]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - fs/ntfs3/index.c
fs/ntfs3: Remove duplicated assignment to variable r
[mirror_ubuntu-kernels.git] / fs / ntfs3 / index.c
CommitLineData
82cae269
KK
1// SPDX-License-Identifier: GPL-2.0
2/*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8#include <linux/blkdev.h>
9#include <linux/buffer_head.h>
10#include <linux/fs.h>
ef929700 11#include <linux/kernel.h>
82cae269
KK
12
13#include "debug.h"
14#include "ntfs.h"
15#include "ntfs_fs.h"
16
17static const struct INDEX_NAMES {
18 const __le16 *name;
19 u8 name_len;
20} s_index_names[INDEX_MUTEX_TOTAL] = {
21 { I30_NAME, ARRAY_SIZE(I30_NAME) }, { SII_NAME, ARRAY_SIZE(SII_NAME) },
22 { SDH_NAME, ARRAY_SIZE(SDH_NAME) }, { SO_NAME, ARRAY_SIZE(SO_NAME) },
23 { SQ_NAME, ARRAY_SIZE(SQ_NAME) }, { SR_NAME, ARRAY_SIZE(SR_NAME) },
24};
25
26/*
e8b8e97f
KA
27 * cmp_fnames - Compare two names in index.
28 *
82cae269 29 * if l1 != 0
e8b8e97f 30 * Both names are little endian on-disk ATTR_FILE_NAME structs.
82cae269
KK
31 * else
32 * key1 - cpu_str, key2 - ATTR_FILE_NAME
33 */
34static int cmp_fnames(const void *key1, size_t l1, const void *key2, size_t l2,
35 const void *data)
36{
37 const struct ATTR_FILE_NAME *f2 = key2;
38 const struct ntfs_sb_info *sbi = data;
39 const struct ATTR_FILE_NAME *f1;
40 u16 fsize2;
41 bool both_case;
42
43 if (l2 <= offsetof(struct ATTR_FILE_NAME, name))
44 return -1;
45
46 fsize2 = fname_full_size(f2);
47 if (l2 < fsize2)
48 return -1;
49
50 both_case = f2->type != FILE_NAME_DOS /*&& !sbi->options.nocase*/;
51 if (!l1) {
52 const struct le_str *s2 = (struct le_str *)&f2->name_len;
53
54 /*
55 * If names are equal (case insensitive)
e8b8e97f 56 * try to compare it case sensitive.
82cae269
KK
57 */
58 return ntfs_cmp_names_cpu(key1, s2, sbi->upcase, both_case);
59 }
60
61 f1 = key1;
62 return ntfs_cmp_names(f1->name, f1->name_len, f2->name, f2->name_len,
63 sbi->upcase, both_case);
64}
65
e8b8e97f
KA
66/*
67 * cmp_uint - $SII of $Secure and $Q of Quota
68 */
82cae269
KK
69static int cmp_uint(const void *key1, size_t l1, const void *key2, size_t l2,
70 const void *data)
71{
72 const u32 *k1 = key1;
73 const u32 *k2 = key2;
74
75 if (l2 < sizeof(u32))
76 return -1;
77
78 if (*k1 < *k2)
79 return -1;
80 if (*k1 > *k2)
81 return 1;
82 return 0;
83}
84
e8b8e97f
KA
85/*
86 * cmp_sdh - $SDH of $Secure
87 */
82cae269
KK
88static int cmp_sdh(const void *key1, size_t l1, const void *key2, size_t l2,
89 const void *data)
90{
91 const struct SECURITY_KEY *k1 = key1;
92 const struct SECURITY_KEY *k2 = key2;
93 u32 t1, t2;
94
95 if (l2 < sizeof(struct SECURITY_KEY))
96 return -1;
97
98 t1 = le32_to_cpu(k1->hash);
99 t2 = le32_to_cpu(k2->hash);
100
e8b8e97f 101 /* First value is a hash value itself. */
82cae269
KK
102 if (t1 < t2)
103 return -1;
104 if (t1 > t2)
105 return 1;
106
e8b8e97f 107 /* Second value is security Id. */
82cae269
KK
108 if (data) {
109 t1 = le32_to_cpu(k1->sec_id);
110 t2 = le32_to_cpu(k2->sec_id);
111 if (t1 < t2)
112 return -1;
113 if (t1 > t2)
114 return 1;
115 }
116
117 return 0;
118}
119
e8b8e97f
KA
120/*
121 * cmp_uints - $O of ObjId and "$R" for Reparse.
122 */
82cae269
KK
123static int cmp_uints(const void *key1, size_t l1, const void *key2, size_t l2,
124 const void *data)
125{
126 const __le32 *k1 = key1;
127 const __le32 *k2 = key2;
128 size_t count;
129
130 if ((size_t)data == 1) {
131 /*
e8b8e97f
KA
132 * ni_delete_all -> ntfs_remove_reparse ->
133 * delete all with this reference.
82cae269
KK
134 * k1, k2 - pointers to REPARSE_KEY
135 */
136
e8b8e97f
KA
137 k1 += 1; // Skip REPARSE_KEY.ReparseTag
138 k2 += 1; // Skip REPARSE_KEY.ReparseTag
82cae269
KK
139 if (l2 <= sizeof(int))
140 return -1;
141 l2 -= sizeof(int);
142 if (l1 <= sizeof(int))
143 return 1;
144 l1 -= sizeof(int);
145 }
146
147 if (l2 < sizeof(int))
148 return -1;
149
150 for (count = min(l1, l2) >> 2; count > 0; --count, ++k1, ++k2) {
151 u32 t1 = le32_to_cpu(*k1);
152 u32 t2 = le32_to_cpu(*k2);
153
154 if (t1 > t2)
155 return 1;
156 if (t1 < t2)
157 return -1;
158 }
159
160 if (l1 > l2)
161 return 1;
162 if (l1 < l2)
163 return -1;
164
165 return 0;
166}
167
168static inline NTFS_CMP_FUNC get_cmp_func(const struct INDEX_ROOT *root)
169{
170 switch (root->type) {
171 case ATTR_NAME:
172 if (root->rule == NTFS_COLLATION_TYPE_FILENAME)
173 return &cmp_fnames;
174 break;
175 case ATTR_ZERO:
176 switch (root->rule) {
177 case NTFS_COLLATION_TYPE_UINT:
178 return &cmp_uint;
179 case NTFS_COLLATION_TYPE_SECURITY_HASH:
180 return &cmp_sdh;
181 case NTFS_COLLATION_TYPE_UINTS:
182 return &cmp_uints;
183 default:
184 break;
185 }
abfeb2ee 186 break;
82cae269
KK
187 default:
188 break;
189 }
190
191 return NULL;
192}
193
194struct bmp_buf {
195 struct ATTRIB *b;
196 struct mft_inode *mi;
197 struct buffer_head *bh;
198 ulong *buf;
199 size_t bit;
200 u32 nbits;
201 u64 new_valid;
202};
203
204static int bmp_buf_get(struct ntfs_index *indx, struct ntfs_inode *ni,
205 size_t bit, struct bmp_buf *bbuf)
206{
207 struct ATTRIB *b;
208 size_t data_size, valid_size, vbo, off = bit >> 3;
209 struct ntfs_sb_info *sbi = ni->mi.sbi;
210 CLST vcn = off >> sbi->cluster_bits;
211 struct ATTR_LIST_ENTRY *le = NULL;
212 struct buffer_head *bh;
213 struct super_block *sb;
214 u32 blocksize;
215 const struct INDEX_NAMES *in = &s_index_names[indx->type];
216
217 bbuf->bh = NULL;
218
219 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
220 &vcn, &bbuf->mi);
221 bbuf->b = b;
222 if (!b)
223 return -EINVAL;
224
225 if (!b->non_res) {
226 data_size = le32_to_cpu(b->res.data_size);
227
228 if (off >= data_size)
229 return -EINVAL;
230
231 bbuf->buf = (ulong *)resident_data(b);
232 bbuf->bit = 0;
233 bbuf->nbits = data_size * 8;
234
235 return 0;
236 }
237
238 data_size = le64_to_cpu(b->nres.data_size);
239 if (WARN_ON(off >= data_size)) {
e8b8e97f 240 /* Looks like filesystem error. */
82cae269
KK
241 return -EINVAL;
242 }
243
244 valid_size = le64_to_cpu(b->nres.valid_size);
245
246 bh = ntfs_bread_run(sbi, &indx->bitmap_run, off);
247 if (!bh)
248 return -EIO;
249
250 if (IS_ERR(bh))
251 return PTR_ERR(bh);
252
253 bbuf->bh = bh;
254
255 if (buffer_locked(bh))
256 __wait_on_buffer(bh);
257
258 lock_buffer(bh);
259
260 sb = sbi->sb;
261 blocksize = sb->s_blocksize;
262
263 vbo = off & ~(size_t)sbi->block_mask;
264
265 bbuf->new_valid = vbo + blocksize;
266 if (bbuf->new_valid <= valid_size)
267 bbuf->new_valid = 0;
268 else if (bbuf->new_valid > data_size)
269 bbuf->new_valid = data_size;
270
271 if (vbo >= valid_size) {
272 memset(bh->b_data, 0, blocksize);
273 } else if (vbo + blocksize > valid_size) {
274 u32 voff = valid_size & sbi->block_mask;
275
276 memset(bh->b_data + voff, 0, blocksize - voff);
277 }
278
279 bbuf->buf = (ulong *)bh->b_data;
280 bbuf->bit = 8 * (off & ~(size_t)sbi->block_mask);
281 bbuf->nbits = 8 * blocksize;
282
283 return 0;
284}
285
286static void bmp_buf_put(struct bmp_buf *bbuf, bool dirty)
287{
288 struct buffer_head *bh = bbuf->bh;
289 struct ATTRIB *b = bbuf->b;
290
291 if (!bh) {
292 if (b && !b->non_res && dirty)
293 bbuf->mi->dirty = true;
294 return;
295 }
296
297 if (!dirty)
298 goto out;
299
300 if (bbuf->new_valid) {
301 b->nres.valid_size = cpu_to_le64(bbuf->new_valid);
302 bbuf->mi->dirty = true;
303 }
304
305 set_buffer_uptodate(bh);
306 mark_buffer_dirty(bh);
307
308out:
309 unlock_buffer(bh);
310 put_bh(bh);
311}
312
313/*
e8b8e97f 314 * indx_mark_used - Mark the bit @bit as used.
82cae269
KK
315 */
316static int indx_mark_used(struct ntfs_index *indx, struct ntfs_inode *ni,
317 size_t bit)
318{
319 int err;
320 struct bmp_buf bbuf;
321
322 err = bmp_buf_get(indx, ni, bit, &bbuf);
323 if (err)
324 return err;
325
326 __set_bit(bit - bbuf.bit, bbuf.buf);
327
328 bmp_buf_put(&bbuf, true);
329
330 return 0;
331}
332
333/*
e8b8e97f 334 * indx_mark_free - Mark the bit @bit as free.
82cae269
KK
335 */
336static int indx_mark_free(struct ntfs_index *indx, struct ntfs_inode *ni,
337 size_t bit)
338{
339 int err;
340 struct bmp_buf bbuf;
341
342 err = bmp_buf_get(indx, ni, bit, &bbuf);
343 if (err)
344 return err;
345
346 __clear_bit(bit - bbuf.bit, bbuf.buf);
347
348 bmp_buf_put(&bbuf, true);
349
350 return 0;
351}
352
353/*
e8b8e97f
KA
354 * scan_nres_bitmap
355 *
356 * If ntfs_readdir calls this function (indx_used_bit -> scan_nres_bitmap),
357 * inode is shared locked and no ni_lock.
