]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ocfs2/aops.c
xfs: use ->invalidatepage() length argument
[mirror_ubuntu-artful-kernel.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
83 mlog(ML_ERROR, "block offset is outside the allocated size: "
84 "%llu\n", (unsigned long long)iblock);
85 goto bail;
86 }
87
88 /* We don't use the page cache to create symlink data, so if
89 * need be, copy it over from the buffer cache. */
90 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
91 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
92 iblock;
93 buffer_cache_bh = sb_getblk(osb->sb, blkno);
94 if (!buffer_cache_bh) {
95 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
96 goto bail;
97 }
98
99 /* we haven't locked out transactions, so a commit
100 * could've happened. Since we've got a reference on
101 * the bh, even if it commits while we're doing the
102 * copy, the data is still good. */
103 if (buffer_jbd(buffer_cache_bh)
104 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 105 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
106 if (!kaddr) {
107 mlog(ML_ERROR, "couldn't kmap!\n");
108 goto bail;
109 }
110 memcpy(kaddr + (bh_result->b_size * iblock),
111 buffer_cache_bh->b_data,
112 bh_result->b_size);
c4bc8dcb 113 kunmap_atomic(kaddr);
ccd979bd
MF
114 set_buffer_uptodate(bh_result);
115 }
116 brelse(buffer_cache_bh);
117 }
118
119 map_bh(bh_result, inode->i_sb,
120 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
121
122 err = 0;
123
124bail:
a81cb88b 125 brelse(bh);
ccd979bd 126
ccd979bd
MF
127 return err;
128}
129
6f70fa51
TM
130int ocfs2_get_block(struct inode *inode, sector_t iblock,
131 struct buffer_head *bh_result, int create)
ccd979bd
MF
132{
133 int err = 0;
49cb8d2d 134 unsigned int ext_flags;
628a24f5
MF
135 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
136 u64 p_blkno, count, past_eof;
25baf2da 137 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 138
9558156b
TM
139 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
140 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
141
142 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
143 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
144 inode, inode->i_ino);
145
146 if (S_ISLNK(inode->i_mode)) {
147 /* this always does I/O for some reason. */
148 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
149 goto bail;
150 }
151
628a24f5 152 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 153 &ext_flags);
ccd979bd
MF
154 if (err) {
155 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
156 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
157 (unsigned long long)p_blkno);
ccd979bd
MF
158 goto bail;
159 }
160
628a24f5
MF
161 if (max_blocks < count)
162 count = max_blocks;
163
25baf2da
MF
164 /*
165 * ocfs2 never allocates in this function - the only time we
166 * need to use BH_New is when we're extending i_size on a file
167 * system which doesn't support holes, in which case BH_New
ebdec241 168 * allows __block_write_begin() to zero.
c0420ad2
CL
169 *
170 * If we see this on a sparse file system, then a truncate has
171 * raced us and removed the cluster. In this case, we clear
172 * the buffers dirty and uptodate bits and let the buffer code
173 * ignore it as a hole.
25baf2da 174 */
c0420ad2
CL
175 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
176 clear_buffer_dirty(bh_result);
177 clear_buffer_uptodate(bh_result);
178 goto bail;
179 }
25baf2da 180
49cb8d2d
MF
181 /* Treat the unwritten extent as a hole for zeroing purposes. */
182 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
183 map_bh(bh_result, inode->i_sb, p_blkno);
184
628a24f5
MF
185 bh_result->b_size = count << inode->i_blkbits;
186
25baf2da
MF
187 if (!ocfs2_sparse_alloc(osb)) {
188 if (p_blkno == 0) {
189 err = -EIO;
190 mlog(ML_ERROR,
191 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
192 (unsigned long long)iblock,
193 (unsigned long long)p_blkno,
194 (unsigned long long)OCFS2_I(inode)->ip_blkno);
195 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
196 dump_stack();
1f4cea37 197 goto bail;
25baf2da 198 }
25baf2da 199 }
ccd979bd 200
5693486b 201 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
202
203 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
204 (unsigned long long)past_eof);
5693486b
JB
205 if (create && (iblock >= past_eof))
206 set_buffer_new(bh_result);
207
ccd979bd
MF
208bail:
209 if (err < 0)
210 err = -EIO;
211
ccd979bd
MF
212 return err;
213}
214
1afc32b9
MF
215int ocfs2_read_inline_data(struct inode *inode, struct page *page,
216 struct buffer_head *di_bh)
6798d35a
MF
217{
218 void *kaddr;
d2849fb2 219 loff_t size;
6798d35a
MF
220 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221
222 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
223 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
224 (unsigned long long)OCFS2_I(inode)->ip_blkno);
225 return -EROFS;
226 }
227
228 size = i_size_read(inode);
229
230 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 231 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 232 ocfs2_error(inode->i_sb,
d2849fb2
JK
233 "Inode %llu has with inline data has bad size: %Lu",
234 (unsigned long long)OCFS2_I(inode)->ip_blkno,
235 (unsigned long long)size);
6798d35a
MF
236 return -EROFS;
237 }
238
c4bc8dcb 239 kaddr = kmap_atomic(page);
6798d35a
MF
240 if (size)
241 memcpy(kaddr, di->id2.i_data.id_data, size);
242 /* Clear the remaining part of the page */
243 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
244 flush_dcache_page(page);
c4bc8dcb 245 kunmap_atomic(kaddr);
6798d35a
MF
246
247 SetPageUptodate(page);
248
249 return 0;
250}
251
252static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
253{
254 int ret;
255 struct buffer_head *di_bh = NULL;
6798d35a
MF
256
257 BUG_ON(!PageLocked(page));
86c838b0 258 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 259
b657c95c 260 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
261 if (ret) {
262 mlog_errno(ret);
263 goto out;
264 }
265
266 ret = ocfs2_read_inline_data(inode, page, di_bh);
267out:
268 unlock_page(page);
269
270 brelse(di_bh);
271 return ret;
272}
273
ccd979bd
MF
274static int ocfs2_readpage(struct file *file, struct page *page)
275{
276 struct inode *inode = page->mapping->host;
6798d35a 277 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
278 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
279 int ret, unlock = 1;
280
9558156b
TM
281 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
282 (page ? page->index : 0));
ccd979bd 283
e63aecb6 284 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
285 if (ret != 0) {
286 if (ret == AOP_TRUNCATED_PAGE)
287 unlock = 0;
288 mlog_errno(ret);
289 goto out;
290 }
291
6798d35a 292 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
293 /*
294 * Unlock the page and cycle ip_alloc_sem so that we don't
295 * busyloop waiting for ip_alloc_sem to unlock
296 */
e9dfc0b2 297 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
298 unlock_page(page);
299 unlock = 0;
300 down_read(&oi->ip_alloc_sem);
301 up_read(&oi->ip_alloc_sem);
e63aecb6 302 goto out_inode_unlock;
e9dfc0b2 303 }
ccd979bd
MF
304
305 /*
306 * i_size might have just been updated as we grabed the meta lock. We
307 * might now be discovering a truncate that hit on another node.
308 * block_read_full_page->get_block freaks out if it is asked to read
309 * beyond the end of a file, so we check here. Callers
54cb8821 310 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
311 * and notice that the page they just read isn't needed.
312 *
313 * XXX sys_readahead() seems to get that wrong?
314 */
315 if (start >= i_size_read(inode)) {
eebd2aa3 316 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
317 SetPageUptodate(page);
318 ret = 0;
319 goto out_alloc;
320 }
321
6798d35a
MF
322 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
323 ret = ocfs2_readpage_inline(inode, page);
324 else
325 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
326 unlock = 0;
327
ccd979bd
MF
328out_alloc:
329 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
330out_inode_unlock:
331 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
332out:
333 if (unlock)
334 unlock_page(page);
ccd979bd
MF
335 return ret;
336}
337
628a24f5
MF
338/*
339 * This is used only for read-ahead. Failures or difficult to handle
340 * situations are safe to ignore.
