]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ocfs2/alloc.c
ocfs2: Validate metadata only when it's read from disk.
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / alloc.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
60b11392 30#include <linux/swap.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_DISK_ALLOC
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
60b11392 38#include "aops.h"
ccd979bd
MF
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "inode.h"
42#include "journal.h"
43#include "localalloc.h"
44#include "suballoc.h"
45#include "sysfile.h"
46#include "file.h"
47#include "super.h"
48#include "uptodate.h"
49
50#include "buffer_head_io.h"
51
e7d4cb6b 52
1625f8ac
JB
53/*
54 * Operations for a specific extent tree type.
55 *
56 * To implement an on-disk btree (extent tree) type in ocfs2, add
57 * an ocfs2_extent_tree_operations structure and the matching
8d6220d6 58 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
1625f8ac
JB
59 * for the allocation portion of the extent tree.
60 */
e7d4cb6b 61struct ocfs2_extent_tree_operations {
1625f8ac
JB
62 /*
63 * last_eb_blk is the block number of the right most leaf extent
64 * block. Most on-disk structures containing an extent tree store
65 * this value for fast access. The ->eo_set_last_eb_blk() and
66 * ->eo_get_last_eb_blk() operations access this value. They are
67 * both required.
68 */
35dc0aa3
JB
69 void (*eo_set_last_eb_blk)(struct ocfs2_extent_tree *et,
70 u64 blkno);
71 u64 (*eo_get_last_eb_blk)(struct ocfs2_extent_tree *et);
1625f8ac
JB
72
73 /*
74 * The on-disk structure usually keeps track of how many total
75 * clusters are stored in this extent tree. This function updates
76 * that value. new_clusters is the delta, and must be
77 * added to the total. Required.
78 */
35dc0aa3
JB
79 void (*eo_update_clusters)(struct inode *inode,
80 struct ocfs2_extent_tree *et,
81 u32 new_clusters);
1625f8ac
JB
82
83 /*
84 * If ->eo_insert_check() exists, it is called before rec is
85 * inserted into the extent tree. It is optional.
86 */
1e61ee79
JB
87 int (*eo_insert_check)(struct inode *inode,
88 struct ocfs2_extent_tree *et,
89 struct ocfs2_extent_rec *rec);
35dc0aa3 90 int (*eo_sanity_check)(struct inode *inode, struct ocfs2_extent_tree *et);
0ce1010f 91
1625f8ac
JB
92 /*
93 * --------------------------------------------------------------
94 * The remaining are internal to ocfs2_extent_tree and don't have
95 * accessor functions
96 */
97
98 /*
99 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
100 * It is required.
101 */
0ce1010f 102 void (*eo_fill_root_el)(struct ocfs2_extent_tree *et);
1625f8ac
JB
103
104 /*
105 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
106 * it exists. If it does not, et->et_max_leaf_clusters is set
107 * to 0 (unlimited). Optional.
108 */
943cced3
JB
109 void (*eo_fill_max_leaf_clusters)(struct inode *inode,
110 struct ocfs2_extent_tree *et);
e7d4cb6b
TM
111};
112
e7d4cb6b 113
f99b9b7c
JB
114/*
115 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
116 * in the methods.
117 */
118static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et);
119static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
120 u64 blkno);
121static void ocfs2_dinode_update_clusters(struct inode *inode,
122 struct ocfs2_extent_tree *et,
123 u32 clusters);
124static int ocfs2_dinode_insert_check(struct inode *inode,
125 struct ocfs2_extent_tree *et,
126 struct ocfs2_extent_rec *rec);
127static int ocfs2_dinode_sanity_check(struct inode *inode,
128 struct ocfs2_extent_tree *et);
129static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et);
130static struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops = {
131 .eo_set_last_eb_blk = ocfs2_dinode_set_last_eb_blk,
132 .eo_get_last_eb_blk = ocfs2_dinode_get_last_eb_blk,
133 .eo_update_clusters = ocfs2_dinode_update_clusters,
134 .eo_insert_check = ocfs2_dinode_insert_check,
135 .eo_sanity_check = ocfs2_dinode_sanity_check,
136 .eo_fill_root_el = ocfs2_dinode_fill_root_el,
137};
0ce1010f 138
e7d4cb6b
TM
139static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree *et,
140 u64 blkno)
141{
ea5efa15 142 struct ocfs2_dinode *di = et->et_object;
e7d4cb6b 143
f99b9b7c 144 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
e7d4cb6b
TM
145 di->i_last_eb_blk = cpu_to_le64(blkno);
146}
147
148static u64 ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree *et)
149{
ea5efa15 150 struct ocfs2_dinode *di = et->et_object;
e7d4cb6b 151
f99b9b7c 152 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
e7d4cb6b
TM
153 return le64_to_cpu(di->i_last_eb_blk);
154}
155
156static void ocfs2_dinode_update_clusters(struct inode *inode,
157 struct ocfs2_extent_tree *et,
158 u32 clusters)
159{
ea5efa15 160 struct ocfs2_dinode *di = et->et_object;
e7d4cb6b
TM
161
162 le32_add_cpu(&di->i_clusters, clusters);
163 spin_lock(&OCFS2_I(inode)->ip_lock);
164 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
165 spin_unlock(&OCFS2_I(inode)->ip_lock);
166}
167
1e61ee79
JB
168static int ocfs2_dinode_insert_check(struct inode *inode,
169 struct ocfs2_extent_tree *et,
170 struct ocfs2_extent_rec *rec)
171{
172 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
173
174 BUG_ON(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
175 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
176 (OCFS2_I(inode)->ip_clusters != rec->e_cpos),
177 "Device %s, asking for sparse allocation: inode %llu, "
178 "cpos %u, clusters %u\n",
179 osb->dev_str,
180 (unsigned long long)OCFS2_I(inode)->ip_blkno,
181 rec->e_cpos,
182 OCFS2_I(inode)->ip_clusters);
183
184 return 0;
185}
186
e7d4cb6b
TM
187static int ocfs2_dinode_sanity_check(struct inode *inode,
188 struct ocfs2_extent_tree *et)
189{
10995aa2 190 struct ocfs2_dinode *di = et->et_object;
e7d4cb6b 191
f99b9b7c 192 BUG_ON(et->et_ops != &ocfs2_dinode_et_ops);
10995aa2 193 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
e7d4cb6b 194
10995aa2 195 return 0;
e7d4cb6b
TM
196}
197
f99b9b7c
JB
198static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree *et)
199{
200 struct ocfs2_dinode *di = et->et_object;
201
202 et->et_root_el = &di->id2.i_list;
203}
204
e7d4cb6b 205
0ce1010f
JB
206static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree *et)
207{
208 struct ocfs2_xattr_value_root *xv = et->et_object;
209
210 et->et_root_el = &xv->xr_list;
211}
212
f56654c4
TM
213static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree *et,
214 u64 blkno)
215{
216 struct ocfs2_xattr_value_root *xv =
ea5efa15 217 (struct ocfs2_xattr_value_root *)et->et_object;
f56654c4
TM
218
219 xv->xr_last_eb_blk = cpu_to_le64(blkno);
220}
221
222static u64 ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree *et)
223{
224 struct ocfs2_xattr_value_root *xv =
ea5efa15 225 (struct ocfs2_xattr_value_root *) et->et_object;
f56654c4
TM
226
227 return le64_to_cpu(xv->xr_last_eb_blk);
228}
229
230static void ocfs2_xattr_value_update_clusters(struct inode *inode,
231 struct ocfs2_extent_tree *et,
232 u32 clusters)
233{
234 struct ocfs2_xattr_value_root *xv =
ea5efa15 235 (struct ocfs2_xattr_value_root *)et->et_object;
f56654c4
TM
236
237 le32_add_cpu(&xv->xr_clusters, clusters);
238}
239
1a09f556 240static struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops = {
35dc0aa3
JB
241 .eo_set_last_eb_blk = ocfs2_xattr_value_set_last_eb_blk,
242 .eo_get_last_eb_blk = ocfs2_xattr_value_get_last_eb_blk,
243 .eo_update_clusters = ocfs2_xattr_value_update_clusters,
0ce1010f 244 .eo_fill_root_el = ocfs2_xattr_value_fill_root_el,
f56654c4
TM
245};
246
0ce1010f
JB
247static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree *et)
248{
249 struct ocfs2_xattr_block *xb = et->et_object;
250
251 et->et_root_el = &xb->xb_attrs.xb_root.xt_list;
252}
253
943cced3
JB
254static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct inode *inode,
255 struct ocfs2_extent_tree *et)
256{
257 et->et_max_leaf_clusters =
258 ocfs2_clusters_for_bytes(inode->i_sb,
259 OCFS2_MAX_XATTR_TREE_LEAF_SIZE);
260}
261
ba492615
TM
262static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree *et,
263 u64 blkno)
264{
ea5efa15 265 struct ocfs2_xattr_block *xb = et->et_object;
ba492615
TM
266 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
267
268 xt->xt_last_eb_blk = cpu_to_le64(blkno);
269}
270
271static u64 ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree *et)
272{
ea5efa15 273 struct ocfs2_xattr_block *xb = et->et_object;
ba492615
TM
274 struct ocfs2_xattr_tree_root *xt = &xb->xb_attrs.xb_root;
275
276 return le64_to_cpu(xt->xt_last_eb_blk);
277}
278
279static void ocfs2_xattr_tree_update_clusters(struct inode *inode,
280 struct ocfs2_extent_tree *et,
281 u32 clusters)
282{
ea5efa15 283 struct ocfs2_xattr_block *xb = et->et_object;
ba492615
TM
284
285 le32_add_cpu(&xb->xb_attrs.xb_root.xt_clusters, clusters);
286}
287
ba492615 288static struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops = {
35dc0aa3
JB
289 .eo_set_last_eb_blk = ocfs2_xattr_tree_set_last_eb_blk,
290 .eo_get_last_eb_blk = ocfs2_xattr_tree_get_last_eb_blk,
291 .eo_update_clusters = ocfs2_xattr_tree_update_clusters,
0ce1010f 292 .eo_fill_root_el = ocfs2_xattr_tree_fill_root_el,
943cced3 293 .eo_fill_max_leaf_clusters = ocfs2_xattr_tree_fill_max_leaf_clusters,
ba492615
TM
294};
295
8d6220d6
JB
296static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree *et,
297 struct inode *inode,
298 struct buffer_head *bh,
299 void *obj,
300 struct ocfs2_extent_tree_operations *ops)
e7d4cb6b 301{
1a09f556 302 et->et_ops = ops;
ce1d9ea6 303 et->et_root_bh = bh;
ea5efa15
JB
304 if (!obj)
305 obj = (void *)bh->b_data;
306 et->et_object = obj;
e7d4cb6b 307
0ce1010f 308 et->et_ops->eo_fill_root_el(et);
943cced3
JB
309 if (!et->et_ops->eo_fill_max_leaf_clusters)
310 et->et_max_leaf_clusters = 0;
311 else
312 et->et_ops->eo_fill_max_leaf_clusters(inode, et);
e7d4cb6b
TM
313}
314
8d6220d6
JB
315void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree *et,
316 struct inode *inode,
317 struct buffer_head *bh)
1a09f556 318{
8d6220d6 319 __ocfs2_init_extent_tree(et, inode, bh, NULL, &ocfs2_dinode_et_ops);
1a09f556
JB
320}
321
8d6220d6 322void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree *et,
f99b9b7c 323 struct inode *inode,
8d6220d6 324 struct buffer_head *bh)
1a09f556 325{
8d6220d6
JB
326 __ocfs2_init_extent_tree(et, inode, bh, NULL,
327 &ocfs2_xattr_tree_et_ops);
1a09f556
JB
328}
329
8d6220d6
JB
330void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree *et,
331 struct inode *inode,
332 struct buffer_head *bh,
333 struct ocfs2_xattr_value_root *xv)
e7d4cb6b 334{
8d6220d6
JB
335 __ocfs2_init_extent_tree(et, inode, bh, xv,
336 &ocfs2_xattr_value_et_ops);
e7d4cb6b
TM
337}
338
35dc0aa3
JB
339static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree *et,
340 u64 new_last_eb_blk)
e7d4cb6b 341{
ce1d9ea6 342 et->et_ops->eo_set_last_eb_blk(et, new_last_eb_blk);
e7d4cb6b
TM
343}
344
35dc0aa3 345static inline u64 ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree *et)
e7d4cb6b 346{
ce1d9ea6 347 return et->et_ops->eo_get_last_eb_blk(et);
e7d4cb6b
TM
348}
349
35dc0aa3
JB
350static inline void ocfs2_et_update_clusters(struct inode *inode,
351 struct ocfs2_extent_tree *et,
352 u32 clusters)
353{
ce1d9ea6 354 et->et_ops->eo_update_clusters(inode, et, clusters);
35dc0aa3
JB
355}
356
1e61ee79
JB
357static inline int ocfs2_et_insert_check(struct inode *inode,
358 struct ocfs2_extent_tree *et,
359 struct ocfs2_extent_rec *rec)
360{
361 int ret = 0;
362
363 if (et->et_ops->eo_insert_check)
364 ret = et->et_ops->eo_insert_check(inode, et, rec);
365 return ret;
366}
367
35dc0aa3
JB
368static inline int ocfs2_et_sanity_check(struct inode *inode,
369 struct ocfs2_extent_tree *et)
e7d4cb6b 370{
1e61ee79
JB
371 int ret = 0;
372
373 if (et->et_ops->eo_sanity_check)
374 ret = et->et_ops->eo_sanity_check(inode, et);
375 return ret;
e7d4cb6b
TM
376}
377
dcd0538f 378static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
59a5e416
MF
379static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
380 struct ocfs2_extent_block *eb);
ccd979bd 381
dcd0538f
MF
382/*
383 * Structures which describe a path through a btree, and functions to
384 * manipulate them.
385 *
386 * The idea here is to be as generic as possible with the tree
387 * manipulation code.
388 */
389struct ocfs2_path_item {
390 struct buffer_head *bh;
391 struct ocfs2_extent_list *el;
392};
ccd979bd 393
dcd0538f 394#define OCFS2_MAX_PATH_DEPTH 5
ccd979bd 395
dcd0538f
MF
396struct ocfs2_path {
397 int p_tree_depth;
398 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
399};
ccd979bd 400
dcd0538f
MF
401#define path_root_bh(_path) ((_path)->p_node[0].bh)
402#define path_root_el(_path) ((_path)->p_node[0].el)
403#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
404#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
405#define path_num_items(_path) ((_path)->p_tree_depth + 1)
ccd979bd 406
dcd0538f
MF
407/*
408 * Reset the actual path elements so that we can re-use the structure
409 * to build another path. Generally, this involves freeing the buffer
410 * heads.
411 */
412static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
413{
414 int i, start = 0, depth = 0;
415 struct ocfs2_path_item *node;
ccd979bd 416
dcd0538f
MF
417 if (keep_root)
418 start = 1;
ccd979bd 419
dcd0538f
MF
420 for(i = start; i < path_num_items(path); i++) {
421 node = &path->p_node[i];
422
423 brelse(node->bh);
424 node->bh = NULL;
425 node->el = NULL;
426 }
427
428 /*
429 * Tree depth may change during truncate, or insert. If we're
430 * keeping the root extent list, then make sure that our path
431 * structure reflects the proper depth.
432 */
433 if (keep_root)
434 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
435
436 path->p_tree_depth = depth;
437}
438
439static void ocfs2_free_path(struct ocfs2_path *path)
440{
441 if (path) {
442 ocfs2_reinit_path(path, 0);
443 kfree(path);
444 }
445}
446
328d5752
MF
447/*
448 * All the elements of src into dest. After this call, src could be freed
449 * without affecting dest.
450 *
451 * Both paths should have the same root. Any non-root elements of dest
452 * will be freed.
453 */
454static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
455{
456 int i;
457
458 BUG_ON(path_root_bh(dest) != path_root_bh(src));
459 BUG_ON(path_root_el(dest) != path_root_el(src));
460
461 ocfs2_reinit_path(dest, 1);
462
463 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
464 dest->p_node[i].bh = src->p_node[i].bh;
465 dest->p_node[i].el = src->p_node[i].el;
466
467 if (dest->p_node[i].bh)
468 get_bh(dest->p_node[i].bh);
469 }
470}
471
dcd0538f
MF
472/*
473 * Make the *dest path the same as src and re-initialize src path to
474 * have a root only.
475 */
476static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
477{
478 int i;
479
480 BUG_ON(path_root_bh(dest) != path_root_bh(src));
481
482 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
483 brelse(dest->p_node[i].bh);
484
485 dest->p_node[i].bh = src->p_node[i].bh;
486 dest->p_node[i].el = src->p_node[i].el;
487
488 src->p_node[i].bh = NULL;
489 src->p_node[i].el = NULL;
490 }
491}
492
493/*
494 * Insert an extent block at given index.
495 *
496 * This will not take an additional reference on eb_bh.
497 */
498static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
499 struct buffer_head *eb_bh)
500{
501 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
502
503 /*
504 * Right now, no root bh is an extent block, so this helps
505 * catch code errors with dinode trees. The assertion can be
506 * safely removed if we ever need to insert extent block
507 * structures at the root.
508 */
509 BUG_ON(index == 0);
510
511 path->p_node[index].bh = eb_bh;
512 path->p_node[index].el = &eb->h_list;
513}
514
515static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
516 struct ocfs2_extent_list *root_el)
517{
518 struct ocfs2_path *path;
ccd979bd 519
dcd0538f
MF
520 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
521
522 path = kzalloc(sizeof(*path), GFP_NOFS);
523 if (path) {
524 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
525 get_bh(root_bh);
526 path_root_bh(path) = root_bh;
527 path_root_el(path) = root_el;
528 }
529
530 return path;
531}
532
dcd0538f
MF
533/*
534 * Convenience function to journal all components in a path.
535 */
536static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
537 struct ocfs2_path *path)
538{
539 int i, ret = 0;
540
541 if (!path)
542 goto out;
543
544 for(i = 0; i < path_num_items(path); i++) {
545 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
546 OCFS2_JOURNAL_ACCESS_WRITE);
547 if (ret < 0) {
548 mlog_errno(ret);
549 goto out;
550 }
551 }
552
553out:
554 return ret;
555}
556
328d5752
MF
557/*
558 * Return the index of the extent record which contains cluster #v_cluster.
559 * -1 is returned if it was not found.
560 *
561 * Should work fine on interior and exterior nodes.
562 */
563int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
564{
565 int ret = -1;
566 int i;
567 struct ocfs2_extent_rec *rec;
568 u32 rec_end, rec_start, clusters;
569
570 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
571 rec = &el->l_recs[i];
572
573 rec_start = le32_to_cpu(rec->e_cpos);
574 clusters = ocfs2_rec_clusters(el, rec);
575
576 rec_end = rec_start + clusters;
577
578 if (v_cluster >= rec_start && v_cluster < rec_end) {
579 ret = i;
580 break;
581 }
582 }
583
584 return ret;
585}
586
dcd0538f
MF
587enum ocfs2_contig_type {
588 CONTIG_NONE = 0,
589 CONTIG_LEFT,
328d5752
MF
590 CONTIG_RIGHT,
591 CONTIG_LEFTRIGHT,
dcd0538f
MF
592};
593
e48edee2
MF
594
595/*
596 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
597 * ocfs2_extent_contig only work properly against leaf nodes!
598 */
dcd0538f
MF
599static int ocfs2_block_extent_contig(struct super_block *sb,
600 struct ocfs2_extent_rec *ext,
601 u64 blkno)
ccd979bd 602{
e48edee2
MF
603 u64 blk_end = le64_to_cpu(ext->e_blkno);
604
605 blk_end += ocfs2_clusters_to_blocks(sb,
606 le16_to_cpu(ext->e_leaf_clusters));
607
608 return blkno == blk_end;
ccd979bd
MF
609}
610
dcd0538f
MF
611static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
612 struct ocfs2_extent_rec *right)
613{
e48edee2
MF
614 u32 left_range;
615
616 left_range = le32_to_cpu(left->e_cpos) +
617 le16_to_cpu(left->e_leaf_clusters);
618
619 return (left_range == le32_to_cpu(right->e_cpos));
dcd0538f
MF
620}
621
622static enum ocfs2_contig_type
623 ocfs2_extent_contig(struct inode *inode,
624 struct ocfs2_extent_rec *ext,
625 struct ocfs2_extent_rec *insert_rec)
626{
627 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
628
328d5752
MF
629 /*
630 * Refuse to coalesce extent records with different flag
631 * fields - we don't want to mix unwritten extents with user
632 * data.
633 */
634 if (ext->e_flags != insert_rec->e_flags)
635 return CONTIG_NONE;
636
dcd0538f
MF
637 if (ocfs2_extents_adjacent(ext, insert_rec) &&
638 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
639 return CONTIG_RIGHT;
640
641 blkno = le64_to_cpu(ext->e_blkno);
642 if (ocfs2_extents_adjacent(insert_rec, ext) &&
643 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
644 return CONTIG_LEFT;
645
646 return CONTIG_NONE;
647}
648
649/*
650 * NOTE: We can have pretty much any combination of contiguousness and
651 * appending.
652 *
653 * The usefulness of APPEND_TAIL is more in that it lets us know that
654 * we'll have to update the path to that leaf.
655 */
656enum ocfs2_append_type {
657 APPEND_NONE = 0,
658 APPEND_TAIL,
659};
660
328d5752
MF
661enum ocfs2_split_type {
662 SPLIT_NONE = 0,
663 SPLIT_LEFT,
664 SPLIT_RIGHT,
665};
666
dcd0538f 667struct ocfs2_insert_type {
328d5752 668 enum ocfs2_split_type ins_split;
dcd0538f
MF
669 enum ocfs2_append_type ins_appending;
670 enum ocfs2_contig_type ins_contig;
671 int ins_contig_index;
dcd0538f
MF
672 int ins_tree_depth;
673};
674
328d5752
MF
675struct ocfs2_merge_ctxt {
676 enum ocfs2_contig_type c_contig_type;
677 int c_has_empty_extent;
678 int c_split_covers_rec;
328d5752
MF
679};
680
5e96581a
JB
681static int ocfs2_validate_extent_block(struct super_block *sb,
682 struct buffer_head *bh)
683{
684 struct ocfs2_extent_block *eb =
685 (struct ocfs2_extent_block *)bh->b_data;
686
970e4936
JB
687 mlog(0, "Validating extent block %llu\n",
688 (unsigned long long)bh->b_blocknr);
689
5e96581a
JB
690 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
691 ocfs2_error(sb,
692 "Extent block #%llu has bad signature %.*s",
693 (unsigned long long)bh->b_blocknr, 7,
694 eb->h_signature);
695 return -EINVAL;
696 }
697
698 if (le64_to_cpu(eb->h_blkno) != bh->b_blocknr) {
699 ocfs2_error(sb,
700 "Extent block #%llu has an invalid h_blkno "
701 "of %llu",
702 (unsigned long long)bh->b_blocknr,
703 (unsigned long long)le64_to_cpu(eb->h_blkno));
704 return -EINVAL;
705 }
706
707 if (le32_to_cpu(eb->h_fs_generation) != OCFS2_SB(sb)->fs_generation) {
708 ocfs2_error(sb,
709 "Extent block #%llu has an invalid "
710 "h_fs_generation of #%u",
711 (unsigned long long)bh->b_blocknr,
712 le32_to_cpu(eb->h_fs_generation));
713 return -EINVAL;
714 }
715
716 return 0;
717}
718
719int ocfs2_read_extent_block(struct inode *inode, u64 eb_blkno,
720 struct buffer_head **bh)
721{
722 int rc;
723 struct buffer_head *tmp = *bh;
724
970e4936
JB
725 rc = ocfs2_read_block(inode, eb_blkno, &tmp,
726 ocfs2_validate_extent_block);
5e96581a
JB
727
728 /* If ocfs2_read_block() got us a new bh, pass it up. */
970e4936 729 if (!rc && !*bh)
5e96581a
JB
730 *bh = tmp;
731
5e96581a
JB
732 return rc;
733}
734
735
ccd979bd
MF
736/*
737 * How many free extents have we got before we need more meta data?
738 */
739int ocfs2_num_free_extents(struct ocfs2_super *osb,
740 struct inode *inode,
f99b9b7c 741 struct ocfs2_extent_tree *et)
ccd979bd
MF
742{
743 int retval;
e7d4cb6b 744 struct ocfs2_extent_list *el = NULL;
ccd979bd
MF
745 struct ocfs2_extent_block *eb;
746 struct buffer_head *eb_bh = NULL;
e7d4cb6b 747 u64 last_eb_blk = 0;
ccd979bd
MF
748
749 mlog_entry_void();
750
f99b9b7c
JB
751 el = et->et_root_el;
752 last_eb_blk = ocfs2_et_get_last_eb_blk(et);
ccd979bd 753
e7d4cb6b 754 if (last_eb_blk) {
5e96581a 755 retval = ocfs2_read_extent_block(inode, last_eb_blk, &eb_bh);
ccd979bd
MF
756 if (retval < 0) {
757 mlog_errno(retval);
758 goto bail;
759 }
760 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
761 el = &eb->h_list;
e7d4cb6b 762 }
ccd979bd
MF
763
764 BUG_ON(el->l_tree_depth != 0);
765
766 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
767bail:
a81cb88b 768 brelse(eb_bh);
ccd979bd
MF
769
770 mlog_exit(retval);
771 return retval;
772}
773
774/* expects array to already be allocated
775 *
776 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
777 * l_count for you
778 */
779static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
1fabe148 780 handle_t *handle,
ccd979bd
MF
781 struct inode *inode,
782 int wanted,
783 struct ocfs2_alloc_context *meta_ac,
784 struct buffer_head *bhs[])
785{
786 int count, status, i;
787 u16 suballoc_bit_start;
788 u32 num_got;
789 u64 first_blkno;
790 struct ocfs2_extent_block *eb;
791
792 mlog_entry_void();
793
794 count = 0;
795 while (count < wanted) {
796 status = ocfs2_claim_metadata(osb,
797 handle,
798 meta_ac,
799 wanted - count,
800 &suballoc_bit_start,
801 &num_got,
802 &first_blkno);
803 if (status < 0) {
804 mlog_errno(status);
805 goto bail;
806 }
807
808 for(i = count; i < (num_got + count); i++) {
809 bhs[i] = sb_getblk(osb->sb, first_blkno);
810 if (bhs[i] == NULL) {
811 status = -EIO;
812 mlog_errno(status);
813 goto bail;
814 }
815 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
816
817 status = ocfs2_journal_access(handle, inode, bhs[i],
818 OCFS2_JOURNAL_ACCESS_CREATE);
819 if (status < 0) {
820 mlog_errno(status);
821 goto bail;
822 }
823
824 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
825 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
826 /* Ok, setup the minimal stuff here. */
827 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
828 eb->h_blkno = cpu_to_le64(first_blkno);
829 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
ccd979bd 830 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
ccd979bd
MF
831 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
832 eb->h_list.l_count =
833 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
834
835 suballoc_bit_start++;
836 first_blkno++;
837
838 /* We'll also be dirtied by the caller, so
839 * this isn't absolutely necessary. */
840 status = ocfs2_journal_dirty(handle, bhs[i]);
841 if (status < 0) {
842 mlog_errno(status);
843 goto bail;
844 }
845 }
846
847 count += num_got;
848 }
849
850 status = 0;
851bail:
852 if (status < 0) {
853 for(i = 0; i < wanted; i++) {
a81cb88b 854 brelse(bhs[i]);
ccd979bd
MF
855 bhs[i] = NULL;
856 }
857 }
858 mlog_exit(status);
859 return status;
860}
861
dcd0538f
MF
862/*
863 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
864 *
865 * Returns the sum of the rightmost extent rec logical offset and
866 * cluster count.
867 *
868 * ocfs2_add_branch() uses this to determine what logical cluster
869 * value should be populated into the leftmost new branch records.
870 *
871 * ocfs2_shift_tree_depth() uses this to determine the # clusters
872 * value for the new topmost tree record.
873 */
874static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
875{
876 int i;
877
878 i = le16_to_cpu(el->l_next_free_rec) - 1;
879
880 return le32_to_cpu(el->l_recs[i].e_cpos) +
e48edee2 881 ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f
MF
882}
883
ccd979bd
MF
884/*
885 * Add an entire tree branch to our inode. eb_bh is the extent block
886 * to start at, if we don't want to start the branch at the dinode
887 * structure.
888 *
889 * last_eb_bh is required as we have to update it's next_leaf pointer
890 * for the new last extent block.
891 *
892 * the new branch will be 'empty' in the sense that every block will
e48edee2 893 * contain a single record with cluster count == 0.
ccd979bd
MF
894 */
895static int ocfs2_add_branch(struct ocfs2_super *osb,
1fabe148 896 handle_t *handle,
ccd979bd 897 struct inode *inode,
e7d4cb6b 898 struct ocfs2_extent_tree *et,
ccd979bd 899 struct buffer_head *eb_bh,
328d5752 900 struct buffer_head **last_eb_bh,
ccd979bd
MF
901 struct ocfs2_alloc_context *meta_ac)
902{
903 int status, new_blocks, i;
904 u64 next_blkno, new_last_eb_blk;
905 struct buffer_head *bh;
906 struct buffer_head **new_eb_bhs = NULL;
ccd979bd
MF
907 struct ocfs2_extent_block *eb;
908 struct ocfs2_extent_list *eb_el;
909 struct ocfs2_extent_list *el;
dcd0538f 910 u32 new_cpos;
ccd979bd
MF
911
912 mlog_entry_void();
913
328d5752 914 BUG_ON(!last_eb_bh || !*last_eb_bh);
ccd979bd 915
ccd979bd
MF
916 if (eb_bh) {
917 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
918 el = &eb->h_list;
919 } else
ce1d9ea6 920 el = et->et_root_el;
ccd979bd
MF
921
922 /* we never add a branch to a leaf. */
923 BUG_ON(!el->l_tree_depth);
924
925 new_blocks = le16_to_cpu(el->l_tree_depth);
926
927 /* allocate the number of new eb blocks we need */
928 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
929 GFP_KERNEL);
930 if (!new_eb_bhs) {
931 status = -ENOMEM;
932 mlog_errno(status);
933 goto bail;
934 }
935
936 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
937 meta_ac, new_eb_bhs);
938 if (status < 0) {
939 mlog_errno(status);
940 goto bail;
941 }
942
328d5752 943 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
dcd0538f
MF
944 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
945
ccd979bd
MF
946 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
947 * linked with the rest of the tree.
948 * conversly, new_eb_bhs[0] is the new bottommost leaf.
