]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ntfs3/index.c
fs/ntfs3: Add sync flag to ntfs_sb_write_run and al_update
[mirror_ubuntu-kernels.git] / fs / ntfs3 / index.c
CommitLineData
82cae269
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
ef929700 11#include <linux/kernel.h>
82cae269
KK
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
e8b8e97f
KA
27 * cmp_fnames - Compare two names in index.
28 *
82cae269 29 * if l1 != 0
e8b8e97f 30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
82cae269
KK
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36{
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
e8b8e97f 56 * try to compare it case sensitive.
82cae269
KK
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64}
65
e8b8e97f
KA
66/*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
82cae269
KK
69static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71{
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83}
84
e8b8e97f
KA
85/*
86 * cmp_sdh - $SDH of $Secure
87 */
82cae269
KK
88static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90{
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
e8b8e97f 101 /* First value is a hash value itself. */
82cae269
KK
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
e8b8e97f 107 /* Second value is security Id. */
82cae269
KK
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118}
119
e8b8e97f
KA
120/*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
82cae269
KK
123static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125{
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
e8b8e97f
KA
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
82cae269
KK
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
e8b8e97f
KA
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
82cae269
KK
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166}
167
168static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169{
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
abfeb2ee 186 break;
82cae269
KK
187 default:
188 break;
189 }
190
191 return NULL;
192}
193
194struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202};
203
204static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206{
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
e8b8e97f 240 /* Looks like filesystem error. */
82cae269
KK
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284}
285
286static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287{
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308out:
309 unlock_buffer(bh);
310 put_bh(bh);
311}
312
313/*
e8b8e97f 314 * indx_mark_used - Mark the bit @bit as used.
82cae269
KK
315 */
316static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318{
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331}
332
333/*
e8b8e97f 334 * indx_mark_free - Mark the bit @bit as free.
82cae269
KK
335 */
336static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338{
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351}
352
353/*
e8b8e97f
KA
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
82cae269
KK
359 */
360static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365{
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456}
457
458static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459{
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466}
467
468/*
e8b8e97f 469 * indx_find_free - Look for free bit.
82cae269 470 *
e8b8e97f 471 * Return: -1 if no free bits.
82cae269
KK
472 */
473static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475{
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504}
505
506static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507{
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514}
515
516/*
e8b8e97f 517 * indx_used_bit - Look for used bit.
82cae269 518 *
e8b8e97f 519 * Return: MINUS_ONE_T if no used bits.
82cae269
KK
520 */
521int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522{
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550}
551
552/*
553 * hdr_find_split
554 *
e8b8e97f
KA
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
82cae269
KK
557 */
558static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559{
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
8c83a485 563 u16 esize;
82cae269
KK
564
565 if (!e || de_is_last(e))
566 return NULL;
567
8c83a485 568 esize = le16_to_cpu(e->size);
82cae269
KK
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
e8b8e97f 574 /* We must not return END entry. */
82cae269
KK
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582}
583
584/*
e8b8e97f 585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
82cae269 586 *
82cae269
KK
587 * It is used to insert entries into a newly-created buffer.
588 */
589static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591{
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606}
607
608void fnd_clear(struct ntfs_fnd *fnd)
609{
610 int i;
611
612 for (i = 0; i < fnd->level; i++) {
613 struct indx_node *n = fnd->nodes[i];
614
615 if (!n)
616 continue;
617
618 put_indx_node(n);
619 fnd->nodes[i] = NULL;
620 }
621 fnd->level = 0;
622 fnd->root_de = NULL;
623}
624
625static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 struct NTFS_DE *e)
627{
628 int i;
629
630 i = fnd->level;
631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 return -EINVAL;
633 fnd->nodes[i] = n;
634 fnd->de[i] = e;
635 fnd->level += 1;
636 return 0;
637}
638
639static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640{
641 struct indx_node *n;
642 int i = fnd->level;
643
644 i -= 1;
645 n = fnd->nodes[i];
646 fnd->nodes[i] = NULL;
647 fnd->level = i;
648
649 return n;
650}
651
652static bool fnd_is_empty(struct ntfs_fnd *fnd)
653{
654 if (!fnd->level)
655 return !fnd->root_de;
656
657 return !fnd->de[fnd->level - 1];
658}
659
660/*
e8b8e97f 661 * hdr_find_e - Locate an entry the index buffer.
82cae269 662 *
82cae269
KK
663 * If no matching entry is found, it returns the first entry which is greater
664 * than the desired entry If the search key is greater than all the entries the
665 * buffer, it returns the 'end' entry. This function does a binary search of the
e8b8e97f
KA
666 * current index buffer, for the first entry that is <= to the search value.
667 *
668 * Return: NULL if error.
82cae269
KK
669 */
670static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 const struct INDEX_HDR *hdr, const void *key,
672 size_t key_len, const void *ctx, int *diff)
673{
8e692122 674 struct NTFS_DE *e, *found = NULL;
82cae269 675 NTFS_CMP_FUNC cmp = indx->cmp;
8e692122
KA
676 int min_idx = 0, mid_idx, max_idx = 0;
677 int diff2;
678 int table_size = 8;
82cae269
KK
679 u32 e_size, e_key_len;
680 u32 end = le32_to_cpu(hdr->used);
681 u32 off = le32_to_cpu(hdr->de_off);
ef929700 682 u16 offs[128];
82cae269 683
162333ef
KA
684fill_table:
685 if (off + sizeof(struct NTFS_DE) > end)
686 return NULL;
82cae269 687
82cae269
KK
688 e = Add2Ptr(hdr, off);
689 e_size = le16_to_cpu(e->size);
690
162333ef
KA
691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
692 return NULL;
82cae269
KK
693
694 if (!de_is_last(e)) {
162333ef 695 offs[max_idx] = off;
82cae269 696 off += e_size;
82cae269 697
162333ef 698 max_idx++;
ef929700 699 if (max_idx < table_size)
162333ef 700 goto fill_table;
82cae269 701
162333ef
KA
702 max_idx--;
703 }
82cae269 704
162333ef
KA
705binary_search:
706 e_key_len = le16_to_cpu(e->key_size);
82cae269 707
162333ef
KA
708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
709 if (diff2 > 0) {
710 if (found) {
711 min_idx = mid_idx + 1;
712 } else {
713 if (de_is_last(e))
714 return NULL;
82cae269 715
162333ef 716 max_idx = 0;
8e692122
KA
717 table_size = min(table_size * 2,
718 (int)ARRAY_SIZE(offs));
162333ef 719 goto fill_table;
82cae269 720 }
162333ef
KA
721 } else if (diff2 < 0) {
722 if (found)
82cae269 723 max_idx = mid_idx - 1;
162333ef
KA
724 else
725 max_idx--;
82cae269 726
162333ef
KA
727 found = e;
728 } else {
729 *diff = 0;
730 return e;
82cae269
KK
731 }
732
162333ef
KA
733 if (min_idx > max_idx) {
734 *diff = -1;
735 return found;
736 }
82cae269 737
162333ef
KA
738 mid_idx = (min_idx + max_idx) >> 1;
739 e = Add2Ptr(hdr, offs[mid_idx]);
82cae269 740
162333ef 741 goto binary_search;
82cae269
KK
742}
743
744/*
e8b8e97f 745 * hdr_insert_de - Insert an index entry into the buffer.
82cae269 746 *
e8b8e97f 747 * 'before' should be a pointer previously returned from hdr_find_e.