358 * Use rw_semaphore for read/write access to bitmap_run.
82cae269
KK
359 */
360static int scan_nres_bitmap(struct ntfs_inode *ni, struct ATTRIB *bitmap,
361 struct ntfs_index *indx, size_t from,
362 bool (*fn)(const ulong *buf, u32 bit, u32 bits,
363 size_t *ret),
364 size_t *ret)
365{
366 struct ntfs_sb_info *sbi = ni->mi.sbi;
367 struct super_block *sb = sbi->sb;
368 struct runs_tree *run = &indx->bitmap_run;
369 struct rw_semaphore *lock = &indx->run_lock;
370 u32 nbits = sb->s_blocksize * 8;
371 u32 blocksize = sb->s_blocksize;
372 u64 valid_size = le64_to_cpu(bitmap->nres.valid_size);
373 u64 data_size = le64_to_cpu(bitmap->nres.data_size);
374 sector_t eblock = bytes_to_block(sb, data_size);
375 size_t vbo = from >> 3;
376 sector_t blk = (vbo & sbi->cluster_mask) >> sb->s_blocksize_bits;
377 sector_t vblock = vbo >> sb->s_blocksize_bits;
378 sector_t blen, block;
379 CLST lcn, clen, vcn, vcn_next;
380 size_t idx;
381 struct buffer_head *bh;
382 bool ok;
383
384 *ret = MINUS_ONE_T;
385
386 if (vblock >= eblock)
387 return 0;
388
389 from &= nbits - 1;
390 vcn = vbo >> sbi->cluster_bits;
391
392 down_read(lock);
393 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
394 up_read(lock);
395
396next_run:
397 if (!ok) {
398 int err;
399 const struct INDEX_NAMES *name = &s_index_names[indx->type];
400
401 down_write(lock);
402 err = attr_load_runs_vcn(ni, ATTR_BITMAP, name->name,
403 name->name_len, run, vcn);
404 up_write(lock);
405 if (err)
406 return err;
407 down_read(lock);
408 ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
409 up_read(lock);
410 if (!ok)
411 return -EINVAL;
412 }
413
414 blen = (sector_t)clen * sbi->blocks_per_cluster;
415 block = (sector_t)lcn * sbi->blocks_per_cluster;
416
417 for (; blk < blen; blk++, from = 0) {
418 bh = ntfs_bread(sb, block + blk);
419 if (!bh)
420 return -EIO;
421
422 vbo = (u64)vblock << sb->s_blocksize_bits;
423 if (vbo >= valid_size) {
424 memset(bh->b_data, 0, blocksize);
425 } else if (vbo + blocksize > valid_size) {
426 u32 voff = valid_size & sbi->block_mask;
427
428 memset(bh->b_data + voff, 0, blocksize - voff);
429 }
430
431 if (vbo + blocksize > data_size)
432 nbits = 8 * (data_size - vbo);
433
434 ok = nbits > from ? (*fn)((ulong *)bh->b_data, from, nbits, ret)
435 : false;
436 put_bh(bh);
437
438 if (ok) {
439 *ret += 8 * vbo;
440 return 0;
441 }
442
443 if (++vblock >= eblock) {
444 *ret = MINUS_ONE_T;
445 return 0;
446 }
447 }
448 blk = 0;
449 vcn_next = vcn + clen;
450 down_read(lock);
451 ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) && vcn == vcn_next;
452 if (!ok)
453 vcn = vcn_next;
454 up_read(lock);
455 goto next_run;
456}
457
458static bool scan_for_free(const ulong *buf, u32 bit, u32 bits, size_t *ret)
459{
460 size_t pos = find_next_zero_bit(buf, bits, bit);
461
462 if (pos >= bits)
463 return false;
464 *ret = pos;
465 return true;
466}
467
468/*
e8b8e97f 469 * indx_find_free - Look for free bit.
82cae269 470 *
e8b8e97f 471 * Return: -1 if no free bits.
82cae269
KK
472 */
473static int indx_find_free(struct ntfs_index *indx, struct ntfs_inode *ni,
474 size_t *bit, struct ATTRIB **bitmap)
475{
476 struct ATTRIB *b;
477 struct ATTR_LIST_ENTRY *le = NULL;
478 const struct INDEX_NAMES *in = &s_index_names[indx->type];
479 int err;
480
481 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
482 NULL, NULL);
483
484 if (!b)
485 return -ENOENT;
486
487 *bitmap = b;
488 *bit = MINUS_ONE_T;
489
490 if (!b->non_res) {
491 u32 nbits = 8 * le32_to_cpu(b->res.data_size);
492 size_t pos = find_next_zero_bit(resident_data(b), nbits, 0);
493
494 if (pos < nbits)
495 *bit = pos;
496 } else {
497 err = scan_nres_bitmap(ni, b, indx, 0, &scan_for_free, bit);
498
499 if (err)
500 return err;
501 }
502
503 return 0;
504}
505
506static bool scan_for_used(const ulong *buf, u32 bit, u32 bits, size_t *ret)
507{
508 size_t pos = find_next_bit(buf, bits, bit);
509
510 if (pos >= bits)
511 return false;
512 *ret = pos;
513 return true;
514}
515
516/*
e8b8e97f 517 * indx_used_bit - Look for used bit.
82cae269 518 *
e8b8e97f 519 * Return: MINUS_ONE_T if no used bits.
82cae269
KK
520 */
521int indx_used_bit(struct ntfs_index *indx, struct ntfs_inode *ni, size_t *bit)
522{
523 struct ATTRIB *b;
524 struct ATTR_LIST_ENTRY *le = NULL;
525 size_t from = *bit;
526 const struct INDEX_NAMES *in = &s_index_names[indx->type];
527 int err;
528
529 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
530 NULL, NULL);
531
532 if (!b)
533 return -ENOENT;
534
535 *bit = MINUS_ONE_T;
536
537 if (!b->non_res) {
538 u32 nbits = le32_to_cpu(b->res.data_size) * 8;
539 size_t pos = find_next_bit(resident_data(b), nbits, from);
540
541 if (pos < nbits)
542 *bit = pos;
543 } else {
544 err = scan_nres_bitmap(ni, b, indx, from, &scan_for_used, bit);
545 if (err)
546 return err;
547 }
548
549 return 0;
550}
551
552/*
553 * hdr_find_split
554 *
e8b8e97f
KA
555 * Find a point at which the index allocation buffer would like to be split.
556 * NOTE: This function should never return 'END' entry NULL returns on error.
82cae269
KK
557 */
558static const struct NTFS_DE *hdr_find_split(const struct INDEX_HDR *hdr)
559{
560 size_t o;
561 const struct NTFS_DE *e = hdr_first_de(hdr);
562 u32 used_2 = le32_to_cpu(hdr->used) >> 1;
8c83a485 563 u16 esize;
82cae269
KK
564
565 if (!e || de_is_last(e))
566 return NULL;
567
8c83a485 568 esize = le16_to_cpu(e->size);
82cae269
KK
569 for (o = le32_to_cpu(hdr->de_off) + esize; o < used_2; o += esize) {
570 const struct NTFS_DE *p = e;
571
572 e = Add2Ptr(hdr, o);
573
e8b8e97f 574 /* We must not return END entry. */
82cae269
KK
575 if (de_is_last(e))
576 return p;
577
578 esize = le16_to_cpu(e->size);
579 }
580
581 return e;
582}
583
584/*
e8b8e97f 585 * hdr_insert_head - Insert some entries at the beginning of the buffer.
82cae269 586 *
82cae269
KK
587 * It is used to insert entries into a newly-created buffer.
588 */
589static const struct NTFS_DE *hdr_insert_head(struct INDEX_HDR *hdr,
590 const void *ins, u32 ins_bytes)
591{
592 u32 to_move;
593 struct NTFS_DE *e = hdr_first_de(hdr);
594 u32 used = le32_to_cpu(hdr->used);
595
596 if (!e)
597 return NULL;
598
599 /* Now we just make room for the inserted entries and jam it in. */
600 to_move = used - le32_to_cpu(hdr->de_off);
601 memmove(Add2Ptr(e, ins_bytes), e, to_move);
602 memcpy(e, ins, ins_bytes);
603 hdr->used = cpu_to_le32(used + ins_bytes);
604
605 return e;
606}
607
608void fnd_clear(struct ntfs_fnd *fnd)
609{
610 int i;
611
612 for (i = 0; i < fnd->level; i++) {
613 struct indx_node *n = fnd->nodes[i];
614
615 if (!n)
616 continue;
617
618 put_indx_node(n);
619 fnd->nodes[i] = NULL;
620 }
621 fnd->level = 0;
622 fnd->root_de = NULL;
623}
624
625static int fnd_push(struct ntfs_fnd *fnd, struct indx_node *n,
626 struct NTFS_DE *e)
627{
628 int i;
629
630 i = fnd->level;
631 if (i < 0 || i >= ARRAY_SIZE(fnd->nodes))
632 return -EINVAL;
633 fnd->nodes[i] = n;
634 fnd->de[i] = e;
635 fnd->level += 1;
636 return 0;
637}
638
639static struct indx_node *fnd_pop(struct ntfs_fnd *fnd)
640{
641 struct indx_node *n;
642 int i = fnd->level;
643
644 i -= 1;
645 n = fnd->nodes[i];
646 fnd->nodes[i] = NULL;
647 fnd->level = i;
648
649 return n;
650}
651
652static bool fnd_is_empty(struct ntfs_fnd *fnd)
653{
654 if (!fnd->level)
655 return !fnd->root_de;
656
657 return !fnd->de[fnd->level - 1];
658}
659
660/*
e8b8e97f 661 * hdr_find_e - Locate an entry the index buffer.
82cae269 662 *
82cae269
KK
663 * If no matching entry is found, it returns the first entry which is greater
664 * than the desired entry If the search key is greater than all the entries the
665 * buffer, it returns the 'end' entry. This function does a binary search of the
e8b8e97f
KA
666 * current index buffer, for the first entry that is <= to the search value.
667 *
668 * Return: NULL if error.
