sizeof(struct NTFS_DE) > end)
753 return NULL;
754
755 e = Add2Ptr(hdr, off);
756 e_size = le16_to_cpu(e->size);
757
758 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
759 return NULL;
760
761 off += e_size;
762
763 e_key_len = le16_to_cpu(e->key_size);
764
765 *diff = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
766 if (!*diff)
767 return e;
768
769 if (*diff <= 0)
770 return e;
771
772 if (de_is_last(e)) {
773 *diff = 1;
774 return e;
775 }
776 goto next;
777}
778
779/*
e8b8e97f 780 * hdr_insert_de - Insert an index entry into the buffer.
82cae269 781 *
e8b8e97f 782 * 'before' should be a pointer previously returned from hdr_find_e.
82cae269
KK
783 */
784static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
785 struct INDEX_HDR *hdr,
786 const struct NTFS_DE *de,
787 struct NTFS_DE *before, const void *ctx)
788{
789 int diff;
790 size_t off = PtrOffset(hdr, before);
791 u32 used = le32_to_cpu(hdr->used);
792 u32 total = le32_to_cpu(hdr->total);
793 u16 de_size = le16_to_cpu(de->size);
794
e8b8e97f 795 /* First, check to see if there's enough room. */
82cae269
KK
796 if (used + de_size > total)
797 return NULL;
798
799 /* We know there's enough space, so we know we'll succeed. */
800 if (before) {
e8b8e97f 801 /* Check that before is inside Index. */
82cae269
KK
802 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
803 off + le16_to_cpu(before->size) > total) {
804 return NULL;
805 }
806 goto ok;
807 }
e8b8e97f 808 /* No insert point is applied. Get it manually. */
82cae269
KK
809 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
810 &diff);
811 if (!before)
812 return NULL;
813 off = PtrOffset(hdr, before);
814
815ok:
816 /* Now we just make room for the entry and jam it in. */
817 memmove(Add2Ptr(before, de_size), before, used - off);
818
819 hdr->used = cpu_to_le32(used + de_size);
820 memcpy(before, de, de_size);
821
822 return before;
823}
824
825/*
e8b8e97f 826 * hdr_delete_de - Remove an entry from the index buffer.
82cae269
KK
827 */
828static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
829 struct NTFS_DE *re)
830{
831 u32 used = le32_to_cpu(hdr->used);
832 u16 esize = le16_to_cpu(re->size);
833 u32 off = PtrOffset(hdr, re);
834 int bytes = used - (off + esize);
835
836 if (off >= used || esize < sizeof(struct NTFS_DE) ||
837 bytes < sizeof(struct NTFS_DE))
838 return NULL;
839
840 hdr->used = cpu_to_le32(used - esize);
841 memmove(re, Add2Ptr(re, esize), bytes);
842
843 return re;
844}
845
846void indx_clear(struct ntfs_index *indx)
847{
848 run_close(&indx->alloc_run);
849 run_close(&indx->bitmap_run);
850}
851
852int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
853 const struct ATTRIB *attr, enum index_mutex_classed type)
854{
855 u32 t32;
856 const struct INDEX_ROOT *root = resident_data(attr);
857
e8b8e97f 858 /* Check root fields. */
82cae269
KK
859 if (!root->index_block_clst)
860 return -EINVAL;
861
862 indx->type = type;
863 indx->idx2vbn_bits = __ffs(root->index_block_clst);
864
865 t32 = le32_to_cpu(root->index_block_size);
866 indx->index_bits = blksize_bits(t32);
867
e8b8e97f 868 /* Check index record size. */
82cae269 869 if (t32 < sbi->cluster_size) {
e8b8e97f 870 /* Index record is smaller than a cluster, use 512 blocks. */
82cae269
KK
871 if (t32 != root->index_block_clst * SECTOR_SIZE)
872 return -EINVAL;
873
e8b8e97f 874 /* Check alignment to a cluster. */
82cae269
KK
875 if ((sbi->cluster_size >> SECTOR_SHIFT) &
876 (root->index_block_clst - 1)) {
877 return -EINVAL;
878 }
879
880 indx->vbn2vbo_bits = SECTOR_SHIFT;
881 } else {
e8b8e97f 882 /* Index record must be a multiple of cluster size. */
82cae269
KK
883 if (t32 != root->index_block_clst << sbi->cluster_bits)
884 return -EINVAL;
885
886 indx->vbn2vbo_bits = sbi->cluster_bits;
887 }
888
889 init_rwsem(&indx->run_lock);
890
891 indx->cmp = get_cmp_func(root);
892 return indx->cmp ? 0 : -EINVAL;
893}
894
895static struct indx_node *indx_new(struct ntfs_index *indx,
896 struct ntfs_inode *ni, CLST vbn,
897 const __le64 *sub_vbn)
898{
899 int err;
900 struct NTFS_DE *e;
901 struct indx_node *r;
902 struct INDEX_HDR *hdr;
903 struct INDEX_BUFFER *index;
904 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
905 u32 bytes = 1u << indx->index_bits;
906 u16 fn;
907 u32 eo;
908
195c52bd 909 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
910 if (!r)
911 return ERR_PTR(-ENOMEM);
912
195c52bd 913 index = kzalloc(bytes, GFP_NOFS);
82cae269 914 if (!index) {
195c52bd 915 kfree(r);
82cae269
KK
916 return ERR_PTR(-ENOMEM);
917 }
918
919 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
920
921 if (err) {
195c52bd
KA
922 kfree(index);
923 kfree(r);
82cae269
KK
924 return ERR_PTR(err);
925 }
926
e8b8e97f 927 /* Create header. */
82cae269
KK
928 index->rhdr.sign = NTFS_INDX_SIGNATURE;
929 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
930 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
931 index->rhdr.fix_num = cpu_to_le16(fn);
932 index->vbn = cpu_to_le64(vbn);
933 hdr = &index->ihdr;
fa3cacf5 934 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
82cae269
KK
935 hdr->de_off = cpu_to_le32(eo);
936
937 e = Add2Ptr(hdr, eo);
938
939 if (sub_vbn) {
940 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
941 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
942 hdr->used =
943 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
944 de_set_vbn_le(e, *sub_vbn);
945 hdr->flags = 1;
946 } else {
947 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
948 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
949 e->flags = NTFS_IE_LAST;
950 }
951
952 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
953
954 r->index = index;
955 return r;
956}
957
958struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
959 struct ATTRIB **attr, struct mft_inode **mi)
960{
961 struct ATTR_LIST_ENTRY *le = NULL;
962 struct ATTRIB *a;
963 const struct INDEX_NAMES *in = &s_index_names[indx->type];
964
965 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
966 mi);
967 if (!a)
968 return NULL;
969
970 if (attr)
971 *attr = a;
972
973 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
974}
975
976static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
977 struct indx_node *node, int sync)
978{
979 struct INDEX_BUFFER *ib = node->index;
980
981 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
982}
983
984/*
e8b8e97f
KA
985 * indx_read
986 *
987 * If ntfs_readdir calls this function
988 * inode is shared locked and no ni_lock.
989 * Use rw_semaphore for read/write access to alloc_run.