341 *
342 * Right now, we don't bother with BH_Boundary - in-inode extent lists
343 * are quite large (243 extents on 4k blocks), so most inodes don't
344 * grow out to a tree. If need be, detecting boundary extents could
345 * trivially be added in a future version of ocfs2_get_block().
346 */
347static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
348 struct list_head *pages, unsigned nr_pages)
349{
350 int ret, err = -EIO;
351 struct inode *inode = mapping->host;
352 struct ocfs2_inode_info *oi = OCFS2_I(inode);
353 loff_t start;
354 struct page *last;
355
356 /*
357 * Use the nonblocking flag for the dlm code to avoid page
358 * lock inversion, but don't bother with retrying.
359 */
360 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
361 if (ret)
362 return err;
363
364 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
365 ocfs2_inode_unlock(inode, 0);
366 return err;
367 }
368
369 /*
370 * Don't bother with inline-data. There isn't anything
371 * to read-ahead in that case anyway...
372 */
373 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
374 goto out_unlock;
375
376 /*
377 * Check whether a remote node truncated this file - we just
378 * drop out in that case as it's not worth handling here.
379 */
380 last = list_entry(pages->prev, struct page, lru);
381 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
382 if (start >= i_size_read(inode))
383 goto out_unlock;
384
385 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
386
387out_unlock:
388 up_read(&oi->ip_alloc_sem);
389 ocfs2_inode_unlock(inode, 0);
390
391 return err;
392}
393
ccd979bd
MF
394/* Note: Because we don't support holes, our allocation has
395 * already happened (allocation writes zeros to the file data)
396 * so we don't have to worry about ordered writes in
397 * ocfs2_writepage.
398 *
399 * ->writepage is called during the process of invalidating the page cache
400 * during blocked lock processing. It can't block on any cluster locks
401 * to during block mapping. It's relying on the fact that the block
402 * mapping can't have disappeared under the dirty pages that it is
403 * being asked to write back.
404 */
405static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
406{
9558156b
TM
407 trace_ocfs2_writepage(
408 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
409 page->index);
ccd979bd 410
9558156b 411 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
412}
413
ccd979bd
MF
414/* Taken from ext3. We don't necessarily need the full blown
415 * functionality yet, but IMHO it's better to cut and paste the whole
416 * thing so we can avoid introducing our own bugs (and easily pick up
417 * their fixes when they happen) --Mark */
60b11392
MF
418int walk_page_buffers( handle_t *handle,
419 struct buffer_head *head,
420 unsigned from,
421 unsigned to,
422 int *partial,
423 int (*fn)( handle_t *handle,
424 struct buffer_head *bh))
ccd979bd
MF
425{
426 struct buffer_head *bh;
427 unsigned block_start, block_end;
428 unsigned blocksize = head->b_size;
429 int err, ret = 0;
430 struct buffer_head *next;
431
432 for ( bh = head, block_start = 0;
433 ret == 0 && (bh != head || !block_start);
434 block_start = block_end, bh = next)
435 {
436 next = bh->b_this_page;
437 block_end = block_start + blocksize;
438 if (block_end <= from || block_start >= to) {
439 if (partial && !buffer_uptodate(bh))
440 *partial = 1;
441 continue;
442 }
443 err = (*fn)(handle, bh);
444 if (!ret)
445 ret = err;
446 }
447 return ret;
448}
449
ccd979bd
MF
450static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
451{
452 sector_t status;
453 u64 p_blkno = 0;
454 int err = 0;
455 struct inode *inode = mapping->host;
456
9558156b
TM
457 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
458 (unsigned long long)block);
ccd979bd
MF
459
460 /* We don't need to lock journal system files, since they aren't
461 * accessed concurrently from multiple nodes.
462 */
463 if (!INODE_JOURNAL(inode)) {
e63aecb6 464 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
465 if (err) {
466 if (err != -ENOENT)
467 mlog_errno(err);
468 goto bail;
469 }
470 down_read(&OCFS2_I(inode)->ip_alloc_sem);
471 }
472
6798d35a
MF
473 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
474 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
475 NULL);
ccd979bd
MF
476
477 if (!INODE_JOURNAL(inode)) {
478 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 479 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
480 }
481
482 if (err) {
483 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
484 (unsigned long long)block);
485 mlog_errno(err);
486 goto bail;
487 }
488
ccd979bd
MF
489bail:
490 status = err ? 0 : p_blkno;
491
ccd979bd
MF
492 return status;
493}
494
495/*
496 * TODO: Make this into a generic get_blocks function.
497 *
498 * From do_direct_io in direct-io.c:
499 * "So what we do is to permit the ->get_blocks function to populate
500 * bh.b_size with the size of IO which is permitted at this offset and
501 * this i_blkbits."
502 *
503 * This function is called directly from get_more_blocks in direct-io.c.
504 *
505 * called like this: dio->get_blocks(dio->inode, fs_startblk,
506 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
507 *
508 * Note that we never bother to allocate blocks here, and thus ignore the
509 * create argument.
ccd979bd
MF
510 */
511static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
512 struct buffer_head *bh_result, int create)
513{
514 int ret;
4f902c37 515 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 516 unsigned int ext_flags;
184d7d20 517 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 518 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 519
ccd979bd
MF
520 /* This function won't even be called if the request isn't all
521 * nicely aligned and of the right size, so there's no need
522 * for us to check any of that. */
523
25baf2da 524 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 525
ccd979bd
MF
526 /* This figures out the size of the next contiguous block, and
527 * our logical offset */
363041a5 528 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 529 &contig_blocks, &ext_flags);
ccd979bd
MF
530 if (ret) {
531 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
532 (unsigned long long)iblock);
533 ret = -EIO;
534 goto bail;
535 }
536
cbaee472
TM
537 /* We should already CoW the refcounted extent in case of create. */
538 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
539
25baf2da
MF
540 /*
541 * get_more_blocks() expects us to describe a hole by clearing
542 * the mapped bit on bh_result().
49cb8d2d
MF
543 *
544 * Consider an unwritten extent as a hole.
25baf2da 545 */
49cb8d2d 546 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 547 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 548 else
25baf2da 549 clear_buffer_mapped(bh_result);
ccd979bd
MF
550
551 /* make sure we don't map more than max_blocks blocks here as
552 that's all the kernel will handle at this point. */
553 if (max_blocks < contig_blocks)
554 contig_blocks = max_blocks;
555 bh_result->b_size = contig_blocks << blocksize_bits;
556bail:
557 return ret;
558}
559
2bd63216 560/*
ccd979bd 561 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
562 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
563 * to protect io on one node from truncation on another.
ccd979bd
MF
564 */
565static void ocfs2_dio_end_io(struct kiocb *iocb,
566 loff_t offset,
567 ssize_t bytes,
40e2e973
CH
568 void *private,
569 int ret,
570 bool is_async)
ccd979bd 571{
496ad9aa 572 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 573 int level;
a11f7e63 574 wait_queue_head_t *wq = ocfs2_ioend_wq(inode);
ccd979bd
MF
575
576 /* this io's submitter should not have unlocked this before we could */
577 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 578
df2d6f26 579 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 580 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 581
a11f7e63
MF
582 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
583 ocfs2_iocb_clear_unaligned_aio(iocb);
584
585 if (atomic_dec_and_test(&OCFS2_I(inode)->ip_unaligned_aio) &&
586 waitqueue_active(wq)) {
587 wake_up_all(wq);
588 }
589 }
590
ccd979bd 591 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 594 ocfs2_rw_unlock(inode, level);
40e2e973 595
9b171e0c 596 inode_dio_done(inode);
40e2e973
CH
597 if (is_async)
598 aio_complete(iocb, ret, 0);
ccd979bd
MF
599}
600
03f981cf
JB
601/*
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
605 */
d47992f8
LC
606static void ocfs2_invalidatepage(struct page *page, unsigned int offset,
607 unsigned int length)
03f981cf
JB
608{
609 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610
259709b0
LC
611 jbd2_journal_invalidatepage(journal, page, offset,
612 PAGE_CACHE_SIZE - offset);
03f981cf
JB
613}
614
615static int ocfs2_releasepage(struct page *page, gfp_t wait)
616{
617 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
618
619 if (!page_has_buffers(page))
620 return 0;
2b4e30fb 621 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
622}
623
ccd979bd
MF
624static ssize_t ocfs2_direct_IO(int rw,
625 struct kiocb *iocb,
626 const struct iovec *iov,
627 loff_t offset,
628 unsigned long nr_segs)
629{
630 struct file *file = iocb->ki_filp;
496ad9aa 631 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 632
6798d35a
MF
633 /*
634 * Fallback to buffered I/O if we see an inode without
635 * extents.