949 *
950 * when we leave the loop, new_last_eb_blk will point to the
951 * newest leaf, and next_blkno will point to the topmost extent
952 * block. */
953 next_blkno = new_last_eb_blk = 0;
954 for(i = 0; i < new_blocks; i++) {
955 bh = new_eb_bhs[i];
956 eb = (struct ocfs2_extent_block *) bh->b_data;
5e96581a
JB
957 /* ocfs2_create_new_meta_bhs() should create it right! */
958 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
ccd979bd
MF
959 eb_el = &eb->h_list;
960
961 status = ocfs2_journal_access(handle, inode, bh,
962 OCFS2_JOURNAL_ACCESS_CREATE);
963 if (status < 0) {
964 mlog_errno(status);
965 goto bail;
966 }
967
968 eb->h_next_leaf_blk = 0;
969 eb_el->l_tree_depth = cpu_to_le16(i);
970 eb_el->l_next_free_rec = cpu_to_le16(1);
dcd0538f
MF
971 /*
972 * This actually counts as an empty extent as
973 * c_clusters == 0
974 */
975 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
ccd979bd 976 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
e48edee2
MF
977 /*
978 * eb_el isn't always an interior node, but even leaf
979 * nodes want a zero'd flags and reserved field so
980 * this gets the whole 32 bits regardless of use.
981 */
982 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
ccd979bd
MF
983 if (!eb_el->l_tree_depth)
984 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
985
986 status = ocfs2_journal_dirty(handle, bh);
987 if (status < 0) {
988 mlog_errno(status);
989 goto bail;
990 }
991
992 next_blkno = le64_to_cpu(eb->h_blkno);
993 }
994
995 /* This is a bit hairy. We want to update up to three blocks
996 * here without leaving any of them in an inconsistent state
997 * in case of error. We don't have to worry about
998 * journal_dirty erroring as it won't unless we've aborted the
999 * handle (in which case we would never be here) so reserving
1000 * the write with journal_access is all we need to do. */
328d5752 1001 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
ccd979bd
MF
1002 OCFS2_JOURNAL_ACCESS_WRITE);
1003 if (status < 0) {
1004 mlog_errno(status);
1005 goto bail;
1006 }
ce1d9ea6 1007 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
ccd979bd
MF
1008 OCFS2_JOURNAL_ACCESS_WRITE);
1009 if (status < 0) {
1010 mlog_errno(status);
1011 goto bail;
1012 }
1013 if (eb_bh) {
1014 status = ocfs2_journal_access(handle, inode, eb_bh,
1015 OCFS2_JOURNAL_ACCESS_WRITE);
1016 if (status < 0) {
1017 mlog_errno(status);
1018 goto bail;
1019 }
1020 }
1021
1022 /* Link the new branch into the rest of the tree (el will
e7d4cb6b 1023 * either be on the root_bh, or the extent block passed in. */
ccd979bd
MF
1024 i = le16_to_cpu(el->l_next_free_rec);
1025 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
dcd0538f 1026 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
e48edee2 1027 el->l_recs[i].e_int_clusters = 0;
ccd979bd
MF
1028 le16_add_cpu(&el->l_next_free_rec, 1);
1029
1030 /* fe needs a new last extent block pointer, as does the
1031 * next_leaf on the previously last-extent-block. */
35dc0aa3 1032 ocfs2_et_set_last_eb_blk(et, new_last_eb_blk);
ccd979bd 1033
328d5752 1034 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
ccd979bd
MF
1035 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
1036
328d5752 1037 status = ocfs2_journal_dirty(handle, *last_eb_bh);
ccd979bd
MF
1038 if (status < 0)
1039 mlog_errno(status);
ce1d9ea6 1040 status = ocfs2_journal_dirty(handle, et->et_root_bh);
ccd979bd
MF
1041 if (status < 0)
1042 mlog_errno(status);
1043 if (eb_bh) {
1044 status = ocfs2_journal_dirty(handle, eb_bh);
1045 if (status < 0)
1046 mlog_errno(status);
1047 }
1048
328d5752
MF
1049 /*
1050 * Some callers want to track the rightmost leaf so pass it
1051 * back here.
1052 */
1053 brelse(*last_eb_bh);
1054 get_bh(new_eb_bhs[0]);
1055 *last_eb_bh = new_eb_bhs[0];
1056
ccd979bd
MF
1057 status = 0;
1058bail:
1059 if (new_eb_bhs) {
1060 for (i = 0; i < new_blocks; i++)
a81cb88b 1061 brelse(new_eb_bhs[i]);
ccd979bd
MF
1062 kfree(new_eb_bhs);
1063 }
1064
1065 mlog_exit(status);
1066 return status;
1067}
1068
1069/*
1070 * adds another level to the allocation tree.
1071 * returns back the new extent block so you can add a branch to it
1072 * after this call.
1073 */
1074static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1fabe148 1075 handle_t *handle,
ccd979bd 1076 struct inode *inode,
e7d4cb6b 1077 struct ocfs2_extent_tree *et,
ccd979bd
MF
1078 struct ocfs2_alloc_context *meta_ac,
1079 struct buffer_head **ret_new_eb_bh)
1080{
1081 int status, i;
dcd0538f 1082 u32 new_clusters;
ccd979bd 1083 struct buffer_head *new_eb_bh = NULL;
ccd979bd 1084 struct ocfs2_extent_block *eb;
e7d4cb6b 1085 struct ocfs2_extent_list *root_el;
ccd979bd
MF
1086 struct ocfs2_extent_list *eb_el;
1087
1088 mlog_entry_void();
1089
1090 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
1091 &new_eb_bh);
1092 if (status < 0) {
1093 mlog_errno(status);
1094 goto bail;
1095 }
1096
1097 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
5e96581a
JB
1098 /* ocfs2_create_new_meta_bhs() should create it right! */
1099 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
ccd979bd
MF
1100
1101 eb_el = &eb->h_list;
ce1d9ea6 1102 root_el = et->et_root_el;
ccd979bd
MF
1103
1104 status = ocfs2_journal_access(handle, inode, new_eb_bh,
1105 OCFS2_JOURNAL_ACCESS_CREATE);
1106 if (status < 0) {
1107 mlog_errno(status);
1108 goto bail;
1109 }
1110
e7d4cb6b
TM
1111 /* copy the root extent list data into the new extent block */
1112 eb_el->l_tree_depth = root_el->l_tree_depth;
1113 eb_el->l_next_free_rec = root_el->l_next_free_rec;
1114 for (i = 0; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1115 eb_el->l_recs[i] = root_el->l_recs[i];
ccd979bd
MF
1116
1117 status = ocfs2_journal_dirty(handle, new_eb_bh);
1118 if (status < 0) {
1119 mlog_errno(status);
1120 goto bail;
1121 }
1122
ce1d9ea6 1123 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
ccd979bd
MF
1124 OCFS2_JOURNAL_ACCESS_WRITE);
1125 if (status < 0) {
1126 mlog_errno(status);
1127 goto bail;
1128 }
1129
dcd0538f
MF
1130 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
1131
e7d4cb6b
TM
1132 /* update root_bh now */
1133 le16_add_cpu(&root_el->l_tree_depth, 1);
1134 root_el->l_recs[0].e_cpos = 0;
1135 root_el->l_recs[0].e_blkno = eb->h_blkno;
1136 root_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
1137 for (i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
1138 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
1139 root_el->l_next_free_rec = cpu_to_le16(1);
ccd979bd
MF
1140
1141 /* If this is our 1st tree depth shift, then last_eb_blk
1142 * becomes the allocated extent block */
e7d4cb6b 1143 if (root_el->l_tree_depth == cpu_to_le16(1))
35dc0aa3 1144 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
ccd979bd 1145
ce1d9ea6 1146 status = ocfs2_journal_dirty(handle, et->et_root_bh);
ccd979bd
MF
1147 if (status < 0) {
1148 mlog_errno(status);
1149 goto bail;
1150 }
1151
1152 *ret_new_eb_bh = new_eb_bh;
1153 new_eb_bh = NULL;
1154 status = 0;
1155bail:
a81cb88b 1156 brelse(new_eb_bh);
ccd979bd
MF
1157
1158 mlog_exit(status);
1159 return status;
1160}
1161
ccd979bd
MF
1162/*
1163 * Should only be called when there is no space left in any of the
1164 * leaf nodes. What we want to do is find the lowest tree depth
1165 * non-leaf extent block with room for new records. There are three
1166 * valid results of this search:
1167 *
1168 * 1) a lowest extent block is found, then we pass it back in
1169 * *lowest_eb_bh and return '0'
1170 *
e7d4cb6b 1171 * 2) the search fails to find anything, but the root_el has room. We
ccd979bd
MF
1172 * pass NULL back in *lowest_eb_bh, but still return '0'
1173 *
e7d4cb6b 1174 * 3) the search fails to find anything AND the root_el is full, in
ccd979bd
MF
1175 * which case we return > 0
1176 *
1177 * return status < 0 indicates an error.
1178 */
1179static int ocfs2_find_branch_target(struct ocfs2_super *osb,
1180 struct inode *inode,
e7d4cb6b 1181 struct ocfs2_extent_tree *et,
ccd979bd
MF
1182 struct buffer_head **target_bh)
1183{
1184 int status = 0, i;
1185 u64 blkno;
ccd979bd
MF
1186 struct ocfs2_extent_block *eb;
1187 struct ocfs2_extent_list *el;
1188 struct buffer_head *bh = NULL;
1189 struct buffer_head *lowest_bh = NULL;
1190
1191 mlog_entry_void();
1192
1193 *target_bh = NULL;
1194
ce1d9ea6 1195 el = et->et_root_el;
ccd979bd
MF
1196
1197 while(le16_to_cpu(el->l_tree_depth) > 1) {
1198 if (le16_to_cpu(el->l_next_free_rec) == 0) {
b0697053 1199 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
ccd979bd 1200 "extent list (next_free_rec == 0)",
b0697053 1201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
ccd979bd
MF
1202 status = -EIO;
1203 goto bail;
1204 }
1205 i = le16_to_cpu(el->l_next_free_rec) - 1;
1206 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1207 if (!blkno) {
b0697053 1208 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
ccd979bd
MF
1209 "list where extent # %d has no physical "
1210 "block start",
b0697053 1211 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
ccd979bd
MF
1212 status = -EIO;
1213 goto bail;
1214 }
1215
a81cb88b
MF
1216 brelse(bh);
1217 bh = NULL;
ccd979bd 1218
5e96581a 1219 status = ocfs2_read_extent_block(inode, blkno, &bh);
ccd979bd
MF
1220 if (status < 0) {
1221 mlog_errno(status);
1222 goto bail;
1223 }
dcd0538f
MF
1224
1225 eb = (struct ocfs2_extent_block *) bh->b_data;
dcd0538f
MF
1226 el = &eb->h_list;
1227
1228 if (le16_to_cpu(el->l_next_free_rec) <
1229 le16_to_cpu(el->l_count)) {
a81cb88b 1230 brelse(lowest_bh);
dcd0538f
MF
1231 lowest_bh = bh;
1232 get_bh(lowest_bh);
1233 }
1234 }
1235
1236 /* If we didn't find one and the fe doesn't have any room,
1237 * then return '1' */
ce1d9ea6 1238 el = et->et_root_el;
e7d4cb6b 1239 if (!lowest_bh && (el->l_next_free_rec == el->l_count))
dcd0538f
MF
1240 status = 1;
1241
1242 *target_bh = lowest_bh;
1243bail:
a81cb88b 1244 brelse(bh);
dcd0538f
MF
1245
1246 mlog_exit(status);
1247 return status;
1248}
1249
c3afcbb3
MF
1250/*
1251 * Grow a b-tree so that it has more records.
1252 *
1253 * We might shift the tree depth in which case existing paths should
1254 * be considered invalid.
1255 *
1256 * Tree depth after the grow is returned via *final_depth.
328d5752
MF
1257 *
1258 * *last_eb_bh will be updated by ocfs2_add_branch().
c3afcbb3
MF
1259 */
1260static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
e7d4cb6b 1261 struct ocfs2_extent_tree *et, int *final_depth,
328d5752 1262 struct buffer_head **last_eb_bh,
c3afcbb3
MF
1263 struct ocfs2_alloc_context *meta_ac)
1264{
1265 int ret, shift;
ce1d9ea6 1266 struct ocfs2_extent_list *el = et->et_root_el;
e7d4cb6b 1267 int depth = le16_to_cpu(el->l_tree_depth);
c3afcbb3
MF
1268 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1269 struct buffer_head *bh = NULL;
1270
1271 BUG_ON(meta_ac == NULL);
1272
e7d4cb6b 1273 shift = ocfs2_find_branch_target(osb, inode, et, &bh);
c3afcbb3
MF
1274 if (shift < 0) {
1275 ret = shift;
1276 mlog_errno(ret);
1277 goto out;
1278 }
1279
1280 /* We traveled all the way to the bottom of the allocation tree
1281 * and didn't find room for any more extents - we need to add
1282 * another tree level */
1283 if (shift) {
1284 BUG_ON(bh);
1285 mlog(0, "need to shift tree depth (current = %d)\n", depth);
1286
1287 /* ocfs2_shift_tree_depth will return us a buffer with
1288 * the new extent block (so we can pass that to
1289 * ocfs2_add_branch). */
e7d4cb6b 1290 ret = ocfs2_shift_tree_depth(osb, handle, inode, et,
c3afcbb3
MF
1291 meta_ac, &bh);
1292 if (ret < 0) {
1293 mlog_errno(ret);
1294 goto out;
1295 }
1296 depth++;
328d5752
MF
1297 if (depth == 1) {
1298 /*
1299 * Special case: we have room now if we shifted from
1300 * tree_depth 0, so no more work needs to be done.
1301 *
1302 * We won't be calling add_branch, so pass
1303 * back *last_eb_bh as the new leaf. At depth
1304 * zero, it should always be null so there's
1305 * no reason to brelse.
1306 */
1307 BUG_ON(*last_eb_bh);
1308 get_bh(bh);
1309 *last_eb_bh = bh;
c3afcbb3 1310 goto out;
328d5752 1311 }
c3afcbb3
MF
1312 }
1313
1314 /* call ocfs2_add_branch to add the final part of the tree with
1315 * the new data. */
1316 mlog(0, "add branch. bh = %p\n", bh);
e7d4cb6b 1317 ret = ocfs2_add_branch(osb, handle, inode, et, bh, last_eb_bh,
c3afcbb3
MF
1318 meta_ac);
1319 if (ret < 0) {
1320 mlog_errno(ret);
1321 goto out;
1322 }
1323
1324out:
1325 if (final_depth)
1326 *final_depth = depth;
1327 brelse(bh);
1328 return ret;
1329}
1330
dcd0538f
MF
1331/*
1332 * This function will discard the rightmost extent record.
1333 */
1334static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1335{
1336 int next_free = le16_to_cpu(el->l_next_free_rec);
1337 int count = le16_to_cpu(el->l_count);
1338 unsigned int num_bytes;
1339
1340 BUG_ON(!next_free);
1341 /* This will cause us to go off the end of our extent list. */
1342 BUG_ON(next_free >= count);
1343
1344 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1345
1346 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1347}
1348
1349static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1350 struct ocfs2_extent_rec *insert_rec)
1351{
1352 int i, insert_index, next_free, has_empty, num_bytes;
1353 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1354 struct ocfs2_extent_rec *rec;
1355
1356 next_free = le16_to_cpu(el->l_next_free_rec);
1357 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1358
1359 BUG_ON(!next_free);
1360
1361 /* The tree code before us didn't allow enough room in the leaf. */
b1f3550f 1362 BUG_ON(el->l_next_free_rec == el->l_count && !has_empty);
dcd0538f
MF
1363
1364 /*
1365 * The easiest way to approach this is to just remove the
1366 * empty extent and temporarily decrement next_free.
1367 */
1368 if (has_empty) {
1369 /*
1370 * If next_free was 1 (only an empty extent), this
1371 * loop won't execute, which is fine. We still want
1372 * the decrement above to happen.
1373 */
1374 for(i = 0; i < (next_free - 1); i++)
1375 el->l_recs[i] = el->l_recs[i+1];
1376
1377 next_free--;
1378 }
1379
1380 /*
1381 * Figure out what the new record index should be.
1382 */
1383 for(i = 0; i < next_free; i++) {
1384 rec = &el->l_recs[i];
1385
1386 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1387 break;
1388 }
1389 insert_index = i;
1390
1391 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1392 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1393
1394 BUG_ON(insert_index < 0);
1395 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1396 BUG_ON(insert_index > next_free);
1397
1398 /*
1399 * No need to memmove if we're just adding to the tail.
1400 */
1401 if (insert_index != next_free) {
1402 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1403
1404 num_bytes = next_free - insert_index;
1405 num_bytes *= sizeof(struct ocfs2_extent_rec);
1406 memmove(&el->l_recs[insert_index + 1],
1407 &el->l_recs[insert_index],
1408 num_bytes);
1409 }
1410
1411 /*
1412 * Either we had an empty extent, and need to re-increment or
1413 * there was no empty extent on a non full rightmost leaf node,
1414 * in which case we still need to increment.
1415 */
1416 next_free++;
1417 el->l_next_free_rec = cpu_to_le16(next_free);
1418 /*
1419 * Make sure none of the math above just messed up our tree.
1420 */
1421 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1422
1423 el->l_recs[insert_index] = *insert_rec;
1424
1425}
1426
328d5752
MF
1427static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1428{
1429 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1430
1431 BUG_ON(num_recs == 0);
1432
1433 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1434 num_recs--;
1435 size = num_recs * sizeof(struct ocfs2_extent_rec);
1436 memmove(&el->l_recs[0], &el->l_recs[1], size);
1437 memset(&el->l_recs[num_recs], 0,
1438 sizeof(struct ocfs2_extent_rec));
1439 el->l_next_free_rec = cpu_to_le16(num_recs);
1440 }
1441}
1442
dcd0538f
MF
1443/*
1444 * Create an empty extent record .
1445 *
1446 * l_next_free_rec may be updated.
1447 *
1448 * If an empty extent already exists do nothing.
1449 */
1450static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1451{
1452 int next_free = le16_to_cpu(el->l_next_free_rec);
1453
e48edee2
MF
1454 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1455
dcd0538f
MF
1456 if (next_free == 0)
1457 goto set_and_inc;
1458
1459 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1460 return;
1461
1462 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1463 "Asked to create an empty extent in a full list:\n"
1464 "count = %u, tree depth = %u",
1465 le16_to_cpu(el->l_count),
1466 le16_to_cpu(el->l_tree_depth));
1467
1468 ocfs2_shift_records_right(el);
1469
1470set_and_inc:
1471 le16_add_cpu(&el->l_next_free_rec, 1);
1472 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1473}
1474
1475/*
1476 * For a rotation which involves two leaf nodes, the "root node" is
1477 * the lowest level tree node which contains a path to both leafs. This
1478 * resulting set of information can be used to form a complete "subtree"
1479 *
1480 * This function is passed two full paths from the dinode down to a
1481 * pair of adjacent leaves. It's task is to figure out which path
1482 * index contains the subtree root - this can be the root index itself
1483 * in a worst-case rotation.
1484 *
1485 * The array index of the subtree root is passed back.
1486 */
1487static int ocfs2_find_subtree_root(struct inode *inode,
1488 struct ocfs2_path *left,
1489 struct ocfs2_path *right)
1490{
1491 int i = 0;
1492
1493 /*
1494 * Check that the caller passed in two paths from the same tree.
1495 */
1496 BUG_ON(path_root_bh(left) != path_root_bh(right));
1497
1498 do {
1499 i++;
1500
1501 /*
1502 * The caller didn't pass two adjacent paths.
1503 */
1504 mlog_bug_on_msg(i > left->p_tree_depth,
1505 "Inode %lu, left depth %u, right depth %u\n"
1506 "left leaf blk %llu, right leaf blk %llu\n",
1507 inode->i_ino, left->p_tree_depth,
1508 right->p_tree_depth,
1509 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1510 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1511 } while (left->p_node[i].bh->b_blocknr ==
1512 right->p_node[i].bh->b_blocknr);
1513
1514 return i - 1;
1515}
1516
1517typedef void (path_insert_t)(void *, struct buffer_head *);
1518
1519/*
1520 * Traverse a btree path in search of cpos, starting at root_el.
1521 *
1522 * This code can be called with a cpos larger than the tree, in which
1523 * case it will return the rightmost path.
1524 */
1525static int __ocfs2_find_path(struct inode *inode,
1526 struct ocfs2_extent_list *root_el, u32 cpos,
1527 path_insert_t *func, void *data)
1528{
1529 int i, ret = 0;
1530 u32 range;
1531 u64 blkno;
1532 struct buffer_head *bh = NULL;
1533 struct ocfs2_extent_block *eb;
1534 struct ocfs2_extent_list *el;
1535 struct ocfs2_extent_rec *rec;
1536 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1537
1538 el = root_el;
1539 while (el->l_tree_depth) {
1540 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1541 ocfs2_error(inode->i_sb,
1542 "Inode %llu has empty extent list at "
1543 "depth %u\n",
1544 (unsigned long long)oi->ip_blkno,
1545 le16_to_cpu(el->l_tree_depth));
1546 ret = -EROFS;
1547 goto out;
1548
1549 }
1550
1551 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1552 rec = &el->l_recs[i];
1553
1554 /*
1555 * In the case that cpos is off the allocation
1556 * tree, this should just wind up returning the
1557 * rightmost record.
1558 */
1559 range = le32_to_cpu(rec->e_cpos) +
e48edee2 1560 ocfs2_rec_clusters(el, rec);
dcd0538f
MF
1561 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1562 break;
1563 }
1564
1565 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1566 if (blkno == 0) {
1567 ocfs2_error(inode->i_sb,
1568 "Inode %llu has bad blkno in extent list "
1569 "at depth %u (index %d)\n",
1570 (unsigned long long)oi->ip_blkno,
1571 le16_to_cpu(el->l_tree_depth), i);
1572 ret = -EROFS;
1573 goto out;
1574 }
1575
1576 brelse(bh);
1577 bh = NULL;
5e96581a 1578 ret = ocfs2_read_extent_block(inode, blkno, &bh);
dcd0538f
MF
1579 if (ret) {
1580 mlog_errno(ret);
1581 goto out;
1582 }
1583
1584 eb = (struct ocfs2_extent_block *) bh->b_data;
1585 el = &eb->h_list;
dcd0538f
MF
1586
1587 if (le16_to_cpu(el->l_next_free_rec) >
1588 le16_to_cpu(el->l_count)) {
1589 ocfs2_error(inode->i_sb,
1590 "Inode %llu has bad count in extent list "
1591 "at block %llu (next free=%u, count=%u)\n",
1592 (unsigned long long)oi->ip_blkno,
1593 (unsigned long long)bh->b_blocknr,
1594 le16_to_cpu(el->l_next_free_rec),
1595 le16_to_cpu(el->l_count));
1596 ret = -EROFS;
1597 goto out;
1598 }
1599
1600 if (func)
1601 func(data, bh);
1602 }
1603
1604out:
1605 /*
1606 * Catch any trailing bh that the loop didn't handle.
1607 */
1608 brelse(bh);
1609
1610 return ret;
1611}
1612
1613/*
1614 * Given an initialized path (that is, it has a valid root extent
1615 * list), this function will traverse the btree in search of the path
1616 * which would contain cpos.
1617 *
1618 * The path traveled is recorded in the path structure.
1619 *
1620 * Note that this will not do any comparisons on leaf node extent
1621 * records, so it will work fine in the case that we just added a tree
1622 * branch.
1623 */
1624struct find_path_data {
1625 int index;
1626 struct ocfs2_path *path;
1627};
1628static void find_path_ins(void *data, struct buffer_head *bh)
1629{
1630 struct find_path_data *fp = data;
1631
1632 get_bh(bh);
1633 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1634 fp->index++;
1635}
1636static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1637 u32 cpos)
1638{
1639 struct find_path_data data;
1640
1641 data.index = 1;
1642 data.path = path;
1643 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1644 find_path_ins, &data);
1645}
1646
1647static void find_leaf_ins(void *data, struct buffer_head *bh)
1648{
1649 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1650 struct ocfs2_extent_list *el = &eb->h_list;
1651 struct buffer_head **ret = data;
1652
1653 /* We want to retain only the leaf block. */
1654 if (le16_to_cpu(el->l_tree_depth) == 0) {
1655 get_bh(bh);
1656 *ret = bh;
1657 }
1658}
1659/*
1660 * Find the leaf block in the tree which would contain cpos. No
1661 * checking of the actual leaf is done.
1662 *
1663 * Some paths want to call this instead of allocating a path structure
1664 * and calling ocfs2_find_path().
1665 *
1666 * This function doesn't handle non btree extent lists.
1667 */
363041a5
MF
1668int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1669 u32 cpos, struct buffer_head **leaf_bh)
dcd0538f
MF
1670{
1671 int ret;
1672 struct buffer_head *bh = NULL;
1673
1674 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1675 if (ret) {
1676 mlog_errno(ret);
1677 goto out;
1678 }
1679
1680 *leaf_bh = bh;
1681out:
1682 return ret;
1683}
1684
1685/*
1686 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1687 *
1688 * Basically, we've moved stuff around at the bottom of the tree and
1689 * we need to fix up the extent records above the changes to reflect
1690 * the new changes.
1691 *
1692 * left_rec: the record on the left.
1693 * left_child_el: is the child list pointed to by left_rec
1694 * right_rec: the record to the right of left_rec
1695 * right_child_el: is the child list pointed to by right_rec
1696 *
1697 * By definition, this only works on interior nodes.
1698 */
1699static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1700 struct ocfs2_extent_list *left_child_el,
1701 struct ocfs2_extent_rec *right_rec,
1702 struct ocfs2_extent_list *right_child_el)
1703{
1704 u32 left_clusters, right_end;
1705
1706 /*
1707 * Interior nodes never have holes. Their cpos is the cpos of
1708 * the leftmost record in their child list. Their cluster
1709 * count covers the full theoretical range of their child list
1710 * - the range between their cpos and the cpos of the record
1711 * immediately to their right.
1712 */
1713 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
328d5752
MF
1714 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1715 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1716 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1717 }
dcd0538f 1718 left_clusters -= le32_to_cpu(left_rec->e_cpos);
e48edee2 1719 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
dcd0538f
MF
1720
1721 /*
1722 * Calculate the rightmost cluster count boundary before
e48edee2 1723 * moving cpos - we will need to adjust clusters after
dcd0538f
MF
1724 * updating e_cpos to keep the same highest cluster count.
1725 */
1726 right_end = le32_to_cpu(right_rec->e_cpos);
e48edee2 1727 right_end += le32_to_cpu(right_rec->e_int_clusters);
dcd0538f
MF
1728
1729 right_rec->e_cpos = left_rec->e_cpos;
1730 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1731
1732 right_end -= le32_to_cpu(right_rec->e_cpos);
e48edee2 1733 right_rec->e_int_clusters = cpu_to_le32(right_end);
dcd0538f
MF
1734}
1735
1736/*
1737 * Adjust the adjacent root node records involved in a
1738 * rotation. left_el_blkno is passed in as a key so that we can easily
1739 * find it's index in the root list.
1740 */
1741static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1742 struct ocfs2_extent_list *left_el,
1743 struct ocfs2_extent_list *right_el,
1744 u64 left_el_blkno)
1745{
1746 int i;
1747
1748 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1749 le16_to_cpu(left_el->l_tree_depth));
1750
1751 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1752 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1753 break;
1754 }
1755
1756 /*
1757 * The path walking code should have never returned a root and
1758 * two paths which are not adjacent.
1759 */
1760 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1761
1762 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1763 &root_el->l_recs[i + 1], right_el);
1764}
1765
1766/*
1767 * We've changed a leaf block (in right_path) and need to reflect that
1768 * change back up the subtree.
1769 *
1770 * This happens in multiple places:
1771 * - When we've moved an extent record from the left path leaf to the right
1772 * path leaf to make room for an empty extent in the left path leaf.
1773 * - When our insert into the right path leaf is at the leftmost edge
1774 * and requires an update of the path immediately to it's left. This
1775 * can occur at the end of some types of rotation and appending inserts.
677b9752
TM
1776 * - When we've adjusted the last extent record in the left path leaf and the
1777 * 1st extent record in the right path leaf during cross extent block merge.
dcd0538f
MF
1778 */
1779static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1780 struct ocfs2_path *left_path,
1781 struct ocfs2_path *right_path,
1782 int subtree_index)
1783{
1784 int ret, i, idx;
1785 struct ocfs2_extent_list *el, *left_el, *right_el;
1786 struct ocfs2_extent_rec *left_rec, *right_rec;
1787 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1788
1789 /*
1790 * Update the counts and position values within all the
1791 * interior nodes to reflect the leaf rotation we just did.
1792 *
1793 * The root node is handled below the loop.
1794 *
1795 * We begin the loop with right_el and left_el pointing to the
1796 * leaf lists and work our way up.
1797 *
1798 * NOTE: within this loop, left_el and right_el always refer
1799 * to the *child* lists.
1800 */
1801 left_el = path_leaf_el(left_path);
1802 right_el = path_leaf_el(right_path);
1803 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1804 mlog(0, "Adjust records at index %u\n", i);
1805
1806 /*
1807 * One nice property of knowing that all of these
1808 * nodes are below the root is that we only deal with
1809 * the leftmost right node record and the rightmost
1810 * left node record.
1811 */
1812 el = left_path->p_node[i].el;
1813 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1814 left_rec = &el->l_recs[idx];
1815
1816 el = right_path->p_node[i].el;
1817 right_rec = &el->l_recs[0];
1818
1819 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1820 right_el);
1821
1822 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1823 if (ret)
1824 mlog_errno(ret);
1825
1826 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1827 if (ret)
1828 mlog_errno(ret);
1829
1830 /*
1831 * Setup our list pointers now so that the current
1832 * parents become children in the next iteration.
1833 */
1834 left_el = left_path->p_node[i].el;
1835 right_el = right_path->p_node[i].el;
1836 }
1837
1838 /*
1839 * At the root node, adjust the two adjacent records which
1840 * begin our path to the leaves.
1841 */
1842
1843 el = left_path->p_node[subtree_index].el;
1844 left_el = left_path->p_node[subtree_index + 1].el;
1845 right_el = right_path->p_node[subtree_index + 1].el;
1846
1847 ocfs2_adjust_root_records(el, left_el, right_el,
1848 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1849
1850 root_bh = left_path->p_node[subtree_index].bh;
1851
1852 ret = ocfs2_journal_dirty(handle, root_bh);
1853 if (ret)
1854 mlog_errno(ret);
1855}
1856
1857static int ocfs2_rotate_subtree_right(struct inode *inode,
1858 handle_t *handle,
1859 struct ocfs2_path *left_path,
1860 struct ocfs2_path *right_path,
1861 int subtree_index)
1862{
1863 int ret, i;
1864 struct buffer_head *right_leaf_bh;
1865 struct buffer_head *left_leaf_bh = NULL;
1866 struct buffer_head *root_bh;
1867 struct ocfs2_extent_list *right_el, *left_el;
1868 struct ocfs2_extent_rec move_rec;
1869
1870 left_leaf_bh = path_leaf_bh(left_path);
1871 left_el = path_leaf_el(left_path);
1872
1873 if (left_el->l_next_free_rec != left_el->l_count) {
1874 ocfs2_error(inode->i_sb,
1875 "Inode %llu has non-full interior leaf node %llu"
1876 "(next free = %u)",
1877 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1878 (unsigned long long)left_leaf_bh->b_blocknr,
1879 le16_to_cpu(left_el->l_next_free_rec));
1880 return -EROFS;
1881 }
1882
1883 /*
1884 * This extent block may already have an empty record, so we
1885 * return early if so.