82cae269
KK
990 */
991int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
992 struct indx_node **node)
993{
994 int err;
995 struct INDEX_BUFFER *ib;
996 struct runs_tree *run = &indx->alloc_run;
997 struct rw_semaphore *lock = &indx->run_lock;
998 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
999 u32 bytes = 1u << indx->index_bits;
1000 struct indx_node *in = *node;
1001 const struct INDEX_NAMES *name;
1002
1003 if (!in) {
195c52bd 1004 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
1005 if (!in)
1006 return -ENOMEM;
1007 } else {
1008 nb_put(&in->nb);
1009 }
1010
1011 ib = in->index;
1012 if (!ib) {
195c52bd 1013 ib = kmalloc(bytes, GFP_NOFS);
82cae269
KK
1014 if (!ib) {
1015 err = -ENOMEM;
1016 goto out;
1017 }
1018 }
1019
1020 down_read(lock);
1021 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1022 up_read(lock);
1023 if (!err)
1024 goto ok;
1025
1026 if (err == -E_NTFS_FIXUP)
1027 goto ok;
1028
1029 if (err != -ENOENT)
1030 goto out;
1031
1032 name = &s_index_names[indx->type];
1033 down_write(lock);
1034 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1035 run, vbo, vbo + bytes);
1036 up_write(lock);
1037 if (err)
1038 goto out;
1039
1040 down_read(lock);
1041 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1042 up_read(lock);
1043 if (err == -E_NTFS_FIXUP)
1044 goto ok;
1045
1046 if (err)
1047 goto out;
1048
1049ok:
1050 if (err == -E_NTFS_FIXUP) {
1051 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1052 err = 0;
1053 }
1054
1055 in->index = ib;
1056 *node = in;
1057
1058out:
1059 if (ib != in->index)
195c52bd 1060 kfree(ib);
82cae269
KK
1061
1062 if (*node != in) {
1063 nb_put(&in->nb);
195c52bd 1064 kfree(in);
82cae269
KK
1065 }
1066
1067 return err;
1068}
1069
1070/*
e8b8e97f 1071 * indx_find - Scan NTFS directory for given entry.
82cae269
KK
1072 */
1073int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1074 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1075 const void *ctx, int *diff, struct NTFS_DE **entry,
1076 struct ntfs_fnd *fnd)
1077{
1078 int err;
1079 struct NTFS_DE *e;
1080 const struct INDEX_HDR *hdr;
1081 struct indx_node *node;
1082
1083 if (!root)
1084 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1085
1086 if (!root) {
1087 err = -EINVAL;
1088 goto out;
1089 }
1090
1091 hdr = &root->ihdr;
1092
e8b8e97f 1093 /* Check cache. */
82cae269
KK
1094 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1095 if (e && !de_is_last(e) &&
1096 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1097 *entry = e;
1098 *diff = 0;
1099 return 0;
1100 }
1101
e8b8e97f 1102 /* Soft finder reset. */
82cae269
KK
1103 fnd_clear(fnd);
1104
e8b8e97f 1105 /* Lookup entry that is <= to the search value. */
82cae269
KK
1106 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1107 if (!e)
1108 return -EINVAL;
1109
1110 if (fnd)
1111 fnd->root_de = e;
1112
1113 err = 0;
1114
1115 for (;;) {
1116 node = NULL;
1117 if (*diff >= 0 || !de_has_vcn_ex(e)) {
1118 *entry = e;
1119 goto out;
1120 }
1121
1122 /* Read next level. */
1123 err = indx_read(indx, ni, de_get_vbn(e), &node);
1124 if (err)
1125 goto out;
1126
e8b8e97f 1127 /* Lookup entry that is <= to the search value. */
82cae269
KK
1128 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1129 diff);
1130 if (!e) {
1131 err = -EINVAL;
1132 put_indx_node(node);
1133 goto out;
1134 }
1135
1136 fnd_push(fnd, node, e);
1137 }
1138
1139out:
1140 return err;
1141}
1142
1143int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1144 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1145 struct ntfs_fnd *fnd)
1146{
1147 int err;
1148 struct indx_node *n = NULL;
1149 struct NTFS_DE *e;
1150 size_t iter = 0;
1151 int level = fnd->level;
1152
1153 if (!*entry) {
e8b8e97f 1154 /* Start find. */
82cae269
KK
1155 e = hdr_first_de(&root->ihdr);
1156 if (!e)
1157 return 0;
1158 fnd_clear(fnd);
1159 fnd->root_de = e;
1160 } else if (!level) {
1161 if (de_is_last(fnd->root_de)) {
1162 *entry = NULL;
1163 return 0;
1164 }
1165
1166 e = hdr_next_de(&root->ihdr, fnd->root_de);
1167 if (!e)
1168 return -EINVAL;
1169 fnd->root_de = e;
1170 } else {
1171 n = fnd->nodes[level - 1];
1172 e = fnd->de[level - 1];
1173
1174 if (de_is_last(e))
1175 goto pop_level;
1176
1177 e = hdr_next_de(&n->index->ihdr, e);
1178 if (!e)
1179 return -EINVAL;
1180
1181 fnd->de[level - 1] = e;
1182 }
1183
e8b8e97f 1184 /* Just to avoid tree cycle. */
82cae269
KK
1185next_iter:
1186 if (iter++ >= 1000)
1187 return -EINVAL;
1188
1189 while (de_has_vcn_ex(e)) {
1190 if (le16_to_cpu(e->size) <
1191 sizeof(struct NTFS_DE) + sizeof(u64)) {
1192 if (n) {
1193 fnd_pop(fnd);
195c52bd 1194 kfree(n);
82cae269
KK
1195 }
1196 return -EINVAL;
1197 }
1198
e8b8e97f 1199 /* Read next level. */
82cae269
KK
1200 err = indx_read(indx, ni, de_get_vbn(e), &n);
1201 if (err)
1202 return err;
1203
e8b8e97f 1204 /* Try next level. */
82cae269
KK
1205 e = hdr_first_de(&n->index->ihdr);
1206 if (!e) {
195c52bd 1207 kfree(n);
82cae269
KK
1208 return -EINVAL;
1209 }
1210
1211 fnd_push(fnd, n, e);
1212 }
1213
1214 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1215 *entry = e;
1216 return 0;
1217 }
1218
1219pop_level:
1220 for (;;) {
1221 if (!de_is_last(e))
1222 goto next_iter;
1223
e8b8e97f 1224 /* Pop one level. */
82cae269
KK
1225 if (n) {
1226 fnd_pop(fnd);
195c52bd 1227 kfree(n);
82cae269
KK
1228 }
1229
1230 level = fnd->level;
1231
1232 if (level) {
1233 n = fnd->nodes[level - 1];
1234 e = fnd->de[level - 1];
1235 } else if (fnd->root_de) {
1236 n = NULL;
1237 e = fnd->root_de;
1238 fnd->root_de = NULL;
1239 } else {
1240 *entry = NULL;
1241 return 0;
1242 }
1243
1244 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1245 *entry = e;
1246 if (!fnd->root_de)
1247 fnd->root_de = e;
1248 return 0;
1249 }
1250 }
1251}
1252
1253int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1254 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1255 size_t *off, struct ntfs_fnd *fnd)
1256{
1257 int err;
1258 struct indx_node *n = NULL;
1259 struct NTFS_DE *e = NULL;
1260 struct NTFS_DE *e2;
1261 size_t bit;
1262 CLST next_used_vbn;
1263 CLST next_vbn;
1264 u32 record_size = ni->mi.sbi->record_size;