636 */
637 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
638 return 0;
639
b80474b4
TM
640 /* Fallback to buffered I/O if we are appending. */
641 if (i_size_read(inode) <= offset)
642 return 0;
643
c1e8d35e
TM
644 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
645 iov, offset, nr_segs,
646 ocfs2_direct_IO_get_blocks,
647 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
648}
649
9517bac6
MF
650static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
651 u32 cpos,
652 unsigned int *start,
653 unsigned int *end)
654{
655 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
656
657 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
658 unsigned int cpp;
659
660 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
661
662 cluster_start = cpos % cpp;
663 cluster_start = cluster_start << osb->s_clustersize_bits;
664
665 cluster_end = cluster_start + osb->s_clustersize;
666 }
667
668 BUG_ON(cluster_start > PAGE_SIZE);
669 BUG_ON(cluster_end > PAGE_SIZE);
670
671 if (start)
672 *start = cluster_start;
673 if (end)
674 *end = cluster_end;
675}
676
677/*
678 * 'from' and 'to' are the region in the page to avoid zeroing.
679 *
680 * If pagesize > clustersize, this function will avoid zeroing outside
681 * of the cluster boundary.
682 *
683 * from == to == 0 is code for "zero the entire cluster region"
684 */
685static void ocfs2_clear_page_regions(struct page *page,
686 struct ocfs2_super *osb, u32 cpos,
687 unsigned from, unsigned to)
688{
689 void *kaddr;
690 unsigned int cluster_start, cluster_end;
691
692 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
693
c4bc8dcb 694 kaddr = kmap_atomic(page);
9517bac6
MF
695
696 if (from || to) {
697 if (from > cluster_start)
698 memset(kaddr + cluster_start, 0, from - cluster_start);
699 if (to < cluster_end)
700 memset(kaddr + to, 0, cluster_end - to);
701 } else {
702 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
703 }
704
c4bc8dcb 705 kunmap_atomic(kaddr);
9517bac6
MF
706}
707
4e9563fd
MF
708/*
709 * Nonsparse file systems fully allocate before we get to the write
710 * code. This prevents ocfs2_write() from tagging the write as an
711 * allocating one, which means ocfs2_map_page_blocks() might try to
712 * read-in the blocks at the tail of our file. Avoid reading them by
713 * testing i_size against each block offset.
714 */
715static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
716 unsigned int block_start)
717{
718 u64 offset = page_offset(page) + block_start;
719
720 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
721 return 1;
722
723 if (i_size_read(inode) > offset)
724 return 1;
725
726 return 0;
727}
728
9517bac6 729/*
ebdec241 730 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
731 * mapping by now though, and the entire write will be allocating or
732 * it won't, so not much need to use BH_New.
733 *
734 * This will also skip zeroing, which is handled externally.
735 */
60b11392
MF
736int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
737 struct inode *inode, unsigned int from,
738 unsigned int to, int new)
9517bac6
MF
739{
740 int ret = 0;
741 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
742 unsigned int block_end, block_start;
743 unsigned int bsize = 1 << inode->i_blkbits;
744
745 if (!page_has_buffers(page))
746 create_empty_buffers(page, bsize, 0);
747
748 head = page_buffers(page);
749 for (bh = head, block_start = 0; bh != head || !block_start;
750 bh = bh->b_this_page, block_start += bsize) {
751 block_end = block_start + bsize;
752
3a307ffc
MF
753 clear_buffer_new(bh);
754
9517bac6
MF
755 /*
756 * Ignore blocks outside of our i/o range -
757 * they may belong to unallocated clusters.
758 */
60b11392 759 if (block_start >= to || block_end <= from) {
9517bac6
MF
760 if (PageUptodate(page))
761 set_buffer_uptodate(bh);
762 continue;
763 }
764
765 /*
766 * For an allocating write with cluster size >= page
767 * size, we always write the entire page.
768 */
3a307ffc
MF
769 if (new)
770 set_buffer_new(bh);
9517bac6
MF
771
772 if (!buffer_mapped(bh)) {
773 map_bh(bh, inode->i_sb, *p_blkno);
774 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
775 }
776
777 if (PageUptodate(page)) {
778 if (!buffer_uptodate(bh))
779 set_buffer_uptodate(bh);
780 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 781 !buffer_new(bh) &&
4e9563fd 782 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 783 (block_start < from || block_end > to)) {
9517bac6
MF
784 ll_rw_block(READ, 1, &bh);
785 *wait_bh++=bh;
786 }
787
788 *p_blkno = *p_blkno + 1;
789 }
790
791 /*
792 * If we issued read requests - let them complete.
793 */
794 while(wait_bh > wait) {
795 wait_on_buffer(*--wait_bh);
796 if (!buffer_uptodate(*wait_bh))
797 ret = -EIO;
798 }
799
800 if (ret == 0 || !new)
801 return ret;
802
803 /*
804 * If we get -EIO above, zero out any newly allocated blocks
805 * to avoid exposing stale data.
806 */
807 bh = head;
808 block_start = 0;
809 do {
9517bac6
MF
810 block_end = block_start + bsize;
811 if (block_end <= from)
812 goto next_bh;
813 if (block_start >= to)
814 break;
815
eebd2aa3 816 zero_user(page, block_start, bh->b_size);
9517bac6
MF
817 set_buffer_uptodate(bh);
818 mark_buffer_dirty(bh);
819
820next_bh:
821 block_start = block_end;
822 bh = bh->b_this_page;
823 } while (bh != head);
824
825 return ret;
826}
827
3a307ffc
MF
828#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
829#define OCFS2_MAX_CTXT_PAGES 1
830#else
831#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
832#endif
833
834#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
835
6af67d82 836/*
3a307ffc 837 * Describe the state of a single cluster to be written to.
6af67d82 838 */
3a307ffc
MF
839struct ocfs2_write_cluster_desc {
840 u32 c_cpos;
841 u32 c_phys;
842 /*
843 * Give this a unique field because c_phys eventually gets
844 * filled.
845 */
846 unsigned c_new;
b27b7cbc 847 unsigned c_unwritten;
e7432675 848 unsigned c_needs_zero;
3a307ffc 849};
6af67d82 850
3a307ffc
MF
851struct ocfs2_write_ctxt {
852 /* Logical cluster position / len of write */
853 u32 w_cpos;
854 u32 w_clen;
6af67d82 855
e7432675
SM
856 /* First cluster allocated in a nonsparse extend */
857 u32 w_first_new_cpos;
858
3a307ffc 859 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 860
3a307ffc
MF
861 /*
862 * This is true if page_size > cluster_size.
863 *
864 * It triggers a set of special cases during write which might
865 * have to deal with allocating writes to partial pages.
866 */
867 unsigned int w_large_pages;
6af67d82 868
3a307ffc
MF
869 /*
870 * Pages involved in this write.
871 *
872 * w_target_page is the page being written to by the user.
873 *
874 * w_pages is an array of pages which always contains
875 * w_target_page, and in the case of an allocating write with
876 * page_size < cluster size, it will contain zero'd and mapped
877 * pages adjacent to w_target_page which need to be written
878 * out in so that future reads from that region will get
879 * zero's.