1886 */
1887 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1888 return 0;
1889
1890 root_bh = left_path->p_node[subtree_index].bh;
1891 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1892
1893 ret = ocfs2_journal_access(handle, inode, root_bh,
1894 OCFS2_JOURNAL_ACCESS_WRITE);
1895 if (ret) {
1896 mlog_errno(ret);
1897 goto out;
1898 }
1899
1900 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1901 ret = ocfs2_journal_access(handle, inode,
1902 right_path->p_node[i].bh,
1903 OCFS2_JOURNAL_ACCESS_WRITE);
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out;
1907 }
1908
1909 ret = ocfs2_journal_access(handle, inode,
1910 left_path->p_node[i].bh,
1911 OCFS2_JOURNAL_ACCESS_WRITE);
1912 if (ret) {
1913 mlog_errno(ret);
1914 goto out;
1915 }
1916 }
1917
1918 right_leaf_bh = path_leaf_bh(right_path);
1919 right_el = path_leaf_el(right_path);
1920
1921 /* This is a code error, not a disk corruption. */
1922 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1923 "because rightmost leaf block %llu is empty\n",
1924 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1925 (unsigned long long)right_leaf_bh->b_blocknr);
1926
1927 ocfs2_create_empty_extent(right_el);
1928
1929 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1930 if (ret) {
1931 mlog_errno(ret);
1932 goto out;
1933 }
1934
1935 /* Do the copy now. */
1936 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1937 move_rec = left_el->l_recs[i];
1938 right_el->l_recs[0] = move_rec;
1939
1940 /*
1941 * Clear out the record we just copied and shift everything
1942 * over, leaving an empty extent in the left leaf.
1943 *
1944 * We temporarily subtract from next_free_rec so that the
1945 * shift will lose the tail record (which is now defunct).
1946 */
1947 le16_add_cpu(&left_el->l_next_free_rec, -1);
1948 ocfs2_shift_records_right(left_el);
1949 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1950 le16_add_cpu(&left_el->l_next_free_rec, 1);
1951
1952 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1953 if (ret) {
1954 mlog_errno(ret);
1955 goto out;
1956 }
1957
1958 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1959 subtree_index);
1960
1961out:
1962 return ret;
1963}
1964
1965/*
1966 * Given a full path, determine what cpos value would return us a path
1967 * containing the leaf immediately to the left of the current one.
1968 *
1969 * Will return zero if the path passed in is already the leftmost path.
1970 */
1971static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1972 struct ocfs2_path *path, u32 *cpos)
1973{
1974 int i, j, ret = 0;
1975 u64 blkno;
1976 struct ocfs2_extent_list *el;
1977
e48edee2
MF
1978 BUG_ON(path->p_tree_depth == 0);
1979
dcd0538f
MF
1980 *cpos = 0;
1981
1982 blkno = path_leaf_bh(path)->b_blocknr;
1983
1984 /* Start at the tree node just above the leaf and work our way up. */
1985 i = path->p_tree_depth - 1;
1986 while (i >= 0) {
1987 el = path->p_node[i].el;
1988
1989 /*
1990 * Find the extent record just before the one in our
1991 * path.
1992 */
1993 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1994 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1995 if (j == 0) {
1996 if (i == 0) {
1997 /*
1998 * We've determined that the
1999 * path specified is already
2000 * the leftmost one - return a
2001 * cpos of zero.
2002 */
2003 goto out;
2004 }
2005 /*
2006 * The leftmost record points to our
2007 * leaf - we need to travel up the
2008 * tree one level.
2009 */
2010 goto next_node;
2011 }
2012
2013 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
e48edee2
MF
2014 *cpos = *cpos + ocfs2_rec_clusters(el,
2015 &el->l_recs[j - 1]);
2016 *cpos = *cpos - 1;
dcd0538f
MF
2017 goto out;
2018 }
2019 }
2020
2021 /*
2022 * If we got here, we never found a valid node where
2023 * the tree indicated one should be.
2024 */
2025 ocfs2_error(sb,
2026 "Invalid extent tree at extent block %llu\n",
2027 (unsigned long long)blkno);
2028 ret = -EROFS;
2029 goto out;
2030
2031next_node:
2032 blkno = path->p_node[i].bh->b_blocknr;
2033 i--;
2034 }
2035
2036out:
2037 return ret;
2038}
2039
328d5752
MF
2040/*
2041 * Extend the transaction by enough credits to complete the rotation,
2042 * and still leave at least the original number of credits allocated
2043 * to this transaction.
2044 */
dcd0538f 2045static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
328d5752 2046 int op_credits,
dcd0538f
MF
2047 struct ocfs2_path *path)
2048{
328d5752 2049 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
dcd0538f
MF
2050
2051 if (handle->h_buffer_credits < credits)
2052 return ocfs2_extend_trans(handle, credits);
2053
2054 return 0;
2055}
2056
2057/*
2058 * Trap the case where we're inserting into the theoretical range past
2059 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2060 * whose cpos is less than ours into the right leaf.
2061 *
2062 * It's only necessary to look at the rightmost record of the left
2063 * leaf because the logic that calls us should ensure that the
2064 * theoretical ranges in the path components above the leaves are
2065 * correct.
2066 */
2067static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
2068 u32 insert_cpos)
2069{
2070 struct ocfs2_extent_list *left_el;
2071 struct ocfs2_extent_rec *rec;
2072 int next_free;
2073
2074 left_el = path_leaf_el(left_path);
2075 next_free = le16_to_cpu(left_el->l_next_free_rec);
2076 rec = &left_el->l_recs[next_free - 1];
2077
2078 if (insert_cpos > le32_to_cpu(rec->e_cpos))
2079 return 1;
2080 return 0;
2081}
2082
328d5752
MF
2083static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
2084{
2085 int next_free = le16_to_cpu(el->l_next_free_rec);
2086 unsigned int range;
2087 struct ocfs2_extent_rec *rec;
2088
2089 if (next_free == 0)
2090 return 0;
2091
2092 rec = &el->l_recs[0];
2093 if (ocfs2_is_empty_extent(rec)) {
2094 /* Empty list. */
2095 if (next_free == 1)
2096 return 0;
2097 rec = &el->l_recs[1];
2098 }
2099
2100 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
2101 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
2102 return 1;
2103 return 0;
2104}
2105
dcd0538f
MF
2106/*
2107 * Rotate all the records in a btree right one record, starting at insert_cpos.
2108 *
2109 * The path to the rightmost leaf should be passed in.
2110 *
2111 * The array is assumed to be large enough to hold an entire path (tree depth).
2112 *
2113 * Upon succesful return from this function:
2114 *
2115 * - The 'right_path' array will contain a path to the leaf block
2116 * whose range contains e_cpos.
2117 * - That leaf block will have a single empty extent in list index 0.
2118 * - In the case that the rotation requires a post-insert update,
2119 * *ret_left_path will contain a valid path which can be passed to
2120 * ocfs2_insert_path().
2121 */
2122static int ocfs2_rotate_tree_right(struct inode *inode,
2123 handle_t *handle,
328d5752 2124 enum ocfs2_split_type split,
dcd0538f
MF
2125 u32 insert_cpos,
2126 struct ocfs2_path *right_path,
2127 struct ocfs2_path **ret_left_path)
2128{
328d5752 2129 int ret, start, orig_credits = handle->h_buffer_credits;
dcd0538f
MF
2130 u32 cpos;
2131 struct ocfs2_path *left_path = NULL;
2132
2133 *ret_left_path = NULL;
2134
2135 left_path = ocfs2_new_path(path_root_bh(right_path),
2136 path_root_el(right_path));
2137 if (!left_path) {
2138 ret = -ENOMEM;
2139 mlog_errno(ret);
2140 goto out;
2141 }
2142
2143 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
2144 if (ret) {
2145 mlog_errno(ret);
2146 goto out;
2147 }
2148
2149 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
2150
2151 /*
2152 * What we want to do here is:
2153 *
2154 * 1) Start with the rightmost path.
2155 *
2156 * 2) Determine a path to the leaf block directly to the left
2157 * of that leaf.
2158 *
2159 * 3) Determine the 'subtree root' - the lowest level tree node
2160 * which contains a path to both leaves.
2161 *
2162 * 4) Rotate the subtree.
2163 *
2164 * 5) Find the next subtree by considering the left path to be
2165 * the new right path.
2166 *
2167 * The check at the top of this while loop also accepts
2168 * insert_cpos == cpos because cpos is only a _theoretical_
2169 * value to get us the left path - insert_cpos might very well
2170 * be filling that hole.
2171 *
2172 * Stop at a cpos of '0' because we either started at the
2173 * leftmost branch (i.e., a tree with one branch and a
2174 * rotation inside of it), or we've gone as far as we can in
2175 * rotating subtrees.
2176 */
2177 while (cpos && insert_cpos <= cpos) {
2178 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
2179 insert_cpos, cpos);
2180
2181 ret = ocfs2_find_path(inode, left_path, cpos);
2182 if (ret) {
2183 mlog_errno(ret);
2184 goto out;
2185 }
2186
2187 mlog_bug_on_msg(path_leaf_bh(left_path) ==
2188 path_leaf_bh(right_path),
2189 "Inode %lu: error during insert of %u "
2190 "(left path cpos %u) results in two identical "
2191 "paths ending at %llu\n",
2192 inode->i_ino, insert_cpos, cpos,
2193 (unsigned long long)
2194 path_leaf_bh(left_path)->b_blocknr);
2195
328d5752
MF
2196 if (split == SPLIT_NONE &&
2197 ocfs2_rotate_requires_path_adjustment(left_path,
dcd0538f 2198 insert_cpos)) {
dcd0538f
MF
2199
2200 /*
2201 * We've rotated the tree as much as we
2202 * should. The rest is up to
2203 * ocfs2_insert_path() to complete, after the
2204 * record insertion. We indicate this
2205 * situation by returning the left path.
2206 *
2207 * The reason we don't adjust the records here
2208 * before the record insert is that an error
2209 * later might break the rule where a parent
2210 * record e_cpos will reflect the actual
2211 * e_cpos of the 1st nonempty record of the
2212 * child list.
2213 */
2214 *ret_left_path = left_path;
2215 goto out_ret_path;
2216 }
2217
2218 start = ocfs2_find_subtree_root(inode, left_path, right_path);
2219
2220 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2221 start,
2222 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
2223 right_path->p_tree_depth);
2224
2225 ret = ocfs2_extend_rotate_transaction(handle, start,
328d5752 2226 orig_credits, right_path);
dcd0538f
MF
2227 if (ret) {
2228 mlog_errno(ret);
2229 goto out;
2230 }
2231
2232 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
2233 right_path, start);
2234 if (ret) {
2235 mlog_errno(ret);
2236 goto out;
2237 }
2238
328d5752
MF
2239 if (split != SPLIT_NONE &&
2240 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
2241 insert_cpos)) {
2242 /*
2243 * A rotate moves the rightmost left leaf
2244 * record over to the leftmost right leaf
2245 * slot. If we're doing an extent split
2246 * instead of a real insert, then we have to
2247 * check that the extent to be split wasn't
2248 * just moved over. If it was, then we can
2249 * exit here, passing left_path back -
2250 * ocfs2_split_extent() is smart enough to
2251 * search both leaves.
2252 */
2253 *ret_left_path = left_path;
2254 goto out_ret_path;
2255 }
2256
dcd0538f
MF
2257 /*
2258 * There is no need to re-read the next right path
2259 * as we know that it'll be our current left
2260 * path. Optimize by copying values instead.
2261 */
2262 ocfs2_mv_path(right_path, left_path);
2263
2264 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
2265 &cpos);
2266 if (ret) {
2267 mlog_errno(ret);
2268 goto out;
2269 }
2270 }
2271
2272out:
2273 ocfs2_free_path(left_path);
2274
2275out_ret_path:
2276 return ret;
2277}
2278
328d5752
MF
2279static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
2280 struct ocfs2_path *path)
dcd0538f 2281{
328d5752 2282 int i, idx;
dcd0538f 2283 struct ocfs2_extent_rec *rec;
328d5752
MF
2284 struct ocfs2_extent_list *el;
2285 struct ocfs2_extent_block *eb;
2286 u32 range;
dcd0538f 2287
328d5752
MF
2288 /* Path should always be rightmost. */
2289 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2290 BUG_ON(eb->h_next_leaf_blk != 0ULL);
dcd0538f 2291
328d5752
MF
2292 el = &eb->h_list;
2293 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
2294 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2295 rec = &el->l_recs[idx];
2296 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
dcd0538f 2297
328d5752
MF
2298 for (i = 0; i < path->p_tree_depth; i++) {
2299 el = path->p_node[i].el;
2300 idx = le16_to_cpu(el->l_next_free_rec) - 1;
2301 rec = &el->l_recs[idx];
dcd0538f 2302
328d5752
MF
2303 rec->e_int_clusters = cpu_to_le32(range);
2304 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
dcd0538f 2305
328d5752 2306 ocfs2_journal_dirty(handle, path->p_node[i].bh);
dcd0538f 2307 }
dcd0538f
MF
2308}
2309
328d5752
MF
2310static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
2311 struct ocfs2_cached_dealloc_ctxt *dealloc,
2312 struct ocfs2_path *path, int unlink_start)
dcd0538f 2313{
328d5752
MF
2314 int ret, i;
2315 struct ocfs2_extent_block *eb;
2316 struct ocfs2_extent_list *el;
2317 struct buffer_head *bh;
2318
2319 for(i = unlink_start; i < path_num_items(path); i++) {
2320 bh = path->p_node[i].bh;
2321
2322 eb = (struct ocfs2_extent_block *)bh->b_data;
2323 /*
2324 * Not all nodes might have had their final count
2325 * decremented by the caller - handle this here.
2326 */
2327 el = &eb->h_list;
2328 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2329 mlog(ML_ERROR,
2330 "Inode %llu, attempted to remove extent block "
2331 "%llu with %u records\n",
2332 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2333 (unsigned long long)le64_to_cpu(eb->h_blkno),
2334 le16_to_cpu(el->l_next_free_rec));
2335
2336 ocfs2_journal_dirty(handle, bh);
2337 ocfs2_remove_from_cache(inode, bh);
2338 continue;
2339 }
2340
2341 el->l_next_free_rec = 0;
2342 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2343
2344 ocfs2_journal_dirty(handle, bh);
2345
2346 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2347 if (ret)
2348 mlog_errno(ret);
2349
2350 ocfs2_remove_from_cache(inode, bh);
2351 }
dcd0538f
MF
2352}
2353
328d5752
MF
2354static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2355 struct ocfs2_path *left_path,
2356 struct ocfs2_path *right_path,
2357 int subtree_index,
2358 struct ocfs2_cached_dealloc_ctxt *dealloc)
dcd0538f 2359{
328d5752
MF
2360 int i;
2361 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2362 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
dcd0538f 2363 struct ocfs2_extent_list *el;
328d5752 2364 struct ocfs2_extent_block *eb;
dcd0538f 2365
328d5752 2366 el = path_leaf_el(left_path);
dcd0538f 2367
328d5752 2368 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
e48edee2 2369
328d5752
MF
2370 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2371 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2372 break;
dcd0538f 2373
328d5752 2374 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
dcd0538f 2375
328d5752
MF
2376 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2377 le16_add_cpu(&root_el->l_next_free_rec, -1);
2378
2379 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2380 eb->h_next_leaf_blk = 0;
2381
2382 ocfs2_journal_dirty(handle, root_bh);
2383 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2384
2385 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2386 subtree_index + 1);
2387}
2388
2389static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2390 struct ocfs2_path *left_path,
2391 struct ocfs2_path *right_path,
2392 int subtree_index,
2393 struct ocfs2_cached_dealloc_ctxt *dealloc,
e7d4cb6b
TM
2394 int *deleted,
2395 struct ocfs2_extent_tree *et)
328d5752
MF
2396{
2397 int ret, i, del_right_subtree = 0, right_has_empty = 0;
e7d4cb6b 2398 struct buffer_head *root_bh, *et_root_bh = path_root_bh(right_path);
328d5752
MF
2399 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2400 struct ocfs2_extent_block *eb;
2401
2402 *deleted = 0;
2403
2404 right_leaf_el = path_leaf_el(right_path);
2405 left_leaf_el = path_leaf_el(left_path);
2406 root_bh = left_path->p_node[subtree_index].bh;
2407 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2408
2409 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2410 return 0;
dcd0538f 2411
328d5752
MF
2412 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2413 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
dcd0538f 2414 /*
328d5752
MF
2415 * It's legal for us to proceed if the right leaf is
2416 * the rightmost one and it has an empty extent. There
2417 * are two cases to handle - whether the leaf will be
2418 * empty after removal or not. If the leaf isn't empty
2419 * then just remove the empty extent up front. The
2420 * next block will handle empty leaves by flagging
2421 * them for unlink.
2422 *
2423 * Non rightmost leaves will throw -EAGAIN and the
2424 * caller can manually move the subtree and retry.
dcd0538f 2425 */
dcd0538f 2426
328d5752
MF
2427 if (eb->h_next_leaf_blk != 0ULL)
2428 return -EAGAIN;
2429
2430 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2431 ret = ocfs2_journal_access(handle, inode,
2432 path_leaf_bh(right_path),
2433 OCFS2_JOURNAL_ACCESS_WRITE);
dcd0538f
MF
2434 if (ret) {
2435 mlog_errno(ret);
2436 goto out;
2437 }
2438
328d5752
MF
2439 ocfs2_remove_empty_extent(right_leaf_el);
2440 } else
2441 right_has_empty = 1;
dcd0538f
MF
2442 }
2443
328d5752
MF
2444 if (eb->h_next_leaf_blk == 0ULL &&
2445 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2446 /*
2447 * We have to update i_last_eb_blk during the meta
2448 * data delete.
2449 */
e7d4cb6b 2450 ret = ocfs2_journal_access(handle, inode, et_root_bh,
328d5752
MF
2451 OCFS2_JOURNAL_ACCESS_WRITE);
2452 if (ret) {
2453 mlog_errno(ret);
2454 goto out;
2455 }
2456
2457 del_right_subtree = 1;
2458 }
2459
2460 /*
2461 * Getting here with an empty extent in the right path implies
2462 * that it's the rightmost path and will be deleted.
2463 */
2464 BUG_ON(right_has_empty && !del_right_subtree);
2465
2466 ret = ocfs2_journal_access(handle, inode, root_bh,
2467 OCFS2_JOURNAL_ACCESS_WRITE);
2468 if (ret) {
2469 mlog_errno(ret);
2470 goto out;
2471 }
2472
2473 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2474 ret = ocfs2_journal_access(handle, inode,
2475 right_path->p_node[i].bh,
2476 OCFS2_JOURNAL_ACCESS_WRITE);
2477 if (ret) {
2478 mlog_errno(ret);
2479 goto out;
2480 }
2481
2482 ret = ocfs2_journal_access(handle, inode,
2483 left_path->p_node[i].bh,
2484 OCFS2_JOURNAL_ACCESS_WRITE);
2485 if (ret) {
2486 mlog_errno(ret);
2487 goto out;
2488 }
2489 }
2490
2491 if (!right_has_empty) {
2492 /*
2493 * Only do this if we're moving a real
2494 * record. Otherwise, the action is delayed until
2495 * after removal of the right path in which case we
2496 * can do a simple shift to remove the empty extent.
2497 */
2498 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2499 memset(&right_leaf_el->l_recs[0], 0,
2500 sizeof(struct ocfs2_extent_rec));
2501 }
2502 if (eb->h_next_leaf_blk == 0ULL) {
2503 /*
2504 * Move recs over to get rid of empty extent, decrease
2505 * next_free. This is allowed to remove the last
2506 * extent in our leaf (setting l_next_free_rec to
2507 * zero) - the delete code below won't care.
2508 */
2509 ocfs2_remove_empty_extent(right_leaf_el);
2510 }
2511
2512 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2513 if (ret)
2514 mlog_errno(ret);
2515 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2516 if (ret)
2517 mlog_errno(ret);
2518
2519 if (del_right_subtree) {
2520 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2521 subtree_index, dealloc);
2522 ocfs2_update_edge_lengths(inode, handle, left_path);
2523
2524 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
35dc0aa3 2525 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
328d5752
MF
2526
2527 /*
2528 * Removal of the extent in the left leaf was skipped
2529 * above so we could delete the right path
2530 * 1st.
2531 */
2532 if (right_has_empty)
2533 ocfs2_remove_empty_extent(left_leaf_el);
2534
e7d4cb6b 2535 ret = ocfs2_journal_dirty(handle, et_root_bh);
328d5752
MF
2536 if (ret)
2537 mlog_errno(ret);
2538
2539 *deleted = 1;
2540 } else
2541 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2542 subtree_index);
2543
2544out:
2545 return ret;
2546}
2547
2548/*
2549 * Given a full path, determine what cpos value would return us a path
2550 * containing the leaf immediately to the right of the current one.
2551 *
2552 * Will return zero if the path passed in is already the rightmost path.
2553 *
2554 * This looks similar, but is subtly different to
2555 * ocfs2_find_cpos_for_left_leaf().
2556 */
2557static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2558 struct ocfs2_path *path, u32 *cpos)
2559{
2560 int i, j, ret = 0;
2561 u64 blkno;
2562 struct ocfs2_extent_list *el;
2563
2564 *cpos = 0;
2565
2566 if (path->p_tree_depth == 0)
2567 return 0;
2568
2569 blkno = path_leaf_bh(path)->b_blocknr;
2570
2571 /* Start at the tree node just above the leaf and work our way up. */
2572 i = path->p_tree_depth - 1;
2573 while (i >= 0) {
2574 int next_free;
2575
2576 el = path->p_node[i].el;
2577
2578 /*
2579 * Find the extent record just after the one in our
2580 * path.
2581 */
2582 next_free = le16_to_cpu(el->l_next_free_rec);
2583 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2584 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2585 if (j == (next_free - 1)) {
2586 if (i == 0) {
2587 /*
2588 * We've determined that the
2589 * path specified is already
2590 * the rightmost one - return a
2591 * cpos of zero.
2592 */
2593 goto out;
2594 }
2595 /*
2596 * The rightmost record points to our
2597 * leaf - we need to travel up the
2598 * tree one level.
2599 */
2600 goto next_node;
2601 }
2602
2603 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2604 goto out;
2605 }
2606 }
2607
2608 /*
2609 * If we got here, we never found a valid node where
2610 * the tree indicated one should be.
2611 */
2612 ocfs2_error(sb,
2613 "Invalid extent tree at extent block %llu\n",
2614 (unsigned long long)blkno);
2615 ret = -EROFS;
2616 goto out;
2617
2618next_node:
2619 blkno = path->p_node[i].bh->b_blocknr;
2620 i--;
2621 }
2622
2623out:
2624 return ret;
2625}
2626
2627static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2628 handle_t *handle,
2629 struct buffer_head *bh,
2630 struct ocfs2_extent_list *el)
2631{
2632 int ret;
2633
2634 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2635 return 0;
2636
2637 ret = ocfs2_journal_access(handle, inode, bh,
2638 OCFS2_JOURNAL_ACCESS_WRITE);
2639 if (ret) {
2640 mlog_errno(ret);
2641 goto out;
2642 }
2643
2644 ocfs2_remove_empty_extent(el);
2645
2646 ret = ocfs2_journal_dirty(handle, bh);
2647 if (ret)
2648 mlog_errno(ret);
2649
2650out:
2651 return ret;
2652}
2653
2654static int __ocfs2_rotate_tree_left(struct inode *inode,
2655 handle_t *handle, int orig_credits,
2656 struct ocfs2_path *path,
2657 struct ocfs2_cached_dealloc_ctxt *dealloc,
e7d4cb6b
TM
2658 struct ocfs2_path **empty_extent_path,
2659 struct ocfs2_extent_tree *et)
328d5752
MF
2660{
2661 int ret, subtree_root, deleted;
2662 u32 right_cpos;
2663 struct ocfs2_path *left_path = NULL;
2664 struct ocfs2_path *right_path = NULL;
2665
2666 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2667
2668 *empty_extent_path = NULL;
2669
2670 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2671 &right_cpos);
2672 if (ret) {
2673 mlog_errno(ret);
2674 goto out;
2675 }
2676
2677 left_path = ocfs2_new_path(path_root_bh(path),
2678 path_root_el(path));
2679 if (!left_path) {
2680 ret = -ENOMEM;
2681 mlog_errno(ret);
2682 goto out;
2683 }
2684
2685 ocfs2_cp_path(left_path, path);
2686
2687 right_path = ocfs2_new_path(path_root_bh(path),
2688 path_root_el(path));
2689 if (!right_path) {
2690 ret = -ENOMEM;
2691 mlog_errno(ret);
2692 goto out;
2693 }
2694
2695 while (right_cpos) {
2696 ret = ocfs2_find_path(inode, right_path, right_cpos);
2697 if (ret) {
2698 mlog_errno(ret);
2699 goto out;
2700 }
2701
2702 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2703 right_path);
2704
2705 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2706 subtree_root,
2707 (unsigned long long)
2708 right_path->p_node[subtree_root].bh->b_blocknr,
2709 right_path->p_tree_depth);
2710
2711 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2712 orig_credits, left_path);
2713 if (ret) {
2714 mlog_errno(ret);
2715 goto out;
2716 }
2717
e8aed345
MF
2718 /*
2719 * Caller might still want to make changes to the
2720 * tree root, so re-add it to the journal here.
2721 */
2722 ret = ocfs2_journal_access(handle, inode,
2723 path_root_bh(left_path),
2724 OCFS2_JOURNAL_ACCESS_WRITE);
2725 if (ret) {
2726 mlog_errno(ret);
2727 goto out;
2728 }
2729
328d5752
MF
2730 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2731 right_path, subtree_root,
e7d4cb6b 2732 dealloc, &deleted, et);
328d5752
MF
2733 if (ret == -EAGAIN) {
2734 /*
2735 * The rotation has to temporarily stop due to
2736 * the right subtree having an empty
2737 * extent. Pass it back to the caller for a
2738 * fixup.
2739 */
2740 *empty_extent_path = right_path;
2741 right_path = NULL;
2742 goto out;
2743 }
2744 if (ret) {
2745 mlog_errno(ret);
2746 goto out;
2747 }
2748
2749 /*
2750 * The subtree rotate might have removed records on
2751 * the rightmost edge. If so, then rotation is
2752 * complete.
2753 */
2754 if (deleted)
2755 break;
2756
2757 ocfs2_mv_path(left_path, right_path);
2758
2759 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2760 &right_cpos);
2761 if (ret) {
2762 mlog_errno(ret);
2763 goto out;
2764 }
2765 }
2766
2767out:
2768 ocfs2_free_path(right_path);
2769 ocfs2_free_path(left_path);
2770
2771 return ret;
2772}
2773
2774static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
e7d4cb6b
TM
2775 struct ocfs2_path *path,
2776 struct ocfs2_cached_dealloc_ctxt *dealloc,
2777 struct ocfs2_extent_tree *et)
328d5752
MF
2778{
2779 int ret, subtree_index;
2780 u32 cpos;
2781 struct ocfs2_path *left_path = NULL;
328d5752
MF
2782 struct ocfs2_extent_block *eb;
2783 struct ocfs2_extent_list *el;
2784
328d5752 2785
35dc0aa3 2786 ret = ocfs2_et_sanity_check(inode, et);
e7d4cb6b
TM
2787 if (ret)
2788 goto out;
328d5752
MF
2789 /*
2790 * There's two ways we handle this depending on
2791 * whether path is the only existing one.
2792 */
2793 ret = ocfs2_extend_rotate_transaction(handle, 0,
2794 handle->h_buffer_credits,
2795 path);
2796 if (ret) {
2797 mlog_errno(ret);
2798 goto out;
2799 }
2800
2801 ret = ocfs2_journal_access_path(inode, handle, path);
2802 if (ret) {
2803 mlog_errno(ret);
2804 goto out;
2805 }
2806
2807 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2808 if (ret) {
2809 mlog_errno(ret);
2810 goto out;
2811 }
2812
2813 if (cpos) {
2814 /*
2815 * We have a path to the left of this one - it needs
2816 * an update too.
2817 */
2818 left_path = ocfs2_new_path(path_root_bh(path),
2819 path_root_el(path));
2820 if (!left_path) {
2821 ret = -ENOMEM;
2822 mlog_errno(ret);
2823 goto out;
2824 }
2825
2826 ret = ocfs2_find_path(inode, left_path, cpos);
2827 if (ret) {
2828 mlog_errno(ret);
2829 goto out;
2830 }
2831
2832 ret = ocfs2_journal_access_path(inode, handle, left_path);
2833 if (ret) {
2834 mlog_errno(ret);
2835 goto out;
2836 }
2837
2838 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2839
2840 ocfs2_unlink_subtree(inode, handle, left_path, path,
2841 subtree_index, dealloc);
2842 ocfs2_update_edge_lengths(inode, handle, left_path);
2843
2844 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
35dc0aa3 2845 ocfs2_et_set_last_eb_blk(et, le64_to_cpu(eb->h_blkno));
328d5752
MF
2846 } else {
2847 /*
2848 * 'path' is also the leftmost path which
2849 * means it must be the only one. This gets
2850 * handled differently because we want to
2851 * revert the inode back to having extents
2852 * in-line.
2853 */
2854 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2855
ce1d9ea6 2856 el = et->et_root_el;
328d5752
MF
2857 el->l_tree_depth = 0;
2858 el->l_next_free_rec = 0;
2859 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2860
35dc0aa3 2861 ocfs2_et_set_last_eb_blk(et, 0);
328d5752
MF
2862 }
2863
2864 ocfs2_journal_dirty(handle, path_root_bh(path));
2865
2866out:
2867 ocfs2_free_path(left_path);
2868 return ret;
2869}
2870
2871/*
2872 * Left rotation of btree records.
2873 *
2874 * In many ways, this is (unsurprisingly) the opposite of right
2875 * rotation. We start at some non-rightmost path containing an empty
2876 * extent in the leaf block. The code works its way to the rightmost
2877 * path by rotating records to the left in every subtree.