82cae269
KK
748 */
749static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
750 struct INDEX_HDR *hdr,
751 const struct NTFS_DE *de,
752 struct NTFS_DE *before, const void *ctx)
753{
754 int diff;
755 size_t off = PtrOffset(hdr, before);
756 u32 used = le32_to_cpu(hdr->used);
757 u32 total = le32_to_cpu(hdr->total);
758 u16 de_size = le16_to_cpu(de->size);
759
e8b8e97f 760 /* First, check to see if there's enough room. */
82cae269
KK
761 if (used + de_size > total)
762 return NULL;
763
764 /* We know there's enough space, so we know we'll succeed. */
765 if (before) {
e8b8e97f 766 /* Check that before is inside Index. */
82cae269
KK
767 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
768 off + le16_to_cpu(before->size) > total) {
769 return NULL;
770 }
771 goto ok;
772 }
e8b8e97f 773 /* No insert point is applied. Get it manually. */
82cae269
KK
774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
775 &diff);
776 if (!before)
777 return NULL;
778 off = PtrOffset(hdr, before);
779
780ok:
781 /* Now we just make room for the entry and jam it in. */
782 memmove(Add2Ptr(before, de_size), before, used - off);
783
784 hdr->used = cpu_to_le32(used + de_size);
785 memcpy(before, de, de_size);
786
787 return before;
788}
789
790/*
e8b8e97f 791 * hdr_delete_de - Remove an entry from the index buffer.
82cae269
KK
792 */
793static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
794 struct NTFS_DE *re)
795{
796 u32 used = le32_to_cpu(hdr->used);
797 u16 esize = le16_to_cpu(re->size);
798 u32 off = PtrOffset(hdr, re);
799 int bytes = used - (off + esize);
800
801 if (off >= used || esize < sizeof(struct NTFS_DE) ||
802 bytes < sizeof(struct NTFS_DE))
803 return NULL;
804
805 hdr->used = cpu_to_le32(used - esize);
806 memmove(re, Add2Ptr(re, esize), bytes);
807
808 return re;
809}
810
811void indx_clear(struct ntfs_index *indx)
812{
813 run_close(&indx->alloc_run);
814 run_close(&indx->bitmap_run);
815}
816
817int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
818 const struct ATTRIB *attr, enum index_mutex_classed type)
819{
820 u32 t32;
821 const struct INDEX_ROOT *root = resident_data(attr);
822
e8b8e97f 823 /* Check root fields. */
82cae269
KK
824 if (!root->index_block_clst)
825 return -EINVAL;
826
827 indx->type = type;
828 indx->idx2vbn_bits = __ffs(root->index_block_clst);
829
830 t32 = le32_to_cpu(root->index_block_size);
831 indx->index_bits = blksize_bits(t32);
832
e8b8e97f 833 /* Check index record size. */
82cae269 834 if (t32 < sbi->cluster_size) {
e8b8e97f 835 /* Index record is smaller than a cluster, use 512 blocks. */
82cae269
KK
836 if (t32 != root->index_block_clst * SECTOR_SIZE)
837 return -EINVAL;
838
e8b8e97f 839 /* Check alignment to a cluster. */
82cae269
KK
840 if ((sbi->cluster_size >> SECTOR_SHIFT) &
841 (root->index_block_clst - 1)) {
842 return -EINVAL;
843 }
844
845 indx->vbn2vbo_bits = SECTOR_SHIFT;
846 } else {
e8b8e97f 847 /* Index record must be a multiple of cluster size. */
82cae269
KK
848 if (t32 != root->index_block_clst << sbi->cluster_bits)
849 return -EINVAL;
850
851 indx->vbn2vbo_bits = sbi->cluster_bits;
852 }
853
854 init_rwsem(&indx->run_lock);
855
856 indx->cmp = get_cmp_func(root);
857 return indx->cmp ? 0 : -EINVAL;
858}
859
860static struct indx_node *indx_new(struct ntfs_index *indx,
861 struct ntfs_inode *ni, CLST vbn,
862 const __le64 *sub_vbn)
863{
864 int err;
865 struct NTFS_DE *e;
866 struct indx_node *r;
867 struct INDEX_HDR *hdr;
868 struct INDEX_BUFFER *index;
869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
870 u32 bytes = 1u << indx->index_bits;
871 u16 fn;
872 u32 eo;
873
195c52bd 874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
875 if (!r)
876 return ERR_PTR(-ENOMEM);
877
195c52bd 878 index = kzalloc(bytes, GFP_NOFS);
82cae269 879 if (!index) {
195c52bd 880 kfree(r);
82cae269
KK
881 return ERR_PTR(-ENOMEM);
882 }
883
884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
885
886 if (err) {
195c52bd
KA
887 kfree(index);
888 kfree(r);
82cae269
KK
889 return ERR_PTR(err);
890 }
891
e8b8e97f 892 /* Create header. */
82cae269
KK
893 index->rhdr.sign = NTFS_INDX_SIGNATURE;
894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
896 index->rhdr.fix_num = cpu_to_le16(fn);
897 index->vbn = cpu_to_le64(vbn);
898 hdr = &index->ihdr;
fa3cacf5 899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
82cae269
KK
900 hdr->de_off = cpu_to_le32(eo);
901
902 e = Add2Ptr(hdr, eo);
903
904 if (sub_vbn) {
905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
907 hdr->used =
908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
909 de_set_vbn_le(e, *sub_vbn);
910 hdr->flags = 1;
911 } else {
912 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
914 e->flags = NTFS_IE_LAST;
915 }
916
917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
918
919 r->index = index;
920 return r;
921}
922
923struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
924 struct ATTRIB **attr, struct mft_inode **mi)
925{
926 struct ATTR_LIST_ENTRY *le = NULL;
927 struct ATTRIB *a;
928 const struct INDEX_NAMES *in = &s_index_names[indx->type];
929
930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
931 mi);
932 if (!a)
933 return NULL;
934
935 if (attr)
936 *attr = a;
937
938 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
939}
940
941static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
942 struct indx_node *node, int sync)
943{
944 struct INDEX_BUFFER *ib = node->index;
945
946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
947}
948
949/*
e8b8e97f
KA
950 * indx_read
951 *
952 * If ntfs_readdir calls this function
953 * inode is shared locked and no ni_lock.
954 * Use rw_semaphore for read/write access to alloc_run.
82cae269
KK
955 */
956int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
957 struct indx_node **node)
958{
959 int err;
960 struct INDEX_BUFFER *ib;
961 struct runs_tree *run = &indx->alloc_run;
962 struct rw_semaphore *lock = &indx->run_lock;
963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
964 u32 bytes = 1u << indx->index_bits;
965 struct indx_node *in = *node;
966 const struct INDEX_NAMES *name;
967
968 if (!in) {
195c52bd 969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
970 if (!in)
971 return -ENOMEM;
972 } else {
973 nb_put(&in->nb);
974 }
975
976 ib = in->index;
977 if (!ib) {
195c52bd 978 ib = kmalloc(bytes, GFP_NOFS);
82cae269
KK
979 if (!ib) {
980 err = -ENOMEM;
981 goto out;
982 }
983 }
984
985 down_read(lock);
986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
987 up_read(lock);
988 if (!err)
989 goto ok;
990
991 if (err == -E_NTFS_FIXUP)
992 goto ok;
993
994 if (err != -ENOENT)
995 goto out;
996
997 name = &s_index_names[indx->type];
998 down_write(lock);
999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1000 run, vbo, vbo + bytes);
1001 up_write(lock);
1002 if (err)
1003 goto out;
1004
1005 down_read(lock);
1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1007 up_read(lock);
1008 if (err == -E_NTFS_FIXUP)
1009 goto ok;
1010
1011 if (err)
1012 goto out;
1013
1014ok:
1015 if (err == -E_NTFS_FIXUP) {
1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1017 err = 0;
1018 }
1019
1020 in->index = ib;
1021 *node = in;
1022
1023out:
1024 if (ib != in->index)
195c52bd 1025 kfree(ib);
82cae269
KK
1026
1027 if (*node != in) {
1028 nb_put(&in->nb);
195c52bd 1029 kfree(in);
82cae269
KK
1030 }
1031
1032 return err;
1033}
1034
1035/*
e8b8e97f 1036 * indx_find - Scan NTFS directory for given entry.