1265
e8b8e97f 1266 /* Use non sorted algorithm. */
82cae269 1267 if (!*entry) {
e8b8e97f 1268 /* This is the first call. */
82cae269
KK
1269 e = hdr_first_de(&root->ihdr);
1270 if (!e)
1271 return 0;
1272 fnd_clear(fnd);
1273 fnd->root_de = e;
1274
e8b8e97f 1275 /* The first call with setup of initial element. */
82cae269
KK
1276 if (*off >= record_size) {
1277 next_vbn = (((*off - record_size) >> indx->index_bits))
1278 << indx->idx2vbn_bits;
e8b8e97f 1279 /* Jump inside cycle 'for'. */
82cae269
KK
1280 goto next;
1281 }
1282
e8b8e97f 1283 /* Start enumeration from root. */
82cae269
KK
1284 *off = 0;
1285 } else if (!fnd->root_de)
1286 return -EINVAL;
1287
1288 for (;;) {
e8b8e97f 1289 /* Check if current entry can be used. */
82cae269
KK
1290 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1291 goto ok;
1292
1293 if (!fnd->level) {
e8b8e97f 1294 /* Continue to enumerate root. */
82cae269
KK
1295 if (!de_is_last(fnd->root_de)) {
1296 e = hdr_next_de(&root->ihdr, fnd->root_de);
1297 if (!e)
1298 return -EINVAL;
1299 fnd->root_de = e;
1300 continue;
1301 }
1302
e8b8e97f 1303 /* Start to enumerate indexes from 0. */
82cae269
KK
1304 next_vbn = 0;
1305 } else {
e8b8e97f 1306 /* Continue to enumerate indexes. */
82cae269
KK
1307 e2 = fnd->de[fnd->level - 1];
1308
1309 n = fnd->nodes[fnd->level - 1];
1310
1311 if (!de_is_last(e2)) {
1312 e = hdr_next_de(&n->index->ihdr, e2);
1313 if (!e)
1314 return -EINVAL;
1315 fnd->de[fnd->level - 1] = e;
1316 continue;
1317 }
1318
e8b8e97f 1319 /* Continue with next index. */
82cae269
KK
1320 next_vbn = le64_to_cpu(n->index->vbn) +
1321 root->index_block_clst;
1322 }
1323
1324next:
e8b8e97f 1325 /* Release current index. */
82cae269
KK
1326 if (n) {
1327 fnd_pop(fnd);
1328 put_indx_node(n);
1329 n = NULL;
1330 }
1331
e8b8e97f 1332 /* Skip all free indexes. */
82cae269
KK
1333 bit = next_vbn >> indx->idx2vbn_bits;
1334 err = indx_used_bit(indx, ni, &bit);
1335 if (err == -ENOENT || bit == MINUS_ONE_T) {
e8b8e97f 1336 /* No used indexes. */
82cae269
KK
1337 *entry = NULL;
1338 return 0;
1339 }
1340
1341 next_used_vbn = bit << indx->idx2vbn_bits;
1342
e8b8e97f 1343 /* Read buffer into memory. */
82cae269
KK
1344 err = indx_read(indx, ni, next_used_vbn, &n);
1345 if (err)
1346 return err;
1347
1348 e = hdr_first_de(&n->index->ihdr);
1349 fnd_push(fnd, n, e);
1350 if (!e)
1351 return -EINVAL;
1352 }
1353
1354ok:
e8b8e97f 1355 /* Return offset to restore enumerator if necessary. */
82cae269 1356 if (!n) {
e8b8e97f 1357 /* 'e' points in root, */
82cae269
KK
1358 *off = PtrOffset(&root->ihdr, e);
1359 } else {
e8b8e97f 1360 /* 'e' points in index, */
82cae269
KK
1361 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1362 record_size + PtrOffset(&n->index->ihdr, e);
1363 }
1364
1365 *entry = e;
1366 return 0;
1367}
1368
1369/*
e8b8e97f 1370 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
82cae269
KK
1371 */
1372static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1373 CLST *vbn)
1374{
0327c6d0 1375 int err;
82cae269
KK
1376 struct ntfs_sb_info *sbi = ni->mi.sbi;
1377 struct ATTRIB *bitmap;
1378 struct ATTRIB *alloc;
1379 u32 data_size = 1u << indx->index_bits;
1380 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1381 CLST len = alloc_size >> sbi->cluster_bits;
1382 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1383 CLST alen;
1384 struct runs_tree run;
1385
1386 run_init(&run);
1387
1388 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1389 NULL);
1390 if (err)
1391 goto out;
1392
1393 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1394 &run, 0, len, 0, &alloc, NULL);
1395 if (err)
1396 goto out1;
1397
1398 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1399
1400 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
78ab59fe 1401 in->name_len, &bitmap, NULL, NULL);
82cae269
KK
1402 if (err)
1403 goto out2;
1404
1405 if (in->name == I30_NAME) {
1406 ni->vfs_inode.i_size = data_size;
1407 inode_set_bytes(&ni->vfs_inode, alloc_size);
1408 }
1409
1410 memcpy(&indx->alloc_run, &run, sizeof(run));
1411
1412 *vbn = 0;
1413
1414 return 0;
1415
1416out2:
78ab59fe 1417 mi_remove_attr(NULL, &ni->mi, alloc);
82cae269
KK
1418
1419out1:
1420 run_deallocate(sbi, &run, false);
1421
1422out:
1423 return err;
1424}
1425
1426/*
e8b8e97f 1427 * indx_add_allocate - Add clusters to index.
82cae269
KK
1428 */
1429static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1430 CLST *vbn)
1431{
1432 int err;
1433 size_t bit;
1434 u64 data_size;
1435 u64 bmp_size, bmp_size_v;
1436 struct ATTRIB *bmp, *alloc;
1437 struct mft_inode *mi;
1438 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1439
1440 err = indx_find_free(indx, ni, &bit, &bmp);
1441 if (err)
1442 goto out1;
1443
1444 if (bit != MINUS_ONE_T) {
1445 bmp = NULL;
1446 } else {
1447 if (bmp->non_res) {
1448 bmp_size = le64_to_cpu(bmp->nres.data_size);
1449 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1450 } else {
1451 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1452 }
1453
1454 bit = bmp_size << 3;
1455 }
1456
1457 data_size = (u64)(bit + 1) << indx->index_bits;
1458
1459 if (bmp) {
e8b8e97f 1460 /* Increase bitmap. */
82cae269
KK
1461 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1462 &indx->bitmap_run, bitmap_size(bit + 1),
1463 NULL, true, NULL);
1464 if (err)
1465 goto out1;
1466 }
1467
1468 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1469 NULL, &mi);
1470 if (!alloc) {
04810f00 1471 err = -EINVAL;
82cae269
KK
1472 if (bmp)
1473 goto out2;
1474 goto out1;
1475 }
1476
e8b8e97f 1477 /* Increase allocation. */
82cae269
KK
1478 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1479 &indx->alloc_run, data_size, &data_size, true,
1480 NULL);
1481 if (err) {
1482 if (bmp)
1483 goto out2;
1484 goto out1;
1485 }
1486
1487 *vbn = bit << indx->idx2vbn_bits;
1488
1489 return 0;
1490
1491out2:
e8b8e97f 1492 /* Ops. No space? */
82cae269
KK
1493 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1494 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1495
1496out1:
1497 return err;
1498}
1499
1500/*
e8b8e97f 1501 * indx_insert_into_root - Attempt to insert an entry into the index root.