2878 *
2879 * This is used by any code which reduces the number of extent records
2880 * in a leaf. After removal, an empty record should be placed in the
2881 * leftmost list position.
2882 *
2883 * This won't handle a length update of the rightmost path records if
2884 * the rightmost tree leaf record is removed so the caller is
2885 * responsible for detecting and correcting that.
2886 */
2887static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2888 struct ocfs2_path *path,
e7d4cb6b
TM
2889 struct ocfs2_cached_dealloc_ctxt *dealloc,
2890 struct ocfs2_extent_tree *et)
328d5752
MF
2891{
2892 int ret, orig_credits = handle->h_buffer_credits;
2893 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2894 struct ocfs2_extent_block *eb;
2895 struct ocfs2_extent_list *el;
2896
2897 el = path_leaf_el(path);
2898 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2899 return 0;
2900
2901 if (path->p_tree_depth == 0) {
2902rightmost_no_delete:
2903 /*
e7d4cb6b 2904 * Inline extents. This is trivially handled, so do
328d5752
MF
2905 * it up front.
2906 */
2907 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2908 path_leaf_bh(path),
2909 path_leaf_el(path));
2910 if (ret)
2911 mlog_errno(ret);
2912 goto out;
2913 }
2914
2915 /*
2916 * Handle rightmost branch now. There's several cases:
2917 * 1) simple rotation leaving records in there. That's trivial.
2918 * 2) rotation requiring a branch delete - there's no more
2919 * records left. Two cases of this:
2920 * a) There are branches to the left.
2921 * b) This is also the leftmost (the only) branch.
2922 *
2923 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2924 * 2a) we need the left branch so that we can update it with the unlink
2925 * 2b) we need to bring the inode back to inline extents.
2926 */
2927
2928 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2929 el = &eb->h_list;
2930 if (eb->h_next_leaf_blk == 0) {
2931 /*
2932 * This gets a bit tricky if we're going to delete the
2933 * rightmost path. Get the other cases out of the way
2934 * 1st.
2935 */
2936 if (le16_to_cpu(el->l_next_free_rec) > 1)
2937 goto rightmost_no_delete;
2938
2939 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2940 ret = -EIO;
2941 ocfs2_error(inode->i_sb,
2942 "Inode %llu has empty extent block at %llu",
2943 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2944 (unsigned long long)le64_to_cpu(eb->h_blkno));
2945 goto out;
2946 }
2947
2948 /*
2949 * XXX: The caller can not trust "path" any more after
2950 * this as it will have been deleted. What do we do?
2951 *
2952 * In theory the rotate-for-merge code will never get
2953 * here because it'll always ask for a rotate in a
2954 * nonempty list.
2955 */
2956
2957 ret = ocfs2_remove_rightmost_path(inode, handle, path,
e7d4cb6b 2958 dealloc, et);
328d5752
MF
2959 if (ret)
2960 mlog_errno(ret);
2961 goto out;
2962 }
2963
2964 /*
2965 * Now we can loop, remembering the path we get from -EAGAIN
2966 * and restarting from there.
2967 */
2968try_rotate:
2969 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
e7d4cb6b 2970 dealloc, &restart_path, et);
328d5752
MF
2971 if (ret && ret != -EAGAIN) {
2972 mlog_errno(ret);
2973 goto out;
2974 }
2975
2976 while (ret == -EAGAIN) {
2977 tmp_path = restart_path;
2978 restart_path = NULL;
2979
2980 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2981 tmp_path, dealloc,
e7d4cb6b 2982 &restart_path, et);
328d5752
MF
2983 if (ret && ret != -EAGAIN) {
2984 mlog_errno(ret);
2985 goto out;
2986 }
2987
2988 ocfs2_free_path(tmp_path);
2989 tmp_path = NULL;
2990
2991 if (ret == 0)
2992 goto try_rotate;
2993 }
2994
2995out:
2996 ocfs2_free_path(tmp_path);
2997 ocfs2_free_path(restart_path);
2998 return ret;
2999}
3000
3001static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
3002 int index)
3003{
3004 struct ocfs2_extent_rec *rec = &el->l_recs[index];
3005 unsigned int size;
3006
3007 if (rec->e_leaf_clusters == 0) {
3008 /*
3009 * We consumed all of the merged-from record. An empty
3010 * extent cannot exist anywhere but the 1st array
3011 * position, so move things over if the merged-from
3012 * record doesn't occupy that position.
3013 *
3014 * This creates a new empty extent so the caller
3015 * should be smart enough to have removed any existing
3016 * ones.
3017 */
3018 if (index > 0) {
3019 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3020 size = index * sizeof(struct ocfs2_extent_rec);
3021 memmove(&el->l_recs[1], &el->l_recs[0], size);
3022 }
3023
3024 /*
3025 * Always memset - the caller doesn't check whether it
3026 * created an empty extent, so there could be junk in
3027 * the other fields.
3028 */
3029 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
3030 }
3031}
3032
677b9752
TM
3033static int ocfs2_get_right_path(struct inode *inode,
3034 struct ocfs2_path *left_path,
3035 struct ocfs2_path **ret_right_path)
3036{
3037 int ret;
3038 u32 right_cpos;
3039 struct ocfs2_path *right_path = NULL;
3040 struct ocfs2_extent_list *left_el;
3041
3042 *ret_right_path = NULL;
3043
3044 /* This function shouldn't be called for non-trees. */
3045 BUG_ON(left_path->p_tree_depth == 0);
3046
3047 left_el = path_leaf_el(left_path);
3048 BUG_ON(left_el->l_next_free_rec != left_el->l_count);
3049
3050 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
3051 &right_cpos);
3052 if (ret) {
3053 mlog_errno(ret);
3054 goto out;
3055 }
3056
3057 /* This function shouldn't be called for the rightmost leaf. */
3058 BUG_ON(right_cpos == 0);
3059
3060 right_path = ocfs2_new_path(path_root_bh(left_path),
3061 path_root_el(left_path));
3062 if (!right_path) {
3063 ret = -ENOMEM;
3064 mlog_errno(ret);
3065 goto out;
3066 }
3067
3068 ret = ocfs2_find_path(inode, right_path, right_cpos);
3069 if (ret) {
3070 mlog_errno(ret);
3071 goto out;
3072 }
3073
3074 *ret_right_path = right_path;
3075out:
3076 if (ret)
3077 ocfs2_free_path(right_path);
3078 return ret;
3079}
3080
328d5752
MF
3081/*
3082 * Remove split_rec clusters from the record at index and merge them
677b9752
TM
3083 * onto the beginning of the record "next" to it.
3084 * For index < l_count - 1, the next means the extent rec at index + 1.
3085 * For index == l_count - 1, the "next" means the 1st extent rec of the
3086 * next extent block.
328d5752 3087 */
677b9752
TM
3088static int ocfs2_merge_rec_right(struct inode *inode,
3089 struct ocfs2_path *left_path,
3090 handle_t *handle,
3091 struct ocfs2_extent_rec *split_rec,
3092 int index)
328d5752 3093{
677b9752 3094 int ret, next_free, i;
328d5752
MF
3095 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3096 struct ocfs2_extent_rec *left_rec;
3097 struct ocfs2_extent_rec *right_rec;
677b9752
TM
3098 struct ocfs2_extent_list *right_el;
3099 struct ocfs2_path *right_path = NULL;
3100 int subtree_index = 0;
3101 struct ocfs2_extent_list *el = path_leaf_el(left_path);
3102 struct buffer_head *bh = path_leaf_bh(left_path);
3103 struct buffer_head *root_bh = NULL;
328d5752
MF
3104
3105 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
328d5752 3106 left_rec = &el->l_recs[index];
677b9752 3107
9d8df6aa 3108 if (index == le16_to_cpu(el->l_next_free_rec) - 1 &&
677b9752
TM
3109 le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count)) {
3110 /* we meet with a cross extent block merge. */
3111 ret = ocfs2_get_right_path(inode, left_path, &right_path);
3112 if (ret) {
3113 mlog_errno(ret);
3114 goto out;
3115 }
3116
3117 right_el = path_leaf_el(right_path);
3118 next_free = le16_to_cpu(right_el->l_next_free_rec);
3119 BUG_ON(next_free <= 0);
3120 right_rec = &right_el->l_recs[0];
3121 if (ocfs2_is_empty_extent(right_rec)) {
9d8df6aa 3122 BUG_ON(next_free <= 1);
677b9752
TM
3123 right_rec = &right_el->l_recs[1];
3124 }
3125
3126 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3127 le16_to_cpu(left_rec->e_leaf_clusters) !=
3128 le32_to_cpu(right_rec->e_cpos));
3129
3130 subtree_index = ocfs2_find_subtree_root(inode,
3131 left_path, right_path);
3132
3133 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3134 handle->h_buffer_credits,
3135 right_path);
3136 if (ret) {
3137 mlog_errno(ret);
3138 goto out;
3139 }
3140
3141 root_bh = left_path->p_node[subtree_index].bh;
3142 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3143
3144 ret = ocfs2_journal_access(handle, inode, root_bh,
3145 OCFS2_JOURNAL_ACCESS_WRITE);
3146 if (ret) {
3147 mlog_errno(ret);
3148 goto out;
3149 }
3150
3151 for (i = subtree_index + 1;
3152 i < path_num_items(right_path); i++) {
3153 ret = ocfs2_journal_access(handle, inode,
3154 right_path->p_node[i].bh,
3155 OCFS2_JOURNAL_ACCESS_WRITE);
3156 if (ret) {
3157 mlog_errno(ret);
3158 goto out;
3159 }
3160
3161 ret = ocfs2_journal_access(handle, inode,
3162 left_path->p_node[i].bh,
3163 OCFS2_JOURNAL_ACCESS_WRITE);
3164 if (ret) {
3165 mlog_errno(ret);
3166 goto out;
3167 }
3168 }
3169
3170 } else {
3171 BUG_ON(index == le16_to_cpu(el->l_next_free_rec) - 1);
3172 right_rec = &el->l_recs[index + 1];
3173 }
328d5752
MF
3174
3175 ret = ocfs2_journal_access(handle, inode, bh,
3176 OCFS2_JOURNAL_ACCESS_WRITE);
3177 if (ret) {
3178 mlog_errno(ret);
3179 goto out;
3180 }
3181
3182 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
3183
3184 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
3185 le64_add_cpu(&right_rec->e_blkno,
3186 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3187 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
3188
3189 ocfs2_cleanup_merge(el, index);
3190
3191 ret = ocfs2_journal_dirty(handle, bh);
3192 if (ret)
3193 mlog_errno(ret);
3194
677b9752
TM
3195 if (right_path) {
3196 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
3197 if (ret)
3198 mlog_errno(ret);
3199
3200 ocfs2_complete_edge_insert(inode, handle, left_path,
3201 right_path, subtree_index);
3202 }
3203out:
3204 if (right_path)
3205 ocfs2_free_path(right_path);
3206 return ret;
3207}
3208
3209static int ocfs2_get_left_path(struct inode *inode,
3210 struct ocfs2_path *right_path,
3211 struct ocfs2_path **ret_left_path)
3212{
3213 int ret;
3214 u32 left_cpos;
3215 struct ocfs2_path *left_path = NULL;
3216
3217 *ret_left_path = NULL;
3218
3219 /* This function shouldn't be called for non-trees. */
3220 BUG_ON(right_path->p_tree_depth == 0);
3221
3222 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
3223 right_path, &left_cpos);
3224 if (ret) {
3225 mlog_errno(ret);
3226 goto out;
3227 }
3228
3229 /* This function shouldn't be called for the leftmost leaf. */
3230 BUG_ON(left_cpos == 0);
3231
3232 left_path = ocfs2_new_path(path_root_bh(right_path),
3233 path_root_el(right_path));
3234 if (!left_path) {
3235 ret = -ENOMEM;
3236 mlog_errno(ret);
3237 goto out;
3238 }
3239
3240 ret = ocfs2_find_path(inode, left_path, left_cpos);
3241 if (ret) {
3242 mlog_errno(ret);
3243 goto out;
3244 }
3245
3246 *ret_left_path = left_path;
328d5752 3247out:
677b9752
TM
3248 if (ret)
3249 ocfs2_free_path(left_path);
328d5752
MF
3250 return ret;
3251}
3252
3253/*
3254 * Remove split_rec clusters from the record at index and merge them
677b9752
TM
3255 * onto the tail of the record "before" it.
3256 * For index > 0, the "before" means the extent rec at index - 1.
3257 *
3258 * For index == 0, the "before" means the last record of the previous
3259 * extent block. And there is also a situation that we may need to
3260 * remove the rightmost leaf extent block in the right_path and change
3261 * the right path to indicate the new rightmost path.
328d5752 3262 */
677b9752
TM
3263static int ocfs2_merge_rec_left(struct inode *inode,
3264 struct ocfs2_path *right_path,
328d5752
MF
3265 handle_t *handle,
3266 struct ocfs2_extent_rec *split_rec,
677b9752 3267 struct ocfs2_cached_dealloc_ctxt *dealloc,
e7d4cb6b 3268 struct ocfs2_extent_tree *et,
677b9752 3269 int index)
328d5752 3270{
677b9752 3271 int ret, i, subtree_index = 0, has_empty_extent = 0;
328d5752
MF
3272 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
3273 struct ocfs2_extent_rec *left_rec;
3274 struct ocfs2_extent_rec *right_rec;
677b9752
TM
3275 struct ocfs2_extent_list *el = path_leaf_el(right_path);
3276 struct buffer_head *bh = path_leaf_bh(right_path);
3277 struct buffer_head *root_bh = NULL;
3278 struct ocfs2_path *left_path = NULL;
3279 struct ocfs2_extent_list *left_el;
328d5752 3280
677b9752 3281 BUG_ON(index < 0);
328d5752 3282
328d5752 3283 right_rec = &el->l_recs[index];
677b9752
TM
3284 if (index == 0) {
3285 /* we meet with a cross extent block merge. */
3286 ret = ocfs2_get_left_path(inode, right_path, &left_path);
3287 if (ret) {
3288 mlog_errno(ret);
3289 goto out;
3290 }
3291
3292 left_el = path_leaf_el(left_path);
3293 BUG_ON(le16_to_cpu(left_el->l_next_free_rec) !=
3294 le16_to_cpu(left_el->l_count));
3295
3296 left_rec = &left_el->l_recs[
3297 le16_to_cpu(left_el->l_next_free_rec) - 1];
3298 BUG_ON(le32_to_cpu(left_rec->e_cpos) +
3299 le16_to_cpu(left_rec->e_leaf_clusters) !=
3300 le32_to_cpu(split_rec->e_cpos));
3301
3302 subtree_index = ocfs2_find_subtree_root(inode,
3303 left_path, right_path);
3304
3305 ret = ocfs2_extend_rotate_transaction(handle, subtree_index,
3306 handle->h_buffer_credits,
3307 left_path);
3308 if (ret) {
3309 mlog_errno(ret);
3310 goto out;
3311 }
3312
3313 root_bh = left_path->p_node[subtree_index].bh;
3314 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
3315
3316 ret = ocfs2_journal_access(handle, inode, root_bh,
3317 OCFS2_JOURNAL_ACCESS_WRITE);
3318 if (ret) {
3319 mlog_errno(ret);
3320 goto out;
3321 }
3322
3323 for (i = subtree_index + 1;
3324 i < path_num_items(right_path); i++) {
3325 ret = ocfs2_journal_access(handle, inode,
3326 right_path->p_node[i].bh,
3327 OCFS2_JOURNAL_ACCESS_WRITE);
3328 if (ret) {
3329 mlog_errno(ret);
3330 goto out;
3331 }
3332
3333 ret = ocfs2_journal_access(handle, inode,
3334 left_path->p_node[i].bh,
3335 OCFS2_JOURNAL_ACCESS_WRITE);
3336 if (ret) {
3337 mlog_errno(ret);
3338 goto out;
3339 }
3340 }
3341 } else {
3342 left_rec = &el->l_recs[index - 1];
3343 if (ocfs2_is_empty_extent(&el->l_recs[0]))
3344 has_empty_extent = 1;
3345 }
328d5752
MF
3346
3347 ret = ocfs2_journal_access(handle, inode, bh,
3348 OCFS2_JOURNAL_ACCESS_WRITE);
3349 if (ret) {
3350 mlog_errno(ret);
3351 goto out;
3352 }
3353
3354 if (has_empty_extent && index == 1) {
3355 /*
3356 * The easy case - we can just plop the record right in.
3357 */
3358 *left_rec = *split_rec;
3359
3360 has_empty_extent = 0;
677b9752 3361 } else
328d5752 3362 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
328d5752
MF
3363
3364 le32_add_cpu(&right_rec->e_cpos, split_clusters);
3365 le64_add_cpu(&right_rec->e_blkno,
3366 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
3367 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
3368
3369 ocfs2_cleanup_merge(el, index);
3370
3371 ret = ocfs2_journal_dirty(handle, bh);
3372 if (ret)
3373 mlog_errno(ret);
3374
677b9752
TM
3375 if (left_path) {
3376 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
3377 if (ret)
3378 mlog_errno(ret);
3379
3380 /*
3381 * In the situation that the right_rec is empty and the extent
3382 * block is empty also, ocfs2_complete_edge_insert can't handle
3383 * it and we need to delete the right extent block.
3384 */
3385 if (le16_to_cpu(right_rec->e_leaf_clusters) == 0 &&
3386 le16_to_cpu(el->l_next_free_rec) == 1) {
3387
3388 ret = ocfs2_remove_rightmost_path(inode, handle,
e7d4cb6b
TM
3389 right_path,
3390 dealloc, et);
677b9752
TM
3391 if (ret) {
3392 mlog_errno(ret);
3393 goto out;
3394 }
3395
3396 /* Now the rightmost extent block has been deleted.
3397 * So we use the new rightmost path.
3398 */
3399 ocfs2_mv_path(right_path, left_path);
3400 left_path = NULL;
3401 } else
3402 ocfs2_complete_edge_insert(inode, handle, left_path,
3403 right_path, subtree_index);
3404 }
328d5752 3405out:
677b9752
TM
3406 if (left_path)
3407 ocfs2_free_path(left_path);
328d5752
MF
3408 return ret;
3409}
3410
3411static int ocfs2_try_to_merge_extent(struct inode *inode,
3412 handle_t *handle,
677b9752 3413 struct ocfs2_path *path,
328d5752
MF
3414 int split_index,
3415 struct ocfs2_extent_rec *split_rec,
3416 struct ocfs2_cached_dealloc_ctxt *dealloc,
e7d4cb6b
TM
3417 struct ocfs2_merge_ctxt *ctxt,
3418 struct ocfs2_extent_tree *et)
328d5752
MF
3419
3420{
518d7269 3421 int ret = 0;
677b9752 3422 struct ocfs2_extent_list *el = path_leaf_el(path);
328d5752
MF
3423 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3424
3425 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
3426
518d7269
TM
3427 if (ctxt->c_split_covers_rec && ctxt->c_has_empty_extent) {
3428 /*
3429 * The merge code will need to create an empty
3430 * extent to take the place of the newly
3431 * emptied slot. Remove any pre-existing empty
3432 * extents - having more than one in a leaf is
3433 * illegal.
3434 */
677b9752 3435 ret = ocfs2_rotate_tree_left(inode, handle, path,
e7d4cb6b 3436 dealloc, et);
518d7269
TM
3437 if (ret) {
3438 mlog_errno(ret);
3439 goto out;
328d5752 3440 }
518d7269
TM
3441 split_index--;
3442 rec = &el->l_recs[split_index];
328d5752
MF
3443 }
3444
3445 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
3446 /*
3447 * Left-right contig implies this.
3448 */
3449 BUG_ON(!ctxt->c_split_covers_rec);
328d5752
MF
3450
3451 /*
3452 * Since the leftright insert always covers the entire
3453 * extent, this call will delete the insert record
3454 * entirely, resulting in an empty extent record added to
3455 * the extent block.
3456 *
3457 * Since the adding of an empty extent shifts
3458 * everything back to the right, there's no need to
3459 * update split_index here.
677b9752
TM
3460 *
3461 * When the split_index is zero, we need to merge it to the
3462 * prevoius extent block. It is more efficient and easier
3463 * if we do merge_right first and merge_left later.
328d5752 3464 */
677b9752
TM
3465 ret = ocfs2_merge_rec_right(inode, path,
3466 handle, split_rec,
3467 split_index);
328d5752
MF
3468 if (ret) {
3469 mlog_errno(ret);
3470 goto out;
3471 }
3472
3473 /*
3474 * We can only get this from logic error above.
3475 */
3476 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
3477
677b9752 3478 /* The merge left us with an empty extent, remove it. */
e7d4cb6b
TM
3479 ret = ocfs2_rotate_tree_left(inode, handle, path,
3480 dealloc, et);
328d5752
MF
3481 if (ret) {
3482 mlog_errno(ret);
3483 goto out;
3484 }
677b9752 3485
328d5752
MF
3486 rec = &el->l_recs[split_index];
3487
3488 /*
3489 * Note that we don't pass split_rec here on purpose -
677b9752 3490 * we've merged it into the rec already.
328d5752 3491 */
677b9752
TM
3492 ret = ocfs2_merge_rec_left(inode, path,
3493 handle, rec,
e7d4cb6b 3494 dealloc, et,
677b9752
TM
3495 split_index);
3496
328d5752
MF
3497 if (ret) {
3498 mlog_errno(ret);
3499 goto out;
3500 }
3501
677b9752 3502 ret = ocfs2_rotate_tree_left(inode, handle, path,
e7d4cb6b 3503 dealloc, et);
328d5752
MF
3504 /*
3505 * Error from this last rotate is not critical, so
3506 * print but don't bubble it up.
3507 */
3508 if (ret)
3509 mlog_errno(ret);
3510 ret = 0;
3511 } else {
3512 /*
3513 * Merge a record to the left or right.
3514 *
3515 * 'contig_type' is relative to the existing record,
3516 * so for example, if we're "right contig", it's to
3517 * the record on the left (hence the left merge).
3518 */
3519 if (ctxt->c_contig_type == CONTIG_RIGHT) {
3520 ret = ocfs2_merge_rec_left(inode,
677b9752
TM
3521 path,
3522 handle, split_rec,
e7d4cb6b 3523 dealloc, et,
328d5752
MF
3524 split_index);
3525 if (ret) {
3526 mlog_errno(ret);
3527 goto out;
3528 }
3529 } else {
3530 ret = ocfs2_merge_rec_right(inode,
677b9752
TM
3531 path,
3532 handle, split_rec,
328d5752
MF
3533 split_index);
3534 if (ret) {
3535 mlog_errno(ret);
3536 goto out;
3537 }
3538 }
3539
3540 if (ctxt->c_split_covers_rec) {
3541 /*
3542 * The merge may have left an empty extent in
3543 * our leaf. Try to rotate it away.
3544 */
677b9752 3545 ret = ocfs2_rotate_tree_left(inode, handle, path,
e7d4cb6b 3546 dealloc, et);
328d5752
MF
3547 if (ret)
3548 mlog_errno(ret);
3549 ret = 0;
3550 }
3551 }
3552
3553out:
3554 return ret;
3555}
3556
3557static void ocfs2_subtract_from_rec(struct super_block *sb,
3558 enum ocfs2_split_type split,
3559 struct ocfs2_extent_rec *rec,
3560 struct ocfs2_extent_rec *split_rec)
3561{
3562 u64 len_blocks;
3563
3564 len_blocks = ocfs2_clusters_to_blocks(sb,
3565 le16_to_cpu(split_rec->e_leaf_clusters));
3566
3567 if (split == SPLIT_LEFT) {
3568 /*
3569 * Region is on the left edge of the existing
3570 * record.
3571 */
3572 le32_add_cpu(&rec->e_cpos,
3573 le16_to_cpu(split_rec->e_leaf_clusters));
3574 le64_add_cpu(&rec->e_blkno, len_blocks);
3575 le16_add_cpu(&rec->e_leaf_clusters,
3576 -le16_to_cpu(split_rec->e_leaf_clusters));
3577 } else {
3578 /*
3579 * Region is on the right edge of the existing
3580 * record.
3581 */
3582 le16_add_cpu(&rec->e_leaf_clusters,
3583 -le16_to_cpu(split_rec->e_leaf_clusters));
3584 }
3585}
3586
3587/*
3588 * Do the final bits of extent record insertion at the target leaf
3589 * list. If this leaf is part of an allocation tree, it is assumed
3590 * that the tree above has been prepared.
3591 */
3592static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
3593 struct ocfs2_extent_list *el,
3594 struct ocfs2_insert_type *insert,
3595 struct inode *inode)
3596{
3597 int i = insert->ins_contig_index;
3598 unsigned int range;
3599 struct ocfs2_extent_rec *rec;
3600
3601 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3602
3603 if (insert->ins_split != SPLIT_NONE) {
3604 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
3605 BUG_ON(i == -1);
3606 rec = &el->l_recs[i];
3607 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3608 insert_rec);
3609 goto rotate;
3610 }
3611
3612 /*
3613 * Contiguous insert - either left or right.
3614 */
3615 if (insert->ins_contig != CONTIG_NONE) {
3616 rec = &el->l_recs[i];
3617 if (insert->ins_contig == CONTIG_LEFT) {
3618 rec->e_blkno = insert_rec->e_blkno;
3619 rec->e_cpos = insert_rec->e_cpos;
3620 }
3621 le16_add_cpu(&rec->e_leaf_clusters,
3622 le16_to_cpu(insert_rec->e_leaf_clusters));
3623 return;
3624 }
3625
3626 /*
3627 * Handle insert into an empty leaf.
3628 */
3629 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3630 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3631 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3632 el->l_recs[0] = *insert_rec;
3633 el->l_next_free_rec = cpu_to_le16(1);
3634 return;
3635 }
3636
3637 /*
3638 * Appending insert.
3639 */
3640 if (insert->ins_appending == APPEND_TAIL) {
3641 i = le16_to_cpu(el->l_next_free_rec) - 1;
3642 rec = &el->l_recs[i];
3643 range = le32_to_cpu(rec->e_cpos)
3644 + le16_to_cpu(rec->e_leaf_clusters);
3645 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3646
3647 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3648 le16_to_cpu(el->l_count),
3649 "inode %lu, depth %u, count %u, next free %u, "
3650 "rec.cpos %u, rec.clusters %u, "
3651 "insert.cpos %u, insert.clusters %u\n",
3652 inode->i_ino,
3653 le16_to_cpu(el->l_tree_depth),
3654 le16_to_cpu(el->l_count),
3655 le16_to_cpu(el->l_next_free_rec),
3656 le32_to_cpu(el->l_recs[i].e_cpos),
3657 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3658 le32_to_cpu(insert_rec->e_cpos),
3659 le16_to_cpu(insert_rec->e_leaf_clusters));
3660 i++;
3661 el->l_recs[i] = *insert_rec;
3662 le16_add_cpu(&el->l_next_free_rec, 1);
3663 return;
3664 }
3665
3666rotate:
3667 /*
3668 * Ok, we have to rotate.
3669 *
3670 * At this point, it is safe to assume that inserting into an
3671 * empty leaf and appending to a leaf have both been handled
3672 * above.
3673 *
3674 * This leaf needs to have space, either by the empty 1st
3675 * extent record, or by virtue of an l_next_rec < l_count.
3676 */
3677 ocfs2_rotate_leaf(el, insert_rec);
3678}
3679
328d5752
MF
3680static void ocfs2_adjust_rightmost_records(struct inode *inode,
3681 handle_t *handle,
3682 struct ocfs2_path *path,
3683 struct ocfs2_extent_rec *insert_rec)
3684{
3685 int ret, i, next_free;
3686 struct buffer_head *bh;
3687 struct ocfs2_extent_list *el;
3688 struct ocfs2_extent_rec *rec;
3689
3690 /*
3691 * Update everything except the leaf block.
3692 */
3693 for (i = 0; i < path->p_tree_depth; i++) {
3694 bh = path->p_node[i].bh;
3695 el = path->p_node[i].el;
3696
dcd0538f
MF
3697 next_free = le16_to_cpu(el->l_next_free_rec);
3698 if (next_free == 0) {
3699 ocfs2_error(inode->i_sb,
3700 "Dinode %llu has a bad extent list",
3701 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3702 ret = -EIO;
328d5752
MF
3703 return;
3704 }
3705
3706 rec = &el->l_recs[next_free - 1];
3707
3708 rec->e_int_clusters = insert_rec->e_cpos;
3709 le32_add_cpu(&rec->e_int_clusters,
3710 le16_to_cpu(insert_rec->e_leaf_clusters));
3711 le32_add_cpu(&rec->e_int_clusters,
3712 -le32_to_cpu(rec->e_cpos));
3713
3714 ret = ocfs2_journal_dirty(handle, bh);
3715 if (ret)
3716 mlog_errno(ret);
3717
3718 }
3719}
3720
3721static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3722 struct ocfs2_extent_rec *insert_rec,
3723 struct ocfs2_path *right_path,
3724 struct ocfs2_path **ret_left_path)
3725{
3726 int ret, next_free;
3727 struct ocfs2_extent_list *el;
3728 struct ocfs2_path *left_path = NULL;
3729
3730 *ret_left_path = NULL;
3731
3732 /*
3733 * This shouldn't happen for non-trees. The extent rec cluster
3734 * count manipulation below only works for interior nodes.
3735 */
3736 BUG_ON(right_path->p_tree_depth == 0);
3737
3738 /*
3739 * If our appending insert is at the leftmost edge of a leaf,
3740 * then we might need to update the rightmost records of the
3741 * neighboring path.
3742 */
3743 el = path_leaf_el(right_path);
3744 next_free = le16_to_cpu(el->l_next_free_rec);
3745 if (next_free == 0 ||
3746 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3747 u32 left_cpos;
3748
3749 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3750 &left_cpos);
3751 if (ret) {
3752 mlog_errno(ret);
dcd0538f
MF
3753 goto out;
3754 }
3755
328d5752
MF
3756 mlog(0, "Append may need a left path update. cpos: %u, "
3757 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3758 left_cpos);
e48edee2 3759
328d5752
MF
3760 /*
3761 * No need to worry if the append is already in the
3762 * leftmost leaf.
3763 */
3764 if (left_cpos) {
3765 left_path = ocfs2_new_path(path_root_bh(right_path),
3766 path_root_el(right_path));
3767 if (!left_path) {
3768 ret = -ENOMEM;
3769 mlog_errno(ret);
3770 goto out;
3771 }
dcd0538f 3772
328d5752
MF
3773 ret = ocfs2_find_path(inode, left_path, left_cpos);
3774 if (ret) {
3775 mlog_errno(ret);
3776 goto out;
3777 }
dcd0538f 3778
328d5752
MF
3779 /*
3780 * ocfs2_insert_path() will pass the left_path to the
3781 * journal for us.