880 */
3a307ffc 881 unsigned int w_num_pages;
83fd9c7f 882 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 883 struct page *w_target_page;
eeb47d12 884
5cffff9e
WW
885 /*
886 * w_target_locked is used for page_mkwrite path indicating no unlocking
887 * against w_target_page in ocfs2_write_end_nolock.
888 */
889 unsigned int w_target_locked:1;
890
3a307ffc
MF
891 /*
892 * ocfs2_write_end() uses this to know what the real range to
893 * write in the target should be.
894 */
895 unsigned int w_target_from;
896 unsigned int w_target_to;
897
898 /*
899 * We could use journal_current_handle() but this is cleaner,
900 * IMHO -Mark
901 */
902 handle_t *w_handle;
903
904 struct buffer_head *w_di_bh;
b27b7cbc
MF
905
906 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
907};
908
1d410a6e 909void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
910{
911 int i;
912
1d410a6e
MF
913 for(i = 0; i < num_pages; i++) {
914 if (pages[i]) {
915 unlock_page(pages[i]);
916 mark_page_accessed(pages[i]);
917 page_cache_release(pages[i]);
918 }
6af67d82 919 }
1d410a6e
MF
920}
921
922static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
923{
5cffff9e
WW
924 int i;
925
926 /*
927 * w_target_locked is only set to true in the page_mkwrite() case.
928 * The intent is to allow us to lock the target page from write_begin()
929 * to write_end(). The caller must hold a ref on w_target_page.
930 */
931 if (wc->w_target_locked) {
932 BUG_ON(!wc->w_target_page);
933 for (i = 0; i < wc->w_num_pages; i++) {
934 if (wc->w_target_page == wc->w_pages[i]) {
935 wc->w_pages[i] = NULL;
936 break;
937 }
938 }
939 mark_page_accessed(wc->w_target_page);
940 page_cache_release(wc->w_target_page);
941 }
1d410a6e 942 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 943
3a307ffc
MF
944 brelse(wc->w_di_bh);
945 kfree(wc);
946}
947
948static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
949 struct ocfs2_super *osb, loff_t pos,
607d44aa 950 unsigned len, struct buffer_head *di_bh)
3a307ffc 951{
30b8548f 952 u32 cend;
3a307ffc
MF
953 struct ocfs2_write_ctxt *wc;
954
955 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
956 if (!wc)
957 return -ENOMEM;
6af67d82 958
3a307ffc 959 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 960 wc->w_first_new_cpos = UINT_MAX;
30b8548f 961 cend = (pos + len - 1) >> osb->s_clustersize_bits;
962 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
963 get_bh(di_bh);
964 wc->w_di_bh = di_bh;
6af67d82 965
3a307ffc
MF
966 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
967 wc->w_large_pages = 1;
968 else
969 wc->w_large_pages = 0;
970
b27b7cbc
MF
971 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
972
3a307ffc 973 *wcp = wc;
6af67d82 974
3a307ffc 975 return 0;
6af67d82
MF
976}
977
9517bac6 978/*
3a307ffc
MF
979 * If a page has any new buffers, zero them out here, and mark them uptodate
980 * and dirty so they'll be written out (in order to prevent uninitialised
981 * block data from leaking). And clear the new bit.
9517bac6 982 */
3a307ffc 983static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 984{
3a307ffc
MF
985 unsigned int block_start, block_end;
986 struct buffer_head *head, *bh;
9517bac6 987
3a307ffc
MF
988 BUG_ON(!PageLocked(page));
989 if (!page_has_buffers(page))
990 return;
9517bac6 991
3a307ffc
MF
992 bh = head = page_buffers(page);
993 block_start = 0;
994 do {
995 block_end = block_start + bh->b_size;
996
997 if (buffer_new(bh)) {
998 if (block_end > from && block_start < to) {
999 if (!PageUptodate(page)) {
1000 unsigned start, end;
3a307ffc
MF
1001
1002 start = max(from, block_start);
1003 end = min(to, block_end);
1004
eebd2aa3 1005 zero_user_segment(page, start, end);
3a307ffc
MF
1006 set_buffer_uptodate(bh);
1007 }
1008
1009 clear_buffer_new(bh);
1010 mark_buffer_dirty(bh);
1011 }
1012 }
9517bac6 1013
3a307ffc
MF
1014 block_start = block_end;
1015 bh = bh->b_this_page;
1016 } while (bh != head);
1017}
1018
1019/*
1020 * Only called when we have a failure during allocating write to write
1021 * zero's to the newly allocated region.
1022 */
1023static void ocfs2_write_failure(struct inode *inode,
1024 struct ocfs2_write_ctxt *wc,
1025 loff_t user_pos, unsigned user_len)
1026{
1027 int i;
5c26a7b7
MF
1028 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1029 to = user_pos + user_len;
3a307ffc
MF
1030 struct page *tmppage;
1031
5c26a7b7 1032 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1033
3a307ffc
MF
1034 for(i = 0; i < wc->w_num_pages; i++) {
1035 tmppage = wc->w_pages[i];
9517bac6 1036
961cecbe 1037 if (page_has_buffers(tmppage)) {
53ef99ca 1038 if (ocfs2_should_order_data(inode))
2b4e30fb 1039 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1040
1041 block_commit_write(tmppage, from, to);
1042 }
9517bac6 1043 }
9517bac6
MF
1044}
1045
3a307ffc
MF
1046static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1047 struct ocfs2_write_ctxt *wc,
1048 struct page *page, u32 cpos,
1049 loff_t user_pos, unsigned user_len,
1050 int new)
9517bac6 1051{
3a307ffc
MF
1052 int ret;
1053 unsigned int map_from = 0, map_to = 0;
9517bac6 1054 unsigned int cluster_start, cluster_end;
3a307ffc 1055 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1056
3a307ffc 1057 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1058 &cluster_start, &cluster_end);
1059
272b62c1
GR
1060 /* treat the write as new if the a hole/lseek spanned across
1061 * the page boundary.
1062 */
1063 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1064 (page_offset(page) <= user_pos));
1065
3a307ffc
MF
1066 if (page == wc->w_target_page) {
1067 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1068 map_to = map_from + user_len;
1069
1070 if (new)
1071 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1072 cluster_start, cluster_end,
1073 new);
1074 else
1075 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1076 map_from, map_to, new);
1077 if (ret) {
9517bac6
MF
1078 mlog_errno(ret);
1079 goto out;
1080 }
1081
3a307ffc
MF
1082 user_data_from = map_from;
1083 user_data_to = map_to;
9517bac6 1084 if (new) {
3a307ffc
MF
1085 map_from = cluster_start;
1086 map_to = cluster_end;
9517bac6
MF
1087 }
1088 } else {
1089 /*
1090 * If we haven't allocated the new page yet, we
1091 * shouldn't be writing it out without copying user
1092 * data. This is likely a math error from the caller.
1093 */
1094 BUG_ON(!new);
1095
3a307ffc
MF
1096 map_from = cluster_start;
1097 map_to = cluster_end;
9517bac6
MF
1098
1099 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1100 cluster_start, cluster_end, new);
9517bac6
MF
1101 if (ret) {
1102 mlog_errno(ret);
1103 goto out;
1104 }
1105 }
1106
1107 /*
1108 * Parts of newly allocated pages need to be zero'd.
1109 *
1110 * Above, we have also rewritten 'to' and 'from' - as far as
1111 * the rest of the function is concerned, the entire cluster
1112 * range inside of a page needs to be written.
1113 *
1114 * We can skip this if the page is up to date - it's already
1115 * been zero'd from being read in as a hole.
1116 */
1117 if (new && !PageUptodate(page))
1118 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1119 cpos, user_data_from, user_data_to);
9517bac6
MF
1120
1121 flush_dcache_page(page);
1122
9517bac6 1123out:
3a307ffc 1124 return ret;
9517bac6
MF
1125}
1126
1127/*
3a307ffc 1128 * This function will only grab one clusters worth of pages.