82cae269
KK
669 */
670static struct NTFS_DE *hdr_find_e(const struct ntfs_index *indx,
671 const struct INDEX_HDR *hdr, const void *key,
672 size_t key_len, const void *ctx, int *diff)
673{
8e692122 674 struct NTFS_DE *e, *found = NULL;
82cae269 675 NTFS_CMP_FUNC cmp = indx->cmp;
8e692122
KA
676 int min_idx = 0, mid_idx, max_idx = 0;
677 int diff2;
678 int table_size = 8;
82cae269
KK
679 u32 e_size, e_key_len;
680 u32 end = le32_to_cpu(hdr->used);
681 u32 off = le32_to_cpu(hdr->de_off);
ef929700 682 u16 offs[128];
82cae269 683
162333ef
KA
684fill_table:
685 if (off + sizeof(struct NTFS_DE) > end)
686 return NULL;
82cae269 687
82cae269
KK
688 e = Add2Ptr(hdr, off);
689 e_size = le16_to_cpu(e->size);
690
162333ef
KA
691 if (e_size < sizeof(struct NTFS_DE) || off + e_size > end)
692 return NULL;
82cae269
KK
693
694 if (!de_is_last(e)) {
162333ef 695 offs[max_idx] = off;
82cae269 696 off += e_size;
82cae269 697
162333ef 698 max_idx++;
ef929700 699 if (max_idx < table_size)
162333ef 700 goto fill_table;
82cae269 701
162333ef
KA
702 max_idx--;
703 }
82cae269 704
162333ef
KA
705binary_search:
706 e_key_len = le16_to_cpu(e->key_size);
82cae269 707
162333ef
KA
708 diff2 = (*cmp)(key, key_len, e + 1, e_key_len, ctx);
709 if (diff2 > 0) {
710 if (found) {
711 min_idx = mid_idx + 1;
712 } else {
713 if (de_is_last(e))
714 return NULL;
82cae269 715
162333ef 716 max_idx = 0;
8e692122
KA
717 table_size = min(table_size * 2,
718 (int)ARRAY_SIZE(offs));
162333ef 719 goto fill_table;
82cae269 720 }
162333ef
KA
721 } else if (diff2 < 0) {
722 if (found)
82cae269 723 max_idx = mid_idx - 1;
162333ef
KA
724 else
725 max_idx--;
82cae269 726
162333ef
KA
727 found = e;
728 } else {
729 *diff = 0;
730 return e;
82cae269
KK
731 }
732
162333ef
KA
733 if (min_idx > max_idx) {
734 *diff = -1;
735 return found;
736 }
82cae269 737
162333ef
KA
738 mid_idx = (min_idx + max_idx) >> 1;
739 e = Add2Ptr(hdr, offs[mid_idx]);
82cae269 740
162333ef 741 goto binary_search;
82cae269
KK
742}
743
744/*
e8b8e97f 745 * hdr_insert_de - Insert an index entry into the buffer.
82cae269 746 *
e8b8e97f 747 * 'before' should be a pointer previously returned from hdr_find_e.
82cae269
KK
748 */
749static struct NTFS_DE *hdr_insert_de(const struct ntfs_index *indx,
750 struct INDEX_HDR *hdr,
751 const struct NTFS_DE *de,
752 struct NTFS_DE *before, const void *ctx)
753{
754 int diff;
755 size_t off = PtrOffset(hdr, before);
756 u32 used = le32_to_cpu(hdr->used);
757 u32 total = le32_to_cpu(hdr->total);
758 u16 de_size = le16_to_cpu(de->size);
759
e8b8e97f 760 /* First, check to see if there's enough room. */
82cae269
KK
761 if (used + de_size > total)
762 return NULL;
763
764 /* We know there's enough space, so we know we'll succeed. */
765 if (before) {
e8b8e97f 766 /* Check that before is inside Index. */
82cae269
KK
767 if (off >= used || off < le32_to_cpu(hdr->de_off) ||
768 off + le16_to_cpu(before->size) > total) {
769 return NULL;
770 }
771 goto ok;
772 }
e8b8e97f 773 /* No insert point is applied. Get it manually. */
82cae269
KK
774 before = hdr_find_e(indx, hdr, de + 1, le16_to_cpu(de->key_size), ctx,
775 &diff);
776 if (!before)
777 return NULL;
778 off = PtrOffset(hdr, before);
779
780ok:
781 /* Now we just make room for the entry and jam it in. */
782 memmove(Add2Ptr(before, de_size), before, used - off);
783
784 hdr->used = cpu_to_le32(used + de_size);
785 memcpy(before, de, de_size);
786
787 return before;
788}
789
790/*
e8b8e97f 791 * hdr_delete_de - Remove an entry from the index buffer.
82cae269
KK
792 */
793static inline struct NTFS_DE *hdr_delete_de(struct INDEX_HDR *hdr,
794 struct NTFS_DE *re)
795{
796 u32 used = le32_to_cpu(hdr->used);
797 u16 esize = le16_to_cpu(re->size);
798 u32 off = PtrOffset(hdr, re);
799 int bytes = used - (off + esize);
800
801 if (off >= used || esize < sizeof(struct NTFS_DE) ||
802 bytes < sizeof(struct NTFS_DE))
803 return NULL;
804
805 hdr->used = cpu_to_le32(used - esize);
806 memmove(re, Add2Ptr(re, esize), bytes);
807
808 return re;
809}
810
811void indx_clear(struct ntfs_index *indx)
812{
813 run_close(&indx->alloc_run);
814 run_close(&indx->bitmap_run);
815}
816
817int indx_init(struct ntfs_index *indx, struct ntfs_sb_info *sbi,
818 const struct ATTRIB *attr, enum index_mutex_classed type)
819{
820 u32 t32;
821 const struct INDEX_ROOT *root = resident_data(attr);
822
e8b8e97f 823 /* Check root fields. */
82cae269
KK
824 if (!root->index_block_clst)
825 return -EINVAL;
826
827 indx->type = type;
828 indx->idx2vbn_bits = __ffs(root->index_block_clst);
829
830 t32 = le32_to_cpu(root->index_block_size);
831 indx->index_bits = blksize_bits(t32);
832
e8b8e97f 833 /* Check index record size. */
82cae269 834 if (t32 < sbi->cluster_size) {
e8b8e97f 835 /* Index record is smaller than a cluster, use 512 blocks. */
82cae269
KK
836 if (t32 != root->index_block_clst * SECTOR_SIZE)
837 return -EINVAL;
838
e8b8e97f 839 /* Check alignment to a cluster. */
82cae269
KK
840 if ((sbi->cluster_size >> SECTOR_SHIFT) &
841 (root->index_block_clst - 1)) {
842 return -EINVAL;
843 }
844
845 indx->vbn2vbo_bits = SECTOR_SHIFT;
846 } else {
e8b8e97f 847 /* Index record must be a multiple of cluster size. */
82cae269
KK
848 if (t32 != root->index_block_clst << sbi->cluster_bits)
849 return -EINVAL;
850
851 indx->vbn2vbo_bits = sbi->cluster_bits;
852 }
853
854 init_rwsem(&indx->run_lock);
855
856 indx->cmp = get_cmp_func(root);
857 return indx->cmp ? 0 : -EINVAL;
858}
859
860static struct indx_node *indx_new(struct ntfs_index *indx,
861 struct ntfs_inode *ni, CLST vbn,
862 const __le64 *sub_vbn)
863{
864 int err;
865 struct NTFS_DE *e;
866 struct indx_node *r;
867 struct INDEX_HDR *hdr;
868 struct INDEX_BUFFER *index;
869 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
870 u32 bytes = 1u << indx->index_bits;
871 u16 fn;
872 u32 eo;
873
195c52bd 874 r = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
875 if (!r)
876 return ERR_PTR(-ENOMEM);
877
195c52bd 878 index = kzalloc(bytes, GFP_NOFS);
82cae269 879 if (!index) {
195c52bd 880 kfree(r);
82cae269
KK
881 return ERR_PTR(-ENOMEM);
882 }
883
884 err = ntfs_get_bh(ni->mi.sbi, &indx->alloc_run, vbo, bytes, &r->nb);
885
886 if (err) {
195c52bd
KA
887 kfree(index);
888 kfree(r);
82cae269
KK
889 return ERR_PTR(err);
890 }
891
e8b8e97f 892 /* Create header. */
82cae269
KK
893 index->rhdr.sign = NTFS_INDX_SIGNATURE;
894 index->rhdr.fix_off = cpu_to_le16(sizeof(struct INDEX_BUFFER)); // 0x28
895 fn = (bytes >> SECTOR_SHIFT) + 1; // 9
896 index->rhdr.fix_num = cpu_to_le16(fn);
897 index->vbn = cpu_to_le64(vbn);
898 hdr = &index->ihdr;
fa3cacf5 899 eo = ALIGN(sizeof(struct INDEX_BUFFER) + fn * sizeof(short), 8);
82cae269
KK
900 hdr->de_off = cpu_to_le32(eo);
901
902 e = Add2Ptr(hdr, eo);
903
904 if (sub_vbn) {
905 e->flags = NTFS_IE_LAST | NTFS_IE_HAS_SUBNODES;
906 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
907 hdr->used =
908 cpu_to_le32(eo + sizeof(struct NTFS_DE) + sizeof(u64));
909 de_set_vbn_le(e, *sub_vbn);
910 hdr->flags = 1;
911 } else {
912 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
913 hdr->used = cpu_to_le32(eo + sizeof(struct NTFS_DE));
914 e->flags = NTFS_IE_LAST;
915 }
916
917 hdr->total = cpu_to_le32(bytes - offsetof(struct INDEX_BUFFER, ihdr));
918
919 r->index = index;
920 return r;
921}
922
923struct INDEX_ROOT *indx_get_root(struct ntfs_index *indx, struct ntfs_inode *ni,
924 struct ATTRIB **attr, struct mft_inode **mi)
925{
926 struct ATTR_LIST_ENTRY *le = NULL;
927 struct ATTRIB *a;
928 const struct INDEX_NAMES *in = &s_index_names[indx->type];
929
930 a = ni_find_attr(ni, NULL, &le, ATTR_ROOT, in->name, in->name_len, NULL,
931 mi);
932 if (!a)
933 return NULL;
934
935 if (attr)
936 *attr = a;
937
938 return resident_data_ex(a, sizeof(struct INDEX_ROOT));
939}
940
941static int indx_write(struct ntfs_index *indx, struct ntfs_inode *ni,
942 struct indx_node *node, int sync)
943{
944 struct INDEX_BUFFER *ib = node->index;
945
946 return ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &node->nb, sync);
947}
948
949/*
e8b8e97f
KA
950 * indx_read
951 *
952 * If ntfs_readdir calls this function
953 * inode is shared locked and no ni_lock.
954 * Use rw_semaphore for read/write access to alloc_run.
82cae269
KK
955 */
956int indx_read(struct ntfs_index *indx, struct ntfs_inode *ni, CLST vbn,
957 struct indx_node **node)
958{
959 int err;
960 struct INDEX_BUFFER *ib;
961 struct runs_tree *run = &indx->alloc_run;
962 struct rw_semaphore *lock = &indx->run_lock;
963 u64 vbo = (u64)vbn << indx->vbn2vbo_bits;
964 u32 bytes = 1u << indx->index_bits;
965 struct indx_node *in = *node;
966 const struct INDEX_NAMES *name;
967
968 if (!in) {
195c52bd 969 in = kzalloc(sizeof(struct indx_node), GFP_NOFS);
82cae269
KK
970 if (!in)
971 return -ENOMEM;
972 } else {
973 nb_put(&in->nb);
974 }
975
976 ib = in->index;
977 if (!ib) {
195c52bd 978 ib = kmalloc(bytes, GFP_NOFS);
82cae269
KK
979 if (!ib) {
980 err = -ENOMEM;
981 goto out;
982 }
983 }
984
985 down_read(lock);
986 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
987 up_read(lock);
988 if (!err)
989 goto ok;
990
991 if (err == -E_NTFS_FIXUP)
992 goto ok;
993
994 if (err != -ENOENT)
995 goto out;
996
997 name = &s_index_names[indx->type];
998 down_write(lock);
999 err = attr_load_runs_range(ni, ATTR_ALLOC, name->name, name->name_len,
1000 run, vbo, vbo + bytes);
1001 up_write(lock);
1002 if (err)
1003 goto out;
1004
1005 down_read(lock);
1006 err = ntfs_read_bh(ni->mi.sbi, run, vbo, &ib->rhdr, bytes, &in->nb);
1007 up_read(lock);
1008 if (err == -E_NTFS_FIXUP)
1009 goto ok;
1010
1011 if (err)
1012 goto out;
1013
1014ok:
1015 if (err == -E_NTFS_FIXUP) {
1016 ntfs_write_bh(ni->mi.sbi, &ib->rhdr, &in->nb, 0);
1017 err = 0;
1018 }
1019
1020 in->index = ib;
1021 *node = in;
1022
1023out:
1024 if (ib != in->index)
195c52bd 1025 kfree(ib);
82cae269
KK
1026
1027 if (*node != in) {
1028 nb_put(&in->nb);
195c52bd 1029 kfree(in);
82cae269
KK
1030 }
1031
1032 return err;
1033}
1034
1035/*
e8b8e97f 1036 * indx_find - Scan NTFS directory for given entry.