3782 */
3783 }
3784 }
dcd0538f 3785
328d5752
MF
3786 ret = ocfs2_journal_access_path(inode, handle, right_path);
3787 if (ret) {
3788 mlog_errno(ret);
3789 goto out;
dcd0538f
MF
3790 }
3791
328d5752
MF
3792 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3793
dcd0538f
MF
3794 *ret_left_path = left_path;
3795 ret = 0;
3796out:
3797 if (ret != 0)
3798 ocfs2_free_path(left_path);
3799
3800 return ret;
3801}
3802
328d5752
MF
3803static void ocfs2_split_record(struct inode *inode,
3804 struct ocfs2_path *left_path,
3805 struct ocfs2_path *right_path,
3806 struct ocfs2_extent_rec *split_rec,
3807 enum ocfs2_split_type split)
3808{
3809 int index;
3810 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3811 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3812 struct ocfs2_extent_rec *rec, *tmprec;
3813
3814 right_el = path_leaf_el(right_path);;
3815 if (left_path)
3816 left_el = path_leaf_el(left_path);
3817
3818 el = right_el;
3819 insert_el = right_el;
3820 index = ocfs2_search_extent_list(el, cpos);
3821 if (index != -1) {
3822 if (index == 0 && left_path) {
3823 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3824
3825 /*
3826 * This typically means that the record
3827 * started in the left path but moved to the
3828 * right as a result of rotation. We either
3829 * move the existing record to the left, or we
3830 * do the later insert there.
3831 *
3832 * In this case, the left path should always
3833 * exist as the rotate code will have passed
3834 * it back for a post-insert update.
3835 */
3836
3837 if (split == SPLIT_LEFT) {
3838 /*
3839 * It's a left split. Since we know
3840 * that the rotate code gave us an
3841 * empty extent in the left path, we
3842 * can just do the insert there.
3843 */
3844 insert_el = left_el;
3845 } else {
3846 /*
3847 * Right split - we have to move the
3848 * existing record over to the left
3849 * leaf. The insert will be into the
3850 * newly created empty extent in the
3851 * right leaf.
3852 */
3853 tmprec = &right_el->l_recs[index];
3854 ocfs2_rotate_leaf(left_el, tmprec);
3855 el = left_el;
3856
3857 memset(tmprec, 0, sizeof(*tmprec));
3858 index = ocfs2_search_extent_list(left_el, cpos);
3859 BUG_ON(index == -1);
3860 }
3861 }
3862 } else {
3863 BUG_ON(!left_path);
3864 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3865 /*
3866 * Left path is easy - we can just allow the insert to
3867 * happen.
3868 */
3869 el = left_el;
3870 insert_el = left_el;
3871 index = ocfs2_search_extent_list(el, cpos);
3872 BUG_ON(index == -1);
3873 }
3874
3875 rec = &el->l_recs[index];
3876 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3877 ocfs2_rotate_leaf(insert_el, split_rec);
3878}
3879
dcd0538f 3880/*
e7d4cb6b
TM
3881 * This function only does inserts on an allocation b-tree. For tree
3882 * depth = 0, ocfs2_insert_at_leaf() is called directly.
dcd0538f
MF
3883 *
3884 * right_path is the path we want to do the actual insert
3885 * in. left_path should only be passed in if we need to update that
3886 * portion of the tree after an edge insert.
3887 */
3888static int ocfs2_insert_path(struct inode *inode,
3889 handle_t *handle,
3890 struct ocfs2_path *left_path,
3891 struct ocfs2_path *right_path,
3892 struct ocfs2_extent_rec *insert_rec,
3893 struct ocfs2_insert_type *insert)
3894{
3895 int ret, subtree_index;
3896 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
dcd0538f 3897
dcd0538f
MF
3898 if (left_path) {
3899 int credits = handle->h_buffer_credits;
3900
3901 /*
3902 * There's a chance that left_path got passed back to
3903 * us without being accounted for in the
3904 * journal. Extend our transaction here to be sure we
3905 * can change those blocks.
3906 */
3907 credits += left_path->p_tree_depth;
3908
3909 ret = ocfs2_extend_trans(handle, credits);
3910 if (ret < 0) {
3911 mlog_errno(ret);
3912 goto out;
3913 }
3914
3915 ret = ocfs2_journal_access_path(inode, handle, left_path);
3916 if (ret < 0) {
3917 mlog_errno(ret);
3918 goto out;
3919 }
3920 }
3921
e8aed345
MF
3922 /*
3923 * Pass both paths to the journal. The majority of inserts
3924 * will be touching all components anyway.
3925 */
3926 ret = ocfs2_journal_access_path(inode, handle, right_path);
3927 if (ret < 0) {
3928 mlog_errno(ret);
3929 goto out;
3930 }
3931
328d5752
MF
3932 if (insert->ins_split != SPLIT_NONE) {
3933 /*
3934 * We could call ocfs2_insert_at_leaf() for some types
c78bad11 3935 * of splits, but it's easier to just let one separate
328d5752
MF
3936 * function sort it all out.
3937 */
3938 ocfs2_split_record(inode, left_path, right_path,
3939 insert_rec, insert->ins_split);
e8aed345
MF
3940
3941 /*
3942 * Split might have modified either leaf and we don't
3943 * have a guarantee that the later edge insert will
3944 * dirty this for us.
3945 */
3946 if (left_path)
3947 ret = ocfs2_journal_dirty(handle,
3948 path_leaf_bh(left_path));
3949 if (ret)
3950 mlog_errno(ret);
328d5752
MF
3951 } else
3952 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3953 insert, inode);
dcd0538f 3954
dcd0538f
MF
3955 ret = ocfs2_journal_dirty(handle, leaf_bh);
3956 if (ret)
3957 mlog_errno(ret);
3958
3959 if (left_path) {
3960 /*
3961 * The rotate code has indicated that we need to fix
3962 * up portions of the tree after the insert.
3963 *
3964 * XXX: Should we extend the transaction here?
3965 */
3966 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3967 right_path);
3968 ocfs2_complete_edge_insert(inode, handle, left_path,
3969 right_path, subtree_index);
3970 }
3971
3972 ret = 0;
3973out:
3974 return ret;
3975}
3976
3977static int ocfs2_do_insert_extent(struct inode *inode,
3978 handle_t *handle,
e7d4cb6b 3979 struct ocfs2_extent_tree *et,
dcd0538f
MF
3980 struct ocfs2_extent_rec *insert_rec,
3981 struct ocfs2_insert_type *type)
3982{
3983 int ret, rotate = 0;
3984 u32 cpos;
3985 struct ocfs2_path *right_path = NULL;
3986 struct ocfs2_path *left_path = NULL;
dcd0538f
MF
3987 struct ocfs2_extent_list *el;
3988
ce1d9ea6 3989 el = et->et_root_el;
dcd0538f 3990
ce1d9ea6 3991 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
dcd0538f
MF
3992 OCFS2_JOURNAL_ACCESS_WRITE);
3993 if (ret) {
3994 mlog_errno(ret);
3995 goto out;
3996 }
3997
3998 if (le16_to_cpu(el->l_tree_depth) == 0) {
3999 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
4000 goto out_update_clusters;
4001 }
4002
ce1d9ea6 4003 right_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
dcd0538f
MF
4004 if (!right_path) {
4005 ret = -ENOMEM;
4006 mlog_errno(ret);
4007 goto out;
4008 }
4009
4010 /*
4011 * Determine the path to start with. Rotations need the
4012 * rightmost path, everything else can go directly to the
4013 * target leaf.
4014 */
4015 cpos = le32_to_cpu(insert_rec->e_cpos);
4016 if (type->ins_appending == APPEND_NONE &&
4017 type->ins_contig == CONTIG_NONE) {
4018 rotate = 1;
4019 cpos = UINT_MAX;
4020 }
4021
4022 ret = ocfs2_find_path(inode, right_path, cpos);
4023 if (ret) {
4024 mlog_errno(ret);
4025 goto out;
4026 }
4027
4028 /*
4029 * Rotations and appends need special treatment - they modify
4030 * parts of the tree's above them.
4031 *
4032 * Both might pass back a path immediate to the left of the
4033 * one being inserted to. This will be cause
4034 * ocfs2_insert_path() to modify the rightmost records of
4035 * left_path to account for an edge insert.
4036 *
4037 * XXX: When modifying this code, keep in mind that an insert
4038 * can wind up skipping both of these two special cases...
4039 */
4040 if (rotate) {
328d5752 4041 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
dcd0538f
MF
4042 le32_to_cpu(insert_rec->e_cpos),
4043 right_path, &left_path);
4044 if (ret) {
4045 mlog_errno(ret);
4046 goto out;
4047 }
e8aed345
MF
4048
4049 /*
4050 * ocfs2_rotate_tree_right() might have extended the
4051 * transaction without re-journaling our tree root.
4052 */
ce1d9ea6 4053 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
e8aed345
MF
4054 OCFS2_JOURNAL_ACCESS_WRITE);
4055 if (ret) {
4056 mlog_errno(ret);
4057 goto out;
4058 }
dcd0538f
MF
4059 } else if (type->ins_appending == APPEND_TAIL
4060 && type->ins_contig != CONTIG_LEFT) {
4061 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
4062 right_path, &left_path);
4063 if (ret) {
4064 mlog_errno(ret);
4065 goto out;
4066 }
4067 }
4068
4069 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
4070 insert_rec, type);
4071 if (ret) {
4072 mlog_errno(ret);
4073 goto out;
4074 }
4075
4076out_update_clusters:
328d5752 4077 if (type->ins_split == SPLIT_NONE)
35dc0aa3
JB
4078 ocfs2_et_update_clusters(inode, et,
4079 le16_to_cpu(insert_rec->e_leaf_clusters));
dcd0538f 4080
ce1d9ea6 4081 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
dcd0538f
MF
4082 if (ret)
4083 mlog_errno(ret);
4084
4085out:
4086 ocfs2_free_path(left_path);
4087 ocfs2_free_path(right_path);
4088
4089 return ret;
4090}
4091
328d5752 4092static enum ocfs2_contig_type
ad5a4d70 4093ocfs2_figure_merge_contig_type(struct inode *inode, struct ocfs2_path *path,
328d5752
MF
4094 struct ocfs2_extent_list *el, int index,
4095 struct ocfs2_extent_rec *split_rec)
4096{
ad5a4d70 4097 int status;
328d5752 4098 enum ocfs2_contig_type ret = CONTIG_NONE;
ad5a4d70
TM
4099 u32 left_cpos, right_cpos;
4100 struct ocfs2_extent_rec *rec = NULL;
4101 struct ocfs2_extent_list *new_el;
4102 struct ocfs2_path *left_path = NULL, *right_path = NULL;
4103 struct buffer_head *bh;
4104 struct ocfs2_extent_block *eb;
4105
4106 if (index > 0) {
4107 rec = &el->l_recs[index - 1];
4108 } else if (path->p_tree_depth > 0) {
4109 status = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
4110 path, &left_cpos);
4111 if (status)
4112 goto out;
4113
4114 if (left_cpos != 0) {
4115 left_path = ocfs2_new_path(path_root_bh(path),
4116 path_root_el(path));
4117 if (!left_path)
4118 goto out;
4119
4120 status = ocfs2_find_path(inode, left_path, left_cpos);
4121 if (status)
4122 goto out;
4123
4124 new_el = path_leaf_el(left_path);
4125
4126 if (le16_to_cpu(new_el->l_next_free_rec) !=
4127 le16_to_cpu(new_el->l_count)) {
4128 bh = path_leaf_bh(left_path);
4129 eb = (struct ocfs2_extent_block *)bh->b_data;
5e96581a
JB
4130 ocfs2_error(inode->i_sb,
4131 "Extent block #%llu has an "
4132 "invalid l_next_free_rec of "
4133 "%d. It should have "
4134 "matched the l_count of %d",
4135 (unsigned long long)le64_to_cpu(eb->h_blkno),
4136 le16_to_cpu(new_el->l_next_free_rec),
4137 le16_to_cpu(new_el->l_count));
4138 status = -EINVAL;
ad5a4d70
TM
4139 goto out;
4140 }
4141 rec = &new_el->l_recs[
4142 le16_to_cpu(new_el->l_next_free_rec) - 1];
4143 }
4144 }
328d5752
MF
4145
4146 /*
4147 * We're careful to check for an empty extent record here -
4148 * the merge code will know what to do if it sees one.
4149 */
ad5a4d70 4150 if (rec) {
328d5752
MF
4151 if (index == 1 && ocfs2_is_empty_extent(rec)) {
4152 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
4153 ret = CONTIG_RIGHT;
4154 } else {
4155 ret = ocfs2_extent_contig(inode, rec, split_rec);
4156 }
4157 }
4158
ad5a4d70
TM
4159 rec = NULL;
4160 if (index < (le16_to_cpu(el->l_next_free_rec) - 1))
4161 rec = &el->l_recs[index + 1];
4162 else if (le16_to_cpu(el->l_next_free_rec) == le16_to_cpu(el->l_count) &&
4163 path->p_tree_depth > 0) {
4164 status = ocfs2_find_cpos_for_right_leaf(inode->i_sb,
4165 path, &right_cpos);
4166 if (status)
4167 goto out;
4168
4169 if (right_cpos == 0)
4170 goto out;
4171
4172 right_path = ocfs2_new_path(path_root_bh(path),
4173 path_root_el(path));
4174 if (!right_path)
4175 goto out;
4176
4177 status = ocfs2_find_path(inode, right_path, right_cpos);
4178 if (status)
4179 goto out;
4180
4181 new_el = path_leaf_el(right_path);
4182 rec = &new_el->l_recs[0];
4183 if (ocfs2_is_empty_extent(rec)) {
4184 if (le16_to_cpu(new_el->l_next_free_rec) <= 1) {
4185 bh = path_leaf_bh(right_path);
4186 eb = (struct ocfs2_extent_block *)bh->b_data;
5e96581a
JB
4187 ocfs2_error(inode->i_sb,
4188 "Extent block #%llu has an "
4189 "invalid l_next_free_rec of %d",
4190 (unsigned long long)le64_to_cpu(eb->h_blkno),
4191 le16_to_cpu(new_el->l_next_free_rec));
4192 status = -EINVAL;
ad5a4d70
TM
4193 goto out;
4194 }
4195 rec = &new_el->l_recs[1];
4196 }
4197 }
4198
4199 if (rec) {
328d5752
MF
4200 enum ocfs2_contig_type contig_type;
4201
328d5752
MF
4202 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
4203
4204 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
4205 ret = CONTIG_LEFTRIGHT;
4206 else if (ret == CONTIG_NONE)
4207 ret = contig_type;
4208 }
4209
ad5a4d70
TM
4210out:
4211 if (left_path)
4212 ocfs2_free_path(left_path);
4213 if (right_path)
4214 ocfs2_free_path(right_path);
4215
328d5752
MF
4216 return ret;
4217}
4218
dcd0538f
MF
4219static void ocfs2_figure_contig_type(struct inode *inode,
4220 struct ocfs2_insert_type *insert,
4221 struct ocfs2_extent_list *el,
ca12b7c4
TM
4222 struct ocfs2_extent_rec *insert_rec,
4223 struct ocfs2_extent_tree *et)
dcd0538f
MF
4224{
4225 int i;
4226 enum ocfs2_contig_type contig_type = CONTIG_NONE;
4227
e48edee2
MF
4228 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
4229
dcd0538f
MF
4230 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
4231 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
4232 insert_rec);
4233 if (contig_type != CONTIG_NONE) {
4234 insert->ins_contig_index = i;
4235 break;
4236 }
4237 }
4238 insert->ins_contig = contig_type;
ca12b7c4
TM
4239
4240 if (insert->ins_contig != CONTIG_NONE) {
4241 struct ocfs2_extent_rec *rec =
4242 &el->l_recs[insert->ins_contig_index];
4243 unsigned int len = le16_to_cpu(rec->e_leaf_clusters) +
4244 le16_to_cpu(insert_rec->e_leaf_clusters);
4245
4246 /*
4247 * Caller might want us to limit the size of extents, don't
4248 * calculate contiguousness if we might exceed that limit.
4249 */
ce1d9ea6
JB
4250 if (et->et_max_leaf_clusters &&
4251 (len > et->et_max_leaf_clusters))
ca12b7c4
TM
4252 insert->ins_contig = CONTIG_NONE;
4253 }
dcd0538f
MF
4254}
4255
4256/*
4257 * This should only be called against the righmost leaf extent list.
4258 *
4259 * ocfs2_figure_appending_type() will figure out whether we'll have to
4260 * insert at the tail of the rightmost leaf.
4261 *
e7d4cb6b
TM
4262 * This should also work against the root extent list for tree's with 0
4263 * depth. If we consider the root extent list to be the rightmost leaf node
dcd0538f
MF
4264 * then the logic here makes sense.
4265 */
4266static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
4267 struct ocfs2_extent_list *el,
4268 struct ocfs2_extent_rec *insert_rec)
4269{
4270 int i;
4271 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
4272 struct ocfs2_extent_rec *rec;
4273
4274 insert->ins_appending = APPEND_NONE;
4275
e48edee2 4276 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
dcd0538f
MF
4277
4278 if (!el->l_next_free_rec)
4279 goto set_tail_append;
4280
4281 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
4282 /* Were all records empty? */
4283 if (le16_to_cpu(el->l_next_free_rec) == 1)
4284 goto set_tail_append;
4285 }
4286
4287 i = le16_to_cpu(el->l_next_free_rec) - 1;
4288 rec = &el->l_recs[i];
4289
e48edee2
MF
4290 if (cpos >=
4291 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
dcd0538f
MF
4292 goto set_tail_append;
4293
4294 return;
4295
4296set_tail_append:
4297 insert->ins_appending = APPEND_TAIL;
4298}
4299
4300/*
4301 * Helper function called at the begining of an insert.
4302 *
4303 * This computes a few things that are commonly used in the process of
4304 * inserting into the btree:
4305 * - Whether the new extent is contiguous with an existing one.
4306 * - The current tree depth.
4307 * - Whether the insert is an appending one.
4308 * - The total # of free records in the tree.
4309 *
4310 * All of the information is stored on the ocfs2_insert_type
4311 * structure.
4312 */
4313static int ocfs2_figure_insert_type(struct inode *inode,
e7d4cb6b 4314 struct ocfs2_extent_tree *et,
dcd0538f
MF
4315 struct buffer_head **last_eb_bh,
4316 struct ocfs2_extent_rec *insert_rec,
c77534f6 4317 int *free_records,
dcd0538f
MF
4318 struct ocfs2_insert_type *insert)
4319{
4320 int ret;
dcd0538f
MF
4321 struct ocfs2_extent_block *eb;
4322 struct ocfs2_extent_list *el;
4323 struct ocfs2_path *path = NULL;
4324 struct buffer_head *bh = NULL;
4325
328d5752
MF
4326 insert->ins_split = SPLIT_NONE;
4327
ce1d9ea6 4328 el = et->et_root_el;
dcd0538f
MF
4329 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
4330
4331 if (el->l_tree_depth) {
4332 /*
4333 * If we have tree depth, we read in the
4334 * rightmost extent block ahead of time as
4335 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4336 * may want it later.
4337 */
5e96581a
JB
4338 ret = ocfs2_read_extent_block(inode,
4339 ocfs2_et_get_last_eb_blk(et),
4340 &bh);
dcd0538f
MF
4341 if (ret) {
4342 mlog_exit(ret);
4343 goto out;
4344 }
ccd979bd 4345 eb = (struct ocfs2_extent_block *) bh->b_data;
ccd979bd 4346 el = &eb->h_list;
dcd0538f 4347 }
ccd979bd 4348
dcd0538f
MF
4349 /*
4350 * Unless we have a contiguous insert, we'll need to know if
4351 * there is room left in our allocation tree for another
4352 * extent record.
4353 *
4354 * XXX: This test is simplistic, we can search for empty
4355 * extent records too.
4356 */
c77534f6 4357 *free_records = le16_to_cpu(el->l_count) -
dcd0538f
MF
4358 le16_to_cpu(el->l_next_free_rec);
4359
4360 if (!insert->ins_tree_depth) {
ca12b7c4 4361 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
dcd0538f
MF
4362 ocfs2_figure_appending_type(insert, el, insert_rec);
4363 return 0;
ccd979bd
MF
4364 }
4365
ce1d9ea6 4366 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
dcd0538f
MF
4367 if (!path) {
4368 ret = -ENOMEM;
4369 mlog_errno(ret);
4370 goto out;
4371 }
ccd979bd 4372
dcd0538f
MF
4373 /*
4374 * In the case that we're inserting past what the tree
4375 * currently accounts for, ocfs2_find_path() will return for
4376 * us the rightmost tree path. This is accounted for below in
4377 * the appending code.
4378 */
4379 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
4380 if (ret) {
4381 mlog_errno(ret);
4382 goto out;
4383 }
ccd979bd 4384
dcd0538f
MF
4385 el = path_leaf_el(path);
4386
4387 /*
4388 * Now that we have the path, there's two things we want to determine:
4389 * 1) Contiguousness (also set contig_index if this is so)
4390 *
4391 * 2) Are we doing an append? We can trivially break this up
4392 * into two types of appends: simple record append, or a
4393 * rotate inside the tail leaf.
4394 */
ca12b7c4 4395 ocfs2_figure_contig_type(inode, insert, el, insert_rec, et);
dcd0538f
MF
4396
4397 /*
4398 * The insert code isn't quite ready to deal with all cases of
4399 * left contiguousness. Specifically, if it's an insert into
4400 * the 1st record in a leaf, it will require the adjustment of
e48edee2 4401 * cluster count on the last record of the path directly to it's
dcd0538f
MF
4402 * left. For now, just catch that case and fool the layers
4403 * above us. This works just fine for tree_depth == 0, which
4404 * is why we allow that above.
4405 */
4406 if (insert->ins_contig == CONTIG_LEFT &&
4407 insert->ins_contig_index == 0)
4408 insert->ins_contig = CONTIG_NONE;
4409
4410 /*
4411 * Ok, so we can simply compare against last_eb to figure out
4412 * whether the path doesn't exist. This will only happen in
4413 * the case that we're doing a tail append, so maybe we can
4414 * take advantage of that information somehow.
4415 */
35dc0aa3 4416 if (ocfs2_et_get_last_eb_blk(et) ==
e7d4cb6b 4417 path_leaf_bh(path)->b_blocknr) {
dcd0538f
MF
4418 /*
4419 * Ok, ocfs2_find_path() returned us the rightmost
4420 * tree path. This might be an appending insert. There are
4421 * two cases:
4422 * 1) We're doing a true append at the tail:
4423 * -This might even be off the end of the leaf
4424 * 2) We're "appending" by rotating in the tail
4425 */
4426 ocfs2_figure_appending_type(insert, el, insert_rec);
4427 }
4428
4429out:
4430 ocfs2_free_path(path);
4431
4432 if (ret == 0)
4433 *last_eb_bh = bh;
4434 else
4435 brelse(bh);
4436 return ret;
ccd979bd
MF
4437}
4438
dcd0538f
MF
4439/*
4440 * Insert an extent into an inode btree.
4441 *
4442 * The caller needs to update fe->i_clusters
4443 */
f99b9b7c
JB
4444int ocfs2_insert_extent(struct ocfs2_super *osb,
4445 handle_t *handle,
4446 struct inode *inode,
4447 struct ocfs2_extent_tree *et,
4448 u32 cpos,
4449 u64 start_blk,
4450 u32 new_clusters,
4451 u8 flags,
4452 struct ocfs2_alloc_context *meta_ac)
ccd979bd 4453{
c3afcbb3 4454 int status;
c77534f6 4455 int uninitialized_var(free_records);
ccd979bd 4456 struct buffer_head *last_eb_bh = NULL;
dcd0538f
MF
4457 struct ocfs2_insert_type insert = {0, };
4458 struct ocfs2_extent_rec rec;
4459
4460 mlog(0, "add %u clusters at position %u to inode %llu\n",
4461 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
4462
e48edee2 4463 memset(&rec, 0, sizeof(rec));
dcd0538f
MF
4464 rec.e_cpos = cpu_to_le32(cpos);
4465 rec.e_blkno = cpu_to_le64(start_blk);
e48edee2 4466 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
2ae99a60 4467 rec.e_flags = flags;
1e61ee79
JB
4468 status = ocfs2_et_insert_check(inode, et, &rec);
4469 if (status) {
4470 mlog_errno(status);
4471 goto bail;
4472 }
dcd0538f 4473
e7d4cb6b 4474 status = ocfs2_figure_insert_type(inode, et, &last_eb_bh, &rec,
c77534f6 4475 &free_records, &insert);
dcd0538f
MF
4476 if (status < 0) {
4477 mlog_errno(status);
4478 goto bail;
ccd979bd
MF
4479 }
4480
dcd0538f
MF
4481 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
4482 "Insert.contig_index: %d, Insert.free_records: %d, "
4483 "Insert.tree_depth: %d\n",
4484 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
c77534f6 4485 free_records, insert.ins_tree_depth);
ccd979bd 4486
c77534f6 4487 if (insert.ins_contig == CONTIG_NONE && free_records == 0) {
e7d4cb6b 4488 status = ocfs2_grow_tree(inode, handle, et,
328d5752 4489 &insert.ins_tree_depth, &last_eb_bh,
c3afcbb3
MF
4490 meta_ac);
4491 if (status) {
ccd979bd
MF
4492 mlog_errno(status);
4493 goto bail;
4494 }
ccd979bd
MF
4495 }
4496
dcd0538f 4497 /* Finally, we can add clusters. This might rotate the tree for us. */
e7d4cb6b 4498 status = ocfs2_do_insert_extent(inode, handle, et, &rec, &insert);
ccd979bd
MF
4499 if (status < 0)
4500 mlog_errno(status);
f99b9b7c 4501 else if (et->et_ops == &ocfs2_dinode_et_ops)
83418978 4502 ocfs2_extent_map_insert_rec(inode, &rec);
ccd979bd
MF
4503
4504bail:
a81cb88b 4505 brelse(last_eb_bh);
ccd979bd 4506
f56654c4
TM
4507 mlog_exit(status);
4508 return status;
4509}
4510
0eb8d47e
TM
4511/*
4512 * Allcate and add clusters into the extent b-tree.
4513 * The new clusters(clusters_to_add) will be inserted at logical_offset.
f99b9b7c 4514 * The extent b-tree's root is specified by et, and
0eb8d47e
TM
4515 * it is not limited to the file storage. Any extent tree can use this
4516 * function if it implements the proper ocfs2_extent_tree.
4517 */
4518int ocfs2_add_clusters_in_btree(struct ocfs2_super *osb,
4519 struct inode *inode,
4520 u32 *logical_offset,
4521 u32 clusters_to_add,
4522 int mark_unwritten,
f99b9b7c 4523 struct ocfs2_extent_tree *et,
0eb8d47e
TM
4524 handle_t *handle,
4525 struct ocfs2_alloc_context *data_ac,
4526 struct ocfs2_alloc_context *meta_ac,
f99b9b7c 4527 enum ocfs2_alloc_restarted *reason_ret)
0eb8d47e
TM
4528{
4529 int status = 0;
4530 int free_extents;
4531 enum ocfs2_alloc_restarted reason = RESTART_NONE;
4532 u32 bit_off, num_bits;
4533 u64 block;
4534 u8 flags = 0;
4535
4536 BUG_ON(!clusters_to_add);
4537
4538 if (mark_unwritten)
4539 flags = OCFS2_EXT_UNWRITTEN;
4540
f99b9b7c 4541 free_extents = ocfs2_num_free_extents(osb, inode, et);
0eb8d47e
TM
4542 if (free_extents < 0) {
4543 status = free_extents;
4544 mlog_errno(status);
4545 goto leave;
4546 }
4547
4548 /* there are two cases which could cause us to EAGAIN in the
4549 * we-need-more-metadata case:
4550 * 1) we haven't reserved *any*
4551 * 2) we are so fragmented, we've needed to add metadata too
4552 * many times. */
4553 if (!free_extents && !meta_ac) {
4554 mlog(0, "we haven't reserved any metadata!\n");
4555 status = -EAGAIN;
4556 reason = RESTART_META;
4557 goto leave;
4558 } else if ((!free_extents)
4559 && (ocfs2_alloc_context_bits_left(meta_ac)
f99b9b7c 4560 < ocfs2_extend_meta_needed(et->et_root_el))) {
0eb8d47e
TM
4561 mlog(0, "filesystem is really fragmented...\n");
4562 status = -EAGAIN;
4563 reason = RESTART_META;
4564 goto leave;
4565 }
4566
4567 status = __ocfs2_claim_clusters(osb, handle, data_ac, 1,
4568 clusters_to_add, &bit_off, &num_bits);
4569 if (status < 0) {
4570 if (status != -ENOSPC)
4571 mlog_errno(status);
4572 goto leave;
4573 }
4574
4575 BUG_ON(num_bits > clusters_to_add);
4576
4577 /* reserve our write early -- insert_extent may update the inode */
f99b9b7c 4578 status = ocfs2_journal_access(handle, inode, et->et_root_bh,
0eb8d47e
TM
4579 OCFS2_JOURNAL_ACCESS_WRITE);
4580 if (status < 0) {
4581 mlog_errno(status);
4582 goto leave;
4583 }
4584
4585 block = ocfs2_clusters_to_blocks(osb->sb, bit_off);
4586 mlog(0, "Allocating %u clusters at block %u for inode %llu\n",
4587 num_bits, bit_off, (unsigned long long)OCFS2_I(inode)->ip_blkno);
f99b9b7c
JB
4588 status = ocfs2_insert_extent(osb, handle, inode, et,
4589 *logical_offset, block,
4590 num_bits, flags, meta_ac);
0eb8d47e
TM
4591 if (status < 0) {
4592 mlog_errno(status);
4593 goto leave;
4594 }
4595
f99b9b7c 4596 status = ocfs2_journal_dirty(handle, et->et_root_bh);
0eb8d47e
TM
4597 if (status < 0) {
4598 mlog_errno(status);
4599 goto leave;
4600 }
4601
4602 clusters_to_add -= num_bits;
4603 *logical_offset += num_bits;
4604
4605 if (clusters_to_add) {
4606 mlog(0, "need to alloc once more, wanted = %u\n",
4607 clusters_to_add);
4608 status = -EAGAIN;
4609 reason = RESTART_TRANS;
4610 }
4611
4612leave:
4613 mlog_exit(status);
4614 if (reason_ret)
4615 *reason_ret = reason;
4616 return status;
4617}
4618
328d5752
MF
4619static void ocfs2_make_right_split_rec(struct super_block *sb,
4620 struct ocfs2_extent_rec *split_rec,
4621 u32 cpos,
4622 struct ocfs2_extent_rec *rec)
4623{
4624 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
4625 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
4626
4627 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
4628
4629 split_rec->e_cpos = cpu_to_le32(cpos);
4630 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
4631
4632 split_rec->e_blkno = rec->e_blkno;
4633 le64_add_cpu(&split_rec->e_blkno,
4634 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
4635
4636 split_rec->e_flags = rec->e_flags;
4637}
4638
4639static int ocfs2_split_and_insert(struct inode *inode,
4640 handle_t *handle,
4641 struct ocfs2_path *path,
e7d4cb6b 4642 struct ocfs2_extent_tree *et,
328d5752
MF
4643 struct buffer_head **last_eb_bh,
4644 int split_index,
4645 struct ocfs2_extent_rec *orig_split_rec,
4646 struct ocfs2_alloc_context *meta_ac)
4647{
4648 int ret = 0, depth;
4649 unsigned int insert_range, rec_range, do_leftright = 0;
4650 struct ocfs2_extent_rec tmprec;
4651 struct ocfs2_extent_list *rightmost_el;
4652 struct ocfs2_extent_rec rec;
4653 struct ocfs2_extent_rec split_rec = *orig_split_rec;
4654 struct ocfs2_insert_type insert;
4655 struct ocfs2_extent_block *eb;
328d5752
MF
4656
4657leftright:
4658 /*
4659 * Store a copy of the record on the stack - it might move
4660 * around as the tree is manipulated below.