82cae269
KK
1037 */
1038int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1039 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1040 const void *ctx, int *diff, struct NTFS_DE **entry,
1041 struct ntfs_fnd *fnd)
1042{
1043 int err;
1044 struct NTFS_DE *e;
1045 const struct INDEX_HDR *hdr;
1046 struct indx_node *node;
1047
1048 if (!root)
1049 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1050
1051 if (!root) {
1052 err = -EINVAL;
1053 goto out;
1054 }
1055
1056 hdr = &root->ihdr;
1057
e8b8e97f 1058 /* Check cache. */
82cae269
KK
1059 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1060 if (e && !de_is_last(e) &&
1061 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1062 *entry = e;
1063 *diff = 0;
1064 return 0;
1065 }
1066
e8b8e97f 1067 /* Soft finder reset. */
82cae269
KK
1068 fnd_clear(fnd);
1069
e8b8e97f 1070 /* Lookup entry that is <= to the search value. */
82cae269
KK
1071 e = hdr_find_e(indx, hdr, key, key_len, ctx, diff);
1072 if (!e)
1073 return -EINVAL;
1074
1075 if (fnd)
1076 fnd->root_de = e;
1077
1078 err = 0;
1079
1080 for (;;) {
1081 node = NULL;
1082 if (*diff >= 0 || !de_has_vcn_ex(e)) {
1083 *entry = e;
1084 goto out;
1085 }
1086
1087 /* Read next level. */
1088 err = indx_read(indx, ni, de_get_vbn(e), &node);
1089 if (err)
1090 goto out;
1091
e8b8e97f 1092 /* Lookup entry that is <= to the search value. */
82cae269
KK
1093 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1094 diff);
1095 if (!e) {
1096 err = -EINVAL;
1097 put_indx_node(node);
1098 goto out;
1099 }
1100
1101 fnd_push(fnd, node, e);
1102 }
1103
1104out:
1105 return err;
1106}
1107
1108int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1109 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1110 struct ntfs_fnd *fnd)
1111{
1112 int err;
1113 struct indx_node *n = NULL;
1114 struct NTFS_DE *e;
1115 size_t iter = 0;
1116 int level = fnd->level;
1117
1118 if (!*entry) {
e8b8e97f 1119 /* Start find. */
82cae269
KK
1120 e = hdr_first_de(&root->ihdr);
1121 if (!e)
1122 return 0;
1123 fnd_clear(fnd);
1124 fnd->root_de = e;
1125 } else if (!level) {
1126 if (de_is_last(fnd->root_de)) {
1127 *entry = NULL;
1128 return 0;
1129 }
1130
1131 e = hdr_next_de(&root->ihdr, fnd->root_de);
1132 if (!e)
1133 return -EINVAL;
1134 fnd->root_de = e;
1135 } else {
1136 n = fnd->nodes[level - 1];
1137 e = fnd->de[level - 1];
1138
1139 if (de_is_last(e))
1140 goto pop_level;
1141
1142 e = hdr_next_de(&n->index->ihdr, e);
1143 if (!e)
1144 return -EINVAL;
1145
1146 fnd->de[level - 1] = e;
1147 }
1148
e8b8e97f 1149 /* Just to avoid tree cycle. */
82cae269
KK
1150next_iter:
1151 if (iter++ >= 1000)
1152 return -EINVAL;
1153
1154 while (de_has_vcn_ex(e)) {
1155 if (le16_to_cpu(e->size) <
1156 sizeof(struct NTFS_DE) + sizeof(u64)) {
1157 if (n) {
1158 fnd_pop(fnd);
195c52bd 1159 kfree(n);
82cae269
KK
1160 }
1161 return -EINVAL;
1162 }
1163
e8b8e97f 1164 /* Read next level. */
82cae269
KK
1165 err = indx_read(indx, ni, de_get_vbn(e), &n);
1166 if (err)
1167 return err;
1168
e8b8e97f 1169 /* Try next level. */
82cae269
KK
1170 e = hdr_first_de(&n->index->ihdr);
1171 if (!e) {
195c52bd 1172 kfree(n);
82cae269
KK
1173 return -EINVAL;
1174 }
1175
1176 fnd_push(fnd, n, e);
1177 }
1178
1179 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1180 *entry = e;
1181 return 0;
1182 }
1183
1184pop_level:
1185 for (;;) {
1186 if (!de_is_last(e))
1187 goto next_iter;
1188
e8b8e97f 1189 /* Pop one level. */
82cae269
KK
1190 if (n) {
1191 fnd_pop(fnd);
195c52bd 1192 kfree(n);
82cae269
KK
1193 }
1194
1195 level = fnd->level;
1196
1197 if (level) {
1198 n = fnd->nodes[level - 1];
1199 e = fnd->de[level - 1];
1200 } else if (fnd->root_de) {
1201 n = NULL;
1202 e = fnd->root_de;
1203 fnd->root_de = NULL;
1204 } else {
1205 *entry = NULL;
1206 return 0;
1207 }
1208
1209 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1210 *entry = e;
1211 if (!fnd->root_de)
1212 fnd->root_de = e;
1213 return 0;
1214 }
1215 }
1216}
1217
1218int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1219 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1220 size_t *off, struct ntfs_fnd *fnd)
1221{
1222 int err;
1223 struct indx_node *n = NULL;
1224 struct NTFS_DE *e = NULL;
1225 struct NTFS_DE *e2;
1226 size_t bit;
1227 CLST next_used_vbn;
1228 CLST next_vbn;
1229 u32 record_size = ni->mi.sbi->record_size;
1230
e8b8e97f 1231 /* Use non sorted algorithm. */
82cae269 1232 if (!*entry) {
e8b8e97f 1233 /* This is the first call. */
82cae269
KK
1234 e = hdr_first_de(&root->ihdr);
1235 if (!e)
1236 return 0;
1237 fnd_clear(fnd);
1238 fnd->root_de = e;
1239
e8b8e97f 1240 /* The first call with setup of initial element. */
82cae269
KK
1241 if (*off >= record_size) {
1242 next_vbn = (((*off - record_size) >> indx->index_bits))
1243 << indx->idx2vbn_bits;
e8b8e97f 1244 /* Jump inside cycle 'for'. */
82cae269
KK
1245 goto next;
1246 }
1247
e8b8e97f 1248 /* Start enumeration from root. */
82cae269
KK
1249 *off = 0;
1250 } else if (!fnd->root_de)
1251 return -EINVAL;
1252
1253 for (;;) {
e8b8e97f 1254 /* Check if current entry can be used. */
82cae269
KK
1255 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1256 goto ok;
1257
1258 if (!fnd->level) {
e8b8e97f 1259 /* Continue to enumerate root. */
82cae269
KK
1260 if (!de_is_last(fnd->root_de)) {
1261 e = hdr_next_de(&root->ihdr, fnd->root_de);
1262 if (!e)
1263 return -EINVAL;
1264 fnd->root_de = e;
1265 continue;
1266 }
1267
e8b8e97f 1268 /* Start to enumerate indexes from 0. */
82cae269
KK
1269 next_vbn = 0;
1270 } else {
e8b8e97f 1271 /* Continue to enumerate indexes. */
82cae269
KK
1272 e2 = fnd->de[fnd->level - 1];
1273
1274 n = fnd->nodes[fnd->level - 1];
1275
1276 if (!de_is_last(e2)) {
1277 e = hdr_next_de(&n->index->ihdr, e2);
1278 if (!e)
1279 return -EINVAL;
1280 fnd->de[fnd->level - 1] = e;
1281 continue;
1282 }
1283
e8b8e97f 1284 /* Continue with next index. */
82cae269
KK
1285 next_vbn = le64_to_cpu(n->index->vbn) +
1286 root->index_block_clst;
1287 }
1288
1289next:
e8b8e97f 1290 /* Release current index. */
82cae269
KK
1291 if (n) {
1292 fnd_pop(fnd);
1293 put_indx_node(n);
1294 n = NULL;
1295 }
1296
e8b8e97f 1297 /* Skip all free indexes. */
82cae269
KK
1298 bit = next_vbn >> indx->idx2vbn_bits;
1299 err = indx_used_bit(indx, ni, &bit);
1300 if (err == -ENOENT || bit == MINUS_ONE_T) {
e8b8e97f 1301 /* No used indexes. */
82cae269
KK
1302 *entry = NULL;
1303 return 0;
1304 }
1305
1306 next_used_vbn = bit << indx->idx2vbn_bits;
1307
e8b8e97f 1308 /* Read buffer into memory. */
82cae269
KK
1309 err = indx_read(indx, ni, next_used_vbn, &n);
1310 if (err)
1311 return err;
1312
1313 e = hdr_first_de(&n->index->ihdr);
1314 fnd_push(fnd, n, e);
1315 if (!e)
1316 return -EINVAL;
1317 }
1318
1319ok:
e8b8e97f 1320 /* Return offset to restore enumerator if necessary. */
82cae269 1321 if (!n) {
e8b8e97f 1322 /* 'e' points in root, */
82cae269
KK
1323 *off = PtrOffset(&root->ihdr, e);
1324 } else {
e8b8e97f 1325 /* 'e' points in index, */
82cae269
KK
1326 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1327 record_size + PtrOffset(&n->index->ihdr, e);
1328 }
1329
1330 *entry = e;
1331 return 0;
1332}
1333
1334/*
e8b8e97f 1335 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
82cae269
KK
1336 */
1337static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1338 CLST *vbn)
1339{
0327c6d0 1340 int err;
82cae269
KK
1341 struct ntfs_sb_info *sbi = ni->mi.sbi;
1342 struct ATTRIB *bitmap;
1343 struct ATTRIB *alloc;
1344 u32 data_size = 1u << indx->index_bits;
1345 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1346 CLST len = alloc_size >> sbi->cluster_bits;
1347 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1348 CLST alen;
1349 struct runs_tree run;
1350
1351 run_init(&run);
1352
1353 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1354 NULL);
1355 if (err)
1356 goto out;
1357
1358 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1359 &run, 0, len, 0, &alloc, NULL);
1360 if (err)
1361 goto out1;
1362
1363 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1364
1365 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
78ab59fe 1366 in->name_len, &bitmap, NULL, NULL);
82cae269
KK
1367 if (err)
1368 goto out2;
1369
1370 if (in->name == I30_NAME) {
1371 ni->vfs_inode.i_size = data_size;
1372 inode_set_bytes(&ni->vfs_inode, alloc_size);
1373 }
1374
1375 memcpy(&indx->alloc_run, &run, sizeof(run));
1376
1377 *vbn = 0;
1378
1379 return 0;
1380
1381out2:
78ab59fe 1382 mi_remove_attr(NULL, &ni->mi, alloc);
82cae269
KK
1383
1384out1:
1385 run_deallocate(sbi, &run, false);
1386
1387out:
1388 return err;
1389}
1390
1391/*
e8b8e97f 1392 * indx_add_allocate - Add clusters to index.