82cae269 1502 *
78ab59fe 1503 * @undo - True if we undoing previous remove.
82cae269
KK
1504 * If necessary, it will twiddle the index b-tree.
1505 */
1506static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1507 const struct NTFS_DE *new_de,
1508 struct NTFS_DE *root_de, const void *ctx,
78ab59fe 1509 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1510{
1511 int err = 0;
1512 struct NTFS_DE *e, *e0, *re;
1513 struct mft_inode *mi;
1514 struct ATTRIB *attr;
82cae269
KK
1515 struct INDEX_HDR *hdr;
1516 struct indx_node *n;
1517 CLST new_vbn;
1518 __le64 *sub_vbn, t_vbn;
1519 u16 new_de_size;
78ab59fe 1520 u32 hdr_used, hdr_total, asize, to_move;
82cae269
KK
1521 u32 root_size, new_root_size;
1522 struct ntfs_sb_info *sbi;
1523 int ds_root;
b8155e95 1524 struct INDEX_ROOT *root, *a_root;
82cae269 1525
e8b8e97f 1526 /* Get the record this root placed in. */
82cae269
KK
1527 root = indx_get_root(indx, ni, &attr, &mi);
1528 if (!root)
b8155e95 1529 return -EINVAL;
82cae269
KK
1530
1531 /*
1532 * Try easy case:
78ab59fe
KK
1533 * hdr_insert_de will succeed if there's
1534 * room the root for the new entry.
82cae269
KK
1535 */
1536 hdr = &root->ihdr;
1537 sbi = ni->mi.sbi;
82cae269
KK
1538 new_de_size = le16_to_cpu(new_de->size);
1539 hdr_used = le32_to_cpu(hdr->used);
1540 hdr_total = le32_to_cpu(hdr->total);
1541 asize = le32_to_cpu(attr->size);
1542 root_size = le32_to_cpu(attr->res.data_size);
1543
1544 ds_root = new_de_size + hdr_used - hdr_total;
1545
78ab59fe
KK
1546 /* If 'undo' is set then reduce requirements. */
1547 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1548 mi_resize_attr(mi, attr, ds_root)) {
82cae269
KK
1549 hdr->total = cpu_to_le32(hdr_total + ds_root);
1550 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1551 WARN_ON(!e);
1552 fnd_clear(fnd);
1553 fnd->root_de = e;
1554
1555 return 0;
1556 }
1557
e8b8e97f 1558 /* Make a copy of root attribute to restore if error. */
195c52bd 1559 a_root = kmemdup(attr, asize, GFP_NOFS);
b8155e95
DC
1560 if (!a_root)
1561 return -ENOMEM;
82cae269 1562
e8b8e97f
KA
1563 /*
1564 * Copy all the non-end entries from
1565 * the index root to the new buffer.
1566 */
82cae269
KK
1567 to_move = 0;
1568 e0 = hdr_first_de(hdr);
1569
e8b8e97f 1570 /* Calculate the size to copy. */
82cae269
KK
1571 for (e = e0;; e = hdr_next_de(hdr, e)) {
1572 if (!e) {
1573 err = -EINVAL;
b8155e95 1574 goto out_free_root;
82cae269
KK
1575 }
1576
1577 if (de_is_last(e))
1578 break;
1579 to_move += le16_to_cpu(e->size);
1580 }
1581
82cae269
KK
1582 if (!to_move) {
1583 re = NULL;
1584 } else {
195c52bd 1585 re = kmemdup(e0, to_move, GFP_NOFS);
82cae269
KK
1586 if (!re) {
1587 err = -ENOMEM;
b8155e95 1588 goto out_free_root;
82cae269
KK
1589 }
1590 }
1591
1592 sub_vbn = NULL;
1593 if (de_has_vcn(e)) {
1594 t_vbn = de_get_vbn_le(e);
1595 sub_vbn = &t_vbn;
1596 }
1597
1598 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1599 sizeof(u64);
1600 ds_root = new_root_size - root_size;
1601
78ab59fe 1602 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
e8b8e97f 1603 /* Make root external. */
82cae269 1604 err = -EOPNOTSUPP;
b8155e95 1605 goto out_free_re;
82cae269
KK
1606 }
1607
1608 if (ds_root)
1609 mi_resize_attr(mi, attr, ds_root);
1610
e8b8e97f 1611 /* Fill first entry (vcn will be set later). */
82cae269
KK
1612 e = (struct NTFS_DE *)(root + 1);
1613 memset(e, 0, sizeof(struct NTFS_DE));
1614 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1615 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1616
1617 hdr->flags = 1;
1618 hdr->used = hdr->total =
1619 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1620
1621 fnd->root_de = hdr_first_de(hdr);
1622 mi->dirty = true;
1623
e8b8e97f 1624 /* Create alloc and bitmap attributes (if not). */
82cae269
KK
1625 err = run_is_empty(&indx->alloc_run)
1626 ? indx_create_allocate(indx, ni, &new_vbn)
1627 : indx_add_allocate(indx, ni, &new_vbn);
1628
e8b8e97f 1629 /* Layout of record may be changed, so rescan root. */
82cae269
KK
1630 root = indx_get_root(indx, ni, &attr, &mi);
1631 if (!root) {
e8b8e97f 1632 /* Bug? */
82cae269
KK
1633 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1634 err = -EINVAL;
b8155e95 1635 goto out_free_re;
82cae269
KK
1636 }
1637
1638 if (err) {
e8b8e97f 1639 /* Restore root. */
82cae269
KK
1640 if (mi_resize_attr(mi, attr, -ds_root))
1641 memcpy(attr, a_root, asize);
1642 else {
e8b8e97f 1643 /* Bug? */
82cae269
KK
1644 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1645 }
b8155e95 1646 goto out_free_re;
82cae269
KK
1647 }
1648
1649 e = (struct NTFS_DE *)(root + 1);
1650 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1651 mi->dirty = true;
1652
e8b8e97f 1653 /* Now we can create/format the new buffer and copy the entries into. */
82cae269
KK
1654 n = indx_new(indx, ni, new_vbn, sub_vbn);
1655 if (IS_ERR(n)) {
1656 err = PTR_ERR(n);
b8155e95 1657 goto out_free_re;
82cae269
KK
1658 }
1659
1660 hdr = &n->index->ihdr;
1661 hdr_used = le32_to_cpu(hdr->used);
1662 hdr_total = le32_to_cpu(hdr->total);
1663
e8b8e97f 1664 /* Copy root entries into new buffer. */
82cae269
KK
1665 hdr_insert_head(hdr, re, to_move);
1666
e8b8e97f 1667 /* Update bitmap attribute. */
82cae269
KK
1668 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1669
e8b8e97f 1670 /* Check if we can insert new entry new index buffer. */
82cae269
KK
1671 if (hdr_used + new_de_size > hdr_total) {
1672 /*
e8b8e97f 1673 * This occurs if MFT record is the same or bigger than index
82cae269 1674 * buffer. Move all root new index and have no space to add
e8b8e97f
KA
1675 * new entry classic case when MFT record is 1K and index
1676 * buffer 4K the problem should not occurs.