9517bac6 1129 */
3a307ffc
MF
1130static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1131 struct ocfs2_write_ctxt *wc,
693c241a
JB
1132 u32 cpos, loff_t user_pos,
1133 unsigned user_len, int new,
7307de80 1134 struct page *mmap_page)
9517bac6 1135{
3a307ffc 1136 int ret = 0, i;
693c241a 1137 unsigned long start, target_index, end_index, index;
9517bac6 1138 struct inode *inode = mapping->host;
693c241a 1139 loff_t last_byte;
9517bac6 1140
3a307ffc 1141 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1142
1143 /*
1144 * Figure out how many pages we'll be manipulating here. For
60b11392 1145 * non allocating write, we just change the one
693c241a
JB
1146 * page. Otherwise, we'll need a whole clusters worth. If we're
1147 * writing past i_size, we only need enough pages to cover the
1148 * last page of the write.
9517bac6 1149 */
9517bac6 1150 if (new) {
3a307ffc
MF
1151 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1152 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1153 /*
1154 * We need the index *past* the last page we could possibly
1155 * touch. This is the page past the end of the write or
1156 * i_size, whichever is greater.
1157 */
1158 last_byte = max(user_pos + user_len, i_size_read(inode));
1159 BUG_ON(last_byte < 1);
1160 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1161 if ((start + wc->w_num_pages) > end_index)
1162 wc->w_num_pages = end_index - start;
9517bac6 1163 } else {
3a307ffc
MF
1164 wc->w_num_pages = 1;
1165 start = target_index;
9517bac6
MF
1166 }
1167
3a307ffc 1168 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1169 index = start + i;
1170
7307de80
MF
1171 if (index == target_index && mmap_page) {
1172 /*
1173 * ocfs2_pagemkwrite() is a little different
1174 * and wants us to directly use the page
1175 * passed in.
1176 */
1177 lock_page(mmap_page);
1178
5cffff9e 1179 /* Exit and let the caller retry */
7307de80 1180 if (mmap_page->mapping != mapping) {
5cffff9e 1181 WARN_ON(mmap_page->mapping);
7307de80 1182 unlock_page(mmap_page);
5cffff9e 1183 ret = -EAGAIN;
7307de80
MF
1184 goto out;
1185 }
1186
1187 page_cache_get(mmap_page);
1188 wc->w_pages[i] = mmap_page;
5cffff9e 1189 wc->w_target_locked = true;
7307de80
MF
1190 } else {
1191 wc->w_pages[i] = find_or_create_page(mapping, index,
1192 GFP_NOFS);
1193 if (!wc->w_pages[i]) {
1194 ret = -ENOMEM;
1195 mlog_errno(ret);
1196 goto out;
1197 }
9517bac6 1198 }
1269529b 1199 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1200
1201 if (index == target_index)
1202 wc->w_target_page = wc->w_pages[i];
9517bac6 1203 }
3a307ffc 1204out:
5cffff9e
WW
1205 if (ret)
1206 wc->w_target_locked = false;
3a307ffc
MF
1207 return ret;
1208}
1209
1210/*
1211 * Prepare a single cluster for write one cluster into the file.
1212 */
1213static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1214 u32 phys, unsigned int unwritten,
e7432675 1215 unsigned int should_zero,
b27b7cbc 1216 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1217 struct ocfs2_alloc_context *meta_ac,
1218 struct ocfs2_write_ctxt *wc, u32 cpos,
1219 loff_t user_pos, unsigned user_len)
1220{
e7432675 1221 int ret, i, new;
3a307ffc
MF
1222 u64 v_blkno, p_blkno;
1223 struct inode *inode = mapping->host;
f99b9b7c 1224 struct ocfs2_extent_tree et;
3a307ffc
MF
1225
1226 new = phys == 0 ? 1 : 0;
9517bac6 1227 if (new) {
3a307ffc
MF
1228 u32 tmp_pos;
1229
9517bac6
MF
1230 /*
1231 * This is safe to call with the page locks - it won't take
1232 * any additional semaphores or cluster locks.
1233 */
3a307ffc 1234 tmp_pos = cpos;
0eb8d47e
TM
1235 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1236 &tmp_pos, 1, 0, wc->w_di_bh,
1237 wc->w_handle, data_ac,
1238 meta_ac, NULL);
9517bac6
MF
1239 /*
1240 * This shouldn't happen because we must have already
1241 * calculated the correct meta data allocation required. The
1242 * internal tree allocation code should know how to increase
1243 * transaction credits itself.
1244 *
1245 * If need be, we could handle -EAGAIN for a
1246 * RESTART_TRANS here.
1247 */
1248 mlog_bug_on_msg(ret == -EAGAIN,
1249 "Inode %llu: EAGAIN return during allocation.\n",
1250 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1251 if (ret < 0) {
1252 mlog_errno(ret);
1253 goto out;
1254 }
b27b7cbc 1255 } else if (unwritten) {
5e404e9e
JB
1256 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1257 wc->w_di_bh);
f99b9b7c 1258 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1259 wc->w_handle, cpos, 1, phys,
f99b9b7c 1260 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1261 if (ret < 0) {
1262 mlog_errno(ret);
1263 goto out;
1264 }
1265 }
3a307ffc 1266
b27b7cbc 1267 if (should_zero)
3a307ffc 1268 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1269 else
3a307ffc 1270 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1271
3a307ffc
MF
1272 /*
1273 * The only reason this should fail is due to an inability to
1274 * find the extent added.
1275 */
49cb8d2d
MF
1276 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1277 NULL);
9517bac6 1278 if (ret < 0) {
3a307ffc
MF
1279 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1280 "at logical block %llu",
1281 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1282 (unsigned long long)v_blkno);
9517bac6
MF
1283 goto out;
1284 }
1285
1286 BUG_ON(p_blkno == 0);
1287
3a307ffc
MF
1288 for(i = 0; i < wc->w_num_pages; i++) {
1289 int tmpret;
9517bac6 1290
3a307ffc
MF
1291 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1292 wc->w_pages[i], cpos,
b27b7cbc
MF
1293 user_pos, user_len,
1294 should_zero);
3a307ffc
MF
1295 if (tmpret) {
1296 mlog_errno(tmpret);
1297 if (ret == 0)
cbfa9639 1298 ret = tmpret;
3a307ffc 1299 }
9517bac6
MF
1300 }
1301
3a307ffc
MF
1302 /*
1303 * We only have cleanup to do in case of allocating write.
1304 */
1305 if (ret && new)
1306 ocfs2_write_failure(inode, wc, user_pos, user_len);
1307
9517bac6 1308out:
9517bac6 1309
3a307ffc 1310 return ret;
9517bac6
MF
1311}
1312
0d172baa
MF
1313static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1314 struct ocfs2_alloc_context *data_ac,
1315 struct ocfs2_alloc_context *meta_ac,
1316 struct ocfs2_write_ctxt *wc,
1317 loff_t pos, unsigned len)
1318{
1319 int ret, i;
db56246c
MF
1320 loff_t cluster_off;
1321 unsigned int local_len = len;
0d172baa 1322 struct ocfs2_write_cluster_desc *desc;
db56246c 1323 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1324
1325 for (i = 0; i < wc->w_clen; i++) {
1326 desc = &wc->w_desc[i];
1327
db56246c
MF
1328 /*
1329 * We have to make sure that the total write passed in
1330 * doesn't extend past a single cluster.