82cae269
KK
1393 */
1394static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1395 CLST *vbn)
1396{
1397 int err;
1398 size_t bit;
1399 u64 data_size;
1400 u64 bmp_size, bmp_size_v;
1401 struct ATTRIB *bmp, *alloc;
1402 struct mft_inode *mi;
1403 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1404
1405 err = indx_find_free(indx, ni, &bit, &bmp);
1406 if (err)
1407 goto out1;
1408
1409 if (bit != MINUS_ONE_T) {
1410 bmp = NULL;
1411 } else {
1412 if (bmp->non_res) {
1413 bmp_size = le64_to_cpu(bmp->nres.data_size);
1414 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1415 } else {
1416 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1417 }
1418
1419 bit = bmp_size << 3;
1420 }
1421
1422 data_size = (u64)(bit + 1) << indx->index_bits;
1423
1424 if (bmp) {
e8b8e97f 1425 /* Increase bitmap. */
82cae269
KK
1426 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1427 &indx->bitmap_run, bitmap_size(bit + 1),
1428 NULL, true, NULL);
1429 if (err)
1430 goto out1;
1431 }
1432
1433 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1434 NULL, &mi);
1435 if (!alloc) {
04810f00 1436 err = -EINVAL;
82cae269
KK
1437 if (bmp)
1438 goto out2;
1439 goto out1;
1440 }
1441
e8b8e97f 1442 /* Increase allocation. */
82cae269
KK
1443 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1444 &indx->alloc_run, data_size, &data_size, true,
1445 NULL);
1446 if (err) {
1447 if (bmp)
1448 goto out2;
1449 goto out1;
1450 }
1451
1452 *vbn = bit << indx->idx2vbn_bits;
1453
1454 return 0;
1455
1456out2:
e8b8e97f 1457 /* Ops. No space? */
82cae269
KK
1458 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1459 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1460
1461out1:
1462 return err;
1463}
1464
1465/*
e8b8e97f 1466 * indx_insert_into_root - Attempt to insert an entry into the index root.
82cae269 1467 *
78ab59fe 1468 * @undo - True if we undoing previous remove.
82cae269
KK
1469 * If necessary, it will twiddle the index b-tree.
1470 */
1471static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1472 const struct NTFS_DE *new_de,
1473 struct NTFS_DE *root_de, const void *ctx,
78ab59fe 1474 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1475{
1476 int err = 0;
1477 struct NTFS_DE *e, *e0, *re;
1478 struct mft_inode *mi;
1479 struct ATTRIB *attr;
82cae269
KK
1480 struct INDEX_HDR *hdr;
1481 struct indx_node *n;
1482 CLST new_vbn;
1483 __le64 *sub_vbn, t_vbn;
1484 u16 new_de_size;
78ab59fe 1485 u32 hdr_used, hdr_total, asize, to_move;
82cae269
KK
1486 u32 root_size, new_root_size;
1487 struct ntfs_sb_info *sbi;
1488 int ds_root;
b8155e95 1489 struct INDEX_ROOT *root, *a_root;
82cae269 1490
e8b8e97f 1491 /* Get the record this root placed in. */
82cae269
KK
1492 root = indx_get_root(indx, ni, &attr, &mi);
1493 if (!root)
b8155e95 1494 return -EINVAL;
82cae269
KK
1495
1496 /*
1497 * Try easy case:
78ab59fe
KK
1498 * hdr_insert_de will succeed if there's
1499 * room the root for the new entry.
82cae269
KK
1500 */
1501 hdr = &root->ihdr;
1502 sbi = ni->mi.sbi;
82cae269
KK
1503 new_de_size = le16_to_cpu(new_de->size);
1504 hdr_used = le32_to_cpu(hdr->used);
1505 hdr_total = le32_to_cpu(hdr->total);
1506 asize = le32_to_cpu(attr->size);
1507 root_size = le32_to_cpu(attr->res.data_size);
1508
1509 ds_root = new_de_size + hdr_used - hdr_total;
1510
78ab59fe
KK
1511 /* If 'undo' is set then reduce requirements. */
1512 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1513 mi_resize_attr(mi, attr, ds_root)) {
82cae269
KK
1514 hdr->total = cpu_to_le32(hdr_total + ds_root);
1515 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1516 WARN_ON(!e);
1517 fnd_clear(fnd);
1518 fnd->root_de = e;
1519
1520 return 0;
1521 }
1522
e8b8e97f 1523 /* Make a copy of root attribute to restore if error. */
195c52bd 1524 a_root = kmemdup(attr, asize, GFP_NOFS);
b8155e95
DC
1525 if (!a_root)
1526 return -ENOMEM;
82cae269 1527
e8b8e97f
KA
1528 /*
1529 * Copy all the non-end entries from
1530 * the index root to the new buffer.