82cae269 1677 */
195c52bd 1678 kfree(re);
82cae269
KK
1679 indx_write(indx, ni, n, 0);
1680
1681 put_indx_node(n);
1682 fnd_clear(fnd);
78ab59fe 1683 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
b8155e95 1684 goto out_free_root;
82cae269
KK
1685 }
1686
1687 /*
e8b8e97f
KA
1688 * Now root is a parent for new index buffer.
1689 * Insert NewEntry a new buffer.
82cae269
KK
1690 */
1691 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1692 if (!e) {
1693 err = -EINVAL;
b8155e95 1694 goto out_put_n;
82cae269
KK
1695 }
1696 fnd_push(fnd, n, e);
1697
e8b8e97f 1698 /* Just write updates index into disk. */
82cae269
KK
1699 indx_write(indx, ni, n, 0);
1700
1701 n = NULL;
1702
b8155e95
DC
1703out_put_n:
1704 put_indx_node(n);
1705out_free_re:
195c52bd 1706 kfree(re);
b8155e95 1707out_free_root:
195c52bd 1708 kfree(a_root);
82cae269
KK
1709 return err;
1710}
1711
1712/*
1713 * indx_insert_into_buffer
1714 *
e8b8e97f 1715 * Attempt to insert an entry into an Index Allocation Buffer.
82cae269
KK
1716 * If necessary, it will split the buffer.
1717 */
1718static int
1719indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1720 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1721 const void *ctx, int level, struct ntfs_fnd *fnd)
1722{
1723 int err;
1724 const struct NTFS_DE *sp;
1725 struct NTFS_DE *e, *de_t, *up_e = NULL;
1726 struct indx_node *n2 = NULL;
1727 struct indx_node *n1 = fnd->nodes[level];
1728 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1729 struct INDEX_HDR *hdr2;
1730 u32 to_copy, used;
1731 CLST new_vbn;
1732 __le64 t_vbn, *sub_vbn;
1733 u16 sp_size;
1734
e8b8e97f 1735 /* Try the most easy case. */
82cae269
KK
1736 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1737 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1738 fnd->de[level] = e;
1739 if (e) {
e8b8e97f 1740 /* Just write updated index into disk. */
82cae269
KK
1741 indx_write(indx, ni, n1, 0);
1742 return 0;
1743 }
1744
1745 /*
1746 * No space to insert into buffer. Split it.
1747 * To split we:
1748 * - Save split point ('cause index buffers will be changed)
1749 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1750 * - Remove all entries (sp including) from TargetBuffer
1751 * - Insert NewEntry into left or right buffer (depending on sp <=>
1752 * NewEntry)
1753 * - Insert sp into parent buffer (or root)
1754 * - Make sp a parent for new buffer
1755 */
1756 sp = hdr_find_split(hdr1);
1757 if (!sp)
1758 return -EINVAL;
1759
1760 sp_size = le16_to_cpu(sp->size);
195c52bd 1761 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
82cae269
KK
1762 if (!up_e)
1763 return -ENOMEM;
1764 memcpy(up_e, sp, sp_size);
1765
1766 if (!hdr1->flags) {
1767 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1768 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1769 sub_vbn = NULL;
1770 } else {
1771 t_vbn = de_get_vbn_le(up_e);
1772 sub_vbn = &t_vbn;
1773 }
1774
1775 /* Allocate on disk a new index allocation buffer. */
1776 err = indx_add_allocate(indx, ni, &new_vbn);
1777 if (err)
1778 goto out;
1779
e8b8e97f 1780 /* Allocate and format memory a new index buffer. */
82cae269
KK
1781 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1782 if (IS_ERR(n2)) {
1783 err = PTR_ERR(n2);
1784 goto out;
1785 }
1786
1787 hdr2 = &n2->index->ihdr;
1788
e8b8e97f 1789 /* Make sp a parent for new buffer. */
82cae269
KK
1790 de_set_vbn(up_e, new_vbn);
1791
e8b8e97f 1792 /* Copy all the entries <= sp into the new buffer. */
82cae269
KK
1793 de_t = hdr_first_de(hdr1);
1794 to_copy = PtrOffset(de_t, sp);
1795 hdr_insert_head(hdr2, de_t, to_copy);
1796
e8b8e97f 1797 /* Remove all entries (sp including) from hdr1. */
82cae269
KK
1798 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1799 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1800 hdr1->used = cpu_to_le32(used);
1801
e8b8e97f
KA
1802 /*
1803 * Insert new entry into left or right buffer
1804 * (depending on sp <=> new_de).
1805 */
82cae269
KK
1806 hdr_insert_de(indx,
1807 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1808 up_e + 1, le16_to_cpu(up_e->key_size),
1809 ctx) < 0
1810 ? hdr2
1811 : hdr1,
1812 new_de, NULL, ctx);
1813
1814 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1815
1816 indx_write(indx, ni, n1, 0);
1817 indx_write(indx, ni, n2, 0);
1818
1819 put_indx_node(n2);
1820
1821 /*
e8b8e97f 1822 * We've finished splitting everybody, so we are ready to
82cae269
KK
1823 * insert the promoted entry into the parent.
1824 */
1825 if (!level) {
e8b8e97f 1826 /* Insert in root. */
78ab59fe 1827 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
82cae269
KK
1828 if (err)
1829 goto out;
1830 } else {
1831 /*
e8b8e97f
KA
1832 * The target buffer's parent is another index buffer.
1833 * TODO: Remove recursion.
82cae269
KK
1834 */
1835 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1836 level - 1, fnd);
1837 if (err)
1838 goto out;
1839 }
1840
1841out:
195c52bd 1842 kfree(up_e);
82cae269
KK
1843
1844 return err;
1845}
1846
1847/*
e8b8e97f 1848 * indx_insert_entry - Insert new entry into index.
78ab59fe
KK
1849 *
1850 * @undo - True if we undoing previous remove.
82cae269
KK
1851 */
1852int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1853 const struct NTFS_DE *new_de, const void *ctx,
78ab59fe 1854 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1855{
1856 int err;
1857 int diff;
1858 struct NTFS_DE *e;
1859 struct ntfs_fnd *fnd_a = NULL;
1860 struct INDEX_ROOT *root;
1861
1862 if (!fnd) {
1863 fnd_a = fnd_get();
1864 if (!fnd_a) {
1865 err = -ENOMEM;
1866 goto out1;
1867 }
1868 fnd = fnd_a;
1869 }
1870
1871 root = indx_get_root(indx, ni, NULL, NULL);
1872 if (!root) {
1873 err = -EINVAL;
1874 goto out;
1875 }
1876
1877 if (fnd_is_empty(fnd)) {
e8b8e97f
KA
1878 /*
1879 * Find the spot the tree where we want to
1880 * insert the new entry.
1881 */
82cae269
KK
1882 err = indx_find(indx, ni, root, new_de + 1,
1883 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1884 fnd);
1885 if (err)
1886 goto out;
1887
1888 if (!diff) {
1889 err = -EEXIST;
1890 goto out;
1891 }
1892 }
1893
1894 if (!fnd->level) {
e8b8e97f
KA
1895 /*
1896 * The root is also a leaf, so we'll insert the
1897 * new entry into it.