82cae269
KK
1037 */
1038int indx_find(struct ntfs_index *indx, struct ntfs_inode *ni,
1039 const struct INDEX_ROOT *root, const void *key, size_t key_len,
1040 const void *ctx, int *diff, struct NTFS_DE **entry,
1041 struct ntfs_fnd *fnd)
1042{
1043 int err;
1044 struct NTFS_DE *e;
82cae269
KK
1045 struct indx_node *node;
1046
1047 if (!root)
1048 root = indx_get_root(&ni->dir, ni, NULL, NULL);
1049
1050 if (!root) {
b7b6160d
KK
1051 /* Should not happen. */
1052 return -EINVAL;
82cae269
KK
1053 }
1054
e8b8e97f 1055 /* Check cache. */
82cae269
KK
1056 e = fnd->level ? fnd->de[fnd->level - 1] : fnd->root_de;
1057 if (e && !de_is_last(e) &&
1058 !(*indx->cmp)(key, key_len, e + 1, le16_to_cpu(e->key_size), ctx)) {
1059 *entry = e;
1060 *diff = 0;
1061 return 0;
1062 }
1063
e8b8e97f 1064 /* Soft finder reset. */
82cae269
KK
1065 fnd_clear(fnd);
1066
e8b8e97f 1067 /* Lookup entry that is <= to the search value. */
b7b6160d 1068 e = hdr_find_e(indx, &root->ihdr, key, key_len, ctx, diff);
82cae269
KK
1069 if (!e)
1070 return -EINVAL;
1071
d2846bf3 1072 fnd->root_de = e;
82cae269
KK
1073
1074 for (;;) {
1075 node = NULL;
b7b6160d
KK
1076 if (*diff >= 0 || !de_has_vcn_ex(e))
1077 break;
82cae269
KK
1078
1079 /* Read next level. */
1080 err = indx_read(indx, ni, de_get_vbn(e), &node);
1081 if (err)
b7b6160d 1082 return err;
82cae269 1083
e8b8e97f 1084 /* Lookup entry that is <= to the search value. */
82cae269
KK
1085 e = hdr_find_e(indx, &node->index->ihdr, key, key_len, ctx,
1086 diff);
1087 if (!e) {
82cae269 1088 put_indx_node(node);
b7b6160d 1089 return -EINVAL;
82cae269
KK
1090 }
1091
1092 fnd_push(fnd, node, e);
1093 }
1094
b7b6160d
KK
1095 *entry = e;
1096 return 0;
82cae269
KK
1097}
1098
1099int indx_find_sort(struct ntfs_index *indx, struct ntfs_inode *ni,
1100 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1101 struct ntfs_fnd *fnd)
1102{
1103 int err;
1104 struct indx_node *n = NULL;
1105 struct NTFS_DE *e;
1106 size_t iter = 0;
1107 int level = fnd->level;
1108
1109 if (!*entry) {
e8b8e97f 1110 /* Start find. */
82cae269
KK
1111 e = hdr_first_de(&root->ihdr);
1112 if (!e)
1113 return 0;
1114 fnd_clear(fnd);
1115 fnd->root_de = e;
1116 } else if (!level) {
1117 if (de_is_last(fnd->root_de)) {
1118 *entry = NULL;
1119 return 0;
1120 }
1121
1122 e = hdr_next_de(&root->ihdr, fnd->root_de);
1123 if (!e)
1124 return -EINVAL;
1125 fnd->root_de = e;
1126 } else {
1127 n = fnd->nodes[level - 1];
1128 e = fnd->de[level - 1];
1129
1130 if (de_is_last(e))
1131 goto pop_level;
1132
1133 e = hdr_next_de(&n->index->ihdr, e);
1134 if (!e)
1135 return -EINVAL;
1136
1137 fnd->de[level - 1] = e;
1138 }
1139
e8b8e97f 1140 /* Just to avoid tree cycle. */
82cae269
KK
1141next_iter:
1142 if (iter++ >= 1000)
1143 return -EINVAL;
1144
1145 while (de_has_vcn_ex(e)) {
1146 if (le16_to_cpu(e->size) <
1147 sizeof(struct NTFS_DE) + sizeof(u64)) {
1148 if (n) {
1149 fnd_pop(fnd);
195c52bd 1150 kfree(n);
82cae269
KK
1151 }
1152 return -EINVAL;
1153 }
1154
e8b8e97f 1155 /* Read next level. */
82cae269
KK
1156 err = indx_read(indx, ni, de_get_vbn(e), &n);
1157 if (err)
1158 return err;
1159
e8b8e97f 1160 /* Try next level. */
82cae269
KK
1161 e = hdr_first_de(&n->index->ihdr);
1162 if (!e) {
195c52bd 1163 kfree(n);
82cae269
KK
1164 return -EINVAL;
1165 }
1166
1167 fnd_push(fnd, n, e);
1168 }
1169
1170 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1171 *entry = e;
1172 return 0;
1173 }
1174
1175pop_level:
1176 for (;;) {
1177 if (!de_is_last(e))
1178 goto next_iter;
1179
e8b8e97f 1180 /* Pop one level. */
82cae269
KK
1181 if (n) {
1182 fnd_pop(fnd);
195c52bd 1183 kfree(n);
82cae269
KK
1184 }
1185
1186 level = fnd->level;
1187
1188 if (level) {
1189 n = fnd->nodes[level - 1];
1190 e = fnd->de[level - 1];
1191 } else if (fnd->root_de) {
1192 n = NULL;
1193 e = fnd->root_de;
1194 fnd->root_de = NULL;
1195 } else {
1196 *entry = NULL;
1197 return 0;
1198 }
1199
1200 if (le16_to_cpu(e->size) > sizeof(struct NTFS_DE)) {
1201 *entry = e;
1202 if (!fnd->root_de)
1203 fnd->root_de = e;
1204 return 0;
1205 }
1206 }
1207}
1208
1209int indx_find_raw(struct ntfs_index *indx, struct ntfs_inode *ni,
1210 const struct INDEX_ROOT *root, struct NTFS_DE **entry,
1211 size_t *off, struct ntfs_fnd *fnd)
1212{
1213 int err;
1214 struct indx_node *n = NULL;
1215 struct NTFS_DE *e = NULL;
1216 struct NTFS_DE *e2;
1217 size_t bit;
1218 CLST next_used_vbn;
1219 CLST next_vbn;
1220 u32 record_size = ni->mi.sbi->record_size;
1221
e8b8e97f 1222 /* Use non sorted algorithm. */
82cae269 1223 if (!*entry) {
e8b8e97f 1224 /* This is the first call. */
82cae269
KK
1225 e = hdr_first_de(&root->ihdr);
1226 if (!e)
1227 return 0;
1228 fnd_clear(fnd);
1229 fnd->root_de = e;
1230
e8b8e97f 1231 /* The first call with setup of initial element. */
82cae269
KK
1232 if (*off >= record_size) {
1233 next_vbn = (((*off - record_size) >> indx->index_bits))
1234 << indx->idx2vbn_bits;
e8b8e97f 1235 /* Jump inside cycle 'for'. */
82cae269
KK
1236 goto next;
1237 }
1238
e8b8e97f 1239 /* Start enumeration from root. */
82cae269
KK
1240 *off = 0;
1241 } else if (!fnd->root_de)
1242 return -EINVAL;
1243
1244 for (;;) {
e8b8e97f 1245 /* Check if current entry can be used. */
82cae269
KK
1246 if (e && le16_to_cpu(e->size) > sizeof(struct NTFS_DE))
1247 goto ok;
1248
1249 if (!fnd->level) {
e8b8e97f 1250 /* Continue to enumerate root. */
82cae269
KK
1251 if (!de_is_last(fnd->root_de)) {
1252 e = hdr_next_de(&root->ihdr, fnd->root_de);
1253 if (!e)
1254 return -EINVAL;
1255 fnd->root_de = e;
1256 continue;
1257 }
1258
e8b8e97f 1259 /* Start to enumerate indexes from 0. */
82cae269
KK
1260 next_vbn = 0;
1261 } else {
e8b8e97f 1262 /* Continue to enumerate indexes. */
82cae269
KK
1263 e2 = fnd->de[fnd->level - 1];
1264
1265 n = fnd->nodes[fnd->level - 1];
1266
1267 if (!de_is_last(e2)) {
1268 e = hdr_next_de(&n->index->ihdr, e2);
1269 if (!e)
1270 return -EINVAL;
1271 fnd->de[fnd->level - 1] = e;
1272 continue;
1273 }
1274
e8b8e97f 1275 /* Continue with next index. */
82cae269
KK
1276 next_vbn = le64_to_cpu(n->index->vbn) +
1277 root->index_block_clst;
1278 }
1279
1280next:
e8b8e97f 1281 /* Release current index. */
82cae269
KK
1282 if (n) {
1283 fnd_pop(fnd);
1284 put_indx_node(n);
1285 n = NULL;
1286 }
1287
e8b8e97f 1288 /* Skip all free indexes. */
82cae269
KK
1289 bit = next_vbn >> indx->idx2vbn_bits;
1290 err = indx_used_bit(indx, ni, &bit);
1291 if (err == -ENOENT || bit == MINUS_ONE_T) {
e8b8e97f 1292 /* No used indexes. */
82cae269
KK
1293 *entry = NULL;
1294 return 0;
1295 }
1296
1297 next_used_vbn = bit << indx->idx2vbn_bits;
1298
e8b8e97f 1299 /* Read buffer into memory. */
82cae269
KK
1300 err = indx_read(indx, ni, next_used_vbn, &n);
1301 if (err)
1302 return err;
1303
1304 e = hdr_first_de(&n->index->ihdr);
1305 fnd_push(fnd, n, e);
1306 if (!e)
1307 return -EINVAL;
1308 }
1309
1310ok:
e8b8e97f 1311 /* Return offset to restore enumerator if necessary. */
82cae269 1312 if (!n) {
e8b8e97f 1313 /* 'e' points in root, */
82cae269
KK
1314 *off = PtrOffset(&root->ihdr, e);
1315 } else {
e8b8e97f 1316 /* 'e' points in index, */
82cae269
KK
1317 *off = (le64_to_cpu(n->index->vbn) << indx->vbn2vbo_bits) +
1318 record_size + PtrOffset(&n->index->ihdr, e);
1319 }
1320
1321 *entry = e;
1322 return 0;
1323}
1324
1325/*
e8b8e97f 1326 * indx_create_allocate - Create "Allocation + Bitmap" attributes.