1531 */
82cae269
KK
1532 to_move = 0;
1533 e0 = hdr_first_de(hdr);
1534
e8b8e97f 1535 /* Calculate the size to copy. */
82cae269
KK
1536 for (e = e0;; e = hdr_next_de(hdr, e)) {
1537 if (!e) {
1538 err = -EINVAL;
b8155e95 1539 goto out_free_root;
82cae269
KK
1540 }
1541
1542 if (de_is_last(e))
1543 break;
1544 to_move += le16_to_cpu(e->size);
1545 }
1546
82cae269
KK
1547 if (!to_move) {
1548 re = NULL;
1549 } else {
195c52bd 1550 re = kmemdup(e0, to_move, GFP_NOFS);
82cae269
KK
1551 if (!re) {
1552 err = -ENOMEM;
b8155e95 1553 goto out_free_root;
82cae269
KK
1554 }
1555 }
1556
1557 sub_vbn = NULL;
1558 if (de_has_vcn(e)) {
1559 t_vbn = de_get_vbn_le(e);
1560 sub_vbn = &t_vbn;
1561 }
1562
1563 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1564 sizeof(u64);
1565 ds_root = new_root_size - root_size;
1566
78ab59fe 1567 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
e8b8e97f 1568 /* Make root external. */
82cae269 1569 err = -EOPNOTSUPP;
b8155e95 1570 goto out_free_re;
82cae269
KK
1571 }
1572
1573 if (ds_root)
1574 mi_resize_attr(mi, attr, ds_root);
1575
e8b8e97f 1576 /* Fill first entry (vcn will be set later). */
82cae269
KK
1577 e = (struct NTFS_DE *)(root + 1);
1578 memset(e, 0, sizeof(struct NTFS_DE));
1579 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1580 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1581
1582 hdr->flags = 1;
1583 hdr->used = hdr->total =
1584 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1585
1586 fnd->root_de = hdr_first_de(hdr);
1587 mi->dirty = true;
1588
e8b8e97f 1589 /* Create alloc and bitmap attributes (if not). */
82cae269
KK
1590 err = run_is_empty(&indx->alloc_run)
1591 ? indx_create_allocate(indx, ni, &new_vbn)
1592 : indx_add_allocate(indx, ni, &new_vbn);
1593
e8b8e97f 1594 /* Layout of record may be changed, so rescan root. */
82cae269
KK
1595 root = indx_get_root(indx, ni, &attr, &mi);
1596 if (!root) {
e8b8e97f 1597 /* Bug? */
82cae269
KK
1598 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1599 err = -EINVAL;
b8155e95 1600 goto out_free_re;
82cae269
KK
1601 }
1602
1603 if (err) {
e8b8e97f 1604 /* Restore root. */
82cae269
KK
1605 if (mi_resize_attr(mi, attr, -ds_root))
1606 memcpy(attr, a_root, asize);
1607 else {
e8b8e97f 1608 /* Bug? */
82cae269
KK
1609 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1610 }
b8155e95 1611 goto out_free_re;
82cae269
KK
1612 }
1613
1614 e = (struct NTFS_DE *)(root + 1);
1615 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1616 mi->dirty = true;
1617
e8b8e97f 1618 /* Now we can create/format the new buffer and copy the entries into. */
82cae269
KK
1619 n = indx_new(indx, ni, new_vbn, sub_vbn);
1620 if (IS_ERR(n)) {
1621 err = PTR_ERR(n);
b8155e95 1622 goto out_free_re;
82cae269
KK
1623 }
1624
1625 hdr = &n->index->ihdr;
1626 hdr_used = le32_to_cpu(hdr->used);
1627 hdr_total = le32_to_cpu(hdr->total);
1628
e8b8e97f 1629 /* Copy root entries into new buffer. */
82cae269
KK
1630 hdr_insert_head(hdr, re, to_move);
1631
e8b8e97f 1632 /* Update bitmap attribute. */
82cae269
KK
1633 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1634
e8b8e97f 1635 /* Check if we can insert new entry new index buffer. */
82cae269
KK
1636 if (hdr_used + new_de_size > hdr_total) {
1637 /*
e8b8e97f 1638 * This occurs if MFT record is the same or bigger than index
82cae269 1639 * buffer. Move all root new index and have no space to add
e8b8e97f
KA
1640 * new entry classic case when MFT record is 1K and index
1641 * buffer 4K the problem should not occurs.
82cae269 1642 */
195c52bd 1643 kfree(re);
82cae269
KK
1644 indx_write(indx, ni, n, 0);
1645
1646 put_indx_node(n);
1647 fnd_clear(fnd);
78ab59fe 1648 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
b8155e95 1649 goto out_free_root;
82cae269
KK
1650 }
1651
1652 /*
e8b8e97f
KA
1653 * Now root is a parent for new index buffer.
1654 * Insert NewEntry a new buffer.
82cae269
KK
1655 */
1656 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1657 if (!e) {
1658 err = -EINVAL;
b8155e95 1659 goto out_put_n;
82cae269
KK
1660 }
1661 fnd_push(fnd, n, e);
1662
e8b8e97f 1663 /* Just write updates index into disk. */
82cae269
KK
1664 indx_write(indx, ni, n, 0);
1665
1666 n = NULL;
1667
b8155e95
DC
1668out_put_n:
1669 put_indx_node(n);
1670out_free_re:
195c52bd 1671 kfree(re);
b8155e95 1672out_free_root:
195c52bd 1673 kfree(a_root);
82cae269
KK
1674 return err;
1675}
1676
1677/*
1678 * indx_insert_into_buffer
1679 *
e8b8e97f 1680 * Attempt to insert an entry into an Index Allocation Buffer.
82cae269
KK
1681 * If necessary, it will split the buffer.
1682 */
1683static int
1684indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1685 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1686 const void *ctx, int level, struct ntfs_fnd *fnd)
1687{
1688 int err;
1689 const struct NTFS_DE *sp;
1690 struct NTFS_DE *e, *de_t, *up_e = NULL;
1691 struct indx_node *n2 = NULL;
1692 struct indx_node *n1 = fnd->nodes[level];
1693 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1694 struct INDEX_HDR *hdr2;
1695 u32 to_copy, used;
1696 CLST new_vbn;
1697 __le64 t_vbn, *sub_vbn;
1698 u16 sp_size;
1699
e8b8e97f 1700 /* Try the most easy case. */
82cae269
KK
1701 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1702 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1703 fnd->de[level] = e;
1704 if (e) {
e8b8e97f 1705 /* Just write updated index into disk. */
82cae269
KK
1706 indx_write(indx, ni, n1, 0);
1707 return 0;
1708 }
1709
1710 /*
1711 * No space to insert into buffer. Split it.
1712 * To split we:
1713 * - Save split point ('cause index buffers will be changed)
1714 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1715 * - Remove all entries (sp including) from TargetBuffer
1716 * - Insert NewEntry into left or right buffer (depending on sp <=>
1717 * NewEntry)
1718 * - Insert sp into parent buffer (or root)
1719 * - Make sp a parent for new buffer
1720 */
1721 sp = hdr_find_split(hdr1);
1722 if (!sp)
1723 return -EINVAL;
1724
1725 sp_size = le16_to_cpu(sp->size);
195c52bd 1726 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
82cae269
KK
1727 if (!up_e)
1728 return -ENOMEM;
1729 memcpy(up_e, sp, sp_size);
1730
1731 if (!hdr1->flags) {
1732 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1733 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1734 sub_vbn = NULL;
1735 } else {
1736 t_vbn = de_get_vbn_le(up_e);
1737 sub_vbn = &t_vbn;
1738 }
1739
1740 /* Allocate on disk a new index allocation buffer. */
1741 err = indx_add_allocate(indx, ni, &new_vbn);
1742 if (err)
1743 goto out;
1744
e8b8e97f 1745 /* Allocate and format memory a new index buffer. */
82cae269
KK
1746 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1747 if (IS_ERR(n2)) {
1748 err = PTR_ERR(n2);
1749 goto out;
1750 }
1751
1752 hdr2 = &n2->index->ihdr;
1753
e8b8e97f 1754 /* Make sp a parent for new buffer. */
82cae269
KK
1755 de_set_vbn(up_e, new_vbn);
1756
e8b8e97f 1757 /* Copy all the entries <= sp into the new buffer. */
82cae269
KK
1758 de_t = hdr_first_de(hdr1);
1759 to_copy = PtrOffset(de_t, sp);
1760 hdr_insert_head(hdr2, de_t, to_copy);
1761
e8b8e97f 1762 /* Remove all entries (sp including) from hdr1. */
82cae269
KK
1763 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1764 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1765 hdr1->used = cpu_to_le32(used);
1766
e8b8e97f
KA
1767 /*
1768 * Insert new entry into left or right buffer
1769 * (depending on sp <=> new_de).
1770 */
82cae269
KK
1771 hdr_insert_de(indx,
1772 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1773 up_e + 1, le16_to_cpu(up_e->key_size),
1774 ctx) < 0
1775 ? hdr2
1776 : hdr1,
1777 new_de, NULL, ctx);
1778
1779 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1780
1781 indx_write(indx, ni, n1, 0);
1782 indx_write(indx, ni, n2, 0);
1783
1784 put_indx_node(n2);
1785
1786 /*
e8b8e97f 1787 * We've finished splitting everybody, so we are ready to
82cae269
KK
1788 * insert the promoted entry into the parent.