1898 */
82cae269 1899 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
78ab59fe 1900 fnd, undo);
82cae269
KK
1901 if (err)
1902 goto out;
1903 } else {
e8b8e97f
KA
1904 /*
1905 * Found a leaf buffer, so we'll insert the new entry into it.
1906 */
82cae269
KK
1907 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1908 fnd->level - 1, fnd);
1909 if (err)
1910 goto out;
1911 }
1912
1913out:
1914 fnd_put(fnd_a);
1915out1:
1916 return err;
1917}
1918
1919/*
e8b8e97f 1920 * indx_find_buffer - Locate a buffer from the tree.
82cae269
KK
1921 */
1922static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1923 struct ntfs_inode *ni,
1924 const struct INDEX_ROOT *root,
1925 __le64 vbn, struct indx_node *n)
1926{
1927 int err;
1928 const struct NTFS_DE *e;
1929 struct indx_node *r;
1930 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1931
e8b8e97f 1932 /* Step 1: Scan one level. */
82cae269
KK
1933 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1934 if (!e)
1935 return ERR_PTR(-EINVAL);
1936
1937 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1938 return n;
1939
1940 if (de_is_last(e))
1941 break;
1942 }
1943
e8b8e97f 1944 /* Step2: Do recursion. */
82cae269
KK
1945 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1946 for (;;) {
1947 if (de_has_vcn_ex(e)) {
1948 err = indx_read(indx, ni, de_get_vbn(e), &n);
1949 if (err)
1950 return ERR_PTR(err);
1951
1952 r = indx_find_buffer(indx, ni, root, vbn, n);
1953 if (r)
1954 return r;
1955 }
1956
1957 if (de_is_last(e))
1958 break;
1959
1960 e = Add2Ptr(e, le16_to_cpu(e->size));
1961 }
1962
1963 return NULL;
1964}
1965
1966/*
e8b8e97f 1967 * indx_shrink - Deallocate unused tail indexes.
82cae269
KK
1968 */
1969static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1970 size_t bit)
1971{
1972 int err = 0;
1973 u64 bpb, new_data;
1974 size_t nbits;
1975 struct ATTRIB *b;
1976 struct ATTR_LIST_ENTRY *le = NULL;
1977 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1978
1979 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1980 NULL, NULL);
1981
1982 if (!b)
1983 return -ENOENT;
1984
1985 if (!b->non_res) {
1986 unsigned long pos;
1987 const unsigned long *bm = resident_data(b);
1988
71eeb6ac 1989 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
82cae269
KK
1990
1991 if (bit >= nbits)
1992 return 0;
1993
1994 pos = find_next_bit(bm, nbits, bit);
1995 if (pos < nbits)
1996 return 0;
1997 } else {
1998 size_t used = MINUS_ONE_T;
1999
2000 nbits = le64_to_cpu(b->nres.data_size) * 8;
2001
2002 if (bit >= nbits)
2003 return 0;
2004
2005 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
2006 if (err)
2007 return err;
2008
2009 if (used != MINUS_ONE_T)
2010 return 0;
2011 }
2012
2013 new_data = (u64)bit << indx->index_bits;
2014
2015 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2016 &indx->alloc_run, new_data, &new_data, false, NULL);
2017 if (err)
2018 return err;
2019
2020 bpb = bitmap_size(bit);
2021 if (bpb * 8 == nbits)
2022 return 0;
2023
2024 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2025 &indx->bitmap_run, bpb, &bpb, false, NULL);
2026
2027 return err;
2028}
2029
2030static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
2031 const struct NTFS_DE *e, bool trim)
2032{
2033 int err;
2034 struct indx_node *n;
2035 struct INDEX_HDR *hdr;
2036 CLST vbn = de_get_vbn(e);
2037 size_t i;
2038
2039 err = indx_read(indx, ni, vbn, &n);
2040 if (err)
2041 return err;
2042
2043 hdr = &n->index->ihdr;
e8b8e97f 2044 /* First, recurse into the children, if any. */
82cae269
KK
2045 if (hdr_has_subnode(hdr)) {
2046 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2047 indx_free_children(indx, ni, e, false);
2048 if (de_is_last(e))
2049 break;
2050 }
2051 }
2052
2053 put_indx_node(n);
2054
2055 i = vbn >> indx->idx2vbn_bits;
e8b8e97f
KA
2056 /*
2057 * We've gotten rid of the children; add this buffer to the free list.
2058 */
82cae269
KK
2059 indx_mark_free(indx, ni, i);
2060
2061 if (!trim)
2062 return 0;
2063
2064 /*
2065 * If there are no used indexes after current free index
e8b8e97f
KA
2066 * then we can truncate allocation and bitmap.
2067 * Use bitmap to estimate the case.
82cae269
KK
2068 */
2069 indx_shrink(indx, ni, i + 1);
2070 return 0;
2071}
2072
2073/*
2074 * indx_get_entry_to_replace
2075 *
e8b8e97f
KA
2076 * Find a replacement entry for a deleted entry.
2077 * Always returns a node entry:
2078 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
82cae269
KK
2079 */
2080static int indx_get_entry_to_replace(struct ntfs_index *indx,
2081 struct ntfs_inode *ni,
2082 const struct NTFS_DE *de_next,
2083 struct NTFS_DE **de_to_replace,
2084 struct ntfs_fnd *fnd)
2085{
2086 int err;
2087 int level = -1;
2088 CLST vbn;
2089 struct NTFS_DE *e, *te, *re;
2090 struct indx_node *n;
2091 struct INDEX_BUFFER *ib;
2092
2093 *de_to_replace = NULL;
2094
e8b8e97f 2095 /* Find first leaf entry down from de_next. */
82cae269
KK
2096 vbn = de_get_vbn(de_next);
2097 for (;;) {
2098 n = NULL;
2099 err = indx_read(indx, ni, vbn, &n);
2100 if (err)
2101 goto out;
2102
2103 e = hdr_first_de(&n->index->ihdr);
2104 fnd_push(fnd, n, e);
2105
2106 if (!de_is_last(e)) {
2107 /*
e8b8e97f
KA
2108 * This buffer is non-empty, so its first entry
2109 * could be used as the replacement entry.
82cae269
KK
2110 */
2111 level = fnd->level - 1;
2112 }
2113
2114 if (!de_has_vcn(e))
2115 break;
2116
e8b8e97f 2117 /* This buffer is a node. Continue to go down. */
82cae269
KK
2118 vbn = de_get_vbn(e);
2119 }
2120
2121 if (level == -1)
2122 goto out;
2123
2124 n = fnd->nodes[level];
2125 te = hdr_first_de(&n->index->ihdr);
2126 /* Copy the candidate entry into the replacement entry buffer. */
195c52bd 2127 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
82cae269
KK
2128 if (!re) {
2129 err = -ENOMEM;
2130 goto out;
2131 }
2132
2133 *de_to_replace = re;
2134 memcpy(re, te, le16_to_cpu(te->size));
2135
2136 if (!de_has_vcn(re)) {
2137 /*
e8b8e97f
KA
2138 * The replacement entry we found doesn't have a sub_vcn.
2139 * increase its size to hold one.
82cae269
KK
2140 */
2141 le16_add_cpu(&re->size, sizeof(u64));
2142 re->flags |= NTFS_IE_HAS_SUBNODES;
2143 } else {
2144 /*
e8b8e97f
KA
2145 * The replacement entry we found was a node entry, which
2146 * means that all its child buffers are empty. Return them
2147 * to the free pool.