82cae269
KK
1327 */
1328static int indx_create_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1329 CLST *vbn)
1330{
0327c6d0 1331 int err;
82cae269
KK
1332 struct ntfs_sb_info *sbi = ni->mi.sbi;
1333 struct ATTRIB *bitmap;
1334 struct ATTRIB *alloc;
1335 u32 data_size = 1u << indx->index_bits;
1336 u32 alloc_size = ntfs_up_cluster(sbi, data_size);
1337 CLST len = alloc_size >> sbi->cluster_bits;
1338 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1339 CLST alen;
1340 struct runs_tree run;
1341
1342 run_init(&run);
1343
1344 err = attr_allocate_clusters(sbi, &run, 0, 0, len, NULL, 0, &alen, 0,
1345 NULL);
1346 if (err)
1347 goto out;
1348
1349 err = ni_insert_nonresident(ni, ATTR_ALLOC, in->name, in->name_len,
1350 &run, 0, len, 0, &alloc, NULL);
1351 if (err)
1352 goto out1;
1353
1354 alloc->nres.valid_size = alloc->nres.data_size = cpu_to_le64(data_size);
1355
1356 err = ni_insert_resident(ni, bitmap_size(1), ATTR_BITMAP, in->name,
78ab59fe 1357 in->name_len, &bitmap, NULL, NULL);
82cae269
KK
1358 if (err)
1359 goto out2;
1360
1361 if (in->name == I30_NAME) {
1362 ni->vfs_inode.i_size = data_size;
1363 inode_set_bytes(&ni->vfs_inode, alloc_size);
1364 }
1365
1366 memcpy(&indx->alloc_run, &run, sizeof(run));
1367
1368 *vbn = 0;
1369
1370 return 0;
1371
1372out2:
78ab59fe 1373 mi_remove_attr(NULL, &ni->mi, alloc);
82cae269
KK
1374
1375out1:
1376 run_deallocate(sbi, &run, false);
1377
1378out:
1379 return err;
1380}
1381
1382/*
e8b8e97f 1383 * indx_add_allocate - Add clusters to index.
82cae269
KK
1384 */
1385static int indx_add_allocate(struct ntfs_index *indx, struct ntfs_inode *ni,
1386 CLST *vbn)
1387{
1388 int err;
1389 size_t bit;
1390 u64 data_size;
1391 u64 bmp_size, bmp_size_v;
1392 struct ATTRIB *bmp, *alloc;
1393 struct mft_inode *mi;
1394 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1395
1396 err = indx_find_free(indx, ni, &bit, &bmp);
1397 if (err)
1398 goto out1;
1399
1400 if (bit != MINUS_ONE_T) {
1401 bmp = NULL;
1402 } else {
1403 if (bmp->non_res) {
1404 bmp_size = le64_to_cpu(bmp->nres.data_size);
1405 bmp_size_v = le64_to_cpu(bmp->nres.valid_size);
1406 } else {
1407 bmp_size = bmp_size_v = le32_to_cpu(bmp->res.data_size);
1408 }
1409
1410 bit = bmp_size << 3;
1411 }
1412
1413 data_size = (u64)(bit + 1) << indx->index_bits;
1414
1415 if (bmp) {
e8b8e97f 1416 /* Increase bitmap. */
82cae269
KK
1417 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1418 &indx->bitmap_run, bitmap_size(bit + 1),
1419 NULL, true, NULL);
1420 if (err)
1421 goto out1;
1422 }
1423
1424 alloc = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, in->name, in->name_len,
1425 NULL, &mi);
1426 if (!alloc) {
04810f00 1427 err = -EINVAL;
82cae269
KK
1428 if (bmp)
1429 goto out2;
1430 goto out1;
1431 }
1432
e8b8e97f 1433 /* Increase allocation. */
82cae269
KK
1434 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1435 &indx->alloc_run, data_size, &data_size, true,
1436 NULL);
1437 if (err) {
1438 if (bmp)
1439 goto out2;
1440 goto out1;
1441 }
1442
1443 *vbn = bit << indx->idx2vbn_bits;
1444
1445 return 0;
1446
1447out2:
e8b8e97f 1448 /* Ops. No space? */
82cae269
KK
1449 attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1450 &indx->bitmap_run, bmp_size, &bmp_size_v, false, NULL);
1451
1452out1:
1453 return err;
1454}
1455
1456/*
e8b8e97f 1457 * indx_insert_into_root - Attempt to insert an entry into the index root.
82cae269 1458 *
78ab59fe 1459 * @undo - True if we undoing previous remove.
82cae269
KK
1460 * If necessary, it will twiddle the index b-tree.
1461 */
1462static int indx_insert_into_root(struct ntfs_index *indx, struct ntfs_inode *ni,
1463 const struct NTFS_DE *new_de,
1464 struct NTFS_DE *root_de, const void *ctx,
78ab59fe 1465 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1466{
1467 int err = 0;
1468 struct NTFS_DE *e, *e0, *re;
1469 struct mft_inode *mi;
1470 struct ATTRIB *attr;
82cae269
KK
1471 struct INDEX_HDR *hdr;
1472 struct indx_node *n;
1473 CLST new_vbn;
1474 __le64 *sub_vbn, t_vbn;
1475 u16 new_de_size;
78ab59fe 1476 u32 hdr_used, hdr_total, asize, to_move;
82cae269
KK
1477 u32 root_size, new_root_size;
1478 struct ntfs_sb_info *sbi;
1479 int ds_root;
b8155e95 1480 struct INDEX_ROOT *root, *a_root;
82cae269 1481
e8b8e97f 1482 /* Get the record this root placed in. */
82cae269
KK
1483 root = indx_get_root(indx, ni, &attr, &mi);
1484 if (!root)
b8155e95 1485 return -EINVAL;
82cae269
KK
1486
1487 /*
1488 * Try easy case:
78ab59fe
KK
1489 * hdr_insert_de will succeed if there's
1490 * room the root for the new entry.
82cae269
KK
1491 */
1492 hdr = &root->ihdr;
1493 sbi = ni->mi.sbi;
82cae269
KK
1494 new_de_size = le16_to_cpu(new_de->size);
1495 hdr_used = le32_to_cpu(hdr->used);
1496 hdr_total = le32_to_cpu(hdr->total);
1497 asize = le32_to_cpu(attr->size);
1498 root_size = le32_to_cpu(attr->res.data_size);
1499
1500 ds_root = new_de_size + hdr_used - hdr_total;
1501
78ab59fe
KK
1502 /* If 'undo' is set then reduce requirements. */
1503 if ((undo || asize + ds_root < sbi->max_bytes_per_attr) &&
1504 mi_resize_attr(mi, attr, ds_root)) {
82cae269
KK
1505 hdr->total = cpu_to_le32(hdr_total + ds_root);
1506 e = hdr_insert_de(indx, hdr, new_de, root_de, ctx);
1507 WARN_ON(!e);
1508 fnd_clear(fnd);
1509 fnd->root_de = e;
1510
1511 return 0;
1512 }
1513
e8b8e97f 1514 /* Make a copy of root attribute to restore if error. */
195c52bd 1515 a_root = kmemdup(attr, asize, GFP_NOFS);
b8155e95
DC
1516 if (!a_root)
1517 return -ENOMEM;
82cae269 1518
e8b8e97f
KA
1519 /*
1520 * Copy all the non-end entries from
1521 * the index root to the new buffer.
1522 */
82cae269
KK
1523 to_move = 0;
1524 e0 = hdr_first_de(hdr);
1525
e8b8e97f 1526 /* Calculate the size to copy. */
82cae269
KK
1527 for (e = e0;; e = hdr_next_de(hdr, e)) {
1528 if (!e) {
1529 err = -EINVAL;
b8155e95 1530 goto out_free_root;
82cae269
KK
1531 }
1532
1533 if (de_is_last(e))
1534 break;
1535 to_move += le16_to_cpu(e->size);
1536 }
1537
82cae269
KK
1538 if (!to_move) {
1539 re = NULL;
1540 } else {
195c52bd 1541 re = kmemdup(e0, to_move, GFP_NOFS);
82cae269
KK
1542 if (!re) {
1543 err = -ENOMEM;
b8155e95 1544 goto out_free_root;
82cae269
KK
1545 }
1546 }
1547
1548 sub_vbn = NULL;
1549 if (de_has_vcn(e)) {
1550 t_vbn = de_get_vbn_le(e);
1551 sub_vbn = &t_vbn;
1552 }
1553
1554 new_root_size = sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE) +
1555 sizeof(u64);
1556 ds_root = new_root_size - root_size;
1557
78ab59fe 1558 if (ds_root > 0 && asize + ds_root > sbi->max_bytes_per_attr) {
e8b8e97f 1559 /* Make root external. */
82cae269 1560 err = -EOPNOTSUPP;
b8155e95 1561 goto out_free_re;
82cae269
KK
1562 }
1563
1564 if (ds_root)
1565 mi_resize_attr(mi, attr, ds_root);
1566
e8b8e97f 1567 /* Fill first entry (vcn will be set later). */
82cae269
KK
1568 e = (struct NTFS_DE *)(root + 1);
1569 memset(e, 0, sizeof(struct NTFS_DE));
1570 e->size = cpu_to_le16(sizeof(struct NTFS_DE) + sizeof(u64));
1571 e->flags = NTFS_IE_HAS_SUBNODES | NTFS_IE_LAST;
1572
1573 hdr->flags = 1;
1574 hdr->used = hdr->total =
1575 cpu_to_le32(new_root_size - offsetof(struct INDEX_ROOT, ihdr));
1576
1577 fnd->root_de = hdr_first_de(hdr);
1578 mi->dirty = true;
1579
e8b8e97f 1580 /* Create alloc and bitmap attributes (if not). */
82cae269
KK
1581 err = run_is_empty(&indx->alloc_run)
1582 ? indx_create_allocate(indx, ni, &new_vbn)
1583 : indx_add_allocate(indx, ni, &new_vbn);
1584
e8b8e97f 1585 /* Layout of record may be changed, so rescan root. */
82cae269
KK
1586 root = indx_get_root(indx, ni, &attr, &mi);
1587 if (!root) {
e8b8e97f 1588 /* Bug? */
82cae269
KK
1589 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1590 err = -EINVAL;
b8155e95 1591 goto out_free_re;
82cae269
KK
1592 }
1593
1594 if (err) {
e8b8e97f 1595 /* Restore root. */
82cae269
KK
1596 if (mi_resize_attr(mi, attr, -ds_root))
1597 memcpy(attr, a_root, asize);
1598 else {
e8b8e97f 1599 /* Bug? */
82cae269
KK
1600 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
1601 }
b8155e95 1602 goto out_free_re;
82cae269
KK
1603 }
1604
1605 e = (struct NTFS_DE *)(root + 1);
1606 *(__le64 *)(e + 1) = cpu_to_le64(new_vbn);
1607 mi->dirty = true;
1608
e8b8e97f 1609 /* Now we can create/format the new buffer and copy the entries into. */
82cae269
KK
1610 n = indx_new(indx, ni, new_vbn, sub_vbn);
1611 if (IS_ERR(n)) {
1612 err = PTR_ERR(n);
b8155e95 1613 goto out_free_re;
82cae269
KK
1614 }
1615
1616 hdr = &n->index->ihdr;
1617 hdr_used = le32_to_cpu(hdr->used);
1618 hdr_total = le32_to_cpu(hdr->total);
1619
e8b8e97f 1620 /* Copy root entries into new buffer. */
82cae269
KK
1621 hdr_insert_head(hdr, re, to_move);
1622
e8b8e97f 1623 /* Update bitmap attribute. */
82cae269
KK
1624 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1625
e8b8e97f 1626 /* Check if we can insert new entry new index buffer. */
82cae269
KK
1627 if (hdr_used + new_de_size > hdr_total) {
1628 /*
e8b8e97f 1629 * This occurs if MFT record is the same or bigger than index
82cae269 1630 * buffer. Move all root new index and have no space to add
e8b8e97f
KA
1631 * new entry classic case when MFT record is 1K and index
1632 * buffer 4K the problem should not occurs.