1789 */
1790 if (!level) {
e8b8e97f 1791 /* Insert in root. */
78ab59fe 1792 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
82cae269
KK
1793 if (err)
1794 goto out;
1795 } else {
1796 /*
e8b8e97f
KA
1797 * The target buffer's parent is another index buffer.
1798 * TODO: Remove recursion.
82cae269
KK
1799 */
1800 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1801 level - 1, fnd);
1802 if (err)
1803 goto out;
1804 }
1805
1806out:
195c52bd 1807 kfree(up_e);
82cae269
KK
1808
1809 return err;
1810}
1811
1812/*
e8b8e97f 1813 * indx_insert_entry - Insert new entry into index.
78ab59fe
KK
1814 *
1815 * @undo - True if we undoing previous remove.
82cae269
KK
1816 */
1817int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1818 const struct NTFS_DE *new_de, const void *ctx,
78ab59fe 1819 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1820{
1821 int err;
1822 int diff;
1823 struct NTFS_DE *e;
1824 struct ntfs_fnd *fnd_a = NULL;
1825 struct INDEX_ROOT *root;
1826
1827 if (!fnd) {
1828 fnd_a = fnd_get();
1829 if (!fnd_a) {
1830 err = -ENOMEM;
1831 goto out1;
1832 }
1833 fnd = fnd_a;
1834 }
1835
1836 root = indx_get_root(indx, ni, NULL, NULL);
1837 if (!root) {
1838 err = -EINVAL;
1839 goto out;
1840 }
1841
1842 if (fnd_is_empty(fnd)) {
e8b8e97f
KA
1843 /*
1844 * Find the spot the tree where we want to
1845 * insert the new entry.
1846 */
82cae269
KK
1847 err = indx_find(indx, ni, root, new_de + 1,
1848 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1849 fnd);
1850 if (err)
1851 goto out;
1852
1853 if (!diff) {
1854 err = -EEXIST;
1855 goto out;
1856 }
1857 }
1858
1859 if (!fnd->level) {
e8b8e97f
KA
1860 /*
1861 * The root is also a leaf, so we'll insert the
1862 * new entry into it.
1863 */
82cae269 1864 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
78ab59fe 1865 fnd, undo);
82cae269
KK
1866 if (err)
1867 goto out;
1868 } else {
e8b8e97f
KA
1869 /*
1870 * Found a leaf buffer, so we'll insert the new entry into it.
1871 */
82cae269
KK
1872 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1873 fnd->level - 1, fnd);
1874 if (err)
1875 goto out;
1876 }
1877
1878out:
1879 fnd_put(fnd_a);
1880out1:
1881 return err;
1882}
1883
1884/*
e8b8e97f 1885 * indx_find_buffer - Locate a buffer from the tree.
82cae269
KK
1886 */
1887static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1888 struct ntfs_inode *ni,
1889 const struct INDEX_ROOT *root,
1890 __le64 vbn, struct indx_node *n)
1891{
1892 int err;
1893 const struct NTFS_DE *e;
1894 struct indx_node *r;
1895 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1896
e8b8e97f 1897 /* Step 1: Scan one level. */
82cae269
KK
1898 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1899 if (!e)
1900 return ERR_PTR(-EINVAL);
1901
1902 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1903 return n;
1904
1905 if (de_is_last(e))
1906 break;
1907 }
1908
e8b8e97f 1909 /* Step2: Do recursion. */
82cae269
KK
1910 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1911 for (;;) {
1912 if (de_has_vcn_ex(e)) {
1913 err = indx_read(indx, ni, de_get_vbn(e), &n);
1914 if (err)
1915 return ERR_PTR(err);
1916
1917 r = indx_find_buffer(indx, ni, root, vbn, n);
1918 if (r)
1919 return r;
1920 }
1921
1922 if (de_is_last(e))
1923 break;
1924
1925 e = Add2Ptr(e, le16_to_cpu(e->size));
1926 }
1927
1928 return NULL;
1929}
1930
1931/*
e8b8e97f 1932 * indx_shrink - Deallocate unused tail indexes.
82cae269
KK
1933 */
1934static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1935 size_t bit)
1936{
1937 int err = 0;
1938 u64 bpb, new_data;
1939 size_t nbits;
1940 struct ATTRIB *b;
1941 struct ATTR_LIST_ENTRY *le = NULL;
1942 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1943
1944 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1945 NULL, NULL);
1946
1947 if (!b)
1948 return -ENOENT;
1949
1950 if (!b->non_res) {
1951 unsigned long pos;
1952 const unsigned long *bm = resident_data(b);
1953
71eeb6ac 1954 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
82cae269
KK
1955
1956 if (bit >= nbits)
1957 return 0;
1958
1959 pos = find_next_bit(bm, nbits, bit);
1960 if (pos < nbits)
1961 return 0;
1962 } else {
1963 size_t used = MINUS_ONE_T;
1964
1965 nbits = le64_to_cpu(b->nres.data_size) * 8;
1966
1967 if (bit >= nbits)
1968 return 0;
1969
1970 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
1971 if (err)
1972 return err;
1973
1974 if (used != MINUS_ONE_T)
1975 return 0;
1976 }
1977
1978 new_data = (u64)bit << indx->index_bits;
1979
1980 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1981 &indx->alloc_run, new_data, &new_data, false, NULL);
1982 if (err)
1983 return err;
1984
1985 bpb = bitmap_size(bit);
1986 if (bpb * 8 == nbits)
1987 return 0;
1988
1989 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1990 &indx->bitmap_run, bpb, &bpb, false, NULL);
1991
1992 return err;
1993}
1994
1995static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
1996 const struct NTFS_DE *e, bool trim)
1997{
1998 int err;
1999 struct indx_node *n;
2000 struct INDEX_HDR *hdr;
2001 CLST vbn = de_get_vbn(e);
2002 size_t i;
2003
2004 err = indx_read(indx, ni, vbn, &n);
2005 if (err)
2006 return err;
2007
2008 hdr = &n->index->ihdr;
e8b8e97f 2009 /* First, recurse into the children, if any. */
82cae269
KK
2010 if (hdr_has_subnode(hdr)) {
2011 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2012 indx_free_children(indx, ni, e, false);
2013 if (de_is_last(e))
2014 break;
2015 }
2016 }
2017
2018 put_indx_node(n);
2019
2020 i = vbn >> indx->idx2vbn_bits;
e8b8e97f
KA
2021 /*
2022 * We've gotten rid of the children; add this buffer to the free list.
2023 */
82cae269
KK
2024 indx_mark_free(indx, ni, i);
2025
2026 if (!trim)
2027 return 0;
2028
2029 /*
2030 * If there are no used indexes after current free index
e8b8e97f
KA
2031 * then we can truncate allocation and bitmap.
2032 * Use bitmap to estimate the case.
82cae269
KK
2033 */
2034 indx_shrink(indx, ni, i + 1);
2035 return 0;
2036}
2037
2038/*
2039 * indx_get_entry_to_replace
2040 *
e8b8e97f
KA
2041 * Find a replacement entry for a deleted entry.
2042 * Always returns a node entry:
2043 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
82cae269
KK
2044 */
2045static int indx_get_entry_to_replace(struct ntfs_index *indx,
2046 struct ntfs_inode *ni,
2047 const struct NTFS_DE *de_next,
2048 struct NTFS_DE **de_to_replace,
2049 struct ntfs_fnd *fnd)
2050{
2051 int err;
2052 int level = -1;
2053 CLST vbn;
2054 struct NTFS_DE *e, *te, *re;
2055 struct indx_node *n;
2056 struct INDEX_BUFFER *ib;
2057
2058 *de_to_replace = NULL;
2059
e8b8e97f 2060 /* Find first leaf entry down from de_next. */
82cae269
KK
2061 vbn = de_get_vbn(de_next);
2062 for (;;) {
2063 n = NULL;
2064 err = indx_read(indx, ni, vbn, &n);
2065 if (err)
2066 goto out;
2067
2068 e = hdr_first_de(&n->index->ihdr);
2069 fnd_push(fnd, n, e);
2070
2071 if (!de_is_last(e)) {
2072 /*
e8b8e97f
KA
2073 * This buffer is non-empty, so its first entry
2074 * could be used as the replacement entry.