82cae269
KK
2148 */
2149 indx_free_children(indx, ni, te, true);
2150 }
2151
2152 /*
2153 * Expunge the replacement entry from its former location,
2154 * and then write that buffer.
2155 */
2156 ib = n->index;
2157 e = hdr_delete_de(&ib->ihdr, te);
2158
2159 fnd->de[level] = e;
2160 indx_write(indx, ni, n, 0);
2161
2162 /* Check to see if this action created an empty leaf. */
2163 if (ib_is_leaf(ib) && ib_is_empty(ib))
2164 return 0;
2165
2166out:
2167 fnd_clear(fnd);
2168 return err;
2169}
2170
2171/*
e8b8e97f 2172 * indx_delete_entry - Delete an entry from the index.
82cae269
KK
2173 */
2174int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2175 const void *key, u32 key_len, const void *ctx)
2176{
2177 int err, diff;
2178 struct INDEX_ROOT *root;
2179 struct INDEX_HDR *hdr;
2180 struct ntfs_fnd *fnd, *fnd2;
2181 struct INDEX_BUFFER *ib;
2182 struct NTFS_DE *e, *re, *next, *prev, *me;
2183 struct indx_node *n, *n2d = NULL;
2184 __le64 sub_vbn;
2185 int level, level2;
2186 struct ATTRIB *attr;
2187 struct mft_inode *mi;
2188 u32 e_size, root_size, new_root_size;
2189 size_t trim_bit;
2190 const struct INDEX_NAMES *in;
2191
2192 fnd = fnd_get();
2193 if (!fnd) {
2194 err = -ENOMEM;
2195 goto out2;
2196 }
2197
2198 fnd2 = fnd_get();
2199 if (!fnd2) {
2200 err = -ENOMEM;
2201 goto out1;
2202 }
2203
2204 root = indx_get_root(indx, ni, &attr, &mi);
2205 if (!root) {
2206 err = -EINVAL;
2207 goto out;
2208 }
2209
2210 /* Locate the entry to remove. */
2211 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2212 if (err)
2213 goto out;
2214
2215 if (!e || diff) {
2216 err = -ENOENT;
2217 goto out;
2218 }
2219
2220 level = fnd->level;
2221
2222 if (level) {
2223 n = fnd->nodes[level - 1];
2224 e = fnd->de[level - 1];
2225 ib = n->index;
2226 hdr = &ib->ihdr;
2227 } else {
2228 hdr = &root->ihdr;
2229 e = fnd->root_de;
2230 n = NULL;
2231 }
2232
2233 e_size = le16_to_cpu(e->size);
2234
2235 if (!de_has_vcn_ex(e)) {
e8b8e97f 2236 /* The entry to delete is a leaf, so we can just rip it out. */
82cae269
KK
2237 hdr_delete_de(hdr, e);
2238
2239 if (!level) {
2240 hdr->total = hdr->used;
2241
e8b8e97f 2242 /* Shrink resident root attribute. */
82cae269
KK
2243 mi_resize_attr(mi, attr, 0 - e_size);
2244 goto out;
2245 }
2246
2247 indx_write(indx, ni, n, 0);
2248
2249 /*
2250 * Check to see if removing that entry made
2251 * the leaf empty.
2252 */
2253 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2254 fnd_pop(fnd);
2255 fnd_push(fnd2, n, e);
2256 }
2257 } else {
2258 /*
2259 * The entry we wish to delete is a node buffer, so we
2260 * have to find a replacement for it.
2261 */
2262 next = de_get_next(e);
2263
2264 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2265 if (err)
2266 goto out;
2267
2268 if (re) {
2269 de_set_vbn_le(re, de_get_vbn_le(e));
2270 hdr_delete_de(hdr, e);
2271
2272 err = level ? indx_insert_into_buffer(indx, ni, root,
2273 re, ctx,
2274 fnd->level - 1,
2275 fnd)
2276 : indx_insert_into_root(indx, ni, re, e,
78ab59fe 2277 ctx, fnd, 0);
195c52bd 2278 kfree(re);
82cae269
KK
2279
2280 if (err)
2281 goto out;
2282 } else {
2283 /*
2284 * There is no replacement for the current entry.
e8b8e97f
KA
2285 * This means that the subtree rooted at its node
2286 * is empty, and can be deleted, which turn means
2287 * that the node can just inherit the deleted
2288 * entry sub_vcn.
82cae269
KK
2289 */
2290 indx_free_children(indx, ni, next, true);
2291
2292 de_set_vbn_le(next, de_get_vbn_le(e));
2293 hdr_delete_de(hdr, e);
2294 if (level) {
2295 indx_write(indx, ni, n, 0);
2296 } else {
2297 hdr->total = hdr->used;
2298
e8b8e97f 2299 /* Shrink resident root attribute. */
82cae269
KK
2300 mi_resize_attr(mi, attr, 0 - e_size);
2301 }
2302 }
2303 }
2304
e8b8e97f 2305 /* Delete a branch of tree. */
82cae269
KK
2306 if (!fnd2 || !fnd2->level)
2307 goto out;
2308
e8b8e97f 2309 /* Reinit root 'cause it can be changed. */
82cae269
KK
2310 root = indx_get_root(indx, ni, &attr, &mi);
2311 if (!root) {
2312 err = -EINVAL;
2313 goto out;
2314 }
2315
2316 n2d = NULL;
2317 sub_vbn = fnd2->nodes[0]->index->vbn;
2318 level2 = 0;
2319 level = fnd->level;
2320
2321 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2322
e8b8e97f 2323 /* Scan current level. */
82cae269
KK
2324 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2325 if (!e) {
2326 err = -EINVAL;
2327 goto out;
2328 }
2329
2330 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2331 break;
2332
2333 if (de_is_last(e)) {
2334 e = NULL;
2335 break;
2336 }
2337 }
2338
2339 if (!e) {
e8b8e97f 2340 /* Do slow search from root. */
82cae269
KK
2341 struct indx_node *in;
2342
2343 fnd_clear(fnd);
2344
2345 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2346 if (IS_ERR(in)) {
2347 err = PTR_ERR(in);
2348 goto out;
2349 }
2350
2351 if (in)
2352 fnd_push(fnd, in, NULL);
2353 }
2354
e8b8e97f 2355 /* Merge fnd2 -> fnd. */
82cae269
KK
2356 for (level = 0; level < fnd2->level; level++) {
2357 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2358 fnd2->nodes[level] = NULL;
2359 }
2360 fnd2->level = 0;
2361
2362 hdr = NULL;
2363 for (level = fnd->level; level; level--) {
2364 struct indx_node *in = fnd->nodes[level - 1];
2365
2366 ib = in->index;
2367 if (ib_is_empty(ib)) {
2368 sub_vbn = ib->vbn;
2369 } else {
2370 hdr = &ib->ihdr;
2371 n2d = in;
2372 level2 = level;
2373 break;
2374 }
2375 }
2376
2377 if (!hdr)
2378 hdr = &root->ihdr;
2379
2380 e = hdr_first_de(hdr);
2381 if (!e) {
2382 err = -EINVAL;
2383 goto out;
2384 }
2385
2386 if (hdr != &root->ihdr || !de_is_last(e)) {
2387 prev = NULL;
2388 while (!de_is_last(e)) {
2389 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2390 break;
2391 prev = e;
2392 e = hdr_next_de(hdr, e);
2393 if (!e) {
2394 err = -EINVAL;
2395 goto out;
2396 }
2397 }
2398
2399 if (sub_vbn != de_get_vbn_le(e)) {
2400 /*
e8b8e97f
KA
2401 * Didn't find the parent entry, although this buffer
2402 * is the parent trail. Something is corrupt.