82cae269 1633 */
195c52bd 1634 kfree(re);
82cae269
KK
1635 indx_write(indx, ni, n, 0);
1636
1637 put_indx_node(n);
1638 fnd_clear(fnd);
78ab59fe 1639 err = indx_insert_entry(indx, ni, new_de, ctx, fnd, undo);
b8155e95 1640 goto out_free_root;
82cae269
KK
1641 }
1642
1643 /*
e8b8e97f
KA
1644 * Now root is a parent for new index buffer.
1645 * Insert NewEntry a new buffer.
82cae269
KK
1646 */
1647 e = hdr_insert_de(indx, hdr, new_de, NULL, ctx);
1648 if (!e) {
1649 err = -EINVAL;
b8155e95 1650 goto out_put_n;
82cae269
KK
1651 }
1652 fnd_push(fnd, n, e);
1653
e8b8e97f 1654 /* Just write updates index into disk. */
82cae269
KK
1655 indx_write(indx, ni, n, 0);
1656
1657 n = NULL;
1658
b8155e95
DC
1659out_put_n:
1660 put_indx_node(n);
1661out_free_re:
195c52bd 1662 kfree(re);
b8155e95 1663out_free_root:
195c52bd 1664 kfree(a_root);
82cae269
KK
1665 return err;
1666}
1667
1668/*
1669 * indx_insert_into_buffer
1670 *
e8b8e97f 1671 * Attempt to insert an entry into an Index Allocation Buffer.
82cae269
KK
1672 * If necessary, it will split the buffer.
1673 */
1674static int
1675indx_insert_into_buffer(struct ntfs_index *indx, struct ntfs_inode *ni,
1676 struct INDEX_ROOT *root, const struct NTFS_DE *new_de,
1677 const void *ctx, int level, struct ntfs_fnd *fnd)
1678{
1679 int err;
1680 const struct NTFS_DE *sp;
1681 struct NTFS_DE *e, *de_t, *up_e = NULL;
1682 struct indx_node *n2 = NULL;
1683 struct indx_node *n1 = fnd->nodes[level];
1684 struct INDEX_HDR *hdr1 = &n1->index->ihdr;
1685 struct INDEX_HDR *hdr2;
1686 u32 to_copy, used;
1687 CLST new_vbn;
1688 __le64 t_vbn, *sub_vbn;
1689 u16 sp_size;
1690
e8b8e97f 1691 /* Try the most easy case. */
82cae269
KK
1692 e = fnd->level - 1 == level ? fnd->de[level] : NULL;
1693 e = hdr_insert_de(indx, hdr1, new_de, e, ctx);
1694 fnd->de[level] = e;
1695 if (e) {
e8b8e97f 1696 /* Just write updated index into disk. */
82cae269
KK
1697 indx_write(indx, ni, n1, 0);
1698 return 0;
1699 }
1700
1701 /*
1702 * No space to insert into buffer. Split it.
1703 * To split we:
1704 * - Save split point ('cause index buffers will be changed)
1705 * - Allocate NewBuffer and copy all entries <= sp into new buffer
1706 * - Remove all entries (sp including) from TargetBuffer
1707 * - Insert NewEntry into left or right buffer (depending on sp <=>
1708 * NewEntry)
1709 * - Insert sp into parent buffer (or root)
1710 * - Make sp a parent for new buffer
1711 */
1712 sp = hdr_find_split(hdr1);
1713 if (!sp)
1714 return -EINVAL;
1715
1716 sp_size = le16_to_cpu(sp->size);
195c52bd 1717 up_e = kmalloc(sp_size + sizeof(u64), GFP_NOFS);
82cae269
KK
1718 if (!up_e)
1719 return -ENOMEM;
1720 memcpy(up_e, sp, sp_size);
1721
1722 if (!hdr1->flags) {
1723 up_e->flags |= NTFS_IE_HAS_SUBNODES;
1724 up_e->size = cpu_to_le16(sp_size + sizeof(u64));
1725 sub_vbn = NULL;
1726 } else {
1727 t_vbn = de_get_vbn_le(up_e);
1728 sub_vbn = &t_vbn;
1729 }
1730
1731 /* Allocate on disk a new index allocation buffer. */
1732 err = indx_add_allocate(indx, ni, &new_vbn);
1733 if (err)
1734 goto out;
1735
e8b8e97f 1736 /* Allocate and format memory a new index buffer. */
82cae269
KK
1737 n2 = indx_new(indx, ni, new_vbn, sub_vbn);
1738 if (IS_ERR(n2)) {
1739 err = PTR_ERR(n2);
1740 goto out;
1741 }
1742
1743 hdr2 = &n2->index->ihdr;
1744
e8b8e97f 1745 /* Make sp a parent for new buffer. */
82cae269
KK
1746 de_set_vbn(up_e, new_vbn);
1747
e8b8e97f 1748 /* Copy all the entries <= sp into the new buffer. */
82cae269
KK
1749 de_t = hdr_first_de(hdr1);
1750 to_copy = PtrOffset(de_t, sp);
1751 hdr_insert_head(hdr2, de_t, to_copy);
1752
e8b8e97f 1753 /* Remove all entries (sp including) from hdr1. */
82cae269
KK
1754 used = le32_to_cpu(hdr1->used) - to_copy - sp_size;
1755 memmove(de_t, Add2Ptr(sp, sp_size), used - le32_to_cpu(hdr1->de_off));
1756 hdr1->used = cpu_to_le32(used);
1757
e8b8e97f
KA
1758 /*
1759 * Insert new entry into left or right buffer
1760 * (depending on sp <=> new_de).
1761 */
82cae269
KK
1762 hdr_insert_de(indx,
1763 (*indx->cmp)(new_de + 1, le16_to_cpu(new_de->key_size),
1764 up_e + 1, le16_to_cpu(up_e->key_size),
1765 ctx) < 0
1766 ? hdr2
1767 : hdr1,
1768 new_de, NULL, ctx);
1769
1770 indx_mark_used(indx, ni, new_vbn >> indx->idx2vbn_bits);
1771
1772 indx_write(indx, ni, n1, 0);
1773 indx_write(indx, ni, n2, 0);
1774
1775 put_indx_node(n2);
1776
1777 /*
e8b8e97f 1778 * We've finished splitting everybody, so we are ready to
82cae269
KK
1779 * insert the promoted entry into the parent.
1780 */
1781 if (!level) {
e8b8e97f 1782 /* Insert in root. */
78ab59fe 1783 err = indx_insert_into_root(indx, ni, up_e, NULL, ctx, fnd, 0);
82cae269
KK
1784 if (err)
1785 goto out;
1786 } else {
1787 /*
e8b8e97f
KA
1788 * The target buffer's parent is another index buffer.
1789 * TODO: Remove recursion.
82cae269
KK
1790 */
1791 err = indx_insert_into_buffer(indx, ni, root, up_e, ctx,
1792 level - 1, fnd);
1793 if (err)
1794 goto out;
1795 }
1796
1797out:
195c52bd 1798 kfree(up_e);
82cae269
KK
1799
1800 return err;
1801}
1802
1803/*
e8b8e97f 1804 * indx_insert_entry - Insert new entry into index.
78ab59fe
KK
1805 *
1806 * @undo - True if we undoing previous remove.
82cae269
KK
1807 */
1808int indx_insert_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
1809 const struct NTFS_DE *new_de, const void *ctx,
78ab59fe 1810 struct ntfs_fnd *fnd, bool undo)
82cae269
KK
1811{
1812 int err;
1813 int diff;
1814 struct NTFS_DE *e;
1815 struct ntfs_fnd *fnd_a = NULL;
1816 struct INDEX_ROOT *root;
1817
1818 if (!fnd) {
1819 fnd_a = fnd_get();
1820 if (!fnd_a) {
1821 err = -ENOMEM;
1822 goto out1;
1823 }
1824 fnd = fnd_a;
1825 }
1826
1827 root = indx_get_root(indx, ni, NULL, NULL);
1828 if (!root) {
1829 err = -EINVAL;
1830 goto out;
1831 }
1832
1833 if (fnd_is_empty(fnd)) {
e8b8e97f
KA
1834 /*
1835 * Find the spot the tree where we want to
1836 * insert the new entry.
1837 */
82cae269
KK
1838 err = indx_find(indx, ni, root, new_de + 1,
1839 le16_to_cpu(new_de->key_size), ctx, &diff, &e,
1840 fnd);
1841 if (err)
1842 goto out;
1843
1844 if (!diff) {
1845 err = -EEXIST;
1846 goto out;
1847 }
1848 }
1849
1850 if (!fnd->level) {
e8b8e97f
KA
1851 /*
1852 * The root is also a leaf, so we'll insert the
1853 * new entry into it.
1854 */
82cae269 1855 err = indx_insert_into_root(indx, ni, new_de, fnd->root_de, ctx,
78ab59fe 1856 fnd, undo);
82cae269
KK
1857 if (err)
1858 goto out;
1859 } else {
e8b8e97f
KA
1860 /*
1861 * Found a leaf buffer, so we'll insert the new entry into it.
1862 */
82cae269
KK
1863 err = indx_insert_into_buffer(indx, ni, root, new_de, ctx,
1864 fnd->level - 1, fnd);
1865 if (err)
1866 goto out;
1867 }
1868
1869out:
1870 fnd_put(fnd_a);
1871out1:
1872 return err;
1873}
1874
1875/*
e8b8e97f 1876 * indx_find_buffer - Locate a buffer from the tree.
82cae269
KK
1877 */
1878static struct indx_node *indx_find_buffer(struct ntfs_index *indx,
1879 struct ntfs_inode *ni,
1880 const struct INDEX_ROOT *root,
1881 __le64 vbn, struct indx_node *n)
1882{
1883 int err;
1884 const struct NTFS_DE *e;
1885 struct indx_node *r;
1886 const struct INDEX_HDR *hdr = n ? &n->index->ihdr : &root->ihdr;
1887
e8b8e97f 1888 /* Step 1: Scan one level. */
82cae269
KK
1889 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
1890 if (!e)
1891 return ERR_PTR(-EINVAL);
1892
1893 if (de_has_vcn(e) && vbn == de_get_vbn_le(e))
1894 return n;
1895
1896 if (de_is_last(e))
1897 break;
1898 }
1899
e8b8e97f 1900 /* Step2: Do recursion. */
82cae269
KK
1901 e = Add2Ptr(hdr, le32_to_cpu(hdr->de_off));
1902 for (;;) {
1903 if (de_has_vcn_ex(e)) {
1904 err = indx_read(indx, ni, de_get_vbn(e), &n);
1905 if (err)
1906 return ERR_PTR(err);
1907
1908 r = indx_find_buffer(indx, ni, root, vbn, n);
1909 if (r)
1910 return r;
1911 }
1912
1913 if (de_is_last(e))
1914 break;
1915
1916 e = Add2Ptr(e, le16_to_cpu(e->size));
1917 }
1918
1919 return NULL;
1920}
1921
1922/*
e8b8e97f 1923 * indx_shrink - Deallocate unused tail indexes.