4661 */
4662 rec = path_leaf_el(path)->l_recs[split_index];
4663
ce1d9ea6 4664 rightmost_el = et->et_root_el;
328d5752
MF
4665
4666 depth = le16_to_cpu(rightmost_el->l_tree_depth);
4667 if (depth) {
4668 BUG_ON(!(*last_eb_bh));
4669 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
4670 rightmost_el = &eb->h_list;
4671 }
4672
4673 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4674 le16_to_cpu(rightmost_el->l_count)) {
e7d4cb6b
TM
4675 ret = ocfs2_grow_tree(inode, handle, et,
4676 &depth, last_eb_bh, meta_ac);
328d5752
MF
4677 if (ret) {
4678 mlog_errno(ret);
4679 goto out;
4680 }
328d5752
MF
4681 }
4682
4683 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4684 insert.ins_appending = APPEND_NONE;
4685 insert.ins_contig = CONTIG_NONE;
328d5752
MF
4686 insert.ins_tree_depth = depth;
4687
4688 insert_range = le32_to_cpu(split_rec.e_cpos) +
4689 le16_to_cpu(split_rec.e_leaf_clusters);
4690 rec_range = le32_to_cpu(rec.e_cpos) +
4691 le16_to_cpu(rec.e_leaf_clusters);
4692
4693 if (split_rec.e_cpos == rec.e_cpos) {
4694 insert.ins_split = SPLIT_LEFT;
4695 } else if (insert_range == rec_range) {
4696 insert.ins_split = SPLIT_RIGHT;
4697 } else {
4698 /*
4699 * Left/right split. We fake this as a right split
4700 * first and then make a second pass as a left split.
4701 */
4702 insert.ins_split = SPLIT_RIGHT;
4703
4704 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
4705 &rec);
4706
4707 split_rec = tmprec;
4708
4709 BUG_ON(do_leftright);
4710 do_leftright = 1;
4711 }
4712
e7d4cb6b 4713 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
328d5752
MF
4714 if (ret) {
4715 mlog_errno(ret);
4716 goto out;
4717 }
4718
4719 if (do_leftright == 1) {
4720 u32 cpos;
4721 struct ocfs2_extent_list *el;
4722
4723 do_leftright++;
4724 split_rec = *orig_split_rec;
4725
4726 ocfs2_reinit_path(path, 1);
4727
4728 cpos = le32_to_cpu(split_rec.e_cpos);
4729 ret = ocfs2_find_path(inode, path, cpos);
4730 if (ret) {
4731 mlog_errno(ret);
4732 goto out;
4733 }
4734
4735 el = path_leaf_el(path);
4736 split_index = ocfs2_search_extent_list(el, cpos);
4737 goto leftright;
4738 }
4739out:
4740
4741 return ret;
4742}
4743
4744/*
4745 * Mark part or all of the extent record at split_index in the leaf
4746 * pointed to by path as written. This removes the unwritten
4747 * extent flag.
4748 *
4749 * Care is taken to handle contiguousness so as to not grow the tree.
4750 *
4751 * meta_ac is not strictly necessary - we only truly need it if growth
4752 * of the tree is required. All other cases will degrade into a less
4753 * optimal tree layout.
4754 *
e7d4cb6b
TM
4755 * last_eb_bh should be the rightmost leaf block for any extent
4756 * btree. Since a split may grow the tree or a merge might shrink it,
4757 * the caller cannot trust the contents of that buffer after this call.
328d5752
MF
4758 *
4759 * This code is optimized for readability - several passes might be
4760 * made over certain portions of the tree. All of those blocks will
4761 * have been brought into cache (and pinned via the journal), so the
4762 * extra overhead is not expressed in terms of disk reads.
4763 */
4764static int __ocfs2_mark_extent_written(struct inode *inode,
e7d4cb6b 4765 struct ocfs2_extent_tree *et,
328d5752
MF
4766 handle_t *handle,
4767 struct ocfs2_path *path,
4768 int split_index,
4769 struct ocfs2_extent_rec *split_rec,
4770 struct ocfs2_alloc_context *meta_ac,
4771 struct ocfs2_cached_dealloc_ctxt *dealloc)
4772{
4773 int ret = 0;
4774 struct ocfs2_extent_list *el = path_leaf_el(path);
e8aed345 4775 struct buffer_head *last_eb_bh = NULL;
328d5752
MF
4776 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
4777 struct ocfs2_merge_ctxt ctxt;
4778 struct ocfs2_extent_list *rightmost_el;
4779
3cf0c507 4780 if (!(rec->e_flags & OCFS2_EXT_UNWRITTEN)) {
328d5752
MF
4781 ret = -EIO;
4782 mlog_errno(ret);
4783 goto out;
4784 }
4785
4786 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
4787 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
4788 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
4789 ret = -EIO;
4790 mlog_errno(ret);
4791 goto out;
4792 }
4793
ad5a4d70 4794 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, path, el,
328d5752
MF
4795 split_index,
4796 split_rec);
4797
4798 /*
4799 * The core merge / split code wants to know how much room is
4800 * left in this inodes allocation tree, so we pass the
4801 * rightmost extent list.
4802 */
4803 if (path->p_tree_depth) {
4804 struct ocfs2_extent_block *eb;
328d5752 4805
5e96581a
JB
4806 ret = ocfs2_read_extent_block(inode,
4807 ocfs2_et_get_last_eb_blk(et),
4808 &last_eb_bh);
328d5752
MF
4809 if (ret) {
4810 mlog_exit(ret);
4811 goto out;
4812 }
4813
4814 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
328d5752
MF
4815 rightmost_el = &eb->h_list;
4816 } else
4817 rightmost_el = path_root_el(path);
4818
328d5752
MF
4819 if (rec->e_cpos == split_rec->e_cpos &&
4820 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4821 ctxt.c_split_covers_rec = 1;
4822 else
4823 ctxt.c_split_covers_rec = 0;
4824
4825 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4826
015452b1
MF
4827 mlog(0, "index: %d, contig: %u, has_empty: %u, split_covers: %u\n",
4828 split_index, ctxt.c_contig_type, ctxt.c_has_empty_extent,
4829 ctxt.c_split_covers_rec);
328d5752
MF
4830
4831 if (ctxt.c_contig_type == CONTIG_NONE) {
4832 if (ctxt.c_split_covers_rec)
4833 el->l_recs[split_index] = *split_rec;
4834 else
e7d4cb6b 4835 ret = ocfs2_split_and_insert(inode, handle, path, et,
328d5752
MF
4836 &last_eb_bh, split_index,
4837 split_rec, meta_ac);
4838 if (ret)
4839 mlog_errno(ret);
4840 } else {
4841 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4842 split_index, split_rec,
e7d4cb6b 4843 dealloc, &ctxt, et);
328d5752
MF
4844 if (ret)
4845 mlog_errno(ret);
4846 }
4847
328d5752
MF
4848out:
4849 brelse(last_eb_bh);
4850 return ret;
4851}
4852
4853/*
4854 * Mark the already-existing extent at cpos as written for len clusters.
4855 *
4856 * If the existing extent is larger than the request, initiate a
4857 * split. An attempt will be made at merging with adjacent extents.
4858 *
4859 * The caller is responsible for passing down meta_ac if we'll need it.
4860 */
f99b9b7c
JB
4861int ocfs2_mark_extent_written(struct inode *inode,
4862 struct ocfs2_extent_tree *et,
328d5752
MF
4863 handle_t *handle, u32 cpos, u32 len, u32 phys,
4864 struct ocfs2_alloc_context *meta_ac,
f99b9b7c 4865 struct ocfs2_cached_dealloc_ctxt *dealloc)
328d5752
MF
4866{
4867 int ret, index;
4868 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4869 struct ocfs2_extent_rec split_rec;
4870 struct ocfs2_path *left_path = NULL;
4871 struct ocfs2_extent_list *el;
4872
4873 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4874 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4875
4876 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4877 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4878 "that are being written to, but the feature bit "
4879 "is not set in the super block.",
4880 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4881 ret = -EROFS;
4882 goto out;
4883 }
4884
4885 /*
4886 * XXX: This should be fixed up so that we just re-insert the
4887 * next extent records.
f99b9b7c
JB
4888 *
4889 * XXX: This is a hack on the extent tree, maybe it should be
4890 * an op?
328d5752 4891 */
f99b9b7c 4892 if (et->et_ops == &ocfs2_dinode_et_ops)
e7d4cb6b 4893 ocfs2_extent_map_trunc(inode, 0);
328d5752 4894
f99b9b7c 4895 left_path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
328d5752
MF
4896 if (!left_path) {
4897 ret = -ENOMEM;
4898 mlog_errno(ret);
4899 goto out;
4900 }
4901
4902 ret = ocfs2_find_path(inode, left_path, cpos);
4903 if (ret) {
4904 mlog_errno(ret);
4905 goto out;
4906 }
4907 el = path_leaf_el(left_path);
4908
4909 index = ocfs2_search_extent_list(el, cpos);
4910 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4911 ocfs2_error(inode->i_sb,
4912 "Inode %llu has an extent at cpos %u which can no "
4913 "longer be found.\n",
4914 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4915 ret = -EROFS;
4916 goto out;
4917 }
4918
4919 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4920 split_rec.e_cpos = cpu_to_le32(cpos);
4921 split_rec.e_leaf_clusters = cpu_to_le16(len);
4922 split_rec.e_blkno = cpu_to_le64(start_blkno);
4923 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4924 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4925
f99b9b7c 4926 ret = __ocfs2_mark_extent_written(inode, et, handle, left_path,
e7d4cb6b
TM
4927 index, &split_rec, meta_ac,
4928 dealloc);
328d5752
MF
4929 if (ret)
4930 mlog_errno(ret);
4931
4932out:
4933 ocfs2_free_path(left_path);
4934 return ret;
4935}
4936
e7d4cb6b 4937static int ocfs2_split_tree(struct inode *inode, struct ocfs2_extent_tree *et,
d0c7d708
MF
4938 handle_t *handle, struct ocfs2_path *path,
4939 int index, u32 new_range,
4940 struct ocfs2_alloc_context *meta_ac)
4941{
4942 int ret, depth, credits = handle->h_buffer_credits;
d0c7d708
MF
4943 struct buffer_head *last_eb_bh = NULL;
4944 struct ocfs2_extent_block *eb;
4945 struct ocfs2_extent_list *rightmost_el, *el;
4946 struct ocfs2_extent_rec split_rec;
4947 struct ocfs2_extent_rec *rec;
4948 struct ocfs2_insert_type insert;
4949
4950 /*
4951 * Setup the record to split before we grow the tree.
4952 */
4953 el = path_leaf_el(path);
4954 rec = &el->l_recs[index];
4955 ocfs2_make_right_split_rec(inode->i_sb, &split_rec, new_range, rec);
4956
4957 depth = path->p_tree_depth;
4958 if (depth > 0) {
5e96581a
JB
4959 ret = ocfs2_read_extent_block(inode,
4960 ocfs2_et_get_last_eb_blk(et),
4961 &last_eb_bh);
d0c7d708
MF
4962 if (ret < 0) {
4963 mlog_errno(ret);
4964 goto out;
4965 }
4966
4967 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4968 rightmost_el = &eb->h_list;
4969 } else
4970 rightmost_el = path_leaf_el(path);
4971
811f933d 4972 credits += path->p_tree_depth +
ce1d9ea6 4973 ocfs2_extend_meta_needed(et->et_root_el);
d0c7d708
MF
4974 ret = ocfs2_extend_trans(handle, credits);
4975 if (ret) {
4976 mlog_errno(ret);
4977 goto out;
4978 }
4979
4980 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
4981 le16_to_cpu(rightmost_el->l_count)) {
e7d4cb6b 4982 ret = ocfs2_grow_tree(inode, handle, et, &depth, &last_eb_bh,
d0c7d708
MF
4983 meta_ac);
4984 if (ret) {
4985 mlog_errno(ret);
4986 goto out;
4987 }
d0c7d708
MF
4988 }
4989
4990 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
4991 insert.ins_appending = APPEND_NONE;
4992 insert.ins_contig = CONTIG_NONE;
4993 insert.ins_split = SPLIT_RIGHT;
d0c7d708
MF
4994 insert.ins_tree_depth = depth;
4995
e7d4cb6b 4996 ret = ocfs2_do_insert_extent(inode, handle, et, &split_rec, &insert);
d0c7d708
MF
4997 if (ret)
4998 mlog_errno(ret);
4999
5000out:
5001 brelse(last_eb_bh);
5002 return ret;
5003}
5004
5005static int ocfs2_truncate_rec(struct inode *inode, handle_t *handle,
5006 struct ocfs2_path *path, int index,
5007 struct ocfs2_cached_dealloc_ctxt *dealloc,
e7d4cb6b
TM
5008 u32 cpos, u32 len,
5009 struct ocfs2_extent_tree *et)
d0c7d708
MF
5010{
5011 int ret;
5012 u32 left_cpos, rec_range, trunc_range;
5013 int wants_rotate = 0, is_rightmost_tree_rec = 0;
5014 struct super_block *sb = inode->i_sb;
5015 struct ocfs2_path *left_path = NULL;
5016 struct ocfs2_extent_list *el = path_leaf_el(path);
5017 struct ocfs2_extent_rec *rec;
5018 struct ocfs2_extent_block *eb;
5019
5020 if (ocfs2_is_empty_extent(&el->l_recs[0]) && index > 0) {
e7d4cb6b 5021 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
d0c7d708
MF
5022 if (ret) {
5023 mlog_errno(ret);
5024 goto out;
5025 }
5026
5027 index--;
5028 }
5029
5030 if (index == (le16_to_cpu(el->l_next_free_rec) - 1) &&
5031 path->p_tree_depth) {
5032 /*
5033 * Check whether this is the rightmost tree record. If
5034 * we remove all of this record or part of its right
5035 * edge then an update of the record lengths above it
5036 * will be required.
5037 */
5038 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
5039 if (eb->h_next_leaf_blk == 0)
5040 is_rightmost_tree_rec = 1;
5041 }
5042
5043 rec = &el->l_recs[index];
5044 if (index == 0 && path->p_tree_depth &&
5045 le32_to_cpu(rec->e_cpos) == cpos) {
5046 /*
5047 * Changing the leftmost offset (via partial or whole
5048 * record truncate) of an interior (or rightmost) path
5049 * means we have to update the subtree that is formed
5050 * by this leaf and the one to it's left.
5051 *
5052 * There are two cases we can skip:
5053 * 1) Path is the leftmost one in our inode tree.
5054 * 2) The leaf is rightmost and will be empty after
5055 * we remove the extent record - the rotate code
5056 * knows how to update the newly formed edge.
5057 */
5058
5059 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path,
5060 &left_cpos);
5061 if (ret) {
5062 mlog_errno(ret);
5063 goto out;
5064 }
5065
5066 if (left_cpos && le16_to_cpu(el->l_next_free_rec) > 1) {
5067 left_path = ocfs2_new_path(path_root_bh(path),
5068 path_root_el(path));
5069 if (!left_path) {
5070 ret = -ENOMEM;
5071 mlog_errno(ret);
5072 goto out;
5073 }
5074
5075 ret = ocfs2_find_path(inode, left_path, left_cpos);
5076 if (ret) {
5077 mlog_errno(ret);
5078 goto out;
5079 }
5080 }
5081 }
5082
5083 ret = ocfs2_extend_rotate_transaction(handle, 0,
5084 handle->h_buffer_credits,
5085 path);
5086 if (ret) {
5087 mlog_errno(ret);
5088 goto out;
5089 }
5090
5091 ret = ocfs2_journal_access_path(inode, handle, path);
5092 if (ret) {
5093 mlog_errno(ret);
5094 goto out;
5095 }
5096
5097 ret = ocfs2_journal_access_path(inode, handle, left_path);
5098 if (ret) {
5099 mlog_errno(ret);
5100 goto out;
5101 }
5102
5103 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5104 trunc_range = cpos + len;
5105
5106 if (le32_to_cpu(rec->e_cpos) == cpos && rec_range == trunc_range) {
5107 int next_free;
5108
5109 memset(rec, 0, sizeof(*rec));
5110 ocfs2_cleanup_merge(el, index);
5111 wants_rotate = 1;
5112
5113 next_free = le16_to_cpu(el->l_next_free_rec);
5114 if (is_rightmost_tree_rec && next_free > 1) {
5115 /*
5116 * We skip the edge update if this path will
5117 * be deleted by the rotate code.
5118 */
5119 rec = &el->l_recs[next_free - 1];
5120 ocfs2_adjust_rightmost_records(inode, handle, path,
5121 rec);
5122 }
5123 } else if (le32_to_cpu(rec->e_cpos) == cpos) {
5124 /* Remove leftmost portion of the record. */
5125 le32_add_cpu(&rec->e_cpos, len);
5126 le64_add_cpu(&rec->e_blkno, ocfs2_clusters_to_blocks(sb, len));
5127 le16_add_cpu(&rec->e_leaf_clusters, -len);
5128 } else if (rec_range == trunc_range) {
5129 /* Remove rightmost portion of the record */
5130 le16_add_cpu(&rec->e_leaf_clusters, -len);
5131 if (is_rightmost_tree_rec)
5132 ocfs2_adjust_rightmost_records(inode, handle, path, rec);
5133 } else {
5134 /* Caller should have trapped this. */
5135 mlog(ML_ERROR, "Inode %llu: Invalid record truncate: (%u, %u) "
5136 "(%u, %u)\n", (unsigned long long)OCFS2_I(inode)->ip_blkno,
5137 le32_to_cpu(rec->e_cpos),
5138 le16_to_cpu(rec->e_leaf_clusters), cpos, len);
5139 BUG();
5140 }
5141
5142 if (left_path) {
5143 int subtree_index;
5144
5145 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
5146 ocfs2_complete_edge_insert(inode, handle, left_path, path,
5147 subtree_index);
5148 }
5149
5150 ocfs2_journal_dirty(handle, path_leaf_bh(path));
5151
e7d4cb6b 5152 ret = ocfs2_rotate_tree_left(inode, handle, path, dealloc, et);
d0c7d708
MF
5153 if (ret) {
5154 mlog_errno(ret);
5155 goto out;
5156 }
5157
5158out:
5159 ocfs2_free_path(left_path);
5160 return ret;
5161}
5162
f99b9b7c
JB
5163int ocfs2_remove_extent(struct inode *inode,
5164 struct ocfs2_extent_tree *et,
063c4561
MF
5165 u32 cpos, u32 len, handle_t *handle,
5166 struct ocfs2_alloc_context *meta_ac,
f99b9b7c 5167 struct ocfs2_cached_dealloc_ctxt *dealloc)
d0c7d708
MF
5168{
5169 int ret, index;
5170 u32 rec_range, trunc_range;
5171 struct ocfs2_extent_rec *rec;
5172 struct ocfs2_extent_list *el;
e7d4cb6b 5173 struct ocfs2_path *path = NULL;
d0c7d708
MF
5174
5175 ocfs2_extent_map_trunc(inode, 0);
5176
f99b9b7c 5177 path = ocfs2_new_path(et->et_root_bh, et->et_root_el);
d0c7d708
MF
5178 if (!path) {
5179 ret = -ENOMEM;
5180 mlog_errno(ret);
5181 goto out;
5182 }
5183
5184 ret = ocfs2_find_path(inode, path, cpos);
5185 if (ret) {
5186 mlog_errno(ret);
5187 goto out;
5188 }
5189
5190 el = path_leaf_el(path);
5191 index = ocfs2_search_extent_list(el, cpos);
5192 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5193 ocfs2_error(inode->i_sb,
5194 "Inode %llu has an extent at cpos %u which can no "
5195 "longer be found.\n",
5196 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
5197 ret = -EROFS;
5198 goto out;
5199 }
5200
5201 /*
5202 * We have 3 cases of extent removal:
5203 * 1) Range covers the entire extent rec
5204 * 2) Range begins or ends on one edge of the extent rec
5205 * 3) Range is in the middle of the extent rec (no shared edges)
5206 *
5207 * For case 1 we remove the extent rec and left rotate to
5208 * fill the hole.
5209 *
5210 * For case 2 we just shrink the existing extent rec, with a
5211 * tree update if the shrinking edge is also the edge of an
5212 * extent block.
5213 *
5214 * For case 3 we do a right split to turn the extent rec into
5215 * something case 2 can handle.
5216 */
5217 rec = &el->l_recs[index];
5218 rec_range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
5219 trunc_range = cpos + len;
5220
5221 BUG_ON(cpos < le32_to_cpu(rec->e_cpos) || trunc_range > rec_range);
5222
5223 mlog(0, "Inode %llu, remove (cpos %u, len %u). Existing index %d "
5224 "(cpos %u, len %u)\n",
5225 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos, len, index,
5226 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec));
5227
5228 if (le32_to_cpu(rec->e_cpos) == cpos || rec_range == trunc_range) {
5229 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
f99b9b7c 5230 cpos, len, et);
d0c7d708
MF
5231 if (ret) {
5232 mlog_errno(ret);
5233 goto out;
5234 }
5235 } else {
f99b9b7c 5236 ret = ocfs2_split_tree(inode, et, handle, path, index,
d0c7d708
MF
5237 trunc_range, meta_ac);
5238 if (ret) {
5239 mlog_errno(ret);
5240 goto out;
5241 }
5242
5243 /*
5244 * The split could have manipulated the tree enough to
5245 * move the record location, so we have to look for it again.
5246 */
5247 ocfs2_reinit_path(path, 1);
5248
5249 ret = ocfs2_find_path(inode, path, cpos);
5250 if (ret) {
5251 mlog_errno(ret);
5252 goto out;
5253 }
5254
5255 el = path_leaf_el(path);
5256 index = ocfs2_search_extent_list(el, cpos);
5257 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
5258 ocfs2_error(inode->i_sb,
5259 "Inode %llu: split at cpos %u lost record.",
5260 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5261 cpos);
5262 ret = -EROFS;
5263 goto out;
5264 }
5265
5266 /*
5267 * Double check our values here. If anything is fishy,
5268 * it's easier to catch it at the top level.
5269 */
5270 rec = &el->l_recs[index];
5271 rec_range = le32_to_cpu(rec->e_cpos) +
5272 ocfs2_rec_clusters(el, rec);
5273 if (rec_range != trunc_range) {
5274 ocfs2_error(inode->i_sb,
5275 "Inode %llu: error after split at cpos %u"
5276 "trunc len %u, existing record is (%u,%u)",
5277 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5278 cpos, len, le32_to_cpu(rec->e_cpos),
5279 ocfs2_rec_clusters(el, rec));
5280 ret = -EROFS;
5281 goto out;
5282 }
5283
5284 ret = ocfs2_truncate_rec(inode, handle, path, index, dealloc,
f99b9b7c 5285 cpos, len, et);
d0c7d708
MF
5286 if (ret) {
5287 mlog_errno(ret);
5288 goto out;
5289 }
5290 }
5291
5292out:
5293 ocfs2_free_path(path);
5294 return ret;
5295}
5296
fecc0112
MF
5297int ocfs2_remove_btree_range(struct inode *inode,
5298 struct ocfs2_extent_tree *et,
5299 u32 cpos, u32 phys_cpos, u32 len,
5300 struct ocfs2_cached_dealloc_ctxt *dealloc)
5301{
5302 int ret;
5303 u64 phys_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys_cpos);
5304 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
5305 struct inode *tl_inode = osb->osb_tl_inode;
5306 handle_t *handle;
5307 struct ocfs2_alloc_context *meta_ac = NULL;
5308
5309 ret = ocfs2_lock_allocators(inode, et, 0, 1, NULL, &meta_ac);
5310 if (ret) {
5311 mlog_errno(ret);
5312 return ret;
5313 }
5314
5315 mutex_lock(&tl_inode->i_mutex);
5316
5317 if (ocfs2_truncate_log_needs_flush(osb)) {
5318 ret = __ocfs2_flush_truncate_log(osb);
5319 if (ret < 0) {
5320 mlog_errno(ret);
5321 goto out;
5322 }
5323 }
5324
5325 handle = ocfs2_start_trans(osb, OCFS2_REMOVE_EXTENT_CREDITS);
5326 if (IS_ERR(handle)) {
5327 ret = PTR_ERR(handle);
5328 mlog_errno(ret);
5329 goto out;
5330 }
5331
5332 ret = ocfs2_journal_access(handle, inode, et->et_root_bh,
5333 OCFS2_JOURNAL_ACCESS_WRITE);
5334 if (ret) {
5335 mlog_errno(ret);
5336 goto out;
5337 }
5338
5339 ret = ocfs2_remove_extent(inode, et, cpos, len, handle, meta_ac,
5340 dealloc);
5341 if (ret) {
5342 mlog_errno(ret);
5343 goto out_commit;
5344 }
5345
5346 ocfs2_et_update_clusters(inode, et, -len);
5347
5348 ret = ocfs2_journal_dirty(handle, et->et_root_bh);
5349 if (ret) {
5350 mlog_errno(ret);
5351 goto out_commit;
5352 }
5353
5354 ret = ocfs2_truncate_log_append(osb, handle, phys_blkno, len);
5355 if (ret)
5356 mlog_errno(ret);
5357
5358out_commit:
5359 ocfs2_commit_trans(osb, handle);
5360out:
5361 mutex_unlock(&tl_inode->i_mutex);
5362
5363 if (meta_ac)
5364 ocfs2_free_alloc_context(meta_ac);
5365
5366 return ret;
5367}
5368
063c4561 5369int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
ccd979bd
MF
5370{
5371 struct buffer_head *tl_bh = osb->osb_tl_bh;
5372 struct ocfs2_dinode *di;
5373 struct ocfs2_truncate_log *tl;
5374
5375 di = (struct ocfs2_dinode *) tl_bh->b_data;
5376 tl = &di->id2.i_dealloc;
5377
5378 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
5379 "slot %d, invalid truncate log parameters: used = "
5380 "%u, count = %u\n", osb->slot_num,
5381 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
5382 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
5383}
5384
5385static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
5386 unsigned int new_start)
5387{
5388 unsigned int tail_index;
5389 unsigned int current_tail;
5390
5391 /* No records, nothing to coalesce */
5392 if (!le16_to_cpu(tl->tl_used))
5393 return 0;
5394
5395 tail_index = le16_to_cpu(tl->tl_used) - 1;
5396 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
5397 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
5398
5399 return current_tail == new_start;
5400}
5401
063c4561
MF
5402int ocfs2_truncate_log_append(struct ocfs2_super *osb,
5403 handle_t *handle,
5404 u64 start_blk,
5405 unsigned int num_clusters)
ccd979bd
MF
5406{
5407 int status, index;
5408 unsigned int start_cluster, tl_count;
5409 struct inode *tl_inode = osb->osb_tl_inode;
5410 struct buffer_head *tl_bh = osb->osb_tl_bh;
5411 struct ocfs2_dinode *di;
5412 struct ocfs2_truncate_log *tl;
5413
b0697053
MF
5414 mlog_entry("start_blk = %llu, num_clusters = %u\n",
5415 (unsigned long long)start_blk, num_clusters);
ccd979bd 5416
1b1dcc1b 5417 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
ccd979bd
MF
5418
5419 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
5420
5421 di = (struct ocfs2_dinode *) tl_bh->b_data;
ccd979bd 5422
10995aa2
JB
5423 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5424 * by the underlying call to ocfs2_read_inode_block(), so any
5425 * corruption is a code bug */
5426 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5427
5428 tl = &di->id2.i_dealloc;
ccd979bd
MF
5429 tl_count = le16_to_cpu(tl->tl_count);
5430 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
5431 tl_count == 0,
b0697053
MF
5432 "Truncate record count on #%llu invalid "
5433 "wanted %u, actual %u\n",
5434 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
ccd979bd
MF
5435 ocfs2_truncate_recs_per_inode(osb->sb),
5436 le16_to_cpu(tl->tl_count));
5437
5438 /* Caller should have known to flush before calling us. */
5439 index = le16_to_cpu(tl->tl_used);
5440 if (index >= tl_count) {
5441 status = -ENOSPC;
5442 mlog_errno(status);
5443 goto bail;
5444 }
5445
5446 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5447 OCFS2_JOURNAL_ACCESS_WRITE);
5448 if (status < 0) {
5449 mlog_errno(status);
5450 goto bail;
5451 }
5452
5453 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
b0697053
MF
5454 "%llu (index = %d)\n", num_clusters, start_cluster,
5455 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
ccd979bd
MF
5456
5457 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
5458 /*
5459 * Move index back to the record we are coalescing with.