82cae269
KK
2075 */
2076 level = fnd->level - 1;
2077 }
2078
2079 if (!de_has_vcn(e))
2080 break;
2081
e8b8e97f 2082 /* This buffer is a node. Continue to go down. */
82cae269
KK
2083 vbn = de_get_vbn(e);
2084 }
2085
2086 if (level == -1)
2087 goto out;
2088
2089 n = fnd->nodes[level];
2090 te = hdr_first_de(&n->index->ihdr);
2091 /* Copy the candidate entry into the replacement entry buffer. */
195c52bd 2092 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
82cae269
KK
2093 if (!re) {
2094 err = -ENOMEM;
2095 goto out;
2096 }
2097
2098 *de_to_replace = re;
2099 memcpy(re, te, le16_to_cpu(te->size));
2100
2101 if (!de_has_vcn(re)) {
2102 /*
e8b8e97f
KA
2103 * The replacement entry we found doesn't have a sub_vcn.
2104 * increase its size to hold one.
82cae269
KK
2105 */
2106 le16_add_cpu(&re->size, sizeof(u64));
2107 re->flags |= NTFS_IE_HAS_SUBNODES;
2108 } else {
2109 /*
e8b8e97f
KA
2110 * The replacement entry we found was a node entry, which
2111 * means that all its child buffers are empty. Return them
2112 * to the free pool.
82cae269
KK
2113 */
2114 indx_free_children(indx, ni, te, true);
2115 }
2116
2117 /*
2118 * Expunge the replacement entry from its former location,
2119 * and then write that buffer.
2120 */
2121 ib = n->index;
2122 e = hdr_delete_de(&ib->ihdr, te);
2123
2124 fnd->de[level] = e;
2125 indx_write(indx, ni, n, 0);
2126
2127 /* Check to see if this action created an empty leaf. */
2128 if (ib_is_leaf(ib) && ib_is_empty(ib))
2129 return 0;
2130
2131out:
2132 fnd_clear(fnd);
2133 return err;
2134}
2135
2136/*
e8b8e97f 2137 * indx_delete_entry - Delete an entry from the index.
82cae269
KK
2138 */
2139int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2140 const void *key, u32 key_len, const void *ctx)
2141{
2142 int err, diff;
2143 struct INDEX_ROOT *root;
2144 struct INDEX_HDR *hdr;
2145 struct ntfs_fnd *fnd, *fnd2;
2146 struct INDEX_BUFFER *ib;
2147 struct NTFS_DE *e, *re, *next, *prev, *me;
2148 struct indx_node *n, *n2d = NULL;
2149 __le64 sub_vbn;
2150 int level, level2;
2151 struct ATTRIB *attr;
2152 struct mft_inode *mi;
2153 u32 e_size, root_size, new_root_size;
2154 size_t trim_bit;
2155 const struct INDEX_NAMES *in;
2156
2157 fnd = fnd_get();
2158 if (!fnd) {
2159 err = -ENOMEM;
2160 goto out2;
2161 }
2162
2163 fnd2 = fnd_get();
2164 if (!fnd2) {
2165 err = -ENOMEM;
2166 goto out1;
2167 }
2168
2169 root = indx_get_root(indx, ni, &attr, &mi);
2170 if (!root) {
2171 err = -EINVAL;
2172 goto out;
2173 }
2174
2175 /* Locate the entry to remove. */
2176 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2177 if (err)
2178 goto out;
2179
2180 if (!e || diff) {
2181 err = -ENOENT;
2182 goto out;
2183 }
2184
2185 level = fnd->level;
2186
2187 if (level) {
2188 n = fnd->nodes[level - 1];
2189 e = fnd->de[level - 1];
2190 ib = n->index;
2191 hdr = &ib->ihdr;
2192 } else {
2193 hdr = &root->ihdr;
2194 e = fnd->root_de;
2195 n = NULL;
2196 }
2197
2198 e_size = le16_to_cpu(e->size);
2199
2200 if (!de_has_vcn_ex(e)) {
e8b8e97f 2201 /* The entry to delete is a leaf, so we can just rip it out. */
82cae269
KK
2202 hdr_delete_de(hdr, e);
2203
2204 if (!level) {
2205 hdr->total = hdr->used;
2206
e8b8e97f 2207 /* Shrink resident root attribute. */
82cae269
KK
2208 mi_resize_attr(mi, attr, 0 - e_size);
2209 goto out;
2210 }
2211
2212 indx_write(indx, ni, n, 0);
2213
2214 /*
2215 * Check to see if removing that entry made
2216 * the leaf empty.
2217 */
2218 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2219 fnd_pop(fnd);
2220 fnd_push(fnd2, n, e);
2221 }
2222 } else {
2223 /*
2224 * The entry we wish to delete is a node buffer, so we
2225 * have to find a replacement for it.
2226 */
2227 next = de_get_next(e);
2228
2229 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2230 if (err)
2231 goto out;
2232
2233 if (re) {
2234 de_set_vbn_le(re, de_get_vbn_le(e));
2235 hdr_delete_de(hdr, e);
2236
2237 err = level ? indx_insert_into_buffer(indx, ni, root,
2238 re, ctx,
2239 fnd->level - 1,
2240 fnd)
2241 : indx_insert_into_root(indx, ni, re, e,
78ab59fe 2242 ctx, fnd, 0);
195c52bd 2243 kfree(re);
82cae269
KK
2244
2245 if (err)
2246 goto out;
2247 } else {
2248 /*
2249 * There is no replacement for the current entry.
e8b8e97f
KA
2250 * This means that the subtree rooted at its node
2251 * is empty, and can be deleted, which turn means
2252 * that the node can just inherit the deleted
2253 * entry sub_vcn.
82cae269
KK
2254 */
2255 indx_free_children(indx, ni, next, true);
2256
2257 de_set_vbn_le(next, de_get_vbn_le(e));
2258 hdr_delete_de(hdr, e);
2259 if (level) {
2260 indx_write(indx, ni, n, 0);
2261 } else {
2262 hdr->total = hdr->used;
2263
e8b8e97f 2264 /* Shrink resident root attribute. */
82cae269
KK
2265 mi_resize_attr(mi, attr, 0 - e_size);
2266 }
2267 }
2268 }
2269
e8b8e97f 2270 /* Delete a branch of tree. */
82cae269
KK
2271 if (!fnd2 || !fnd2->level)
2272 goto out;
2273
e8b8e97f 2274 /* Reinit root 'cause it can be changed. */
82cae269
KK
2275 root = indx_get_root(indx, ni, &attr, &mi);
2276 if (!root) {
2277 err = -EINVAL;
2278 goto out;
2279 }
2280
2281 n2d = NULL;
2282 sub_vbn = fnd2->nodes[0]->index->vbn;
2283 level2 = 0;
2284 level = fnd->level;
2285
2286 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2287
e8b8e97f 2288 /* Scan current level. */
82cae269
KK
2289 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2290 if (!e) {
2291 err = -EINVAL;
2292 goto out;
2293 }
2294
2295 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2296 break;
2297
2298 if (de_is_last(e)) {
2299 e = NULL;
2300 break;
2301 }
2302 }
2303
2304 if (!e) {
e8b8e97f 2305 /* Do slow search from root. */
82cae269
KK
2306 struct indx_node *in;
2307
2308 fnd_clear(fnd);
2309
2310 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2311 if (IS_ERR(in)) {
2312 err = PTR_ERR(in);
2313 goto out;
2314 }
2315
2316 if (in)
2317 fnd_push(fnd, in, NULL);
2318 }
2319
e8b8e97f 2320 /* Merge fnd2 -> fnd. */
82cae269
KK
2321 for (level = 0; level < fnd2->level; level++) {
2322 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2323 fnd2->nodes[level] = NULL;
2324 }
2325 fnd2->level = 0;
2326
2327 hdr = NULL;
2328 for (level = fnd->level; level; level--) {
2329 struct indx_node *in = fnd->nodes[level - 1];
2330
2331 ib = in->index;
2332 if (ib_is_empty(ib)) {
2333 sub_vbn = ib->vbn;
2334 } else {
2335 hdr = &ib->ihdr;
2336 n2d = in;
2337 level2 = level;
2338 break;
2339 }
2340 }
2341
2342 if (!hdr)
2343 hdr = &root->ihdr;
2344
2345 e = hdr_first_de(hdr);
2346 if (!e) {
2347 err = -EINVAL;
2348 goto out;
2349 }
2350
2351 if (hdr != &root->ihdr || !de_is_last(e)) {
2352 prev = NULL;
2353 while (!de_is_last(e)) {
2354 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2355 break;
2356 prev = e;
2357 e = hdr_next_de(hdr, e);
2358 if (!e) {
2359 err = -EINVAL;
2360 goto out;
2361 }
2362 }
2363
2364 if (sub_vbn != de_get_vbn_le(e)) {
2365 /*
e8b8e97f
KA
2366 * Didn't find the parent entry, although this buffer
2367 * is the parent trail. Something is corrupt.