82cae269
KK
1924 */
1925static int indx_shrink(struct ntfs_index *indx, struct ntfs_inode *ni,
1926 size_t bit)
1927{
1928 int err = 0;
1929 u64 bpb, new_data;
1930 size_t nbits;
1931 struct ATTRIB *b;
1932 struct ATTR_LIST_ENTRY *le = NULL;
1933 const struct INDEX_NAMES *in = &s_index_names[indx->type];
1934
1935 b = ni_find_attr(ni, NULL, &le, ATTR_BITMAP, in->name, in->name_len,
1936 NULL, NULL);
1937
1938 if (!b)
1939 return -ENOENT;
1940
1941 if (!b->non_res) {
1942 unsigned long pos;
1943 const unsigned long *bm = resident_data(b);
1944
71eeb6ac 1945 nbits = (size_t)le32_to_cpu(b->res.data_size) * 8;
82cae269
KK
1946
1947 if (bit >= nbits)
1948 return 0;
1949
1950 pos = find_next_bit(bm, nbits, bit);
1951 if (pos < nbits)
1952 return 0;
1953 } else {
1954 size_t used = MINUS_ONE_T;
1955
1956 nbits = le64_to_cpu(b->nres.data_size) * 8;
1957
1958 if (bit >= nbits)
1959 return 0;
1960
1961 err = scan_nres_bitmap(ni, b, indx, bit, &scan_for_used, &used);
1962 if (err)
1963 return err;
1964
1965 if (used != MINUS_ONE_T)
1966 return 0;
1967 }
1968
1969 new_data = (u64)bit << indx->index_bits;
1970
1971 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
1972 &indx->alloc_run, new_data, &new_data, false, NULL);
1973 if (err)
1974 return err;
1975
1976 bpb = bitmap_size(bit);
1977 if (bpb * 8 == nbits)
1978 return 0;
1979
1980 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
1981 &indx->bitmap_run, bpb, &bpb, false, NULL);
1982
1983 return err;
1984}
1985
1986static int indx_free_children(struct ntfs_index *indx, struct ntfs_inode *ni,
1987 const struct NTFS_DE *e, bool trim)
1988{
1989 int err;
ae5a4e46 1990 struct indx_node *n = NULL;
82cae269
KK
1991 struct INDEX_HDR *hdr;
1992 CLST vbn = de_get_vbn(e);
1993 size_t i;
1994
1995 err = indx_read(indx, ni, vbn, &n);
1996 if (err)
1997 return err;
1998
1999 hdr = &n->index->ihdr;
e8b8e97f 2000 /* First, recurse into the children, if any. */
82cae269
KK
2001 if (hdr_has_subnode(hdr)) {
2002 for (e = hdr_first_de(hdr); e; e = hdr_next_de(hdr, e)) {
2003 indx_free_children(indx, ni, e, false);
2004 if (de_is_last(e))
2005 break;
2006 }
2007 }
2008
2009 put_indx_node(n);
2010
2011 i = vbn >> indx->idx2vbn_bits;
e8b8e97f
KA
2012 /*
2013 * We've gotten rid of the children; add this buffer to the free list.
2014 */
82cae269
KK
2015 indx_mark_free(indx, ni, i);
2016
2017 if (!trim)
2018 return 0;
2019
2020 /*
2021 * If there are no used indexes after current free index
e8b8e97f
KA
2022 * then we can truncate allocation and bitmap.
2023 * Use bitmap to estimate the case.
82cae269
KK
2024 */
2025 indx_shrink(indx, ni, i + 1);
2026 return 0;
2027}
2028
2029/*
2030 * indx_get_entry_to_replace
2031 *
e8b8e97f
KA
2032 * Find a replacement entry for a deleted entry.
2033 * Always returns a node entry:
2034 * NTFS_IE_HAS_SUBNODES is set the flags and the size includes the sub_vcn.
82cae269
KK
2035 */
2036static int indx_get_entry_to_replace(struct ntfs_index *indx,
2037 struct ntfs_inode *ni,
2038 const struct NTFS_DE *de_next,
2039 struct NTFS_DE **de_to_replace,
2040 struct ntfs_fnd *fnd)
2041{
2042 int err;
2043 int level = -1;
2044 CLST vbn;
2045 struct NTFS_DE *e, *te, *re;
2046 struct indx_node *n;
2047 struct INDEX_BUFFER *ib;
2048
2049 *de_to_replace = NULL;
2050
e8b8e97f 2051 /* Find first leaf entry down from de_next. */
82cae269
KK
2052 vbn = de_get_vbn(de_next);
2053 for (;;) {
2054 n = NULL;
2055 err = indx_read(indx, ni, vbn, &n);
2056 if (err)
2057 goto out;
2058
2059 e = hdr_first_de(&n->index->ihdr);
2060 fnd_push(fnd, n, e);
2061
2062 if (!de_is_last(e)) {
2063 /*
e8b8e97f
KA
2064 * This buffer is non-empty, so its first entry
2065 * could be used as the replacement entry.
82cae269
KK
2066 */
2067 level = fnd->level - 1;
2068 }
2069
2070 if (!de_has_vcn(e))
2071 break;
2072
e8b8e97f 2073 /* This buffer is a node. Continue to go down. */
82cae269
KK
2074 vbn = de_get_vbn(e);
2075 }
2076
2077 if (level == -1)
2078 goto out;
2079
2080 n = fnd->nodes[level];
2081 te = hdr_first_de(&n->index->ihdr);
2082 /* Copy the candidate entry into the replacement entry buffer. */
195c52bd 2083 re = kmalloc(le16_to_cpu(te->size) + sizeof(u64), GFP_NOFS);
82cae269
KK
2084 if (!re) {
2085 err = -ENOMEM;
2086 goto out;
2087 }
2088
2089 *de_to_replace = re;
2090 memcpy(re, te, le16_to_cpu(te->size));
2091
2092 if (!de_has_vcn(re)) {
2093 /*
e8b8e97f
KA
2094 * The replacement entry we found doesn't have a sub_vcn.
2095 * increase its size to hold one.
82cae269
KK
2096 */
2097 le16_add_cpu(&re->size, sizeof(u64));
2098 re->flags |= NTFS_IE_HAS_SUBNODES;
2099 } else {
2100 /*
e8b8e97f
KA
2101 * The replacement entry we found was a node entry, which
2102 * means that all its child buffers are empty. Return them
2103 * to the free pool.
82cae269
KK
2104 */
2105 indx_free_children(indx, ni, te, true);
2106 }
2107
2108 /*
2109 * Expunge the replacement entry from its former location,
2110 * and then write that buffer.
2111 */
2112 ib = n->index;
2113 e = hdr_delete_de(&ib->ihdr, te);
2114
2115 fnd->de[level] = e;
2116 indx_write(indx, ni, n, 0);
2117
2118 /* Check to see if this action created an empty leaf. */
2119 if (ib_is_leaf(ib) && ib_is_empty(ib))
2120 return 0;
2121
2122out:
2123 fnd_clear(fnd);
2124 return err;
2125}
2126
2127/*
e8b8e97f 2128 * indx_delete_entry - Delete an entry from the index.
82cae269
KK
2129 */
2130int indx_delete_entry(struct ntfs_index *indx, struct ntfs_inode *ni,
2131 const void *key, u32 key_len, const void *ctx)
2132{
2133 int err, diff;
2134 struct INDEX_ROOT *root;
2135 struct INDEX_HDR *hdr;
2136 struct ntfs_fnd *fnd, *fnd2;
2137 struct INDEX_BUFFER *ib;
2138 struct NTFS_DE *e, *re, *next, *prev, *me;
2139 struct indx_node *n, *n2d = NULL;
2140 __le64 sub_vbn;
2141 int level, level2;
2142 struct ATTRIB *attr;
2143 struct mft_inode *mi;
2144 u32 e_size, root_size, new_root_size;
2145 size_t trim_bit;
2146 const struct INDEX_NAMES *in;
2147
2148 fnd = fnd_get();
2149 if (!fnd) {
2150 err = -ENOMEM;
2151 goto out2;
2152 }
2153
2154 fnd2 = fnd_get();
2155 if (!fnd2) {
2156 err = -ENOMEM;
2157 goto out1;
2158 }
2159
2160 root = indx_get_root(indx, ni, &attr, &mi);
2161 if (!root) {
2162 err = -EINVAL;
2163 goto out;
2164 }
2165
2166 /* Locate the entry to remove. */
2167 err = indx_find(indx, ni, root, key, key_len, ctx, &diff, &e, fnd);
2168 if (err)
2169 goto out;
2170
2171 if (!e || diff) {
2172 err = -ENOENT;
2173 goto out;
2174 }
2175
2176 level = fnd->level;
2177
2178 if (level) {
2179 n = fnd->nodes[level - 1];
2180 e = fnd->de[level - 1];
2181 ib = n->index;
2182 hdr = &ib->ihdr;
2183 } else {
2184 hdr = &root->ihdr;
2185 e = fnd->root_de;
2186 n = NULL;
2187 }
2188
2189 e_size = le16_to_cpu(e->size);
2190
2191 if (!de_has_vcn_ex(e)) {
e8b8e97f 2192 /* The entry to delete is a leaf, so we can just rip it out. */
82cae269
KK
2193 hdr_delete_de(hdr, e);
2194
2195 if (!level) {
2196 hdr->total = hdr->used;
2197
e8b8e97f 2198 /* Shrink resident root attribute. */
82cae269
KK
2199 mi_resize_attr(mi, attr, 0 - e_size);
2200 goto out;
2201 }
2202
2203 indx_write(indx, ni, n, 0);
2204
2205 /*
2206 * Check to see if removing that entry made
2207 * the leaf empty.
2208 */
2209 if (ib_is_leaf(ib) && ib_is_empty(ib)) {
2210 fnd_pop(fnd);
2211 fnd_push(fnd2, n, e);
2212 }
2213 } else {
2214 /*
2215 * The entry we wish to delete is a node buffer, so we
2216 * have to find a replacement for it.
2217 */
2218 next = de_get_next(e);
2219
2220 err = indx_get_entry_to_replace(indx, ni, next, &re, fnd2);
2221 if (err)
2222 goto out;
2223
2224 if (re) {
2225 de_set_vbn_le(re, de_get_vbn_le(e));
2226 hdr_delete_de(hdr, e);
2227
2228 err = level ? indx_insert_into_buffer(indx, ni, root,
2229 re, ctx,
2230 fnd->level - 1,
2231 fnd)
2232 : indx_insert_into_root(indx, ni, re, e,
78ab59fe 2233 ctx, fnd, 0);
195c52bd 2234 kfree(re);
82cae269
KK
2235
2236 if (err)
2237 goto out;
2238 } else {
2239 /*
2240 * There is no replacement for the current entry.
e8b8e97f
KA
2241 * This means that the subtree rooted at its node
2242 * is empty, and can be deleted, which turn means
2243 * that the node can just inherit the deleted
2244 * entry sub_vcn.