1331 */
1332 local_len = len;
1333 cluster_off = pos & (osb->s_clustersize - 1);
1334 if ((cluster_off + local_len) > osb->s_clustersize)
1335 local_len = osb->s_clustersize - cluster_off;
1336
b27b7cbc 1337 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1338 desc->c_unwritten,
1339 desc->c_needs_zero,
1340 data_ac, meta_ac,
db56246c 1341 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1342 if (ret) {
1343 mlog_errno(ret);
1344 goto out;
1345 }
db56246c
MF
1346
1347 len -= local_len;
1348 pos += local_len;
0d172baa
MF
1349 }
1350
1351 ret = 0;
1352out:
1353 return ret;
1354}
1355
3a307ffc
MF
1356/*
1357 * ocfs2_write_end() wants to know which parts of the target page it
1358 * should complete the write on. It's easiest to compute them ahead of
1359 * time when a more complete view of the write is available.
1360 */
1361static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1362 struct ocfs2_write_ctxt *wc,
1363 loff_t pos, unsigned len, int alloc)
9517bac6 1364{
3a307ffc 1365 struct ocfs2_write_cluster_desc *desc;
9517bac6 1366
3a307ffc
MF
1367 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1368 wc->w_target_to = wc->w_target_from + len;
1369
1370 if (alloc == 0)
1371 return;
1372
1373 /*
1374 * Allocating write - we may have different boundaries based
1375 * on page size and cluster size.
1376 *
1377 * NOTE: We can no longer compute one value from the other as
1378 * the actual write length and user provided length may be
1379 * different.
1380 */
9517bac6 1381
3a307ffc
MF
1382 if (wc->w_large_pages) {
1383 /*
1384 * We only care about the 1st and last cluster within
b27b7cbc 1385 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1386 * value may be extended out to the start/end of a
1387 * newly allocated cluster.
1388 */
1389 desc = &wc->w_desc[0];
e7432675 1390 if (desc->c_needs_zero)
3a307ffc
MF
1391 ocfs2_figure_cluster_boundaries(osb,
1392 desc->c_cpos,
1393 &wc->w_target_from,
1394 NULL);
1395
1396 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1397 if (desc->c_needs_zero)
3a307ffc
MF
1398 ocfs2_figure_cluster_boundaries(osb,
1399 desc->c_cpos,
1400 NULL,
1401 &wc->w_target_to);
1402 } else {
1403 wc->w_target_from = 0;
1404 wc->w_target_to = PAGE_CACHE_SIZE;
1405 }
9517bac6
MF
1406}
1407
0d172baa
MF
1408/*
1409 * Populate each single-cluster write descriptor in the write context
1410 * with information about the i/o to be done.
b27b7cbc
MF
1411 *
1412 * Returns the number of clusters that will have to be allocated, as
1413 * well as a worst case estimate of the number of extent records that
1414 * would have to be created during a write to an unwritten region.
0d172baa
MF
1415 */
1416static int ocfs2_populate_write_desc(struct inode *inode,
1417 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1418 unsigned int *clusters_to_alloc,
1419 unsigned int *extents_to_split)
9517bac6 1420{
0d172baa 1421 int ret;
3a307ffc 1422 struct ocfs2_write_cluster_desc *desc;
0d172baa 1423 unsigned int num_clusters = 0;
b27b7cbc 1424 unsigned int ext_flags = 0;
0d172baa
MF
1425 u32 phys = 0;
1426 int i;
9517bac6 1427
b27b7cbc
MF
1428 *clusters_to_alloc = 0;
1429 *extents_to_split = 0;
1430
3a307ffc
MF
1431 for (i = 0; i < wc->w_clen; i++) {
1432 desc = &wc->w_desc[i];
1433 desc->c_cpos = wc->w_cpos + i;
1434
1435 if (num_clusters == 0) {
b27b7cbc
MF
1436 /*
1437 * Need to look up the next extent record.
1438 */
3a307ffc 1439 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1440 &num_clusters, &ext_flags);
3a307ffc
MF
1441 if (ret) {
1442 mlog_errno(ret);
607d44aa 1443 goto out;
3a307ffc 1444 }
b27b7cbc 1445
293b2f70
TM
1446 /* We should already CoW the refcountd extent. */
1447 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1448
b27b7cbc
MF
1449 /*
1450 * Assume worst case - that we're writing in
1451 * the middle of the extent.
1452 *
1453 * We can assume that the write proceeds from
1454 * left to right, in which case the extent
1455 * insert code is smart enough to coalesce the
1456 * next splits into the previous records created.
1457 */
1458 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1459 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1460 } else if (phys) {
1461 /*
1462 * Only increment phys if it doesn't describe
1463 * a hole.
1464 */
1465 phys++;
1466 }
1467
e7432675
SM
1468 /*
1469 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1470 * file that got extended. w_first_new_cpos tells us
1471 * where the newly allocated clusters are so we can
1472 * zero them.
1473 */
1474 if (desc->c_cpos >= wc->w_first_new_cpos) {
1475 BUG_ON(phys == 0);
1476 desc->c_needs_zero = 1;
1477 }
1478
3a307ffc
MF
1479 desc->c_phys = phys;
1480 if (phys == 0) {
1481 desc->c_new = 1;
e7432675 1482 desc->c_needs_zero = 1;
0d172baa 1483 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1484 }
e7432675
SM
1485
1486 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1487 desc->c_unwritten = 1;
e7432675
SM
1488 desc->c_needs_zero = 1;
1489 }
3a307ffc
MF
1490
1491 num_clusters--;
9517bac6
MF
1492 }
1493
0d172baa
MF
1494 ret = 0;
1495out:
1496 return ret;
1497}
1498
1afc32b9
MF
1499static int ocfs2_write_begin_inline(struct address_space *mapping,
1500 struct inode *inode,
1501 struct ocfs2_write_ctxt *wc)
1502{
1503 int ret;
1504 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1505 struct page *page;
1506 handle_t *handle;
1507 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1508
1509 page = find_or_create_page(mapping, 0, GFP_NOFS);
1510 if (!page) {
1511 ret = -ENOMEM;
1512 mlog_errno(ret);
1513 goto out;
1514 }
1515 /*
1516 * If we don't set w_num_pages then this page won't get unlocked
1517 * and freed on cleanup of the write context.
1518 */
1519 wc->w_pages[0] = wc->w_target_page = page;
1520 wc->w_num_pages = 1;
1521
1522 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1523 if (IS_ERR(handle)) {
1524 ret = PTR_ERR(handle);
1525 mlog_errno(ret);
1526 goto out;
1527 }
1528
0cf2f763 1529 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1530 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1531 if (ret) {
1532 ocfs2_commit_trans(osb, handle);
1533
1534 mlog_errno(ret);
1535 goto out;
1536 }
1537
1538 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1539 ocfs2_set_inode_data_inline(inode, di);
1540
1541 if (!PageUptodate(page)) {
1542 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1543 if (ret) {
1544 ocfs2_commit_trans(osb, handle);
1545
1546 goto out;
1547 }
1548 }
1549
1550 wc->w_handle = handle;
1551out:
1552 return ret;
1553}
1554
1555int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1556{
1557 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1558
0d8a4e0c 1559 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1560 return 1;
1561 return 0;
1562}
1563
1564static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1565 struct inode *inode, loff_t pos,
1566 unsigned len, struct page *mmap_page,
1567 struct ocfs2_write_ctxt *wc)
1568{
1569 int ret, written = 0;
1570 loff_t end = pos + len;
1571 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1572 struct ocfs2_dinode *di = NULL;
1afc32b9 1573
9558156b
TM
1574 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1575 len, (unsigned long long)pos,
1576 oi->ip_dyn_features);
1afc32b9
MF
1577
1578 /*
1579 * Handle inodes which already have inline data 1st.
1580 */
1581 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1582 if (mmap_page == NULL &&
1583 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1584 goto do_inline_write;
1585
1586 /*
1587 * The write won't fit - we have to give this inode an
1588 * inline extent list now.
1589 */
1590 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1591 if (ret)
1592 mlog_errno(ret);
1593 goto out;
1594 }
1595
1596 /*
1597 * Check whether the inode can accept inline data.