82cae269
KK
2368 */
2369 err = -EINVAL;
2370 goto out;
2371 }
2372
2373 if (de_is_last(e)) {
2374 /*
e8b8e97f
KA
2375 * Since we can't remove the end entry, we'll remove
2376 * its predecessor instead. This means we have to
2377 * transfer the predecessor's sub_vcn to the end entry.
2378 * Note: This index block is not empty, so the
2379 * predecessor must exist.
82cae269
KK
2380 */
2381 if (!prev) {
2382 err = -EINVAL;
2383 goto out;
2384 }
2385
2386 if (de_has_vcn(prev)) {
2387 de_set_vbn_le(e, de_get_vbn_le(prev));
2388 } else if (de_has_vcn(e)) {
2389 le16_sub_cpu(&e->size, sizeof(u64));
2390 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2391 le32_sub_cpu(&hdr->used, sizeof(u64));
2392 }
2393 e = prev;
2394 }
2395
2396 /*
e8b8e97f
KA
2397 * Copy the current entry into a temporary buffer (stripping
2398 * off its down-pointer, if any) and delete it from the current
2399 * buffer or root, as appropriate.
82cae269
KK
2400 */
2401 e_size = le16_to_cpu(e->size);
195c52bd 2402 me = kmemdup(e, e_size, GFP_NOFS);
82cae269
KK
2403 if (!me) {
2404 err = -ENOMEM;
2405 goto out;
2406 }
2407
2408 if (de_has_vcn(me)) {
2409 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2410 le16_sub_cpu(&me->size, sizeof(u64));
2411 }
2412
2413 hdr_delete_de(hdr, e);
2414
2415 if (hdr == &root->ihdr) {
2416 level = 0;
2417 hdr->total = hdr->used;
2418
e8b8e97f 2419 /* Shrink resident root attribute. */
82cae269
KK
2420 mi_resize_attr(mi, attr, 0 - e_size);
2421 } else {
2422 indx_write(indx, ni, n2d, 0);
2423 level = level2;
2424 }
2425
e8b8e97f 2426 /* Mark unused buffers as free. */
82cae269
KK
2427 trim_bit = -1;
2428 for (; level < fnd->level; level++) {
2429 ib = fnd->nodes[level]->index;
2430 if (ib_is_empty(ib)) {
2431 size_t k = le64_to_cpu(ib->vbn) >>
2432 indx->idx2vbn_bits;
2433
2434 indx_mark_free(indx, ni, k);
2435 if (k < trim_bit)
2436 trim_bit = k;
2437 }
2438 }
2439
2440 fnd_clear(fnd);
2441 /*fnd->root_de = NULL;*/
2442
2443 /*
2444 * Re-insert the entry into the tree.
2445 * Find the spot the tree where we want to insert the new entry.
2446 */
78ab59fe 2447 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
195c52bd 2448 kfree(me);
82cae269
KK
2449 if (err)
2450 goto out;
2451
2452 if (trim_bit != -1)
2453 indx_shrink(indx, ni, trim_bit);
2454 } else {
2455 /*
2456 * This tree needs to be collapsed down to an empty root.
e8b8e97f
KA
2457 * Recreate the index root as an empty leaf and free all
2458 * the bits the index allocation bitmap.
82cae269
KK
2459 */
2460 fnd_clear(fnd);
2461 fnd_clear(fnd2);
2462
2463 in = &s_index_names[indx->type];
2464
2465 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2466 &indx->alloc_run, 0, NULL, false, NULL);
2467 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2468 false, NULL);
2469 run_close(&indx->alloc_run);
2470
2471 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2472 &indx->bitmap_run, 0, NULL, false, NULL);
2473 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2474 false, NULL);
2475 run_close(&indx->bitmap_run);
2476
2477 root = indx_get_root(indx, ni, &attr, &mi);
2478 if (!root) {
2479 err = -EINVAL;
2480 goto out;
2481 }
2482
2483 root_size = le32_to_cpu(attr->res.data_size);
2484 new_root_size =
2485 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2486
2487 if (new_root_size != root_size &&
2488 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2489 err = -EINVAL;
2490 goto out;
2491 }
2492
e8b8e97f 2493 /* Fill first entry. */
82cae269
KK
2494 e = (struct NTFS_DE *)(root + 1);
2495 e->ref.low = 0;
2496 e->ref.high = 0;
2497 e->ref.seq = 0;
2498 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2499 e->flags = NTFS_IE_LAST; // 0x02
2500 e->key_size = 0;
2501 e->res = 0;
2502
2503 hdr = &root->ihdr;
2504 hdr->flags = 0;
2505 hdr->used = hdr->total = cpu_to_le32(
2506 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2507 mi->dirty = true;
2508 }
2509
2510out:
2511 fnd_put(fnd2);
2512out1:
2513 fnd_put(fnd);
2514out2:
2515 return err;
2516}
2517
2518/*
2519 * Update duplicated information in directory entry
2520 * 'dup' - info from MFT record
2521 */
2522int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2523 const struct ATTR_FILE_NAME *fname,
2524 const struct NTFS_DUP_INFO *dup, int sync)
2525{
2526 int err, diff;
2527 struct NTFS_DE *e = NULL;
2528 struct ATTR_FILE_NAME *e_fname;
2529 struct ntfs_fnd *fnd;
2530 struct INDEX_ROOT *root;
2531 struct mft_inode *mi;
2532 struct ntfs_index *indx = &ni->dir;
2533
2534 fnd = fnd_get();
78ab59fe
KK
2535 if (!fnd)
2536 return -ENOMEM;
82cae269
KK
2537
2538 root = indx_get_root(indx, ni, NULL, &mi);
2539 if (!root) {
2540 err = -EINVAL;
2541 goto out;
2542 }
2543
e8b8e97f 2544 /* Find entry in directory. */
82cae269
KK
2545 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2546 &diff, &e, fnd);
2547 if (err)
2548 goto out;
2549
2550 if (!e) {
2551 err = -EINVAL;
2552 goto out;
2553 }
2554
2555 if (diff) {
2556 err = -EINVAL;
2557 goto out;
2558 }
2559
2560 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2561
2562 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
d3624466
KK
2563 /*
2564 * Nothing to update in index! Try to avoid this call.
2565 */
82cae269
KK
2566 goto out;
2567 }
2568
2569 memcpy(&e_fname->dup, dup, sizeof(*dup));
2570
2571 if (fnd->level) {
d3624466 2572 /* Directory entry in index. */
82cae269
KK
2573 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2574 } else {
d3624466 2575 /* Directory entry in directory MFT record. */
82cae269
KK
2576 mi->dirty = true;
2577 if (sync)
2578 err = mi_write(mi, 1);
2579 else
2580 mark_inode_dirty(&ni->vfs_inode);
2581 }
2582
2583out:
2584 fnd_put(fnd);
82cae269
KK
2585 return err;
2586}