82cae269
KK
2245 */
2246 indx_free_children(indx, ni, next, true);
2247
2248 de_set_vbn_le(next, de_get_vbn_le(e));
2249 hdr_delete_de(hdr, e);
2250 if (level) {
2251 indx_write(indx, ni, n, 0);
2252 } else {
2253 hdr->total = hdr->used;
2254
e8b8e97f 2255 /* Shrink resident root attribute. */
82cae269
KK
2256 mi_resize_attr(mi, attr, 0 - e_size);
2257 }
2258 }
2259 }
2260
e8b8e97f 2261 /* Delete a branch of tree. */
82cae269
KK
2262 if (!fnd2 || !fnd2->level)
2263 goto out;
2264
e8b8e97f 2265 /* Reinit root 'cause it can be changed. */
82cae269
KK
2266 root = indx_get_root(indx, ni, &attr, &mi);
2267 if (!root) {
2268 err = -EINVAL;
2269 goto out;
2270 }
2271
2272 n2d = NULL;
2273 sub_vbn = fnd2->nodes[0]->index->vbn;
2274 level2 = 0;
2275 level = fnd->level;
2276
2277 hdr = level ? &fnd->nodes[level - 1]->index->ihdr : &root->ihdr;
2278
e8b8e97f 2279 /* Scan current level. */
82cae269
KK
2280 for (e = hdr_first_de(hdr);; e = hdr_next_de(hdr, e)) {
2281 if (!e) {
2282 err = -EINVAL;
2283 goto out;
2284 }
2285
2286 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2287 break;
2288
2289 if (de_is_last(e)) {
2290 e = NULL;
2291 break;
2292 }
2293 }
2294
2295 if (!e) {
e8b8e97f 2296 /* Do slow search from root. */
82cae269
KK
2297 struct indx_node *in;
2298
2299 fnd_clear(fnd);
2300
2301 in = indx_find_buffer(indx, ni, root, sub_vbn, NULL);
2302 if (IS_ERR(in)) {
2303 err = PTR_ERR(in);
2304 goto out;
2305 }
2306
2307 if (in)
2308 fnd_push(fnd, in, NULL);
2309 }
2310
e8b8e97f 2311 /* Merge fnd2 -> fnd. */
82cae269
KK
2312 for (level = 0; level < fnd2->level; level++) {
2313 fnd_push(fnd, fnd2->nodes[level], fnd2->de[level]);
2314 fnd2->nodes[level] = NULL;
2315 }
2316 fnd2->level = 0;
2317
2318 hdr = NULL;
2319 for (level = fnd->level; level; level--) {
2320 struct indx_node *in = fnd->nodes[level - 1];
2321
2322 ib = in->index;
2323 if (ib_is_empty(ib)) {
2324 sub_vbn = ib->vbn;
2325 } else {
2326 hdr = &ib->ihdr;
2327 n2d = in;
2328 level2 = level;
2329 break;
2330 }
2331 }
2332
2333 if (!hdr)
2334 hdr = &root->ihdr;
2335
2336 e = hdr_first_de(hdr);
2337 if (!e) {
2338 err = -EINVAL;
2339 goto out;
2340 }
2341
2342 if (hdr != &root->ihdr || !de_is_last(e)) {
2343 prev = NULL;
2344 while (!de_is_last(e)) {
2345 if (de_has_vcn(e) && sub_vbn == de_get_vbn_le(e))
2346 break;
2347 prev = e;
2348 e = hdr_next_de(hdr, e);
2349 if (!e) {
2350 err = -EINVAL;
2351 goto out;
2352 }
2353 }
2354
2355 if (sub_vbn != de_get_vbn_le(e)) {
2356 /*
e8b8e97f
KA
2357 * Didn't find the parent entry, although this buffer
2358 * is the parent trail. Something is corrupt.
82cae269
KK
2359 */
2360 err = -EINVAL;
2361 goto out;
2362 }
2363
2364 if (de_is_last(e)) {
2365 /*
e8b8e97f
KA
2366 * Since we can't remove the end entry, we'll remove
2367 * its predecessor instead. This means we have to
2368 * transfer the predecessor's sub_vcn to the end entry.
2369 * Note: This index block is not empty, so the
2370 * predecessor must exist.
82cae269
KK
2371 */
2372 if (!prev) {
2373 err = -EINVAL;
2374 goto out;
2375 }
2376
2377 if (de_has_vcn(prev)) {
2378 de_set_vbn_le(e, de_get_vbn_le(prev));
2379 } else if (de_has_vcn(e)) {
2380 le16_sub_cpu(&e->size, sizeof(u64));
2381 e->flags &= ~NTFS_IE_HAS_SUBNODES;
2382 le32_sub_cpu(&hdr->used, sizeof(u64));
2383 }
2384 e = prev;
2385 }
2386
2387 /*
e8b8e97f
KA
2388 * Copy the current entry into a temporary buffer (stripping
2389 * off its down-pointer, if any) and delete it from the current
2390 * buffer or root, as appropriate.
82cae269
KK
2391 */
2392 e_size = le16_to_cpu(e->size);
195c52bd 2393 me = kmemdup(e, e_size, GFP_NOFS);
82cae269
KK
2394 if (!me) {
2395 err = -ENOMEM;
2396 goto out;
2397 }
2398
2399 if (de_has_vcn(me)) {
2400 me->flags &= ~NTFS_IE_HAS_SUBNODES;
2401 le16_sub_cpu(&me->size, sizeof(u64));
2402 }
2403
2404 hdr_delete_de(hdr, e);
2405
2406 if (hdr == &root->ihdr) {
2407 level = 0;
2408 hdr->total = hdr->used;
2409
e8b8e97f 2410 /* Shrink resident root attribute. */
82cae269
KK
2411 mi_resize_attr(mi, attr, 0 - e_size);
2412 } else {
2413 indx_write(indx, ni, n2d, 0);
2414 level = level2;
2415 }
2416
e8b8e97f 2417 /* Mark unused buffers as free. */
82cae269
KK
2418 trim_bit = -1;
2419 for (; level < fnd->level; level++) {
2420 ib = fnd->nodes[level]->index;
2421 if (ib_is_empty(ib)) {
2422 size_t k = le64_to_cpu(ib->vbn) >>
2423 indx->idx2vbn_bits;
2424
2425 indx_mark_free(indx, ni, k);
2426 if (k < trim_bit)
2427 trim_bit = k;
2428 }
2429 }
2430
2431 fnd_clear(fnd);
2432 /*fnd->root_de = NULL;*/
2433
2434 /*
2435 * Re-insert the entry into the tree.
2436 * Find the spot the tree where we want to insert the new entry.
2437 */
78ab59fe 2438 err = indx_insert_entry(indx, ni, me, ctx, fnd, 0);
195c52bd 2439 kfree(me);
82cae269
KK
2440 if (err)
2441 goto out;
2442
2443 if (trim_bit != -1)
2444 indx_shrink(indx, ni, trim_bit);
2445 } else {
2446 /*
2447 * This tree needs to be collapsed down to an empty root.
e8b8e97f
KA
2448 * Recreate the index root as an empty leaf and free all
2449 * the bits the index allocation bitmap.
82cae269
KK
2450 */
2451 fnd_clear(fnd);
2452 fnd_clear(fnd2);
2453
2454 in = &s_index_names[indx->type];
2455
2456 err = attr_set_size(ni, ATTR_ALLOC, in->name, in->name_len,
2457 &indx->alloc_run, 0, NULL, false, NULL);
2458 err = ni_remove_attr(ni, ATTR_ALLOC, in->name, in->name_len,
2459 false, NULL);
2460 run_close(&indx->alloc_run);
2461
2462 err = attr_set_size(ni, ATTR_BITMAP, in->name, in->name_len,
2463 &indx->bitmap_run, 0, NULL, false, NULL);
2464 err = ni_remove_attr(ni, ATTR_BITMAP, in->name, in->name_len,
2465 false, NULL);
2466 run_close(&indx->bitmap_run);
2467
2468 root = indx_get_root(indx, ni, &attr, &mi);
2469 if (!root) {
2470 err = -EINVAL;
2471 goto out;
2472 }
2473
2474 root_size = le32_to_cpu(attr->res.data_size);
2475 new_root_size =
2476 sizeof(struct INDEX_ROOT) + sizeof(struct NTFS_DE);
2477
2478 if (new_root_size != root_size &&
2479 !mi_resize_attr(mi, attr, new_root_size - root_size)) {
2480 err = -EINVAL;
2481 goto out;
2482 }
2483
e8b8e97f 2484 /* Fill first entry. */
82cae269
KK
2485 e = (struct NTFS_DE *)(root + 1);
2486 e->ref.low = 0;
2487 e->ref.high = 0;
2488 e->ref.seq = 0;
2489 e->size = cpu_to_le16(sizeof(struct NTFS_DE));
2490 e->flags = NTFS_IE_LAST; // 0x02
2491 e->key_size = 0;
2492 e->res = 0;
2493
2494 hdr = &root->ihdr;
2495 hdr->flags = 0;
2496 hdr->used = hdr->total = cpu_to_le32(
2497 new_root_size - offsetof(struct INDEX_ROOT, ihdr));
2498 mi->dirty = true;
2499 }
2500
2501out:
2502 fnd_put(fnd2);
2503out1:
2504 fnd_put(fnd);
2505out2:
2506 return err;
2507}
2508
2509/*
2510 * Update duplicated information in directory entry
2511 * 'dup' - info from MFT record
2512 */
2513int indx_update_dup(struct ntfs_inode *ni, struct ntfs_sb_info *sbi,
2514 const struct ATTR_FILE_NAME *fname,
2515 const struct NTFS_DUP_INFO *dup, int sync)
2516{
2517 int err, diff;
2518 struct NTFS_DE *e = NULL;
2519 struct ATTR_FILE_NAME *e_fname;
2520 struct ntfs_fnd *fnd;
2521 struct INDEX_ROOT *root;
2522 struct mft_inode *mi;
2523 struct ntfs_index *indx = &ni->dir;
2524
2525 fnd = fnd_get();
78ab59fe
KK
2526 if (!fnd)
2527 return -ENOMEM;
82cae269
KK
2528
2529 root = indx_get_root(indx, ni, NULL, &mi);
2530 if (!root) {
2531 err = -EINVAL;
2532 goto out;
2533 }
2534
e8b8e97f 2535 /* Find entry in directory. */
82cae269
KK
2536 err = indx_find(indx, ni, root, fname, fname_full_size(fname), sbi,
2537 &diff, &e, fnd);
2538 if (err)
2539 goto out;
2540
2541 if (!e) {
2542 err = -EINVAL;
2543 goto out;
2544 }
2545
2546 if (diff) {
2547 err = -EINVAL;
2548 goto out;
2549 }
2550
2551 e_fname = (struct ATTR_FILE_NAME *)(e + 1);
2552
2553 if (!memcmp(&e_fname->dup, dup, sizeof(*dup))) {
d3624466
KK
2554 /*
2555 * Nothing to update in index! Try to avoid this call.
2556 */
82cae269
KK
2557 goto out;
2558 }
2559
2560 memcpy(&e_fname->dup, dup, sizeof(*dup));
2561
2562 if (fnd->level) {
d3624466 2563 /* Directory entry in index. */
82cae269
KK
2564 err = indx_write(indx, ni, fnd->nodes[fnd->level - 1], sync);
2565 } else {
d3624466 2566 /* Directory entry in directory MFT record. */
82cae269
KK
2567 mi->dirty = true;
2568 if (sync)
2569 err = mi_write(mi, 1);
2570 else
2571 mark_inode_dirty(&ni->vfs_inode);
2572 }
2573
2574out:
2575 fnd_put(fnd);
82cae269
KK
2576 return err;
2577}