1598 */
1599 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1600 return 0;
1601
1602 /*
1603 * Check whether the write can fit.
1604 */
d9ae49d6
TY
1605 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1606 if (mmap_page ||
1607 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1608 return 0;
1609
1610do_inline_write:
1611 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1612 if (ret) {
1613 mlog_errno(ret);
1614 goto out;
1615 }
1616
1617 /*
1618 * This signals to the caller that the data can be written
1619 * inline.
1620 */
1621 written = 1;
1622out:
1623 return written ? written : ret;
1624}
1625
65ed39d6
MF
1626/*
1627 * This function only does anything for file systems which can't
1628 * handle sparse files.
1629 *
1630 * What we want to do here is fill in any hole between the current end
1631 * of allocation and the end of our write. That way the rest of the
1632 * write path can treat it as an non-allocating write, which has no
1633 * special case code for sparse/nonsparse files.
1634 */
5693486b
JB
1635static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1636 struct buffer_head *di_bh,
1637 loff_t pos, unsigned len,
65ed39d6
MF
1638 struct ocfs2_write_ctxt *wc)
1639{
1640 int ret;
65ed39d6
MF
1641 loff_t newsize = pos + len;
1642
5693486b 1643 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1644
1645 if (newsize <= i_size_read(inode))
1646 return 0;
1647
5693486b 1648 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1649 if (ret)
1650 mlog_errno(ret);
1651
e7432675
SM
1652 wc->w_first_new_cpos =
1653 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1654
65ed39d6
MF
1655 return ret;
1656}
1657
5693486b
JB
1658static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1659 loff_t pos)
1660{
1661 int ret = 0;
1662
1663 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1664 if (pos > i_size_read(inode))
1665 ret = ocfs2_zero_extend(inode, di_bh, pos);
1666
1667 return ret;
1668}
1669
50308d81
TM
1670/*
1671 * Try to flush truncate logs if we can free enough clusters from it.
1672 * As for return value, "< 0" means error, "0" no space and "1" means
1673 * we have freed enough spaces and let the caller try to allocate again.
1674 */
1675static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1676 unsigned int needed)
1677{
1678 tid_t target;
1679 int ret = 0;
1680 unsigned int truncated_clusters;
1681
1682 mutex_lock(&osb->osb_tl_inode->i_mutex);
1683 truncated_clusters = osb->truncated_clusters;
1684 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1685
1686 /*
1687 * Check whether we can succeed in allocating if we free
1688 * the truncate log.
1689 */
1690 if (truncated_clusters < needed)
1691 goto out;
1692
1693 ret = ocfs2_flush_truncate_log(osb);
1694 if (ret) {
1695 mlog_errno(ret);
1696 goto out;
1697 }
1698
1699 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1700 jbd2_log_wait_commit(osb->journal->j_journal, target);
1701 ret = 1;
1702 }
1703out:
1704 return ret;
1705}
1706
0378da0f
TM
1707int ocfs2_write_begin_nolock(struct file *filp,
1708 struct address_space *mapping,
0d172baa
MF
1709 loff_t pos, unsigned len, unsigned flags,
1710 struct page **pagep, void **fsdata,
1711 struct buffer_head *di_bh, struct page *mmap_page)
1712{
e7432675 1713 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1714 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1715 struct ocfs2_write_ctxt *wc;
1716 struct inode *inode = mapping->host;
1717 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1718 struct ocfs2_dinode *di;
1719 struct ocfs2_alloc_context *data_ac = NULL;
1720 struct ocfs2_alloc_context *meta_ac = NULL;
1721 handle_t *handle;
f99b9b7c 1722 struct ocfs2_extent_tree et;
50308d81 1723 int try_free = 1, ret1;
0d172baa 1724
50308d81 1725try_again:
0d172baa
MF
1726 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1727 if (ret) {
1728 mlog_errno(ret);
1729 return ret;
1730 }
1731
1afc32b9
MF
1732 if (ocfs2_supports_inline_data(osb)) {
1733 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1734 mmap_page, wc);
1735 if (ret == 1) {
1736 ret = 0;
1737 goto success;
1738 }
1739 if (ret < 0) {
1740 mlog_errno(ret);
1741 goto out;
1742 }
1743 }
1744
5693486b
JB
1745 if (ocfs2_sparse_alloc(osb))
1746 ret = ocfs2_zero_tail(inode, di_bh, pos);
1747 else
1748 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1749 wc);
65ed39d6
MF
1750 if (ret) {
1751 mlog_errno(ret);
1752 goto out;
1753 }
1754
293b2f70
TM
1755 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1756 if (ret < 0) {
1757 mlog_errno(ret);
1758 goto out;
1759 } else if (ret == 1) {
50308d81 1760 clusters_need = wc->w_clen;
15502712 1761 ret = ocfs2_refcount_cow(inode, filp, di_bh,
37f8a2bf 1762 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1763 if (ret) {
1764 mlog_errno(ret);
1765 goto out;
1766 }
1767 }
1768
b27b7cbc
MF
1769 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1770 &extents_to_split);
0d172baa
MF
1771 if (ret) {
1772 mlog_errno(ret);
1773 goto out;
1774 }
50308d81 1775 clusters_need += clusters_to_alloc;
0d172baa
MF
1776
1777 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1778
9558156b
TM
1779 trace_ocfs2_write_begin_nolock(
1780 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1781 (long long)i_size_read(inode),
1782 le32_to_cpu(di->i_clusters),
1783 pos, len, flags, mmap_page,
1784 clusters_to_alloc, extents_to_split);
1785
3a307ffc
MF
1786 /*
1787 * We set w_target_from, w_target_to here so that
1788 * ocfs2_write_end() knows which range in the target page to
1789 * write out. An allocation requires that we write the entire
1790 * cluster range.
1791 */
b27b7cbc 1792 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1793 /*
1794 * XXX: We are stretching the limits of
b27b7cbc 1795 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1796 * the work to be done.
1797 */
5e404e9e
JB
1798 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1799 wc->w_di_bh);
f99b9b7c 1800 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1801 clusters_to_alloc, extents_to_split,
f99b9b7c 1802 &data_ac, &meta_ac);
9517bac6
MF
1803 if (ret) {
1804 mlog_errno(ret);
607d44aa 1805 goto out;
9517bac6
MF
1806 }
1807
4fe370af
MF
1808 if (data_ac)
1809 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1810
811f933d
TM
1811 credits = ocfs2_calc_extend_credits(inode->i_sb,
1812 &di->id2.i_list,
3a307ffc
MF
1813 clusters_to_alloc);
1814
9517bac6
MF
1815 }
1816
e7432675
SM
1817 /*
1818 * We have to zero sparse allocated clusters, unwritten extent clusters,
1819 * and non-sparse clusters we just extended. For non-sparse writes,
1820 * we know zeros will only be needed in the first and/or last cluster.
1821 */
1822 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1823 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1824 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1825 cluster_of_pages = 1;
1826 else
1827 cluster_of_pages = 0;
1828
1829 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1830
9517bac6
MF
1831 handle = ocfs2_start_trans(osb, credits);
1832 if (IS_ERR(handle)) {
1833 ret = PTR_ERR(handle);
1834 mlog_errno(ret);
607d44aa 1835 goto out;
9517bac6
MF
1836 }
1837
3a307ffc
MF
1838 wc->w_handle = handle;
1839
5dd4056d
CH
1840 if (clusters_to_alloc) {
1841 ret = dquot_alloc_space_nodirty(inode,
1842 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1843 if (ret)
1844 goto out_commit;
a90714c1 1845 }
3a307ffc
MF
1846 /*
1847 * We don't want this to fail in ocfs2_write_end(), so do it
1848 * here.
1849 */
0cf2f763 1850 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1851 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1852 if (ret) {
9517bac6 1853 mlog_errno(ret);
a90714c1 1854 goto out_quota;
9517bac6
MF
1855 }
1856
3a307ffc
MF
1857 /*
1858 * Fill our page array first. That way we've grabbed enough so
1859 * that we can zero and flush if we error after adding the
1860 * extent.