82cae269
KK
2403 */
2404 err = -EINVAL;
2405 goto out;
2406 }
2407
2408 if (de_is_last(e)) {
2409 /*
e8b8e97f
KA
2410 * Since we can't remove the end entry, we'll remove
2411 * its predecessor instead. This means we have to
2412 * transfer the predecessor's sub_vcn to the end entry.
2413 * Note: This index block is not empty, so the
2414 * predecessor must exist.
82cae269
KK
2415 */
2416 if (!prev) {
2417 err = -EINVAL;
2418 goto out;
2419 }
2420
2421 if (de_has_vcn(prev)) {
2422 de_set_vbn_le(e, de_get_vbn_le(prev));
2423 } else if (de_has_vcn(e)) {
2424 le16_sub_cpu(&e->size, sizeof(u64));
2425 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2426 le32_sub_cpu(&hdr->used, sizeof(u64));
2427 }
2428 e = prev;
2429 }
2430
2431 /*
e8b8e97f
KA
2432 * Copy the current entry into a temporary buffer (stripping
2433 * off its down-pointer, if any) and delete it from the current
2434 * buffer or root, as appropriate.
82cae269
KK
2435 */
2436 e_size = le16_to_cpu(e->size);
195c52bd 2437 me = kmemdup(e, e_size, GFP_NOFS);
82cae269
KK
2438 if (!me) {
2439 err = -ENOMEM;
2440 goto out;
2441 }
2442
2443 if (de_has_vcn(me)) {
2444 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2445 le16_sub_cpu(&me->size, sizeof(u64));
2446 }
2447
2448 hdr_delete_de(hdr, e);
2449
2450 if (hdr == &root->ihdr) {
2451 level = 0;
2452 hdr->total = hdr->used;
2453
e8b8e97f 2454 /* Shrink resident root attribute. */
82cae269
KK
2455 mi_resize_attr(mi, attr, 0 - e_size);
2456 } else {
2457 indx_write(indx, ni, n2d, 0);
2458 level = level2;
2459 }
2460
e8b8e97f 2461 /* Mark unused buffers as free. */
82cae269
KK
2462 trim_bit = -1;
2463 for (; level < fnd->level; level++) {
2464 ib = fnd->nodes[level]->index;
2465 if (ib_is_empty(ib)) {
2466 size_t k = le64_to_cpu(ib->vbn) >>
2467 indx->idx2vbn_bits;
2468
2469 indx_mark_free(indx, ni, k);
2470 if (k < trim_bit)
2471 trim_bit = k;
2472 }
2473 }
2474
2475 fnd_clear(fnd);
2476 /*fnd->root_de = NULL;*/
2477
2478 /*
2479 * Re-insert the entry into the tree.
2480 * Find the spot the tree where we want to insert the new entry.
2481 */
78ab59fe 2482 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
195c52bd 2483 kfree(me);
82cae269
KK
2484 if (err)
2485 goto out;
2486
2487 if (trim_bit != -1)
2488 indx_shrink(indx, ni, trim_bit);
2489 } else {
2490 /*
2491 * This tree needs to be collapsed down to an empty root.
e8b8e97f
KA
2492 * Recreate the index root as an empty leaf and free all
2493 * the bits the index allocation bitmap.
82cae269
KK
2494 */
2495 fnd_clear(fnd);
2496 fnd_clear(fnd2);
2497
2498 in = &s_index_names[indx->type];
2499
2500 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2501 &indx->alloc_run, 0, NULL, false, NULL);
2502 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2503 false, NULL);
2504 run_close(&indx->alloc_run);
2505
2506 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2507 &indx->bitmap_run, 0, NULL, false, NULL);
2508 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2509 false, NULL);
2510 run_close(&indx->bitmap_run);
2511
2512 root = indx_get_root(indx, ni, &attr, &mi);
2513 if (!root) {
2514 err = -EINVAL;
2515 goto out;
2516 }
2517
2518 root_size = le32_to_cpu(attr->res.data_size);
2519 new_root_size =
2520 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2521
2522 if (new_root_size != root_size &&
2523 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2524 err = -EINVAL;
2525 goto out;
2526 }
2527
e8b8e97f 2528 /* Fill first entry. */
82cae269
KK
2529 e = (struct NTFS_DE *)(root + 1);
2530 e->ref.low = 0;
2531 e->ref.high = 0;
2532 e->ref.seq = 0;
2533 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2534 e->flags = NTFS_IE_LAST; // 0x02
2535 e->key_size = 0;
2536 e->res = 0;
2537
2538 hdr = &root->ihdr;
2539 hdr->flags = 0;
2540 hdr->used = hdr->total = cpu_to_le32(
2541 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2542 mi->dirty = true;
2543 }
2544
2545out:
2546 fnd_put(fnd2);
2547out1:
2548 fnd_put(fnd);
2549out2:
2550 return err;
2551}
2552
2553/*
2554 * Update duplicated information in directory entry
2555 * 'dup' - info from MFT record
2556 */
2557int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2558 const struct ATTR_FILE_NAME *fname,
2559 const struct NTFS_DUP_INFO *dup, int sync)
2560{
2561 int err, diff;
2562 struct NTFS_DE *e = NULL;
2563 struct ATTR_FILE_NAME *e_fname;
2564 struct ntfs_fnd *fnd;
2565 struct INDEX_ROOT *root;
2566 struct mft_inode *mi;
2567 struct ntfs_index *indx = &ni->dir;
2568
2569 fnd = fnd_get();
78ab59fe
KK
2570 if (!fnd)
2571 return -ENOMEM;
82cae269
KK
2572
2573 root = indx_get_root(indx, ni, NULL, &mi);
2574 if (!root) {
2575 err = -EINVAL;
2576 goto out;
2577 }
2578
e8b8e97f 2579 /* Find entry in directory. */
82cae269
KK
2580 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2581 &diff, &e, fnd);
2582 if (err)
2583 goto out;
2584
2585 if (!e) {
2586 err = -EINVAL;
2587 goto out;
2588 }
2589
2590 if (diff) {
2591 err = -EINVAL;
2592 goto out;
2593 }
2594
2595 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2596
2597 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
d3624466
KK
2598 /*
2599 * Nothing to update in index! Try to avoid this call.
2600 */
82cae269
KK
2601 goto out;
2602 }
2603
2604 memcpy(&e_fname->dup, dup, sizeof(*dup));
2605
2606 if (fnd->level) {
d3624466 2607 /* Directory entry in index. */
82cae269
KK
2608 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2609 } else {
d3624466 2610 /* Directory entry in directory MFT record. */
82cae269
KK
2611 mi->dirty = true;
2612 if (sync)
2613 err = mi_write(mi, 1);
2614 else
2615 mark_inode_dirty(&ni->vfs_inode);
2616 }
2617
2618out:
2619 fnd_put(fnd);
82cae269
KK
2620 return err;
2621}