5460 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5461 */
5462 index--;
5463
5464 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
5465 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
5466 index, le32_to_cpu(tl->tl_recs[index].t_start),
5467 num_clusters);
5468 } else {
5469 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
5470 tl->tl_used = cpu_to_le16(index + 1);
5471 }
5472 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
5473
5474 status = ocfs2_journal_dirty(handle, tl_bh);
5475 if (status < 0) {
5476 mlog_errno(status);
5477 goto bail;
5478 }
5479
5480bail:
5481 mlog_exit(status);
5482 return status;
5483}
5484
5485static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
1fabe148 5486 handle_t *handle,
ccd979bd
MF
5487 struct inode *data_alloc_inode,
5488 struct buffer_head *data_alloc_bh)
5489{
5490 int status = 0;
5491 int i;
5492 unsigned int num_clusters;
5493 u64 start_blk;
5494 struct ocfs2_truncate_rec rec;
5495 struct ocfs2_dinode *di;
5496 struct ocfs2_truncate_log *tl;
5497 struct inode *tl_inode = osb->osb_tl_inode;
5498 struct buffer_head *tl_bh = osb->osb_tl_bh;
5499
5500 mlog_entry_void();
5501
5502 di = (struct ocfs2_dinode *) tl_bh->b_data;
5503 tl = &di->id2.i_dealloc;
5504 i = le16_to_cpu(tl->tl_used) - 1;
5505 while (i >= 0) {
5506 /* Caller has given us at least enough credits to
5507 * update the truncate log dinode */
5508 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
5509 OCFS2_JOURNAL_ACCESS_WRITE);
5510 if (status < 0) {
5511 mlog_errno(status);
5512 goto bail;
5513 }
5514
5515 tl->tl_used = cpu_to_le16(i);
5516
5517 status = ocfs2_journal_dirty(handle, tl_bh);
5518 if (status < 0) {
5519 mlog_errno(status);
5520 goto bail;
5521 }
5522
5523 /* TODO: Perhaps we can calculate the bulk of the
5524 * credits up front rather than extending like
5525 * this. */
5526 status = ocfs2_extend_trans(handle,
5527 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
5528 if (status < 0) {
5529 mlog_errno(status);
5530 goto bail;
5531 }
5532
5533 rec = tl->tl_recs[i];
5534 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
5535 le32_to_cpu(rec.t_start));
5536 num_clusters = le32_to_cpu(rec.t_clusters);
5537
5538 /* if start_blk is not set, we ignore the record as
5539 * invalid. */
5540 if (start_blk) {
5541 mlog(0, "free record %d, start = %u, clusters = %u\n",
5542 i, le32_to_cpu(rec.t_start), num_clusters);
5543
5544 status = ocfs2_free_clusters(handle, data_alloc_inode,
5545 data_alloc_bh, start_blk,
5546 num_clusters);
5547 if (status < 0) {
5548 mlog_errno(status);
5549 goto bail;
5550 }
5551 }
5552 i--;
5553 }
5554
5555bail:
5556 mlog_exit(status);
5557 return status;
5558}
5559
1b1dcc1b 5560/* Expects you to already be holding tl_inode->i_mutex */
063c4561 5561int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
ccd979bd
MF
5562{
5563 int status;
5564 unsigned int num_to_flush;
1fabe148 5565 handle_t *handle;
ccd979bd
MF
5566 struct inode *tl_inode = osb->osb_tl_inode;
5567 struct inode *data_alloc_inode = NULL;
5568 struct buffer_head *tl_bh = osb->osb_tl_bh;
5569 struct buffer_head *data_alloc_bh = NULL;
5570 struct ocfs2_dinode *di;
5571 struct ocfs2_truncate_log *tl;
5572
5573 mlog_entry_void();
5574
1b1dcc1b 5575 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
ccd979bd
MF
5576
5577 di = (struct ocfs2_dinode *) tl_bh->b_data;
ccd979bd 5578
10995aa2
JB
5579 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5580 * by the underlying call to ocfs2_read_inode_block(), so any
5581 * corruption is a code bug */
5582 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5583
5584 tl = &di->id2.i_dealloc;
ccd979bd 5585 num_to_flush = le16_to_cpu(tl->tl_used);
b0697053
MF
5586 mlog(0, "Flush %u records from truncate log #%llu\n",
5587 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
ccd979bd
MF
5588 if (!num_to_flush) {
5589 status = 0;
e08dc8b9 5590 goto out;
ccd979bd
MF
5591 }
5592
5593 data_alloc_inode = ocfs2_get_system_file_inode(osb,
5594 GLOBAL_BITMAP_SYSTEM_INODE,
5595 OCFS2_INVALID_SLOT);
5596 if (!data_alloc_inode) {
5597 status = -EINVAL;
5598 mlog(ML_ERROR, "Could not get bitmap inode!\n");
e08dc8b9 5599 goto out;
ccd979bd
MF
5600 }
5601
e08dc8b9
MF
5602 mutex_lock(&data_alloc_inode->i_mutex);
5603
e63aecb6 5604 status = ocfs2_inode_lock(data_alloc_inode, &data_alloc_bh, 1);
ccd979bd
MF
5605 if (status < 0) {
5606 mlog_errno(status);
e08dc8b9 5607 goto out_mutex;
ccd979bd
MF
5608 }
5609
65eff9cc 5610 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
ccd979bd
MF
5611 if (IS_ERR(handle)) {
5612 status = PTR_ERR(handle);
ccd979bd 5613 mlog_errno(status);
e08dc8b9 5614 goto out_unlock;
ccd979bd
MF
5615 }
5616
5617 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
5618 data_alloc_bh);
e08dc8b9 5619 if (status < 0)
ccd979bd 5620 mlog_errno(status);
ccd979bd 5621
02dc1af4 5622 ocfs2_commit_trans(osb, handle);
ccd979bd 5623
e08dc8b9
MF
5624out_unlock:
5625 brelse(data_alloc_bh);
e63aecb6 5626 ocfs2_inode_unlock(data_alloc_inode, 1);
ccd979bd 5627
e08dc8b9
MF
5628out_mutex:
5629 mutex_unlock(&data_alloc_inode->i_mutex);
5630 iput(data_alloc_inode);
ccd979bd 5631
e08dc8b9 5632out:
ccd979bd
MF
5633 mlog_exit(status);
5634 return status;
5635}
5636
5637int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
5638{
5639 int status;
5640 struct inode *tl_inode = osb->osb_tl_inode;
5641
1b1dcc1b 5642 mutex_lock(&tl_inode->i_mutex);
ccd979bd 5643 status = __ocfs2_flush_truncate_log(osb);
1b1dcc1b 5644 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
5645
5646 return status;
5647}
5648
c4028958 5649static void ocfs2_truncate_log_worker(struct work_struct *work)
ccd979bd
MF
5650{
5651 int status;
c4028958
DH
5652 struct ocfs2_super *osb =
5653 container_of(work, struct ocfs2_super,
5654 osb_truncate_log_wq.work);
ccd979bd
MF
5655
5656 mlog_entry_void();
5657
5658 status = ocfs2_flush_truncate_log(osb);
5659 if (status < 0)
5660 mlog_errno(status);
4d0ddb2c
TM
5661 else
5662 ocfs2_init_inode_steal_slot(osb);
ccd979bd
MF
5663
5664 mlog_exit(status);
5665}
5666
5667#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
5668void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
5669 int cancel)
5670{
5671 if (osb->osb_tl_inode) {
5672 /* We want to push off log flushes while truncates are
5673 * still running. */
5674 if (cancel)
5675 cancel_delayed_work(&osb->osb_truncate_log_wq);
5676
5677 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
5678 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
5679 }
5680}
5681
5682static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
5683 int slot_num,
5684 struct inode **tl_inode,
5685 struct buffer_head **tl_bh)
5686{
5687 int status;
5688 struct inode *inode = NULL;
5689 struct buffer_head *bh = NULL;
5690
5691 inode = ocfs2_get_system_file_inode(osb,
5692 TRUNCATE_LOG_SYSTEM_INODE,
5693 slot_num);
5694 if (!inode) {
5695 status = -EINVAL;
5696 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
5697 goto bail;
5698 }
5699
b657c95c 5700 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
5701 if (status < 0) {
5702 iput(inode);
5703 mlog_errno(status);
5704 goto bail;
5705 }
5706
5707 *tl_inode = inode;
5708 *tl_bh = bh;
5709bail:
5710 mlog_exit(status);
5711 return status;
5712}
5713
5714/* called during the 1st stage of node recovery. we stamp a clean
5715 * truncate log and pass back a copy for processing later. if the
5716 * truncate log does not require processing, a *tl_copy is set to
5717 * NULL. */
5718int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
5719 int slot_num,
5720 struct ocfs2_dinode **tl_copy)
5721{
5722 int status;
5723 struct inode *tl_inode = NULL;
5724 struct buffer_head *tl_bh = NULL;
5725 struct ocfs2_dinode *di;
5726 struct ocfs2_truncate_log *tl;
5727
5728 *tl_copy = NULL;
5729
5730 mlog(0, "recover truncate log from slot %d\n", slot_num);
5731
5732 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
5733 if (status < 0) {
5734 mlog_errno(status);
5735 goto bail;
5736 }
5737
5738 di = (struct ocfs2_dinode *) tl_bh->b_data;
ccd979bd 5739
10995aa2
JB
5740 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
5741 * validated by the underlying call to ocfs2_read_inode_block(),
5742 * so any corruption is a code bug */
5743 BUG_ON(!OCFS2_IS_VALID_DINODE(di));
5744
5745 tl = &di->id2.i_dealloc;
ccd979bd
MF
5746 if (le16_to_cpu(tl->tl_used)) {
5747 mlog(0, "We'll have %u logs to recover\n",
5748 le16_to_cpu(tl->tl_used));
5749
5750 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
5751 if (!(*tl_copy)) {
5752 status = -ENOMEM;
5753 mlog_errno(status);
5754 goto bail;
5755 }
5756
5757 /* Assuming the write-out below goes well, this copy
5758 * will be passed back to recovery for processing. */
5759 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
5760
5761 /* All we need to do to clear the truncate log is set
5762 * tl_used. */
5763 tl->tl_used = 0;
5764
5765 status = ocfs2_write_block(osb, tl_bh, tl_inode);
5766 if (status < 0) {
5767 mlog_errno(status);
5768 goto bail;
5769 }
5770 }
5771
5772bail:
5773 if (tl_inode)
5774 iput(tl_inode);
a81cb88b 5775 brelse(tl_bh);
ccd979bd
MF
5776
5777 if (status < 0 && (*tl_copy)) {
5778 kfree(*tl_copy);
5779 *tl_copy = NULL;
5780 }
5781
5782 mlog_exit(status);
5783 return status;
5784}
5785
5786int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
5787 struct ocfs2_dinode *tl_copy)
5788{
5789 int status = 0;
5790 int i;
5791 unsigned int clusters, num_recs, start_cluster;
5792 u64 start_blk;
1fabe148 5793 handle_t *handle;
ccd979bd
MF
5794 struct inode *tl_inode = osb->osb_tl_inode;
5795 struct ocfs2_truncate_log *tl;
5796
5797 mlog_entry_void();
5798
5799 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
5800 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
5801 return -EINVAL;
5802 }
5803
5804 tl = &tl_copy->id2.i_dealloc;
5805 num_recs = le16_to_cpu(tl->tl_used);
b0697053 5806 mlog(0, "cleanup %u records from %llu\n", num_recs,
1ca1a111 5807 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
ccd979bd 5808
1b1dcc1b 5809 mutex_lock(&tl_inode->i_mutex);
ccd979bd
MF
5810 for(i = 0; i < num_recs; i++) {
5811 if (ocfs2_truncate_log_needs_flush(osb)) {
5812 status = __ocfs2_flush_truncate_log(osb);
5813 if (status < 0) {
5814 mlog_errno(status);
5815 goto bail_up;
5816 }
5817 }
5818
65eff9cc 5819 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
ccd979bd
MF
5820 if (IS_ERR(handle)) {
5821 status = PTR_ERR(handle);
5822 mlog_errno(status);
5823 goto bail_up;
5824 }
5825
5826 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
5827 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
5828 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
5829
5830 status = ocfs2_truncate_log_append(osb, handle,
5831 start_blk, clusters);
02dc1af4 5832 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
5833 if (status < 0) {
5834 mlog_errno(status);
5835 goto bail_up;
5836 }
5837 }
5838
5839bail_up:
1b1dcc1b 5840 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
5841
5842 mlog_exit(status);
5843 return status;
5844}
5845
5846void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
5847{
5848 int status;
5849 struct inode *tl_inode = osb->osb_tl_inode;
5850
5851 mlog_entry_void();
5852
5853 if (tl_inode) {
5854 cancel_delayed_work(&osb->osb_truncate_log_wq);
5855 flush_workqueue(ocfs2_wq);
5856
5857 status = ocfs2_flush_truncate_log(osb);
5858 if (status < 0)
5859 mlog_errno(status);
5860
5861 brelse(osb->osb_tl_bh);
5862 iput(osb->osb_tl_inode);
5863 }
5864
5865 mlog_exit_void();
5866}
5867
5868int ocfs2_truncate_log_init(struct ocfs2_super *osb)
5869{
5870 int status;
5871 struct inode *tl_inode = NULL;
5872 struct buffer_head *tl_bh = NULL;
5873
5874 mlog_entry_void();
5875
5876 status = ocfs2_get_truncate_log_info(osb,
5877 osb->slot_num,
5878 &tl_inode,
5879 &tl_bh);
5880 if (status < 0)
5881 mlog_errno(status);
5882
5883 /* ocfs2_truncate_log_shutdown keys on the existence of
5884 * osb->osb_tl_inode so we don't set any of the osb variables
5885 * until we're sure all is well. */
c4028958
DH
5886 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
5887 ocfs2_truncate_log_worker);
ccd979bd
MF
5888 osb->osb_tl_bh = tl_bh;
5889 osb->osb_tl_inode = tl_inode;
5890
5891 mlog_exit(status);
5892 return status;
5893}
5894
2b604351
MF
5895/*
5896 * Delayed de-allocation of suballocator blocks.
5897 *
5898 * Some sets of block de-allocations might involve multiple suballocator inodes.
5899 *
5900 * The locking for this can get extremely complicated, especially when
5901 * the suballocator inodes to delete from aren't known until deep
5902 * within an unrelated codepath.
5903 *
5904 * ocfs2_extent_block structures are a good example of this - an inode
5905 * btree could have been grown by any number of nodes each allocating
5906 * out of their own suballoc inode.
5907 *
5908 * These structures allow the delay of block de-allocation until a
5909 * later time, when locking of multiple cluster inodes won't cause
5910 * deadlock.
5911 */
5912
5913/*
2891d290
TM
5914 * Describe a single bit freed from a suballocator. For the block
5915 * suballocators, it represents one block. For the global cluster
5916 * allocator, it represents some clusters and free_bit indicates
5917 * clusters number.
2b604351
MF
5918 */
5919struct ocfs2_cached_block_free {
5920 struct ocfs2_cached_block_free *free_next;
5921 u64 free_blk;
5922 unsigned int free_bit;
5923};
5924
5925struct ocfs2_per_slot_free_list {
5926 struct ocfs2_per_slot_free_list *f_next_suballocator;
5927 int f_inode_type;
5928 int f_slot;
5929 struct ocfs2_cached_block_free *f_first;
5930};
5931
2891d290
TM
5932static int ocfs2_free_cached_blocks(struct ocfs2_super *osb,
5933 int sysfile_type,
5934 int slot,
5935 struct ocfs2_cached_block_free *head)
2b604351
MF
5936{
5937 int ret;
5938 u64 bg_blkno;
5939 handle_t *handle;
5940 struct inode *inode;
5941 struct buffer_head *di_bh = NULL;
5942 struct ocfs2_cached_block_free *tmp;
5943
5944 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
5945 if (!inode) {
5946 ret = -EINVAL;
5947 mlog_errno(ret);
5948 goto out;
5949 }
5950
5951 mutex_lock(&inode->i_mutex);
5952
e63aecb6 5953 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2b604351
MF
5954 if (ret) {
5955 mlog_errno(ret);
5956 goto out_mutex;
5957 }
5958
5959 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
5960 if (IS_ERR(handle)) {
5961 ret = PTR_ERR(handle);
5962 mlog_errno(ret);
5963 goto out_unlock;
5964 }
5965
5966 while (head) {
5967 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
5968 head->free_bit);
5969 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
5970 head->free_bit, (unsigned long long)head->free_blk);
5971
5972 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
5973 head->free_bit, bg_blkno, 1);
5974 if (ret) {
5975 mlog_errno(ret);
5976 goto out_journal;
5977 }
5978
5979 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
5980 if (ret) {
5981 mlog_errno(ret);
5982 goto out_journal;
5983 }
5984
5985 tmp = head;
5986 head = head->free_next;
5987 kfree(tmp);
5988 }
5989
5990out_journal:
5991 ocfs2_commit_trans(osb, handle);
5992
5993out_unlock:
e63aecb6 5994 ocfs2_inode_unlock(inode, 1);
2b604351
MF
5995 brelse(di_bh);
5996out_mutex:
5997 mutex_unlock(&inode->i_mutex);
5998 iput(inode);
5999out:
6000 while(head) {
6001 /* Premature exit may have left some dangling items. */
6002 tmp = head;
6003 head = head->free_next;
6004 kfree(tmp);
6005 }
6006
6007 return ret;
6008}
6009
2891d290
TM
6010int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6011 u64 blkno, unsigned int bit)
6012{
6013 int ret = 0;
6014 struct ocfs2_cached_block_free *item;
6015
6016 item = kmalloc(sizeof(*item), GFP_NOFS);
6017 if (item == NULL) {
6018 ret = -ENOMEM;
6019 mlog_errno(ret);
6020 return ret;
6021 }
6022
6023 mlog(0, "Insert clusters: (bit %u, blk %llu)\n",
6024 bit, (unsigned long long)blkno);
6025
6026 item->free_blk = blkno;
6027 item->free_bit = bit;
6028 item->free_next = ctxt->c_global_allocator;
6029
6030 ctxt->c_global_allocator = item;
6031 return ret;
6032}
6033
6034static int ocfs2_free_cached_clusters(struct ocfs2_super *osb,
6035 struct ocfs2_cached_block_free *head)
6036{
6037 struct ocfs2_cached_block_free *tmp;
6038 struct inode *tl_inode = osb->osb_tl_inode;
6039 handle_t *handle;
6040 int ret = 0;
6041
6042 mutex_lock(&tl_inode->i_mutex);
6043
6044 while (head) {
6045 if (ocfs2_truncate_log_needs_flush(osb)) {
6046 ret = __ocfs2_flush_truncate_log(osb);
6047 if (ret < 0) {
6048 mlog_errno(ret);
6049 break;
6050 }
6051 }
6052
6053 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
6054 if (IS_ERR(handle)) {
6055 ret = PTR_ERR(handle);
6056 mlog_errno(ret);
6057 break;
6058 }
6059
6060 ret = ocfs2_truncate_log_append(osb, handle, head->free_blk,
6061 head->free_bit);
6062
6063 ocfs2_commit_trans(osb, handle);
6064 tmp = head;
6065 head = head->free_next;
6066 kfree(tmp);
6067
6068 if (ret < 0) {
6069 mlog_errno(ret);
6070 break;
6071 }
6072 }
6073
6074 mutex_unlock(&tl_inode->i_mutex);
6075
6076 while (head) {
6077 /* Premature exit may have left some dangling items. */
6078 tmp = head;
6079 head = head->free_next;
6080 kfree(tmp);
6081 }
6082
6083 return ret;
6084}
6085
2b604351
MF
6086int ocfs2_run_deallocs(struct ocfs2_super *osb,
6087 struct ocfs2_cached_dealloc_ctxt *ctxt)
6088{
6089 int ret = 0, ret2;
6090 struct ocfs2_per_slot_free_list *fl;
6091
6092 if (!ctxt)
6093 return 0;
6094
6095 while (ctxt->c_first_suballocator) {
6096 fl = ctxt->c_first_suballocator;
6097
6098 if (fl->f_first) {
6099 mlog(0, "Free items: (type %u, slot %d)\n",
6100 fl->f_inode_type, fl->f_slot);
2891d290
TM
6101 ret2 = ocfs2_free_cached_blocks(osb,
6102 fl->f_inode_type,
6103 fl->f_slot,
6104 fl->f_first);
2b604351
MF
6105 if (ret2)
6106 mlog_errno(ret2);
6107 if (!ret)
6108 ret = ret2;
6109 }
6110
6111 ctxt->c_first_suballocator = fl->f_next_suballocator;
6112 kfree(fl);
6113 }
6114
2891d290
TM
6115 if (ctxt->c_global_allocator) {
6116 ret2 = ocfs2_free_cached_clusters(osb,
6117 ctxt->c_global_allocator);
6118 if (ret2)
6119 mlog_errno(ret2);
6120 if (!ret)
6121 ret = ret2;
6122
6123 ctxt->c_global_allocator = NULL;
6124 }
6125
2b604351
MF
6126 return ret;
6127}
6128
6129static struct ocfs2_per_slot_free_list *
6130ocfs2_find_per_slot_free_list(int type,
6131 int slot,
6132 struct ocfs2_cached_dealloc_ctxt *ctxt)
6133{
6134 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
6135
6136 while (fl) {
6137 if (fl->f_inode_type == type && fl->f_slot == slot)
6138 return fl;
6139
6140 fl = fl->f_next_suballocator;
6141 }
6142
6143 fl = kmalloc(sizeof(*fl), GFP_NOFS);
6144 if (fl) {
6145 fl->f_inode_type = type;
6146 fl->f_slot = slot;
6147 fl->f_first = NULL;
6148 fl->f_next_suballocator = ctxt->c_first_suballocator;
6149
6150 ctxt->c_first_suballocator = fl;
6151 }
6152 return fl;
6153}
6154
6155static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
6156 int type, int slot, u64 blkno,
6157 unsigned int bit)
6158{
6159 int ret;
6160 struct ocfs2_per_slot_free_list *fl;
6161 struct ocfs2_cached_block_free *item;
6162
6163 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
6164 if (fl == NULL) {
6165 ret = -ENOMEM;
6166 mlog_errno(ret);
6167 goto out;
6168 }
6169
6170 item = kmalloc(sizeof(*item), GFP_NOFS);
6171 if (item == NULL) {
6172 ret = -ENOMEM;
6173 mlog_errno(ret);
6174 goto out;
6175 }
6176
6177 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
6178 type, slot, bit, (unsigned long long)blkno);
6179
6180 item->free_blk = blkno;
6181 item->free_bit = bit;
6182 item->free_next = fl->f_first;
6183
6184 fl->f_first = item;
6185
6186 ret = 0;
6187out:
6188 return ret;
6189}
6190
59a5e416
MF
6191static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
6192 struct ocfs2_extent_block *eb)
6193{
6194 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
6195 le16_to_cpu(eb->h_suballoc_slot),
6196 le64_to_cpu(eb->h_blkno),
6197 le16_to_cpu(eb->h_suballoc_bit));
6198}
6199
ccd979bd
MF
6200/* This function will figure out whether the currently last extent
6201 * block will be deleted, and if it will, what the new last extent
6202 * block will be so we can update his h_next_leaf_blk field, as well
6203 * as the dinodes i_last_eb_blk */
dcd0538f 6204static int ocfs2_find_new_last_ext_blk(struct inode *inode,
3a0782d0 6205 unsigned int clusters_to_del,
dcd0538f 6206 struct ocfs2_path *path,
ccd979bd
MF
6207 struct buffer_head **new_last_eb)
6208{
3a0782d0 6209 int next_free, ret = 0;
dcd0538f 6210 u32 cpos;
3a0782d0 6211 struct ocfs2_extent_rec *rec;
ccd979bd
MF
6212 struct ocfs2_extent_block *eb;
6213 struct ocfs2_extent_list *el;
6214 struct buffer_head *bh = NULL;
6215
6216 *new_last_eb = NULL;
6217
ccd979bd 6218 /* we have no tree, so of course, no last_eb. */
dcd0538f
MF
6219 if (!path->p_tree_depth)
6220 goto out;
ccd979bd
MF
6221
6222 /* trunc to zero special case - this makes tree_depth = 0
6223 * regardless of what it is. */
3a0782d0 6224 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
dcd0538f 6225 goto out;
ccd979bd 6226
dcd0538f 6227 el = path_leaf_el(path);
ccd979bd
MF
6228 BUG_ON(!el->l_next_free_rec);
6229
3a0782d0
MF
6230 /*
6231 * Make sure that this extent list will actually be empty
6232 * after we clear away the data. We can shortcut out if
6233 * there's more than one non-empty extent in the
6234 * list. Otherwise, a check of the remaining extent is
6235 * necessary.
6236 */
6237 next_free = le16_to_cpu(el->l_next_free_rec);
6238 rec = NULL;
dcd0538f 6239 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3a0782d0 6240 if (next_free > 2)
dcd0538f 6241 goto out;
3a0782d0
MF
6242
6243 /* We may have a valid extent in index 1, check it. */
6244 if (next_free == 2)
6245 rec = &el->l_recs[1];
6246
6247 /*
6248 * Fall through - no more nonempty extents, so we want
6249 * to delete this leaf.
6250 */
6251 } else {
6252 if (next_free > 1)
6253 goto out;
6254
6255 rec = &el->l_recs[0];
6256 }
6257
6258 if (rec) {
6259 /*
6260 * Check it we'll only be trimming off the end of this
6261 * cluster.
6262 */
e48edee2 6263 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
3a0782d0
MF
6264 goto out;
6265 }
ccd979bd 6266
dcd0538f
MF
6267 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
6268 if (ret) {
6269 mlog_errno(ret);
6270 goto out;
6271 }
ccd979bd 6272
dcd0538f
MF
6273 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
6274 if (ret) {
6275 mlog_errno(ret);
6276 goto out;
6277 }
ccd979bd 6278
dcd0538f
MF
6279 eb = (struct ocfs2_extent_block *) bh->b_data;
6280 el = &eb->h_list;
5e96581a
JB
6281
6282 /* ocfs2_find_leaf() gets the eb from ocfs2_read_extent_block().
6283 * Any corruption is a code bug. */
6284 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb));
ccd979bd
MF
6285
6286 *new_last_eb = bh;
6287 get_bh(*new_last_eb);
dcd0538f
MF
6288 mlog(0, "returning block %llu, (cpos: %u)\n",
6289 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
6290out:
6291 brelse(bh);
ccd979bd 6292
dcd0538f 6293 return ret;
ccd979bd
MF
6294}
6295
3a0782d0
MF
6296/*
6297 * Trim some clusters off the rightmost edge of a tree. Only called
6298 * during truncate.
6299 *
6300 * The caller needs to:
6301 * - start journaling of each path component.
6302 * - compute and fully set up any new last ext block
6303 */
6304static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
6305 handle_t *handle, struct ocfs2_truncate_context *tc,
6306 u32 clusters_to_del, u64 *delete_start)
6307{
6308 int ret, i, index = path->p_tree_depth;
6309 u32 new_edge = 0;
6310 u64 deleted_eb = 0;
6311 struct buffer_head *bh;
6312 struct ocfs2_extent_list *el;
6313 struct ocfs2_extent_rec *rec;
6314
6315 *delete_start = 0;
6316
6317 while (index >= 0) {
6318 bh = path->p_node[index].bh;
6319 el = path->p_node[index].el;
6320
6321 mlog(0, "traveling tree (index = %d, block = %llu)\n",
6322 index, (unsigned long long)bh->b_blocknr);
6323
6324 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
6325
6326 if (index !=
6327 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
6328 ocfs2_error(inode->i_sb,
6329 "Inode %lu has invalid ext. block %llu",
6330 inode->i_ino,
6331 (unsigned long long)bh->b_blocknr);
6332 ret = -EROFS;
6333 goto out;
6334 }
6335
6336find_tail_record:
6337 i = le16_to_cpu(el->l_next_free_rec) - 1;
6338 rec = &el->l_recs[i];
6339
6340 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
6341 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
e48edee2 6342 ocfs2_rec_clusters(el, rec),
3a0782d0
MF
6343 (unsigned long long)le64_to_cpu(rec->e_blkno),
6344 le16_to_cpu(el->l_next_free_rec));
6345
e48edee2 6346 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
3a0782d0
MF
6347
6348 if (le16_to_cpu(el->l_tree_depth) == 0) {
6349 /*
6350 * If the leaf block contains a single empty
6351 * extent and no records, we can just remove
6352 * the block.
6353 */
6354 if (i == 0 && ocfs2_is_empty_extent(rec)) {
6355 memset(rec, 0,
6356 sizeof(struct ocfs2_extent_rec));
6357 el->l_next_free_rec = cpu_to_le16(0);
6358
6359 goto delete;
6360 }
6361
6362 /*
6363 * Remove any empty extents by shifting things
6364 * left. That should make life much easier on
6365 * the code below. This condition is rare
6366 * enough that we shouldn't see a performance
6367 * hit.
6368 */
6369 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
6370 le16_add_cpu(&el->l_next_free_rec, -1);
6371
6372 for(i = 0;
6373 i < le16_to_cpu(el->l_next_free_rec); i++)
6374 el->l_recs[i] = el->l_recs[i + 1];
6375
6376 memset(&el->l_recs[i], 0,
6377 sizeof(struct ocfs2_extent_rec));
6378
6379 /*
6380 * We've modified our extent list. The
6381 * simplest way to handle this change
6382 * is to being the search from the
6383 * start again.
6384 */
6385 goto find_tail_record;
6386 }
6387
e48edee2 6388 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
3a0782d0
MF
6389
6390 /*
6391 * We'll use "new_edge" on our way back up the
6392 * tree to know what our rightmost cpos is.
6393 */
e48edee2 6394 new_edge = le16_to_cpu(rec->e_leaf_clusters);
3a0782d0
MF
6395 new_edge += le32_to_cpu(rec->e_cpos);
6396
6397 /*
6398 * The caller will use this to delete data blocks.
6399 */
6400 *delete_start = le64_to_cpu(rec->e_blkno)
6401 + ocfs2_clusters_to_blocks(inode->i_sb,
e48edee2 6402 le16_to_cpu(rec->e_leaf_clusters));
3a0782d0
MF
6403
6404 /*
6405 * If it's now empty, remove this record.
6406 */
e48edee2 6407 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
3a0782d0
MF
6408 memset(rec, 0,
6409 sizeof(struct ocfs2_extent_rec));
6410 le16_add_cpu(&el->l_next_free_rec, -1);
6411 }
6412 } else {
6413 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
6414 memset(rec, 0,
6415 sizeof(struct ocfs2_extent_rec));
6416 le16_add_cpu(&el->l_next_free_rec, -1);
6417
6418 goto delete;
6419 }
6420
6421 /* Can this actually happen? */
6422 if (le16_to_cpu(el->l_next_free_rec) == 0)
6423 goto delete;
6424
6425 /*
6426 * We never actually deleted any clusters
6427 * because our leaf was empty. There's no
6428 * reason to adjust the rightmost edge then.
6429 */
6430 if (new_edge == 0)
6431 goto delete;
6432
e48edee2
MF
6433 rec->e_int_clusters = cpu_to_le32(new_edge);
6434 le32_add_cpu(&rec->e_int_clusters,
3a0782d0
MF
6435 -le32_to_cpu(rec->e_cpos));
6436
6437 /*
6438 * A deleted child record should have been
6439 * caught above.
6440 */
e48edee2 6441 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
3a0782d0
MF
6442 }
6443
6444delete:
6445 ret = ocfs2_journal_dirty(handle, bh);
6446 if (ret) {
6447 mlog_errno(ret);
6448 goto out;
6449 }
6450
6451 mlog(0, "extent list container %llu, after: record %d: "
6452 "(%u, %u, %llu), next = %u.\n",
6453 (unsigned long long)bh->b_blocknr, i,
e48edee2 6454 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
3a0782d0
MF
6455 (unsigned long long)le64_to_cpu(rec->e_blkno),
6456 le16_to_cpu(el->l_next_free_rec));
6457
6458 /*
6459 * We must be careful to only attempt delete of an
6460 * extent block (and not the root inode block).