1861 */
693c241a 1862 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1863 cluster_of_pages, mmap_page);
5cffff9e 1864 if (ret && ret != -EAGAIN) {
9517bac6 1865 mlog_errno(ret);
a90714c1 1866 goto out_quota;
9517bac6
MF
1867 }
1868
5cffff9e
WW
1869 /*
1870 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1871 * the target page. In this case, we exit with no error and no target
1872 * page. This will trigger the caller, page_mkwrite(), to re-try
1873 * the operation.
1874 */
1875 if (ret == -EAGAIN) {
1876 BUG_ON(wc->w_target_page);
1877 ret = 0;
1878 goto out_quota;
1879 }
1880
0d172baa
MF
1881 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1882 len);
1883 if (ret) {
1884 mlog_errno(ret);
a90714c1 1885 goto out_quota;
9517bac6 1886 }
9517bac6 1887
3a307ffc
MF
1888 if (data_ac)
1889 ocfs2_free_alloc_context(data_ac);
1890 if (meta_ac)
1891 ocfs2_free_alloc_context(meta_ac);
9517bac6 1892
1afc32b9 1893success:
3a307ffc
MF
1894 *pagep = wc->w_target_page;
1895 *fsdata = wc;
1896 return 0;
a90714c1
JK
1897out_quota:
1898 if (clusters_to_alloc)
5dd4056d 1899 dquot_free_space(inode,
a90714c1 1900 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1901out_commit:
1902 ocfs2_commit_trans(osb, handle);
1903
9517bac6 1904out:
3a307ffc
MF
1905 ocfs2_free_write_ctxt(wc);
1906
9517bac6
MF
1907 if (data_ac)
1908 ocfs2_free_alloc_context(data_ac);
1909 if (meta_ac)
1910 ocfs2_free_alloc_context(meta_ac);
50308d81
TM
1911
1912 if (ret == -ENOSPC && try_free) {
1913 /*
1914 * Try to free some truncate log so that we can have enough
1915 * clusters to allocate.
1916 */
1917 try_free = 0;
1918
1919 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1920 if (ret1 == 1)
1921 goto try_again;
1922
1923 if (ret1 < 0)
1924 mlog_errno(ret1);
1925 }
1926
3a307ffc
MF
1927 return ret;
1928}
1929
b6af1bcd
NP
1930static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1931 loff_t pos, unsigned len, unsigned flags,
1932 struct page **pagep, void **fsdata)
607d44aa
MF
1933{
1934 int ret;
1935 struct buffer_head *di_bh = NULL;
1936 struct inode *inode = mapping->host;
1937
e63aecb6 1938 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1939 if (ret) {
1940 mlog_errno(ret);
1941 return ret;
1942 }
1943
1944 /*
1945 * Take alloc sem here to prevent concurrent lookups. That way
1946 * the mapping, zeroing and tree manipulation within
1947 * ocfs2_write() will be safe against ->readpage(). This
1948 * should also serve to lock out allocation from a shared
1949 * writeable region.
1950 */
1951 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1952
0378da0f 1953 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1954 fsdata, di_bh, NULL);
607d44aa
MF
1955 if (ret) {
1956 mlog_errno(ret);
c934a92d 1957 goto out_fail;
607d44aa
MF
1958 }
1959
1960 brelse(di_bh);
1961
1962 return 0;
1963
607d44aa
MF
1964out_fail:
1965 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1966
1967 brelse(di_bh);
e63aecb6 1968 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1969
1970 return ret;
1971}
1972
1afc32b9
MF
1973static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1974 unsigned len, unsigned *copied,
1975 struct ocfs2_dinode *di,
1976 struct ocfs2_write_ctxt *wc)
1977{
1978 void *kaddr;
1979
1980 if (unlikely(*copied < len)) {
1981 if (!PageUptodate(wc->w_target_page)) {
1982 *copied = 0;
1983 return;
1984 }
1985 }
1986
c4bc8dcb 1987 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1988 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1989 kunmap_atomic(kaddr);
1afc32b9 1990
9558156b
TM
1991 trace_ocfs2_write_end_inline(
1992 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1993 (unsigned long long)pos, *copied,
1994 le16_to_cpu(di->id2.i_data.id_count),
1995 le16_to_cpu(di->i_dyn_features));
1996}
1997
7307de80
MF
1998int ocfs2_write_end_nolock(struct address_space *mapping,
1999 loff_t pos, unsigned len, unsigned copied,
2000 struct page *page, void *fsdata)
3a307ffc
MF
2001{
2002 int i;
2003 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2004 struct inode *inode = mapping->host;
2005 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2006 struct ocfs2_write_ctxt *wc = fsdata;
2007 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2008 handle_t *handle = wc->w_handle;
2009 struct page *tmppage;
2010
1afc32b9
MF
2011 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2012 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2013 goto out_write_size;
2014 }
2015
3a307ffc
MF
2016 if (unlikely(copied < len)) {
2017 if (!PageUptodate(wc->w_target_page))
2018 copied = 0;
2019
2020 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2021 start+len);
2022 }
2023 flush_dcache_page(wc->w_target_page);
2024
2025 for(i = 0; i < wc->w_num_pages; i++) {
2026 tmppage = wc->w_pages[i];
2027
2028 if (tmppage == wc->w_target_page) {
2029 from = wc->w_target_from;
2030 to = wc->w_target_to;
2031
2032 BUG_ON(from > PAGE_CACHE_SIZE ||
2033 to > PAGE_CACHE_SIZE ||
2034 to < from);
2035 } else {
2036 /*
2037 * Pages adjacent to the target (if any) imply
2038 * a hole-filling write in which case we want
2039 * to flush their entire range.
2040 */
2041 from = 0;
2042 to = PAGE_CACHE_SIZE;
2043 }
2044
961cecbe 2045 if (page_has_buffers(tmppage)) {
53ef99ca 2046 if (ocfs2_should_order_data(inode))
2b4e30fb 2047 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2048 block_commit_write(tmppage, from, to);
2049 }
3a307ffc
MF
2050 }
2051
1afc32b9 2052out_write_size:
3a307ffc
MF
2053 pos += copied;
2054 if (pos > inode->i_size) {
2055 i_size_write(inode, pos);
2056 mark_inode_dirty(inode);
2057 }
2058 inode->i_blocks = ocfs2_inode_sector_count(inode);
2059 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
2063 ocfs2_journal_dirty(handle, wc->w_di_bh);
2064
2065 ocfs2_commit_trans(osb, handle);
59a5e416 2066
b27b7cbc
MF
2067 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2068
607d44aa
MF
2069 ocfs2_free_write_ctxt(wc);
2070
2071 return copied;
2072}
2073
b6af1bcd
NP
2074static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2075 loff_t pos, unsigned len, unsigned copied,
2076 struct page *page, void *fsdata)
607d44aa
MF
2077{
2078 int ret;
2079 struct inode *inode = mapping->host;
2080
2081 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2082
3a307ffc 2083 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2084 ocfs2_inode_unlock(inode, 1);
9517bac6 2085
607d44aa 2086 return ret;
9517bac6
MF
2087}
2088
f5e54d6e 2089const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2090 .readpage = ocfs2_readpage,
2091 .readpages = ocfs2_readpages,
2092 .writepage = ocfs2_writepage,
2093 .write_begin = ocfs2_write_begin,
2094 .write_end = ocfs2_write_end,
2095 .bmap = ocfs2_bmap,
1fca3a05
HH
2096 .direct_IO = ocfs2_direct_IO,
2097 .invalidatepage = ocfs2_invalidatepage,
2098 .releasepage = ocfs2_releasepage,
2099 .migratepage = buffer_migrate_page,
2100 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2101 .error_remove_page = generic_error_remove_page,
ccd979bd 2102};