6461 */
6462 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
6463 struct ocfs2_extent_block *eb =
6464 (struct ocfs2_extent_block *)bh->b_data;
6465
6466 /*
6467 * Save this for use when processing the
6468 * parent block.
6469 */
6470 deleted_eb = le64_to_cpu(eb->h_blkno);
6471
6472 mlog(0, "deleting this extent block.\n");
6473
6474 ocfs2_remove_from_cache(inode, bh);
6475
e48edee2 6476 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
3a0782d0
MF
6477 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
6478 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
6479
59a5e416
MF
6480 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
6481 /* An error here is not fatal. */
6482 if (ret < 0)
6483 mlog_errno(ret);
3a0782d0
MF
6484 } else {
6485 deleted_eb = 0;
6486 }
6487
6488 index--;
6489 }
6490
6491 ret = 0;
6492out:
6493 return ret;
6494}
6495
ccd979bd
MF
6496static int ocfs2_do_truncate(struct ocfs2_super *osb,
6497 unsigned int clusters_to_del,
6498 struct inode *inode,
6499 struct buffer_head *fe_bh,
1fabe148 6500 handle_t *handle,
dcd0538f
MF
6501 struct ocfs2_truncate_context *tc,
6502 struct ocfs2_path *path)
ccd979bd 6503{
3a0782d0 6504 int status;
ccd979bd 6505 struct ocfs2_dinode *fe;
ccd979bd
MF
6506 struct ocfs2_extent_block *last_eb = NULL;
6507 struct ocfs2_extent_list *el;
ccd979bd 6508 struct buffer_head *last_eb_bh = NULL;
ccd979bd
MF
6509 u64 delete_blk = 0;
6510
6511 fe = (struct ocfs2_dinode *) fe_bh->b_data;
6512
3a0782d0 6513 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
dcd0538f 6514 path, &last_eb_bh);
ccd979bd
MF
6515 if (status < 0) {
6516 mlog_errno(status);
6517 goto bail;
6518 }
dcd0538f
MF
6519
6520 /*
6521 * Each component will be touched, so we might as well journal
6522 * here to avoid having to handle errors later.
6523 */
3a0782d0
MF
6524 status = ocfs2_journal_access_path(inode, handle, path);
6525 if (status < 0) {
6526 mlog_errno(status);
6527 goto bail;
dcd0538f
MF
6528 }
6529
6530 if (last_eb_bh) {
6531 status = ocfs2_journal_access(handle, inode, last_eb_bh,
6532 OCFS2_JOURNAL_ACCESS_WRITE);
6533 if (status < 0) {
6534 mlog_errno(status);
6535 goto bail;
6536 }
6537
ccd979bd 6538 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
dcd0538f 6539 }
ccd979bd 6540
dcd0538f
MF
6541 el = &(fe->id2.i_list);
6542
6543 /*
6544 * Lower levels depend on this never happening, but it's best
6545 * to check it up here before changing the tree.
6546 */
e48edee2 6547 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
dcd0538f
MF
6548 ocfs2_error(inode->i_sb,
6549 "Inode %lu has an empty extent record, depth %u\n",
6550 inode->i_ino, le16_to_cpu(el->l_tree_depth));
3a0782d0 6551 status = -EROFS;
ccd979bd
MF
6552 goto bail;
6553 }
ccd979bd
MF
6554
6555 spin_lock(&OCFS2_I(inode)->ip_lock);
6556 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
6557 clusters_to_del;
6558 spin_unlock(&OCFS2_I(inode)->ip_lock);
6559 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
e535e2ef 6560 inode->i_blocks = ocfs2_inode_sector_count(inode);
ccd979bd 6561
3a0782d0
MF
6562 status = ocfs2_trim_tree(inode, path, handle, tc,
6563 clusters_to_del, &delete_blk);
6564 if (status) {
6565 mlog_errno(status);
6566 goto bail;
ccd979bd
MF
6567 }
6568
dcd0538f 6569 if (le32_to_cpu(fe->i_clusters) == 0) {
ccd979bd
MF
6570 /* trunc to zero is a special case. */
6571 el->l_tree_depth = 0;
6572 fe->i_last_eb_blk = 0;
6573 } else if (last_eb)
6574 fe->i_last_eb_blk = last_eb->h_blkno;
6575
6576 status = ocfs2_journal_dirty(handle, fe_bh);
6577 if (status < 0) {
6578 mlog_errno(status);
6579 goto bail;
6580 }
6581
6582 if (last_eb) {
6583 /* If there will be a new last extent block, then by
6584 * definition, there cannot be any leaves to the right of
6585 * him. */
ccd979bd
MF
6586 last_eb->h_next_leaf_blk = 0;
6587 status = ocfs2_journal_dirty(handle, last_eb_bh);
6588 if (status < 0) {
6589 mlog_errno(status);
6590 goto bail;
6591 }
6592 }
6593
3a0782d0
MF
6594 if (delete_blk) {
6595 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
6596 clusters_to_del);
ccd979bd
MF
6597 if (status < 0) {
6598 mlog_errno(status);
6599 goto bail;
6600 }
ccd979bd
MF
6601 }
6602 status = 0;
6603bail:
dcd0538f 6604
ccd979bd
MF
6605 mlog_exit(status);
6606 return status;
6607}
6608
2b4e30fb 6609static int ocfs2_zero_func(handle_t *handle, struct buffer_head *bh)
60b11392
MF
6610{
6611 set_buffer_uptodate(bh);
6612 mark_buffer_dirty(bh);
6613 return 0;
6614}
6615
1d410a6e
MF
6616static void ocfs2_map_and_dirty_page(struct inode *inode, handle_t *handle,
6617 unsigned int from, unsigned int to,
6618 struct page *page, int zero, u64 *phys)
6619{
6620 int ret, partial = 0;
6621
6622 ret = ocfs2_map_page_blocks(page, phys, inode, from, to, 0);
6623 if (ret)
6624 mlog_errno(ret);
6625
6626 if (zero)
eebd2aa3 6627 zero_user_segment(page, from, to);
1d410a6e
MF
6628
6629 /*
6630 * Need to set the buffers we zero'd into uptodate
6631 * here if they aren't - ocfs2_map_page_blocks()
6632 * might've skipped some
6633 */
2b4e30fb
JB
6634 ret = walk_page_buffers(handle, page_buffers(page),
6635 from, to, &partial,
6636 ocfs2_zero_func);
6637 if (ret < 0)
6638 mlog_errno(ret);
6639 else if (ocfs2_should_order_data(inode)) {
6640 ret = ocfs2_jbd2_file_inode(handle, inode);
6641#ifdef CONFIG_OCFS2_COMPAT_JBD
1d410a6e
MF
6642 ret = walk_page_buffers(handle, page_buffers(page),
6643 from, to, &partial,
2b4e30fb
JB
6644 ocfs2_journal_dirty_data);
6645#endif
1d410a6e
MF
6646 if (ret < 0)
6647 mlog_errno(ret);
6648 }
6649
6650 if (!partial)
6651 SetPageUptodate(page);
6652
6653 flush_dcache_page(page);
6654}
6655
35edec1d
MF
6656static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t start,
6657 loff_t end, struct page **pages,
6658 int numpages, u64 phys, handle_t *handle)
60b11392 6659{
1d410a6e 6660 int i;
60b11392
MF
6661 struct page *page;
6662 unsigned int from, to = PAGE_CACHE_SIZE;
6663 struct super_block *sb = inode->i_sb;
6664
6665 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
6666
6667 if (numpages == 0)
6668 goto out;
6669
35edec1d 6670 to = PAGE_CACHE_SIZE;
60b11392
MF
6671 for(i = 0; i < numpages; i++) {
6672 page = pages[i];
6673
35edec1d
MF
6674 from = start & (PAGE_CACHE_SIZE - 1);
6675 if ((end >> PAGE_CACHE_SHIFT) == page->index)
6676 to = end & (PAGE_CACHE_SIZE - 1);
6677
60b11392
MF
6678 BUG_ON(from > PAGE_CACHE_SIZE);
6679 BUG_ON(to > PAGE_CACHE_SIZE);
6680
1d410a6e
MF
6681 ocfs2_map_and_dirty_page(inode, handle, from, to, page, 1,
6682 &phys);
60b11392 6683
35edec1d 6684 start = (page->index + 1) << PAGE_CACHE_SHIFT;
60b11392
MF
6685 }
6686out:
1d410a6e
MF
6687 if (pages)
6688 ocfs2_unlock_and_free_pages(pages, numpages);
60b11392
MF
6689}
6690
35edec1d 6691static int ocfs2_grab_eof_pages(struct inode *inode, loff_t start, loff_t end,
1d410a6e 6692 struct page **pages, int *num)
60b11392 6693{
1d410a6e 6694 int numpages, ret = 0;
60b11392
MF
6695 struct super_block *sb = inode->i_sb;
6696 struct address_space *mapping = inode->i_mapping;
6697 unsigned long index;
35edec1d 6698 loff_t last_page_bytes;
60b11392 6699
35edec1d 6700 BUG_ON(start > end);
60b11392 6701
35edec1d
MF
6702 BUG_ON(start >> OCFS2_SB(sb)->s_clustersize_bits !=
6703 (end - 1) >> OCFS2_SB(sb)->s_clustersize_bits);
6704
1d410a6e 6705 numpages = 0;
35edec1d
MF
6706 last_page_bytes = PAGE_ALIGN(end);
6707 index = start >> PAGE_CACHE_SHIFT;
60b11392
MF
6708 do {
6709 pages[numpages] = grab_cache_page(mapping, index);
6710 if (!pages[numpages]) {
6711 ret = -ENOMEM;
6712 mlog_errno(ret);
6713 goto out;
6714 }
6715
6716 numpages++;
6717 index++;
35edec1d 6718 } while (index < (last_page_bytes >> PAGE_CACHE_SHIFT));
60b11392
MF
6719
6720out:
6721 if (ret != 0) {
1d410a6e
MF
6722 if (pages)
6723 ocfs2_unlock_and_free_pages(pages, numpages);
60b11392
MF
6724 numpages = 0;
6725 }
6726
6727 *num = numpages;
6728
6729 return ret;
6730}
6731
6732/*
6733 * Zero the area past i_size but still within an allocated
6734 * cluster. This avoids exposing nonzero data on subsequent file
6735 * extends.
6736 *
6737 * We need to call this before i_size is updated on the inode because
6738 * otherwise block_write_full_page() will skip writeout of pages past
6739 * i_size. The new_i_size parameter is passed for this reason.
6740 */
35edec1d
MF
6741int ocfs2_zero_range_for_truncate(struct inode *inode, handle_t *handle,
6742 u64 range_start, u64 range_end)
60b11392 6743{
1d410a6e 6744 int ret = 0, numpages;
60b11392
MF
6745 struct page **pages = NULL;
6746 u64 phys;
1d410a6e
MF
6747 unsigned int ext_flags;
6748 struct super_block *sb = inode->i_sb;
60b11392
MF
6749
6750 /*
6751 * File systems which don't support sparse files zero on every
6752 * extend.
6753 */
1d410a6e 6754 if (!ocfs2_sparse_alloc(OCFS2_SB(sb)))
60b11392
MF
6755 return 0;
6756
1d410a6e 6757 pages = kcalloc(ocfs2_pages_per_cluster(sb),
60b11392
MF
6758 sizeof(struct page *), GFP_NOFS);
6759 if (pages == NULL) {
6760 ret = -ENOMEM;
6761 mlog_errno(ret);
6762 goto out;
6763 }
6764
1d410a6e
MF
6765 if (range_start == range_end)
6766 goto out;
6767
6768 ret = ocfs2_extent_map_get_blocks(inode,
6769 range_start >> sb->s_blocksize_bits,
6770 &phys, NULL, &ext_flags);
60b11392
MF
6771 if (ret) {
6772 mlog_errno(ret);
6773 goto out;
6774 }
6775
1d410a6e
MF
6776 /*
6777 * Tail is a hole, or is marked unwritten. In either case, we
6778 * can count on read and write to return/push zero's.
6779 */
6780 if (phys == 0 || ext_flags & OCFS2_EXT_UNWRITTEN)
60b11392
MF
6781 goto out;
6782
1d410a6e
MF
6783 ret = ocfs2_grab_eof_pages(inode, range_start, range_end, pages,
6784 &numpages);
6785 if (ret) {
6786 mlog_errno(ret);
6787 goto out;
6788 }
6789
35edec1d
MF
6790 ocfs2_zero_cluster_pages(inode, range_start, range_end, pages,
6791 numpages, phys, handle);
60b11392
MF
6792
6793 /*
6794 * Initiate writeout of the pages we zero'd here. We don't
6795 * wait on them - the truncate_inode_pages() call later will
6796 * do that for us.
6797 */
35edec1d
MF
6798 ret = do_sync_mapping_range(inode->i_mapping, range_start,
6799 range_end - 1, SYNC_FILE_RANGE_WRITE);
60b11392
MF
6800 if (ret)
6801 mlog_errno(ret);
6802
6803out:
6804 if (pages)
6805 kfree(pages);
6806
6807 return ret;
6808}
6809
fdd77704
TY
6810static void ocfs2_zero_dinode_id2_with_xattr(struct inode *inode,
6811 struct ocfs2_dinode *di)
1afc32b9
MF
6812{
6813 unsigned int blocksize = 1 << inode->i_sb->s_blocksize_bits;
fdd77704 6814 unsigned int xattrsize = le16_to_cpu(di->i_xattr_inline_size);
1afc32b9 6815
fdd77704
TY
6816 if (le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_XATTR_FL)
6817 memset(&di->id2, 0, blocksize -
6818 offsetof(struct ocfs2_dinode, id2) -
6819 xattrsize);
6820 else
6821 memset(&di->id2, 0, blocksize -
6822 offsetof(struct ocfs2_dinode, id2));
1afc32b9
MF
6823}
6824
5b6a3a2b
MF
6825void ocfs2_dinode_new_extent_list(struct inode *inode,
6826 struct ocfs2_dinode *di)
6827{
fdd77704 6828 ocfs2_zero_dinode_id2_with_xattr(inode, di);
5b6a3a2b
MF
6829 di->id2.i_list.l_tree_depth = 0;
6830 di->id2.i_list.l_next_free_rec = 0;
fdd77704
TY
6831 di->id2.i_list.l_count = cpu_to_le16(
6832 ocfs2_extent_recs_per_inode_with_xattr(inode->i_sb, di));
5b6a3a2b
MF
6833}
6834
1afc32b9
MF
6835void ocfs2_set_inode_data_inline(struct inode *inode, struct ocfs2_dinode *di)
6836{
6837 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6838 struct ocfs2_inline_data *idata = &di->id2.i_data;
6839
6840 spin_lock(&oi->ip_lock);
6841 oi->ip_dyn_features |= OCFS2_INLINE_DATA_FL;
6842 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6843 spin_unlock(&oi->ip_lock);
6844
6845 /*
6846 * We clear the entire i_data structure here so that all
6847 * fields can be properly initialized.
6848 */
fdd77704 6849 ocfs2_zero_dinode_id2_with_xattr(inode, di);
1afc32b9 6850
fdd77704
TY
6851 idata->id_count = cpu_to_le16(
6852 ocfs2_max_inline_data_with_xattr(inode->i_sb, di));
1afc32b9
MF
6853}
6854
6855int ocfs2_convert_inline_data_to_extents(struct inode *inode,
6856 struct buffer_head *di_bh)
6857{
6858 int ret, i, has_data, num_pages = 0;
6859 handle_t *handle;
6860 u64 uninitialized_var(block);
6861 struct ocfs2_inode_info *oi = OCFS2_I(inode);
6862 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
6863 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1afc32b9
MF
6864 struct ocfs2_alloc_context *data_ac = NULL;
6865 struct page **pages = NULL;
6866 loff_t end = osb->s_clustersize;
f99b9b7c 6867 struct ocfs2_extent_tree et;
1afc32b9
MF
6868
6869 has_data = i_size_read(inode) ? 1 : 0;
6870
6871 if (has_data) {
6872 pages = kcalloc(ocfs2_pages_per_cluster(osb->sb),
6873 sizeof(struct page *), GFP_NOFS);
6874 if (pages == NULL) {
6875 ret = -ENOMEM;
6876 mlog_errno(ret);
6877 goto out;
6878 }
6879
6880 ret = ocfs2_reserve_clusters(osb, 1, &data_ac);
6881 if (ret) {
6882 mlog_errno(ret);
6883 goto out;
6884 }
6885 }
6886
6887 handle = ocfs2_start_trans(osb, OCFS2_INLINE_TO_EXTENTS_CREDITS);
6888 if (IS_ERR(handle)) {
6889 ret = PTR_ERR(handle);
6890 mlog_errno(ret);
6891 goto out_unlock;
6892 }
6893
6894 ret = ocfs2_journal_access(handle, inode, di_bh,
6895 OCFS2_JOURNAL_ACCESS_WRITE);
6896 if (ret) {
6897 mlog_errno(ret);
6898 goto out_commit;
6899 }
6900
6901 if (has_data) {
6902 u32 bit_off, num;
6903 unsigned int page_end;
6904 u64 phys;
6905
6906 ret = ocfs2_claim_clusters(osb, handle, data_ac, 1, &bit_off,
6907 &num);
6908 if (ret) {
6909 mlog_errno(ret);
6910 goto out_commit;
6911 }
6912
6913 /*
6914 * Save two copies, one for insert, and one that can
6915 * be changed by ocfs2_map_and_dirty_page() below.
6916 */
6917 block = phys = ocfs2_clusters_to_blocks(inode->i_sb, bit_off);
6918
6919 /*
6920 * Non sparse file systems zero on extend, so no need
6921 * to do that now.
6922 */
6923 if (!ocfs2_sparse_alloc(osb) &&
6924 PAGE_CACHE_SIZE < osb->s_clustersize)
6925 end = PAGE_CACHE_SIZE;
6926
6927 ret = ocfs2_grab_eof_pages(inode, 0, end, pages, &num_pages);
6928 if (ret) {
6929 mlog_errno(ret);
6930 goto out_commit;
6931 }
6932
6933 /*
6934 * This should populate the 1st page for us and mark
6935 * it up to date.
6936 */
6937 ret = ocfs2_read_inline_data(inode, pages[0], di_bh);
6938 if (ret) {
6939 mlog_errno(ret);
6940 goto out_commit;
6941 }
6942
6943 page_end = PAGE_CACHE_SIZE;
6944 if (PAGE_CACHE_SIZE > osb->s_clustersize)
6945 page_end = osb->s_clustersize;
6946
6947 for (i = 0; i < num_pages; i++)
6948 ocfs2_map_and_dirty_page(inode, handle, 0, page_end,
6949 pages[i], i > 0, &phys);
6950 }
6951
6952 spin_lock(&oi->ip_lock);
6953 oi->ip_dyn_features &= ~OCFS2_INLINE_DATA_FL;
6954 di->i_dyn_features = cpu_to_le16(oi->ip_dyn_features);
6955 spin_unlock(&oi->ip_lock);
6956
5b6a3a2b 6957 ocfs2_dinode_new_extent_list(inode, di);
1afc32b9
MF
6958
6959 ocfs2_journal_dirty(handle, di_bh);
6960
6961 if (has_data) {
6962 /*
6963 * An error at this point should be extremely rare. If
6964 * this proves to be false, we could always re-build
6965 * the in-inode data from our pages.
6966 */
8d6220d6 6967 ocfs2_init_dinode_extent_tree(&et, inode, di_bh);
f99b9b7c
JB
6968 ret = ocfs2_insert_extent(osb, handle, inode, &et,
6969 0, block, 1, 0, NULL);
1afc32b9
MF
6970 if (ret) {
6971 mlog_errno(ret);
6972 goto out_commit;
6973 }
6974
6975 inode->i_blocks = ocfs2_inode_sector_count(inode);
6976 }
6977
6978out_commit:
6979 ocfs2_commit_trans(osb, handle);
6980
6981out_unlock:
6982 if (data_ac)
6983 ocfs2_free_alloc_context(data_ac);
6984
6985out:
6986 if (pages) {
6987 ocfs2_unlock_and_free_pages(pages, num_pages);
6988 kfree(pages);
6989 }
6990
6991 return ret;
6992}
6993
ccd979bd
MF
6994/*
6995 * It is expected, that by the time you call this function,
6996 * inode->i_size and fe->i_size have been adjusted.
6997 *
6998 * WARNING: This will kfree the truncate context
6999 */
7000int ocfs2_commit_truncate(struct ocfs2_super *osb,
7001 struct inode *inode,
7002 struct buffer_head *fe_bh,
7003 struct ocfs2_truncate_context *tc)
7004{
7005 int status, i, credits, tl_sem = 0;
dcd0538f 7006 u32 clusters_to_del, new_highest_cpos, range;
ccd979bd 7007 struct ocfs2_extent_list *el;
1fabe148 7008 handle_t *handle = NULL;
ccd979bd 7009 struct inode *tl_inode = osb->osb_tl_inode;
dcd0538f 7010 struct ocfs2_path *path = NULL;
e7d4cb6b 7011 struct ocfs2_dinode *di = (struct ocfs2_dinode *)fe_bh->b_data;
ccd979bd
MF
7012
7013 mlog_entry_void();
7014
dcd0538f 7015 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
ccd979bd
MF
7016 i_size_read(inode));
7017
e7d4cb6b 7018 path = ocfs2_new_path(fe_bh, &di->id2.i_list);
dcd0538f
MF
7019 if (!path) {
7020 status = -ENOMEM;
7021 mlog_errno(status);
7022 goto bail;
7023 }
83418978
MF
7024
7025 ocfs2_extent_map_trunc(inode, new_highest_cpos);
7026
ccd979bd 7027start:
3a0782d0
MF
7028 /*
7029 * Check that we still have allocation to delete.
7030 */
7031 if (OCFS2_I(inode)->ip_clusters == 0) {
7032 status = 0;
7033 goto bail;
7034 }
7035
dcd0538f
MF
7036 /*
7037 * Truncate always works against the rightmost tree branch.
7038 */
7039 status = ocfs2_find_path(inode, path, UINT_MAX);
7040 if (status) {
7041 mlog_errno(status);
7042 goto bail;
ccd979bd
MF
7043 }
7044
dcd0538f
MF
7045 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
7046 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
7047
7048 /*
7049 * By now, el will point to the extent list on the bottom most
7050 * portion of this tree. Only the tail record is considered in
7051 * each pass.
7052 *
7053 * We handle the following cases, in order:
7054 * - empty extent: delete the remaining branch
7055 * - remove the entire record
7056 * - remove a partial record
7057 * - no record needs to be removed (truncate has completed)
7058 */
7059 el = path_leaf_el(path);
3a0782d0
MF
7060 if (le16_to_cpu(el->l_next_free_rec) == 0) {
7061 ocfs2_error(inode->i_sb,
7062 "Inode %llu has empty extent block at %llu\n",
7063 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7064 (unsigned long long)path_leaf_bh(path)->b_blocknr);
7065 status = -EROFS;
7066 goto bail;
7067 }
7068
ccd979bd 7069 i = le16_to_cpu(el->l_next_free_rec) - 1;
dcd0538f 7070 range = le32_to_cpu(el->l_recs[i].e_cpos) +
e48edee2 7071 ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f
MF
7072 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
7073 clusters_to_del = 0;
7074 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
e48edee2 7075 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f 7076 } else if (range > new_highest_cpos) {
e48edee2 7077 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
ccd979bd 7078 le32_to_cpu(el->l_recs[i].e_cpos)) -
dcd0538f
MF
7079 new_highest_cpos;
7080 } else {
7081 status = 0;
7082 goto bail;
7083 }
ccd979bd 7084
dcd0538f
MF
7085 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
7086 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
7087
1b1dcc1b 7088 mutex_lock(&tl_inode->i_mutex);
ccd979bd
MF
7089 tl_sem = 1;
7090 /* ocfs2_truncate_log_needs_flush guarantees us at least one
7091 * record is free for use. If there isn't any, we flush to get
7092 * an empty truncate log. */
7093 if (ocfs2_truncate_log_needs_flush(osb)) {
7094 status = __ocfs2_flush_truncate_log(osb);
7095 if (status < 0) {
7096 mlog_errno(status);
7097 goto bail;
7098 }
7099 }
7100
7101 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
dcd0538f
MF
7102 (struct ocfs2_dinode *)fe_bh->b_data,
7103 el);
65eff9cc 7104 handle = ocfs2_start_trans(osb, credits);
ccd979bd
MF
7105 if (IS_ERR(handle)) {
7106 status = PTR_ERR(handle);
7107 handle = NULL;
7108 mlog_errno(status);
7109 goto bail;
7110 }
7111
dcd0538f
MF
7112 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
7113 tc, path);
ccd979bd
MF
7114 if (status < 0) {
7115 mlog_errno(status);
7116 goto bail;
7117 }
7118
1b1dcc1b 7119 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
7120 tl_sem = 0;
7121
02dc1af4 7122 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
7123 handle = NULL;
7124
dcd0538f
MF
7125 ocfs2_reinit_path(path, 1);
7126
7127 /*
3a0782d0
MF
7128 * The check above will catch the case where we've truncated
7129 * away all allocation.
dcd0538f 7130 */
3a0782d0
MF
7131 goto start;
7132
ccd979bd 7133bail:
ccd979bd
MF
7134
7135 ocfs2_schedule_truncate_log_flush(osb, 1);
7136
7137 if (tl_sem)
1b1dcc1b 7138 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
7139
7140 if (handle)
02dc1af4 7141 ocfs2_commit_trans(osb, handle);
ccd979bd 7142
59a5e416
MF
7143 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
7144
dcd0538f 7145 ocfs2_free_path(path);
ccd979bd
MF
7146
7147 /* This will drop the ext_alloc cluster lock for us */
7148 ocfs2_free_truncate_context(tc);
7149
7150 mlog_exit(status);
7151 return status;
7152}
7153
ccd979bd 7154/*
59a5e416 7155 * Expects the inode to already be locked.
ccd979bd
MF
7156 */
7157int ocfs2_prepare_truncate(struct ocfs2_super *osb,
7158 struct inode *inode,
7159 struct buffer_head *fe_bh,
7160 struct ocfs2_truncate_context **tc)
7161{
59a5e416 7162 int status;
ccd979bd
MF
7163 unsigned int new_i_clusters;
7164 struct ocfs2_dinode *fe;
7165 struct ocfs2_extent_block *eb;
ccd979bd 7166 struct buffer_head *last_eb_bh = NULL;
ccd979bd
MF
7167
7168 mlog_entry_void();
7169
7170 *tc = NULL;
7171
7172 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
7173 i_size_read(inode));
7174 fe = (struct ocfs2_dinode *) fe_bh->b_data;
7175
7176 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
1ca1a111
MF
7177 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
7178 (unsigned long long)le64_to_cpu(fe->i_size));
ccd979bd 7179
cd861280 7180 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
ccd979bd
MF
7181 if (!(*tc)) {
7182 status = -ENOMEM;
7183 mlog_errno(status);
7184 goto bail;
7185 }
59a5e416 7186 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
ccd979bd 7187
ccd979bd 7188 if (fe->id2.i_list.l_tree_depth) {
5e96581a
JB
7189 status = ocfs2_read_extent_block(inode,
7190 le64_to_cpu(fe->i_last_eb_blk),
7191 &last_eb_bh);
ccd979bd
MF
7192 if (status < 0) {
7193 mlog_errno(status);
7194 goto bail;
7195 }
7196 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
ccd979bd
MF
7197 }
7198
7199 (*tc)->tc_last_eb_bh = last_eb_bh;
7200
ccd979bd
MF
7201 status = 0;
7202bail:
7203 if (status < 0) {
7204 if (*tc)
7205 ocfs2_free_truncate_context(*tc);
7206 *tc = NULL;
7207 }
7208 mlog_exit_void();
7209 return status;
7210}
7211
1afc32b9
MF
7212/*
7213 * 'start' is inclusive, 'end' is not.
7214 */
7215int ocfs2_truncate_inline(struct inode *inode, struct buffer_head *di_bh,
7216 unsigned int start, unsigned int end, int trunc)
7217{
7218 int ret;
7219 unsigned int numbytes;
7220 handle_t *handle;
7221 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
7222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
7223 struct ocfs2_inline_data *idata = &di->id2.i_data;
7224
7225 if (end > i_size_read(inode))
7226 end = i_size_read(inode);
7227
7228 BUG_ON(start >= end);
7229
7230 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) ||
7231 !(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL) ||
7232 !ocfs2_supports_inline_data(osb)) {
7233 ocfs2_error(inode->i_sb,
7234 "Inline data flags for inode %llu don't agree! "
7235 "Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
7237 le16_to_cpu(di->i_dyn_features),
7238 OCFS2_I(inode)->ip_dyn_features,
7239 osb->s_feature_incompat);
7240 ret = -EROFS;
7241 goto out;
7242 }
7243
7244 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
7245 if (IS_ERR(handle)) {
7246 ret = PTR_ERR(handle);
7247 mlog_errno(ret);
7248 goto out;
7249 }
7250
7251 ret = ocfs2_journal_access(handle, inode, di_bh,
7252 OCFS2_JOURNAL_ACCESS_WRITE);
7253 if (ret) {
7254 mlog_errno(ret);
7255 goto out_commit;
7256 }
7257
7258 numbytes = end - start;
7259 memset(idata->id_data + start, 0, numbytes);
7260
7261 /*
7262 * No need to worry about the data page here - it's been
7263 * truncated already and inline data doesn't need it for
7264 * pushing zero's to disk, so we'll let readpage pick it up
7265 * later.
7266 */
7267 if (trunc) {
7268 i_size_write(inode, start);
7269 di->i_size = cpu_to_le64(start);
7270 }
7271
7272 inode->i_blocks = ocfs2_inode_sector_count(inode);
7273 inode->i_ctime = inode->i_mtime = CURRENT_TIME;
7274
7275 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
7276 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
7277
7278 ocfs2_journal_dirty(handle, di_bh);
7279
7280out_commit:
7281 ocfs2_commit_trans(osb, handle);
7282
7283out:
7284 return ret;
7285}
7286
ccd979bd
MF
7287static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
7288{
59a5e416
MF
7289 /*
7290 * The caller is responsible for completing deallocation
7291 * before freeing the context.
7292 */
7293 if (tc->tc_dealloc.c_first_suballocator != NULL)
7294 mlog(ML_NOTICE,
7295 "Truncate completion has non-empty dealloc context\n");
ccd979bd 7296
a81cb88b 7297 brelse(tc->tc_last_eb_bh);
ccd979bd
MF
7298
7299 kfree(tc);
7300}